JP2005232345A - Polymer for birefringence-inducing material, polarization diffraction element, and liquid crystal alignment film - Google Patents

Polymer for birefringence-inducing material, polarization diffraction element, and liquid crystal alignment film Download PDF

Info

Publication number
JP2005232345A
JP2005232345A JP2004044134A JP2004044134A JP2005232345A JP 2005232345 A JP2005232345 A JP 2005232345A JP 2004044134 A JP2004044134 A JP 2004044134A JP 2004044134 A JP2004044134 A JP 2004044134A JP 2005232345 A JP2005232345 A JP 2005232345A
Authority
JP
Japan
Prior art keywords
light
polymer
orientation
linearly polarized
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004044134A
Other languages
Japanese (ja)
Other versions
JP4333914B2 (en
Inventor
Koji Ono
浩司 小野
Yoshihiro Kawatsuki
喜弘 川月
Takeya Sakai
丈也 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2004044134A priority Critical patent/JP4333914B2/en
Publication of JP2005232345A publication Critical patent/JP2005232345A/en
Application granted granted Critical
Publication of JP4333914B2 publication Critical patent/JP4333914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer for bireringence-inducing materials from which a polarization diffraction element having light diffraction and polarizing beam conversion functions stable to external stimuli such as heat and light is prepared at a low cost. <P>SOLUTION: The polymer having a structure expressed by chemical formula (1) is manufactured which induces birefringence by the molecular movement caused by the irradiation of a light containing a straight polarizing component and heat and whose direction of molecular orientation is changed by 90° by the irradiation of light. The polarization diffraction element is manufactured by irradiating a film of the polymer with a light having periodically modulating polarization or intensity or both of them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光波の回折と偏光変換機能を併せ持つ偏光回折素子の製造に好適である複屈折誘起材料重合体と、この重合体を用いた偏光回折素子、液晶配向膜に関するものである。 The present invention relates to a birefringence inducing material polymer suitable for the production of a polarization diffraction element having both light wave diffraction and polarization conversion functions, a polarization diffraction element using the polymer, and a liquid crystal alignment film.

マスク露光や2光束の干渉縞を利用して回折格子やホログラフィーを作製する材料としては、写真などにも使われているようなハロゲン化銀感光材料、ゼラチン膜を重クロム酸アンモニウム水溶液に浸して感光性を付与した重クロム酸ゼラチン、半導体集積回路などの作製に用いるフォトレジスト、モノマーの光重合による屈折率変調を利用したフォトポリマーなどが挙げられる。このような材料を用いた回折格子やホログラムは、光ディスク、CDなどで各種の信号を取り出すための光ピックアップ素子、バーコードスキャナーなどのビームを走査するための素子、情報処理関連ではホログラフィックメモリー、光インターコネクトなどへの応用が検討され、実際に利用もされてきている。 しかしながら、これらの素子では屈折率の変調や表面の凹凸を利用しており、光波の回折と偏光変換機能を併せ持つ偏光回折素子を作製することはできない。   As materials for producing diffraction gratings and holography using mask exposure and two-beam interference fringes, silver halide photosensitive materials, such as those used in photography, and gelatin films are immersed in an aqueous solution of ammonium dichromate. Examples thereof include dichromated gelatin imparted with photosensitivity, a photoresist used for manufacturing a semiconductor integrated circuit, a photopolymer utilizing refractive index modulation by photopolymerization of a monomer, and the like. Diffraction gratings and holograms using such materials include optical pickup elements for extracting various signals on optical disks, CDs, etc., elements for scanning beams such as barcode scanners, holographic memories for information processing, Applications to optical interconnects have been studied and are actually being used. However, these elements utilize refractive index modulation and surface irregularities, and thus cannot produce a polarization diffraction element having both light wave diffraction and polarization conversion functions.

光波の回折と偏光変換機能を併せ持つ偏光回折素子を作製するには、複屈折性や光軸の向きなど光学的異方性の周期構造を高度に制御する必要がある。このようなことが可能な材料として、ネガ型のフォトレジストであるポリビニルシンナメート(PVCi)が知られている。PVCiのフィルムに直線偏光性の紫外光を照射すると、この照射光の電界振動方向に対して平行方向となる配置のシンナモイル基の炭素−炭素2重結合が選択的に光2量化し複屈折を生じるようになる。これを利用すれば、光学的異方性を周期的に制御することは可能であるが、誘起される複屈折は0.01以下と非常に小さく実用性に乏しい。   In order to produce a polarization diffraction element having both light wave diffraction and polarization conversion functions, it is necessary to highly control the periodic structure of optical anisotropy such as birefringence and the direction of the optical axis. Polyvinyl cinnamate (PVCi), which is a negative photoresist, is known as a material capable of this. When a PVCi film is irradiated with linearly polarized ultraviolet light, the carbon-carbon double bond of the cinnamoyl group arranged in a direction parallel to the direction of electric field vibration of the irradiated light is selectively light-dimerized and birefringent. It comes to occur. If this is utilized, it is possible to periodically control the optical anisotropy, but the induced birefringence is as small as 0.01 or less and is not practical.

また、その他の代表的な材料として、アゾベンゼンを含む高分子材料を用いることが検討されている。アゾベンゼン分子は光や熱のような外部からの刺激によってシス体とトランス体の間で光異性化が起こり、このことを利用して分子配向を制御することができ周期的な分子配向制御も光照射によって行うことが可能である。しかしながら、従来検討されてきた、アゾベンゼンを含む高分子材料では、光学的異方性の発現があまり大きくないだけでなく、熱や光などの外場の影響によって特性が変化し、高い安定性を要求される光デバイスへの応用が困難であった。   As other representative materials, use of a polymer material containing azobenzene has been studied. The azobenzene molecule undergoes photoisomerization between the cis and trans isomers due to external stimuli such as light and heat, and this can be used to control the molecular orientation. It can be done by irradiation. However, the polymer materials containing azobenzene, which have been studied in the past, not only exhibit a large optical anisotropy, but also change their characteristics due to the influence of external fields such as heat and light, resulting in high stability. It was difficult to apply to required optical devices.

また、本発明者もこれまで複屈折誘起材料としてメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエートなどの置換基と感光性基を結合した構造を含む側鎖を有し、該側鎖が単炭化、アルキルエーテルなどの屈曲性部分を介して、炭化水素、アクリレート、メタクリレート、シロキサンなど主鎖に結合した構造の繰り返し単位とする単一重合体を提案している。 この複屈折誘起材料では、基板上に塗布(スピンコート)して製膜した後、この膜に直線偏光の紫外線を照射すると、照射直線偏光の電界振動方向に沿って配置されているシンナモイル基(または、その誘導体基)などの感光性基の2量化が選択的に起こり、続く加熱による分子運動により光2量化を起こさなかった側鎖も光2量化した側鎖と同じ方向に配列し、高分子塗布膜全体において照射した直線偏光の電界振動方向に側鎖が配列する材料である。該材料を用いて光波の回折と偏光変換機能を併せ持つ偏光回折素子を作製する方法として、レーザー光のような干渉性の良い偏光性の光束を用いた2光束干渉を用いて照射する方法ないしは、所望の周期ピッチを有する遮光性のマスクを用い、直線偏光性の光を照射する方法が挙げられる。   The present inventor also has a side chain including a structure in which a substituent such as biphenyl, terphenyl, and phenylbenzoate, which has been frequently used as a mesogenic component as a birefringence inducing material, and a photosensitive group are bonded. Has proposed a single polymer having a repeating unit having a structure bonded to the main chain, such as hydrocarbon, acrylate, methacrylate, siloxane, through a flexible portion such as monocarbon or alkyl ether. In this birefringence inducing material, when a film is formed by applying (spin coating) on a substrate and then irradiating the film with linearly polarized ultraviolet rays, cinnamoyl groups (along the electric field vibration direction of the irradiated linearly polarized light ( Alternatively, dimerization of a photosensitive group such as a derivative group thereof occurs selectively, and side chains that have not undergone photodimerization due to molecular movement due to subsequent heating are arranged in the same direction as the side chain that has undergone photodimerization, It is a material in which side chains are arranged in the direction of electric field vibration of linearly polarized light irradiated on the entire molecular coating film. As a method of producing a polarization diffraction element having both light wave diffraction and polarization conversion function using the material, a method of irradiating using a two-beam interference using a polarizing beam having good coherence such as laser light, or There is a method of irradiating linearly polarized light using a light-shielding mask having a desired periodic pitch.

