JP2008228368A - Optical drive actuator and power transmission system - Google Patents

Optical drive actuator and power transmission system Download PDF

Info

Publication number
JP2008228368A
JP2008228368A JP2007058593A JP2007058593A JP2008228368A JP 2008228368 A JP2008228368 A JP 2008228368A JP 2007058593 A JP2007058593 A JP 2007058593A JP 2007058593 A JP2007058593 A JP 2007058593A JP 2008228368 A JP2008228368 A JP 2008228368A
Authority
JP
Japan
Prior art keywords
liquid crystal
driven actuator
crystal polymer
light
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007058593A
Other languages
Japanese (ja)
Other versions
JP5224261B2 (en
Inventor
Tomiki Ikeda
富樹 池田
Munenori Yamada
宗紀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Unitika Ltd
Original Assignee
Tokyo Institute of Technology NUC
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Unitika Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2007058593A priority Critical patent/JP5224261B2/en
Publication of JP2008228368A publication Critical patent/JP2008228368A/en
Application granted granted Critical
Publication of JP5224261B2 publication Critical patent/JP5224261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical drive actuator that can convert optical energy into mechanical energy directly and is capable of moving like a looper. <P>SOLUTION: This optical drive actuator 1c has a bridged liquid crystal high-polymer molded product containing photochromic molecules which can be isomerized reversibly by irradiating first active light 13 and second active light 14. In this case, the actuator is made to move like a looper by reversing the direction of bending motion of the bridged liquid crystal high-polymer molded product by the irradiation of the first and second active light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,光駆動型アクチュエータ,及びこの光駆動型アクチュエータを備える動力伝達システムに関する。   The present invention relates to an optically driven actuator and a power transmission system including the optically driven actuator.

近年,光機能性材料に関する応用技術が精力的に研究され,広範囲な分野で目覚しい進展を遂げている。機械的運動を引き起こすための駆動源であるアクチュエータに関しても,光エネルギーを運動エネルギーに変換可能な光機能性材料が提案されている(特許文献1〜3)。光駆動型とすることにより,エネルギー伝達のための配線が不要となり,遠方からの遠隔操作や素子のさらなる高集積化の実現が期待できる。   In recent years, applied technologies related to optical functional materials have been energetically studied, and remarkable progress has been made in a wide range of fields. Regarding an actuator that is a drive source for causing mechanical motion, an optical functional material capable of converting light energy into kinetic energy has been proposed (Patent Documents 1 to 3). By adopting the optical drive type, wiring for energy transmission is not required, and remote operation from a distance and further integration of elements can be expected.

図13に,従来技術に係る光駆動型アクチュエータの斜視図を示す(特許文献1)。この光駆動型アクチュエータ100は,同図に示すように可動膜103,光誘起相転移物質たるポリジアセチレン膜102,基板104,オリフィス105を備えている。可動膜103の図中左右両端部は,基板104に固設され,非固設領域である中央部表面にはポリジアセチレン膜102が固定されている。この光駆動型アクチュエータ100に,2種類の活性光線を照射して可動膜103の中央部を可逆的に図中上下動せしめることにより,オリフィス105を通る流体の流量を制御できる技術が開示されている。活性光線による可動膜103の具体的可動量(図中の上下動の変位量)については,当該文献に記載がないため明らかではないが,両端部が固定されている可動膜103の上下動によりオリフィス105を開閉して流体の流量制御をしていることから鑑みて,その変位量は極僅かであると思われる。   FIG. 13 shows a perspective view of a conventional optically driven actuator (Patent Document 1). The optically driven actuator 100 includes a movable film 103, a polydiacetylene film 102, which is a light-induced phase transition material, a substrate 104, and an orifice 105, as shown in FIG. The left and right ends of the movable film 103 in the figure are fixed to the substrate 104, and the polydiacetylene film 102 is fixed to the center surface which is a non-fixed region. A technique is disclosed in which the flow rate of the fluid passing through the orifice 105 can be controlled by irradiating the light-driven actuator 100 with two types of actinic rays and reversibly moving the central portion of the movable film 103 in the figure. Yes. The specific amount of movement of the movable film 103 by the actinic ray (the amount of displacement of the vertical movement in the figure) is not clear because it is not described in the document, but it is caused by the vertical movement of the movable film 103 with both ends fixed. Considering that the flow rate of the fluid is controlled by opening and closing the orifice 105, the amount of displacement is considered to be very small.

他の従来技術に係る光駆動型アクチュエータとして,新規アゾベンゼン系化合物等,若しくはスピロピラン化合物を用いた熱可塑性樹脂組成物において,一定荷重(5mN)下,光照射により約0.02〜0.08%のフィルムの光変形を可逆的に行うことができる例が報告されている(特許文献2)。   In a thermoplastic resin composition using a novel azobenzene compound or a spiropyran compound as a light-driven actuator according to another prior art, about 0.02 to 0.08% by light irradiation under a constant load (5 mN). An example in which the optical deformation of the film can be performed reversibly has been reported (Patent Document 2).

