JPH11100575A - Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same - Google Patents

Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same

Info

Publication number
JPH11100575A
JPH11100575A JP32881897A JP32881897A JPH11100575A JP H11100575 A JPH11100575 A JP H11100575A JP 32881897 A JP32881897 A JP 32881897A JP 32881897 A JP32881897 A JP 32881897A JP H11100575 A JPH11100575 A JP H11100575A
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
compd
liq
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32881897A
Other languages
Japanese (ja)
Inventor
Hiroki Hodaka
弘樹 保高
Tomonori Korishima
友紀 郡島
Mitsuru Kurosawa
みつる 黒澤
Hiromasa Sato
弘昌 佐藤
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP32881897A priority Critical patent/JPH11100575A/en
Publication of JPH11100575A publication Critical patent/JPH11100575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photopolymerizable liq. crystal compsn. having an excel lent durability and a high refractive index anisotropy by incorporating an acrylic acid deriv. having a specific chemical structure into the same and to obtain a high-molecular liq. crystal by polymerizing the same. SOLUTION: This liq. crystal compsn. is prepd. by mixing a compd. of formula I (wherein X is 2-7C linear alkylene; and Ph is 1,4-phenylene) with a compd. of formula II or by mixing at least one compd. selected from among compds. of formulas I and II with another liq. crystal compd. The content of a compd. of formula I and/or a compd. of formula II in the compsn. is 30-99.9 wt.%. A component exhibiting liq. crystallinity at low temps., a low-viscosity component for low temp use, a component for adjusting refractive index anisotropy, a component for imparting cholesteric properties, a component for imparting crosslinkability. etc., are used suitably as another liq. crystal compd. according to required performances. The compsn. is polymerized by the irradiation with ultraviolet or visible rays in the presence of a photopolymn. initiator to give a high-molecular liq. crystal having a refractive index anisotropy of 0.1 or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アクリル酸誘導体
化合物を含む液晶組成物およびそれらを重合して得られ
る高分子液晶に関する。
The present invention relates to a liquid crystal composition containing an acrylic acid derivative compound and a polymer liquid crystal obtained by polymerizing the composition.

【0002】[0002]

【従来の技術】液晶モノマーに光重合性官能基を付与し
た光重合性液晶モノマーは、モノマーとしての性質と液
晶としての性質を併有する。したがって、光重合性液晶
モノマーを配向させた状態で光を照射すると、配向を保
ったまま重合し、配向が固定化された重合体が得られ
る。こうして得られる高分子液晶は、液晶性骨格の屈折
率異方性に基づく光学異方性を有し、液晶配向状態の制
御によって特殊な特性も付与できるため、位相差フィル
ムや光ヘッド装置に用いられる光ヘッド等への応用が期
待されている。
2. Description of the Related Art A photopolymerizable liquid crystal monomer obtained by adding a photopolymerizable functional group to a liquid crystal monomer has both properties as a monomer and a liquid crystal. Therefore, when light is irradiated in a state where the photopolymerizable liquid crystal monomer is oriented, it is polymerized while maintaining the orientation, and a polymer in which the orientation is fixed is obtained. The polymer liquid crystal thus obtained has an optical anisotropy based on the refractive index anisotropy of the liquid crystalline skeleton, and can provide special characteristics by controlling the liquid crystal alignment state. Applications to optical heads and the like are expected.

【0003】光ヘッド装置は光源の光を光ディスク上に
収束させ、光ディスク上に情報の書き込みを行ったり、
光ディスクからの反射光を受光素子に受光することによ
り、光ディスク上の情報の読み取りを行うようにした装
置であり、これに用いられる光ヘッドはビームスプリッ
タとして機能する。
An optical head device converges light from a light source onto an optical disk to write information on the optical disk,
This is a device for reading information on an optical disk by receiving light reflected from the optical disk by a light receiving element, and an optical head used for the device functions as a beam splitter.

【0004】従来、光ヘッドとしては、たとえば、ガラ
スやプラスチックの上に矩形格子(レリーフ型)をドラ
イエッチングまたは射出成形によって等方性回折格子を
形成したものや、屈折率異方性を示す結晶表面に異方性
回折格子を形成し、1/4波長板と組み合わせて偏光選
択性をもたせたものが知られている。
Conventionally, as an optical head, for example, a rectangular grating (relief type) formed on glass or plastic by forming an isotropic diffraction grating by dry etching or injection molding, or a crystal exhibiting refractive index anisotropy. It is known that an anisotropic diffraction grating is formed on the surface and has polarization selectivity in combination with a quarter-wave plate.

【0005】しかし、等方性回折格子では、往きの利用
効率が50%程度で、復りの利用効率が20%程度であ
るため、往復で10%程度が限界であり、低い往復効率
しか得られない問題がある。
However, in the isotropic diffraction grating, the outgoing use efficiency is about 50%, and the return use efficiency is about 20%. There is a problem that cannot be solved.

【0006】一方、LiNbO3 等の屈折率異方性を示
す結晶の平板を用い、表面に異方性回折格子を形成し偏
光選択性をもたせて、高い往復効率を利用する方法で
は、屈折率異方性を示す結晶自体が高価であり、民生分
野への適用は困難である。また通常プロトン交換法によ
って格子を形成する場合、プロトン交換液中のプロトン
がLiNbO3 基板中に拡散しやすいため、細かいピッ
チの格子を形成するのが困難である問題もあった。
On the other hand, in a method in which a flat plate of a crystal having a refractive index anisotropy such as LiNbO 3 is used, an anisotropic diffraction grating is formed on the surface to provide polarization selectivity, and a high reciprocal efficiency is utilized, Crystals exhibiting anisotropy are expensive, and are difficult to apply to the consumer field. In addition, when the lattice is formed by the normal proton exchange method, there is also a problem that it is difficult to form a fine-pitch lattice because the protons in the proton exchange solution easily diffuse into the LiNbO 3 substrate.