更に、本発明者は、複屈折誘起材料としてメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエートなどの置換基と感光性基を結合した構造を含む側鎖を有し、該側鎖が単炭化、アルキルエーテルなどの屈曲性部分を介して、炭化水素、アクリレート、メタクリレート、シロキサンなど主鎖に結合した構造の繰り返し単位と非液晶性の繰り返し単位との共重合体を提案している。この共重合体では、感光性基を有する側鎖の光異性化が光2量化より優位となっている直線偏光の照射エネルギー量が比較的小さい場合、光異性化したZ異性体より光異性化しなかった側鎖の方が高い配向性を有していることから、照射後の加熱すると、分子運動により照射した直線偏光の電界振動方向に対して垂直方向に膜全体が配向するようになる。更に、直線偏光の紫外線を照射し、光2量化が光異性化より優位となる照射エネルギー量では、光2量化した側鎖に沿って未反応側鎖が配向するため直線偏光の電界振動方向に膜全体が配向するようになる。前述の単独重合体でも、直線偏光の照射エネルギー量が比較的小さいときには、照射した直線偏光の電界振動方向に対して垂直方向に膜全体が配向する傾向は見られるが、側鎖同士のhead−to−tailの会合(J会合)ないしはhead−to−headの会合(H会合)の形成により分子配向が阻害され、配向度が高められないことが分かっている。この点に鑑みて、非液晶性の繰り返し単位は、側鎖同士の会合を抑制するために共重合体したものであり、非液晶性の繰り返し単位としてメタクリル酸メチルなどを共重合比にして1:1程度の比率で共重合すると、直線偏光性の紫外光の照射量によって分子配向方向を90°変化できる材料が実現できている。しかしながら、このような共重合体では、共重合した非液晶性の繰り返し単位が分子レベルでの屈曲性に富むためか膜全体の配向度が低下するという問題点があった。   Furthermore, the inventor has a side chain including a structure in which a substituent such as biphenyl, terphenyl, and phenylbenzoate, which is frequently used as a mesogenic component as a birefringence inducing material, and a photosensitive group are bonded, and the side chain is A copolymer of a repeating unit having a structure bonded to a main chain such as hydrocarbon, acrylate, methacrylate, siloxane, and the like and a non-liquid crystalline repeating unit through a flexible part such as monocarbon or alkyl ether has been proposed. In this copolymer, the photoisomerization of the side chain having a photosensitive group is superior to the photodimerization. When the amount of irradiation energy of linearly polarized light is relatively small, the photoisomerization is performed from the photoisomerized Z isomer. Since the side chain that was not present has a higher orientation, when heated after irradiation, the entire film is oriented in a direction perpendicular to the electric field oscillation direction of the linearly polarized light irradiated by molecular motion. Furthermore, when irradiation with linearly polarized ultraviolet light is performed and the amount of irradiation energy in which light dimerization is superior to photoisomerization, unreacted side chains are aligned along the side chain that has undergone light dimerization. The entire film becomes oriented. Even in the aforementioned homopolymer, when the irradiation energy amount of the linearly polarized light is relatively small, the whole film tends to be oriented in the direction perpendicular to the electric field vibration direction of the irradiated linearly polarized light, but the head- It has been found that the formation of a to-tail association (J association) or a head-to-head association (H association) inhibits molecular orientation and does not increase the degree of orientation. In view of this point, the non-liquid crystalline repeating unit is a copolymer in order to suppress the association between side chains, and methyl methacrylate or the like is used as the non-liquid crystalline repeating unit in a copolymerization ratio of 1 : Copolymerization at a ratio of about 1 has realized a material that can change the molecular orientation direction by 90 ° depending on the dose of linearly polarized ultraviolet light. However, such a copolymer has a problem that the degree of orientation of the whole film is lowered because the copolymerized non-liquid crystalline repeating unit is rich in flexibility at the molecular level.

偏光回折素子においては、分子配向構造を有する高分子層のジョーンズ法による解析で知られているように、高い回折効率を得るには、位相差を大きくした方が有利であり、膜厚を厚くするか材料自体の異方性を大きくすることにより回折効率を高めることができる。 このため、配向度のあまり高くない、前述の共重合体を用いて偏光回折素子を作製した場合、膜厚を厚くすることによりある程度回折効率を高めることができるが、膜厚が大きくなると膜自身の光吸収により膜内部まで照射光が届かず、その部分での光2量化密度が低くなる。このことにより、未反応側鎖の配向規制力が低下し、偏光回折素子を作製した場合にヘイズが発生の原因となり素子の性能を低下させてしまう問題や膜厚が厚くなることから材料コストが大きくなってしまうことが問題であった。
R.C.Jones,J.Opt.Soc.Am.,31,488,1941
In the polarization diffraction element, as known from the analysis by the Jones method of a polymer layer having a molecular orientation structure, it is advantageous to increase the phase difference in order to obtain high diffraction efficiency, and to increase the film thickness. Alternatively, the diffraction efficiency can be increased by increasing the anisotropy of the material itself. For this reason, when a polarization diffraction element is produced using the above-mentioned copolymer, which has a low degree of orientation, the diffraction efficiency can be improved to some extent by increasing the film thickness. Irradiation light does not reach the inside of the film due to the absorption of light, and the light dimerization density at that portion becomes low. As a result, the alignment regulating force of the unreacted side chain is reduced, and when a polarization diffraction element is produced, the haze is generated and the performance of the element is deteriorated. The problem was that it would grow.
R. C. Jones, J .; Opt. Soc. Am. , 31, 488, 1941

このような問題に鑑みて、本発明は、熱や光などの外部からの刺激に対して安定性に優れ、高い光波の回折と偏光変換機能を併せ持つ偏光回折素子を低コストで作製することのできる複屈折誘起材料重合体を提供しようとするものである。 In view of such problems, the present invention provides a polarization diffractive element that is excellent in stability against external stimuli such as heat and light and that has both high light wave diffraction and polarization conversion functions at low cost. It is an object of the present invention to provide a birefringence inducing material polymer that can be produced.

複屈折誘起材料重合体に光照射と加熱冷却する操作を含む工程によって作製され、該複屈折誘起材料重合体の液晶性メソゲンが周期的な配向構造をなす偏光回折素子において、複屈折誘起材料重合体に化学式1で示される構造を有する化合物を用いることによって上記課題を解決することができる。   In a polarization diffractive element produced by a process including irradiation of light and heating / cooling to a birefringence inducing material polymer, the liquid crystalline mesogen of the birefringence inducing material polymer forms a periodic alignment structure. The above problem can be solved by using a compound having a structure represented by Chemical Formula 1 as a combination.

本発明により、熱や光などの外部からの刺激に対して安定性に優れ、高い光波の回折と偏光変換機能を併せ持つ偏光回折素子を低コストで作製することのできる複屈折誘起材料重合体を提供することができる。また、同材料を用いて、耐熱性に優れる液晶配向膜を作製することができる。   According to the present invention, there is provided a birefringence inducing material polymer that is excellent in stability against external stimuli such as heat and light, and that can produce a polarization diffraction element having both high light wave diffraction and polarization conversion functions at low cost. Can be provided. In addition, a liquid crystal alignment film having excellent heat resistance can be manufactured using the same material.