本発明者のグループは,先般,フォトクロミック分子を組み込んだ架橋液晶高分子からなる成形体において,第1の活性光線の照射により架橋液晶高分子成形体を屈曲してそれを維持できること,第2の活性光線の照射により架橋液晶高分子成形体を元の形態に復元できることを報告した(特許文献3)。この架橋液晶高分子成形体によれば,平らな状態のフィルムを2つに折りたたまれるように屈曲せしめることが可能である。このような大きな機械的仕事を取り出すことに成功したのは,配向性と流動性を兼ね備えた液晶構造と,配向変化を伝搬しやすい架橋構造を兼ね備えた材料内に,光照射に応じて可逆的に異性化するフォトクロミック分子を導入したことによる。   The group of the present inventors has recently been able to bend and maintain a crosslinked liquid crystal polymer molded body by irradiation with a first actinic ray in a molded body composed of a crosslinked liquid crystal polymer incorporating a photochromic molecule, It was reported that a crosslinked liquid crystal polymer molded body can be restored to its original form by irradiation with actinic rays (Patent Document 3). According to this crosslinked liquid crystal polymer molded product, a flat film can be bent so as to be folded in two. Such a large mechanical work was successfully extracted in a material that had both a liquid crystal structure that had both orientation and fluidity and a cross-linking structure that easily propagated orientation changes, and was reversible in response to light irradiation. This is due to the introduction of isomerized photochromic molecules.

なお,後述する発明を解決する手段で記載する尺取虫型のアクチュエータの別のタイプのものとして,一方向に移動する機構を一対の端部に設けた高分子フィルムを,溶液に浸漬して電気エネルギーを付与することにより実現できることが報告されている(非特許文献1)。特許文献4については後述する。
特開2001−232600号公報 (段落番号0013〜0015,第1〜4図) 特開2006−282990号公報 (段落番号0070〜0099) 特開2005−255805号公報 (段落番号0007,0025) 特開2002−256031号公報 (段落番号0028〜0031) ネイチャー(Nature), 1992年1月16日, 第355巻, p.242-244
In addition, as another type of the worm-type actuator described in the means for solving the invention described later, a polymer film provided with a mechanism for moving in one direction at a pair of ends is immersed in a solution so that electric energy is obtained. It has been reported that it can be realized by assigning (Non-patent Document 1). Patent Document 4 will be described later.
JP 2001-232600 (paragraph numbers 0013 to 0015, FIGS. 1 to 4) JP 2006-282990 A (paragraph numbers 0070 to 0099) JP-A-2005-255805 (paragraph numbers 0007, 0025) JP 2002-256031 A (paragraph numbers 0028 to 0031) Nature, January 16, 1992, 355, pp. 242-244

光駆動型アクチュエータへの応用展開に当っては,光屈曲−復元応答の運動モードに加えて,様々なニーズに応えられるように運動モードのバリエーションを高めていくことが重要である。
また,実際に光駆動型アクチュエータをマイクロマシン等に搭載するに際しては,様々なニーズにフレキシブルに対応できるように形態のバリエーションを高めることが極めて重要となる。
In developing applications for optically driven actuators, it is important to increase the variation of motion modes to meet various needs in addition to the motion mode of optical bending-restoration response.
In addition, when actually mounting an optically driven actuator on a micromachine or the like, it is extremely important to increase variations in form so that it can flexibly meet various needs.

本発明は,上記背景に鑑みてなされたものであり,その第1の目的とするところは,上記光屈曲−復元応答の運動モードを拡張して別の動きをする光駆動型アクチュエータ,及びこれを備えた動力伝達システムを提供することである。
また,第2の目的とするところは,形態のバリエーションを高めることが可能な光駆動型アクチュエータ,及びこれを備えた動力伝達システムを提供することである。
The present invention has been made in view of the above background, and a first object of the present invention is to provide an optically driven actuator that performs another motion by expanding the motion mode of the optical bending-restoration response, and the same. It is providing the power transmission system provided with.
A second object is to provide an optically driven actuator capable of enhancing variations in form and a power transmission system including the same.

本発明に係る第1の態様の光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,第1の活性光線,及び第2の活性光線を照射して架橋液晶高分子成形体の屈曲運動方向を反転させて,尺取虫のように移動するものである。ここで,「屈曲運動方向を反転させる」とは,架橋液晶高分子成形体主面が折りたたまれる方向の運動と,平面に戻ろうとする方向の運動を順に切り替えることを意味する。また,本明細書において「尺取虫のように」とは,屈曲運動方向を反転させながら所定の方向に移動するものを言うものとする。なお,ここで言う「所定の方向に移動」とは,直進するものに限定されず,カーブ等をしながら移動するものも含むものとする。   The light-driven actuator according to the first aspect of the present invention is a light comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray. It is a drive-type actuator, which is irradiated with a first actinic ray and a second actinic ray to reverse the bending motion direction of the crosslinked liquid crystal polymer molded body and moves like a worm. Here, “invert the direction of bending motion” means that the motion in the direction in which the principal surface of the crosslinked liquid crystal polymer molded body is folded and the motion in a direction to return to the plane are sequentially switched. In addition, in this specification, “like a beetle insect” means an object that moves in a predetermined direction while reversing the bending motion direction. Here, “move in a predetermined direction” is not limited to a straight line, but includes a line that moves while moving along a curve or the like.