【0007】光重合性液晶モノマーを用いた場合には、
液晶配向状態を制御した後、高分子液晶にすることによ
り屈折率異方性を示す結晶と同等の高い往復効率が得ら
れる。たとえば、格子中に高分子液晶を充填し、高効率
化する方法があり、片側の基板表面が矩形格子状に微細
加工された液晶セル中に、通常、格子と平行方向に液晶
モノマーの長軸方向を配向させた後、重合させて高分子
液晶とする。このとき、高分子液晶の常光屈折率が格子
基板の屈折率と一致するようにして格子深さを最適化す
ることにより、高い往復効率が得られる。
When a photopolymerizable liquid crystal monomer is used,
After the liquid crystal alignment state is controlled, high reciprocation efficiency equivalent to that of a crystal exhibiting refractive index anisotropy can be obtained by using a polymer liquid crystal. For example, there is a method of filling a polymer liquid crystal in a lattice to increase the efficiency. In a liquid crystal cell in which one side of the substrate surface is finely processed into a rectangular lattice shape, usually, the long axis of the liquid crystal monomer is parallel to the lattice. After orienting the direction, polymerization is performed to obtain a polymer liquid crystal. At this time, a high reciprocating efficiency can be obtained by optimizing the grating depth such that the ordinary light refractive index of the polymer liquid crystal matches the refractive index of the grating substrate.

【0008】理論的には、格子深さをd、高分子液晶の
屈折率異方性を△n、波長をλとするとき、λ/2=△
n・dを満たすときに往復効率が最大となり、±1次の
回折光の効率が約40%、合計で約80%の高い光利用
効率が得られる。
Theoretically, when the lattice depth is d, the refractive index anisotropy of the polymer liquid crystal is △ n, and the wavelength is λ, λ / 2 = △
When n · d is satisfied, the reciprocation efficiency becomes maximum, and the efficiency of ± 1st-order diffracted light is about 40%, and a high light utilization efficiency of about 80% in total is obtained.

【0009】別の例として、ストライプ状にパターニン
グされた透明電極を有する液晶セル中に、高分子液晶を
充填し、高効率化する方法が挙げられる。ストライプ方
向に対して垂直方向に、基板面内で液晶モノマーの長軸
方向を配向させた後、電圧を印加し、上下の透明電極間
に挟まれた液晶モノマーを基板面に垂直方向に配向させ
る。このようにして、電極のあるところとないところ
で、周期的に配向状態を制御したあと、重合させて高分
子液晶とする。この場合も、λ/2=△n・dを満たす
と最大の往復効率が得られる。
As another example, there is a method of filling a polymer liquid crystal into a liquid crystal cell having a transparent electrode patterned in a stripe shape to improve the efficiency. After orienting the long axis direction of the liquid crystal monomer in the substrate plane in the direction perpendicular to the stripe direction, a voltage is applied to orient the liquid crystal monomer sandwiched between the upper and lower transparent electrodes in the direction perpendicular to the substrate surface. . In this way, the alignment state is periodically controlled between the position where the electrode is and the position where the electrode is not, and then polymerized to obtain a polymer liquid crystal. Also in this case, when λ / 2 = △ nd is satisfied, the maximum reciprocating efficiency is obtained.

【0010】高分子液晶は材料が安価であるため、民生
分野へ適用でき、優れた光ヘッドとして期待されてい
る。この光ヘッドの特性としては、耐久性が高く、ファ
インピッチ(10μm以下)での高い往復効率が必要で
ある。
Since the liquid crystal polymer is inexpensive, it can be applied to the consumer field and is expected as an excellent optical head. The characteristics of the optical head include high durability and high reciprocating efficiency at a fine pitch (10 μm or less).

【0011】光重合性液晶モノマーとしては、たとえ
ば、式3、式4または式5で表される化合物(ただし、
式3、式4、式5において、Phは1,4−フェニレン
基、Cyはトランス−1,4−シクロヘキシレン基であ
る。)が知られている(高津、長谷部、第106回フォ
トポリマー懇話会例会資料、III−1)。
As the photopolymerizable liquid crystal monomer, for example, a compound represented by the formula (3), (4) or (5)
In the formulas 3, 4 and 5, Ph is a 1,4-phenylene group, and Cy is a trans-1,4-cyclohexylene group. ) Is known (Takatsu, Hasebe, 106th Photopolymer Meeting Regular Meeting Material, III-1).

【0012】[0012]

【化2】 CH2 =CHCOO−Ph−C≡C−Ph−(CH25 H 式3 CH2 =CHCOO−Cy−Cy−(CH24 H 式4 CH2 =CHCOO−Ph−Cy−(CH23 H 式5CH 2 CHCHCOO-Ph-C≡C-Ph- (CH 2 ) 5 H Formula 3 CH 2 CHCHCOO-Cy-Cy- (CH 2 ) 4 H Formula 4 CH 2 CHCHCOO-Ph-Cy — (CH 2 ) 3 H Formula 5

【0013】しかし、式3で表される化合物(以下、化
合物3ともいい、他も同様である)は分子内にトラン基
を有するので耐久性がないなどの問題があった。また、
化合物4や化合物5はモノマー単体の屈折率異方性が
0.1以下と小さく、これを含む液晶組成物では屈折率
異方性の大きなものができない問題があった。また、重
合後の高分子液晶の屈折率異方性は重合前の約1/2程
度に低下するため、屈折率異方性の低い化合物を液晶組
成物の主成分として用いた場合には、高い往復効率を維
持させながらファインピッチ化させるのが困難である問
題があった。
However, the compound represented by the formula 3 (hereinafter, also referred to as compound 3) has a problem that it has no durability since it has a tran group in the molecule. Also,
Compounds 4 and 5 have a problem that the refractive index anisotropy of the monomer alone is as small as 0.1 or less, and a liquid crystal composition containing the same cannot have a large refractive index anisotropy. Further, since the refractive index anisotropy of the polymer liquid crystal after the polymerization is reduced to about の of that before the polymerization, when a compound having a low refractive index anisotropy is used as a main component of the liquid crystal composition, There is a problem that it is difficult to make fine pitch while maintaining high reciprocating efficiency.

【0014】すなわち、格子中に高分子液晶を充填させ
る場合には、波長0.65μmとすると屈折率異方性が
0.1未満では、格子深さが3μm以上必要となるが、
アスペクト比の大きい格子の微細加工は非常に困難であ
る。また、パターニングされた透明電極を用いて、電界
により配向制御を行う場合には、漏れ電界の影響により
電極パターンのない部分の液晶の配向が乱れるため、ア
スペクト比が大きくなると配向制御は難しくなる。よっ
て、ファインピッチ化を行うためには、高分子液晶の屈
折率異方性が0.1以上である必要があった。
That is, when the polymer liquid crystal is filled in the lattice, if the wavelength is 0.65 μm and the refractive index anisotropy is less than 0.1, the lattice depth must be 3 μm or more.
It is very difficult to finely process a lattice having a large aspect ratio. In addition, when the alignment is controlled by an electric field using a patterned transparent electrode, the alignment of the liquid crystal in a portion where there is no electrode pattern is disturbed by the influence of the leakage electric field. Therefore, in order to achieve a fine pitch, the polymer liquid crystal had to have a refractive index anisotropy of 0.1 or more.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、耐久
性に優れ、屈折率異方性の大きな液晶組成物およびこれ
を重合して得られる高分子液晶の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal composition having excellent durability and a large refractive index anisotropy and a polymer liquid crystal obtained by polymerizing the composition.