以下に、本発明の詳細を説明する。 本発明者等が、鋭意研究を行った結果、複屈折誘起材料重合体に光照射と加熱冷却する操作を含む工程によって作製される光波の回折と偏光変換機能を併せ持つ偏光回折素子の製造法において、複屈折誘起材料重合体に化学式1で示される構造を有する材料を用いることによって前記課題を解決できることを見出し、本発明を完成するに至った。 該複屈折誘起材料重合体は、メソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエートなどの置換基と感光性基を結合した構造を含む側鎖を有し、該側鎖が単炭化、アルキルエーテルなどの屈曲性部分を介して、炭化水素、アクリレート、メタクリレート、シロキサンなど主鎖に結合した構造の繰り返し単位とN−フェニルマレインイミドないしはその誘導体を繰り返し単位とする共重合体である。(図1:化学式1)   Details of the present invention will be described below. As a result of intensive studies by the present inventors, in a method for producing a polarization diffraction element having both a light wave diffraction and a polarization conversion function, which is produced by a process including light irradiation and heating and cooling operations on a birefringence inducing material polymer. The inventors have found that the above problem can be solved by using a material having a structure represented by Chemical Formula 1 for the birefringence inducing material polymer, and have completed the present invention. The birefringence-inducing material polymer has a side chain including a structure in which a substituent such as biphenyl, terphenyl, and phenylbenzoate, which are frequently used as a mesogenic component, and a photosensitive group are bonded, and the side chain is monocarbonized, A copolymer having a repeating unit of a structure bonded to a main chain such as hydrocarbon, acrylate, methacrylate, siloxane and the like and a repeating unit of N-phenylmaleimide or a derivative thereof through a flexible part such as alkyl ether. (Figure 1: Chemical formula 1)

この共重合体では、N−フェニルマレインイミドないしはその誘導体を共重合している。N-フェニルマレインイミドないしはその誘導体は、適当な比率で共重合体として主鎖に導入すると、分子配向能を低下させることなく側鎖の会合の形成を抑制でき、直線偏光の照射エネルギー量が比較的小さい場合の照射した直線偏光の電界振動方向に対して垂直方向の配向を達成できることが確認された。このN−フェニルマレインイミドないしはその誘導体は、その共重合の比率が大きくなるとJ会合の形成を抑制できるものの、電界振動方向に対して垂直方向の配向のみならず電界振動方向への配向も阻害してしまう。共重合比率が小さすぎるとJ会合の形成を抑制する効果が充分得られず電界振動方向に対して垂直方向の配向を達成できることができない。これらの観点から、N−フェニルマレインイミドないしはその誘導体の共重合比率は、化学式(1)においてx:y=95〜50:5〜50、更に好ましくは、x:y=90〜70:10〜30である。   In this copolymer, N-phenylmaleimide or a derivative thereof is copolymerized. When N-phenylmaleimide or its derivative is introduced into the main chain as a copolymer at an appropriate ratio, the formation of side chain association can be suppressed without reducing the molecular orientation ability, and the amount of irradiation energy of linearly polarized light is compared. It was confirmed that the orientation in the direction perpendicular to the electric field oscillation direction of the irradiated linearly polarized light can be achieved. Although this N-phenylmaleimide or derivative thereof can suppress the formation of J-association when the copolymerization ratio is increased, it inhibits not only the orientation in the direction perpendicular to the electric field vibration direction but also the orientation in the electric field vibration direction. End up. If the copolymerization ratio is too small, the effect of suppressing the formation of J-association cannot be obtained sufficiently, and it is impossible to achieve the orientation in the direction perpendicular to the electric field vibration direction. From these viewpoints, the copolymerization ratio of N-phenylmaleimide or a derivative thereof is x: y = 95-50: 5-50 in the chemical formula (1), more preferably x: y = 90-70: 10. 30.

側鎖の会合の形成を抑制する目的で非液晶性の繰り返し単位としてメタクリル酸メチルなどを共重合する場合には、共重合比にして1:1程度の高い比率で共重合する必要があり、膜全体の配向度が低下するという問題点があったが、N−フェニルマレインイミドないしはその誘導体では、その分子構造が比較的剛直なためか効率よく側鎖の会合を抑制できる。このことにより、比較的低い共重合比でも側鎖の会合を充分に抑制する効果が得られ複屈折誘起材料重合体の分子配向能を低下することがない。結果として、直線偏光の照射エネルギー量が比較的小さい場合の照射直線偏光の電界振動方向に対して垂直方向の配向および更に直線偏光の紫外線を照射した場合の照射直線偏光の電界振動方向に対して平行方向の配向とも高い配向度が得られ、高い光波の回折と偏光変換機能を併せ持つ偏光回折素子を製造することができる。   When copolymerizing methyl methacrylate or the like as a non-liquid crystalline repeating unit for the purpose of suppressing the formation of side chain association, it is necessary to copolymerize at a high ratio of about 1: 1 as the copolymerization ratio. Although there was a problem that the degree of orientation of the entire film was lowered, N-phenylmaleimide or a derivative thereof can efficiently suppress the association of side chains because of its relatively rigid molecular structure. As a result, the effect of sufficiently suppressing the association of side chains can be obtained even at a relatively low copolymerization ratio, and the molecular orientation ability of the birefringence inducing material polymer is not lowered. As a result, with respect to the direction of electric field vibration of the linearly polarized light when irradiated with linearly polarized ultraviolet light and the orientation perpendicular to the direction of electric field vibration of the linearly polarized light when the irradiation energy amount of linearly polarized light is relatively small A high degree of orientation can be obtained in parallel orientation, and a polarization diffraction element having both high light wave diffraction and polarization conversion functions can be manufactured.

複屈折を誘起するための光異性化反応ないしは光2量化反応を進めるには、感光性基の部分が反応し得る波長の光の照射を要する。この波長は、化学式1で示された−Rの種類によっても異なるが、一般に200−500nmであり、中でも250−400nmの有効性が高い場合が多い。 In order to proceed with the photoisomerization reaction or photodimerization reaction for inducing birefringence, it is necessary to irradiate light having a wavelength at which the photosensitive group portion can react. This wavelength varies depending on the type of -R 1 represented by Chemical Formula 1, but is generally 200-500 nm, and in particular, the effectiveness of 250-400 nm is often high.

光波の回折と偏光変換機能を併せ持つ偏光回折素子の製造法としては、本発明の複屈折誘起材料重合体を溶媒に溶解した液を透明基板上に塗布した後に乾燥し、該膜をレーザー光のような干渉性の良い偏光性の光束を用いた2光束干渉を用いて照射する方法ないしは所望の周期ピッチを有する遮光性のマスクを用いて直線偏光性の光を照射する方法が挙げられる。 遮光性のマスクを用いる方法としては、所望の周期ピッチを有する遮光性のマスクを少なくとも2回用い、少なくとも2つの領域に偏光特性ないしは強度の異なるの直線偏光性の光を照射する方法と所望の周期ピッチを有する遮光性のマスクを用いて直線偏光性の光を照射し、次いで遮光性のマスクを用いること無しに直線偏光性の光を照射することによって、所望の周期ピッチで照射エネルギー量の異なる領域とし、分子配向方向が90°異なる周期構造を付与する方法が挙げられる。遮光性のマスクを用いる方法としては後者の方が装置を簡略化できる利点がある。   As a method for producing a polarization diffraction element having both light wave diffraction and polarization conversion functions, a liquid obtained by dissolving the birefringence-inducing material polymer of the present invention in a solvent is applied on a transparent substrate and then dried, and the film is irradiated with laser light. Examples include a method of irradiating using two-beam interference using a polarizing beam having good coherence or a method of irradiating linearly polarized light using a light-shielding mask having a desired periodic pitch. As a method using a light-shielding mask, a light-shielding mask having a desired periodic pitch is used at least twice, and at least two regions are irradiated with linearly polarized light having different polarization characteristics or intensities, and a desired method. By irradiating linearly polarized light using a light-shielding mask having a periodic pitch, and then irradiating linearly polarized light without using a light-shielding mask, the irradiation energy amount can be reduced at a desired periodic pitch. There is a method of providing a periodic structure having different regions and molecular orientation directions different by 90 °. As a method using a light-shielding mask, the latter has an advantage that the apparatus can be simplified.