本発明に係る第1の態様の光駆動型アクチュエータにおいては,配向性と流動性を兼ね備えた液晶構造と,配向変化を伝搬しやすい架橋構造を兼ね備えた材料内のフォトクロミック分子の異性化によって,メソゲンの配向変化を高効率で高分子骨格に伝搬することができる。その結果,架橋液晶高分子成形体の屈曲運動方向を反転させて尺取虫のように移動させることができる。   In the light-driven actuator according to the first aspect of the present invention, a mesogen is obtained by isomerizing a photochromic molecule in a material having both a liquid crystal structure having both orientation and fluidity and a cross-linking structure that easily propagates orientation change. Can be propagated to the polymer skeleton with high efficiency. As a result, the bending movement direction of the crosslinked liquid crystal polymer molded body can be reversed and moved like a worm.

本発明に係る第2の態様の光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備えるシート状の光駆動型アクチュエータであって,メソゲン部位を配向制御して重合,又は架橋することにより得た前記架橋液晶高分子成形体を,可撓性を有する支持体上に積層することにより,前記第1の活性光線及び第2の活性光線の照射前の主面の形状を調整したものである。ここで「シート状」とは,主要部の形態が板状の構造であることを意味する。その厚みがシートとして定義されるものに限定されるものではない。また,平面形状の他,曲面形状,折りたたみ形状等のものを含むものとする。また,ここで言う「主面の形状」とは,活性光線照射によって可動する可動部の主面の形状を指すものとする。   The light-driven actuator according to the second aspect of the present invention is a sheet comprising a crosslinked liquid crystal polymer molded body containing a first actinic ray and a photochromic molecule that can be reversibly isomerized by irradiation with the second actinic ray. A cross-linked liquid crystal polymer molded body obtained by polymerizing or cross-linking the mesogen site by controlling the orientation of the mesogen site, and laminating the flexible liquid crystal polymer molded body on a flexible support, The shape of the main surface before irradiation with the first active light beam and the second active light beam is adjusted. Here, “sheet-like” means that the main part has a plate-like structure. The thickness is not limited to that defined as a sheet. In addition to a planar shape, a curved surface shape, a folded shape, and the like are included. In addition, the “main surface shape” referred to here refers to the shape of the main surface of the movable part that is movable by actinic ray irradiation.

本発明に係る第2の態様の光駆動型アクチュエータにおいては,架橋液晶高分子成形体及び支持体の材料,液晶の配向性を適宜選定し,架橋液晶高分子成形体と支持体を積層構造とすることにより,光照射前の主面の形状(以下,「初期形態」とも言う)のバリエーションを高めることが可能となる。架橋液晶高分子成形体は,配向制御しながら重合若しくは架橋反応を行う必要があるため,初期形態のバリエーションを高めることは必ずしも容易ではない。架橋液晶高分子成形体を支持体上に積層することにより,両者の張力差,熱膨張係数差を利用して初期形態のバリエーションを高めることができる。また,本発明者らが鋭意検討を重ねたところ,架橋液晶高分子のメソゲンの配向性(例えば,ホメオトロピック配向,ホモジニアス配向等)を変えることにより,同一材料の組み合わせにおいても光照射前の初期形態を変えられることがわかった。蒸着技術,高分子等の成形加工技術,マイクロ造形技術等を用いて所望の曲率や折り目を有する構造等を有する支持体を予め作製し,これに架橋液晶高分子成形体を積層することもできる。さらに,一般に支持体の方が架橋液晶高分子成形体に比して,他の部材との係合部や勘合部を一体成形することや接合することが容易である。支持体の材料は,架橋液晶高分子成形体に比して格段に選択肢が多いため,ニーズに応じた材料選定が可能となる。光駆動型アクチュエータの初期形態のバリエーションを高めることにより,光照射前のみならず光運動を誘起する際の動的な動き,光照射後の形態のバリエーションも高めることができる。   In the light-driven actuator of the second aspect according to the present invention, the cross-linked liquid crystal polymer molded body and the support are appropriately selected from the materials for the cross-linked liquid crystal polymer molded body and the support, and the orientation of the liquid crystal. By doing so, it is possible to increase variations in the shape of the main surface before light irradiation (hereinafter also referred to as “initial form”). Since it is necessary for the crosslinked liquid crystal polymer molded body to perform polymerization or crosslinking reaction while controlling the orientation, it is not always easy to increase the variation of the initial form. By laminating the cross-linked liquid crystal polymer molded body on the support, variations in the initial form can be enhanced by utilizing the difference in tension and thermal expansion coefficient between the two. In addition, as a result of extensive studies by the present inventors, it was found that by changing the orientation of the mesogen of the crosslinked liquid crystal polymer (for example, homeotropic alignment, homogeneous alignment, etc.) I found that I could change the form. A support having a desired curvature and a structure having a crease, etc. can be prepared in advance using vapor deposition technology, molding processing technology such as polymer, micro modeling technology, etc., and a cross-linked liquid crystal polymer molding can be laminated thereon. . Furthermore, in general, the support is easier to integrally form and join the engaging portion and the fitting portion with other members than the crosslinked liquid crystal polymer molded body. There are many choices for the material of the support compared to the cross-linked liquid crystal polymer molded body, so it is possible to select the material according to the needs. By increasing the variation of the initial form of the light-driven actuator, it is possible to increase not only the light irradiation but also the dynamic movement when inducing the light motion and the variation of the form after the light irradiation.

