WO2013176287A2 - Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact - Google Patents

Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact Download PDF

Info

Publication number
WO2013176287A2
WO2013176287A2 PCT/JP2013/064629 JP2013064629W WO2013176287A2 WO 2013176287 A2 WO2013176287 A2 WO 2013176287A2 JP 2013064629 W JP2013064629 W JP 2013064629W WO 2013176287 A2 WO2013176287 A2 WO 2013176287A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal polymer
polymer material
photochromic molecule
Prior art date
Application number
PCT/JP2013/064629
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013176287A3 (en
Inventor
宍戸 厚
圭司 小川
アリ プリィマギ
マッティ ビルキ
純一 間宮
山田 雅之
靖章 桑田
明香 鶴丸
Original Assignee
大研医器株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大研医器株式会社, 国立大学法人東京工業大学 filed Critical 大研医器株式会社
Publication of WO2013176287A2 publication Critical patent/WO2013176287A2/en
Publication of WO2013176287A3 publication Critical patent/WO2013176287A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds

Definitions

  • the present invention relates to a method for deforming a cross-linked liquid crystal polymer material containing photochromic molecules.
  • the present invention also relates to a light-driven molded body to which the above method can be applied, and more specifically to a light-driven medical instrument that is used by being inserted into a living body in surgery.
  • endovascular treatment is widely used in which a stenosis of a blood vessel is expanded from the inside using a stent or catheter introduced along the guide wire, or the guide wire itself.
  • a blood vessel having a stenosis that is a target of such endovascular treatment is mainly a coronary artery. Therefore, the guide wire is not inserted directly into the coronary artery in order to avoid bleeding, but is inserted from the blood vessel of the arm or leg and introduced to the stenosis of the coronary artery. This introduction is performed while viewing the position of the tip of the guide wire and the shape of the blood vessel under fluoroscopy.
  • the blood vessel is curved or branched along the path from the blood vessel of the arm or foot (insertion portion of the guide wire) to the stenosis portion of the coronary artery.
  • endovascular treatment it is necessary to introduce a guide wire to the stenosis without damaging the blood vessel. Therefore, conventionally, it has been common to use different guide wires whose tips are shaped at various angles in accordance with the shape of the blood vessel.
  • Such a conventional guide wire can be inserted and removed using a catheter or the like introduced into the blood vessel along the guide wire, so that the guide wire and the catheter are inserted and removed each time. Etc. are introduced to the stenosis.
  • Patent Document 1 describes that the followability to a blood vessel is improved by changing the rigidity of the distal end portion of the guide wire by providing a coil at the distal end portion of the wire.
  • Patent Document 2 discloses a light-flexible liquid crystal molded body made of a polymer obtained from a polymerizable monomer having an azobenzene structure. This light-flexible liquid crystal molded body can be bent by light irradiation using trans-cis photoisomerization of an azobenzene structure contained in a liquid crystal polymer material.
  • Non-Patent Documents 1 to 3 disclose crosslinked liquid crystal polymer thin films containing an azobenzene structure which is a photochromic molecule. *
  • Patent Document 3 discloses that a crosslinked liquid crystal polymer molded body into which photochromic molecules are introduced is irradiated with actinic light to induce a shape change of the crosslinked liquid crystal polymer molded body, and the crosslinked liquid crystal polymer molded body is rotated. A light induced rotation method is disclosed. *
  • Patent Document 4 includes a light-driven device including a cross-linked liquid crystal polymer thin film containing photochromic molecules, and inducing a shape change of the cross-linked liquid crystal polymer thin film in conjunction with on / off of actinic ray irradiation.
  • a mold actuator is disclosed.
  • the absorption wavelength of the trans form having an azobenzene structure is 300 to 400 nm
  • the change in the shape of a molded body such as a cross-linked liquid crystal polymer thin film containing the azobenzene structure is It was known to be induced by irradiation with ultraviolet light to blue light.
  • the present inventors have used a cross-linked liquid crystal polymer material that is deformed by irradiation with active light, as described in Patent Documents 2 to 4 and Non-Patent Documents 1 to 3, to guide wire.
  • the guide wire could be deformed by irradiation with actinic light in vivo.
  • the absorption wavelength band of known photochromic molecules such as azobenzene is 300 to 400 nm as described above, in order to induce deformation of the crosslinked liquid crystal polymer material described in Patent Documents 1 to 3. Therefore, it is necessary to irradiate ultraviolet light to blue light.
  • the present invention that solves the above-described problems deforms the cross-linkable liquid crystal polymer material by irradiating the photochromic molecule-containing cross-linked liquid crystal polymer material with ultrashort pulse light and causing the photochromic molecule to absorb two-photons.
  • This is a method for deforming a cross-linked liquid crystal polymer material. According to such a method, it is possible to deform the cross-linked liquid crystal polymer material using light having a wavelength different from the wavelength conventionally used for the deformation of the cross-linked liquid crystal polymer material.
  • the ultrashort pulse light is red light to infrared light.
  • the photochromic molecule in the cross-linked liquid crystal polymer material preferably has an absorption wavelength band for ultraviolet light or blue light.
  • the pulse width of the ultrashort pulse light is 1 to 5000 femtoseconds.
  • the intensity of the ultrashort pulse light is preferably 0.1 to 10 mW / cm 2 .
  • the photochromic molecule is azobenzene.
  • Azobenzene is useful for increasing the deformation rate of the cross-linked liquid crystal polymer material because the intermolecular distance is greatly changed by isomerization.
  • the crosslinked liquid crystal polymer material has a structure in which a polymer main chain is crosslinked by a crosslinking agent containing a photochromic molecule.
  • the crosslinked liquid crystal polymer material has uniaxial orientation. Thereby, macroscopic deformation of the crosslinked liquid crystal polymer material can be induced by isomerization of the photochromic molecule.
  • the present invention that solves the above-described problems includes a main body having a deformable layer formed of a cross-linkable liquid crystal polymer material containing photochromic molecules, and ultrashort pulsed light irradiation for irradiating the deformable layer with ultrashort pulsed light.
  • a light-driven molded body *
  • Preferred examples of photochromic molecules and pulsed light in the light-driven molded body of the present invention are the same as those in the deformation method of the present invention. *
  • the light-driven molded article of the present invention is suitable for being driven and used in a living body, particularly in a blood vessel.
  • a specific example of the light-driven molded body of the present invention is a light-driven guide wire.
  • a main body having a deformed layer made of a thin film formed of a core wire and a crosslinked liquid crystal polymer material containing a photochromic molecule covering the surface of the core wire;
  • an ultrashort pulse light irradiating unit including a light source that generates the ultrashort pulsed light and an optical fiber that transmits the ultrashort pulsed light to an irradiation position of the main body.
  • the present invention it is possible to deform a crosslinkable liquid crystal polymer material using light having a wavelength different from the wavelength conventionally used for deformation of a crosslinkable liquid crystal polymer material containing photochromic molecules.
  • a cross-linked liquid crystal polymer material containing photochromic molecules known to be isomerized by ultraviolet light to blue light using red light to infrared light Become.
  • the cross-linked liquid crystal polymer material can be applied to a medical instrument or the like used in a living body, particularly in a blood vessel.
  • This makes it possible to deform the medical instrument in the living body, and is expected to improve safety and efficiency in diagnosis and treatment.
  • the tip of the guide wire is bent into a required shape by irradiation with ultrashort pulse light, It is possible to introduce a guide wire along a blood vessel that is bent or branched. As a result, labor for inserting and removing a plurality of guide wires can be reduced, and the risk of blood vessel damage can be greatly reduced.
  • FIG. 3 is an enlarged sectional view taken along line AA in FIG. 2. It is a figure explaining the structure of the optical system used for the measurement of the 2nd harmonic light (SH) intensity
  • SH 2nd harmonic light
  • the method for deforming the cross-linked liquid crystal polymer material of the present invention will be described in detail below.
  • the present invention is characterized in that the cross-linkable liquid crystal polymer material is deformed by irradiating the photochromic molecule-containing cross-linked liquid crystal polymer material with ultrashort pulse light and causing the photochromic molecule to absorb two-photons. . That is, the present invention is based on the knowledge that photochromic molecules such as azobenzene can be two-photon absorbed using ultrashort pulsed light.
  • the crosslinked liquid crystal polymer material used in the method of the present invention contains photochromic molecules in its structure.
  • the photochromic molecule can be reversibly isomerized by irradiation with specific active light.
  • the crosslinked liquid crystal polymer material has a structure in which polymer main chains are loosely constrained by a crosslinking agent.
  • the introduction site of the photochromic molecule may be either a polymer main chain or a polymer side chain, but the photochromic molecule preferably constitutes at least a part of the mesogen. This is because the isomerization of the photochromic molecule efficiently induces the orientation change of the mesogen.
  • the introduction site of the photochromic molecule is preferably a polymer side chain. It is also preferable to use a polymer side chain containing this photochromic molecule as a crosslinking agent. By introducing a photochromic molecule into the cross-linking agent, it is possible to sufficiently cause a shape change of the cross-linked liquid crystal polymer material due to isomerization of the photochromic molecule.
  • Known photochromic molecules can be used. Examples thereof include an azobenzene structure capable of trans-cis isomerization, a stilbenzene structure, a spiropyran structure capable of ring-opening-ring-closing isomerization, and a diaryl structure.
  • azobenzene represented by the following formula (1) is preferable because the intermolecular distance between the two benzenes greatly changes during isomerization.
  • the absorption wavelength band of the trans form of azobenzene is about 300 to 400 nm, it is isomerized to a cis form when irradiated with light (ultraviolet light) in the same range. This is a conventionally known phenomenon.
  • the method of the present invention is characterized in that this isomerization is induced by two-photon absorption in azobenzene using ultrashort pulse light. This makes it possible to cause azobenzene to be cis-formed even with light having a wavelength longer than 300 to 400 nm, which is the absorption wavelength band of the trans form of azobenzene. That is, it is possible to cause azobenzene cis formation also by light having a wavelength of about 800 nm, which is twice or more the absorption wavelength band of the trans form of azobenzene.
  • the absorption wavelength of the cis isomer of azobenzene is known to be about 500 to 650 nm, it returns to the trans isomer when irradiated with light in the same range (visible light).
  • Azobenzene isomerized by two-photon absorption returns to the trans form upon irradiation with visible light.
  • the trans isomer acts to stabilize the liquid crystal phase and the cis isomer acts to destabilize the liquid crystal phase.
  • the mesogen of the crosslinked liquid crystal polymer material is a photochromic molecule, but a part of the mesogen may be composed of other than the photochromic molecule.
  • the cross-linked liquid crystal polymer material preferably has a smectic liquid crystal from the viewpoint of efficiently transmitting a mesogen orientation change to the polymer main chain.
  • the cross-linked liquid crystal polymer material preferably has uniaxial orientation. Thereby, macroscopic deformation of the crosslinked liquid crystal polymer material can be induced by isomerization of the photochromic molecule.
  • the crosslinked liquid crystal polymer material can be produced, for example, by polymerizing a polymerizable monomer having a photochromic molecule.
  • a polymerizable monomer having a photochromic molecule and a liquid crystalline polymerizable monomer not having a photochromic molecule may be copolymerized.
  • a non-liquid crystalline polymerizable monomer may be further copolymerized.
  • it is preferable that at least a part of the polymerizable monomer having a photochromic molecule is a crosslinked polymerizable monomer that functions as a crosslinking agent.
  • each polymerizable monomer examples include a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyloxy group, a vinyl group, an epoxy group, and the like. ) Acroyloxy group and (meth) acrylamide group are preferred. A well-known thing can be used for a polymerization initiator.
  • the above-mentioned crosslinked liquid crystal polymer material can be produced by a known method. That is, the polymerizable monomer may be polymerized under the condition where the mesogen is oriented.
  • a well-known thing can also be used for a polymerization initiator.
  • the orientation treatment include a method of forming a polyimide layer on the inner surface of the reaction vessel and rubbing it in a specific direction, and applying an electric field / magnetic field.
  • photopolymerization it is preferable to irradiate a deflection perpendicular to the orientation direction of the photochromic molecule in order to suppress isomerization of the photochromic molecule.
  • the shape of the cross-linked liquid crystal polymer material is not particularly limited, and can be formed according to the application. For example, it can be a film or a fiber. *
  • the feature of the present invention is that the above-mentioned cross-linked liquid crystal polymer material is deformed by irradiating the photochromic molecule with two photons by irradiating the above-mentioned cross-linked liquid crystal polymer material with ultrashort pulse light.
  • the “ultrashort pulse light” in the present invention means very short pulse light having a pulse width of several picoseconds or less.
  • the pulse width of the ultrashort pulse light is 5000 femtoseconds or less, preferably 1000 femtoseconds or less, more preferably 300 femtoseconds or less, and particularly preferably 100 femtoseconds or less.
  • the lower limit of the pulse width is not particularly limited, but can be about 1 femtosecond.
  • the intensity of the ultrashort pulse light used in the present invention is preferably 0.1 mW / cm 2 or more, more preferably 0.1 to 10 mW / cm 2 , more preferably 1 to 10 mW / cm 2 .
  • Photochromic molecules are isomerized by two-photon absorption, thereby deforming the cross-linked liquid crystal polymer material.
  • FIG. 1 is a schematic diagram for explaining a change due to irradiation with active light of a cross-linked liquid crystal polymer film (cross-linked liquid crystal polymer material) 12 in which azobenzene (photochromic molecule) 101 is introduced into mesogen 11.
  • the mesogen 11 in the crosslinked liquid crystal polymer film 12 has a high alignment order.
  • a part of the mesogen 11 includes a trans isomer 101 of azobenzene.
  • the trans isomer 101 of azobenzene When the trans isomer 101 of azobenzene is irradiated with an ultrashort pulse light having a wavelength of 800 nm, the trans isomer 101 is isomerized by two-photon absorption and the structure is changed to a cis isomer 102. Thereby, the alignment order of the mesogen 11 falls. Then, the decrease in the alignment order propagates to the liquid crystal polymer and the cross-linked liquid crystal polymer film 12 contracts (indicated by an arrow in FIG. 1).
  • the advantage of isomerization of photochromic molecules using two-photon absorption and the deformation of cross-linked liquid crystal polymer materials is the advantage of using light of a wavelength different from that used for conventional photochromic molecule isomerization. This is because the liquid crystal polymer material can be deformed.
  • isomerization of azobenzene it has conventionally been necessary to irradiate ultraviolet light, but by using the method of the present invention, isomerization of azobenzene can also be caused by irradiation with red to infrared light. This means that deformation of the cross-linked liquid crystal polymer material can be caused by irradiation with red to infrared light.
  • a medical instrument or the like for use in a living body particularly in a blood vessel, can be formed of a light-driven cross-linked liquid crystal polymer material. And in a living body, it becomes possible to cause a deformation
  • the light-driven molded body of the present invention includes a main body portion having a deformable layer formed of a cross-linkable liquid crystal polymer material containing photochromic molecules, and a light irradiation portion for irradiating the deformable layer with ultrashort pulse light. Is provided.
  • a guide wire 1 shown in FIGS. 2 and 3 includes a wire main body 2 (main body portion) and a laser irradiation device 3 (very short pulse light irradiation portion).
  • the wire body 2 includes a core wire 21 and a polymer jacket 22 (deformable layer) made of a cross-linked liquid crystal polymer material containing a photochromic molecule that covers the tip portion 211 of the core wire 21.
  • the length of the core wire 21 is not particularly limited, but is about 200 mm to 5000 mm, and about 50 to 100 mm from the tip portion 211 is covered with the polymer jacket 22.
  • the core wire 21 is formed of a metal material such as stainless steel, similarly to the wire used in the conventional guide wire. Portions other than the tip end portion 211 of the core wire 21 are covered with a resin layer 21a such as polyolefin or fluorine resin.
  • a resin layer 21a such as polyolefin or fluorine resin.
  • photochromic molecules in the cross-linked liquid crystal polymer material forming the polymer jacket 22 for example, azobenzene can be used.
  • the laser irradiation device 3 includes a laser light source 31 and an optical fiber 32 that transmits the ultrashort pulse laser light output from the laser light source 31 to the irradiation position of the polymer jacket 22 of the wire body 2.
  • the laser light source 31 includes a light output control unit that turns on the output of the laser light by the operation of the operator.
  • the optical fiber 32 is disposed along the core wire 21 and the tip portion 211, and is embedded in the resin layer 21 a and the polymer jacket 22.
  • the optical fiber 32 is preferably designed so that an ultrashort pulse laser beam can be irradiated to an arbitrary position of the polymer jacket 22.
  • an optical fiber 32 having a plurality of emitting portions 32a to 32d it is possible to irradiate an extremely short pulse laser beam at an arbitrary position of the polymer jacket 22, and it is possible to adjust the degree of deformation and the like.
  • adopted the bundle fiber which bundled the optical fiber from which length differs is shown.
  • the guide wire 1 is introduced toward a stenosis portion of a blood vessel.
  • the output from the laser light source 31 is turned on so that the ultrashort pulse is emitted from the emitting portions 32a to 32d of the optical fiber 32 to the polymer jacket 22 of the wire body 2.
  • the polymer jacket 22 irradiated with the ultrashort pulse laser beam is deformed at the irradiated portion, and as a result, the entire wire body 2 is bent (indicated by a virtual line).
  • the guide wire can be introduced to the stenosis portion while deforming the distal end of the guide wire 1 in the direction along the blood vessel introduction direction in the blood vessel.
  • the molded body of the present invention can be any medical device to be driven in vivo.
  • the molded article of the present invention can be configured as a catheter or a stent.
  • the cross-linked liquid crystal polymer material used in the present invention is not limited to the example.
  • the polymerizable monomers used in the production of the cross-linked liquid crystal polymer film of this example are shown in chemical formulas (2) to (4).
  • the azobenzene cross-linking agent represented by the chemical formula (2) has a chiral moiety and develops an SmC A * phase that is an antiferroelectric phase in both the temperature rising and temperature falling processes.
  • NLO nonlinear optics
  • the NLO monomer represented by the chemical formula (4) develop a ferroelectric SmC * phase only during the temperature lowering process.
  • the monomers represented by chemical formula (3) and chemical formula (4) exhibited second harmonic generation activity (SHG).
  • the absorption wavelength band of each polymerizable monomer is around 400 nm, and the absorption wavelength is around 800 nm. It turns out that it has no belt.
  • Each polymerizable monomer was mixed at a ratio of 20 mol% of azobenzene crosslinking agent, 60 mol% of NLO crosslinking agent, and 20 mol% of NLO monomer to prepare a crosslinked liquid crystal polymer film (Azo-NLO film).
  • a sample for polymerization was prepared by adding 1 mol% of a photopolymerization initiator Lucirin TPO having absorption in the ultraviolet region to the mixed sample of each polymerizable monomer.
  • the glass cell with an ITO electrode subjected to the planar alignment treatment was heated on a hot stage, and the sample for polymerization was sealed by capillary action at an isotropic phase temperature.
  • the light passing through the analyzer 45 is passed through the infrared light cut filter 46 to remove the fundamental wave having a wavelength of 800 nm, and only the second harmonic SH light having a wavelength of 400 nm is amplified by the photomultiplier tube 47, and is sent to the oscilloscope 48. displayed.
  • the fundamental wave was reflected by a glass plate (half mirror) 4a, passed through a neutral density filter 49, and detected by a photodetector 50.
  • the light intensity of the fundamental wave was adjusted by rotating the half-wave plate 51.
  • Reference numerals 4b and 4c denote reflection mirrors.
  • For the measurement of SH intensity p-polarized and s-polarized SH light was detected using p-polarized incident light. Further, the incident angle was changed by rotating the sample around the direction perpendicular to the ground.
  • the SH intensity decreased with the lapse of time from the irradiation of the ultrashort pulse light of the fundamental wave, and reached a constant value in about 300 seconds (FIG. 5). Then, when visible light was irradiated, it restored to the initial SH intensity in about 100 seconds (FIG. 5). Reproducibility was confirmed for these changes in SH intensity. Since the second harmonic generation activity is a second-order nonlinear optical effect, it is generated in a system in which polarization is aligned in one direction. Since the original SH intensity was restored by irradiation with visible light, the decrease in SH intensity was considered to be caused by a decrease in the degree of orientational order accompanying trans-cis photoisomerization of azobenzene (see FIG. 1).
  • azobenzene When irradiated with light having a wavelength of 400 nm, azobenzene has a relatively high molar extinction coefficient at a wavelength of 400 nm. Therefore, the shrinkage force can be inclined in the film thickness direction due to photoisomerization, and the conventional crosslinked azobenzene liquid crystal polymer It bends in the direction of the light source in the same way as light movement.
  • the absorption cross section is relatively low due to the nonlinear optical effect, and the cis-body concentration gradient becomes small. As a result, shrinkage associated with orientation changes occurs throughout the film.
  • the present invention can be used for medical instruments such as a guide wire that can be optically driven in a living body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a technique for deforming a crosslinkable liquid-crystal polymer material containing photochromic molecules, without using the irradiation of ultraviolet-blue light. Ultra-short pulse light is irradiated on a crosslinkable liquid-crystal polymer material (12) containing photochromic molecules (101), and the crosslinkable liquid-crystal polymer material is deformed as a result of isomerisation being induced due to two-photon absorption by the photochromic molecules (101).