この照射後の分子運動による配向は、塗布膜を加熱することにより促進される。塗布膜の加熱温度は、光反応した部分の軟化点より低く、光反応しなかった側鎖および感光性基を有さない側鎖部分の軟化点より高いことが望ましい。また、加温下(室温からTi+5℃まで)で照射することにより配向を促進することができる。ここで、Tiは複屈折誘起材料重合体の液晶相から等方相へ変化するときの相転移温度を指す。このように照射後に加熱し未反応側鎖を配向させた膜または加熱下で照射し配向させた膜を該材料の軟化点温度以下まで冷却すると分子が凍結される。更に、軟化点温度以下まで冷却した塗布膜に紫外線を照射することにより未反応の感光性基の光反応を促進させ、フィルム中の配向を強固に固定することができ、耐熱性、光安定性に優れた光波の回折と偏光変換機能を併せ持つ偏光回折素子とすることができる。 This orientation by molecular motion after irradiation is promoted by heating the coating film. The heating temperature of the coating film is preferably lower than the softening point of the photoreacted part and higher than the softening point of the side chain part not photoreacting and the side chain part having no photosensitive group. Further, the alignment can be promoted by irradiation under heating (from room temperature to T i + 5 ° C.). Here, T i indicates a phase transition temperature when the birefringence inducing material polymer changes from a liquid crystal phase to an isotropic phase. In this way, when the film heated after irradiation and oriented unreacted side chains or the film irradiated and oriented under heating is cooled below the softening point temperature of the material, the molecules are frozen. Furthermore, by irradiating the coating film cooled to below the softening point temperature with ultraviolet rays, the photoreaction of unreacted photosensitive groups can be promoted, and the orientation in the film can be firmly fixed, and the heat resistance and light stability. It is possible to obtain a polarization diffraction element having both excellent light wave diffraction and polarization conversion functions.

このような複屈折誘起材料重合体を用いた光波の回折と偏光変換機能を併せ持つ偏光回折素子は、周期的に分子配向構造を制御した光学的に透明な機能性高分子層である。このような分子配向構造を有する高分子層の光学特性は、ジョーンズ法(R.C.Jones,J.Opt.Soc.Am.,31,488,1941)によって解析することができる。例えば、図2に示す配向構造を有する高分子層において、入射光として直線偏光を考えた場合、±1次光として回折されると同時に偏光が90°回転し出力され、また、入射光として右回り円偏光を考えた場合は、±1次光として回折されると同時に左回り円偏光として出力されることが分かる。このようにして、周期的に変化した分子配向構造を有する高分子層を用いることによって、回折機能と偏光変換機能が複合した偏光回折素子を形成することが可能であり、どのような回折効率と偏光変換機能を持たせるかは、その周期構造と異方性の大きさによって制御可能である。   A polarization diffraction element having both a light wave diffraction and a polarization conversion function using such a birefringence inducing material polymer is an optically transparent functional polymer layer in which the molecular orientation structure is periodically controlled. The optical properties of the polymer layer having such a molecular orientation structure can be analyzed by the Jones method (RC Jones, J. Opt. Soc. Am., 31, 488, 1941). For example, in the polymer layer having the alignment structure shown in FIG. 2, when linearly polarized light is considered as incident light, the light is diffracted as ± first order light and simultaneously output by rotating the polarized light by 90 °, and is incident as incident light. When the circularly polarized light is considered, it is understood that the light is diffracted as ± first-order light and is simultaneously output as the counterclockwise circularly polarized light. In this way, by using a polymer layer having a periodically oriented molecular orientation structure, it is possible to form a polarization diffractive element in which a diffraction function and a polarization conversion function are combined. Whether to have a polarization conversion function can be controlled by the periodic structure and the magnitude of anisotropy.

また、本発明の化学式1で示される構造を有する材料をガラス基板に塗布し、直線偏光性の光を含む光を照射すると、照射光の進行方向に対して垂直方向かつ照射した直線偏光性の光の電界振動方向に対して平行方向で感光性基の光異性化ないしは光2量化が選択的に進み、結果として膜表面が異方性となる。この膜に、液晶分子が接触すると、膜との相互作用により液晶分子が配向するようになる。直線偏光の照射エネルギー量が比較的小さい場合には、照射直線偏光の電界振動方向に対して垂直方向に液晶分子が配向するようになり、更に直線偏光の紫外線を照射した場合には、照射直線偏光の電界振動方向に対して平行方向に液晶分子が配向するようになる。本発明の材料では、主鎖に比較的剛直な構造を有しているN−フェニルマレインイミドないしはその誘導体を共重合しているため、メタクリル酸メチルなど分子的に屈曲性に富む構造を共重合した場合に比べてガラス転移温度を高められることから、耐熱性に優れた液晶配向膜を得ることができる。このような液晶配向膜は、液晶表示装置におけるノンラビング光配向膜や液晶分子を配向させた光学補償フィルムを製造する場合の液晶配向膜として有効である。   Further, when a material having a structure represented by the chemical formula 1 of the present invention is applied to a glass substrate and irradiated with light containing linearly polarized light, the linearly polarized light irradiated in a direction perpendicular to the traveling direction of the irradiated light is irradiated. Photoisomerization or photodimerization of the photosensitive group proceeds selectively in a direction parallel to the electric field vibration direction of light, and as a result, the film surface becomes anisotropic. When liquid crystal molecules come into contact with this film, the liquid crystal molecules are aligned by the interaction with the film. When the amount of irradiation energy of the linearly polarized light is relatively small, the liquid crystal molecules are aligned in a direction perpendicular to the electric field vibration direction of the irradiated linearly polarized light. The liquid crystal molecules are aligned in a direction parallel to the electric field vibration direction of polarized light. In the material of the present invention, N-phenylmaleimide or a derivative thereof having a relatively rigid structure in the main chain is copolymerized, so that a molecularly flexible structure such as methyl methacrylate is copolymerized. Since the glass transition temperature can be increased as compared with the case, a liquid crystal alignment film having excellent heat resistance can be obtained. Such a liquid crystal alignment film is effective as a liquid crystal alignment film when producing a non-rubbing light alignment film or an optical compensation film in which liquid crystal molecules are aligned in a liquid crystal display device.