【0016】[0016]

【課題を解決するための手段】本発明は、下記式1で表
される化合物および/または下記式2で表される化合物
含む液晶組成物を提供する。ただし式1、式2におい
て、Xはアルキレン基、Phは1,4−フェニレン基で
ある。なお、式7〜式10においてもPhは1,4−フ
ェニレン基である。
The present invention provides a liquid crystal composition containing a compound represented by the following formula 1 and / or a compound represented by the following formula 2. However, in Formulas 1 and 2, X is an alkylene group, and Ph is a 1,4-phenylene group. In Formulas 7 to 10, Ph is a 1,4-phenylene group.

【0017】[0017]

【化3】 CH2 =CHCOO−X−O−Ph−Ph−CN 式1 CH2 =CHCOO−Ph−Ph−CN 式2Embedded image CH 2 CHCHCOO-XO-Ph-Ph-CN Formula 1 CH 2 CHCHCOO-Ph-Ph-CN Formula 2

【0018】化合物1および化合物2は、いずれも分子
内にトラン基がなく、耐久性のある液晶モノマーであ
る。また、モノマー単体の屈折率異方性も0.2以上を
示し、これらを主成分として用いた光重合性液晶組成物
は屈折率異方性が大きくなるため、重合後の高分子液晶
の屈折率異方性は0.1以上のものが得られる。
Both Compound 1 and Compound 2 are durable liquid crystal monomers having no trans group in the molecule. In addition, the refractive index anisotropy of the monomer alone is 0.2 or more, and the photopolymerizable liquid crystal composition using these as a main component has a large refractive index anisotropy. Those having a rate anisotropy of 0.1 or more can be obtained.

【0019】化合物1においてXの炭素数が多すぎると
液晶性を示す温度が低くなりすぎるので、Xは炭素数2
〜7のアルキレン基であることが望ましい。さらに液晶
性を示す温度範囲が広いためには、Xは直鎖状アルキレ
ン基であることが望ましい。
In compound 1, if the number of carbon atoms in X is too large, the temperature at which liquid crystallinity is exhibited becomes too low.
It is preferably an alkylene group of from 7 to 7. In order to further broaden the temperature range exhibiting liquid crystallinity, X is desirably a linear alkylene group.

【0020】化合物1はたとえば次に示す方法によって
合成できる。ω−ブロモアルカノールと4−ヒドロキシ
−4’−シアノビフェニルをアルカリ存在下で反応さ
せ、4−(ω−ヒドロキシアルコキシ)−4’−シアノ
ビフェニルを得る。これをトリメチルアミンなどの塩基
の存在下、アクリロイルクロリドと反応させて、化合物
1を得る。また化合物2は、ヒドロキシシアノビフェニ
ルとアクリロイルクロリドを反応させて得られる公知の
化合物である。化合物の物性を表1に示す。ここで、T
m は融点(単位:℃)、Tc はネマチック−等方性相転
移温度(単位:℃)を表す。
Compound 1 can be synthesized, for example, by the following method. The ω-bromoalkanol is reacted with 4-hydroxy-4′-cyanobiphenyl in the presence of an alkali to obtain 4- (ω-hydroxyalkoxy) -4′-cyanobiphenyl. This is reacted with acryloyl chloride in the presence of a base such as trimethylamine to give compound 1. Compound 2 is a known compound obtained by reacting hydroxycyanobiphenyl with acryloyl chloride. Table 1 shows the physical properties of the compound. Where T
m represents a melting point (unit: ° C), and Tc represents a nematic-isotropic phase transition temperature (unit: ° C).

【0021】[0021]

【表1】 [Table 1]

【0022】A、B、C、D、EおよびFのうちエナン
チオトロピック性液晶であるのはFだけであるが、Fは
融点が103℃ときわめて高い。すなわち、これらの液
晶はそれ自身では、室温または室温近傍で安定なネマチ
ック液晶性を示さない。しかし、混合して液晶組成物と
することで、はじめてそれが可能となることを本発明者
は発見した。
Among F, A, B, C, D, E and F, only F is an enantiotropic liquid crystal, and F has a very high melting point of 103 ° C. That is, these liquid crystals do not themselves exhibit stable nematic liquid crystal properties at or near room temperature. However, the present inventor has found that this can be achieved only by mixing into a liquid crystal composition.

【0023】液晶組成物として用いる際には、化合物1
および化合物2を混合して、または化合物1および化合
物2から選ばれる1種以上と他の液晶性化合物とを混合
して、所望の特性を有する液晶組成物とすることが好ま
しい。化合物1および/または化合物2の液晶組成物中
の割合は合量で30〜99.9重量%、特には50〜9
0重量%が好ましい。
When used as a liquid crystal composition, compound 1
And a compound 2 or a mixture of at least one compound selected from the compounds 1 and 2 with another liquid crystal compound to obtain a liquid crystal composition having desired characteristics. The ratio of the compound 1 and / or the compound 2 in the liquid crystal composition is 30 to 99.9% by weight in total, particularly 50 to 9% by weight.
0% by weight is preferred.

【0024】液晶組成物中には、他の液晶性化合物を含
んでもよい。他の液晶性化合物は、用途、要求性能等に
より異なるが、低温で液晶性を示す成分、低温用の低粘
性成分、屈折率異方性を調整する成分、誘電率異方性を
調整する成分、コレステリック性を付与させる成分、架
橋性を付与させる成分、その他各種添加剤を適宜用いれ
ばよい。
The liquid crystal composition may contain another liquid crystal compound. Other liquid crystal compounds vary depending on the application, required performance, etc., but are components that exhibit liquid crystallinity at low temperatures, low-viscosity components for low temperatures, components that adjust refractive index anisotropy, and components that adjust dielectric anisotropy. A component that imparts cholesteric properties, a component that imparts crosslinkability, and various other additives may be appropriately used.