本発明に係る第3の態様の光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,前記架橋液晶高分子成形体は可撓性を有する支持体上に固定され,前記架橋液晶高分子成形体に対する前記第1の活性光線,及び第2の活性光線の照射条件に応じて,バネのように伸縮するものである。   The light-driven actuator according to the third aspect of the present invention is a light comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray. A drive type actuator, wherein the crosslinked liquid crystal polymer molded body is fixed on a flexible support, and the first active light beam and the second active light beam are irradiated to the crosslinked liquid crystal polymer molded body. Depending on the conditions, it expands and contracts like a spring.

本発明に係る第3の態様の光駆動型アクチュエータにおいては,架橋液晶高分子成形体を可撓性を有する支持体上に固定する構造を採用しているので,伸縮運動モードが可能な形態を容易に提供することができる。また,フォトクロミック分子の異性化に伴うメソゲンの配向変化を高効率で高分子骨格に伝搬することができる架橋液晶高分子成形体を用いることにより,付勢力に応じて伸縮するバネのように,光照射条件に応じて伸縮する光駆動型アクチュエータを提供することができる。伸長方向及び収縮方向の両方に大きな出力及びストロークを発生することも可能である。   The light-driven actuator according to the third aspect of the present invention employs a structure in which the cross-linked liquid crystal polymer molded body is fixed on a flexible support, and therefore has a configuration capable of a telescopic motion mode. Can be provided easily. In addition, by using a crosslinked liquid crystal polymer molded product that can propagate the mesogenic orientation change accompanying photochromic molecule isomerization to the polymer skeleton with high efficiency, it can be used as a spring that expands and contracts according to the biasing force. An optically driven actuator that expands and contracts according to irradiation conditions can be provided. It is also possible to generate large outputs and strokes in both the extension direction and the contraction direction.

本発明に係る第4の態様の光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,前記架橋液晶高分子成形体は可撓性を有する支持体上に固定され,前記架橋液晶高分子成形体に対する前記第1の活性光線,及び第2の活性光線の照射条件に応じて屈曲自在に変形するものである。   A light-driven actuator according to a fourth aspect of the present invention is a light comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray. A drive type actuator, wherein the crosslinked liquid crystal polymer molded body is fixed on a flexible support, and the first active light beam and the second active light beam are irradiated to the crosslinked liquid crystal polymer molded body. It bends freely according to the conditions.

本発明に係る第4の態様の光駆動型アクチュエータにおいては,架橋液晶高分子成形体を可撓性のある支持体上に固定する構造を採用しているので,光駆動型アクチュエータの自重による重力と光照射による屈曲力のバランスを調整可能な形態を容易に提供できる。そして,フォトクロミック分子の異性化に伴うメソゲンの配向変化を高効率で高分子骨格に伝搬することができる架橋液晶高分子成形体を用いることにより,屈曲自在に変形可能な光駆動型アクチュエータを提供することができる。   The light-driven actuator according to the fourth aspect of the present invention employs a structure in which the cross-linked liquid crystal polymer molded body is fixed on a flexible support. And the form which can adjust the balance of the bending force by light irradiation can be provided easily. The present invention also provides a light-driven actuator that can be flexibly deformed by using a crosslinked liquid crystal polymer molded body that can propagate the orientation change of the mesogen accompanying the isomerization of the photochromic molecule to the polymer skeleton with high efficiency. be able to.

本発明に係る動力伝達システムは,上記第1又は第2の光駆動型アクチュエータと,当該光駆動型アクチュエータに前記第1の活性光線及び第2の活性光線を照射する光源を備えるものである。   A power transmission system according to the present invention includes the first or second light-driven actuator and a light source that irradiates the light-driven actuator with the first and second actinic rays.

本発明によれば,上記光屈曲−復元応答の運動モードを拡張して別の動きをする光駆動型アクチュエータ,及びこれを備えた動力伝達システムを提供することができるという優れた効果を有する。また,形態のバリエーションを高めることが可能な光駆動型アクチュエータ,及びこれを備えた動力伝達システムを提供することができるという優れた効果を有する。   According to the present invention, there is an excellent effect that it is possible to provide an optically driven actuator that performs another motion by expanding the motion mode of the optical bending-restoring response, and a power transmission system including the same. Moreover, it has the outstanding effect that the optical drive type actuator which can raise the variation of a form, and a power transmission system provided with the same can be provided.

以下,本発明を適用した実施形態の一例について説明する。なお,本発明の趣旨に合致する限り,他の実施形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, an example of an embodiment to which the present invention is applied will be described. It goes without saying that other embodiments may also belong to the category of the present invention as long as they meet the spirit of the present invention.

[実施形態1]
本実施形態1に係る光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,メソゲン部位を配向制御して重合,又は架橋することにより得た架橋液晶高分子成形体を,可撓性を有する支持体上に積層することにより,第1の活性光線及び第2の活性光線の照射前の主面の形状を調整したものである。架橋液晶高分子成形体の最適な形態としては,フィルムやシート等を挙げることができる。
[Embodiment 1]
The light-driven actuator according to Embodiment 1 is a light-driven actuator provided with a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray. In addition, the cross-linked liquid crystal polymer molded body obtained by polymerizing or cross-linking by controlling the orientation of mesogen sites is laminated on a flexible support, whereby the first active light beam and the second active light beam The shape of the main surface before irradiation of the active light is adjusted. Examples of the optimal form of the crosslinked liquid crystal polymer molded body include films and sheets.