本発明の光波の回折と偏光変換機能を併せ持つ偏光回折素子の実施例または液晶配向膜の実施例において用いた感光性(複屈折誘起材料)重合体の原料化合物に関する合成方法を以下に示す。(単量体1) 4,4’−ビフェニルジオールに、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、6−(4’−ヒドロキシビフェニル−4−イルオキシ)−1−ヘキシルメタクリレートを合成した。最後に、塩基性の条件下において、4−メトキシ塩化シンナモイルを加え、化学式2に示されるメタクリル酸エステルを合成した。

Figure 2005232345
The synthesis method for the raw material compound of the photosensitive (birefringence inducing material) polymer used in the examples of the polarization diffraction element having both the light wave diffraction and polarization conversion functions of the present invention or the examples of the liquid crystal alignment film is shown below. (Monomer 1) 4,4-Diphenyldiol was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxybiphenyl. Next, lithium methacrylate was reacted to synthesize 6- (4′-hydroxybiphenyl-4-yloxy) -1-hexyl methacrylate. Finally, 4-methoxycinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 2.
Figure 2005232345

(単量体2) 4,4’−ビフェニルジオールに、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、6−(4’−ヒドロキシビフェニル−4−イルオキシ)−1−ヘキシルメタクリレートを合成した。最後に、塩基性の条件下において、4−メチル塩化シンナモイルを加え、化学式3に示されるメタクリル酸エステルを合成した。

Figure 2005232345
(Monomer 2) 4,4-Diphenyldiol was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxybiphenyl. Next, lithium methacrylate was reacted to synthesize 6- (4′-hydroxybiphenyl-4-yloxy) -1-hexyl methacrylate. Finally, 4-methylcinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 3.
Figure 2005232345

(重合体1) 単量体1(2.25mmol)と市販のN−フェニルマレインイミド(0.249mmol)をアニソール12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体1を得た。この重合体1の共重合比はx:y=82:18であり、液晶性を呈した。 (Polymer 1) Monomer 1 (2.25 mmol) and commercially available N-phenylmaleimide (0.249 mmol) are dissolved in 12 ml of anisole, and AIBN (azobisisobutyronitrile) is added as a reaction initiator. A photosensitive polymer 1 was obtained by polymerization. The copolymer 1 had a copolymerization ratio of x: y = 82: 18 and exhibited liquid crystallinity.

(重合体2) 単量体2(2.20mmol)と市販のN−フェニルマレインイミド(0.252mmol)をアニソール12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体2を得た。この重合体2の共重合比はx:y=81:19でありは、液晶性を呈した。(重合体3) 単量体1(2.25mmol)をアニソール12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体3を得た。この重合体3は、液晶性を呈した。(重合体4) 単量体1(2.34mmol)と市販のN−フェニルマレインイミド(0.073mmol)をアニソール12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体4を得た。この重合体4の共重合比はx:y=96:4であり、液晶性を呈した。 (Polymer 2) Monomer 2 (2.20 mmol) and commercially available N-phenylmaleimide (0.252 mmol) are dissolved in 12 ml of anisole, and AIBN (azobisisobutyronitrile) is added as a reaction initiator. The photosensitive polymer 2 was obtained by polymerization. The copolymer 2 had a copolymerization ratio of x: y = 81: 19 and exhibited liquid crystallinity. (Polymer 3) Monomer 1 (2.25 mmol) is dissolved in 12 ml of anisole, and AIBN (azobisisobutyronitrile) is added as a reaction initiator for polymerization to obtain photosensitive polymer 3. It was. This polymer 3 exhibited liquid crystallinity. (Polymer 4) Monomer 1 (2.34 mmol) and commercially available N-phenylmaleimide (0.073 mmol) are dissolved in 12 ml of anisole, and AIBN (azobisisobutyronitrile) is added as a reaction initiator. The photosensitive polymer 4 was obtained by polymerization. The copolymer 4 had a copolymerization ratio of x: y = 96: 4 and exhibited liquid crystallinity.

(重合体5) 単量体1(2.10mmol)と市販のN−フェニルマレインイミド(1.96mmol)をアニソール12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体5を得た。この重合体5の共重合比はx:y=53:47であり、液晶性を呈した。 (Polymer 5) Monomer 1 (2.10 mmol) and commercially available N-phenylmaleimide (1.96 mmol) are dissolved in 12 ml of anisole, and AIBN (azobisisobutyronitrile) is added as a reaction initiator. The photosensitive polymer 5 was obtained by polymerization. The copolymer 5 had a copolymerization ratio of x: y = 53: 47 and exhibited liquid crystallinity.

(重合体6) 単量体1(2.31mmol)と市販のメタクリル酸メチル(2.35mmol)をTHF12mlに溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体6を得た。この重合体6の共重合比はx:y=51:49であり、液晶性を呈した。 (Polymer 6) Monomer 1 (2.31 mmol) and commercially available methyl methacrylate (2.35 mmol) are dissolved in 12 ml of THF, and AIBN (azobisisobutyronitrile) is added as a reaction initiator for polymerization. As a result, a photosensitive polymer 6 was obtained. The copolymer 6 had a copolymerization ratio of x: y = 51: 49 and exhibited liquid crystallinity.

実施例1から実施例3は、本発明の複屈折誘起材料重合体の膜に直線偏光性の紫外線を照射したときの配向性を評価し、更に、遮光性のマスクを用いて光波の回折と偏光変換機能を併せ持つ偏光回折素子を作製した実施例である。   Examples 1 to 3 evaluate the orientation when the film of the birefringence inducing material polymer of the present invention is irradiated with linearly polarized ultraviolet rays, and further, use a light-shielding mask to diffract light waves. It is the Example which produced the polarization | polarized-light diffraction element which has a polarization conversion function together.

重合体1をジクロロエタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの偏光UV−vis吸収スペクトル変化から算出した配向度(S)〔S=(A//−A)/(Alarger+2Asmaller)、ここで、A//は、照射した直線偏光性の紫外光の電界振動方向に対して平行方向の吸光度、Aは、照射した直線偏光性の紫外光の電界振動方向に対して垂直方向の吸光度、Alargerは、A//またはAのうち吸光度の大きい方、AsmallerはA//またはAのうち吸光度の小さい方である。〕を図3に示す。この図3において配向度が負の値の場合は、照射した直線偏光性の紫外光の電界振動方向に対して垂直方向、配向度が正の値の場合は、照射した直線偏光性の紫外光の電界振動方向に対して平行方向にメソゲン成分が配向していることを示している。図3より、直線偏光の照射エネルギー量が比較的小さいときには照射した直線偏光の電界振動方向に対して垂直方向の配向を示し、その配向度(S)は−0.6以上の高い値が得られ、更に、直線偏光の照射エネルギー量が大きくなると照射した直線偏光の電界振動方向に対して平行方向の配向を示し、その配向度(S)も直線偏光の照射エネルギー量が比較的小さい時と同様に0.6以上の高い値が得られることが分かった。 Polymer 1 was dissolved in dichloroethane at a concentration of 1% by weight and applied on a glass substrate to a thickness of about 0.3 μm using a spin coater. This film was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism for various times, and then the degree of orientation (S) calculated from the change in polarized UV-vis absorption spectrum when heat-treated at 180 ° C. [S = (A // −A ) / (A large + 2A smallr ), where A // is the absorbance in the direction parallel to the electric field vibration direction of the irradiated linearly polarized ultraviolet light, and A is the absorbance perpendicular to the electric field vibration direction of the linearly polarized light of the ultraviolet light irradiated, a larger is, a // or larger absorbance of a ⊥, a Smaller absorbance of a // or a The smaller of Is shown in FIG. In FIG. 3, when the degree of orientation is a negative value, the direction is perpendicular to the electric field oscillation direction of the irradiated linearly polarized ultraviolet light. When the degree of orientation is a positive value, the irradiated linearly polarized ultraviolet light is It shows that the mesogenic component is oriented in a direction parallel to the electric field oscillation direction. As shown in FIG. 3, when the amount of irradiation energy of linearly polarized light is relatively small, the orientation of the irradiated linearly polarized light is perpendicular to the electric field vibration direction, and the degree of orientation (S) is a high value of −0.6 or more. Furthermore, when the irradiation energy amount of the linearly polarized light is increased, it shows an orientation parallel to the electric field vibration direction of the irradiated linearly polarized light, and the degree of orientation (S) is also when the irradiation energy amount of the linearly polarized light is relatively small. Similarly, it was found that a high value of 0.6 or more can be obtained.