【0025】また、液晶組成物中には他の化合物を含ん
でもよく、他の化合物の液晶組成物中の割合は、好まし
くは50重量%未満とされる。本発明の液晶組成物は、
化合物1の2種以上と化合物2とを含むことが好まし
い。
The liquid crystal composition may contain other compounds, and the proportion of the other compounds in the liquid crystal composition is preferably less than 50% by weight. The liquid crystal composition of the present invention,
It is preferable that two or more kinds of compound 1 and compound 2 are included.

【0026】光重合をする場合には、光重合開始剤を用
いると効率よく反応させうる。光重合開始剤としては特
に限定されず、アセトフェノン類、ベンゾフェノン類、
ベンゾイン類、ベンジル類、ミヒラーズケトン類、ベン
ゾインアルキルエーテル類、ベンジルジメチルケタール
類、チオキサントン類などが好ましく使用できる。また
必要に応じ、2種以上の光重合開始剤を混合使用しても
よい。光重合開始剤は、液晶組成物に対して0.1〜1
0重量%、特には0.5〜2重量%含まれるのが好まし
い。
In the case of photopolymerization, the reaction can be efficiently performed by using a photopolymerization initiator. Photopolymerization initiator is not particularly limited, acetophenones, benzophenones,
Benzoins, benzyls, Michler's ketones, benzoin alkyl ethers, benzyldimethyl ketals, thioxanthones, and the like can be preferably used. If necessary, two or more photopolymerization initiators may be mixed and used. The photopolymerization initiator is used in an amount of 0.1 to 1 based on the liquid crystal composition.
It is preferably contained at 0% by weight, particularly 0.5 to 2% by weight.

【0027】このようにして調製した組成物を用いて、
光重合させ高分子液晶を形成する。重合に用いる放射線
としては紫外線または可視光などが挙げられる。この
際、支持体としてガラス、プラスチック等を使用する。
支持体面には配向処理を施す。
Using the composition thus prepared,
Photopolymerize to form a polymer liquid crystal. Radiation used for polymerization includes ultraviolet light or visible light. At this time, glass, plastic, or the like is used as a support.
An orientation treatment is performed on the support surface.

【0028】配向処理は、支持体面を、綿、羊毛等の天
然繊維、ナイロン、ポリエステル等の合成繊維などで直
接ラビングしてもよく、ポリイミド、ポリアミド等を塗
布しその面を上記繊維等でラビングしてもよい。ガラス
ビーズなどのスペーサを配置し、所望のギャップにコン
トロールした支持体に組成物を注入し、充填する。
In the orientation treatment, the surface of the support may be directly rubbed with natural fibers such as cotton and wool, and synthetic fibers such as nylon and polyester, or rubbed with polyimide or polyamide or the like and rubbed with the above fibers or the like. May be. A spacer such as a glass bead is arranged, and the composition is injected and filled into a support which is controlled to a desired gap.

【0029】液晶組成物を液晶状態に保つためには雰囲
気温度をTm 〜Tc の範囲にすればよいが、Tc に近い
温度では屈折率異方性がきわめて小さいので、雰囲気温
度の上限は(Tc −10)℃以下とするのが好ましい。
[0029] may be the ambient temperature in order to maintain the liquid crystal composition in a liquid crystal state in the range of T m through T c, but the refractive index anisotropy at a temperature close to T c is extremely small, the upper limit of the ambient temperature Is preferably (T c -10) ° C. or lower.

【0030】本発明によって作製された高分子液晶は、
支持体に挟んだまま用いてもよく、支持体から剥離して
用いてもよい。本発明の高分子液晶は屈折率異方性が
0.1以上となる。
The polymer liquid crystal prepared according to the present invention is:
It may be used while being sandwiched between supports, or may be used after being separated from the support. The polymer liquid crystal of the present invention has a refractive index anisotropy of 0.1 or more.

【0031】こうして作製された高分子液晶は、光学素
子に好適である。具体的には、位相差フィルムとして使
用できる。さらに格子状に配向制御した高分子液晶と1
/4波長板と組み合わせたり、または格子凹部に高分子
液晶を充填したものと1/4波長板と組み合わせること
により、偏光依存性をもつ往復効率の高い偏光ホログラ
ムビームスプリッタを作製でき、同素子を用いて光利用
効率の高い光ヘッドを作製できる。また上記の1/4波
長板のない構造により、温度特性の優れた偏光素子を作
製できる。
The polymer liquid crystal thus produced is suitable for an optical element. Specifically, it can be used as a retardation film. In addition, a polymer liquid crystal whose alignment is controlled in a lattice shape and 1
By combining with a 波長 wavelength plate, or combining a 格子 wavelength plate with a polymer liquid crystal filled in a lattice recess, a polarization hologram beam splitter with high reciprocation efficiency having polarization dependence can be manufactured. An optical head having high light use efficiency can be manufactured by using the optical head. Further, a polarizing element having excellent temperature characteristics can be manufactured by the structure without the quarter wavelength plate.

【0032】[0032]

【実施例】【Example】

[例1(化合物1の合成)]5.7重量%水酸化カリウ
ムのメタノール溶液400ml中に化合物6を50gと
4−ヒドロキシ−4’−シアノビフェニル49.1gを
加えて還流させた。充分に反応させた後、水とジクロロ
メタンを加え、有機層を抽出した。次に飽和塩化ナトリ
ウム水溶液を加えた後、有機層を抽出し水洗した。無水
硫酸マグネシウムを加えた後、減圧濾過し濾液を抽出し
た。この濾液をジクロロメタンを展開液としてカラムク
ロマトグラフィを行った後、ジクロロメタンを30℃で
留去し、粉末結晶を得た。これにn−ヘキサンを加え再
結晶を行い、化合物7、すなわち4−(3−ヒドロキシ
プロピルオキシ)−4’−シアノビフェニル40.0g
を得た。
Example 1 (Synthesis of Compound 1) 50 g of Compound 6 and 49.1 g of 4-hydroxy-4′-cyanobiphenyl were added to 400 ml of a methanol solution of 5.7% by weight of potassium hydroxide, and the mixture was refluxed. After sufficient reaction, water and dichloromethane were added, and the organic layer was extracted. Next, after adding a saturated sodium chloride aqueous solution, the organic layer was extracted and washed with water. After adding anhydrous magnesium sulfate, the mixture was filtered under reduced pressure and the filtrate was extracted. The filtrate was subjected to column chromatography using dichloromethane as a developing solution, and then dichloromethane was distilled off at 30 ° C. to obtain powder crystals. To this was added n-hexane and recrystallized to give compound 7, namely 4- (3-hydroxypropyloxy) -4'-cyanobiphenyl 40.0 g.
I got

