WO2013177835A1 - 一种酶电极耦合电絮凝去除有机物的方法及反应器 - Google Patents

一种酶电极耦合电絮凝去除有机物的方法及反应器 Download PDF

Info

Publication number
WO2013177835A1
WO2013177835A1 PCT/CN2012/077218 CN2012077218W WO2013177835A1 WO 2013177835 A1 WO2013177835 A1 WO 2013177835A1 CN 2012077218 W CN2012077218 W CN 2012077218W WO 2013177835 A1 WO2013177835 A1 WO 2013177835A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
cathode
anode
electrode
organic matter
Prior art date
Application number
PCT/CN2012/077218
Other languages
English (en)
French (fr)
Inventor
曹宏斌
赵赫
李玉平
李海涛
张懿
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US14/395,653 priority Critical patent/US9708203B2/en
Publication of WO2013177835A1 publication Critical patent/WO2013177835A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used

Definitions

  • the present invention relates to a method for removing organic matter in water. Specifically, the present invention provides a method and a reactor for removing organic matter in water by combining a peroxidase-modified electrode and electrocoagulation in the same electrochemical system.
  • Enzyme electrocatalysis technology is a newly developed water treatment technology in recent years.
  • the enzyme catalytic method has the advantages of high catalytic activity, fast reaction rate, high selectivity to low concentration pollutants, mild reaction conditions, simple and easy handling process; on the other hand, the outstanding advantage of the electrochemical method is that the reaction speed is easy. Controlled by voltage and current adjustments, without the need to add chemicals, the process is clean. Therefore, the enzyme molecule is directly modified to directly electrochemically react on the electrode surface, and has received increasing attention in water and wastewater treatment.
  • Electrocoagulation technology has proven to be superior to conventional coagulation processes in improving water and wastewater treatment efficiency, and is widely used in water and wastewater treatment. It can not only effectively remove suspended matter in water, but also reduce its turbidity and chromaticity. It also has good removal effect on organic matter, heavy metals and microorganisms in water, especially suitable for small-scale water treatment.
  • the basic principle of electrocoagulation when using aluminum as an anode is: placing an aluminum electrode in a raw water to be treated with direct current, an electrochemical reaction of the anode to dissolve aluminum ions, and forming a hydrolysis, polymerization or complex reaction under certain conditions. A series of in situ hydrolyzed polymerization products with different charge amounts on the surface and aluminum hydroxide precipitate.
  • electrocoagulation and chemical coagulation are basically the same, using the coagulation/flocculation of aluminum ions and their polymerization products to remove colloids and suspended solids in water; however, the new ecological aluminum hydrolyzed polymerization products generated in situ during electroflocculation can remain high. Reactivity, which greatly reduces the required aluminum dose, and its aluminum consumption is only chemical coagulation About 1/3.
  • electrocoagulation technology also has some defects: (1) poor selectivity for low-concentration pollutants; (2) poor removal of small molecules and hydrophilic organics; (3) insufficient utilization of cathodes and waste of energy.
  • One of the objects of the present invention is to provide a method for co-flocculation and removal of organic matter by enzyme electrode coupling, coupling a peroxidase-modified electrode and electrocoagulation in the same electrochemical system, and having good selectivity for low-concentration contaminants, and small
  • the removal of molecules and hydrophilic organics is good, the cathode is not fully utilized, and energy is wasted. It can be applied not only to the treatment of low-concentration organic matter in water and wastewater, but also to the repair of water contaminated by organic pollution.
  • Step (1) coupling electrocoagulation and enzymatically modified electrodes in the same electrochemical system, the cathode is an oxygenation electrode of the immobilized enzyme, and the anode is an electroflocculation sacrificial electrode;
  • Step (2) separating the anode and cathode of the electrolytic cell by using a hydrogen ion exchange membrane to form a cathode chamber and an anode chamber;
  • step (3) the raw water enters from the cathode chamber, and the saturated calomel electrode is used as a reference electrode.
  • the cathodic potential or at a certain current density the organic matter in the raw water is subjected to enzymatic polymerization under the action of the enzyme electrode, and after a certain residence time, the original water pump is sent into the anode chamber after the reaction;
  • Step (4) in the anode chamber, using a saturated calomel electrode as a reference electrode, at a certain anode potential or at a certain current density, the metal anode dissolves to produce a hydrolyzate, and the new ecological hydrolyzate passes through the compressed electric double layer and adsorbs electricity.
  • the condensation/flocculation of neutralization and sedimentation nets reacts with the catalytically polymerized organic product in the cathode chamber to precipitate and remove.
  • the water is discharged from the anode, and finally the cathode enzyme catalytic polymerization and anode electrocoagulation are combined to remove organic matter.
  • the principle of the invention is: coupling electrocoagulation and enzyme-modified electrode in the same electrochemical system, the cathode is an enzyme electrode, the anode is an electro-flocculation sacrificial electrode, and the cathode and the anode are separated by a hydrogen ion exchange membrane to form a cathode chamber and In the anode chamber, the raw water enters from the cathode chamber. Under certain electrochemical parameters, the organic matter in the raw water is subjected to enzymatic polymerization, and the product after the reaction passes through the water pump to enter the anode chamber. After electrocoagulation, the water is discharged from the anode.
  • the main function of the hydrogen ion exchange membrane is (1) passing current; (2) allowing hydrogen ions in the anode chamber to migrate to the cathode chamber; (3) preventing the anode chamber from electrically flocculation to produce flocculation into the cathode chamber.
  • Cathodic main reaction 0 2 +2H + tene ⁇ 3 ⁇ 40 2
  • the Al 3+ electrochemically dissolved by the anode can form a variety of hydrolyzed polymerization products and A1 (0H) 3 by hydrolysis, polymerization or complex reaction, and the surface has a relatively high positive charge, which can play the adsorption neutralization and network. Capture effect.
  • the electrochemical parameters are controlled to cause hydrogen peroxide generated by the cathodic reaction to polymerize with the enzyme electrode to generate dimers, trimers and more.
  • the molecular weight of the organic product increases after the reaction, and after entering the anode, the precipitate is removed by coagulation/flocculation by compressing the electric double layer, the adsorption neutralization and the precipitation net by different A1 flocculation forms, and finally the cathodic enzyme catalytic polymerization is achieved.
  • the purpose of removing organic matter with the electrocoagulation of the anode is controlled to cause hydrogen peroxide generated by the cathodic reaction to polymerize with the enzyme electrode to generate dimers, trimers and more.
  • the cathode of the present invention is an oxygenation electrode for immobilizing enzyme.
  • Those skilled in the art can obtain the enzyme electrode of the present invention by chemical bonding, embedding, physical adsorption or the like.
  • the enzyme of the present invention may be selected from the group consisting of horseradish peroxidase, lignin peroxidase, polyphenol oxidase, laccase, tyrosinase cheese, catechol oxidase, hemoglobin, etc.;
  • the base electrode of the electrode is graphite, activated carbon, graphite felt, carbon felt, activated carbon fiber, carbon nanotube or the like.
  • the electroflocculation sacrificial anode of the present invention is selected from the group consisting of an aluminum plate, an iron plate, an aluminum iron plate and the like.
  • Another object of the present invention is to provide a reactor in which an enzyme electrode is coupled to electroflocculate to remove organic matter.
  • the reactor comprises: a cathode, an anode, a reference electrode, an electrolysis tank, a water pump, a hydrogen ion exchange membrane, an aeration device, a direct current power source and the like; the electrolytic cell is sealed by a rubber pad and a fixing screw, and the cathode and the reference electrode
  • the anode and the reference electrode are respectively disposed at two ends of the electrolytic cell, and a hydrogen ion exchange membrane is disposed between the anode and the anode chamber to form a cathode chamber and an anode chamber, and an aeration device is disposed in the cathode chamber, and an external air compressor or an air pump is connected to enter a certain air flow rate.
  • the cathode region provides dissolved oxygen for the cathode solution;
  • the electrolytic cell is connected with the water pump by a pipeline, the raw water is pumped from the inlet of the cathode chamber, and after the enzyme polymerization reaction in the cathode chamber, the outlet flows out from the cathode chamber outlet, and enters the anode chamber inlet through the pipeline. After the electroflocculation reaction occurs, it is pumped out from the outlet of the anode chamber; the DC power source is connected to the cathode and the anode by metal wires.
  • the current density is 0. 2 ⁇ 2. 2V, the current density is 0. 2 ⁇ 2. 0V, the cathode potential is 0. 2 ⁇ - 1. 2V, the current density is 0. 001 ⁇ lA / cm 2, the reference electrode is a saturated calomel electrode, a residence time of 5min ⁇ 5h, enzyme added amount 10 ⁇ 1000U / cm 2, an air flow rate of 0. l ⁇ 100L / min.
  • the invention combines both the enzyme electrocatalytic technology and the electrocoagulation technology in a single reactor to highly integrate the organic matter in the water. Compared with the existing single enzyme electrocatalysis or electroflocculation technology, the invention has the following beneficial effects:
  • the treatment effect is good.
  • the method and the reactor of the invention have strong selectivity to low-concentration toxic organic pollutants on the one hand, and the electrocatalytic polymerization product of the enzyme can be further removed by electrocoagulation, and the treatment effect is better than the single enzyme electrophoresis.
  • the removal of small molecules and hydrophilic organic matter is better than that of electrocoagulation alone. Small molecules and hydrophilic organic substances undergo electrocatalytic polymerization, molecular weight and structure change, and are more easily precipitated by electro-flocculation. Remove.
  • the anode and the anode can be fully utilized to save energy.
  • 1 is a schematic diagram of a reactor for coupling an electrocoagulation of an enzyme electrode to remove organic matter
  • 1 is a DC steady current regulated power supply
  • 2 is an ammeter
  • 3 is a voltmeter
  • 4 is a cathode
  • 5 is an anode
  • 6 is a reference electrode
  • 7 is a fixed screw
  • 8 is an electrolytic cell body
  • 9 is an aeration device.
  • 10 is a rubber gasket
  • 11 is a hydrogen ion exchange membrane
  • 12 is a water flow meter
  • 13 is an air flow meter
  • 14 is a water pump
  • 16 is a water inlet tank
  • 17 is a water outlet tank.
  • the enzyme electrode coupling electroflocculation reactor comprises: DC steady current regulated power supply 1, ammeter 2, voltmeter 3, cathode 4, anode 5, reference electrode 6, electrolytic cell 8, aeration device 9
  • the electrolytic cell 8 of the present invention is sealed by a rubber pad 10 and a fixing screw 7, and the cathode 4 and the reference electrode 6, the anode 5 and the reference electrode 6 are respectively placed at both ends of the electrolytic cell 8, and a hydrogen ion exchange membrane 11 is disposed therebetween.
  • a cathode chamber and an anode chamber The cathode chamber of the electrolytic cell is also the catalytic polymerization reaction zone of the enzyme electrode, and the anode compartment is also the electroflocculation reaction zone.
  • the cathode chamber is provided with an aeration device 9, and an external air compressor or air pump 15 is provided.
  • the electrolytic cell 8 and the peristaltic pump 14 of the present invention are connected by a pipeline, and the raw water is pumped from the water inlet tank 16 into the cathode chamber inlet, and after the enzyme polymerization reaction in the cathode chamber, the raw material flows out from the cathode chamber outlet and enters the anode chamber inlet through the pipeline. After the electroflocculation reaction occurs, it is pumped from the outlet of the anode chamber to the outlet tank 17.
  • the DC power source is connected to the cathode and the anode by metal wires.
  • the effective volume of the anode and anode chambers of the reactor was 40 mL.
  • the self-enzyme-modified electrode is used as the cathode
  • the horseradish peroxidase is used as the enzyme
  • the enzyme is added in an amount of lOU/cm 2
  • the substrate electrode is graphite
  • the air flow rate of the aeration device is 0. lL/min
  • the anode is an aluminum plate
  • the cathode is
  • the anode has a pole pitch of 1 and a saturated calomel electrode as a reference electrode.
  • the DC stabilized current source controls the cathode potential to be _0. 2V.
  • the bisphenol A solution (concentration of 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the water inlet, and the residence time was 5 min.
  • the effluent bisphenol A removal rate was 90%.
  • the removal rate of bisphenol A was only 25% using a graphite electrode without immobilization of the enzyme. It shows that the synergistic effect of enzyme electrode-electric flocculation can improve the removal rate of organic pollutants.
  • the effective volume of the anode and anode chambers of the reactor was 4L.
  • enzyme-modified electrode as a cathode made, the choice of lignin peroxidase enzyme, enzyme added amount 1000U / C m 2, the base electrode is activated, the air flow rate of the aeration device lOOL / min, the aluminum plate as an anode, a cathode and an anode 2V ⁇
  • the pole pitch is 90
  • the saturated calomel electrode is used as a reference electrode
  • the DC stabilized current source control cathode potential is _1. 2V.
  • the bisphenol A solution (concentration of 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the water inlet, and the residence time was 5 h.
  • the phenol removal rate of the system treated effluent was 99%.
  • the removal rate of bisphenol A was only 35% using an activated carbon electrode without immobilized enzyme. It shows that the synergistic effect of enzyme electrode-electric flocculation can improve the removal rate of organic pollutants.
  • the effective volume of the anode and anode chambers of the reactor was 40 mL.
  • enzyme-modified electrode as a cathode made, the choice of the enzyme polyphenol oxidase, enzyme added amount 10U / C m 2, the base electrode is a graphite felt, an air flow rate of the aeration device is 0. lL / min, iron anode, a cathode 2V ⁇ The pole of the anode is 0. 2V.
  • the humic acid solution (T0C was 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the inlet, and the residence time was lh.
  • the removal rate of the effluent T0C was 80%.
  • the T0C removal rate was only 15% using the graphite felt electrode without immobilized enzyme; under the same conditions, the T0C removal rate was 50% only by the electro-flocculation reaction through the enzyme electrode polymerization. It shows that the removal rate of humic acid can be improved by the synergistic effect of enzyme polymerization-electrocoagulation.
  • the effective volume of the anode and anode chambers of the reactor was 4L.
  • enzyme-modified electrode as a cathode made, the choice of laccase enzyme, enzyme added amount 1000U / C m 2, the base electrode is a carbon felt, an air flow rate of the aeration device is lOOL / min, anode 5 ⁇
  • a mixed solution of humic acid (TOC 100 mg/L) and bisphenol A (concentration 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the water inlet, and the residence time was 5 min.
  • the system treated the effluent bisphenol.
  • the A removal rate was 99%, and the T0C removal rate was 80%.
  • the carbon felt electrode without immobilized enzyme the removal rate of bisphenol A is only 25%, and the removal rate of T0C is only 10%; under the same conditions, only the electro-flocculation reaction is carried out by the enzyme electrode, bisphenol A
  • the removal rate was 85% and the T0C removal rate was 30%. It shows that the removal rate of humic acid and bisphenol A can be improved by the synergistic effect of enzyme polymerization-electrocoagulation.
  • the effective volume of the anode and anode chambers of the reactor was 40 mL.
  • the self-made enzyme modified electrode is used as the cathode, the enzyme is tyrosinase, the enzyme dosage is lOU/cm 2 , the base electrode is activated carbon fiber, the air flow rate of the aeration device is lL/min, the anode is iron aluminum plate, the cathode and the anode are 001 A/ ⁇ 2 ⁇
  • the pole pitch is 10mm, the saturated calomel electrode is used as a reference electrode, and the DC stabilized current source is controlled to have a current density of 0.001 A/cm 2 .
  • a mixed solution of humic acid (TOC 100 mg/L) and bisphenol A (concentration 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the inlet, and the residence time was 5 h.
  • the system treated the effluent bisphenol.
  • the A removal rate was 95%, and the T0C removal rate was 70%.
  • the removal rate of bisphenol A was only 23% and the removal rate of T0C was only 12% using the activated carbon fiber electrode without immobilized enzyme.
  • only the electrocoagulation reaction was carried out by the enzyme electrode, bisphenol A
  • the removal rate was 80%, and the T0C removal rate was 26%. It shows that the removal rate of humic acid and bisphenol A can be improved by the synergistic effect of enzyme polymerization-electrocoagulation.
  • the effective volume of the anode and anode chambers of the reactor was 4L.
  • enzyme-modified electrode as a cathode made, the choice of the enzyme catechol oxidase, enzyme added amount 1000U / C m 2, the base electrode of activated carbon fiber air flow rate, the aeration device is lOOL / min, iron aluminum anode, a cathode and The anode has a pole spacing of 90, the saturated calomel electrode serves as a reference electrode, and the DC stabilized current source controls the current density to 1 A/cm 2 .
  • a mixed solution of humic acid (TOC 100 mg/L) and bisphenol A (concentration 100 mg/L) was introduced into the enzyme electrode-coupled electrocoagulation reactor from the water inlet, and the residence time was 5 min.
  • the system treated the effluent bisphenol.
  • the A removal rate was 90%, and the T0C removal rate was 60%.
  • the removal rate of bisphenol A is only 15%, and the removal rate of T0C is only 10%; under the same conditions, only the electro-flocculation reaction is carried out by the enzyme electrode, bisphenol A
  • the removal rate was 75% and the T0C removal rate was 20%. It shows that the removal rate of humic acid and bisphenol A can be improved by the synergistic effect of enzyme polymerization-electrocoagulation.
  • the effective volume of the anode and anode chambers of the reactor was 40 mL.
  • Enzyme electrodes made using as a cathode modified, hemoglobin selected enzyme, enzyme added amount 100U / C m 2, the base electrode is a carbon nanotube air flow rate, the aeration device is 0. 001A/cm 2 ⁇
  • the anode is an aluminum plate, the cathode and the anode have a pole spacing of 5, the saturated calomel electrode is used as a reference electrode, and the DC stabilized current source has a current density of 0. 001A/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供一种酶电极耦合电絮凝去除有机物的方法及反应器,该方法在同一电化学体系联合酶修饰电极和电絮凝协同去除水中有机物,控制一定电化学参数,使阴极反应产生的过氧化氢与酶电极催化有机物发生聚合反应,反应后有机产物经泵进入阳极室,与不同电絮凝水解产物通过压缩双电层、吸附电中和及沉淀网捕等凝聚/絮凝作用而沉淀去除,最终达到阴极酶催化聚合和阳极电絮凝协同去除有机物的目的。本发明不仅对低浓度有毒有机污染物选择性强,对小分子、亲水性有机物去除效果好,而且酶添加量低,阴、阳极充分利用,成本得以降低,操作简单,用途广泛,适用于各种含有机物的水、废水及受污染的水体。

Description

种酶电极耦合电絮凝去除有机物的方法及反应器
技术领域
本发明涉及水中有机物的去除方法, 具体地, 本发明提出了在同一电化学体系联 合过氧化物酶修饰电极和电絮凝共同去除水中有机物的方法和反应器。
背景技术
随着我国工业化快速推进, 工业废水排放出水仍然含有大量低浓度溶解性有机物, 种类繁多, 结构复杂, 例如, 某废水生化处理后直接排放, 但仍含有多元酚、 多环芳 烃、 杂环化合物、 大分子腐殖质等低浓度有机物。 导致近年来我国水体有机微污染日 趋严重, 成为水体安全的重要隐患。
酶电催化技术是近年新发展的水处理技术。 一方面, 酶催化法具有催化活性高、 反应速率快、 对低浓度污染物选择性高、 反应条件温和、 处理过程简便易行等优点; 另一方面, 电化学方法的突出优点是反应速度易通过电压和电流调整来控制, 同时不 需加入药剂, 过程清洁。 因此, 酶分子被直接修饰在电极表面直接电化学反应, 在水 和废水处理中日益受到关注。 有研究表明, 将过氧化物酶修饰在阴极表面, 酶分子仍 保持对酚和苯胺类污染物较高的催化聚合活性, 容易形成不溶性聚合产物通过沉淀去 除。 然而, 酶电催化技术在实际处理方面仍然存在很多局限: (1 ) 酶添加量大, 成本 高; (2) 催化聚合产物沉淀去除不完全; (3 ) 阳极未充分利用, 能源浪费; (4) 有机 物去除效果有限。
电絮凝技术在提高水和废水处理效率方面被证明比传统混凝工艺具有优势, 而得 以在水和废水处理领域中广泛应用。 不仅可以有效去除水中悬浮物质, 降低其浊度、 色度, 对于水中的有机物、 重金属、 微生物等也有很好的去除效果, 尤其适用于小规 模水量的处理。 通常, 采用铝作为阳极时电凝聚的基本原理是: 将铝电极置于待处理 的原水中通以直流电, 阳极发生电化学反应溶出铝离子, 并在一定条件下经过水解、 聚合或配合反应形成一系列表面带有不同电荷量的原位水解聚合产物和氢氧化铝沉 淀。 电絮凝与化学混凝的本质基本相同, 均是利用铝离子及其聚合产物的凝聚 /絮凝 作用去除水中胶体和悬浮物; 但电絮凝过程中原位产生的新生态铝水解聚合产物可保 持较高的反应活性, 这在很大程度上降低了所需铝剂量, 其铝消耗量仅为化学混凝法 的 1/3左右。然而, 电絮凝技术也存在一些缺陷: (1 )对低浓度污染物选择性差; (2) 对小分子、 亲水性有机物去除效果差; (3) 阴极未充分利用, 能源浪费。
发明内容
本发明的目的之一在于提供一种酶电极耦合电絮凝去除有机物的方法, 在同一电 化学体系将过氧化物酶修饰电极和电絮凝进行耦合, 对低浓度污染物选择性好, 且对 小分子、 亲水性有机物去除效果好, 阴极未充分利用, 能源浪费, 不仅可以应用在水 和废水深度处理低浓度有机物, 还可以应用于受有机污染的水体修复。
本发明采用的技术方案为: 一种酶电极耦合电絮凝去除有机物的方法, 其步骤如 下:
步骤 (1 )、 在同一电化学体系耦合电絮凝和酶修饰电极, 阴极为固载酶的充氧电 极, 阳极为电絮凝牺牲电极;
步骤 (2)、 利用氢离子交换膜将电解槽阴、 阳两极隔开并形成阴极室和阳极室; 步骤 (3)、 原水从阴极室进入, 以饱和甘汞电极为参比电极, 在一定的阴极电位 或在一定电流密度下, 原水中有机物在酶电极作用下发生酶催化聚合反应, 经过一定 停留时间后, 将反应后原水泵入阳极室;
步骤 (4)、 在阳极室, 以饱和甘汞电极为参比电极, 在一定的阳极电位或在一定 电流密度下, 金属阳极溶解产生水解产物, 新生态水解产物通过压缩双电层、 吸附电 中和及沉淀网捕等凝聚 /絮凝作用与阴极室催化聚合有机产物反应而沉淀去除, 经电 絮凝反应后从阳极出水, 最终达到阴极酶催化聚合和阳极电絮凝协同去除有机物的目 的。
本发明的原理是: 在同一电化学体系耦合电絮凝和酶修饰电极, 阴极为酶电极, 阳极为电絮凝牺牲电极, 利用氢离子交换膜将电解槽阴、 阳两极隔开并形成阴极室和 阳极室, 原水从阴极室进入, 在一定电化学参数下, 原水中有机物发生酶催化聚合反 应, 反应后产物通过水泵进入阳极室, 经电絮凝后从阳极出水, 氢离子交换膜的主要 作用是 (1 ) 传递电流; (2 ) 允许阳极室的氢离子迁移至阴极室; (3 ) 防止阳极室电 絮凝产生絮状沉淀进入阴极室。
以铝为牺牲阳极时, 该方法原理如下:
阳极主反应: Al → Al3+ + 3e
阴极主反应: 02+2H+十 e→¾02 阳极电化学溶解出来的 Al3+经过水解、 聚合或配合反应可形成多种形态的水解聚 合产物以及 A1 (0H) 3, 表面均带有比较高的正电荷, 可发挥吸附电中和及网捕作用。
Α13+ → Α1 (0Η) Π 3π → Al2 (OH) 2 4+→ Al13 complex → Al (OH) 3
这是一个有机物的阴极酶电催化聚合作用联合阳极电絮凝沉淀过程, 控制电化学 参数使阴极反应产生的过氧化氢与酶电极催化有机物发生聚合反应, 可生成二聚体、 三聚体及多聚体, 反应后有机产物的分子量增大, 进入阳极后, 通过不同 A1 絮凝形 态通过压缩双电层、 吸附电中和及沉淀网捕等凝聚 /絮凝作用而沉淀去除, 最终达到 阴极酶催化聚合和阳极电絮凝协同去除有机物的目的。
本发明所述阴极为固载酶的充氧电极。 本领域技术人员可以由化学键合、 包埋、 物理吸附等方法得到本发明所述的酶电极。
本发明所述酶, 可选自辣根过氧化物酶、 木质素过氧化酶、 聚酚氧化酶、 漆酶、 酪氨酸酶酪、 儿茶酚氧化酶、 血红蛋白酶等; 所述充氧电极的基体电极为石墨、 活性 炭、 石墨毡、 碳毡、 活性炭纤维、 碳纳米管等。
本发明所述电絮凝牺牲阳极选自铝板、 铁板、 铝铁板等。
本发明的目的之二在于提供一种酶电极耦合电絮凝去除有机物的反应器。 该反应 器包括: 阴极、 阳极、 参比电极、 电解槽、 水泵、 氢离子交换膜、 曝气装置、 直流电 源等单元; 所述电解槽利用橡胶垫和固定螺丝进行密闭, 阴极与参比电极、 阳极与参 比电极分别置于电解槽两端, 之间设置氢离子交换膜以形成阴极室和阳极室, 在阴极 室设有曝气装置, 外接空气压缩机或气泵, 以一定空气流量进入阴极区为阴极溶液提 供溶解氧; 所述电解槽与水泵之间以管线连接, 原水从阴极室入口泵入, 经阴极室发 生酶聚合反应后, 从阴极室出口流出, 经管线进入阳极室入口, 发生电絮凝反应后, 从阳极室出口泵出; 直流电源与阴极、 阳极之间分别以金属导线连接。
本发明所述酶电极耦合电絮凝去除有机物反应器中电极的极间距为 l〜90mm, 阳 极电位为 0. 2〜2. 0V, 阴极电位为 -0. 2〜- 1. 2V, 电流密度为 0. 001〜lA/cm2, 参比电 极为饱和甘汞电极, 停留时间为 5min〜5h, 酶添加量为 10〜1000U/cm2, 空气流量为 0. l〜100L/min。
本发明将酶电催化技术和电絮凝技术两者在一个反应器内高度集成协同处理水 中有机物, 与现有单一酶电催化或电絮凝技术相比, 本发明具有如下有益效果:
( 1 )、 处理效果佳, 本发明涉及的方法和反应器一方面对低浓度有毒有机污染物 选择性强, 可将酶电催化聚合产物进一步通过电絮凝去除, 处理效果优于单独酶电催 化; 另一方面, 对小分子、 亲水性有机物去除效果优于单独电絮凝处理, 小分子、 亲 水性有机物通过酶电催化聚合作用, 分子量和结构发生变化, 更容易通过电絮凝沉淀 而去除。
( 2 )、 酶添加量低, 成本得以降低。
( 3 )、 阴、 阳极得以充分利用, 节约电能。
( 4)、 用途广泛, 适用于含各种低浓度有机物的水和废水, 还可用于受有机微污 染的湖泊、 水库、 河流、 地下水等水体修复;
( 5 )、 除了去除水和废水中有机物之外, 还可以共同去除水和废水中氨氮和重金 属等污染物。
附图说明
图 1 本发明酶电极耦合电絮凝去除有机物的反应器示意图;
其中 1为直流稳流稳压电源, 2为电流表, 3为电压表, 4为阴极, 5为阳极, 6 为参比电极, 7为固定螺丝, 8为电解槽体, 9为曝气装置, 10为橡胶垫片, 11为氢 离子交换膜, 12为水流量计, 13为空气流量计, 14为水泵, 15空气压缩机或气泵, 16为进水槽, 17为出水槽。
具体实施方式
如图 1所示, 酶电极耦合电絮凝反应器包括: 直流稳流稳压电源 1, 电流表 2, 电压表 3, 阴极 4, 阳极 5, 参比电极 6, 电解槽体 8, 曝气装置 9, 氢离子交换膜 11, 水流量计 12, 空气流量计 13, 水泵 14, 空气压缩机或气泵 15, 进水槽 16, 出水槽 17等单元。
本发明所述电解槽 8利用橡胶垫 10和固定螺丝 7进行密闭,阴极 4与参比电极 6、 阳极 5与参比电极 6分别置于电解槽 8两端, 之间设置氢离子交换膜 11以形成阴极 室和阳极室。 电解槽的阴极室同时也是酶电极催化聚合反应区, 阳极室同时也是电絮 凝反应区。 阴极室设有曝气装置 9, 外接空气压缩机或气泵 15。
本发明所述电解槽 8与蠕动泵 14之间以管线连接, 原水从进水槽 16泵入阴极室 入口, 经阴极室发生酶聚合反应后, 从阴极室出口流出, 经管线进入阳极室入口, 发 生电絮凝反应后, 从阳极室出口泵出至出水槽 17。 直流电源与阴极、 阳极之间分别以 金属导线连接。 为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限制性的 实施例如下:
实施例 1
反应器阴、 阳极室有效体积为 40mL。 采用自制酶修饰电极作为阴极, 酶选用辣 根过氧化物酶, 酶添加量为 lOU/cm2 , 基体电极为石墨, 曝气装置的空气流量为 0. lL/min, 阳极为铝板, 阴极与阳极的极间距为 1讓, 饱和甘汞电极做参比电极, 直 流稳压稳流电源控制阴极电位为 _0. 2V。 将双酚 A溶液 (浓度为 100 mg/L)由进水口进 入该酶电极耦合电絮凝反应器,停留时间为 5min, 系统处理出水双酚 A去除率为 90%。 相同条件下, 使用不固载酶的石墨电极, 双酚 A去除率仅为 25%。 说明酶电极-电絮凝 协同作用能提高对有机污染物的去除率。
实施例 2
反应器阴、 阳极室有效体积为 4L。 采用自制酶修饰电极作为阴极, 酶选用木质 素过氧化酶, 酶添加量为 1000U/Cm2, 基体电极为活性炭, 曝气装置的空气流量为 lOOL/min, 阳极为铝板, 阴极与阳极的极间距为 90讓, 饱和甘汞电极做参比电极, 直 流稳压稳流电源控制阴极电位为 _1. 2V。 将双酚 A溶液 (浓度为 100 mg/L)由进水口进 入该酶电极耦合电絮凝反应器, 停留时间为 5h, 系统处理出水苯酚去除率为 99%。 相 同条件下, 使用不固载酶的活性炭电极, 双酚 A去除率仅为 35%。 说明酶电极-电絮凝 协同作用能提高对有机污染物的去除率。
实施例 3
反应器阴、 阳极室有效体积为 40mL。 采用自制酶修饰电极作为阴极, 酶选用聚 酚氧化酶,酶添加量为 10U/Cm2,基体电极为石墨毡,曝气装置的空气流量为 0. lL/min, 阳极为铁板, 阴极与阳极的极间距为 1讓, 饱和甘汞电极做参比电极, 直流稳压稳流 电源控制阳极电位为 0. 2V。 将腐植酸溶液 (T0C为 100 mg/L)由进水口进入该酶电极耦 合电絮凝反应器, 停留时间为 lh, 系统处理出水 T0C去除率为 80%。 相同条件下, 使 用不固载酶的石墨毡电极, T0C去除率仅为 15%; 相同条件下, 只通过酶电极聚合不 经过电絮凝反应, T0C去除率为 50%。 说明通过酶聚合-电絮凝协同作用能够提高对腐 植酸的去除率。
实施例 4
反应器阴、阳极室有效体积为 4L。 采用自制酶修饰电极作为阴极,酶选用漆酶, 酶添加量为 1000U/Cm2, 基体电极为碳毡, 曝气装置的空气流量为 lOOL/min, 阳极为 铝板, 阴极与阳极的极间距为 90mm, 饱和甘汞电极做参比电极, 直流稳压稳流电源控 制阳极电位为 1. 2V。 将腐植酸 (TOC为 100 mg/L)和双酚 A (浓度为 100 mg/L)的混合溶 液, 由进水口进入该酶电极耦合电絮凝反应器, 停留时间为 5min, 系统处理出水双酚 A去除率为 99%, T0C去除率为 80%。 相同条件下, 使用不固载酶的碳毡电极, 双酚 A 去除率仅为 25%, T0C去除率仅为 10%; 相同条件下, 只通过酶电极聚合不经过电絮凝 反应, 双酚 A去除率为 85%, T0C去除率为 30%。 说明通过酶聚合 -电絮凝协同作用能 够提高对腐植酸和双酚 A的去除率。
实施例 5
反应器阴、 阳极室有效体积为 40mL。 采用自制酶修饰电极作为阴极, 酶选用酪 氨酸酶,酶添加量为 lOU/cm2,基体电极为活性炭纤维,曝气装置的空气流量为 lL/min, 阳极为铁铝板, 阴极与阳极的极间距为 10mm, 饱和甘汞电极做参比电极, 直流稳压稳 流电源控制电流密度为 0. 001 A/cm2。 将腐植酸 (TOC为 100 mg/L)和双酚 A (浓度为 100 mg/L)的混合溶液, 由进水口进入该酶电极耦合电絮凝反应器, 停留时间为 5h, 系统 处理出水双酚 A去除率为 95%, T0C去除率为 70%。 相同条件下, 使用不固载酶的活性 炭纤维电极, 双酚 A去除率仅为 23%, T0C去除率仅为 12%; 相同条件下, 只通过酶电 极聚合不经过电絮凝反应, 双酚 A去除率为 80%, T0C去除率为 26%。 说明通过酶聚合 -电絮凝协同作用能够提高对腐植酸和双酚 A的去除率。
实施例 6
反应器阴、 阳极室有效体积为 4L。 采用自制酶修饰电极作为阴极, 酶选用儿茶 酚氧化酶, 酶添加量为 1000U/Cm2, 基体电极为活性炭纤维, 曝气装置的空气流量为 lOOL/min, 阳极为铁铝板, 阴极与阳极的极间距为 90讓, 饱和甘汞电极做参比电极, 直流稳压稳流电源控制电流密度为 1 A/cm2。 将腐植酸 (TOC为 100 mg/L)和双酚 A (浓 度为 100 mg/L)的混合溶液, 由进水口进入该酶电极耦合电絮凝反应器, 停留时间为 5min, 系统处理出水双酚 A去除率为 90%, T0C去除率为 60%。 相同条件下, 使用不固 载酶的活性炭纤维电极, 双酚 A去除率仅为 15%, T0C去除率仅为 10%; 相同条件下, 只通过酶电极聚合不经过电絮凝反应, 双酚 A去除率为 75%, T0C去除率为 20%。 说明 通过酶聚合-电絮凝协同作用能够提高对腐植酸和双酚 A的去除率。
实施例 7
反应器阴、 阳极室有效体积为 40mL。 采用自制酶修饰电极作为阴极, 酶选用血 红蛋白酶, 酶添加量为 100U/Cm2, 基体电极为碳纳米管, 曝气装置的空气流量为 0. lL/min, 阳极为铝板, 阴极与阳极的极间距为 5讓, 饱和甘汞电极做参比电极, 直 流稳压稳流电源控制电流密度为 0. 001A/cm2。 将将某废水生化出水(C0D=150mg/L)由 进水口进入该酶电极耦合电絮凝反应器,停留时间为 5h, 系统处理出水 COD去除率为 60%。 相同条件下, 使用不固载酶的碳纳米管电极, COD去除率仅为 30%; 相同条件 下, 只通过酶电极聚合不经过电絮凝反应, COD去除率为 40%。 说明通过酶聚合-电 絮凝协同作用能够提高对废水中 COD的去除率。
应该注意到并理解, 在不脱离后附的权利要求所要求的本发明的精神和范围的情 况下, 能够对上述详细描述的本发明做出各种修改和改进。 因此, 要求保护的技术方 案的范围不受所给出的任何特定示范教导的限制。
申请人声明, 本发明通过上述实施例来说明本发明的详细方法, 但本发明并不局 限于上述详细方法, 即不意味着本发明必须依赖上述详细方法才能实施。 所属技术领 域的技术人员应该明了, 对本发明的任何改进, 对本发明产品各原料的等效替换及辅 助成分的添加、 具体方式的选择等, 均落在本发明的保护范围和公开范围之内。

Claims

权 利 要 求
1、 一种酶电极耦合电絮凝去除有机物的方法, 其特征在于实现步骤如下: 步骤 (1 )、 在同一电化学体系耦合电絮凝和酶修饰电极, 阴极为固载酶的充氧电 极, 阳极为电絮凝牺牲电极;
步骤 (2)、 利用氢离子交换膜将电解槽阴、 阳两极隔开并形成阴极室和阳极室; 步骤 (3)、 原水从阴极室进入, 以饱和甘汞电极为参比电极, 在一定的阴极电位 或在一定电流密度下, 阴极反应产生的过氧化氢与酶电极催化原水中有机物发生聚合 反应, 经过一定停留时间后, 将反应后原水泵入阳极室;
步骤 (4)、 在阳极室, 以饱和甘汞电极为参比电极, 在一定的阳极电位或在一定 电流密度下, 金属阳极溶解产生水解产物, 新生态水解产物通过压缩双电层、 吸附电 中和及沉淀网捕的凝聚 /絮凝作用与阴极室催化聚合有机产物反应而沉淀去除, 经电 絮凝反应后从阳极出水, 最终达到阴极酶催化聚合和阳极电絮凝协同去除有机物的目 的。
2、 如权利要求 1 所述的酶电极耦合电絮凝去除有机物的方法, 其特征在于: 所 述阴极的固载酶为辣根过氧化物酶、 木质素过氧化酶、 聚酚氧化酶、 漆酶、 酪氨酸酶 酪、 儿茶酚氧化酶、 血红蛋白酶; 所述酶添加量为 10U/Cm2〜1000U/cm2
3、 如权利要求 1 所述的酶电极耦合电絮凝去除有机物的方法, 其特征在于: 所 述阴极的基体为石墨、 活性炭、 石墨毡、 碳毡、 活性炭纤维或碳纳米管。
4、 如权利要求 1 所述的酶电极耦合电絮凝去除有机物的方法, 其特征在于: 所 述阳极为铝板、 铁板或铝铁板。
5、 一种酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 该反应器包括: 阴极、 阳极、 参比电极、 电解槽、 水泵、 氢离子交换膜、 曝气装置和直流电源; 所述 电解槽利用橡胶垫和固定螺丝进行密闭, 阴极与参比电极、 阳极与参比电极分别置于 电解槽两端,之间设置氢离子交换膜以形成阴极室和阳极室,在阴极室设有曝气装置, 外接空气压缩机或气泵, 以一定空气流量进入阴极区为阴极溶液提供溶解氧; 所述电 解槽与水泵之间以管线连接, 原水从阴极室入口泵入, 经阴极室发生酶聚合反应后, 从阴极室出口流出,经管线进入阳极室入口,发生电絮凝反应后,从阳极室出口泵出; 直流电源与阴极、 阳极之间分别以金属导线连接。
6、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述阴极的固载酶为辣根过氧化物酶、 木质素过氧化酶、 聚酚氧化酶、 漆酶、 酪氨酸 酶酪、 儿茶酚氧化酶、 血红蛋白酶; 所述酶添加量为 10U/Cm2〜1000U/cm2
7、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述阴极的基体为石墨、 活性炭、 石墨毡、 碳毡、 活性炭纤维或碳纳米管。
8、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述阳极为铝板、 铁板或铝铁板。
9、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述阴极和阳极之间距离为 1讓〜90讓。
10、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述阳极电位为 0. 2V〜2. 0V; 所述阴极电位为 -1. 2V〜- 0. 2V。
11、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述电流密度为 0. 001A/cm2〜lA/cm2
12、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述停留时间为 5min〜5h。
13、 如权利要求 5所述的酶电极耦合电絮凝去除有机物的反应器, 其特征在于: 所述空气流量为 0. lL/min〜100L/min。
PCT/CN2012/077218 2012-05-29 2012-06-20 一种酶电极耦合电絮凝去除有机物的方法及反应器 WO2013177835A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/395,653 US9708203B2 (en) 2012-05-29 2012-06-20 Method and reactor for removing organic matters by immobilized-enzymatic electrode coupled electro-coagulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101699616A CN102701337B (zh) 2012-05-29 2012-05-29 一种酶电极耦合电絮凝去除有机物的方法及反应器
CN201210169961.6 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013177835A1 true WO2013177835A1 (zh) 2013-12-05

Family

ID=46894477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077218 WO2013177835A1 (zh) 2012-05-29 2012-06-20 一种酶电极耦合电絮凝去除有机物的方法及反应器

Country Status (3)

Country Link
US (1) US9708203B2 (zh)
CN (1) CN102701337B (zh)
WO (1) WO2013177835A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350716A (zh) * 2022-01-11 2022-04-15 安徽农业大学 一种漆酶诱导共聚合促进双酚a转化的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185957A (zh) * 2017-06-22 2017-09-22 华东师范大学 一种快速治理土壤有机物和重金属的土壤修复系统
CN107055889A (zh) * 2017-07-03 2017-08-18 辽宁科技学院 一种海水养殖废水高效电解脱氮除磷装置和方法
CN108217862B (zh) * 2018-03-08 2020-12-08 中国石油大学(北京) 一种双电极电絮凝-电催化臭氧装置及工业废水处理方法
CN111018062B (zh) * 2019-11-08 2022-08-26 江苏科技大学 一种采用电絮凝耦合电催化氧化处理废水的装置及其处理方法
CN113321352B (zh) * 2021-03-04 2022-10-18 天津工业大学 一种利用电活化过硫酸盐耦合碳膜体系降解有机物的设备和方法
CN113044916A (zh) * 2021-03-08 2021-06-29 青岛理工大学 一种蜂窝式共阴极光电耦合水处理反应器及方法
CN113089002A (zh) * 2021-03-18 2021-07-09 重庆大学 一种电催化产过氧化氢耦合有机物选择性氧化装置和方法
CN114180763A (zh) * 2021-12-15 2022-03-15 南京工业大学 一种全氟化合物废水的电化学深度处理装置及工艺
CN114871266B (zh) * 2022-04-29 2023-09-05 天津城建大学 一种固定漆酶协同土壤微生物电化学系统修复难降解有机物污染土壤的方法
CN115893574B (zh) * 2022-11-22 2024-05-24 中国海洋大学 一种微生物燃料电池耦合光电催化系统及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226766A1 (en) * 2002-06-05 2003-12-11 Orlebeke David N. Electrolytic treatment of aqueous media
CN2866491Y (zh) * 2005-03-16 2007-02-07 杨治敏 生物酶电化学水处理装置
CN1982228A (zh) * 2005-12-12 2007-06-20 中国科学院过程工程研究所 一种处理含酚、芳香胺和偶氮染料废水的酶电耦合催化方法
CN101538097A (zh) * 2009-04-30 2009-09-23 中国科学院过程工程研究所 一种难降解有机废水的酶处理技术

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248473A (ja) * 2001-02-26 2002-09-03 Sanyo Electric Co Ltd 窒素処理方法及び窒素処理システム
CN1247467C (zh) * 2003-09-24 2006-03-29 浙江工业大学 一种含苯酚废水的电解氧化处理工艺
CN100500596C (zh) * 2005-04-05 2009-06-17 孙祥章 酶法处理有机废水的工艺
CN201882958U (zh) * 2010-11-22 2011-06-29 浙江富春江环保热电股份有限公司 一种可调电极间距的高效电絮凝反应器
US9685676B2 (en) * 2011-09-15 2017-06-20 The Regents Of The University Of Colorado Modular bioelectrochemical systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226766A1 (en) * 2002-06-05 2003-12-11 Orlebeke David N. Electrolytic treatment of aqueous media
CN2866491Y (zh) * 2005-03-16 2007-02-07 杨治敏 生物酶电化学水处理装置
CN1982228A (zh) * 2005-12-12 2007-06-20 中国科学院过程工程研究所 一种处理含酚、芳香胺和偶氮染料废水的酶电耦合催化方法
CN101538097A (zh) * 2009-04-30 2009-09-23 中国科学院过程工程研究所 一种难降解有机废水的酶处理技术

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350716A (zh) * 2022-01-11 2022-04-15 安徽农业大学 一种漆酶诱导共聚合促进双酚a转化的方法

Also Published As

Publication number Publication date
CN102701337A (zh) 2012-10-03
CN102701337B (zh) 2013-08-21
US9708203B2 (en) 2017-07-18
US20150203374A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2013177835A1 (zh) 一种酶电极耦合电絮凝去除有机物的方法及反应器
Li et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell
Cui et al. Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration
Zhang et al. Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities
CN104016547A (zh) 一种焦化污水深度处理零排放工艺
CN105585180A (zh) 一种高效反渗透浓水处理方法
CN201567249U (zh) 超声电化学废水处理装置
CN105084648A (zh) 一种难生物降解污水的处理方法
CN101417835A (zh) 有机废水的臭氧/电化学一体化处理装置及方法
Su et al. Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol
CN105236686A (zh) 一种用于净化难降解有机污染物的污水处理方法
Wang et al. Integrating sludge microbial fuel cell with inclined plate settling and membrane filtration for electricity generation, efficient sludge reduction and high wastewater quality
CN107140785A (zh) 高氯离子高cod化工生产废水的处理方法
CN1982228A (zh) 一种处理含酚、芳香胺和偶氮染料废水的酶电耦合催化方法
CN101618905A (zh) 含磷废水的臭氧强化电絮凝处理方法
CN205442899U (zh) 一种耦合式反渗透浓水处理系统
Cao et al. An electro‐microbial membrane system with anti‐fouling function for phenol wastewater treatment
CN116395919B (zh) 一种含硝基咪唑废水处理工艺
CN113582439A (zh) 酸性高盐高浓度有机废水的铁碳芬顿预处理方法
CN105198049A (zh) 一种污水处理的方法
CN106467349B (zh) 一种高浓度酸性有机废水处理系统及方法
KR20140093441A (ko) 저에너지형 하폐수처리장치와 그 운영 방법
CN110877952A (zh) 一种微生物燃料电池辅助强化厌氧污泥消化的复合系统
CN212356703U (zh) 一种酚醛废水处理装置
Aryanti et al. The influence of applied current density and agitation speed during electrocoagulation of textile wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14395653

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/02/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12878185

Country of ref document: EP

Kind code of ref document: A1