以下は、この重合体1を用いて偏光回折素子を作製した例である。 重合体1をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルム上に40μmピッチ(20μmの透過部と20μmの非透過部)の遮光性マスクを配置し、マスクの格子方向に対して電界振動方向が45°である高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性とした光を1.5J/cm2照射した。続いて、遮光性マスクを取り除いて0.3J/cm2照射した。照射後、180℃で熱処理し、最後に高圧水銀灯からの紫外光を、グランテーラープリズムを介さず3.0J/cm照射して配向を固定し偏光回折素子を作製した。作製された偏光回折素子を偏光顕微鏡で観察したところ図2の分子配向構造をとっていることが確認された。 The following is an example in which a polarization diffraction element was produced using this polymer 1. Polymer 1 was dissolved in dichloromethane at a concentration of 1% by weight and applied on a glass substrate to a thickness of about 0.3 μm using a spin coater. A light-shielding mask with a pitch of 40 μm (20 μm transmission part and 20 μm non-transmission part) is arranged on this film, and ultraviolet light from a high-pressure mercury lamp whose electric field oscillation direction is 45 ° with respect to the lattice direction of the mask. Light having a linear polarization property was irradiated through a Taylor prism at 1.5 J / cm 2 . Subsequently, the light-shielding mask was removed and irradiation was performed at 0.3 J / cm 2 . After the irradiation, heat treatment was performed at 180 ° C., and finally, ultraviolet light from a high-pressure mercury lamp was irradiated with 3.0 J / cm 2 without passing through the Grand Taylor prism to fix the orientation, thereby producing a polarization diffraction element. When the produced polarization diffraction element was observed with a polarization microscope, it was confirmed that the molecular orientation structure of FIG. 2 was taken.

このように作製された偏光回折素子に直線偏光性のHe−Neレーザー光(波長:633nm)を入射して偏光変換機能の特性を調べた。偏光回折素子の格子方向に対して、He−Neレーザー光の電界振動方向を平行になるようにして入射したとき、±1次回折光の偏光状態は、入射光の電界振動方向に対して電界振動方向が90°回転した直線偏光となることが確認された。また、入射光の偏光を右回り円偏光としたときには、±1次回折光の偏光状態は、左回り円偏光であることが確認され、これら偏光変換の特性は前述のジョーンズ法を用いた理論計算結果と一致した。作製された偏光回折素子は、130℃で1週間以上に渡り放置しても特性の変化は見られず、分子配向は固定化されており実用的な耐熱性を有していることが確認された。また、回折効率は、約5%と高い値を示し、実用に供するに充分な回折効率を有していることがわかった。   Linear polarization He—Ne laser light (wavelength: 633 nm) was incident on the polarization diffraction element thus fabricated, and the characteristics of the polarization conversion function were examined. When the electric field oscillation direction of the He—Ne laser beam is made parallel to the grating direction of the polarization diffraction element, the polarization state of the ± first-order diffracted light is the electric field oscillation with respect to the electric field oscillation direction of the incident light. It was confirmed that the direction was linearly polarized light rotated by 90 °. In addition, when the polarization of the incident light is right-handed circularly polarized light, it is confirmed that the polarization state of the ± first-order diffracted light is left-handed circularly polarized light, and the characteristics of these polarization conversions are calculated by the above-described Jones method. Consistent with the results. The produced polarization diffraction element shows no change in properties even when left at 130 ° C. for over a week, confirming that the molecular orientation is fixed and has practical heat resistance. It was. The diffraction efficiency was as high as about 5%, and it was found that the diffraction efficiency was sufficient for practical use.

重合体2をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布し、このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの配向度の変化は、重合体1と同様に、直線偏光の照射エネルギー量が比較的小さいときには照射した直線偏光の電界振動方向に対して垂直方向の配向示し(配向度(S)は、−0.6以上)、直線偏光の照射エネルギー量が大きくなると照射した直線偏光の電界振動方向に平行方向に配向する(配向度(S)は、0.6以上)ことが分かった。この重合体2でも、重合体1と同様に遮光性のマスクを介して偏光照射後、遮光性のマスクを取り除いて偏光照射する操作のみでジョーンズ法を用いた理論計算結果と一致する偏光回折素子を作製することができた。回折効率は、約5%と高い値を示した。   Polymer 2 was dissolved in dichloromethane at a concentration of 1% by weight and applied on a glass substrate to a thickness of about 0.3 μm using a spin coater. Ultraviolet light from a high-pressure mercury lamp was applied to this film with a Grand Taylor prism. As in the case of the polymer 1, the change in the degree of orientation when irradiated for various times as linearly polarized light through the film is similar to that of the polymer 1 when the irradiation energy amount of the linearly polarized light is relatively small. The orientation in the direction perpendicular to the electric field vibration direction is shown (the degree of orientation (S) is −0.6 or more). It was found that the degree of orientation (S) was 0.6 or more. In this polymer 2, as in the case of polymer 1, after the polarized light irradiation through the light-shielding mask, the polarization diffraction element that agrees with the theoretical calculation result using the Jones method only by removing the light-shielding mask and irradiating the polarized light. Was able to be produced. The diffraction efficiency was as high as about 5%.

重合体2をジクロロメタンに0.15重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約600オングストロームの厚みとなるよう塗布し、このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射して作製した基板2枚を用いて、厚さ5.0μmのアンチパラレル型の液晶セル作製して液晶E7〔メルクジャパン(株)製〕を充填した。この液晶セルを直交ニコル、で観察したところ、液晶分子の配向が確認され、直線偏光の照射エネルギー量が比較的小さいときには照射した直線偏光の電界振動方向に対して垂直方向の配向示し、直線偏光の照射エネルギー量が大きくなると照射した直線偏光の電界振動方向に平行方向に配向することが分かった。この液晶セルを、100℃雰囲気中に100時間放置したところ、液晶の配向性は保たれ、高い耐熱性を有していることが確認された。   Polymer 2 was dissolved in dichloromethane at a concentration of 0.15% by weight and applied on a glass substrate to a thickness of about 600 angstroms using a spin coater. Ultraviolet light from a high-pressure mercury lamp was applied to this film to Grand Taylor Using two substrates prepared by irradiating for various periods of time as linearly polarized light through a prism, an anti-parallel type liquid crystal cell with a thickness of 5.0 μm was prepared and filled with liquid crystal E7 (Merck Japan Co., Ltd.) did. When this liquid crystal cell was observed with crossed Nicols, the orientation of the liquid crystal molecules was confirmed, and when the irradiation energy amount of the linearly polarized light was relatively small, the orientation of the irradiated linearly polarized light was perpendicular to the electric field vibration direction, and the linearly polarized light was shown. It was found that when the irradiation energy amount increases, the irradiation is oriented in a direction parallel to the electric field vibration direction of the linearly polarized light. When this liquid crystal cell was allowed to stand in an atmosphere of 100 ° C. for 100 hours, it was confirmed that the orientation of the liquid crystal was maintained and it had high heat resistance.

(比較例1) 重合体3をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの偏光UV−vis吸収スペクトル変化から算出した配向度を図4に示す。図4より、直線偏光の照射エネルギー量が大きくなると照射した直線偏光の電界振動方向に対して平行方向に配向する(配向度(S)は、0.7)が、直線偏光の照射エネルギー量が比較的小さいときには配向度(S)は、−0.2と小さな値となった。これは、加熱後の偏光UV−vis吸収スペクトルの最大吸収波長が長波長側にレッドシフトしていることから、加熱時に側鎖同士のhead−to−tailの会合(J会合)の形成により分子配向が阻害されていると考えられる。 (Comparative Example 1) Polymer 3 was dissolved in dichloromethane at a concentration of 1% by weight and applied on a glass substrate to a thickness of about 0.3 µm using a spin coater. This film was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism for various times, and the degree of orientation calculated from the change in polarized UV-vis absorption spectrum when heat-treated at 180 ° C. is shown in FIG. Shown in As shown in FIG. 4, when the amount of irradiation energy of linearly polarized light increases, it is aligned in a direction parallel to the direction of electric field oscillation of the irradiated linearly polarized light (orientation degree (S) is 0.7). When it was relatively small, the degree of orientation (S) was as small as -0.2. This is because the maximum absorption wavelength of the polarized UV-vis absorption spectrum after heating is red-shifted to the long wavelength side, so that the formation of a head-to-tail association (J association) between side chains during heating It is considered that the orientation is inhibited.