【0033】次に、ジクロロメタン500ml、トリエ
チルアミン29.9g、および化合物7の40.0gを
混合物とし、これを氷水で冷却しながら、反応液の温度
が20℃を超えないようにアクリロイルクロリド21.
5gを添加した。充分に撹拌し反応させた後、塩酸およ
び水を反応液に加えて有機層を抽出した。次に飽和塩化
ナトリウム水溶液を加えた後、有機層を抽出し水洗し
た。無水硫酸マグネシウムを加えた後、減圧濾過を行っ
た。この濾液をジクロロメタンを展開液としてカラムク
ロマトグラフィを行った後、ジクロロメタンを30℃で
留去し粉末結晶を得た。これにn−ヘキサンを加え再結
晶を行い、前記Bの化合物、すなわち4−[3−(プロ
ペノイルオキシ)プロピルオキシ]−4’−シアノビフ
ェニル(融点70℃)の白色結晶18.0gを得た。
Next, 500 ml of dichloromethane, 29.9 g of triethylamine and 40.0 g of the compound 7 were prepared as a mixture.
5 g were added. After sufficiently stirring and reacting, hydrochloric acid and water were added to the reaction solution to extract an organic layer. Next, after adding a saturated sodium chloride aqueous solution, the organic layer was extracted and washed with water. After adding anhydrous magnesium sulfate, filtration under reduced pressure was performed. The filtrate was subjected to column chromatography using dichloromethane as a developing solution, and then dichloromethane was distilled off at 30 ° C. to obtain powder crystals. To this was added n-hexane and recrystallized to obtain 18.0 g of white crystals of the compound of the above B, that is, 4- [3- (propenoyloxy) propyloxy] -4′-cyanobiphenyl (melting point: 70 ° C.). Was.

【0034】同様の合成方法を用いて、前記Cの化合物
(4−[4−(プロペノイルオキシ)ブチルオキシ]−
4’−シアノビフェニル)、前記Dの化合物(4−[5
−(プロペノイルオキシ)ペンチルオキシ]−4’−シ
アノビフェニル)、前記Eの化合物(4−[6−(プロ
ペノイルオキシ)ヘキシルオキシ]−4’−シアノビフ
ェニル)、および前記Aの化合物(4−[2−(プロペ
ノイルオキシ)エチルオキシ]−4’−シアノビフェニ
ル)を得た。
Using the same synthetic method, the compound of the above C (4- [4- (propenoyloxy) butyloxy]-
4′-cyanobiphenyl), the compound of D (4- [5
-(Propenoyloxy) pentyloxy] -4'-cyanobiphenyl), the compound of E (4- [6- (propenoyloxy) hexyloxy] -4'-cyanobiphenyl), and the compound of A (4 -[2- (propenoyloxy) ethyloxy] -4'-cyanobiphenyl) was obtained.

【0035】[0035]

【化4】 Br−(CH23 −OH 式6 HO−(CH23 −O−Ph−Ph−CN 式7Embedded image Br— (CH 2 ) 3 —OH Formula 6 HO— (CH 2 ) 3 —O-Ph-Ph-CN Formula 7

【0036】[例2]化合物2(4−プロペノイルオキ
シ−4’−シアノビフェニル)を17重量%、前記Bの
化合物を36重量%、前記Dの化合物を47重量%ずつ
混合した。この液晶組成物はTm が45℃、Tc が52
℃を示すネマチック液晶であった。また、屈折率異方性
は46℃で589nmにおいて0.245であった。
Example 2 17% by weight of compound 2 (4-propenoyloxy-4'-cyanobiphenyl), 36% by weight of compound B and 47% by weight of compound D were mixed. This liquid crystal composition has a T m of 45 ° C. and a T c of 52
It was a nematic liquid crystal having a temperature of ℃. The refractive index anisotropy was 0.245 at 589 nm at 46 ° C.

【0037】[例3]化合物2を24重量%、前記Dの
化合物を27重量%、化合物8(4−(4’−n−ブチ
ルフェニルカルボニルオキシ)フェニルアクリレート)
を24重量%、化合物9(4−(4’−n−ペンチルフ
ェニルカルボニルオキシ)フェニルアクリレート)を2
5重量%ずつ混合した。この液晶組成物はTm が39
℃、Tc が73℃を示すネマチック液晶であった。ま
た、屈折率異方性は40℃で589nmにおいて0.2
04であった。
Example 3 Compound 2 (24% by weight) Compound D (27% by weight) Compound 8 (4- (4'-n-butylphenylcarbonyloxy) phenyl acrylate)
And 24% by weight of compound 9 and 4- (4'-n-pentylphenylcarbonyloxy) phenyl acrylate)
Each 5% by weight was mixed. This liquid crystal composition has a Tm of 39.
It was a nematic liquid crystal having a C and a Tc of 73C. The refractive index anisotropy is 0.2 at 589 nm at 40 ° C.
04.

【0038】[0038]

【化5】 CH2 =CHCOO−Ph−OCO−Ph−C49 式8 CH2 =CHCOO−Ph−OCO−Ph−C511 式9CH 2 CHCHCOO-Ph-OCO-Ph-C 4 H 9 Formula 8 CH 2 CHCHCOO-Ph-OCO-Ph-C 5 H 11 Formula 9

【0039】[例4]配向剤としてポリイミドをスピン
コータで塗布し、熱処理した後、ナイロンクロスで一定
方向にラビング処理したガラス板を支持体とし、配向処
理した面が向かいあうように2枚の支持体を接着剤を用
いて貼り合わせた。その際、接着剤にガラスビーズを混
入させ、支持体の間隔が10μmになるようにギャップ
を調整した。
[Example 4] Polyimide as an aligning agent was applied by a spin coater, heat-treated, and rubbed in a certain direction with a nylon cloth as a support. Were bonded using an adhesive. At that time, glass beads were mixed in the adhesive, and the gap was adjusted so that the distance between the supports was 10 μm.