Description

架橋型液晶高分子材料の変形方法、光駆動型成形体Method for deforming cross-linked liquid crystal polymer material, light-driven molded body
本発明は、フォトクロミック分子を含有する架橋型液晶高分子材料の変形方法に関する。また、本発明は、上記方法を適用し得る光駆動型成形体、より具体的には手術において生体内に挿入して用いられる光駆動型医療器具に関する。 The present invention relates to a method for deforming a cross-linked liquid crystal polymer material containing photochromic molecules. The present invention also relates to a light-driven molded body to which the above method can be applied, and more specifically to a light-driven medical instrument that is used by being inserted into a living body in surgery.
血管拡張手段として、ガイドワイヤに沿って導入されたステントやカテーテル、又はガイドワイヤそのものを用いて、血管の狭窄部を内側から広げる血管内治療が広く用いられている。
このような血管内治療の対象となる狭窄部を有する血管は主に冠動脈である。そのため、ガイドワイヤは、出血を避けるために冠動脈に直接挿入されるのではなく、腕や脚の血管から挿入され、冠動脈の狭窄部まで導入される。この導入は、X線透視下でガイドワイヤの先端の位置と血管の形状を見ながら行われる。 
As a vasodilator, endovascular treatment is widely used in which a stenosis of a blood vessel is expanded from the inside using a stent or catheter introduced along the guide wire, or the guide wire itself.
A blood vessel having a stenosis that is a target of such endovascular treatment is mainly a coronary artery. Therefore, the guide wire is not inserted directly into the coronary artery in order to avoid bleeding, but is inserted from the blood vessel of the arm or leg and introduced to the stenosis of the coronary artery. This introduction is performed while viewing the position of the tip of the guide wire and the shape of the blood vessel under fluoroscopy.
通常、血管は、腕や足の血管(ガイドワイヤの挿入部)から冠動脈の狭窄部までの道程で、湾曲したり分岐したりしている。血管内治療においては、血管を傷つけることなく、狭窄部までガイドワイヤを導入していく必要がある。従って、従来は、血管の形状に合わせて、先端を様々な角度に成形したガイドワイヤを使い分けるのが一般的であった。
このような従来のガイドワイヤは、同ガイドワイヤに沿わせて血管内に導入されるカテーテル等を利用して抜き差し可能になっているので、その都度、ガイドワイヤを抜き差ししながら、ガイドワイヤとカテーテル等を狭窄部まで導入していく。 
Usually, the blood vessel is curved or branched along the path from the blood vessel of the arm or foot (insertion portion of the guide wire) to the stenosis portion of the coronary artery. In endovascular treatment, it is necessary to introduce a guide wire to the stenosis without damaging the blood vessel. Therefore, conventionally, it has been common to use different guide wires whose tips are shaped at various angles in accordance with the shape of the blood vessel.
Such a conventional guide wire can be inserted and removed using a catheter or the like introduced into the blood vessel along the guide wire, so that the guide wire and the catheter are inserted and removed each time. Etc. are introduced to the stenosis.
特許文献1には、ワイヤの先端部にコイルを設けることにより、ガイドワイヤの先端部の剛性を変化させることで、血管への追従性を高めることが記載されている。  Patent Document 1 describes that the followability to a blood vessel is improved by changing the rigidity of the distal end portion of the guide wire by providing a coil at the distal end portion of the wire. *
ところで、近年、活性光の照射により変形、駆動し得る液晶材料に対する研究が行われている。
特許文献2には、アゾベンゼン構造を有する重合性モノマーから得られる重合体からなる光屈曲性液晶成形体が開示されている。
この光屈曲性液晶成形体は、液晶高分子材料に含まれるアゾベンゼン構造のトランス-シス光異性化を利用し、光照射を受けて屈曲し得るものである。
In recent years, research has been conducted on liquid crystal materials that can be deformed and driven by irradiation with active light.
Patent Document 2 discloses a light-flexible liquid crystal molded body made of a polymer obtained from a polymerizable monomer having an azobenzene structure.
This light-flexible liquid crystal molded body can be bent by light irradiation using trans-cis photoisomerization of an azobenzene structure contained in a liquid crystal polymer material.
非特許文献1~3には、フォトクロミック分子であるアゾベンゼン構造を含む、架橋液晶高分子薄膜が開示されている。  Non-Patent Documents 1 to 3 disclose crosslinked liquid crystal polymer thin films containing an azobenzene structure which is a photochromic molecule. *
特許文献3には、フォトクロミック分子が導入された架橋液晶高分子成形体に活性光を照射することにより、架橋液晶高分子成形体の形状変化を誘起し、当該架橋液晶高分子成形体を回転させる光誘起回転方法が開示されている。  Patent Document 3 discloses that a crosslinked liquid crystal polymer molded body into which photochromic molecules are introduced is irradiated with actinic light to induce a shape change of the crosslinked liquid crystal polymer molded body, and the crosslinked liquid crystal polymer molded body is rotated. A light induced rotation method is disclosed. *
特許文献4には、フォトクロミック分子を含有する架橋型-液晶高分子薄膜を備え、活性光線照射のオン/オフに連動して、前記架橋型-液晶高分子薄膜の形状変化が誘起される光駆動型アクチュエータが開示されている。  Patent Document 4 includes a light-driven device including a cross-linked liquid crystal polymer thin film containing photochromic molecules, and inducing a shape change of the cross-linked liquid crystal polymer thin film in conjunction with on / off of actinic ray irradiation. A mold actuator is disclosed. *
また、上述した各文献に記載されるように、アゾベンゼン構造のトランス体の吸収波長は、300~400nmであり、及びアゾベンゼン構造を含む架橋型-液晶高分子薄膜等の成形体の形状変化は、紫外光~青色光の照射により誘起されることが知られていた。 Further, as described in each of the above-mentioned documents, the absorption wavelength of the trans form having an azobenzene structure is 300 to 400 nm, and the change in the shape of a molded body such as a cross-linked liquid crystal polymer thin film containing the azobenzene structure is It was known to be induced by irradiation with ultraviolet light to blue light.
特開2011-206175号公報JP 2011-206175 A 特開2005-255805号公報JP 2005-255805 A 特開2008-115347号公報JP 2008-115347 A 特開2010-68691号公報JP 2010-68691 A
特許文献1に記載されるガイドワイヤは、先端の剛性を変化させ、原理上、血管への追従性を高めるものではあると考えられるが、コイルの構造上、ガイドワイヤの小径化が困難であり、実用的でない。  The guide wire described in Patent Document 1 is thought to change the rigidity of the tip and increase the followability to blood vessels in principle, but due to the structure of the coil, it is difficult to reduce the guide wire diameter. Not practical. *
このような状況において、ガイドワイヤ等を生体内で変形させる技術、このような技術を用いた新たな医療器具の開発が求められていた。
そこで、本発明は、ガイドワイヤ等の医療器具を生体内で変形させる技術を提供することを課題とする。 
Under such circumstances, there has been a demand for the development of a technique for deforming a guide wire or the like in a living body and a new medical instrument using such a technique.
Then, this invention makes it a subject to provide the technique which deform | transforms medical instruments, such as a guide wire, in vivo.
上記課題を解決するために本発明者らは、特許文献2~4、非特許文献1~3に記載されるような、活性光の照射により変形する架橋液晶高分子材料を用いて、ガイドワイヤの一部を形成し、生体内で、活性光の照射によりガイドワイヤを変形できないかについて検討した。
ここで、上述したとおり、アゾベンゼン等の公知のフォトクロミック分子の有する吸収波長帯は、300~400nmであるため、特許文献1~3に記載される架橋液晶高分子材料の変形を誘起させるためには、紫外光~青色光を照射しなければならないこととなる。
しかしながら、血液中の赤血球の吸収波長帯も、また300~400nmであるため、血液の存在下で、紫外光~青色光を照射すると、血管内の温度上昇などを招く等の危険がある。従って、特許文献1~3に記載される架橋液晶高分子材料で形成されたガイドワイヤを、紫外光~青色光で変形させるという方法は、採用し難い。 
In order to solve the above problems, the present inventors have used a cross-linked liquid crystal polymer material that is deformed by irradiation with active light, as described in Patent Documents 2 to 4 and Non-Patent Documents 1 to 3, to guide wire. The guide wire could be deformed by irradiation with actinic light in vivo.
Here, since the absorption wavelength band of known photochromic molecules such as azobenzene is 300 to 400 nm as described above, in order to induce deformation of the crosslinked liquid crystal polymer material described in Patent Documents 1 to 3. Therefore, it is necessary to irradiate ultraviolet light to blue light.
However, since the absorption wavelength band of red blood cells in blood is also 300 to 400 nm, there is a risk that irradiation with ultraviolet light or blue light in the presence of blood causes an increase in the temperature of blood vessels. Therefore, it is difficult to adopt the method of deforming the guide wire formed of the crosslinked liquid crystal polymer material described in Patent Documents 1 to 3 with ultraviolet light to blue light.
そこで、本発明は、フォトクロミック分子を含む架橋液晶高分子材料を、紫外光~青色光の照射によらず、変形させる技術を提供することをさらなる課題とする。 Accordingly, it is a further object of the present invention to provide a technique for deforming a crosslinked liquid crystal polymer material containing a photochromic molecule irrespective of irradiation with ultraviolet light to blue light.
本発明者らは、鋭意研究の結果、極短パルス光を用いることにより、従来知られているアゾベンゼン等のフォトクロミック分子に二光子吸収させることが可能であり、これにより前記フォトクロミック分子が可逆的に異性化することを発見した。そして、前記フォトクロミック分子を含有する架橋型液晶高分子材料に、長波長の極短パルス光を照射することにより、前記架橋型液晶高分子材料を変形させることが可能であることを見出し、本発明を完成させた。  As a result of diligent research, the present inventors have made it possible to cause two-photon absorption in a conventionally known photochromic molecule such as azobenzene by using ultrashort pulsed light, which makes the photochromic molecule reversible. I found isomerization. And it discovered that the said bridge | crosslinking-type liquid crystal polymer material could be deformed by irradiating the bridge | crosslinking-type liquid crystal polymer material containing the said photochromic molecule | numerator with the ultrashort pulse light of a long wavelength, and this invention Was completed. *
前記課題を解決する本発明は、フォトクロミック分子を含有する架橋型液晶高分子材料に極短パルス光を照射し、前記フォトクロミック分子に二光子吸収させることにより、前記架橋型液晶高分子材料を変形させることを特徴とする、架橋型液晶高分子材料の変形方法である。
このような方法によれば、従来、架橋型液晶高分子材料の変形に用いられていた波長とは異なる波長の光を用いて、架橋型液晶高分子材料を変形させることが可能になる。 
The present invention that solves the above-described problems deforms the cross-linkable liquid crystal polymer material by irradiating the photochromic molecule-containing cross-linked liquid crystal polymer material with ultrashort pulse light and causing the photochromic molecule to absorb two-photons. This is a method for deforming a cross-linked liquid crystal polymer material.
According to such a method, it is possible to deform the cross-linked liquid crystal polymer material using light having a wavelength different from the wavelength conventionally used for the deformation of the cross-linked liquid crystal polymer material.
本発明の好ましい形態では、前記極短パルス光は、赤色光~赤外光である。また、前記架橋型液晶高分子材料中のフォトクロミック分子は、紫外光又は青色光に吸収波長帯を持つことが好ましい。
このような方法を用いることで、代表的なフォトクロミック分子として知られているアゾベンゼン等を用いた場合でも、紫外光を使用せずに架橋型液晶高分子材料を変形させることが可能となる。 
In a preferred embodiment of the present invention, the ultrashort pulse light is red light to infrared light. The photochromic molecule in the cross-linked liquid crystal polymer material preferably has an absorption wavelength band for ultraviolet light or blue light.
By using such a method, even when azobenzene or the like known as a typical photochromic molecule is used, the cross-linked liquid crystal polymer material can be deformed without using ultraviolet light.
本発明の好ましい形態では、前記極短パルス光のパルス幅は、1~5000フェムト秒である。また、前記極短パルス光の強度は、好ましくは0.1~10mW/cm2である。
このような極短パルス光を用いることにより、前記フォトクロミック分子の二光子吸収を効率よく誘起することができる。 
In a preferred embodiment of the present invention, the pulse width of the ultrashort pulse light is 1 to 5000 femtoseconds. The intensity of the ultrashort pulse light is preferably 0.1 to 10 mW / cm 2 .