(比較例2) 重合体4をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの偏光UV−vis吸収スペクトル変化から算出した配向度は、重合体3と同様に直線偏光の照射エネルギー量が大きいときには照射した直線偏光の電界振動方向に配向する(配向度(S)は、0.6であった)が、直線偏光の照射エネルギー量が比較的小さいときには配向度は−0.3と小さな値となった。これも重合体3と同様に、加熱後の偏光UV−vis吸収スペクトルの最大吸収波長が長波長側にレッドシフトしていることから、加熱時に側鎖同士のhead−to−tailの会合(J会合)の形成により分子配向が阻害されたと考えられる。 (Comparative Example 2) Polymer 4 was dissolved in dichloromethane at a concentration of 1% by weight, and applied on a glass substrate to a thickness of about 0.3 µm using a spin coater. The degree of orientation calculated from the change in polarized UV-vis absorption spectrum when the film was irradiated with ultraviolet light from a high pressure mercury lamp through a Grand Taylor prism for various times as linearly polarized light and then heat-treated at 180 ° C. As in the case of the union 3, when the amount of irradiation energy of linearly polarized light is large, it is oriented in the direction of electric field oscillation of the irradiated linearly polarized light (degree of orientation (S) was 0.6), but the amount of irradiation energy of linearly polarized light is compared. The orientation degree was as small as -0.3 when the target was small. Similarly to the polymer 3, since the maximum absorption wavelength of the polarized UV-vis absorption spectrum after heating is red-shifted to the longer wavelength side, the head-to-tail association (J It is thought that molecular orientation was inhibited by the formation of (association).

(比較例3) 重合体5をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの偏光UV−vis吸収スペクトル変化から算出した配向度を図5に示す。図5より、照射エネルギー量によらず大きな配向度(S)は得られなかった。照射エネルギー量が比較的小さい場合での加熱後の偏光UV−vis吸収スペクトルの最大吸収波長はシフトしていないことから、加熱時の側鎖同士のhead−to−tail会合(J会合)は抑制されるものの分子配向が阻害されたと考えられる。 比較例2および比較例3から、N−フェニルマレインイミドないしはその誘導体の共重合比率は、共重合比率が小さすぎるとJ会合の形成を抑制する効果が充分得られず電界振動方向に対して垂直方向の配向を達成できることができない。共重合の比率が大きくなるとJ会合の形成を抑制できるものの、電界振動方向に対して垂直方向の配向のみならず電界振動方向への配向も阻害してしまうことが判明した。このことから、良好な配向特性を得るには、N−フェニルマレインイミドないしはその誘導体の共重合比率を適宜調整する必要があることが分かった。 (Comparative Example 3) The polymer 5 was dissolved in dichloromethane at a concentration of 1% by weight and applied on a glass substrate to a thickness of about 0.3 μm using a spin coater. The degree of orientation calculated from the change in polarized UV-vis absorption spectrum when the film was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism for various times and then heat-treated at 180 ° C. is shown in FIG. Shown in From FIG. 5, a large degree of orientation (S) was not obtained regardless of the amount of irradiation energy. Since the maximum absorption wavelength of the polarized UV-vis absorption spectrum after heating when the irradiation energy amount is relatively small is not shifted, head-to-tail association (J association) between side chains during heating is suppressed. It is thought that the molecular orientation was inhibited. From Comparative Example 2 and Comparative Example 3, the copolymerization ratio of N-phenylmaleimide or a derivative thereof is perpendicular to the electric field vibration direction because the effect of suppressing the formation of J-association cannot be sufficiently obtained when the copolymerization ratio is too small. Directional orientation cannot be achieved. It has been found that when the copolymerization ratio increases, the formation of J-association can be suppressed, but not only the orientation in the direction perpendicular to the electric field vibration direction but also the orientation in the electric field vibration direction. From this, it was found that the copolymerization ratio of N-phenylmaleimide or a derivative thereof must be appropriately adjusted in order to obtain good alignment characteristics.

(比較例4) 重合体6をジクロロメタンに1重量%の濃度で溶解し、ガラス基板上にスピンコーターを用いて約0.3μmの厚みとなるよう塗布した。このフィルムに高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として種々の時間照射した後、180℃で熱処理したときの偏光UV−vis吸収スペクトル変化から算出した配向度は、重合体1と同様に、直線偏光の照射エネルギー量が比較的小さいときには照射した直線偏光の電界振動方向に対して垂直方向の配向を示し、配向度(S)は、−0.45、直線偏光の照射エネルギー量が大きくなると照射した直線偏光の電界振動方向に対して平行方向に配向を示し、配向度(S)は、0.48であることが分かった。 この重合体6でも、重合体1と同様に偏光回折素子を作製することができた。この偏光回折素子は、ジョーンズ法を用いた理論計算結果と一致する特性を有していたが、回折効率は、約2.7%と低かった。 これは前述したように、共重合したメタクリル酸メチルの繰り返し単位が分子レベルでの屈曲性に富むため膜全体の配向度を低下させたためと考えられる。 (Comparative Example 4) The polymer 6 was dissolved in dichloromethane at a concentration of 1% by weight, and applied on a glass substrate to a thickness of about 0.3 μm using a spin coater. The degree of orientation calculated from the change in polarized UV-vis absorption spectrum when the film was irradiated with ultraviolet light from a high pressure mercury lamp through a Grand Taylor prism for various times as linearly polarized light and then heat-treated at 180 ° C. As in the case of the united body 1, when the irradiation energy amount of the linearly polarized light is relatively small, it indicates an orientation perpendicular to the electric field vibration direction of the irradiated linearly polarized light, and the degree of orientation (S) is −0.45, It was found that when the irradiation energy amount was increased, the orientation was parallel to the direction of electric field vibration of the irradiated linearly polarized light, and the degree of orientation (S) was 0.48. Also with this polymer 6, a polarization diffraction element could be produced in the same manner as the polymer 1. This polarization diffraction element had characteristics that coincided with the theoretical calculation result using the Jones method, but the diffraction efficiency was as low as about 2.7%. As described above, this is considered to be because the degree of orientation of the entire film was lowered because the copolymerized methyl methacrylate repeating unit was rich in flexibility at the molecular level.