【0040】このように作製したセルに、光重合開始剤
としてイルガキュアー907(チバガイギー社製)を例
3の液晶組成物に0.5重量%添加したものを80℃で
注入した。次に40℃で波長360nmの紫外線を照射
し、光重合を行った。重合後、フィルム状の重合体が得
られた。この重合体はは基板のラビング方向に水平配向
され、屈折率異方性は589nmにおいて0.124で
ある高分子液晶であった。また、この重合体は可視域で
透明であり、散乱もみられなかった。
A cell prepared by adding 0.5% by weight of the liquid crystal composition of Example 3 to Irgacure 907 (manufactured by Ciba Geigy) as a photopolymerization initiator was injected into the cell thus prepared at 80 ° C. Next, ultraviolet light having a wavelength of 360 nm was irradiated at 40 ° C. to perform photopolymerization. After the polymerization, a film-like polymer was obtained. This polymer was a liquid crystal polymer which was horizontally oriented in the rubbing direction of the substrate and had a refractive index anisotropy of 0.124 at 589 nm. Further, this polymer was transparent in the visible region, and no scattering was observed.

【0041】[例5]ピッチ6μm、深さ2.9μmの
矩形格子が形成されたガラス基板上に、配向剤としてポ
リイミドをスピンコータで塗布し、熱処理した後、ナイ
ロンクロスで格子方向に対して平行方向にラビング処理
を行ったものと、配向処理を同様に行ったガラス平板基
板を、配向処理面が向かいあうように接着剤を用いて貼
り合わせた。その際、配向方向が平行になるようにし
た。
Example 5 Polyimide as an aligning agent was applied on a glass substrate on which a rectangular lattice having a pitch of 6 μm and a depth of 2.9 μm was formed by a spin coater, heat-treated, and then parallelized with a nylon cloth in the lattice direction. The rubbed substrate was subjected to the rubbing process in the direction, and the glass plate substrate subjected to the orientation process in the same manner was bonded using an adhesive so that the orientation-treated surfaces faced each other. At that time, the orientation directions were made parallel.

【0042】このように作製したセルに、光重合開始剤
としてイルガキュアー907(チバガイギー社製)を例
3の液晶組成物に0.5重量%添加したものを80℃で
注入し、格子状凹部を前記組成物により充填した。次
に、40℃で波長360nmの紫外線を照射し、光重合
を行った。このセルの片面に1/4波長板を積層し、偏
光ホログラムビームスプリッタを作製した。これを図1
に示す。この素子を光ヘッドに用いたところ、波長65
0nmのレーザ光源にて、±1次の回折光の効率の合計
で60%の光利用効率を得た。
A cell prepared by adding 0.5% by weight of the liquid crystal composition of Example 3 to Irgacure 907 (manufactured by Ciba Geigy) as a photopolymerization initiator at 80 ° C. was injected into the cell thus prepared. Was filled with the composition. Next, an ultraviolet ray having a wavelength of 360 nm was irradiated at 40 ° C. to perform photopolymerization. A quarter-wave plate was laminated on one side of this cell to produce a polarization hologram beam splitter. Figure 1
Shown in When this element was used for an optical head,
With a 0 nm laser light source, 60% light utilization efficiency was obtained in total of the efficiency of ± 1st order diffracted light.

【0043】[例6]化合物2を25重量%、前記Bの
化合物を25重量%、化合物8を25重量%、化合物9
を25重量%ずつ混合した。この液晶組成物はTm が3
4℃、Tc が68℃を示すネマチック液晶であった。ま
た、屈折率異方性は35℃で589nmにおいて0.2
00であった。
Example 6 25% by weight of compound 2, 25% by weight of compound B, 25% by weight of compound 8, and 9% by weight of compound 9
Was mixed by 25% by weight. This liquid crystal composition has a Tm of 3
It was a nematic liquid crystal showing 4 ° C and Tc of 68 ° C. The refractive index anisotropy is 0.2 at 589 nm at 35 ° C.
00.

【0044】[例7]例4と同様に作製したセルに、光
重合開始剤としてイルガキュアー907(チバガイギー
社製)を例6の液晶組成物に1重量%添加したものを7
0℃で注入した。次に35℃で波長360nmの紫外線
を照射し、光重合を行った。重合後、フィルム状の重合
体を得た。この重合体は基板のラビング方向に水平配向
され、屈折率異方性は589nmにおいて0.120で
ある高分子液晶であった。また、この高分子液晶は可視
域で透明であり、散乱もみられなかった。
Example 7 A cell prepared in the same manner as in Example 4 was prepared by adding 1% by weight of Irgacure 907 (manufactured by Ciba Geigy) as a photopolymerization initiator to the liquid crystal composition of Example 6.
Injected at 0 ° C. Next, ultraviolet light having a wavelength of 360 nm was irradiated at 35 ° C. to perform photopolymerization. After the polymerization, a film-like polymer was obtained. This polymer was a polymer liquid crystal which was horizontally oriented in the rubbing direction of the substrate and had a refractive index anisotropy of 0.120 at 589 nm. This polymer liquid crystal was transparent in the visible region, and no scattering was observed.

【0045】[例8]ピッチが8μmに加工されたIT
O透明電極を表面に有するガラス板上に、配向剤として
ポリイミドをスピンコータで塗布し、熱処理した後、ナ
イロンクロスで格子と垂直方向にラビング処理を行った
ものと、配向処理を同様に行ったガラス平板を、配向処
理面が向かいあうように接着剤を用いて貼り合わせた。
その際、格子電極部が重なり合うようにし、またスペー
サを用いてセルギャップを3μmとした。
[Example 8] IT processed to a pitch of 8 μm
On a glass plate having an O transparent electrode on the surface, polyimide as an aligning agent is applied by a spin coater, heat-treated, and then subjected to a rubbing treatment in a direction perpendicular to the lattice with a nylon cloth, and a glass subjected to the same orientation treatment. The flat plates were bonded using an adhesive such that the alignment treatment surfaces faced each other.
At that time, the grid electrode portions were made to overlap, and the cell gap was set to 3 μm using spacers.

【0046】例6の液晶組成物に、光重合開始剤として
イルガキュアー907(チバガイギー社製)を1重量
%、また架橋剤として化合物10(4,4’−ビス(ア
クリロイルオキシ)ビフェニル)を5重量%添加したも
のを調合し、これを前述のセルに70℃で注入した。次
に、5Vrms の電圧を100Hzで印加しながら、35
℃で波長360nmの紫外線を照射して光重合を行い、
周期的に水平配向した高分子液晶と垂直配向した高分子
液晶を形成した。このセルの片面に1/4波長板を積層
し、偏光ホログラムビームスプリッタを作製した。これ
を図2に示す。この素子を光ヘッドに用いたところ、波
長650nmのレーザ光源にて、±1次の回折光の効率
の合計で40%の光利用効率を得た。
In the liquid crystal composition of Example 6, 1% by weight of Irgacure 907 (manufactured by Ciba Geigy) as a photopolymerization initiator and 5% of compound 10 (4,4'-bis (acryloyloxy) biphenyl) as a crosslinking agent were added. The mixture with the weight% added was prepared, and the mixture was injected into the above-mentioned cell at 70 ° C. Next, while applying a voltage of 5 V rms at 100 Hz, 35 V rms is applied.
Photopolymerization by irradiating ultraviolet rays of 360 nm wavelength at ℃
Polymer liquid crystals that were periodically aligned horizontally and polymer liquid crystals that were vertically aligned were formed. A quarter-wave plate was laminated on one side of this cell to produce a polarization hologram beam splitter. This is shown in FIG. When this element was used for an optical head, a light use efficiency of 40% in total of the efficiency of ± 1st-order diffracted light was obtained with a laser light source having a wavelength of 650 nm.

【0047】[0047]

【化6】 CH2 =CHCOO−Ph−Ph−OCOCH=CH2 式10Embedded image CH 2 CHCHCOO-Ph-Ph-OCOCH = CH 2

【0048】[0048]

【発明の効果】本発明によれば、耐久性に優れ、かつ屈
折率異方性が大きな値を有する光重合性液晶組成物およ
び高分子液晶を作製できる。光重合により得られた高分
子液晶は、位相差フィルムや光ヘッドに使用できる。本
発明は、本発明の効果を損しない範囲内で、種々の応用
が可能である。
According to the present invention, a photopolymerizable liquid crystal composition and a polymer liquid crystal having excellent durability and a large value of refractive index anisotropy can be produced. The polymer liquid crystal obtained by photopolymerization can be used for a retardation film or an optical head. The present invention can be applied to various applications within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】格子基板を用いた高分子液晶偏光ホログラムビ
ームスプリッタの断面図。
FIG. 1 is a cross-sectional view of a polymer liquid crystal polarization hologram beam splitter using a grating substrate.

【図2】周期電極を用いた高分子液晶偏光ホログラムビ
ームスプリッタの断面図。
FIG. 2 is a cross-sectional view of a polymer liquid crystal polarization hologram beam splitter using a periodic electrode.

【符号の説明】[Explanation of symbols]

11:ガラス平板基板 12:配向膜 13:接着剤 14:高分子液晶 15:ガラス格子基板 16:1/4波長板 21:ガラス平板基板 22:透明電極 23:配向膜 24:接着剤 25:透明電極 26:ガラス平板基板 27:水平配向した高分子液晶 28:垂直配向した高分子液晶 29:1/4波長板 11: Glass plate substrate 12: Alignment film 13: Adhesive 14: Polymer liquid crystal 15: Glass lattice substrate 16: 1/4 wavelength plate 21: Glass plate substrate 22: Transparent electrode 23: Alignment film 24: Adhesive 25: Transparent Electrode 26: Glass plate substrate 27: Horizontally aligned polymer liquid crystal 28: Vertically aligned polymer liquid crystal 29: 1/4 wavelength plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 弘昌 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 田辺 譲 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiromasa Sato 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Asahi Glass Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】下記式1で表される化合物および/または
下記式2で表される化合物を含む液晶組成物。ただし式
1、式2において、Xはアルキレン基、Phは1,4−
フェニレン基である。 【化1】 CH2 =CHCOO−X−O−Ph−Ph−CN 式1 CH2 =CHCOO−Ph−Ph−CN 式2
A liquid crystal composition comprising a compound represented by the following formula 1 and / or a compound represented by the following formula 2. In the formulas 1 and 2, X is an alkylene group, and Ph is 1,4-
It is a phenylene group. CH 2 CHCHCOO-X-Ph-Ph-CN Formula 1 CH 2 CHCHCOO-Ph-Ph-CN Formula 2
【請求項2】Xが炭素数2〜7の直鎖状アルキレン基で
ある請求項1記載の液晶組成物。
2. The liquid crystal composition according to claim 1, wherein X is a linear alkylene group having 2 to 7 carbon atoms.
【請求項3】液晶組成物中の式1で表される化合物およ
び/または式2で表される化合物の合量が30〜99.
9重量%である請求項1または2記載の液晶組成物。
3. The liquid crystal composition according to claim 1, wherein the total amount of the compound represented by Formula 1 and / or the compound represented by Formula 2 is 30 to 99.
3. The liquid crystal composition according to claim 1, wherein the content is 9% by weight.
【請求項4】式1で表される化合物の2種以上と式2で
表される化合物とを含む請求項1、2または3記載の液
晶組成物。
4. The liquid crystal composition according to claim 1, comprising two or more compounds represented by the formula (1) and a compound represented by the formula (2).
【請求項5】請求項1、2、3または4記載の液晶組成
物を重合させてなる高分子液晶。
5. A polymer liquid crystal obtained by polymerizing the liquid crystal composition according to claim 1, 2, 3 or 4.
【請求項6】紫外線または可視光を照射することにより
重合させてなる請求項5記載の高分子液晶。
6. The polymer liquid crystal according to claim 5, which is polymerized by irradiation with ultraviolet light or visible light.
【請求項7】屈折率異方性が0.1以上である請求項5
または6記載の高分子液晶。
7. The method according to claim 5, wherein the refractive index anisotropy is 0.1 or more.
Or a polymer liquid crystal according to 6.
【請求項8】請求項5、6または7記載の高分子液晶を
用いてなる光学素子。
8. An optical element using the polymer liquid crystal according to claim 5, 6, or 7.
【請求項9】請求項8記載の光学素子を偏光ホログラム
素子として用いてなる光ヘッド。
9. An optical head using the optical element according to claim 8 as a polarization hologram element.
JP32881897A 1997-07-31 1997-11-28 Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same Pending JPH11100575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32881897A JPH11100575A (en) 1997-07-31 1997-11-28 Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-206770 1997-07-31
JP20677097 1997-07-31
JP32881897A JPH11100575A (en) 1997-07-31 1997-11-28 Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same

Publications (1)

Publication Number Publication Date
JPH11100575A true JPH11100575A (en) 1999-04-13

Family

ID=26515857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32881897A Pending JPH11100575A (en) 1997-07-31 1997-11-28 Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same

Country Status (1)

Country Link
JP (1) JPH11100575A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195205A (en) * 1997-09-18 1999-04-09 Dainippon Ink & Chem Inc Optically anisotropic film and its production as well as liquid crystal display device
WO2008026482A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Unsaturated fatty acid esters, and polymerizable liquid crystal compositions, optically anisotropic materials and optical elements, made by using the esters
WO2008133290A1 (en) 2007-04-24 2008-11-06 Zeon Corporation Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optically anisotropic material
WO2010001725A1 (en) 2008-06-30 2010-01-07 日本ゼオン株式会社 Polymerizable liquid crystal compounds, polymerizable liquid crystal compositions, liquid crystal polymers and optically anisotropic materials
US8603357B2 (en) 2008-10-01 2013-12-10 Zeon Corporation Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystal polymer and optically anisotropic body
WO2014073578A1 (en) * 2012-11-07 2014-05-15 旭硝子株式会社 Photo-polymerizable liquid crystal composition, optical compensation film, optical compensation laminate film, electrode substrate, liquid crystal device substrate, and liquid crystal device
US8883271B2 (en) 2010-03-31 2014-11-11 Zeon Corporation Polymerizable chiral compound, polymerizable liquid crystal compound, liquid crystal polymer and optically anisotropic body
US8895151B2 (en) 2010-03-09 2014-11-25 Zeon Corporation Heat insulating member, heat insulating laminated glass, and heat insulating laminated glass article
US9200201B2 (en) 2009-10-22 2015-12-01 Zeon Corporation Heat-insulating particulate pigment and infrared-reflective coating solution
WO2018181562A1 (en) 2017-03-31 2018-10-04 日本ゼオン株式会社 Production method for cholesteric liquid crystal resin fine particles
US10689574B2 (en) 2015-07-28 2020-06-23 Zeon Corporation Cholesteric resin laminate, production method, and use
US11345180B2 (en) 2016-08-19 2022-05-31 Zeon Corporation Display medium for assessment and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195205A (en) * 1997-09-18 1999-04-09 Dainippon Ink & Chem Inc Optically anisotropic film and its production as well as liquid crystal display device
WO2008026482A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Unsaturated fatty acid esters, and polymerizable liquid crystal compositions, optically anisotropic materials and optical elements, made by using the esters
WO2008133290A1 (en) 2007-04-24 2008-11-06 Zeon Corporation Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optically anisotropic material
WO2010001725A1 (en) 2008-06-30 2010-01-07 日本ゼオン株式会社 Polymerizable liquid crystal compounds, polymerizable liquid crystal compositions, liquid crystal polymers and optically anisotropic materials
US8603357B2 (en) 2008-10-01 2013-12-10 Zeon Corporation Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystal polymer and optically anisotropic body
US9200201B2 (en) 2009-10-22 2015-12-01 Zeon Corporation Heat-insulating particulate pigment and infrared-reflective coating solution
US8895151B2 (en) 2010-03-09 2014-11-25 Zeon Corporation Heat insulating member, heat insulating laminated glass, and heat insulating laminated glass article
US8883271B2 (en) 2010-03-31 2014-11-11 Zeon Corporation Polymerizable chiral compound, polymerizable liquid crystal compound, liquid crystal polymer and optically anisotropic body
WO2014073578A1 (en) * 2012-11-07 2014-05-15 旭硝子株式会社 Photo-polymerizable liquid crystal composition, optical compensation film, optical compensation laminate film, electrode substrate, liquid crystal device substrate, and liquid crystal device
US10689574B2 (en) 2015-07-28 2020-06-23 Zeon Corporation Cholesteric resin laminate, production method, and use
US11345180B2 (en) 2016-08-19 2022-05-31 Zeon Corporation Display medium for assessment and method for manufacturing same
WO2018181562A1 (en) 2017-03-31 2018-10-04 日本ゼオン株式会社 Production method for cholesteric liquid crystal resin fine particles

Similar Documents

Publication Publication Date Title
US8501285B2 (en) Optically isotropic liquid crystal medium and optical device
JP4343277B2 (en) Liquid crystal composition, polymer liquid crystal obtained by polymerizing the same, and optical element and optical head device using the same
US7879413B2 (en) Optically isotropic liquid crystal medium and optical device
US8409673B2 (en) Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical device
US20130088658A1 (en) Chlorofluorobenzene compound, optically isotropic liquid crystal medium and optical device
JPH11100575A (en) Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same
US7727417B2 (en) Optically isotropic liquid crystal medium and optical device
US7442418B2 (en) Polymerizable liquid crystal compound, liquid crystal composition, optical anisotropic material and optical element
US7081281B2 (en) Polymerizable liquid crystal compound, liquid crystal composition and optical anisotropic material
JPH10195138A (en) Acrylic acid derivative compound and polymer liquid crystal obtained by polymerizing the same
US20190316036A1 (en) Optically isotropic liquid crystal medium and optical device
JPH09281330A (en) Liquid crystal diffraction grating, its production and optical head device formed by using the same
JP4834907B2 (en) Polymerizable liquid crystal composition, polymer liquid crystal obtained by polymerizing the same, and use
US9701904B2 (en) Optically isotropic liquid crystal medium and optical device
US6562259B1 (en) Acrylic acid derivative compounds and polymeric liquid crystal obtained by polymerizing the same
JP4655348B2 (en) Acrylic acid derivative compound, polymer liquid crystal obtained by polymerizing the same, and use thereof
JPH10265531A (en) Liquid crystal polymer, polarized light hologram element and optical pick-up module
JP2000221323A (en) Phase difference plate using polymer liquid crystal and optical head device
JP4836335B2 (en) Phenylacetylene polymer, optical anisotropic body, and optical or liquid crystal device
JP4029528B2 (en) Acrylic acid derivative compound, polymer liquid crystal obtained by polymerizing the same, and use thereof
JP3734087B2 (en) Liquid crystal composition
JP4923359B2 (en) Blue light diffraction element
WO2019198422A1 (en) Liquid crystal composition, monomer/(liquid crystal) mixture, polymer/(liquid crystal) composite material, liquid crystal element, and chiral compound
JP2004091380A (en) Acrylic acid derivative compound, composition, polymer liquid crystal obtained by polymerizing the composition and use thereof
JP2003279717A (en) Diffraction element using polymer liquid crystal