By using such ultrashort pulse light, two-photon absorption of the photochromic molecule can be efficiently induced.
本発明の好ましい形態では、前記フォトクロミック分子は、アゾベンゼンである。
アゾベンゼンは、異性化により分子間距離が大きく変化することから、架橋型液晶高分子材料の変形率を高めるために有用である。 
In a preferred form of the invention, the photochromic molecule is azobenzene.
Azobenzene is useful for increasing the deformation rate of the cross-linked liquid crystal polymer material because the intermolecular distance is greatly changed by isomerization.
本発明の好ましい形態では、前記架橋型液晶高分子材料は、高分子主鎖が、フォトクロミック分子を含む架橋剤により架橋された構造を有する。  In a preferred embodiment of the present invention, the crosslinked liquid crystal polymer material has a structure in which a polymer main chain is crosslinked by a crosslinking agent containing a photochromic molecule. *
本発明の好ましい形態では、前記架橋型液晶高分子材料は一軸の配向性を有する。
これにより、フォトクロミック分子の異性化により、前記架橋型液晶高分子材料の巨視的な変形を誘起することができる。 
In a preferred embodiment of the present invention, the crosslinked liquid crystal polymer material has uniaxial orientation.
Thereby, macroscopic deformation of the crosslinked liquid crystal polymer material can be induced by isomerization of the photochromic molecule.
上記課題を解決する本発明は、フォトクロミック分子を含有する架橋型液晶高分子材料で形成された変形層を有する本体部と、前記変形層に極短パルス光を照射するための極短パルス光照射部と、を備えることを特徴とする、光駆動型成形体である。  The present invention that solves the above-described problems includes a main body having a deformable layer formed of a cross-linkable liquid crystal polymer material containing photochromic molecules, and ultrashort pulsed light irradiation for irradiating the deformable layer with ultrashort pulsed light. A light-driven molded body. *
本発明の光駆動型成形体における、フォトクロミック分子やパルス光の好ましい例は、本発明の変形方法におけるこれらと同じである。  Preferred examples of photochromic molecules and pulsed light in the light-driven molded body of the present invention are the same as those in the deformation method of the present invention. *
本発明の光駆動型成形体は、生体内、特に血管内で駆動して用いるのに好適である。  The light-driven molded article of the present invention is suitable for being driven and used in a living body, particularly in a blood vessel. *
本発明の光駆動成形体の具体例としては、光駆動型ガイドワイヤが挙げられる。  A specific example of the light-driven molded body of the present invention is a light-driven guide wire. *
このような光駆動型ガイドワイヤの一形態として、心線と、該心線の表面を覆うフォトクロミック分子を含有する架橋型液晶高分子材料で形成された薄膜からなる前記変形層を有する本体部と、前記極短パルス光を発生する光源と、前記極短パルス光を前記本体部の照射位置に伝送する光ファイバとを有する極短パルス光照射部とを備える形態が挙げられる。 As one form of such a light-driven guide wire, a main body having a deformed layer made of a thin film formed of a core wire and a crosslinked liquid crystal polymer material containing a photochromic molecule covering the surface of the core wire; And an ultrashort pulse light irradiating unit including a light source that generates the ultrashort pulsed light and an optical fiber that transmits the ultrashort pulsed light to an irradiation position of the main body.
本発明により、従来、フォトクロミック分子を含む架橋型液晶高分子材料の変形に用いられていた波長とは異なる波長の光を用いて、架橋型液晶高分子材料を変形させることが可能になる。
この現象を利用することにより、紫外光~青色光によって異性化することが知られていたフォトクロミック分子を含む架橋型液晶高分子材料を、赤色光~赤外光を用いて変形させることが可能となる。 
According to the present invention, it is possible to deform a crosslinkable liquid crystal polymer material using light having a wavelength different from the wavelength conventionally used for deformation of a crosslinkable liquid crystal polymer material containing photochromic molecules.
By utilizing this phenomenon, it is possible to transform a cross-linked liquid crystal polymer material containing photochromic molecules known to be isomerized by ultraviolet light to blue light using red light to infrared light. Become.
これにより、上記架橋型液晶高分子材料の、生体内、特に血管内で利用される医療器具等への適用が可能となる。これにより、医療器具を生体内で変形させることが可能となり、診断や治療における安全性、効率性の向上が期待される。
例えば、血管内に導入されるガイドワイヤの表面を、上記架橋型液晶高分子材料からなる膜で覆うことにより、極短パルス光の照射により、必要な形状にガイドワイヤの先端を屈曲させながら、湾曲、分岐する血管に沿ってガイドワイヤを導入することが可能となる。その結果、複数のガイドワイヤの抜き差しを行う労力を減らすことができ、血管の損傷のリスクを大幅に低減することができる。
Thereby, the cross-linked liquid crystal polymer material can be applied to a medical instrument or the like used in a living body, particularly in a blood vessel. This makes it possible to deform the medical instrument in the living body, and is expected to improve safety and efficiency in diagnosis and treatment.
For example, by covering the surface of the guide wire introduced into the blood vessel with a film made of the above-mentioned cross-linked liquid crystal polymer material, the tip of the guide wire is bent into a required shape by irradiation with ultrashort pulse light, It is possible to introduce a guide wire along a blood vessel that is bent or branched. As a result, labor for inserting and removing a plurality of guide wires can be reduced, and the risk of blood vessel damage can be greatly reduced.
本発明の架橋型液晶高分子材料の変形方法を説明する図である。It is a figure explaining the deformation | transformation method of the bridge | crosslinking-type liquid crystal polymer material of this invention. 本発明の光駆動型ガイドワイヤの構成を説明する図である。It is a figure explaining the structure of the optical drive type guide wire of this invention. 図2のA-A線に沿った拡大断面図である。FIG. 3 is an enlarged sectional view taken along line AA in FIG. 2. 実施例における第二次高調波光(SH)強度の測定に用いた光学系の構成を説明する図である。It is a figure explaining the structure of the optical system used for the measurement of the 2nd harmonic light (SH) intensity | strength in an Example. 実施例で作製した架橋型液晶高分子フィルムに極短パルス光を照射した場合の極短パルス光照射時間に対する第二次高調波光(SH)強度の変化を示す図である。It is a figure which shows the change of the 2nd harmonic light (SH) intensity with respect to the ultrashort pulse light irradiation time at the time of irradiating the ultrashort pulse light to the bridge | crosslinking-type liquid crystal polymer film produced in the Example. 実施例で作製した架橋型液晶高分子フィルムに活性光を照射した場合のフィルムの形状を示す写真である。(A)は、紫外光を照射した後、可視光を照射した場合の写真、(B)は、近赤外の極短パルスを照射した後、可視光を照射した場合の写真である。It is a photograph which shows the shape of a film at the time of irradiating active light to the bridge | crosslinking-type liquid crystal polymer film produced in the Example. (A) is a photograph in the case of irradiation with visible light after irradiation with ultraviolet light, and (B) is a photograph in the case of irradiation with visible light after irradiation with a near-infrared ultrashort pulse.
本発明の架橋型液晶高分子材料の変形方法について以下詳細に説明する。 本発明は、フォトクロミック分子を含有する架橋型液晶高分子材料に極短パルス光を照射し、前記フォトクロミック分子に二光子吸収させることにより、前記架橋型液晶高分子材料を変形させることを特徴とする。
すなわち、本発明は、極短パルス光を用いて、アゾベンゼン等のフォトクロミック分子に二光子吸収させることができるという知見に基づいてなされた発明である。 
The method for deforming the cross-linked liquid crystal polymer material of the present invention will be described in detail below. The present invention is characterized in that the cross-linkable liquid crystal polymer material is deformed by irradiating the photochromic molecule-containing cross-linked liquid crystal polymer material with ultrashort pulse light and causing the photochromic molecule to absorb two-photons. .
That is, the present invention is based on the knowledge that photochromic molecules such as azobenzene can be two-photon absorbed using ultrashort pulsed light.
本発明の方法に用いられる架橋型液晶高分子材料は、その構造内にフォトクロミック分子を含有する。後に詳述するが、該フォトクロミック分子は、特定の活性光の照射により可逆的に異性化し得る。
また、前記架橋型液晶高分子材料は、高分子主鎖どうしが、架橋剤により緩く拘束された構造を有する。 
The crosslinked liquid crystal polymer material used in the method of the present invention contains photochromic molecules in its structure. As will be described in detail later, the photochromic molecule can be reversibly isomerized by irradiation with specific active light.
The crosslinked liquid crystal polymer material has a structure in which polymer main chains are loosely constrained by a crosslinking agent.
前記フォトクロミック分子の導入箇所は、高分子主鎖、高分子側鎖の何れで
もよいが、フォトクロミック分子がメソゲンの少なくとも一部を構成するこ
とが好ましい。これにより、フォトクロミック分子の異性化が、効率よくメ
ソゲンの配向変化を誘起するためである。 
The introduction site of the photochromic molecule may be either a polymer main chain or a polymer side chain, but the photochromic molecule preferably constitutes at least a part of the mesogen. This is because the isomerization of the photochromic molecule efficiently induces the orientation change of the mesogen.
フォトクロミック分子の導入箇所は、好ましくは高分子側鎖である。また、このフォトクロミック分子を含む高分子側鎖を架橋剤として使用することも好ましい。架橋剤にフォトクロミック分子を導入することにより、フォトクロミック分子の異性化に起因する架橋型液晶高分子材料の形状変化を十分に引き起こすことができる。  The introduction site of the photochromic molecule is preferably a polymer side chain. It is also preferable to use a polymer side chain containing this photochromic molecule as a crosslinking agent. By introducing a photochromic molecule into the cross-linking agent, it is possible to sufficiently cause a shape change of the cross-linked liquid crystal polymer material due to isomerization of the photochromic molecule. *
前記フォトクロミック分子としては、公知のものを用いることができる。例えば、トランス-シス異性化し得るアゾベンゼン構造、スチルベンゼン構造、又は開環-閉環異性化し得るスピロピラン構造、ジアリール構造等を挙げることができる。
特に、下記式(1)に示すアゾベンゼンは、異性化の際に2つのベンゼンの分子間距離が大きく変化することから、好ましく挙げられる。 
Known photochromic molecules can be used. Examples thereof include an azobenzene structure capable of trans-cis isomerization, a stilbenzene structure, a spiropyran structure capable of ring-opening-ring-closing isomerization, and a diaryl structure.
In particular, azobenzene represented by the following formula (1) is preferable because the intermolecular distance between the two benzenes greatly changes during isomerization.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
アゾベンゼンのトランス体の吸収波長帯は、300~400nm程度であるため、同範囲の光(紫外光)を照射すると、シス体に異性化する。このことは従来知られている現象である。本発明の方法は、この異性化を極短パルス光を用いてアゾベンゼンに二光子吸収させることにより誘起する点に特徴がある。これにより、アゾベンゼンのトランス体の吸収波長帯である300~400nmより長波長の光によっても、アゾベンゼンのシス化を引き起こすことが可能となる。すなわち、アゾベンゼンのトランス体の吸収波長帯の2倍以上の800nm程度の波長の光によっても、アゾベンゼンのシス化を引き起こすことが可能となる。  Since the absorption wavelength band of the trans form of azobenzene is about 300 to 400 nm, it is isomerized to a cis form when irradiated with light (ultraviolet light) in the same range. This is a conventionally known phenomenon. The method of the present invention is characterized in that this isomerization is induced by two-photon absorption in azobenzene using ultrashort pulse light. This makes it possible to cause azobenzene to be cis-formed even with light having a wavelength longer than 300 to 400 nm, which is the absorption wavelength band of the trans form of azobenzene. That is, it is possible to cause azobenzene cis formation also by light having a wavelength of about 800 nm, which is twice or more the absorption wavelength band of the trans form of azobenzene. *