本発明の重合体の化学構造Chemical structure of the polymer of the present invention 実施例1の作製した偏光回折素子の分子配向構造の模式図Schematic diagram of the molecular orientation structure of the polarization diffraction element produced in Example 1 実施例1の重合体1における直線偏光性紫外光の時間照射と配向度の関係Relationship between time irradiation of linearly polarized ultraviolet light and degree of orientation in polymer 1 of Example 1 比較例1の重合体3における直線偏光性紫外光の時間照射と配向度の関係Relation between time irradiation of linearly polarized ultraviolet light and degree of orientation in polymer 3 of Comparative Example 1 比較例3の重合体5における直線偏光性紫外光の時間照射と配向度の関係Relation between time irradiation of linearly polarized ultraviolet light and degree of orientation in polymer 5 of comparative example 3

符号の説明Explanation of symbols

10 配向構造を有する高分子層
11、13 照射した直線偏光性の光の電界振動方向に対して垂直方向に配向した配向層
12、14 照射した直線偏光性の光の電界振動方向に対して平行方向に配向した配向層
10 Polymer layers 11 and 13 having an oriented structure Oriented layers 12 and 14 oriented perpendicular to the electric field vibration direction of irradiated linearly polarized light Parallel to the electric field vibration direction of irradiated linearly polarized light Oriented layer oriented in the direction

Claims (4)

化学式1に示される構造を有することを特徴とする、複屈折誘起材料重合体。
Figure 2005232345
A birefringence-inducing material polymer having a structure represented by Chemical Formula 1.
Figure 2005232345
請求項1において、x:y=95〜50:5〜50であることを特徴とする請求項1に記載の複屈折誘起材料重合体。 The birefringence inducing material polymer according to claim 1, wherein x: y = 95 to 50: 5 to 50. 化学式1に示される構造を有する複屈折誘起材料重合体に、直線偏光性成分を含む光を照射して周期的な分子配向構造を付与したことを特徴とする偏光回折素子。 A polarization diffraction element characterized in that a birefringence inducing material polymer having a structure represented by Chemical Formula 1 is irradiated with light containing a linearly polarizing component to give a periodic molecular orientation structure. 化学式1に示される構造を有する複屈折誘起材料重合体に、直線偏光性成分を含む光を照射して液晶配向能を付与したことを特徴とする液晶配向膜。 A liquid crystal alignment film obtained by irradiating a birefringence-inducing material polymer having a structure represented by Chemical Formula 1 with light containing a linearly polarizing component to impart liquid crystal alignment ability.
JP2004044134A 2004-02-20 2004-02-20 Method for manufacturing polarization diffraction element Expired - Fee Related JP4333914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044134A JP4333914B2 (en) 2004-02-20 2004-02-20 Method for manufacturing polarization diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044134A JP4333914B2 (en) 2004-02-20 2004-02-20 Method for manufacturing polarization diffraction element

Publications (2)

Publication Number Publication Date
JP2005232345A true JP2005232345A (en) 2005-09-02
JP4333914B2 JP4333914B2 (en) 2009-09-16

Family

ID=35015624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044134A Expired - Fee Related JP4333914B2 (en) 2004-02-20 2004-02-20 Method for manufacturing polarization diffraction element

Country Status (1)

Country Link
JP (1) JP4333914B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175916A (en) * 2007-01-16 2008-07-31 Hayashi Telempu Co Ltd Multiple latent image element and method of manufacturing the same
JP2009282377A (en) * 2008-05-23 2009-12-03 Jsr Corp Liquid crystal orientation agent, method for forming liquid crystal orientation film, and liquid crystal display element
WO2012147809A1 (en) * 2011-04-27 2012-11-01 住友化学株式会社 Method for modifying polymer compound and method for producing film containing modified polymer compound
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
WO2013128692A1 (en) * 2011-03-04 2013-09-06 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
WO2014042216A1 (en) * 2012-09-12 2014-03-20 日産化学工業株式会社 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
US8902398B2 (en) 2011-06-09 2014-12-02 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JPWO2013128692A1 (en) * 2012-03-01 2015-07-30 大日本印刷株式会社 Long pattern alignment film and long pattern retardation film using the same
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same
TWI548896B (en) * 2012-03-01 2016-09-11 Dainippon Printing Co Ltd Long pattern alignment film and long pattern retardation film using the same
US20210003884A1 (en) * 2018-03-23 2021-01-07 Fujifilm Corporation Polarizer, method of producing polarizer, laminate, and image display device
WO2022176555A1 (en) * 2021-02-19 2022-08-25 株式会社フジクラ Optical diffractive element, optical computing device, and method for producing optical diffractive element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175916A (en) * 2007-01-16 2008-07-31 Hayashi Telempu Co Ltd Multiple latent image element and method of manufacturing the same
JP2009282377A (en) * 2008-05-23 2009-12-03 Jsr Corp Liquid crystal orientation agent, method for forming liquid crystal orientation film, and liquid crystal display element
CN103842858A (en) * 2011-03-04 2014-06-04 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
WO2013128692A1 (en) * 2011-03-04 2013-09-06 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
WO2012147809A1 (en) * 2011-04-27 2012-11-01 住友化学株式会社 Method for modifying polymer compound and method for producing film containing modified polymer compound
US8902398B2 (en) 2011-06-09 2014-12-02 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JPWO2013038932A1 (en) * 2011-09-12 2015-03-26 株式会社林技術研究所 Optical retardation element and manufacturing method thereof
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same
JPWO2013128692A1 (en) * 2012-03-01 2015-07-30 大日本印刷株式会社 Long pattern alignment film and long pattern retardation film using the same
TWI548896B (en) * 2012-03-01 2016-09-11 Dainippon Printing Co Ltd Long pattern alignment film and long pattern retardation film using the same
WO2014042216A1 (en) * 2012-09-12 2014-03-20 日産化学工業株式会社 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
US9405154B2 (en) 2012-09-12 2016-08-02 Nissan Chemical Industries, Ltd. Method for manufacturing orientation material, orientation material, method for manufacturing retardation material, and retardation material
US20210003884A1 (en) * 2018-03-23 2021-01-07 Fujifilm Corporation Polarizer, method of producing polarizer, laminate, and image display device
US11953775B2 (en) * 2018-03-23 2024-04-09 Fujifilm Corporation Polarizer, method of producing polarizer, laminate, and image display device
WO2022176555A1 (en) * 2021-02-19 2022-08-25 株式会社フジクラ Optical diffractive element, optical computing device, and method for producing optical diffractive element
JP7554900B2 (en) 2021-02-19 2024-09-20 株式会社フジクラ Optical diffraction element, optical computing device, and method for manufacturing optical diffraction element

Also Published As

Publication number Publication date
JP4333914B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5075483B2 (en) Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
KR102012533B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
Wu et al. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior
White et al. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers
KR100852224B1 (en) Retardation film and process for producing the same
JP2007304215A (en) Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP4333914B2 (en) Method for manufacturing polarization diffraction element
JPH06322040A (en) Plate material manufactured from side chain polymer
Kovalchuk et al. Photoactive fluorinated poly (azomethine) s with azo groups in the main chain for optical storage applications and controlling liquid crystal orientation
Ryabchun et al. Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch
Kurihara et al. Photochemical switching behavior of liquid-crystalline networks: effect of molecular structure of azobenzene molecules
Ryabchun et al. Stable selective gratings in LC polymer by photoinduced helix pitch modulation
JP2000515201A (en) Method for producing macroscopically oriented crosslinked polymer
JP2000212310A (en) Oriented film, its production and liquid crystal display device
Ito et al. Photoinduced reorientation and photofunctional control of liquid crystalline copolymers with in situ-formed N-Benzylideneaniline derivative side groups
Kawatsuki et al. Photoinduced birefringent pattern and photoinactivation of liquid-crystalline copolymer films with benzoic acid and phenylaldehyde side groups
JP6989895B2 (en) Optical element and its manufacturing method
Boychuk et al. Photo-orientation processes in liquid crystalline polymethacrylates with side azobenzene groups having lateral methyl substituents
JP3690061B2 (en) Acrylic acid derivative compound and polymer liquid crystal polymerizing the same
JPH11100575A (en) Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same
JP2002202409A (en) Retardation film and method for manufacturing the same
JP2004263037A (en) Acrylic acid derivative composition, polymer liquid crystal by polymerizing this, and application
Miao et al. Engineering Achiral Liquid Crystalline Polymers for Chiral Self-Recovery
Hee Choa et al. Control of morphology and diffraction efficiency of holographic gratings using siloxane-containing reactive diluent
Ikoma et al. Photoinduced reorientation and surface relief formation in Diblock and random copolymers with benzoic acid and Alkyloxy side groups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees