WO2013176413A1 - Nitrogen generation, storage, and supply system for tanker ships, and method for controlling same - Google Patents

Nitrogen generation, storage, and supply system for tanker ships, and method for controlling same Download PDF

Info

Publication number
WO2013176413A1
WO2013176413A1 PCT/KR2013/003789 KR2013003789W WO2013176413A1 WO 2013176413 A1 WO2013176413 A1 WO 2013176413A1 KR 2013003789 W KR2013003789 W KR 2013003789W WO 2013176413 A1 WO2013176413 A1 WO 2013176413A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
purity
valve
cargo
cargo tank
Prior art date
Application number
PCT/KR2013/003789
Other languages
French (fr)
Korean (ko)
Inventor
이경우
김만응
천강우
남연우
Original Assignee
사단법인 한국선급
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사단법인 한국선급 filed Critical 사단법인 한국선급
Publication of WO2013176413A1 publication Critical patent/WO2013176413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/082Arrangements for minimizing pollution by accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a nitrogen generation, storage and supply system and a control method thereof installed on a tanker ship for storing and transporting cargo oil.
  • Tanker ships carry cargo oil (crude oil, petroleum products, chemicals, etc.). Since the cargo oil is mostly flammable materials, the cargo tank containing the flammable liquid may contain a large amount of flammable gas evaporated from the cargo oil. When such flammable gas comes into contact with an ignition source at a certain level of oxygen concentration (depending on the type of cargo oil, but generally 13% or more), it may lead to an explosion accident, which may cause a lot of life loss and environmental pollution.
  • the International Maritime Organization shall, when loading or unloading cargo oil (including purging), for cargo tankers of 20,000 DWT or more deadweight tonnage.
  • IMO International Maritime Organization
  • Inert gas manufacturing apparatus for ships is typically used inert gas system (IGS) or inert gas generator (IGG).
  • IGS inert gas system
  • IGF inert gas generator
  • IGS uses a boiler installed on a tanker ship and operates the burner of the boiler in an incomplete combustion state (supplying a small amount of air compared to the supplied fuel) to produce exhaust gas with an oxygen concentration of 5% or less. It is a facility that cleans exhaust gas through seawater scrubber and supplies it to the cargo tank as inert gas. At this time, the exhaust gas is known to have 81 to 83% of nitrogen, 12 to 14% of CO2, and 2 to 4% of oxygen. IGG uses a dedicated combustion plant to produce inert gas instead of a boiler, the rest of which is the same as IGS.
  • IGS and IGG are operated under incomplete combustion conditions to reduce the oxygen concentration of exhaust gas below 5%, and large amounts of combustion oxides (Soot, PM, etc.) are generated during incomplete combustion.
  • combustion oxides Soot, PM, etc.
  • a considerable amount of combustion oxide is introduced into the cargo tank.
  • IGG uses high quality fuel oil (usually MDO) compared to IGS by using a dedicated combustion facility, less combustion oxides are emitted than IGS.
  • MDO high quality fuel oil
  • small tankers of less than 20,000 DWT mainly carry very expensive small cargoes, such as pharmaceutical raw materials and cosmetic raw materials, so when the combustion oxide from IGS or IGG flows into the cargo tank, There is a problem that can be contaminated.
  • Nitrogen generator is divided into membrane type using membrane and Pressure Swing Adsorption using adsorbent.
  • membrane type is mainly use membrane type in consideration of small facility installation space and smooth maintenance. .
  • the membrane method utilizes the difference in permeation rate of various gases in the membrane, and supplies the compressed air at about 8-12 bar to the membrane module, and shows the permeation rate of various molecules (mostly nitrogen and oxygen) of the compressed air inside the membrane.
  • the difference of 95% or more purity of nitrogen is produced.
  • the purity of the nitrogen produced in the membrane may vary slightly depending on the type of membrane, but can be adjusted to 95 ⁇ 99.9%, and in general, as the purity of nitrogen increases, the amount of nitrogen produced in the nitrogen generator tends to decrease.
  • the nitrogen generator has the advantage that it can produce nitrogen having a purity of 95% or more while preventing contamination of the cargo by the combustion oxide, there is a problem that the power required to produce nitrogen is relatively large.
  • the present invention has been made in view of the above problems, to provide a system for producing, storing and supplying nitrogen injected into a cargo tank in a ship to prevent an explosion accident in a tanker ship carrying cargo oil. For that purpose.
  • Another object of the present invention is to provide an improved method for producing and supplying nitrogen so that even a small tanker of less than 20,000 DWT can use a nitrogen generator with limited power.
  • Nitrogen production and supply system is a cargo tank containing a cargo oil is stored therein, the inert gas and nitrogen inlet gas inlet and the inlet gas inlet and vent pipe and the cargo tank including a cargo oil inlet and outlet;
  • a nitrogen generator for producing nitrogen to have a second purity having a first purity and a purity lower than the first purity according to a control signal of the controller;
  • a nitrogen storage unit storing nitrogen of the first purity;
  • An air suction unit for sucking air outside the cargo tank;
  • a mixing device for mixing the nitrogen of the first purity stored in the nitrogen storage unit, the nitrogen of the second purity generated by the nitrogen generator, and the outside air sucked from the air suction unit;
  • a valve unit for controlling opening and closing by the control unit to adjust the purity of nitrogen supplied to the cargo tank.
  • the valve unit the first valve for opening and closing the flow path between the nitrogen generator and the nitrogen storage; A second valve for opening and closing a flow path between the nitrogen storage part and the mixing device; A third valve for opening and closing a flow path between the nitrogen generator and the mixing device; A fourth valve for opening and closing a flow path between the air suction unit and the mixing device; And a fifth valve for opening and closing a flow path between the mixing device and the cargo tank.
  • the second to fourth valves are preferably closed, and the second to fourth valves are individually opened according to the oxygen concentration of the gas mixed in the mixing device. It is desirable to be controlled.
  • the mixing device and the oxygen concentration meter for measuring the oxygen concentration inside the cargo tank; further comprising, the fifth valve is preferably controlled to open or close according to the measured value of the oxygen concentration meter.
  • the first concentration is 99 to 99.9% concentration
  • the second concentration may be provided to 92 to 95% concentration.
  • the nitrogen generation, storage and supply control method for the tanker ship comprises the steps of: determining whether the tanker ship is in operation; When the tanker is in operation, producing nitrogen at a concentration of 99 to 99.9% with a nitrogen generator, and storing the produced high purity nitrogen in a nitrogen storage unit; When the tanker is not in operation, producing a large amount of 92 to 95% nitrogen with a nitrogen generator, and mixing it with high purity nitrogen stored in the nitrogen storage unit and the outside air in a mixing apparatus; And supplying a gas in which nitrogen of different purity is mixed to the cargo tank, and performing dropping or unloading of the cargo oil.
  • the supplying the mixed gas to the cargo tank may include closing a first valve for opening and closing a flow path between the nitrogen generator and the nitrogen storage unit; A second valve for opening and closing the flow path between the nitrogen storage unit and the mixing device, and a third valve for opening and closing the flow path between the nitrogen generator and the mixing device; And a fourth valve for opening and closing a flow path between the air suction unit and the mixing device. Detecting the oxygen concentration inside the mixing device, when the composition of the inert gas of a suitable level that can be supplied to the cargo tank, opening the fifth valve to supply a nitrogen center inert gas to the cargo tank; can do.
  • a nitrogen storage unit that can store high-purity nitrogen, while producing a small capacity while sailing the tanker ship, it produces high-purity nitrogen and stores it in the nitrogen storage unit It is a large capacity at the time of loading and unloading cargo oil, but produces low-purity nitrogen, and supplies high-purity nitrogen stored during voyage with low-purity nitrogen produced at the time of loading and unloading cargo, and supplies it to the cargo tank. Therefore, a relatively small capacity nitrogen generator can supply inert gas (nitrogen) required for the cargo tank.
  • 1 is a view showing a cargo oil loading and unloading operation sequence of the tanker ship
  • FIG. 2 is a view showing the concept of nitrogen production, storage and supply apparatus according to an embodiment of the present invention
  • FIG. 3 is a control block diagram of a nitrogen production, storage and supply apparatus according to an embodiment of the present invention.
  • FIG. 4 is a control flowchart of the nitrogen production, storage and supply apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view showing a cargo oil loading and unloading operation sequence of the tanker ship
  • Figure 2 is a view showing the concept of nitrogen production, storage and supply apparatus according to an embodiment of the present invention
  • Figure 3 is a preferred embodiment of the present invention Control block diagram of the nitrogen production, storage and supply apparatus according to an embodiment
  • Figure 4 is a control flow diagram of the nitrogen production, storage and supply apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view illustrating a process in which a tanker ship loads and unloads cargo.
  • step (a) is a purging step, in which the oxygen concentration in the cargo tank 10 is increased to 5 to prevent explosions before the vessel without loading the cargo loads the cargo. It shows the process of lowering below 8%.
  • the inert gas inlet 11 of the cargo tank 10 is opened, and the inert gas 100 of the nitrogen center generated by the nitrogen generator 200 to be described later is injected into the cargo tank 10.
  • the vent pipe 12 installed in the cargo tank 10 it is good to discharge the air containing oxygen in the cargo tank 10 to the outside.
  • step (b) When the oxygen concentration of the internal space of the cargo tank 10 is lowered to the required level or less in the above step (a), as shown in step (b), the cargo oil 20 is moved to the cargo oil inlet and outlet 13. Drop through
  • the cargo oil 20 is a process of dropping the cargo oil 20.
  • the inert gas inlet 11 may be opened to further replenish the inert gas 100 of the nitrogen center. That is, while loading of the cargo oil 20 is carried out, the inert gas 100 of the nitrogen center, which is an inert gas in the cargo tank 10, is discharged to the outside of the cargo tank 10 by the amount of the cargo oil 20 dropped. Because it becomes. In general, when the dripping of the cargo oil 20 is completed, only about 5-10% of the volume of the cargo tank 10 is finally filled with the inert gas 100 of the nitrogen center which is an inert gas.
  • the outside air inflow In order to suppress the increase in the oxygen concentration according to, it is good to carry out the step of unloading the cargo oil 20 while continuing to replenish nitrogen through the inert gas inlet (11). That is, when arriving at the port for unloading the cargo oil 20 and unloading the cargo oil, in order to prevent structural damage (buckling) and explosion of the cargo tank 10, as much as the amount of cargo oil to be unloaded This is because it is necessary to supply nitrogen from the outside. Such additional supply of the nitrogen-based inert gas 100 needs to be made continuously until the unloading of the cargo oil 20 is completed.
  • step (e) the inert gas 100 of the nitrogen center filled in the internal space of the cargo tank 10 through the vent pipe 12, The outside air (A) is sucked to fill the cargo tank 10 with air. That is, when the unloading of the cargo oil 20 is completed, the oxygen concentration in the cargo tank 10 to about 20% level so that the work force can enter the cargo tank for cleaning work in the cargo tank 10. Because you have to raise. Meanwhile, as described above, the step of discharging the oil vapor of the cargo oil 20 existing in the cargo tank 10 to the outside of the cargo tank and filling the air in the cargo tank 10 may be performed in a gas free manner. ). After the gas free, the tanker ship that has completed the work inside the cargo tank unloads the cargo again, and then starts the purging step (a).
  • FIG. 2 is a view schematically showing the configuration of the nitrogen generating device 200 for generating a nitrogen-based inert gas 100 used to control the oxygen concentration of the cargo tank (10).
  • the nitrogen generating apparatus 200 includes a nitrogen generator 210, nitrogen storage unit 220, mixing device 230 and the air suction unit 240, These may be selectively connected to a valve unit 250 composed of a plurality of valves.
  • Nitrogen generator 210 is a device for producing a nitrogen-centered inert gas 100 is supplied to the inside of the cargo tank (10). On the other hand, in order to apply the nitrogen generator 210 to tankers of various sizes, the nitrogen generating capacity of the nitrogen generator 210 dropping or unloading the cargo oil 20 with respect to the total volume of the cargo tank 10 of the tanker ship It is necessary to be configured to be able to supply a nitrogen-based inert gas 100 during the time that is made.
  • the total volume of the cargo tank of the 20,000 DWT tanker ship is typically about 30,000 m 3, and the time required for loading or unloading the cargo is about 24 hours, so the nitrogen production capacity of the nitrogen generator 210 is about 1,250 m 3 / h.
  • the nitrogen generator 210 It should be capable of supplying at least 3,750 m3 / h of nitrogen.
  • the general nitrogen discharge pressure is 8bar
  • the volume ratio of 8bar and 0bar (atmospheric pressure) at 45 °C is about 8.9 times, about 421m3 / h class nitrogen generator
  • the power of 420 ⁇ 630kW class is required. This, 420 ⁇ 630kW of power is a big power close to the output of one generator installed in the tanker ship.
  • the nitrogen generator 210 is selectively operated during the dropping and unloading and discharging and operating steps of the cargo oil 20 of the tanker ship, and the inert gas 100 of the nitrogen center is 100.
  • the power required for the production of sigma is greatly reduced.
  • the control method of the nitrogen generator 210 will be described later with a flowchart.
  • the nitrogen storage unit 220 stores inert gas 100 of high purity nitrogen center among the nitrogen center inert gas 100 generated by the nitrogen generator 210, as shown in FIG. 2.
  • the first valve 251 may be connected to the nitrogen generator 210 and the outlet may be connected to the second valve 220.
  • Mixing device 230 is a large-capacity low-purity nitrogen center inert gas 100 generated during the dropping and unloading of the cargo oil 20 of the nitrogen-centered inert gas 100 generated by the nitrogen generator 210
  • the inlet is connected to the nitrogen storage unit 220 by the second valve 252
  • the nitrogen generator 210 by the third valve 253, and the fourth valve. 254 is connected to the air suction unit 240
  • the outlet may be connected to the cargo tank 10 by a fifth valve (255). Therefore, in the mixing device 230, the inert gas 100 of the high purity nitrogen center, the inert gas 100 of the high purity and low purity nitrogen center, and air (A) are mixed to open and close the fifth valve 255. It can be supplied to the cargo tank 10 by.
  • the nitrogen generator 210, the air suction unit 240 and the valve unit 250 is preferably controlled by a predetermined control unit (C).
  • the oxygen concentration meter 15 for detecting the oxygen concentration in the cargo tank 10 outputs the measured oxygen concentration value to the controller C. Then, the controller C determines that the inert gas 100 of the nitrogen center needs to be added to the inside of the cargo tank 10 according to the oxygen concentration value measured by the oxygen concentration meter 15. While operating the 210, the valve unit 250 is controlled to form the nitrogen-centered inert gas 100 at a concentration level required by the mixing apparatus 230, and the fifth valve 255 is formed. In accordance with the opening and closing operation, the inert gas 100 of the nitrogen center generated by the nitrogen generator 210 may be supplied into the cargo tank 10.
  • control unit (C) controls the operating method of the nitrogen generator 210 differently, according to the current state of the tanker ship. That is, as described above, during the dripping and unloading of the cargo oil 20, the large-scale low-purity nitrogen-based inert gas 100 is controlled to be produced, and the high-purity nitrogen-based inert gas 100 is produced during ship operation. By doing so, the nitrogen storage unit 220 may be controlled to be stored in advance.
  • the cargo tank volume of the 20,000 DWT tanker ship is about 30,000 m3, and the loading and unloading time is 24 hours, the operating period from the place of departure to the place of arrival is 3 days, and the nitrogen generator installed can produce nitrogen as described above.
  • the nitrogen generator 210 during the voyage to produce and store 99.5% purity nitrogen, and when loading or unloading the cargo oil 20 to a relatively low 95% purity
  • the power required for the nitrogen generator 210 can be significantly reduced compared to the conventional.
  • the nitrogen storage unit 220 including a pressure vessel and a compressor are required.
  • the space required for the storage container can be minimized, and the compressor used at this time is inexpensive and requires less reciprocating compressor.
  • the screw type compressor can be used, so the power required is not large.
  • the controller C determines whether the tanker ship is currently in operation (S10), and if it is determined that the tanker ship is in operation, operates the nitrogen generator 210 to the maximum. , To produce a high purity nitrogen center inert gas 100 (S20), the produced high purity nitrogen center inert gas 100 opens only the first valve 251, the second to fourth valves (252 ⁇ ) 254 is closed, and stores the produced high purity nitrogen-centered inert gas 100 in the nitrogen storage unit 220 provided with a compression vessel or the like. The steps S10 to S30 continue in a closed loop, and may be configured to stop when the nitrogen storage unit 220 is filled with high purity nitrogen.
  • step S10 if it is determined that the tanker ship is not in operation in step S10, this is a dropping or unloading step of the cargo oil 20, in this case using a nitrogen generator 210 inert gas 100 of large-capacity low purity nitrogen center To produce). If the purity of nitrogen in the previous step S20 is 99% or more, the purity of nitrogen in this step is about 95% is sufficient (S40).
  • the nitrogen generator 210 produces a large-capacity low-purity nitrogen-centered inert gas 100 in step S40, the produced nitrogen is inert of the high-purity nitrogen center stored in the nitrogen storage unit 220 in the mixing device 230.
  • the gas 100 may be mixed with air in the outside atmosphere sucked from the air suction unit 240 and injected into the cargo tank 10.
  • the second to fourth valves 252 to 254 are connected to the inlet of the mixing device 230.
  • Each of the valves 252 to 254 has a required concentration of oxygen (5 to 8%).
  • step S50 Whether the composition of the inert gas of the appropriate concentration is completed in the step S50 can be confirmed through the oxygen concentration meter 15, as shown in Figure 2, through the value measured in the oxygen concentration meter 15 If it is determined that the composition of the inert gas of the nitrogen center generated in step S50 is suitable to supply to the cargo tank 10, the control unit (C) is opened to open the fifth valve 255, the inert While filling the gas into the internal space of the cargo tank 10 through the nitrogen inlet 11, the cargo oil 20 can be safely loaded and unloaded into the cargo tank 10 (S60).
  • the cargo tank volume of the 20,000 DWT tanker ship is 30,000 m 3, the time required for purging, unloading and unloading, respectively, 24 hours, the operating period from the place of departure to the port of arrival 3 days,
  • the purity of nitrogen that can be produced by the installed separator nitrogen method is 99.5 ⁇ 95% at 8 bar discharge pressure, the nitrogen discharge flow rate at 95% purity and the nitrogen discharge flow rate at purity 99.5% is 3.5 times similar to the general nitrogen generator.
  • the nitrogen generator is operated only at the time of loading (including purging) and unloading the cargo as before, as described above, to supply 3,750 m 3 / h of nitrogen at atmospheric pressure of 45 ° C., the level of 420 m 3 / h Nitrogen generator is required, and power of 420 ⁇ 630kW is required.
  • the power required for the nitrogen generator can be significantly reduced. That is, since air (A) in the atmosphere is composed of 79% nitrogen and 21% oxygen, in order to make 100 m3 of air (A) at 5% oxygen concentration, nitrogen having a purity of 99.5% (nitrogen 99.5%, oxygen 0.5%) 355.6 m 3 should be mixed, and the inert gas produced at this time may be produced by installing about 203 m 3 / h class nitrogen generator 210 at 45 ° C. 8 bar discharge pressure. This is only 48.3% of capacity and pressure compared to conventional methods. Detailed calculation results are shown in Table 1 below.
  • the nitrogen was described as an example, not limited to this, any equipment that can generate an inert gas can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The nitrogen generation, storage, and supply system according to the present invention includes: a cargo tank for storing cargo oil therein and having an inert gas injection inlet through which nitrogen and air are injected, and a cargo oil inlet and outlet through which the cargo oil flows in and out; a nitrogen generator for producing nitrogen having a first purity and a second purity which is lower than the first purity in response to a control signal from a control unit; a nitrogen storage unit for storing the nitrogen having the first purity; an air suction unit suctioning air from outside the cargo tank; a mixing device mixing the nitrogen having the first purity stored in the nitrogen storage unit, the nitrogen having the second purity generated by the nitrogen generator, and the external air suctioned by the air suction unit; and a valve unit, the opening and closing of which are controlled by the control unit so as to control the purity of the nitrogen supplied to the cargo tank.

Description

탱커선용 질소발생, 저장 및 공급 시스템 및 그 제어방법Nitrogen generation, storage and supply system for tanker ships and its control method
본 발명은 화물유를 저장 및 운반하는 탱커선에 설치되는 질소 발생, 저장 및 공급 시스템 및 그 제어방법에 대한 것이다.The present invention relates to a nitrogen generation, storage and supply system and a control method thereof installed on a tanker ship for storing and transporting cargo oil.
탱커선은 화물유(원유, 석유제품, 화학약품 등)를 운반하는 선박이다. 화물유는 대부분 가연성 물질들이므로, 가연성액체를 수납하는 화물탱크에는 화물유로부터 증발된 다량의 가연성가스가 수납될 수 있다. 이러한 가연성 가스가 일정 수준 이상의 산소농도(화물유의 종류에 따라 달라지나, 일반적으로 13% 이상)에서 점화원과 접촉하게 되면, 폭발사고로 이어져 많은 인명손실 및 환경오염을 유발할 수 있다.Tanker ships carry cargo oil (crude oil, petroleum products, chemicals, etc.). Since the cargo oil is mostly flammable materials, the cargo tank containing the flammable liquid may contain a large amount of flammable gas evaporated from the cargo oil. When such flammable gas comes into contact with an ignition source at a certain level of oxygen concentration (depending on the type of cargo oil, but generally 13% or more), it may lead to an explosion accident, which may cause a lot of life loss and environmental pollution.
이러한 폭발사고를 방지하기 위해, 국제해사기구(International Maritime Organization, 이하 "IMO")에서는 20,000 DWT(중량톤, deadweight tonnage) 이상의 탱커선에 대해, 화물유를 적하(퍼징 포함) 또는 양하하는 경우, 화물탱크 내부의 산소농도가 8% 이하로 유지될 수 있도록, 상기 화물유가 수납되는 화물탱크 내부를 불활성기체로 채울 수 있는 장치를 선박에 설치하도록 의무화하고 있다. In order to prevent such explosions, the International Maritime Organization (IMO) shall, when loading or unloading cargo oil (including purging), for cargo tankers of 20,000 DWT or more deadweight tonnage. In order to maintain the oxygen concentration in the tank below 8%, it is mandatory to install a device on the ship that can fill the inside of the cargo tank containing the cargo oil with an inert gas.
또한, IMO의 의무조항과는 별도로, 엑손(Exxon), 브리티시 페트롤륨(BP), 쉘(Shell) 등과 같은 대형 석유회사들은 자신들의 화물을 운송하는 선박들에 대해, 화물탱크 내부의 산소농도를 5% 이하로 유지하도록 요구하고 있으며, 대형 석유회사가 전세계 화물유 물동량에서 차지하는 비중은 절대적이므로, 20,000 DWT 이상의 모든 탱커선들은 산소농도를 5% 이하로 유지할 수 있도록 관련 설비를 갖추고 있다.In addition, apart from IMO mandates, large oil companies such as Exxon, British Petroleum (BP), Shell, etc., are responsible for monitoring the concentration of oxygen in the cargo tanks for ships carrying their cargo. It is required to keep it below 5%, and since the large oil companies make up the share of the world's cargo volume, all tankers above 20,000 DWT are equipped with related facilities to keep the oxygen concentration below 5%.
하지만, 최근에 IMO에서는 소형 탱커선들의 폭발사고에 따른 피해를 줄이기 위해, 20,000 DWT 미만의 소형 탱커선에 대해서도 불활성기체 제조장치를 선박에 갖추도록 의무화하는 방안을 논의하고 있다. 이에 따라 2015년 이후부터는, 8,000 DWT 이상의 모든 탱커선에 대해 관련 규제를 적용할 것으로 보인다.Recently, however, the IMO has been discussing mandatory ships with inert gas production equipment for small tanker ships of less than 20,000 DWT in order to reduce the impact of explosions on small tankers. As a result, from 2015 onwards, relevant tankers are expected to be applied to all tankers above 8,000 DWT.
선박용 불활성기체 제조장치는 통상적으로 IGS(Inert Gas System) 또는 IGG(Inert Gas Generator)가 사용되고 있다. Inert gas manufacturing apparatus for ships is typically used inert gas system (IGS) or inert gas generator (IGG).
IGS는 탱커선에 설치되어 있는 보일러를 이용하는 것으로서, 보일러의 버너를 불완전연소상태(공급되는 연료에 비해 적은양의 공기를 공급)로 작동시켜, 산소농도가 5% 이하인 배기가스를 생산하고, 이 배기가스를 해수 스크러버를 통해 세정하여 화물탱크에 불활성기체로서 공급하는 설비이다. 이때 배기가스는 질소가 81~83%, CO2가 12~14%, 산소가 2~4% 정도인 것으로 알려져 있다. IGG는 보일러 대신에 불활성기체를 제조하기 위한 전용의 연소설비를 사용하는 것으로서, 나머지 원리는 IGS와 동일하다.IGS uses a boiler installed on a tanker ship and operates the burner of the boiler in an incomplete combustion state (supplying a small amount of air compared to the supplied fuel) to produce exhaust gas with an oxygen concentration of 5% or less. It is a facility that cleans exhaust gas through seawater scrubber and supplies it to the cargo tank as inert gas. At this time, the exhaust gas is known to have 81 to 83% of nitrogen, 12 to 14% of CO2, and 2 to 4% of oxygen. IGG uses a dedicated combustion plant to produce inert gas instead of a boiler, the rest of which is the same as IGS.
IGS와 IGG는 배기가스의 산소농도를 5% 이하로 낮추기 위해, 불완전연소 조건에서 운전되며, 불완전연소 시에 많은 양의 연소산화물(Soot, PM 등)이 발생되게 되며, 이러한 연소산화물을 제거하기 위해 해수 스크러버를 이용하여 세정하는 단계를 거치지만, 상당한 양의 연소산화물이 화물탱크로 유입되게 된다. 또한, IGG가 전용의 연소설비를 이용하여 IGS에 비해 좋은 품질의 연료유(통상적으로 MDO)를 사용하기 때문에, IGS에 비해 연소산화물이 적게 배출되지만, IGG를 사용하는 경우에도, 상당한 양의 연소 산화물이 화물탱크로 유입되게 된다.IGS and IGG are operated under incomplete combustion conditions to reduce the oxygen concentration of exhaust gas below 5%, and large amounts of combustion oxides (Soot, PM, etc.) are generated during incomplete combustion. In order to clean the vessel using seawater scrubber, a considerable amount of combustion oxide is introduced into the cargo tank. In addition, because IGG uses high quality fuel oil (usually MDO) compared to IGS by using a dedicated combustion facility, less combustion oxides are emitted than IGS. However, even when IGG is used, a considerable amount of combustion is performed. Oxides enter the cargo tanks.
그런데, 20,000 DWT 이상의 대형 탱커선들은 주로 원유, 석유류 제품 등 비교적 낮은 가격의 화물을 대량으로 운송하는 선박이므로, IGS 또는 IGG에서 배출되는 연소산화물이 화물탱크로 유입되어, 화물유에 혼합되더라도, 그 양이 화물유의 양에 비해 매우 작고, 추가적인 정제과정을 거치는 것이 대부분이므로, 별다른 문제가 되질 않는다. However, large tanker ships of 20,000 DWT or more are mainly ships carrying large quantities of relatively inexpensive cargoes such as crude oil and petroleum products. This is very small compared to the amount of cargo, and most of the additional refining process is not a problem.
하지만, 20,000 DWT 미만의 소형 탱커선들은 의약품 원료, 화장품 원료 등 매우 고가의 소량 화물들을 주로 운송하기 때문에, IGS 또는 IGG에서 배출되는 연소산화물이 화물탱크로 유입되는 경우, 연소산화물에 의해서, 화물이 오염될 수 있다는 문제점이 있다.However, small tankers of less than 20,000 DWT mainly carry very expensive small cargoes, such as pharmaceutical raw materials and cosmetic raw materials, so when the combustion oxide from IGS or IGG flows into the cargo tank, There is a problem that can be contaminated.
따라서 IMO에서 8,000 DWT 이상의 모든 탱커선에 대해 불활성기체 제조장치를 설치하도록 의무화하는 규제를 시행할 경우에 대비하여, 소형 탱커선에 적합한 불활성기체 제조장치의 개발이 필요하다. 특히, IGS와 IGG를 대체할 수 있으며, 연소산화물에 의한 화물의 오염을 방지할 수 있는 선박용 불활성기체 제조장치는 질소 발생기가 유일한 상황이다. Therefore, in case IMO enforces a requirement to install inert gas production equipment for all tankers of more than 8,000 DWT, it is necessary to develop inert gas production equipment suitable for small tankers. In particular, the inert gas manufacturing apparatus for ships that can replace the IGS and IGG, and can prevent the contamination of the cargo by the combustion oxide, the nitrogen generator is the only situation.
질소 발생기는 분리막을 사용하는 분리막방식과, 흡착제를 사용하는 압력교차 흡착방식(Pressure Swing Adsorption)이 있지만, 선박에서는 협소한 설비 설치공간, 원활한 유지보수 등을 고려하여, 분리막방식을 주로 사용하고 있다.Nitrogen generator is divided into membrane type using membrane and Pressure Swing Adsorption using adsorbent. However, ships mainly use membrane type in consideration of small facility installation space and smooth maintenance. .
분리막방식은 분리막 내부에서 각종 기체들의 투과속도 차이를 이용하는 것으로서, 약 8~12bar로 압축된 공기를 분리막 모듈에 공급하고, 압축된 공기의 각종 분자(대부분 질소 및 산소)가 분리막 내부에서 나타내는 투과속도의 차이를 이용하여 순도 95% 이상의 질소를 생산하게 된다. 이때 분리막에서 생산되는 질소의 순도는 분리막의 종류에 따라 다소 차이가 있을 수 있으나, 95~99.9%로 조절이 가능하며, 통상적으로 질소의 순도가 높아질수록 질소 발생기에서 생산되는 질소의 양이 줄어드는 경향을 가진다.The membrane method utilizes the difference in permeation rate of various gases in the membrane, and supplies the compressed air at about 8-12 bar to the membrane module, and shows the permeation rate of various molecules (mostly nitrogen and oxygen) of the compressed air inside the membrane. By using the difference of 95% or more purity of nitrogen is produced. At this time, the purity of the nitrogen produced in the membrane may vary slightly depending on the type of membrane, but can be adjusted to 95 ~ 99.9%, and in general, as the purity of nitrogen increases, the amount of nitrogen produced in the nitrogen generator tends to decrease. Has
하지만, 질소 발생기는 연소산화물에 의한 화물의 오염을 방지하면서 95% 이상의 순도를 가지는 질소를 생산할 수 있다는 장점은 있으나, 질소를 생산하는데 소요되는 동력이 상대적으로 크다는 문제점이 있다. However, the nitrogen generator has the advantage that it can produce nitrogen having a purity of 95% or more while preventing contamination of the cargo by the combustion oxide, there is a problem that the power required to produce nitrogen is relatively large.
또한, 용량이 큰 질소 발생기는 선박의 협소한 공간을 고려할 때 설치가 용이하지 않기 때문에, 질소 발생기를 20,000 DWT 미만의 소형 탱커선에 직접적으로 적용하기가 어려울 수도 있다.In addition, since a large capacity nitrogen generator is not easy to install in view of the narrow space of a ship, it may be difficult to apply the nitrogen generator directly to a small tanker of less than 20,000 DWT.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 화물유를 운반하는 탱커선에서 폭발사고를 방지하기 위해 화물탱크 내부에 주입되는 질소를 선박 내에서 생산, 저장 및 공급하는 시스템을 제공하는 것을 그 목적으로 한다.The present invention has been made in view of the above problems, to provide a system for producing, storing and supplying nitrogen injected into a cargo tank in a ship to prevent an explosion accident in a tanker ship carrying cargo oil. For that purpose.
본 발명의 다른 목적은 20,000 DWT이하의 소형의 탱커선에서도 한정된 동력으로 질소발생장치를 사용할 수 있도록 개선된 질소 생산 및 공급방법을 제공하는 것에 있다.Another object of the present invention is to provide an improved method for producing and supplying nitrogen so that even a small tanker of less than 20,000 DWT can use a nitrogen generator with limited power.
본 발명에 의한 질소 생산 및 공급시스템은 내부에 화물유가 저장되며, 질소가 주성분인 불활성기체 및 공기가 주입되는 불활성기체 주입구와 벤트관 및 화물유가 유출입 되는 화물유 입출구를 포함하는 화물탱크; 제어부의 제어신호에 따라, 제 1 순도와 상기 제 1 순도보다 낮은 순도의 제 2 순도를 가지도록 질소를 생산하는 질소 발생기; 상기 제 1 순도의 질소를 저장하는 질소 저장부; 화물탱크 외부의 공기를 흡입하는 공기흡입유닛; 상기 질소 저장부에 저장된 상기 제 1 순도의 질소와, 상기 질소 발생기가 생성하는 제 2 순도의 질소와, 상기 공기흡입유닛에서 흡입되는 외부 공기를 혼합하는 혼합장치; 및 상기 제어부에 의해 개폐가 제어되어, 상기 화물탱크에 공급되는 질소의 순도를 조절하는 밸브유닛;을 포함하는 것을 특징으로 한다.Nitrogen production and supply system according to the present invention is a cargo tank containing a cargo oil is stored therein, the inert gas and nitrogen inlet gas inlet and the inlet gas inlet and vent pipe and the cargo tank including a cargo oil inlet and outlet; A nitrogen generator for producing nitrogen to have a second purity having a first purity and a purity lower than the first purity according to a control signal of the controller; A nitrogen storage unit storing nitrogen of the first purity; An air suction unit for sucking air outside the cargo tank; A mixing device for mixing the nitrogen of the first purity stored in the nitrogen storage unit, the nitrogen of the second purity generated by the nitrogen generator, and the outside air sucked from the air suction unit; And a valve unit for controlling opening and closing by the control unit to adjust the purity of nitrogen supplied to the cargo tank.
본 발명의 바람직한 일 실시예에 따르면, 상기 밸브유닛은, 상기 질소 발생기와 질소 저장부 사이의 유로를 개폐하는 제 1 밸브; 상기 질소 저장부와 혼합장치 사이의 유로를 개폐하는 제 2 밸브; 상기 질소 발생기와 혼합장치 사이의 유로를 개폐하는 제 3 밸브; 상기 공기흡입유닛과 혼합장치 사이의 유로를 개폐하는 제 4 밸브; 및 상기 혼합장치와 화물탱크 사이의 유로를 개폐하는 제 5 밸브;를 포함하는 것이 바람직하다.According to a preferred embodiment of the present invention, the valve unit, the first valve for opening and closing the flow path between the nitrogen generator and the nitrogen storage; A second valve for opening and closing a flow path between the nitrogen storage part and the mixing device; A third valve for opening and closing a flow path between the nitrogen generator and the mixing device; A fourth valve for opening and closing a flow path between the air suction unit and the mixing device; And a fifth valve for opening and closing a flow path between the mixing device and the cargo tank.
이때, 상기 제 1 밸브가 오픈될 경우, 상기 제 2 내지 제 4 밸브는 폐쇄 되는 것이 좋으며, 상기 제 2 내지 제 4 밸브는, 상기 혼합장치에서 혼합되는 기체의 산소농도에 따라, 개별적으로 오픈량이 제어되는 것이 바람직하다.In this case, when the first valve is opened, the second to fourth valves are preferably closed, and the second to fourth valves are individually opened according to the oxygen concentration of the gas mixed in the mixing device. It is desirable to be controlled.
한편, 상기 혼합장치와 상기 화물탱크 내부의 산소농도를 측정하는 산소농도계;를 더 포함하며, 상기 제 5 밸브는 상기 산소농도계의 측정값에 따라 개폐여부가 제어되는 것이 바람직하다.On the other hand, the mixing device and the oxygen concentration meter for measuring the oxygen concentration inside the cargo tank; further comprising, the fifth valve is preferably controlled to open or close according to the measured value of the oxygen concentration meter.
상기 제 1 농도는 99 내지 99.9% 농도이고, 상기 제 2 농도는 92 내지 95% 농도로 마련될 수 있다.The first concentration is 99 to 99.9% concentration, the second concentration may be provided to 92 to 95% concentration.
본 발명에 의한 탱커선용 질소발생, 저장 및 공급 제어방법은, 탱커선의 운행 중인지의 여부를 판단하는 단계; 탱커선이 운행 중일 경우, 질소 발생기로 99 내지 99.9% 농도의 질소를 생산하고, 생산된 고순도 질소는 질소 저장부에 저장하는 단계; 탱커선이 운행 중이 아닌 경우에는, 질소 발생기로 92 내지 95% 농도의 질소를 대량으로 생산하고, 이를 혼합장치에서 상기 질소 저장부에 저장된 고순도 질소와 외부 공기와 혼합하는 단계; 및 서로 다른 순도의 질소가 혼합된 가스를 화물탱크에 공급하여, 화물유의 적하 또는 양하를 수행하는 단계;를 포함하는 것을 특징으로 한다.The nitrogen generation, storage and supply control method for the tanker ship according to the present invention comprises the steps of: determining whether the tanker ship is in operation; When the tanker is in operation, producing nitrogen at a concentration of 99 to 99.9% with a nitrogen generator, and storing the produced high purity nitrogen in a nitrogen storage unit; When the tanker is not in operation, producing a large amount of 92 to 95% nitrogen with a nitrogen generator, and mixing it with high purity nitrogen stored in the nitrogen storage unit and the outside air in a mixing apparatus; And supplying a gas in which nitrogen of different purity is mixed to the cargo tank, and performing dropping or unloading of the cargo oil.
상기 혼합된 가스를 화물탱크에 공급하는 단계는, 상기 질소 발생기와 질소 저장부 사이의 유로를 개폐하는 제 1 밸브를 폐쇄하는 단계; 상기 질소 저장부와 혼합장치 사이의 유로를 개폐하는 제 2 밸브, 상기 질소 발생기와 혼합장치 사이의 유로를 개폐하는 제 3 밸브; 및 상기 공기흡입유닛과 혼합장치 사이의 유로를 개폐하는 제 4 밸브;를 모두 오픈하는 단계; 및 상기 혼합장치 내부의 산소농도를 검출하여, 화물탱크에 공급할 수 있는 적정 수준의 불활성기체의 조성이 되었을 경우, 제 5 밸브를 오픈하여 화물탱크에 질소 중심의 불활성기체를 공급하는 단계;를 포함할 수 있다.The supplying the mixed gas to the cargo tank may include closing a first valve for opening and closing a flow path between the nitrogen generator and the nitrogen storage unit; A second valve for opening and closing the flow path between the nitrogen storage unit and the mixing device, and a third valve for opening and closing the flow path between the nitrogen generator and the mixing device; And a fourth valve for opening and closing a flow path between the air suction unit and the mixing device. Detecting the oxygen concentration inside the mixing device, when the composition of the inert gas of a suitable level that can be supplied to the cargo tank, opening the fifth valve to supply a nitrogen center inert gas to the cargo tank; can do.
이상과 같은 본 발명에 따르면, 질소 발생기의 제어 방법을 개선하면서, 고순도의 질소를 보관할 수 있는 질소 저장부를 마련하여, 탱커선의 항해 중에는 소용량이지만, 고순도의 질소를 생산하여 질소 저장부에 이를 저장하고, 화물유의 적하 및 양하 시점에서는 대용량이지만, 저순도의 질소를 생산하여, 항해 중에 저장된 고순도의 질소와 화물유의 적하 및 양하 시점에 생산된 저순도의 질소 및 대기 중의 공기를 혼합하여 화물탱크에 공급하기 때문에, 상대적으로 적은 용량의 질소 발생기로도 화물탱크에 필요한 불활성기체(질소)를 공급할 수 있다.According to the present invention as described above, while improving the control method of the nitrogen generator, by providing a nitrogen storage unit that can store high-purity nitrogen, while producing a small capacity while sailing the tanker ship, it produces high-purity nitrogen and stores it in the nitrogen storage unit It is a large capacity at the time of loading and unloading cargo oil, but produces low-purity nitrogen, and supplies high-purity nitrogen stored during voyage with low-purity nitrogen produced at the time of loading and unloading cargo, and supplies it to the cargo tank. Therefore, a relatively small capacity nitrogen generator can supply inert gas (nitrogen) required for the cargo tank.
따라서 본 발명에서 제안된 사항을 적용한다면, IGS 또는 IGG에서 생성되는 연소산화물로 인한 화물 오염에 대한 위험성 때문에 IGS 또는 IGG를 적용하기가 곤란한 20,000 DWT 미만의 탱커선에 적합한 불활성기체 생성 및 공급장치로 질소발생장치를 설치 및 운영할 수 있다.Therefore, if the present invention is applied to the inert gas generation and supply apparatus suitable for tanker ships less than 20,000 DWT difficult to apply IGS or IGG due to the risk of cargo contamination due to the combustion oxide produced in IGS or IGG Nitrogen generator can be installed and operated.
도 1은 탱커선의 화물유 적하 및 양하 작업 순서를 도시한 도면,1 is a view showing a cargo oil loading and unloading operation sequence of the tanker ship,
도 2는 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 개념을 도시한 도면,2 is a view showing the concept of nitrogen production, storage and supply apparatus according to an embodiment of the present invention,
도 3은 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 제어 블록도, 그리고,3 is a control block diagram of a nitrogen production, storage and supply apparatus according to an embodiment of the present invention, and
도 4는 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 제어 흐름도 이다.4 is a control flowchart of the nitrogen production, storage and supply apparatus according to an embodiment of the present invention.
이하, 본 발명의 바람직한 일 실시예에 따른, 탱커선용 질소발생, 저장 및 공급 시스템을 도면과 함께 설명한다.Hereinafter, the nitrogen generation, storage and supply system for tanker ship according to an embodiment of the present invention will be described with the drawings.
도 1은 탱커선의 화물유 적하 및 양하 작업 순서를 도시한 도면, 도 2는 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 개념을 도시한 도면, 도 3은 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 제어 블록도, 그리고, 도 4는 본 발명의 바람직한 일 실시예에 따른 질소 생산, 저장 및 공급장치의 제어 흐름도 이다.1 is a view showing a cargo oil loading and unloading operation sequence of the tanker ship, Figure 2 is a view showing the concept of nitrogen production, storage and supply apparatus according to an embodiment of the present invention, Figure 3 is a preferred embodiment of the present invention Control block diagram of the nitrogen production, storage and supply apparatus according to an embodiment, and Figure 4 is a control flow diagram of the nitrogen production, storage and supply apparatus according to an embodiment of the present invention.
도 1은 탱커선이 화물을 적하하고 양하하는 과정을 도시한 도면이다.1 is a view illustrating a process in which a tanker ship loads and unloads cargo.
도시된 바와 같이, (가) 단계는 퍼징(Purging) 단계로서, 화물을 적재하지 않은 상태의 선박이 화물을 적재하기 전에, 폭발을 방지할 수 있도록 화물탱크(10) 내부의 산소농도를 5~8% 이하로 낮추는 과정을 도시한 것이다. 이를 위해, 화물탱크(10)의 불활성기체 주입구(11)를 오픈하여, 후술할 질소발생장치(200)에서 생성된 질소 중심의 불활성기체(100)를 화물탱크(10)의 내부로 주입한다. 이때, 화물탱크(10)에 설치되어 있는 벤트관(12)을 오픈하여, 상기 화물탱크(10) 내부의 산소가 포함된 공기를 외부로 배출하는 것이 좋다.As shown, step (a) is a purging step, in which the oxygen concentration in the cargo tank 10 is increased to 5 to prevent explosions before the vessel without loading the cargo loads the cargo. It shows the process of lowering below 8%. To this end, the inert gas inlet 11 of the cargo tank 10 is opened, and the inert gas 100 of the nitrogen center generated by the nitrogen generator 200 to be described later is injected into the cargo tank 10. At this time, by opening the vent pipe 12 installed in the cargo tank 10, it is good to discharge the air containing oxygen in the cargo tank 10 to the outside.
상기한 (가) 단계에서 화물탱크(10)의 내부 공간의 산소농도가 요구 수준 이하로 낮춰지면, (나) 단계에 도시한 바와 같이, 화물유(20)를 상기 화물유 입출구(13)를 통해 적하 한다.When the oxygen concentration of the internal space of the cargo tank 10 is lowered to the required level or less in the above step (a), as shown in step (b), the cargo oil 20 is moved to the cargo oil inlet and outlet 13. Drop through
한편, 상기 (나) 단계에서 화물유(20)를 적하하는 과정 중에, 외부 공기가 유입되면서 화물탱크(10) 내부의 산소농도가 상승할 수도 있으므로, 상기 화물유(20)를 적하하는 과정인 (다) 단계 중에 상기 불활성기체 주입구(11)를 오픈하여, 추가적으로 질소 중심의 불활성기체(100)를 보충 하는 것이 좋다. 즉, 화물유(20)의 적하가 이뤄지는 동안, 화물탱크(10) 내부의 불활성기체인 질소 중심의 불활성기체(100)는 적하되는 화물유(20)의 양 만큼 화물탱크(10) 외부로 배출되기 때문이다. 일반적으로 화물유(20)의 적하가 완료되면, 최종적으로 화물탱크(10) 체적의 5~10% 정도만이 불활성기체인 질소 중심의 불활성기체(100)로 채워지게 된다. On the other hand, during the dropping of the cargo oil 20 in the step (b), since the oxygen concentration inside the cargo tank 10 may increase while the outside air is introduced, the cargo oil 20 is a process of dropping the cargo oil 20. During the step (c), the inert gas inlet 11 may be opened to further replenish the inert gas 100 of the nitrogen center. That is, while loading of the cargo oil 20 is carried out, the inert gas 100 of the nitrogen center, which is an inert gas in the cargo tank 10, is discharged to the outside of the cargo tank 10 by the amount of the cargo oil 20 dropped. Because it becomes. In general, when the dripping of the cargo oil 20 is completed, only about 5-10% of the volume of the cargo tank 10 is finally filled with the inert gas 100 of the nitrogen center which is an inert gas.
상기한 (가) 내지 (다) 단계를 통해, 화물탱크(10) 내부에 화물유(20)가 적하되면, 상기 불활성기체 주입구(11), 벤트관(12) 및 화물유 입출구(13)를 폐쇄한 상태로, 탱커선을 이동 운전한다. 한편, 화물유(20)의 적하가 완료된 이후에는 화물유(20)를 양하하기 위한 장소로 항해를 하게 되는데, 탱커선이 항해하는 동안 외부의 열원(태양열 등)으로 인해 화물탱크 내부는 상기 벤트관(12)을 이용하여, 지속적으로 가스의 배출 및 흡입이 가능하도록 설치되므로, 화물탱크(10) 내부의 기상부의 산소농도를 요구되는 수준까지 낮추기 위해서는 질소 중심의 불활성기체(100)를 항해 중에도 지속적으로 보충할 필요가 있다. 이와 같은 질소보충을 패딩(Padding)이라 한다.Through the above (a) to (c) step, when the cargo oil 20 is dropped into the cargo tank 10, the inert gas inlet 11, vent pipe 12 and the cargo oil inlet and outlet 13 In closed state, move tanker ship and drive. On the other hand, after the dropping of the cargo oil 20 is completed to sail to the place for unloading the cargo oil 20, while the tanker ship sails due to the external heat source (solar heat, etc.) inside the cargo tank vent Since the pipe 12 is installed to continuously discharge and inhale gas, in order to lower the oxygen concentration in the gaseous phase in the cargo tank 10 to a required level, the inert gas 100 of the nitrogen center is sailed even while sailing. You need to replenish it constantly. This nitrogen supplement is called padding.
한편, 화물유(20)의 양하 단계인 (라) 단계에서는, 상기 화물유 입출구(13)를 통해 화물유(20)를 양하하는 과정 중에, 상기 (다) 단계와 마찬 가지로, 외부 공기 유입에 따른 산소 농도의 상승을 억제할 수 있도록, 상기 불활성기체 주입구(11)를 통해 질소를 계속 보충하면서, 화물유(20)의 양하 공정을 수행하는 것이 좋다. 즉, 화물유(20)를 양하하기 위한 항구에 도착하여 화물유를 양하하게 되면, 화물탱크(10)의 구조적 손상(Buckling) 및 폭발을 방지하기 위해, 양하되는 화물유(20)의 양만큼 외부에서 질소를 공급할 필요가 있기 때문이다. 이와 같은 질소 중심의 불활성기체(100)의 추가 공급은 화물유(20)의 양하가 완료되기까지 연속적으로 이루어질 필요가 있다. On the other hand, in the (d) step of unloading the cargo oil 20, during the process of unloading the cargo oil 20 through the cargo oil inlet and outlet 13, as in the (c) step, the outside air inflow In order to suppress the increase in the oxygen concentration according to, it is good to carry out the step of unloading the cargo oil 20 while continuing to replenish nitrogen through the inert gas inlet (11). That is, when arriving at the port for unloading the cargo oil 20 and unloading the cargo oil, in order to prevent structural damage (buckling) and explosion of the cargo tank 10, as much as the amount of cargo oil to be unloaded This is because it is necessary to supply nitrogen from the outside. Such additional supply of the nitrogen-based inert gas 100 needs to be made continuously until the unloading of the cargo oil 20 is completed.
그리고 화물유(20)의 양하가 완료되면, (마) 단계와 같이, 상기 화물탱크(10)의 내부 공간에 채워진 질소 중심의 불활성기체(100)를 상기 벤트관(12)을 통해 배출하고, 외부 공기(A)를 흡입하여 상기 화물탱크(10) 내부를 공기로 채운다. 즉, 화물유(20)의 양하가 완료되면, 화물탱크(10) 내부의 청소 작업등을 위해 작업인력이 화물탱크 내부로 진입할 수 있도록 화물탱크(10) 내부의 산소농도를 약 20%수준으로 올려야 하기 때문이다. 한편, 상기한 바와 같이 화물탱크(10) 내부에 존재하는 화물유(20)의 유증기를 화물탱크 외부로 배출하고, 화물탱크(10) 내부에 공기를 채우는 (마) 단계는 가스프리(Gas Free)라고 한다. 가스프리 이후에 화물탱크 내부의 작업을 완료한 탱커선은 다시 화물을 적하하게 되며, 이때 상기한 (가) 단계인 퍼징 단계를 다시 시작하게 된다.And when the unloading of the cargo oil 20 is completed, as shown in step (e), the inert gas 100 of the nitrogen center filled in the internal space of the cargo tank 10 through the vent pipe 12, The outside air (A) is sucked to fill the cargo tank 10 with air. That is, when the unloading of the cargo oil 20 is completed, the oxygen concentration in the cargo tank 10 to about 20% level so that the work force can enter the cargo tank for cleaning work in the cargo tank 10. Because you have to raise. Meanwhile, as described above, the step of discharging the oil vapor of the cargo oil 20 existing in the cargo tank 10 to the outside of the cargo tank and filling the air in the cargo tank 10 may be performed in a gas free manner. ). After the gas free, the tanker ship that has completed the work inside the cargo tank unloads the cargo again, and then starts the purging step (a).
도 2는 화물탱크(10)의 산소농도 조절에 사용되는 질소 중심의 불활성기체(100)를 생성하기 위한 질소발생장치(200)의 구성을 개략적으로 도시한 도면이다.2 is a view schematically showing the configuration of the nitrogen generating device 200 for generating a nitrogen-based inert gas 100 used to control the oxygen concentration of the cargo tank (10).
도시된 바와 같이, 본 발명의 바람직한 일 실시예에 따른 질소발생장치(200)는 질소 발생기(210), 질소 저장부(220), 혼합장치(230) 및 공기흡입유닛(240)을 포함하며, 이들은 복수 개의 밸브들로 구성된 밸브유닛(250)으로 선택적으로 연결될 수 있다.As shown, the nitrogen generating apparatus 200 according to the preferred embodiment of the present invention includes a nitrogen generator 210, nitrogen storage unit 220, mixing device 230 and the air suction unit 240, These may be selectively connected to a valve unit 250 composed of a plurality of valves.
질소 발생기(210)는 상기 화물탱크(10)의 내부에 공급되는 질소 중심의 불활성기체(100)를 생산하는 장치이다. 한편, 질소 발생기(210)를 다양한 크기의 탱커선에 적용하기 위해서는, 상기 질소 발생기(210)의 질소 발생용량이 탱커선의 화물탱크(10)의 전체 체적에 대해 화물유(20)의 적하 또는 양하가 이뤄지는 시간 동안 질소 중심의 불활성기체(100)를 공급할 수 있도록 구성될 필요가 있다. Nitrogen generator 210 is a device for producing a nitrogen-centered inert gas 100 is supplied to the inside of the cargo tank (10). On the other hand, in order to apply the nitrogen generator 210 to tankers of various sizes, the nitrogen generating capacity of the nitrogen generator 210 dropping or unloading the cargo oil 20 with respect to the total volume of the cargo tank 10 of the tanker ship It is necessary to be configured to be able to supply a nitrogen-based inert gas 100 during the time that is made.
예컨대, 20,000 DWT 탱커선의 화물탱크 총 체적은 통상적으로 약 30,000㎥정도이며, 화물의 적하 또는 양하에 소요되는 시간이 약 24시간 이므로, 질소 발생기(210)의 질소생산 용량은 약 1,250㎥/h 급이어야 한다.For example, the total volume of the cargo tank of the 20,000 DWT tanker ship is typically about 30,000 m 3, and the time required for loading or unloading the cargo is about 24 hours, so the nitrogen production capacity of the nitrogen generator 210 is about 1,250 m 3 / h. Should be
또한, 퍼징 단계에는 화물탱크(10) 체적의 최소 3배에 해당하는 질소 중심의 불활성기체(100)가 공급되어야 하기 때문에, 퍼징 단계에서 손실되는 질소의 양을 고려한다면, 질소 발생기(210)는 최소한 3,750 ㎥/h 수준의 질소를 공급할 수 있는 것 이어야 한다. 특히, 분리막 방식을 적용하는 경우에는, 일반적인 질소 토출압력이 8bar인 것을 고려하면, 45℃에서 8bar와 0bar(대기압) 에서의 체적비가 약 8.9배 인 것을 고려하더라도 약 421㎥/h급의 질소 발생기가 필요하며, 분리막방식 질소 발생기가 1㎥/h 당 1~1.5kW의 동력이 필요하다는 것으로 고려하면, 420~630kW급의 동력이 소요된다는 것을 알 수 있다. 이는, 420~630kW급의 동력은 탱커선에 설치되는 발전기 1대의 출력에 육박하는 큰 동력이다.In addition, since the inert gas 100 of the nitrogen center corresponding to at least three times the volume of the cargo tank 10 should be supplied to the purging step, considering the amount of nitrogen lost in the purging step, the nitrogen generator 210 It should be capable of supplying at least 3,750 m3 / h of nitrogen. In particular, in the case of applying the separation membrane method, considering that the general nitrogen discharge pressure is 8bar, even if the volume ratio of 8bar and 0bar (atmospheric pressure) at 45 ℃ is about 8.9 times, about 421㎥ / h class nitrogen generator When considering that the separator-type nitrogen generator needs 1 ~ 1.5kW of power per 1㎥ / h, it can be seen that the power of 420 ~ 630kW class is required. This, 420 ~ 630kW of power is a big power close to the output of one generator installed in the tanker ship.
그러나 본 발명에 의한 질소발생장치(200)의 경우, 탱커선의 화물유(20) 적하 및 양하 단계와 운행단계에 걸쳐, 상기 질소 발생기(210)를 선택적으로 운전하여, 질소 중심의 불활성기체(100)의 생산에 필요로 하는 동력을 크게 절감한 것에 발명의 특징이 있다. 이러한 질소 발생기(210)의 제어 방법은 뒤에 흐름도와 함께 다시 설명한다.However, in the case of the nitrogen generating apparatus 200 according to the present invention, the nitrogen generator 210 is selectively operated during the dropping and unloading and discharging and operating steps of the cargo oil 20 of the tanker ship, and the inert gas 100 of the nitrogen center is 100. There is a feature of the invention that the power required for the production of sigma is greatly reduced. The control method of the nitrogen generator 210 will be described later with a flowchart.
질소 저장부(220)는 상기 질소 발생기(210)에서 생성된 질소 중심의 불활성기체(100) 중, 고순도의 질소 중심의 불활성기체(100)를 저장하는 것으로, 도 2에 도시된 바와 같이 입구는 제 1 밸브(251)로 상기 질소 발생기(210)와 연결되고, 출구는 제 2 밸브(220)와 연결될 수 있다.The nitrogen storage unit 220 stores inert gas 100 of high purity nitrogen center among the nitrogen center inert gas 100 generated by the nitrogen generator 210, as shown in FIG. 2. The first valve 251 may be connected to the nitrogen generator 210 and the outlet may be connected to the second valve 220.
혼합장치(230)는 상기 질소 발생기(210)에서 생성된 질소 중심의 불활성기체(100) 중, 화물유(20)의 적하 및 양하 과정 중에 생성되는 대용량 저순도의 질소 중심의 불활성기체(100)를 공급받는 곳으로, 도시된 바와 같이 입구는 제 2 밸브(252)로 상기 질소저장부(220)와 연결되고, 제 3 밸브(253)로 상기 질소 발생기(210)와 연결되며, 제 4 밸브(254)로 공기흡입유닛(240)과 연결되고, 출구는 제 5 밸브(255)로 상기 화물탱크(10)와 연결될 수 있다. 따라서 상기 혼합장치(230)에서는 고순도의 질소 중심의 불활성기체(100)와 대용량 저순도의 질소 중심의 불활성기체(100) 및 공기(A)가 혼합되어, 상기 제 5 밸브(255)의 개폐 동작에 의해 상기 화물탱크(10)로 공급될 수 있다.Mixing device 230 is a large-capacity low-purity nitrogen center inert gas 100 generated during the dropping and unloading of the cargo oil 20 of the nitrogen-centered inert gas 100 generated by the nitrogen generator 210 As shown, the inlet is connected to the nitrogen storage unit 220 by the second valve 252, the nitrogen generator 210 by the third valve 253, and the fourth valve. 254 is connected to the air suction unit 240, the outlet may be connected to the cargo tank 10 by a fifth valve (255). Therefore, in the mixing device 230, the inert gas 100 of the high purity nitrogen center, the inert gas 100 of the high purity and low purity nitrogen center, and air (A) are mixed to open and close the fifth valve 255. It can be supplied to the cargo tank 10 by.
한편, 도 3에 도시된 바와 같이, 상기 질소 발생기(210)와, 공기흡입유닛(240) 및 밸브유닛(250)은 소정의 제어부(C)에 의해 동작 제어되는 것이 바람직하다.On the other hand, as shown in Figure 3, the nitrogen generator 210, the air suction unit 240 and the valve unit 250 is preferably controlled by a predetermined control unit (C).
즉, 상기 화물탱크(10) 내부의 산소농도를 감지하는 산소농도계(15)는 측정된 산소 농도값을 상기 제어부(C)에 출력한다. 그러면, 상기 제어부(C)는 상기 산소농도계(15)에서 측정된 산소농도값에 따라, 화물탱크(10) 내부에 질소 중심의 불활성기체(100)가 추가될 필요가 있다고 판단되면, 상기 질소 발생기(210)를 가동하면서, 상기 밸브유닛(250)을 제어하여, 상기 혼합장치(230)에서 필요로 하는 수준의 농도로 질소 중심의 불활성기체(100)를 형성하고, 제 5 밸브(255)의 개폐동작에 따라, 상기 질소 발생기(210)에서 생성된 질소 중심의 불활성기체(100)를 화물탱크(10) 내부로 공급할 수 있다.That is, the oxygen concentration meter 15 for detecting the oxygen concentration in the cargo tank 10 outputs the measured oxygen concentration value to the controller C. Then, the controller C determines that the inert gas 100 of the nitrogen center needs to be added to the inside of the cargo tank 10 according to the oxygen concentration value measured by the oxygen concentration meter 15. While operating the 210, the valve unit 250 is controlled to form the nitrogen-centered inert gas 100 at a concentration level required by the mixing apparatus 230, and the fifth valve 255 is formed. In accordance with the opening and closing operation, the inert gas 100 of the nitrogen center generated by the nitrogen generator 210 may be supplied into the cargo tank 10.
또한, 본 발명의 바람직한 실시예에 따르면, 상기 제어부(C)는 질소 발생기(210)의 작동 방법을 탱커선의 현재 상태에 따라, 다르게 제어한다. 즉, 상기한 바와 같이, 화물유(20)의 적하 및 양하 과정 중에는 대용량 저순도의 질소 중심의 불활성기체(100)를 생산하도록 제어하고, 선박 운항 중에는 고순도 질소 중심의 불활성기체(100)를 생산하여, 이를 상기 질소 저장부(220)에 미리 저장하도록 제어할 수 있다.In addition, according to a preferred embodiment of the present invention, the control unit (C) controls the operating method of the nitrogen generator 210 differently, according to the current state of the tanker ship. That is, as described above, during the dripping and unloading of the cargo oil 20, the large-scale low-purity nitrogen-based inert gas 100 is controlled to be produced, and the high-purity nitrogen-based inert gas 100 is produced during ship operation. By doing so, the nitrogen storage unit 220 may be controlled to be stored in advance.
예컨대, 상기한 예시와 같이 20,000 DWT 탱커선의 화물탱크 체적이 약 30,000 ㎥이고, 적하 및 양하에 소요되는 시간을 24시간, 출항지에서 입항지까지 운항기간을 3일, 설치된 질소 발생기가 생산할 수 있는 질소의 순도가 99.5~95%라고 한다면, 항해 중에서는 질소 발생기(210)로 99.5% 순도의 질소를 생산하여 저장하고, 화물유(20)의 적하 또는 양하 시에는 상대적으로 낮은 95%의 순도로 질소를 생산하여, 이를 항해 중에 생성되어 저장된 고순도의 질소 중심의 불활성기체(100)와 적하 또는 양하 시에 생산되는 저순도의 질소 중심의 불활성기체(100) 및 대기 중의 공기를 혼합하여 화물탱크에 공급할 수 있다. 그러면, 질소 발생기(210)에 소요되는 전력을 종래에 비해 크게 줄일 수 있다. For example, the cargo tank volume of the 20,000 DWT tanker ship is about 30,000 m3, and the loading and unloading time is 24 hours, the operating period from the place of departure to the place of arrival is 3 days, and the nitrogen generator installed can produce nitrogen as described above. If the purity of 99.5 ~ 95%, the nitrogen generator 210 during the voyage to produce and store 99.5% purity nitrogen, and when loading or unloading the cargo oil 20 to a relatively low 95% purity To produce and store a high-purity nitrogen-centered inert gas (100) generated and stored during sailing and the low-purity nitrogen-centered inert gas (100) produced at the time of dropping or unloading and air to be supplied to the cargo tank. Can be. Then, the power required for the nitrogen generator 210 can be significantly reduced compared to the conventional.
물론, 항해 중에 생산된 고순도의 질소 중심의 불활성기체(100)를 저장하기 위해 압력용기와 압축기 등으로 구성되는 질소 저장부(220)에 추가로 소요되는 비용, 설치공간 및 동력이 필요하다. 하지만, 고순도의 질소 중심의 불활성기체(100)를 30bar 이상의 고압으로 압축하여 보관할 경우, 저장용기에 필요한 공간을 최소활 할 수 있으며, 이 때 사용되는 압축기는 저렴하고, 소요 동력이 적은 왕복동식 압축기 또는 스크류형식 압축기를 사용할 수 있으므로, 소요동력 또한 크지 않다.Of course, in order to store the high-purity nitrogen-centered inert gas 100 produced during sailing, a cost, installation space, and power required in addition to the nitrogen storage unit 220 including a pressure vessel and a compressor are required. However, when the high-purity nitrogen center inert gas 100 is compressed and stored at a high pressure of 30 bar or more, the space required for the storage container can be minimized, and the compressor used at this time is inexpensive and requires less reciprocating compressor. Alternatively, the screw type compressor can be used, so the power required is not large.
이와 같은, 본 발명에 의한 탱커선용 질소발생, 저장 및 공급 시스템에 따른 질소 발생기의 제어방법을 도 4의 흐름도와 함께 설명한다.Such a method of controlling the nitrogen generator according to the nitrogen generation, storage and supply system for the tanker according to the present invention will be described with the flowchart of FIG.
도 4에 도시된 바와 같이, 상기 제어부(C)는 현재 탱커선이 운행 단계인지의 여부를 판단하여(S10), 만일 탱커선이 운행 중이라고 판단되면, 상기 질소 발생기(210)를 최대로 가동하여, 고순도의 질소 중심의 불활성기체(100)를 생산하고(S20), 생산된 고순도의 질소 중심의 불활성기체(100)는 제 1 밸브(251)만을 오픈하고, 제 2 내지 제 4 밸브(252~254)는 폐쇄하여, 생산된 고순도의 질소 중심의 불활성기체(100)를 압축용기 등으로 마련되는 질소 저장부(220)에 저장한다. 상기한 S10 내지 S30 단계는 폐루프로 계속 진행되는데, 상기 질소 저장부(220)에 고순도의 질소가 가득 채워지는 경우 중단되도록 구성될 수 있다.As shown in FIG. 4, the controller C determines whether the tanker ship is currently in operation (S10), and if it is determined that the tanker ship is in operation, operates the nitrogen generator 210 to the maximum. , To produce a high purity nitrogen center inert gas 100 (S20), the produced high purity nitrogen center inert gas 100 opens only the first valve 251, the second to fourth valves (252 ~) 254 is closed, and stores the produced high purity nitrogen-centered inert gas 100 in the nitrogen storage unit 220 provided with a compression vessel or the like. The steps S10 to S30 continue in a closed loop, and may be configured to stop when the nitrogen storage unit 220 is filled with high purity nitrogen.
한편, 상기 S10 단계에서 탱커선이 운행 중이 아니라고 판단되면, 이는 화물유(20)의 적하 또는 양하 단계이므로, 이 경우에는 질소 발생기(210)를 이용하여 대용량 저순도의 질소 중심의 불활성기체(100)를 생산한다. 앞선 S20 단계에서의 질소의 순도가 99% 이상이라면, 본 단계에서의 질소의 순도는 95% 정도이면 충분하다(S40).On the other hand, if it is determined that the tanker ship is not in operation in step S10, this is a dropping or unloading step of the cargo oil 20, in this case using a nitrogen generator 210 inert gas 100 of large-capacity low purity nitrogen center To produce). If the purity of nitrogen in the previous step S20 is 99% or more, the purity of nitrogen in this step is about 95% is sufficient (S40).
상기 S40 단계에서 질소 발생기(210)가 대용량 저순도 질소 중심의 불활성기체(100)를 생산하면, 생산된 질소는 상기 혼합장치(230)에서 상기 질소 저장부(220)에 저장된 고순도 질소 중심의 불활성기체(100)와 상기 공기흡입유닛(240)에서 흡입된 외부 대기 중의 공기와 함께 섞여, 상기 화물탱크(10)로 주입될 수 있다. 이때, 상기 혼합장치(230)의 입구에는 제 2 내지 제 4 밸브(252~254)가 연결되는 것이 바람직한데, 각각의 밸브들(252~254)은 산소농도가 요구되는 농도(5~8%)가 될 수 있도록 적절히 유입되는 기체의 양을 조절할 수 있다. 예컨대 질소저장부(220)에서 상기 혼합장치(230)로 공급되는 고순도의 질소 중심의 불활성기체(100)는 상기 제 2 밸브(252)를 상기 산소농도계(15)와 연동시켜 상기 제 2 밸브(252)의 개폐정도를 자동으로 조절할 수 있다(S50).When the nitrogen generator 210 produces a large-capacity low-purity nitrogen-centered inert gas 100 in step S40, the produced nitrogen is inert of the high-purity nitrogen center stored in the nitrogen storage unit 220 in the mixing device 230. The gas 100 may be mixed with air in the outside atmosphere sucked from the air suction unit 240 and injected into the cargo tank 10. At this time, it is preferable that the second to fourth valves 252 to 254 are connected to the inlet of the mixing device 230. Each of the valves 252 to 254 has a required concentration of oxygen (5 to 8%). You can adjust the amount of gas that is properly introduced so that For example, the high purity nitrogen-centered inert gas 100 supplied from the nitrogen storage unit 220 to the mixing device 230 connects the second valve 252 with the oxygen concentration meter 15 to the second valve ( 252) can automatically adjust the opening and closing degree (S50).
상기한 S50 단계에서 적절한 농도의 불활성기체의 조성이 완성되었는지의 여부는 도 2에 도시된 바와 같이, 상기 산소농도계(15)를 통해 확인할 수 있으며, 상기 산소농도계(15)에서 측정된 값을 통해, S50단계에서 생성된 질소 중심의 불활성기체의 조성이 상기 화물탱크(10)에 공급하기에 적절하다고 판단되면, 상기 제어부(C)는 상기 제 5 밸브(255)가 오픈되도록 개방하여, 상기 불활성기체를 상기 질소주입구(11)를 통해 상기 화물탱크(10)의 내부 공간에 충전하면서, 화물탱크(10) 내부로 화물유(20)가 안전하게 적하 및 양하될 수 있다(S60).Whether the composition of the inert gas of the appropriate concentration is completed in the step S50 can be confirmed through the oxygen concentration meter 15, as shown in Figure 2, through the value measured in the oxygen concentration meter 15 If it is determined that the composition of the inert gas of the nitrogen center generated in step S50 is suitable to supply to the cargo tank 10, the control unit (C) is opened to open the fifth valve 255, the inert While filling the gas into the internal space of the cargo tank 10 through the nitrogen inlet 11, the cargo oil 20 can be safely loaded and unloaded into the cargo tank 10 (S60).
이와 같은 본 발명에 따르면, 상기한 예시와 같이 20,000 DWT 탱커선의 화물탱크 체적이 30,000 ㎥이고, 퍼징, 적하 및 양하에 소요되는 시간을 각각 24시간, 출항지에서 입항지까지의 운항기간을 3일, 설치된 분리막방식의 질소 발생기가 생산할 수 있는 질소의 순도가 토출압력 8 bar에서 99.5~95%, 순도 95%에서의 질소 토출유량과 순도 99.5%에서의 질소 토출유량이 일반적인 질소 발생기와 유사하게 3.5배라고 할 경우에, 기존과 같이 화물의 적하(퍼징 포함) 및 양하 시에만 질소 발생기를 작동시킨다면, 전술한 바와 같이, 대기압 45℃ 조건에서 3,750 ㎥/h의 질소를 공급하기 위해 420 ㎥/h급의 질소 발생기가 필요하며, 420~630kW급의 동력이 소요된다.According to the present invention as described above, the cargo tank volume of the 20,000 DWT tanker ship is 30,000 m 3, the time required for purging, unloading and unloading, respectively, 24 hours, the operating period from the place of departure to the port of arrival 3 days, The purity of nitrogen that can be produced by the installed separator nitrogen method is 99.5 ~ 95% at 8 bar discharge pressure, the nitrogen discharge flow rate at 95% purity and the nitrogen discharge flow rate at purity 99.5% is 3.5 times similar to the general nitrogen generator. In this case, if the nitrogen generator is operated only at the time of loading (including purging) and unloading the cargo as before, as described above, to supply 3,750 m 3 / h of nitrogen at atmospheric pressure of 45 ° C., the level of 420 m 3 / h Nitrogen generator is required, and power of 420 ~ 630kW is required.
하지만, 본 발명에서 제안된 방법을 적용한다면, 질소 발생기에 요구되는 동력을 획기적으로 줄일 수 있다. 즉, 대기 중의 공기(A)는 질소 79%, 산소 21%로 구성되어 있으므로, 이 공기(A) 100㎥을 산소농도 5%로 만들기 위해서는 순도 99.5%의 질소(질소 99.5%, 산소 0.5%)를 355.6 ㎥을 혼합하여야 하며, 이때 생산되는 불활성 기체는, 45℃ 8bar 토출압력에서 약 203 ㎥/h급 질소 발생기(210)를 설치하여 생산 할 수 있다. 이는 기존의 방법에 비해 용량 및 압력이 48.3%에 불과한 것이다. 자세한 계산결과는 아래의 표 1과 같다.However, if the method proposed in the present invention is applied, the power required for the nitrogen generator can be significantly reduced. That is, since air (A) in the atmosphere is composed of 79% nitrogen and 21% oxygen, in order to make 100 m3 of air (A) at 5% oxygen concentration, nitrogen having a purity of 99.5% (nitrogen 99.5%, oxygen 0.5%) 355.6 m 3 should be mixed, and the inert gas produced at this time may be produced by installing about 203 m 3 / h class nitrogen generator 210 at 45 ° C. 8 bar discharge pressure. This is only 48.3% of capacity and pressure compared to conventional methods. Detailed calculation results are shown in Table 1 below.
표 1
요구 불활성기체유량(㎥/h) 공기유입량(㎥/h) 99.5%질소 공급량(㎥/h) 99.5%질소를 이용한 불활성 기체(㎥/h) 95% 질소 발생기생산량(㎥/h) 8bar토출 발생기 95%질소 유량(㎥/h) 8bar 토출99.5%질소유량(㎥/h) 24시간동안 필요한 양99.5% 질소의 양(㎥) 8bar 토출 조건24시간동안 필요한99.5%질소의양(㎥/h) 99.5%질소 생산에 필요한 시간(h)
(A) (B) (C=B*3.556) (D=B+C) (E=A-D) (F=E/8.9) (G=F/3.5) (H=C*24) (I=H/8.9) (J=I/G)
3,750 450.0 1,600.0 2,050 1,700.0 191.0 54.6 38,401.1 4,314.7 79,1
3,750 439.0 1,561.0 2,000 1,750.0 196.6 56.2 37,464.4 4,209.5 74.9
3,750 428.0 1,522.0 1,950 1,800.0 202.2 57.8 36,527.8 4,104.3 71.0
3,750 417.0 1,483.0 1,900 1,850.0 207.9 59.4 35,591.2 3,999.0 67.3
3,750 406.1 1,443.9 1,850 1,900.0 213.5 61.0 34,654.6 3,893.8 63.8
Table 1
Required Inert Gas Flow Rate (㎥ / h) Air flow rate (㎥ / h) 99.5% nitrogen supply (㎥ / h) Inert gas with 99.5% nitrogen (㎥ / h) 95% Nitrogen Generator Production (㎥ / h) 8bar discharge generator 95% nitrogen flow rate (㎥ / h) 8 bar discharge 99.5% nitrogen flow rate (㎥ / h) Quantity required for 24 hours 99.5% Nitrogen content (㎥) 8 bar discharge condition The amount of 99.5% nitrogen required for 24 hours (㎥ / h) 99.5% Time required for nitrogen production (h)
(A) (B) (C = B * 3.556) (D = B + C) (E = AD) (F = E / 8.9) (G = F / 3.5) (H = C * 24) (I = H / 8.9) (J = I / G)
3,750 450.0 1,600.0 2,050 1,700.0 191.0 54.6 38,401.1 4,314.7 79,1
3,750 439.0 1,561.0 2,000 1,750.0 196.6 56.2 37,464.4 4,209.5 74.9
3,750 428.0 1,522.0 1,950 1,800.0 202.2 57.8 36,527.8 4,104.3 71.0
3,750 417.0 1,483.0 1,900 1,850.0 207.9 59.4 35,591.2 3,999.0 67.3
3,750 406.1 1,443.9 1,850 1,900.0 213.5 61.0 34,654.6 3,893.8 63.8
이상에서는 불활성기체의 일예로 질소를 예로 하여 설명하였으나, 이를 한정하는 것은 아니며, 불활성기체를 생성할 수 있는 장비라면 어떠한 것이든 사용 가능하다. In the above described as an example of the inert gas, but the nitrogen was described as an example, not limited to this, any equipment that can generate an inert gas can be used.
앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical idea of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.
화물유를 운반하는 탱커선에서 폭발사고를 방지하기 위해 화물탱크 내부에 주입되는 질소를 선박 내에서 생산, 저장 및 공급하는 시스템에 적용될 수 있다.In tanker ships carrying cargo oil, it can be applied to the system to produce, store and supply nitrogen injected into the cargo tank in ships to prevent explosion accident.
또한, 20,000 DWT이하의 소형의 탱커선에서도 한정된 동력으로 질소발생장치를 사용할 수 있는 기술을 제공할 수 있다.In addition, even a small tanker of less than 20,000 DWT can provide a technology that can use the nitrogen generator with limited power.

Claims (8)

  1. 내부에 화물유가 저장되며, 질소가 주성분인 불활성기체 및 공기가 주입되는 불활성기체 주입구와 벤트관 및 화물유가 유출입 되는 화물유 입출구를 포함하는 화물탱크;A cargo tank having a cargo oil stored therein and including an inert gas inlet and a vent pipe and a cargo oil inlet and outlet through which inert gas and nitrogen are injected, the main component of which is nitrogen;
    제어부의 제어신호에 따라, 제 1 순도와 상기 제 1 순도보다 낮은 순도의 제 2 순도를 가지도록 질소를 생산하는 질소 발생기;A nitrogen generator for producing nitrogen to have a second purity having a first purity and a purity lower than the first purity according to a control signal of the controller;
    상기 제 1 순도의 질소를 저장하는 질소 저장부;A nitrogen storage unit storing nitrogen of the first purity;
    화물탱크 외부의 공기를 흡입하는 공기흡입유닛;An air suction unit for sucking air outside the cargo tank;
    상기 질소 저장부에 저장된 상기 제 1 순도의 질소와, 상기 질소 발생기가 생성하는 제 2 순도의 질소와, 상기 공기흡입유닛에서 흡입되는 외부 공기를 혼합하는 혼합장치; 및 A mixing device for mixing the nitrogen of the first purity stored in the nitrogen storage unit, the nitrogen of the second purity generated by the nitrogen generator, and the outside air sucked from the air suction unit; And
    상기 제어부에 의해 개폐가 제어되어, 상기 화물탱크에 공급되는 질소의 순도를 조절하는 밸브유닛;을 포함하는 탱커선용 질소발생, 저장 및 공급 시스템.Opening and closing is controlled by the control unit, the valve unit for adjusting the purity of the nitrogen supplied to the cargo tank; nitrogen generating, storage and supply system for a tanker comprising a.
  2. 제 1 항에 있어서, 상기 밸브유닛은,The method of claim 1, wherein the valve unit,
    상기 질소 발생기와 질소 저장부 사이의 유로를 개폐하는 제 1 밸브;A first valve for opening and closing a flow path between the nitrogen generator and the nitrogen storage unit;
    상기 질소 저장부와 혼합장치 사이의 유로를 개폐하는 제 2 밸브;A second valve for opening and closing a flow path between the nitrogen storage part and the mixing device;
    상기 질소 발생기와 혼합장치 사이의 유로를 개폐하는 제 3 밸브; A third valve for opening and closing a flow path between the nitrogen generator and the mixing device;
    상기 공기흡입유닛과 혼합장치 사이의 유로를 개폐하는 제 4 밸브; 및A fourth valve for opening and closing a flow path between the air suction unit and the mixing device; And
    상기 혼합장치와 화물탱크 사이의 유로를 개폐하는 제 5 밸브;를 포함하는 탱커선용 질소발생, 저장 및 공급 시스템.Nitrogen generation, storage and supply system for a tanker including a; 5th valve for opening and closing the flow path between the mixing device and the cargo tank.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 제 1 밸브가 오픈될 경우, 상기 제 2 내지 제 4 밸브는 폐쇄 되는 탱커선용 질소발생, 저장 및 공급 시스템.When the first valve is open, the second to fourth valve is closed nitrogen generating, storage and supply system for the tanker.
  4. 제 2 항에 있어서, The method of claim 2,
    상기 제 2 내지 제 4 밸브는, 상기 혼합장치에서 혼합되는 기체의 산소농도에 따라, 개별적으로 오픈량이 제어되는 탱커선용 질소발생, 저장 및 공급 시스템.The second to fourth valves, the nitrogen generation, storage and supply system for tanker ships, the open amount is individually controlled in accordance with the oxygen concentration of the gas mixed in the mixing device.
  5. 제 2 항에 있어서, The method of claim 2,
    상기 화물탱크 내부의 산소농도를 측정하는 산소농도계;를 더 포함하며,Oxygen concentration meter for measuring the oxygen concentration in the cargo tank further comprises;
    상기 제 5 밸브는 상기 산소농도계의 측정값에 따라 개폐여부가 제어되는 탱커선용 질소발생, 저장 및 공급 시스템. The fifth valve is a nitrogen generation, storage and supply system for the tanker vessel is opened or closed according to the measured value of the oxygen concentration meter.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 농도는 99 내지 99.9% 농도이고, 상기 제 2 농도는 92 내지 95% 농도인 탱커선용 질소발생, 저장 및 공급 시스템.Wherein the first concentration is from 99 to 99.9% concentration and the second concentration is from 92 to 95% concentration.
  7. 탱커선의 운행 중인지의 여부를 판단하는 단계;Determining whether the tanker ship is in operation;
    탱커선이 운행 중일 경우, 질소 발생기로 99 내지 99.9% 농도의 질소를 생산하고, 생산된 고순도 질소는 질소 저장부에 저장하는 단계;When the tanker is in operation, producing nitrogen at a concentration of 99 to 99.9% with a nitrogen generator, and storing the produced high purity nitrogen in a nitrogen storage unit;
    탱커선이 운행 중이 아닌 경우에는, 질소 발생기로 95% 이하의 농도의 질소를 대량으로 생산하고, 이를 혼합장치에서 상기 질소 저장부에 저장된 고순도 질소와 외부 공기와 혼합하는 단계; 및When the tanker is not in operation, producing a large amount of nitrogen having a concentration of 95% or less with a nitrogen generator, and mixing it with high purity nitrogen stored in the nitrogen storage unit and outside air in a mixing apparatus; And
    서로 다른 순도의 질소가 혼합된 가스를 화물탱크에 공급하여, 화물유의 적하 또는 양하를 수행하는 단계;를 포함하는 탱커선용 질소발생, 저장 및 공급 시스템 제어방법.A method for controlling nitrogen generation, storage and supply system for a tanker, comprising the step of: supplying a mixture of nitrogen with different purity to a cargo tank to perform loading or unloading of cargo oil.
  8. 제 7 항에 있어서, 상기 혼합된 가스를 화물탱크에 공급하는 단계는,The method of claim 7, wherein supplying the mixed gas to the cargo tank,
    상기 질소 발생기와 질소 저장부 사이의 유로를 개폐하는 제 1 밸브를 폐쇄하는 단계; Closing a first valve for opening and closing a flow path between the nitrogen generator and the nitrogen storage unit;
    상기 질소 저장부와 혼합장치 사이의 유로를 개폐하는 제 2 밸브, 상기 질소 발생기와 혼합장치 사이의 유로를 개폐하는 제 3 밸브; 및 외부공기를 흡입하는 공기흡입유닛과 상기 혼합장치 사이의 유로를 개폐하는 제 4 밸브;를 모두 오픈하는 단계; 및A second valve for opening and closing the flow path between the nitrogen storage unit and the mixing device, and a third valve for opening and closing the flow path between the nitrogen generator and the mixing device; And a fourth valve for opening and closing a flow path between the air suction unit for sucking external air and the mixing device. And
    상기 혼합장치 내부의 산소농도를 검출하여, 화물탱크에 공급할 수 있는 적정 수준의 불활성기체의 조성이 완성되었을 경우, 제 5 밸브를 오픈하여 화물탱크에 질소 중심의 불활성기체를 공급하는 단계;를 포함하는 탱커선용 질소발생, 저장 및 공급 시스템 제어방법.Detecting the oxygen concentration inside the mixing device, when the composition of the inert gas of a suitable level that can be supplied to the cargo tank is completed, by supplying a nitrogen center inert gas to the cargo tank by opening the fifth valve; Method of controlling nitrogen generation, storage and supply system for tanker ships
PCT/KR2013/003789 2012-05-21 2013-05-02 Nitrogen generation, storage, and supply system for tanker ships, and method for controlling same WO2013176413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0053790 2012-05-21
KR1020120053790A KR101200100B1 (en) 2012-05-06 2012-05-21 Nitrogen generating, storage and supply system for tanker ship and control method thereof

Publications (1)

Publication Number Publication Date
WO2013176413A1 true WO2013176413A1 (en) 2013-11-28

Family

ID=47564440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003789 WO2013176413A1 (en) 2012-05-21 2013-05-02 Nitrogen generation, storage, and supply system for tanker ships, and method for controlling same

Country Status (2)

Country Link
KR (1) KR101200100B1 (en)
WO (1) WO2013176413A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000933A (en) * 2014-11-18 2017-08-01 流动科技株式会社 The nitrogen supply (NS) system and method for storage tank
CN111399572A (en) * 2020-04-01 2020-07-10 江南造船(集团)有限责任公司 Environmental control system and method for subsidiary places of B-type liquid cargo tank

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178668B1 (en) * 2015-02-10 2016-10-24 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A fuel gas supply system for an internal combustion engine
KR20190037909A (en) 2017-09-29 2019-04-08 (주)선일계전 Mixing tank assembly for inert gas apparatus
KR102338579B1 (en) 2019-11-13 2021-12-14 한라아이엠에스 주식회사 Method for controlling a nitrogen generator
KR20220095284A (en) 2020-12-29 2022-07-07 한라아이엠에스 주식회사 Smart Sensors System for Gas Monitoring Systems in Ships

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105784A (en) * 1997-10-06 1999-04-20 Sumitomo Heavy Ind Ltd Corrosion prevention method of cargo oil tank of double hull structure crude oil tanker
JP2001342013A (en) * 2000-03-27 2001-12-11 Nippon Sanso Corp Nitorgen gas generation method
KR100614199B1 (en) * 2005-05-18 2006-08-22 (주)레베산업 Vessel nitrogen gas supply system
KR20070044541A (en) * 2005-10-25 2007-04-30 대우조선해양 주식회사 Gas supply system for lng ship
KR20080107262A (en) * 2007-06-06 2008-12-10 다이요 닛산 가부시키가이샤 Method of generating low purity nitrogen gas
KR20090038612A (en) * 2007-10-16 2009-04-21 이진기 Nitrogen gas generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105784A (en) * 1997-10-06 1999-04-20 Sumitomo Heavy Ind Ltd Corrosion prevention method of cargo oil tank of double hull structure crude oil tanker
JP2001342013A (en) * 2000-03-27 2001-12-11 Nippon Sanso Corp Nitorgen gas generation method
KR100614199B1 (en) * 2005-05-18 2006-08-22 (주)레베산업 Vessel nitrogen gas supply system
KR20070044541A (en) * 2005-10-25 2007-04-30 대우조선해양 주식회사 Gas supply system for lng ship
KR20080107262A (en) * 2007-06-06 2008-12-10 다이요 닛산 가부시키가이샤 Method of generating low purity nitrogen gas
KR20090038612A (en) * 2007-10-16 2009-04-21 이진기 Nitrogen gas generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000933A (en) * 2014-11-18 2017-08-01 流动科技株式会社 The nitrogen supply (NS) system and method for storage tank
CN111399572A (en) * 2020-04-01 2020-07-10 江南造船(集团)有限责任公司 Environmental control system and method for subsidiary places of B-type liquid cargo tank

Also Published As

Publication number Publication date
KR101200100B1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
WO2013176413A1 (en) Nitrogen generation, storage, and supply system for tanker ships, and method for controlling same
KR102030208B1 (en) Inerting device, tank and aircraft provided with such a device, and corresponding method
JP5275302B2 (en) Method and apparatus for generating ledge in fuel tank
CN203094385U (en) Improved floating production storage and offloading (FPSO) inert gas pipe system connecting device
KR20170002480A (en) Nitrogen gas supply equipment for bulk carrier
US20210175530A1 (en) Method for treating hydrogen-containing and oxygen-containing residual gases of fuel cells, and residual gas treatment system
JP2011178250A (en) System and method for storing and supplying inert gas
CN218130988U (en) Oil gas recovery device
AU2017294424B2 (en) Tank system for a submarine having a fuel cell
CN116624759A (en) Methanol filling system and inerting monitoring method
JP2013540964A (en) Hydrogen fluoride supply device
JP2009061824A (en) Apparatus and method for filling/replacing inert gas in cargo tank of liquid tanker
WO2018077240A1 (en) Sealing device and grouping unit of natural gas storage system of cng transport ship
WO2012148095A2 (en) Device for treating ballast water by means of an electrolysis method so as to prevent ship explosions, and method for controlling the prevention of ship explosions using same
CN210372864U (en) Nitrogen sealing system
KR0132558B1 (en) Ballast tank internal gas controlling type tanker
CN114772538A (en) Mobile portable marine methanol filling pump prying device and using method thereof
JP4491003B2 (en) Inert gas injection / replacement equipment and inert gas injection / replacement method for ballast tank of liquid cargo ship
KR20140091995A (en) A ship and a method for treating ballast water of the ship
CN218400880U (en) Nitrogen inerting system of B-type fuel chamber
CN114852253B (en) Multipurpose cargo tank pipeline system and control method thereof
CN218762706U (en) Deuterium gas aftertreatment system suitable for optical fiber
WO2023120323A1 (en) Ammonia water storage system and ammonia-fueled ship
CN220722880U (en) Dock oil gas recovery ship bank interface safety device
CN113460258B (en) Water injection device of permanent ballast tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793403

Country of ref document: EP

Kind code of ref document: A1