また、アゾベンゼンのシス体の吸収波長は、500~650nm程度であることが知られているため、同範囲の光(可視光)を照射すると、トランス体に戻る。二光子吸収により異性化したアゾベンゼンは、可視光を照射することで、トランス体に戻る。
架橋型液晶高分子材料のメソゲンの少なくとも一部を、例えばアゾベンゼンで構成した場合、トランス体は、液晶相を安定化し、シス体は液晶相を不安定化するように作用する。 
Further, since the absorption wavelength of the cis isomer of azobenzene is known to be about 500 to 650 nm, it returns to the trans isomer when irradiated with light in the same range (visible light). Azobenzene isomerized by two-photon absorption returns to the trans form upon irradiation with visible light.
When at least a part of the mesogen of the crosslinked liquid crystal polymer material is composed of, for example, azobenzene, the trans isomer acts to stabilize the liquid crystal phase and the cis isomer acts to destabilize the liquid crystal phase.
上述した通り、架橋型液晶高分子材料のメソゲンの一部が少なくともフォトクロミック分子であることは好ましいが、メソゲンの一部はフォトクロミック分子以外で構成されていてもよい。  As described above, it is preferable that at least a part of the mesogen of the crosslinked liquid crystal polymer material is a photochromic molecule, but a part of the mesogen may be composed of other than the photochromic molecule. *
架橋型液晶高分子材料は、メソゲンの配向変化を高効率で高分子主鎖に伝達する点から、スメクチック液晶を有することが好ましい。  The cross-linked liquid crystal polymer material preferably has a smectic liquid crystal from the viewpoint of efficiently transmitting a mesogen orientation change to the polymer main chain. *
また、架橋型液晶高分子材料は一軸の配向性を有することが好ましい。
これにより、フォトクロミック分子の異性化により、前記架橋型液晶高分子材料の巨視的な変形を誘起することができる。 
The cross-linked liquid crystal polymer material preferably has uniaxial orientation.
Thereby, macroscopic deformation of the crosslinked liquid crystal polymer material can be induced by isomerization of the photochromic molecule.
架橋型液晶高分子材料は、例えば、フォトクロミック分子を有する重合性モノマーを重合することにより製造することができる。
また、架橋型液晶高分子材料の製造においては、フォトクロミック分子を有する重合性モノマーと、フォトクロミック分子を有さない液晶性重合性モノマーを共重合してもよい。また、非液晶性重合性モノマーをさらに共重合してもよい。
また、フォトクロミック分子を有する重合性モノマーの少なくとも一部は、架橋剤として機能する架橋重合性モノマーであることが好ましい。上述したように、架橋剤にフォトクロミック分子を導入することにより、フォトクロミック分子の異性化に起因する架橋型液晶高分子材料の形状変化を十分に引き起こすことができる。
これらのモノマー比率は、材料の用途に応じた変形度合いとなるように、適宜調整することができる。 
The crosslinked liquid crystal polymer material can be produced, for example, by polymerizing a polymerizable monomer having a photochromic molecule.
In the production of the crosslinked liquid crystal polymer material, a polymerizable monomer having a photochromic molecule and a liquid crystalline polymerizable monomer not having a photochromic molecule may be copolymerized. Further, a non-liquid crystalline polymerizable monomer may be further copolymerized.
Moreover, it is preferable that at least a part of the polymerizable monomer having a photochromic molecule is a crosslinked polymerizable monomer that functions as a crosslinking agent. As described above, by introducing a photochromic molecule into the crosslinking agent, it is possible to sufficiently cause a shape change of the crosslinked liquid crystal polymer material due to isomerization of the photochromic molecule.
These monomer ratios can be appropriately adjusted so as to have a degree of deformation according to the use of the material.
上記各重合性モノマーの重合性基としては、(メタ)アクロイルオキシ基、(メタ)アクリルアミド基、ビニルオキシ基、ビニル基、エポキシ基等が挙げられるが、重合の容易性の観点から、(メタ)アクロイルオキシ基、(メタ)アクリルアミド基が好ましい。
重合開始剤は、公知のものを用いることができる。 
Examples of the polymerizable group of each polymerizable monomer include a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyloxy group, a vinyl group, an epoxy group, and the like. ) Acroyloxy group and (meth) acrylamide group are preferred.
A well-known thing can be used for a polymerization initiator.
上述した架橋型液晶高分子材料は、公知の方法で製造することができる。すなわち、重合性モノマーを、メソゲンが配向する条件下において重合させればよい。重合開始剤も公知のものを用いることができる。
例えば、内表面が配向性処理された反応容器を用い、重合性モノマーを、光重合あるいは熱重合させることにより、重合と成形を同時に行うことが好ましい。配向性処理としては、反応容器の内表面にポリイミドの層を形成してこれを特定の方向にラビング処理する方法、電場・磁場などをかけるなどの方法が挙げられる。
また、光重合においては、フォトクロミック分子の異性化を抑制するために、フォトクロミック分子の配向方向と垂直の偏向を照射することが好ましい。 
The above-mentioned crosslinked liquid crystal polymer material can be produced by a known method. That is, the polymerizable monomer may be polymerized under the condition where the mesogen is oriented. A well-known thing can also be used for a polymerization initiator.
For example, it is preferable to perform polymerization and molding simultaneously by photopolymerizing or thermally polymerizing a polymerizable monomer using a reaction vessel whose inner surface is oriented. Examples of the orientation treatment include a method of forming a polyimide layer on the inner surface of the reaction vessel and rubbing it in a specific direction, and applying an electric field / magnetic field.
In photopolymerization, it is preferable to irradiate a deflection perpendicular to the orientation direction of the photochromic molecule in order to suppress isomerization of the photochromic molecule.
架橋型液晶高分子材料の形状は特に限定されず、用途に応じて成形することができる。例えば、フィルム、繊維状とすることが可能である。  The shape of the cross-linked liquid crystal polymer material is not particularly limited, and can be formed according to the application. For example, it can be a film or a fiber. *
本発明の特徴は、上述した架橋型液晶高分子材料に対し、極短パルス光を照射することによって、フォトクロミック分子に二光子吸収させることによって、架橋型液晶高分子材料を変形させることにある。
本発明にいう「極短パルス光」とは、パルス幅が数ピコ秒以下の非常に短いパルス光を意味する。
例えば、極短パルス光のパルス幅は、5000フェムト秒以下、好ましくは1000フェムト秒以下、さらに好ましくは300フェムト秒以下、特に好ましくは100フェムト秒以下である。パルス幅の下限は特に制限されないが、1フェムト秒程度を目安とすることができる。これにより、架橋型液晶高分子材料中のフォトクロミック分子の二光子吸収を効率よく誘起できる。 また、本発明で用いる極短パルス光の強度は、好ましくは0.1mW/cm2以上、さらに好ましくは0.1~10mW/cm2、より好ましくは1~10mW/cm2である。これにより、架橋型液晶高分子材料中のフォトクロミック分子の二光子吸収を効率よく誘起できる。
フォトクロミック分子は二光子吸収することにより異性化し、これにより、架橋型液晶高分子材料が変形する。 
The feature of the present invention is that the above-mentioned cross-linked liquid crystal polymer material is deformed by irradiating the photochromic molecule with two photons by irradiating the above-mentioned cross-linked liquid crystal polymer material with ultrashort pulse light.
The “ultrashort pulse light” in the present invention means very short pulse light having a pulse width of several picoseconds or less.
For example, the pulse width of the ultrashort pulse light is 5000 femtoseconds or less, preferably 1000 femtoseconds or less, more preferably 300 femtoseconds or less, and particularly preferably 100 femtoseconds or less. The lower limit of the pulse width is not particularly limited, but can be about 1 femtosecond. Thereby, the two-photon absorption of the photochromic molecule in the cross-linked liquid crystal polymer material can be efficiently induced. The intensity of the ultrashort pulse light used in the present invention is preferably 0.1 mW / cm 2 or more, more preferably 0.1 to 10 mW / cm 2 , more preferably 1 to 10 mW / cm 2 . Thereby, the two-photon absorption of the photochromic molecule in the cross-linked liquid crystal polymer material can be efficiently induced.
Photochromic molecules are isomerized by two-photon absorption, thereby deforming the cross-linked liquid crystal polymer material.
以下、本発明の架橋型液晶高分子材料の変形のメカニズムを、図1を参照しながら説明する。図1は,アゾベンゼン(フォトクロミック分子)101をメソゲン11に導入した架橋型液晶高分子フィルム(架橋型液晶高分子材料)12の活性光照射による変化を説明する模式図である。架橋型液晶高分子フィルム12におけるメソゲン11は、高い配向秩序を有している。このメソゲン11の一部は、アゾベンゼンのトランス体101を含む。
アゾベンゼンのトランス体101に、800nmの波長の極短パルス光を照射すると、トランス体101は二光子吸収により異性化し、シス体102に構造変化する。これにより、メソゲン11の配向秩序が低下する。そして、この配向秩序の低下が液晶高分子に伝搬して架橋型液晶高分子フィルム12の収縮が起こる(図1において矢印で示す)。 
Hereinafter, the deformation mechanism of the crosslinked liquid crystal polymer material of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram for explaining a change due to irradiation with active light of a cross-linked liquid crystal polymer film (cross-linked liquid crystal polymer material) 12 in which azobenzene (photochromic molecule) 101 is introduced into mesogen 11. The mesogen 11 in the crosslinked liquid crystal polymer film 12 has a high alignment order. A part of the mesogen 11 includes a trans isomer 101 of azobenzene.
When the trans isomer 101 of azobenzene is irradiated with an ultrashort pulse light having a wavelength of 800 nm, the trans isomer 101 is isomerized by two-photon absorption and the structure is changed to a cis isomer 102. Thereby, the alignment order of the mesogen 11 falls. Then, the decrease in the alignment order propagates to the liquid crystal polymer and the cross-linked liquid crystal polymer film 12 contracts (indicated by an arrow in FIG. 1).
二光子吸収を利用したフォトクロミック分子の異性化、及びこれによる架橋型液晶高分子材料の変形の利点は、従来フォトクロミック分子の異性化に用いられていた波長と異なる波長の光を用いて、架橋型液晶高分子材料の変形を引き起こすことができることにある。
例えば、アゾベンゼンの異性化のためには、従来紫外光を照射する必要があったが、本発明の方法を用いれば、赤色~赤外光の照射によってもアゾベンゼンの異性化を引き起こすことができる。これは、赤色~赤外光の照射によって架橋型液晶高分子材料の変形を引き起こすことができることを意味する。
このような方法によれば、従来紫外光を利用しにくかった分野でも、架橋型液晶高分子材料の変形を応用することができるようになる。
例えば、生体内、特に血管内では、通常紫外光の照射をし難い。これは、赤血球が紫外光を吸収することにより、組織内で温度が上昇する危険性があるためである。そのため、従来、架橋型液晶高分子材料の光照射による変形を医療器具に応用することは提案されていない。 
The advantage of isomerization of photochromic molecules using two-photon absorption and the deformation of cross-linked liquid crystal polymer materials is the advantage of using light of a wavelength different from that used for conventional photochromic molecule isomerization. This is because the liquid crystal polymer material can be deformed.
For example, for isomerization of azobenzene, it has conventionally been necessary to irradiate ultraviolet light, but by using the method of the present invention, isomerization of azobenzene can also be caused by irradiation with red to infrared light. This means that deformation of the cross-linked liquid crystal polymer material can be caused by irradiation with red to infrared light.
According to such a method, it becomes possible to apply the deformation of the cross-linked liquid crystal polymer material even in a field where it has been difficult to use ultraviolet light.
For example, in a living body, particularly in a blood vessel, it is usually difficult to irradiate with ultraviolet light. This is because red blood cells absorb ultraviolet light and there is a risk that the temperature rises in the tissue. Therefore, conventionally, it has not been proposed to apply the deformation of the cross-linked liquid crystal polymer material by light irradiation to a medical device.
本発明の方法を用いれば、赤色~赤外光という長波長の光により架橋型液晶高分子材料の変形を引き起こすことが可能となる。従って、生体内、特に血管内で使用するための医療器具等を、光駆動型の架橋型液晶高分子材料で形成することができる。そして、生体内で、光照射によって医療器具の変形を引き起こすことが可能となる。  By using the method of the present invention, it becomes possible to cause deformation of the cross-linked liquid crystal polymer material by light having a long wavelength of red to infrared light. Accordingly, a medical instrument or the like for use in a living body, particularly in a blood vessel, can be formed of a light-driven cross-linked liquid crystal polymer material. And in a living body, it becomes possible to cause a deformation | transformation of a medical instrument by light irradiation. *
このように、上述した本発明の架橋型液晶高分子材料の変形方法を応用し、医療器具を始め、さまざまな光駆動型成形体を製造することができる。
本発明の光駆動型成形体は、フォトクロミック分子を含有する架橋型液晶高分子材料で形成された変形層を有する本体部と、前記変形層に極短パルス光を照射するための光照射部とを備える。 
In this way, by applying the above-described method for deforming a cross-linked liquid crystal polymer material of the present invention, various light-driven molded articles including medical instruments can be manufactured.
The light-driven molded body of the present invention includes a main body portion having a deformable layer formed of a cross-linkable liquid crystal polymer material containing photochromic molecules, and a light irradiation portion for irradiating the deformable layer with ultrashort pulse light. Is provided.
以下、図2及び図3を参照しながら、本発明の光駆動型成形体の一実施形態について説明する。
図2及び図3に示すガイドワイヤ1は、ワイヤ本体2(本体部)と、レーザー照射装置3(極短パルス光照射部)とを備える。なお、同図は、説明の便宜上、本発明に特徴的なガイドワイヤの先端部を拡大して示したものであり、実際の寸法を示すものではない。
ワイヤ本体2は、心線21と、心線21の先端部211を覆うフォトクロミック分子を含有する架橋型液晶高分子材料からなるポリマージャケット22(変形層)とを有している。心線21の長さは、特に限定されないが200mm~5000mm程度であり、その先端部211から50~100mm程度が、ポリマージャケット22により覆われている。
心線21は、従来のガイドワイヤで使用されている線材と同様に、ステンレス鋼等の金属材料で形成されている。心線21の先端部211以外の部分は、ポリオレフィン、フッ素系樹脂等の樹脂層21aで覆われている。
ポリマージャケット22を形成する架橋型液晶高分子材料におけるフォトクロミック分子としては、例えばアゾベンゼンを用いることができる。 
Hereinafter, an embodiment of the light-driven molded body of the present invention will be described with reference to FIGS. 2 and 3.
A guide wire 1 shown in FIGS. 2 and 3 includes a wire main body 2 (main body portion) and a laser irradiation device 3 (very short pulse light irradiation portion). For the sake of convenience of explanation, this figure is an enlarged view of the distal end portion of the guide wire characteristic of the present invention, and does not show actual dimensions.
The wire body 2 includes a core wire 21 and a polymer jacket 22 (deformable layer) made of a cross-linked liquid crystal polymer material containing a photochromic molecule that covers the tip portion 211 of the core wire 21. The length of the core wire 21 is not particularly limited, but is about 200 mm to 5000 mm, and about 50 to 100 mm from the tip portion 211 is covered with the polymer jacket 22.
The core wire 21 is formed of a metal material such as stainless steel, similarly to the wire used in the conventional guide wire. Portions other than the tip end portion 211 of the core wire 21 are covered with a resin layer 21a such as polyolefin or fluorine resin.
As photochromic molecules in the cross-linked liquid crystal polymer material forming the polymer jacket 22, for example, azobenzene can be used.
レーザー照射装置3は、レーザー光源31と、レーザー光源31から出力された極短パルスレーザー光を、ワイヤ本体2のポリマージャケット22の照射位置まで伝送する光ファイバ32とを有している。レーザー光源31は、操作者の操作によって、レーザー光の出力をオンにする、光出力制御部を含む。光ファイバ32は、図2及び図3に示す例では、心線21及び先端部211に沿って配置され、樹脂層21a、ポリマージャケット22内に埋め込まれている。
光ファイバ32は、ポリマージャケット22の任意の位置に極短パルスレーザー光を照射できるように設計されていることが好ましい。例えば、複数の出射部32a~dを有する光ファイバ32を用いることにより、ポリマージャケット22の任意の位置に極短パルスレーザー光を照射することができ、変形度合い等を調節することも可能である。本実施形態においては、長さの異なる光ファイバを束ねたバンドルファイバを採用した形態を示す。 
The laser irradiation device 3 includes a laser light source 31 and an optical fiber 32 that transmits the ultrashort pulse laser light output from the laser light source 31 to the irradiation position of the polymer jacket 22 of the wire body 2. The laser light source 31 includes a light output control unit that turns on the output of the laser light by the operation of the operator. In the example shown in FIGS. 2 and 3, the optical fiber 32 is disposed along the core wire 21 and the tip portion 211, and is embedded in the resin layer 21 a and the polymer jacket 22.
The optical fiber 32 is preferably designed so that an ultrashort pulse laser beam can be irradiated to an arbitrary position of the polymer jacket 22. For example, by using an optical fiber 32 having a plurality of emitting portions 32a to 32d, it is possible to irradiate an extremely short pulse laser beam at an arbitrary position of the polymer jacket 22, and it is possible to adjust the degree of deformation and the like. . In this embodiment, the form which employ | adopted the bundle fiber which bundled the optical fiber from which length differs is shown.
以下、図2を参照しながら、ガイドワイヤ1の変形動作について説明する。
ガイドワイヤ1は、例えば、血管の狭窄部に向けて導入される。ガイドワイヤ1を、血管の分岐点手前まで導入した時点で、レーザー光源31からの出力をオンにすることにより、光ファイバ32の出射部32a~dからワイヤ本体2のポリマージャケット22に極短パルスの近赤外レーザー光を照射する。極短パルスレーザー光を照射したポリマージャケット22は、その照射部において変形し、その結果ワイヤ本体2全体が屈曲する(仮想線で示す)。また、変形をもとに戻したい場合には、レーザー照射装置によって可視光を照射すればよい。
このように、血管内において、血管の導入方向に沿った方向にガイドワイヤ1の先端を変形させながら、狭窄部までガイドワイヤを導入することが可能となる。 
Hereinafter, the deformation | transformation operation | movement of the guide wire 1 is demonstrated, referring FIG.
For example, the guide wire 1 is introduced toward a stenosis portion of a blood vessel. When the guide wire 1 is introduced to the point just before the branch point of the blood vessel, the output from the laser light source 31 is turned on so that the ultrashort pulse is emitted from the emitting portions 32a to 32d of the optical fiber 32 to the polymer jacket 22 of the wire body 2. Of near infrared laser light. The polymer jacket 22 irradiated with the ultrashort pulse laser beam is deformed at the irradiated portion, and as a result, the entire wire body 2 is bent (indicated by a virtual line). Further, when it is desired to undo the deformation, visible light may be irradiated by a laser irradiation device.
As described above, the guide wire can be introduced to the stenosis portion while deforming the distal end of the guide wire 1 in the direction along the blood vessel introduction direction in the blood vessel.
ここまで、ガイドワイヤの実施形態を示したが、本発明の成形体は、生体内で駆動させるためのあらゆる医療器具となしうる。例えば、本発明の成形体は、カテーテルやステントとして構成することも可能である。 So far, the embodiment of the guide wire has been shown. However, the molded body of the present invention can be any medical device to be driven in vivo. For example, the molded article of the present invention can be configured as a catheter or a stent.
架橋型液晶高分子膜の製造について一実施例を示すが、本発明で用いる架橋型液晶高分子材料は、当該実施例に限定されない。
<重合性モノマー>
本実施例の架橋型液晶高分子膜の製造に用いた重合性モノマーを化学式(2)~(4)に示す。
化学式(2)に示すアゾベンゼン架橋剤は、キラル部位を有しており昇温・降温過程のいずれにおいても反強誘電相であるSmCA *相を発現する。 また、化学式(3)に示すNLO(nonlinear optics、非線形光学)架橋剤、及び化学式(4)に示すNLOモノマーは、降温過程のみに強誘電相のSmC*相を発現する。化学式(3)、化学式(4)に示すモノマーは、第二次高調波発生活性(SHG)を示した。 
One example of the production of the cross-linked liquid crystal polymer film is shown, but the cross-linked liquid crystal polymer material used in the present invention is not limited to the example.
<Polymerizable monomer>
The polymerizable monomers used in the production of the cross-linked liquid crystal polymer film of this example are shown in chemical formulas (2) to (4).
The azobenzene cross-linking agent represented by the chemical formula (2) has a chiral moiety and develops an SmC A * phase that is an antiferroelectric phase in both the temperature rising and temperature falling processes. Further, the NLO (nonlinear optics) cross-linking agent represented by the chemical formula (3) and the NLO monomer represented by the chemical formula (4) develop a ferroelectric SmC * phase only during the temperature lowering process. The monomers represented by chemical formula (3) and chemical formula (4) exhibited second harmonic generation activity (SHG).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
上記化学式(2)~(4)の重合性モノマーについて、ジクロロメタン溶液における紫外可視吸収スペクトル測定を行った結果、何れの重合性モノマーも、吸収波長帯は400nm付近であり、800nm付近には吸収波長帯をもたないことがわかった。  As a result of measuring the UV-visible absorption spectrum in a dichloromethane solution for the polymerizable monomers of the above chemical formulas (2) to (4), the absorption wavelength band of each polymerizable monomer is around 400 nm, and the absorption wavelength is around 800 nm. It turns out that it has no belt. *
<架橋型液晶高分子フィルムの作製>
各重合性モノマーを、アゾベンゼン架橋剤20mol%、NLO架橋剤60mol%、NLOモノマー20mol%の割合で混合し、架橋型液晶高分子フィルム(Azo-NLOフィルム)を作製した。
各重合性モノマーの混合試料に対して紫外光領域に吸収をもつ光重合開始剤LucirinTPOを1mol%添加したものを重合用サンプルとした。平面配向処理を施したITO電極付きガラスセルをホットステージで加熱し、重合用サンプルを等方相温度で毛細管現象により封入した。交流電圧を印加したまま、等方相温度から室温まで降温した後、直流電圧を印加した状態で高圧水銀灯の波長400nm以上の可視光を5時間照射することにより光重合した。また、アゾベンゼンは波長400nmの光によって異性化するため、アゾベンゼンの配向方向と垂直の偏光を照射して光異性化を極力抑制した。重合後、架橋型液晶高分子フィルムをカッターにより切り出した(5mm×10mm)。 
<Production of cross-linked liquid crystal polymer film>
Each polymerizable monomer was mixed at a ratio of 20 mol% of azobenzene crosslinking agent, 60 mol% of NLO crosslinking agent, and 20 mol% of NLO monomer to prepare a crosslinked liquid crystal polymer film (Azo-NLO film).
A sample for polymerization was prepared by adding 1 mol% of a photopolymerization initiator Lucirin TPO having absorption in the ultraviolet region to the mixed sample of each polymerizable monomer. The glass cell with an ITO electrode subjected to the planar alignment treatment was heated on a hot stage, and the sample for polymerization was sealed by capillary action at an isotropic phase temperature. While the AC voltage was applied, the temperature was lowered from the isotropic phase temperature to room temperature, and then photopolymerization was performed by irradiating visible light having a wavelength of 400 nm or more from a high-pressure mercury lamp for 5 hours with the DC voltage applied. Since azobenzene is isomerized by light having a wavelength of 400 nm, photoisomerization was suppressed as much as possible by irradiating polarized light perpendicular to the orientation direction of azobenzene. After the polymerization, a cross-linked liquid crystal polymer film was cut out with a cutter (5 mm × 10 mm).
<Azo-NLOフィルムの一般特性>
作製したAzo-NLOフィルムの熱物性と配向性について以下に示した。DSC測定の結果、重合前にみられた相転移ピークは完全に消失し、ガラス転移点のみが-10℃付近に現れた。
また、偏光顕微鏡(POM)観察の結果、35°を暗視野として45°おきに周期的な明暗を確認することができ、作製したフィルムが均一に一軸配向していることがわかった。
次いで、偏光吸収スペクトル測定を行い、偏波面依存性からAzo-NLOフィルム中のアゾベンゼンの配向状態を調べた。フィルムを5°ずつ回転させることにより波長456nmの吸光度を測定した結果、35°傾いた角度で吸光度が最大となることから、アゾベンゼンはラビング方向から35°チルトして配向していることが明らかとなった。 
<General characteristics of Azo-NLO film>
The thermal properties and orientation of the produced Azo-NLO film are shown below. As a result of DSC measurement, the phase transition peak observed before polymerization disappeared completely, and only the glass transition point appeared in the vicinity of −10 ° C.
In addition, as a result of observation with a polarizing microscope (POM), it was confirmed that periodic darkness and darkness could be confirmed every 45 ° with 35 ° as a dark field, and the produced film was uniformly uniaxially oriented.
Next, the polarization absorption spectrum was measured, and the orientation state of azobenzene in the Azo-NLO film was examined from the polarization plane dependency. As a result of measuring the absorbance at a wavelength of 456 nm by rotating the film by 5 °, the absorbance is maximized at an angle inclined by 35 °. Therefore, it is clear that azobenzene is tilted by 35 ° from the rubbing direction. became.
<Azo-NLOフィルムの光動作特性> 上記Azo-NLOフィルムに、波長800nm(基本波)、パルス幅100フェムト秒、強度170mWの極短パルス光を入射(1mW/cm2)し、第二次高調波光(SH)強度の経時変化を検討した。極短パルス光の入射角は35°とした(図4において符号Aで示す)。
SH強度の測定に用いた光学系4を図4に示す。すなわち、光源40からのフェムト秒パルスレーザー光を偏光子41に通した後、レンズ42により集光し、紫外光カットフィルター43を介してサンプル(フィルム)44に入射した。検光子45を通した光を赤外光カットフィルター46に通すことにより波長800nmの基本波を取り除いて波長400nmの第二次高調波SH光のみを光電子増倍管47で増幅し、オシロスコープ48に表示した。また、基本波をガラス板(ハーフミラー)4aで反射させて減光フィルター49を通し、フォトディテクター50で検出した。なお、基本波の光強度は、1/2波長板51を回転させることにより調節した。符号4b、4cは反射ミラーを示す。SH強度の測定には、p偏光の入射光を用いて、p偏光およびs偏光のSH光を検出した。また、サンプルを地面に垂直な方向を軸として回転することにより入射角を変化させた。 
<Optical operation characteristics of Azo-NLO film> Ultra short pulse light having a wavelength of 800 nm (fundamental wave), a pulse width of 100 femtoseconds, and an intensity of 170 mW is incident on the Azo-NLO film (1 mW / cm 2 ), and the secondary The temporal change of harmonic light (SH) intensity was examined. The incident angle of the ultrashort pulse light was set to 35 ° (indicated by symbol A in FIG. 4).
The optical system 4 used for the measurement of SH intensity is shown in FIG. That is, the femtosecond pulsed laser light from the light source 40 was passed through the polarizer 41, condensed by the lens 42, and incident on the sample (film) 44 through the ultraviolet light cut filter 43. The light passing through the analyzer 45 is passed through the infrared light cut filter 46 to remove the fundamental wave having a wavelength of 800 nm, and only the second harmonic SH light having a wavelength of 400 nm is amplified by the photomultiplier tube 47, and is sent to the oscilloscope 48. displayed. The fundamental wave was reflected by a glass plate (half mirror) 4a, passed through a neutral density filter 49, and detected by a photodetector 50. The light intensity of the fundamental wave was adjusted by rotating the half-wave plate 51. Reference numerals 4b and 4c denote reflection mirrors. For the measurement of SH intensity, p-polarized and s-polarized SH light was detected using p-polarized incident light. Further, the incident angle was changed by rotating the sample around the direction perpendicular to the ground.
その結果、基本波の極短パルス光の照射から時間経過とともにSH強度は減少し、300秒ほどで一定値に達した(図5)。
その後、可視光を照射すると、100秒ほどで初期のSH強度まで復元した(図5)。これらのSH強度の変化については、再現性が確認できた。第二次高調波発生活性は二次の非線形光学効果であるため、分極が一方向に揃った系で発生する。可視光照射により元のSH強度まで復元することから、SH強度の減少はアゾベンゼンのトランス-シス光異性化に伴う配向秩序度の低下に起因すると考えられた(図1参照)。 
As a result, the SH intensity decreased with the lapse of time from the irradiation of the ultrashort pulse light of the fundamental wave, and reached a constant value in about 300 seconds (FIG. 5).
Then, when visible light was irradiated, it restored to the initial SH intensity in about 100 seconds (FIG. 5). Reproducibility was confirmed for these changes in SH intensity. Since the second harmonic generation activity is a second-order nonlinear optical effect, it is generated in a system in which polarization is aligned in one direction. Since the original SH intensity was restored by irradiation with visible light, the decrease in SH intensity was considered to be caused by a decrease in the degree of orientational order accompanying trans-cis photoisomerization of azobenzene (see FIG. 1).
つづいて、Azo-NLOフィルムの分子配向変化を確認するため、POM観察を行った。基本波照射前のPOM画像では、偏光板と分子配向方向のなす角度が0°のとき暗視野、45°のとき明視野であった。基本波照射後、0°ではわずかに明視野に変化し、45°では照射スポットで透過光量が減少した。可視光の照射により元の状態に復元することから、基本波照射により分子配向変化が可逆的に誘起されることが明らかとなった。  Subsequently, POM observation was performed to confirm the molecular orientation change of the Azo-NLO film. In the POM image before the fundamental wave irradiation, the dark field was obtained when the angle between the polarizing plate and the molecular orientation direction was 0 °, and the bright field when 45 °. After the fundamental wave irradiation, the light intensity slightly changed at 0 °, and the amount of transmitted light decreased at the irradiation spot at 45 °. It was revealed that the molecular orientation change was reversibly induced by fundamental wave irradiation because it was restored to the original state by irradiation with visible light. *
次に、基本波照射時におけるAzo-NLOフィルムの光異性化挙動を紫外可視吸収スペクトル測定により検討した。上記と同じ条件で基本波を照射した結果、照射時間とともにトランス-アゾベンゼンに基づくππ*遷移の吸収が徐々に減少し、シス体のnπ*遷移に基づく吸収が増大した。つづいて、可視光を1分照射したところ、吸光スペクトルは初期状態に復元した。この結果から、作製したAzo-NLOフィルムは800nmの光照射によりトランス-シス光異性化を示すことが明らかとなった。  Next, the photoisomerization behavior of Azo-NLO film during fundamental wave irradiation was examined by measuring UV-visible absorption spectrum. As a result of irradiation with the fundamental wave under the same conditions as described above, the absorption of the ππ * transition based on trans-azobenzene gradually decreased with the irradiation time, and the absorption based on the nπ * transition of the cis isomer increased. Subsequently, when visible light was irradiated for 1 minute, the absorption spectrum was restored to the initial state. From this result, it was revealed that the prepared Azo-NLO film exhibited trans-cis photoisomerization when irradiated with light of 800 nm.
次に、基本波の入射角を0°に変えて、同様にSH強度を測定した結果、35°の場合と同様にトランス-アゾベンゼンに由来するππ*遷移の吸収が徐々に減少した。可視光照射により初期状態に復元した。SHGが角度依存性であり、入射角0°ではSH光が発生しないことが、NLO架橋剤のみから作製したNLOフィルムを用いた試験で明らかとなっている。
本試験で、SH光が発生しない入射角0°においても光異性化が起こったことから、基本波照射によるアゾベンゼンの異性化挙動は三次の非線形光学効果である二光子吸収により誘起されることが分かった。
これより、アゾベンゼンの異性化を、800nm付近の波長の極短パルスを照射することにより引き起こすことができることが分かった。 
Next, when the incident angle of the fundamental wave was changed to 0 ° and the SH intensity was measured in the same manner, the absorption of the ππ * transition derived from trans-azobenzene was gradually reduced as in the case of 35 °. The initial state was restored by visible light irradiation. Tests using NLO films made only from NLO crosslinkers have revealed that SHG is angle-dependent and that no SH light is generated at an incident angle of 0 °.
In this test, photoisomerization occurred even at an incident angle of 0 ° where no SH light was generated. Therefore, the isomerization behavior of azobenzene by fundamental wave irradiation is induced by two-photon absorption, which is a third-order nonlinear optical effect. I understood.
From this, it was found that isomerization of azobenzene can be caused by irradiating an ultrashort pulse with a wavelength near 800 nm.
<Azo-NLOフィルムの変形試験>
異なる波長の光を照射したときのAzo-NLOフィルムの光運動挙動について検討した。
上記で作製した2mm×2mm×20μmのAzo-NLOフィルムをサンプルとし、入射角0°で、以下の光を照射した。
紫外光:波長400nm、100 fs、強度20μW/cm2
可視光:波長530nm、定常光、強度10mW/cm2
近赤外光:波長800nm、100 fs、強度3.7mW/cm2 
<Deformation test of Azo-NLO film>
The optical motion behavior of Azo-NLO films when irradiated with light of different wavelengths was investigated.
The 2 mm × 2 mm × 20 μm Azo-NLO film prepared above was used as a sample, and the following light was irradiated at an incident angle of 0 °.
Ultraviolet light: wavelength 400 nm, 100 fs, intensity 20 μW / cm 2
Visible light: wavelength 530 nm, stationary light, intensity 10 mW / cm 2
Near infrared light: wavelength 800 nm, 100 fs, intensity 3.7 mW / cm 2
結果を図6に示す。
波長400nmの光を照射すると光源に向かって屈曲し、波長530nmの可視光照射により元の形状に復元した。一方、波長800nmの基本波を照射するとフィルムは光源と反対側に屈曲し、可視光照射により元の形状に復元した。このように、近赤外光照射によっても屈曲を誘起できることが明らかとなった。 
The results are shown in FIG.
When irradiated with light having a wavelength of 400 nm, it was bent toward the light source and restored to its original shape by irradiation with visible light having a wavelength of 530 nm. On the other hand, when a fundamental wave having a wavelength of 800 nm was irradiated, the film was bent to the opposite side of the light source and restored to its original shape by irradiation with visible light. Thus, it became clear that bending can also be induced by near-infrared light irradiation.
波長400nmの光を照射した場合には、アゾベンゼンは波長400nmに比較的高いモル吸光係数をもつため、膜厚方向に光異性化に伴う収縮力の傾斜ができ、従来の架橋アゾベンゼン液晶高分子の光運動と同様に光源方向に屈曲する。一方、波長800nmの光を照射した場合には、二光子吸収による光異性化が起こるものの非線形光学効果であるため吸収断面積は比較的低く、シス体濃度勾配が小さくなる。結果として、配向変化に伴う収縮はフィルム全体に起こる。すなわち、波長800nmの極短パルス光の照射によれば、光源方向に関係なく予め設計された方向に変形させることが可能となる。
なお、本試験で作製したフィルムは、初期形状に起因して、光源と反対側に屈曲したと考えられる。
When irradiated with light having a wavelength of 400 nm, azobenzene has a relatively high molar extinction coefficient at a wavelength of 400 nm. Therefore, the shrinkage force can be inclined in the film thickness direction due to photoisomerization, and the conventional crosslinked azobenzene liquid crystal polymer It bends in the direction of the light source in the same way as light movement. On the other hand, when light with a wavelength of 800 nm is irradiated, although photoisomerization due to two-photon absorption occurs, the absorption cross section is relatively low due to the nonlinear optical effect, and the cis-body concentration gradient becomes small. As a result, shrinkage associated with orientation changes occurs throughout the film. That is, according to the irradiation with the ultrashort pulse light with a wavelength of 800 nm, it is possible to deform in the direction designed in advance regardless of the light source direction.
In addition, it is thought that the film produced in this test was bent to the opposite side to the light source due to the initial shape.
本発明は、生体内で光駆動可能なガイドワイヤ等の医療器具に利用できる。 The present invention can be used for medical instruments such as a guide wire that can be optically driven in a living body.
10 アゾベンゼン(フォトクロミック分子)             101 アゾベンゼンのトランス体                  102 アゾベンゼンのシス体                    11 メソゲン                           12 架橋型液晶高分子フィルム(架橋型液晶高分子材料)       1 ガイドワイヤ                          2 ワイヤ本体                           22 ポリマージャケット(変形層)                 3 レーザー照射装置                        31 レーザー光源                         32 光ファイバ                            10 azobenzene (photochromic molecule) 101 of the transformer 102 azobenzene azobenzene cis- 11 mesogenic 12 crosslinked liquid crystal polymer film (cross-linked liquid crystal polymer material) 1 guidewire 2 wire body 22 polymer jacket (modified layer) 3 laser irradiation device 31 Laser light source 32 optical fiber

Claims (15)

  1. フォトクロミック分子を含有する架橋型液晶高分子材料に極短パルス光を照射し、前記フォトクロミック分子の二光子吸収による異性化を誘起することにより、前記架橋型液晶高分子材料を変形させることを特徴とする、架橋型液晶高分子材料の変形方法。 The crosslinked liquid crystal polymer material is deformed by irradiating a cross-linked liquid crystal polymer material containing a photochromic molecule with ultrashort pulse light and inducing isomerization by two-photon absorption of the photochromic molecule. A method for deforming a cross-linked liquid crystal polymer material.
  2. 前記架橋型液晶高分子材料中のフォトクロミック分子は、紫外光又は青色光に吸収波長帯を持ち、かつ、前記極短パルス光は、赤色光~赤外光である、請求項1に記載の架橋型液晶高分子材料の変形方法。 The cross-linked according to claim 1, wherein the photochromic molecule in the cross-linked liquid crystal polymer material has an absorption wavelength band for ultraviolet light or blue light, and the ultrashort pulsed light is red light to infrared light. Deformation method of liquid crystal polymer material.
  3. 前記極短パルス光のパルス幅は、1~5000フェムト秒である、請求項1又は2に記載の架橋型液晶高分子材料の変形方法。 3. The method for deforming a crosslinked liquid crystal polymer material according to claim 1, wherein the pulse width of the ultrashort pulsed light is 1 to 5000 femtoseconds.
  4. 前記極短パルス光の強度は、0.1~10mW/cm2である、請求項1~3の何れかに記載の架橋型液晶高分子材料の変形方法。 4. The method for deforming a crosslinked liquid crystal polymer material according to claim 1, wherein the intensity of the ultrashort pulse light is 0.1 to 10 mW / cm 2 .
  5. 前記フォトクロミック分子が、アゾベンゼンであることを特徴とする、請求項1~4の何れかに記載の架橋型液晶高分子材料の変形方法。 The method for deforming a crosslinked liquid crystal polymer material according to any one of claims 1 to 4, wherein the photochromic molecule is azobenzene.
  6. 前記架橋型液晶高分子材料は、高分子主鎖が、フォトクロミック分子を含む架橋剤により架橋された構造を有する、請求項1~5の何れかに記載の架橋型液晶高分子材料の変形方法。 6. The method for deforming a crosslinked liquid crystal polymer material according to claim 1, wherein the crosslinked liquid crystal polymer material has a structure in which a polymer main chain is crosslinked by a crosslinking agent containing a photochromic molecule.
  7. 前記架橋型液晶高分子材料は一軸の配向性を有し、前記極短パルス光の照射により、前記配向性が低下する、請求項1~6の何れかに記載の架橋型液晶高分子材料の変形方法。 The crosslinked liquid crystal polymer material according to any one of claims 1 to 6, wherein the crosslinked liquid crystal polymer material has uniaxial orientation, and the orientation is lowered by irradiation with the ultrashort pulsed light. Deformation method.
  8. フォトクロミック分子を含有する架橋型液晶高分子材料で形成された変形層を有する本体部と、前記変形層に極短パルス光を照射するための極短パルス光照射部と、を備えることを特徴とする、光駆動型成形体。 A main body having a deformable layer formed of a crosslinked liquid crystal polymer material containing a photochromic molecule, and an ultrashort pulsed light irradiation unit for irradiating the deformable layer with an ultrashort pulsed light A light-driven molded body.
  9. 前記架橋型液晶高分子材料中のフォトクロミック分子は、紫外光又は青色光に吸収波長帯を持ち、かつ、前記極短パルス光は、赤色光~赤外光である、請求項8に記載の光駆動成形体。 9. The light according to claim 8, wherein the photochromic molecule in the crosslinked liquid crystal polymer material has an absorption wavelength band for ultraviolet light or blue light, and the ultrashort pulsed light is red light to infrared light. Drive molded body.
  10. 前記フォトクロミック分子が、アゾベンゼンであることを特徴とする、請求項8又は9に記載の光駆動成形体。 The light-driven molded article according to claim 8 or 9, wherein the photochromic molecule is azobenzene.
  11. 前記架橋型液晶高分子材料は、高分子主鎖が、フォトクロミック分子を含む架橋剤により架橋された構造を有する、請求項8~10の何れかに記載の光駆動成形体。 The light-driven molded article according to any one of claims 8 to 10, wherein the crosslinked liquid crystal polymer material has a structure in which a polymer main chain is crosslinked by a crosslinking agent containing a photochromic molecule.
  12. 生体内で駆動して用いられるための、請求項9~11の何れかに記載の光駆動成形体。 The light-driven molded body according to any one of claims 9 to 11, which is used by being driven in a living body.
  13. 血管内で駆動して用いられるための、請求項12に記載の光駆動成形体。 The light-driven molded body according to claim 12, which is used by being driven in a blood vessel.
  14. 請求項13に記載の光駆動成形体からなる、光駆動型ガイドワイヤ。 An optically driven guide wire comprising the optically driven molded body according to claim 13.
  15. 前記本体部は、心線と、該心線の表面を覆うフォトクロミック分子を含有する架橋型液晶高分子材料で形成された薄膜からなる前記変形層とからなり、前記極短パルス光照射部は、前記極短パルス光を発生する光源と、前記極短パルス光を前記本体部の照射位置に伝送する光ファイバとを有することを特徴とする、請求項14に記載の光駆動型ガイドワイヤ。   The main body portion is composed of a core wire and the deformed layer formed of a thin film formed of a crosslinked liquid crystal polymer material containing a photochromic molecule covering the surface of the core wire, and the ultrashort pulsed light irradiation portion is The light-driven guide wire according to claim 14, further comprising: a light source that generates the ultrashort pulse light; and an optical fiber that transmits the ultrashort pulse light to an irradiation position of the main body.
PCT/JP2013/064629 2012-05-25 2013-05-27 Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact WO2013176287A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012120097A JP2013245296A (en) 2012-05-25 2012-05-25 Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact
JP2012-120097 2012-05-25

Publications (2)

Publication Number Publication Date
WO2013176287A2 true WO2013176287A2 (en) 2013-11-28
WO2013176287A3 WO2013176287A3 (en) 2014-01-16

Family

ID=49624462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064629 WO2013176287A2 (en) 2012-05-25 2013-05-27 Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact

Country Status (2)

Country Link
JP (1) JP2013245296A (en)
WO (1) WO2013176287A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145449A (en) * 2014-01-31 2015-08-13 日東電工株式会社 Manufacturing method of photoresponsive crosslinking-type liquid crystal polymeric film, and photoresponsive crosslinking-type liquid crystal polymeric film obtained by the manufacturing method
WO2016135775A1 (en) * 2015-02-25 2016-09-01 オリンパス株式会社 Optical driving device
CN111699152A (en) * 2019-01-14 2020-09-22 京东方科技集团股份有限公司 Actuator, preparation method and operation method thereof and movable device
CN115926050A (en) * 2018-03-29 2023-04-07 住友化学株式会社 Composition and Polarizing Film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687333B2 (en) * 2015-05-11 2020-04-22 学校法人東京工芸大学 Liquid crystal gel manufacturing method, liquid crystal gel designing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008881A (en) * 2002-06-05 2004-01-15 Nitto Denko Corp Method of manufacturing plastic structural body and plastic structural body formed by the manufacturing method
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
WO2007091466A1 (en) * 2006-02-10 2007-08-16 Lef Technology, Inc. Method for modification of liquid crystal polymer
JP2008228368A (en) * 2007-03-08 2008-09-25 Tokyo Institute Of Technology Optical drive actuator and power transmission system
JP2011244566A (en) * 2010-05-17 2011-12-01 Fujikura Ltd Optical drive actuator, optical drive system, and optical drive method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008881A (en) * 2002-06-05 2004-01-15 Nitto Denko Corp Method of manufacturing plastic structural body and plastic structural body formed by the manufacturing method
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
WO2007091466A1 (en) * 2006-02-10 2007-08-16 Lef Technology, Inc. Method for modification of liquid crystal polymer
JP2008228368A (en) * 2007-03-08 2008-09-25 Tokyo Institute Of Technology Optical drive actuator and power transmission system
JP2011244566A (en) * 2010-05-17 2011-12-01 Fujikura Ltd Optical drive actuator, optical drive system, and optical drive method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOICHI KUBO ET AL.: 'Time-Resolved Study on Photoinduced Realignment of an Azotolane Liquid-Crystalline Polymer Film by Traneient Absorption Spectroscopy' CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU vol. 89, no. L, 13 March 2009, page 458 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145449A (en) * 2014-01-31 2015-08-13 日東電工株式会社 Manufacturing method of photoresponsive crosslinking-type liquid crystal polymeric film, and photoresponsive crosslinking-type liquid crystal polymeric film obtained by the manufacturing method
WO2016135775A1 (en) * 2015-02-25 2016-09-01 オリンパス株式会社 Optical driving device
JPWO2016135775A1 (en) * 2015-02-25 2017-11-30 オリンパス株式会社 Optical drive device
CN115926050A (en) * 2018-03-29 2023-04-07 住友化学株式会社 Composition and Polarizing Film
CN111699152A (en) * 2019-01-14 2020-09-22 京东方科技集团股份有限公司 Actuator, preparation method and operation method thereof and movable device
CN111699152B (en) * 2019-01-14 2024-01-19 京东方科技集团股份有限公司 Actuator, method for producing the same, method for operating the same, and mobile device

Also Published As

Publication number Publication date
JP2013245296A (en) 2013-12-09
WO2013176287A3 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2013176287A2 (en) Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact
Lee et al. Photomechanical mechanism and structure-property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks
Lee et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals
Yu et al. Photomechanical effects of ferroelectric liquid‐crystalline elastomers containing azobenzene chromophores
Li et al. Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell
White et al. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers
KR100253721B1 (en) Nonlinear optical polymeric layer
Kawatsuki et al. A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal
Wu et al. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process
US20100007844A1 (en) Electrically variable focus polymer-stabilized liquid crystal lens having non-homogenous polymerization of a nematic liquid crystal/monomer mixture
US20060209232A1 (en) Method of fabricating electro-optical devices with polymer-stabilized liquid crystal molecules
JP3705603B2 (en) A method for enhancing information in a side chain polymer capable of inputting and outputting information by light
JP2004083810A (en) Composition for vertically aligned membrane and method for producing vertically aligned membrane
Wood et al. Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold
Bobrovsky et al. Photo-optical properties of new combined chiral photochromic liquid crystalline copolymers
Lucchetta et al. Optical characterization of polymer dispersed liquid crystals for holographic recording
Kurihara et al. Photochemical switching behavior of liquid-crystalline networks: effect of molecular structure of azobenzene molecules
Yaroshchuk et al. Molecular structure of azopolymers and photoinduced 3D orientational order. 1. Azobenzene polyesters
Donato et al. The Role of Crosslinker Molecular Structure on Mechanical and Light‐Actuation Properties in Liquid Crystalline Networks
Hirota et al. Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers
KR101993955B1 (en) Process for producing aligned liquid crystal film
JP2005232345A (en) Polymer for birefringence-inducing material, polarization diffraction element, and liquid crystal alignment film
Kozenkov et al. P‐93: Structure and Properties of Azo Dye Films for Photoalignment and Photochromic Applications
Uklein et al. Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye–polymer complex
JP2006018106A (en) Manufacturing methods of optical alignment layer for liquid crystal display element and of liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793996

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13793996

Country of ref document: EP

Kind code of ref document: A2