図1(a)は,本実施形態1に係る光照射前の光駆動型アクチュエータの一例を示す模式的斜視図である。この光駆動型アクチュエータ1は,架橋液晶高分子成形体たる架橋液晶高分子フィルム2,可撓性を有する支持体たる支持体フィルム3を備えている。支持体フィルム3は,載置部たる載置面4上に一対の端部を当接部とするアーチ型形状となっており,支持体フィルム3主面の湾曲部位である中央領域に架橋液晶高分子フィルム2が積層されている。この光駆動型アクチュエータ1に第1の活性光線及び第2の活性光線を適宜照射すると,架橋液晶高分子成形体の屈曲運動が誘起され,これに連動して支持体フィルム3も変形する。この支持体フィルム3の変形は,架橋液晶高分子フィルムの積層領域3aのみならず,非積層領域3bにおいても誘起される。   FIG. 1A is a schematic perspective view illustrating an example of a light-driven actuator before light irradiation according to the first embodiment. The light-driven actuator 1 includes a crosslinked liquid crystal polymer film 2 as a crosslinked liquid crystal polymer molded body 2 and a support film 3 as a flexible support. The support film 3 has an arched shape having a pair of end portions as contact portions on the mounting surface 4 serving as a mounting portion, and a cross-linked liquid crystal is formed in a central region that is a curved portion of the main surface of the support film 3. A polymer film 2 is laminated. When the first active light beam and the second active light beam are appropriately applied to the light-driven actuator 1, a bending motion of the crosslinked liquid crystal polymer molded body is induced, and the support film 3 is also deformed in conjunction with this. This deformation of the support film 3 is induced not only in the laminated region 3a of the crosslinked liquid crystal polymer film but also in the non-laminated region 3b.

図1(b)は,図1(a)のIb−Ib切断部断面図である。同図に示すように,架橋液晶高分子フィルム2は,支持体フィルム3上に接着層5を介して積層されている。そして,架橋液晶高分子フィルム2上には保護層6が積層されている。以下,各構成要素について説明する。   FIG. 1B is a cross-sectional view taken along the line Ib-Ib in FIG. As shown in the figure, the crosslinked liquid crystal polymer film 2 is laminated on the support film 3 with an adhesive layer 5 interposed therebetween. A protective layer 6 is laminated on the crosslinked liquid crystal polymer film 2. Each component will be described below.

本実施形態1に係る架橋液晶高分子は,主鎖型高分子液晶,側鎖型高分子液晶のどちらでもよいが,液晶の配向に直接関与するハードコア部であるメソゲンの配向可能領域たるドメイン領域が存在し,かつ高分子骨格が三次元網構造を形成している必要がある。これにより,配向したメソゲンが高分子マトリックス内に緩やかに拘束され,高分子骨格の動きがメソゲンの配向と強く相関した構造となる。架橋構造は,長距離に亘って配向秩序が保たれた構造をとっていることがより好ましい。   The cross-linked liquid crystal polymer according to the first embodiment may be either a main chain polymer liquid crystal or a side chain polymer liquid crystal, but a domain region that is an orientable region of a mesogen that is a hard core part directly involved in the alignment of the liquid crystal. And the polymer skeleton must form a three-dimensional network structure. As a result, the oriented mesogen is gently restrained in the polymer matrix, and the movement of the polymer skeleton is strongly correlated with the orientation of the mesogen. The cross-linked structure is more preferably a structure in which orientational order is maintained over a long distance.

架橋液晶高分子は,単官能重合性モノマーと,これと共重合する架橋重合性モノマーとから得られる共重合体により得ることができる。共重合体を得る方法としては,公知の方法を利用することができるが,単官能重合性モノマーと架橋重合性モノマーを含む混合物を,メソゲンが配向する条件下において共重合させる方法を利用することが簡便かつ有利である。具体例としては、反応容器として、内表面に配向性表面が形成されたものを用いて、モノマー混合物をインサイチュー(in-situ)重合法等を利用して,光重合あるいは熱重合させる方法により共重合反応させる方法が挙げられる。この方法によれば、共重合体分子は、配向性表面の作用により特定の方向に配向された状態で生成される。配向性処理としては、反応容器の内表面にポリイミドの層を形成してこれを特定の方向にラビング処理する方法、電場・磁場をかけるなどの方法を挙げることができる。メソゲンの配向性としては,ホモジニアス 、ツイスト、ホメオトロピック 、ハイブリッド、ベンド又はスプレー配向等を挙げることができる。共重合させる別の方法としては,線状,又は弱く架橋した液晶高分子を作製し,応力によってメソゲンを配向させながら架橋反応を行う方法等を挙げることができる。   The crosslinked liquid crystal polymer can be obtained by a copolymer obtained from a monofunctional polymerizable monomer and a crosslinked polymerizable monomer copolymerized therewith. As a method for obtaining a copolymer, a known method can be used, but a method in which a mixture containing a monofunctional polymerizable monomer and a crosslinkable monomer is copolymerized under a condition in which the mesogen is oriented is used. Is convenient and advantageous. As a specific example, by using a reaction vessel having an orientation surface formed on the inner surface, a monomer mixture is photopolymerized or thermally polymerized using an in-situ polymerization method or the like. The method of making it copolymerize is mentioned. According to this method, the copolymer molecules are generated in a state of being oriented in a specific direction by the action of the oriented surface. Examples of the orientation treatment include a method of forming a polyimide layer on the inner surface of the reaction vessel and rubbing the polyimide layer in a specific direction, and a method of applying an electric field / magnetic field. Examples of the orientation of the mesogen include homogeneous, twisted, homeotropic, hybrid, bend or spray orientation. As another method of copolymerization, there can be mentioned a method in which a linear or weakly cross-linked liquid crystal polymer is prepared and a cross-linking reaction is performed while orienting mesogens by stress.

単官能重合性モノマーと架橋重合性モノマーの重合比率は,所望のドメインサイズ,架橋密度を考慮して決定する。ドメインサイズは,0.5μmより大きいことが好ましい。ドメインサイズが小さいと高分子骨格は,非液晶フィルムにおけるクロモフォアと高分子セグメントの関係とよく似た構造となり,各ドメインにおいてメソゲンの配向が変化し,高分子骨格が変形してもフィルム全体に与える影響が小さくなるためである。このような場合,配向変化が機械的応答に結びつかず,架橋液晶高分子成形体の運動が誘起しにくくなる。なお,架橋液晶高分子成形体は,架橋液晶高分子そのものから構成されているものに限定されず,目的とする架橋液晶高分子成形体の特性を損なわない範囲において適宜添加剤等が含まれていてもよい。   The polymerization ratio between the monofunctional polymerizable monomer and the crosslinkable monomer is determined in consideration of the desired domain size and crosslink density. The domain size is preferably larger than 0.5 μm. When the domain size is small, the polymer skeleton has a structure similar to the relationship between chromophores and polymer segments in non-liquid crystal films, and the orientation of mesogens changes in each domain, giving the entire film even if the polymer skeleton is deformed. This is because the influence is reduced. In such a case, the change in orientation does not lead to a mechanical response, and the movement of the crosslinked liquid crystal polymer molding is less likely to be induced. The crosslinked liquid crystal polymer molded product is not limited to those composed of the crosslinked liquid crystal polymer itself, and appropriately contains additives and the like as long as the properties of the intended crosslinked liquid crystal polymer molded product are not impaired. May be.

重合性基としては,(メタ)アクリロイルオキシ基,(メタ)アクリルアミド基,ビニルオキシ基,ビニル基,又はエポキシ基等が挙げられるが,容易に重合できることから,(メタ)アクリロイルオキシ基や(メタ)アクリルアミド基が好ましい。架橋重合性モノマーは,2官能性モノマー,あるいは3官能性モノマー等に代表される多官能性モノマーを用いることができる。重合開始剤としては,公知のものを用いることができる。   Examples of the polymerizable group include a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyloxy group, a vinyl group, and an epoxy group. Acrylamide groups are preferred. As the crosslinkable monomer, a bifunctional monomer or a polyfunctional monomer represented by a trifunctional monomer or the like can be used. Known polymerization initiators can be used.

架橋液晶高分子成形体を得る方法として,注型重合法を利用して金型を兼ねた反応容器を用いて共重合反応を行い、生成される共重合体を同時に成形する方法を利用することが好ましい。このような注型重合法によれば、上述の好適な配向処理法を適用することが極めて容易である。   As a method for obtaining a cross-linked liquid crystal polymer molded body, a method in which a polymerization reaction is performed using a reaction vessel that also serves as a mold using a casting polymerization method, and the resulting copolymer is simultaneously molded is used. Is preferred. According to such a casting polymerization method, it is very easy to apply the above-described preferred alignment treatment method.

フォトクロミック分子の導入箇所は,高分子主鎖,高分子側鎖のどちらでもよいが,メソゲン部位に導入することがより好ましい。メソゲン部位に導入することにより,フォトクロミック分子の異性化に伴う分子構造変化を,ドメイン領域にあるメソゲンの配向変化に効果的に変換することができるためである。そして,架橋構造を採用することにより,メソゲンの配向変化を高効率で高分子骨格に伝搬して,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起することが可能となる。   The introduction site of the photochromic molecule may be either the polymer main chain or the polymer side chain, but is more preferably introduced into the mesogen site. This is because by introducing it into the mesogen site, the molecular structure change accompanying the isomerization of the photochromic molecule can be effectively converted into the orientation change of the mesogen in the domain region. By adopting a cross-linked structure, it is possible to propagate the mesogenic orientation change to the polymer skeleton with high efficiency and induce an anisotropic and mechanical response of the cross-linked liquid crystal polymer molded body.

フォトクロミック分子は,特に限定されず公知のものを用いることができる。例として,トランス−シス異性化するアゾベンゼン,スチルベン構造等や,開環―閉環光異性化し得るスピロピラン,ジアリール構造等を挙げることができる。中でも,下記式(1)に示すアゾベンゼンは,第1の活性光線と第2の活性光線の波長が離れていて,かつ異性化の際に分子間距離が大きく変化することから特に好ましい例として挙げることができる。
アゾベンゼンは,アゾベンゼン骨格に結合している置換基にもよるが,第1の活性光線は300〜400nm程度(以下,単に「紫外光」という)であり,第2の活性光線は500〜650nm程度(以下,単に「可視光」という)である。上記式(1)に示すようにアゾベンゼンに紫外光を照射すると,棒状のトランス体から屈曲したシス体に異性化する。そして,この異性化したシス体に可視光を照射すると元のトランス体に戻る。
The photochromic molecule is not particularly limited, and known ones can be used. Examples include azobenzene and stilbene structures that undergo trans-cis isomerization, spiropyran and diaryl structures that can undergo ring-opening and ring-closing photoisomerization, and the like. Among them, azobenzene represented by the following formula (1) is particularly preferable because the wavelength of the first actinic ray is different from the wavelength of the second actinic ray and the intermolecular distance changes greatly upon isomerization. be able to.
Although azobenzene depends on a substituent bonded to the azobenzene skeleton, the first actinic ray is about 300 to 400 nm (hereinafter simply referred to as “ultraviolet light”), and the second actinic ray is about 500 to 650 nm. (Hereinafter simply referred to as “visible light”). As shown in the above formula (1), when azobenzene is irradiated with ultraviolet light, it is isomerized from a rod-shaped trans form to a bent cis form. When this isomerized cis form is irradiated with visible light, it returns to the original trans form.

架橋液晶高分子にアゾベンゼンを導入すると,アゾベンゼンは配向制御成分として働く。アゾベンゼンのトランス体は液晶相を安定化,若しくはそれ自体がメソゲンとして機能する。一方,屈曲構造を持つシス体は液晶相を不安定化する。従って,等温でもトランス体からシス体への異性化を誘起することにより,相転移を誘起することができる。   When azobenzene is introduced into the crosslinked liquid crystal polymer, azobenzene works as an orientation control component. The trans form of azobenzene stabilizes the liquid crystal phase or itself functions as a mesogen. On the other hand, a cis body with a bent structure destabilizes the liquid crystal phase. Therefore, the phase transition can be induced by inducing isomerization from the trans isomer to the cis isomer even under isothermal conditions.

フォトクロミック分子の異性化によるメソゲンの配向変化を高効率で高分子骨格に伝搬するファクターとしては,架橋構造,フォトクロミック分子の種類,フォトクロミック分子の導入率の他に,液晶の種類,照射条件等を挙げることができる。液晶の種類は,特に限定されない。メソゲンの配向変化を高効率で高分子骨格に伝搬する観点からは,メソゲンの配向能やパッキング性の高いものを用いることが好ましい。このような液晶として,スメクチック液晶や,強誘電性液晶等を挙げることができる。   Factors that propagate the mesogenic orientation change due to photochromic molecule isomerization to the polymer backbone with high efficiency include cross-linking structure, type of photochromic molecule, introduction rate of photochromic molecule, liquid crystal type, irradiation condition, etc. be able to. The type of liquid crystal is not particularly limited. From the viewpoint of propagating the mesogenic orientation change to the polymer skeleton with high efficiency, it is preferable to use a mesogen having high orientation ability and packing property. Examples of such a liquid crystal include a smectic liquid crystal and a ferroelectric liquid crystal.

支持体は,架橋液晶高分子成形体を主面に固定でき,かつ架橋液晶高分子成形体と一体的に可動可能なものを選定する。支持体として可撓性のあるものを用いているので,架橋液晶高分子成形体が積層されていない非積層領域も架橋液晶高分子成形体の形状変化に連動させて変形させることができる。無論,支持体の全体が架橋液晶高分子成形体と共に可動可能である必要はなく,架橋液晶高分子成形体の非積層領域の一部を非可動部としてもよいし,架橋液晶高分子成形体の積層領域のみを可動部としてもよい。また,架橋液晶高分子成形体の積層領域の一部を非可動部としてもよい。   The support is selected so that the crosslinked liquid crystal polymer molded body can be fixed to the main surface and can be moved integrally with the crosslinked liquid crystal polymer molded body. Since a flexible support is used, the non-laminated region where the crosslinked liquid crystal polymer molded body is not laminated can also be deformed in conjunction with the shape change of the crosslinked liquid crystal polymer molded body. Of course, the entire support need not be movable together with the cross-linked liquid crystal polymer molded body, and a part of the non-laminated region of the cross-linked liquid crystal polymer molded body may be a non-movable part. Only the laminated region may be used as the movable portion. Further, a part of the laminated region of the crosslinked liquid crystal polymer molded body may be a non-movable part.

上記図1の例においては,架橋液晶高分子成形体を支持体の一主面の中央領域に積層した例について述べたが,これに代えて主面全面に架橋液晶高分子成形体を積層してもよい。支持体の両主面の任意の箇所あるいは全面に架橋液晶高分子成形体を積層することもできる。また,異なる波長で形状変化するフォトクロミック分子が導入された複数種類の架橋液晶高分子成形体を,異なる領域に配置したり,同一領域に積層することも可能である。活性光線の波長の異なるフォトクロミック分子を導入した複数の架橋液晶高分子成形体等を支持体上に積層することにより,複数の運動モードを備えることができる。   In the example of FIG. 1, the example in which the cross-linked liquid crystal polymer molded body is laminated on the central region of one main surface of the support has been described. Instead, the cross-linked liquid crystal polymer molded body is laminated on the entire main surface. May be. A cross-linked liquid crystal polymer molded body can be laminated on any part or the entire surface of both main surfaces of the support. It is also possible to arrange a plurality of types of crosslinked liquid crystal polymer molded products into which photochromic molecules whose shapes change at different wavelengths are introduced, in different regions or in the same region. A plurality of motion modes can be provided by laminating a plurality of crosslinked liquid crystal polymer molded bodies or the like into which photochromic molecules having different wavelengths of actinic rays are introduced on a support.

支持体は,他の部材と係合又は勘合せしめるための係合部や勘合部等を支持体の一部分に備えるように構成することができる。支持体の端部を載置面に当接させて自立させる構造(図1(a)参照)に代えて,車輪等に固設したり,載置部,筐体,基板等に固設してもよい。載置部として,載置面に代えて前記車輪に係合するレール等を採用することもできる。   The support can be configured to include an engagement portion, a fitting portion, or the like for engaging or fitting with another member in a part of the support. Instead of a structure (see FIG. 1 (a)) in which the end of the support is brought into contact with the mounting surface to stand on its own, it is fixed to a wheel or the like, or fixed to a mounting unit, a housing, a substrate, or the like. May be. As the mounting portion, a rail or the like that engages with the wheel may be employed instead of the mounting surface.

支持体の材質としては,例えば,ポリエチレン,ポリプロピレン,ポリエチレンテレフタレート等の汎用性高分子,エラストマー,あるいはシリコンゴム,金属薄膜,紙等の公知の材料を用いることができる。架橋液晶高分子成形体と一体的に可動させる観点からは,エラストマー等の高弾性体や使用温度において十分な柔軟性を有する高分子成形体を用いることが好ましい。高分子成形体のガラス転移温度が使用温度以下のものを用いることにより,柔軟性の優れたものを得ることができる。このような高分子材料としては,ポリエチレン,ポリプロピレン,ポリブタジエン,ポリ塩化ビニリデン,ポリテトラフルオロエチレン,ポリフッ化ビニリデン等を挙げることができる。無論,可塑剤を添加することにより高分子成形体のガラス転移温度を使用温度以下となるようにしてもよい。なお,ここで「使用温度」とは,光駆動型アクチュエータを実際に駆動する際の温度を言う。高分子材料に融点(Tm)が存在する場合には,光駆動型アクチュエータを安定して利用する観点から使用温度が融点を超えない範囲で使用することが好ましい。高分子成形体を用いることにより,前述の係合部や勘合部等の一体成形や,接合等も容易となる。   As a material for the support, for example, a general-purpose polymer such as polyethylene, polypropylene, polyethylene terephthalate, an elastomer, or a known material such as silicon rubber, metal thin film, paper, or the like can be used. From the viewpoint of moving integrally with the crosslinked liquid crystal polymer molded body, it is preferable to use a highly elastic body such as an elastomer or a polymer molded body having sufficient flexibility at the operating temperature. By using a polymer molded body having a glass transition temperature equal to or lower than the operating temperature, a polymer having excellent flexibility can be obtained. Examples of such a polymer material include polyethylene, polypropylene, polybutadiene, polyvinylidene chloride, polytetrafluoroethylene, and polyvinylidene fluoride. Of course, the glass transition temperature of the polymer molded product may be made to be lower than the working temperature by adding a plasticizer. Here, the “operating temperature” refers to the temperature at which the optically driven actuator is actually driven. When the polymer material has a melting point (Tm), it is preferable to use the polymer material in a range where the use temperature does not exceed the melting point from the viewpoint of stably using the optically driven actuator. By using the polymer molded body, integral molding, joining, and the like of the engaging portion and the fitting portion described above are facilitated.

支持体の可動部の厚みは,用いる材料の柔軟性の度合い,強度,用いる用途,所望の形態等に応じて決める。厚みは特に限定されるものではないが,例えば5μm〜100μm程度とすることができる。支持体は,単一の材料から構成してもよいし,複数の材料から構成してもよい。   The thickness of the movable part of the support is determined according to the degree of flexibility of the material used, strength, use application, desired form, and the like. The thickness is not particularly limited, but can be, for example, about 5 μm to 100 μm. The support may be composed of a single material or a plurality of materials.

支持体上に架橋液晶高分子成形体を積層して固定する方法は,特に限定されず公知の方法を用いることができる。積層する際には,支持体と架橋液晶高分子成形体とが十分に接着していることが重要である。光駆動させる際に剥離やクラックが発生するのを防止するためである。接着方法としては,公知の方法を利用できる。例えば,接着機能を有する支持体を用いて架橋液晶高分子成形体とラミネートする方法,支持体と架橋液晶高分子成形体との間に,バーコーター塗工などの種々のコーティング方法を用いて接着層(図1(b)参照)を設ける方法,両面テープにより支持体と架橋液晶高分子成形体を貼り合せる方法等を挙げることができる。接着層や両面テープ等の中間層を設ける場合,架橋液晶高分子成形体と一体的に可動させる観点から柔軟性に優れたものを選定することが好ましい。接着層の厚みは,例えば0.5μm〜20μmとすることができるが,無論これに限定されるものではない。架橋液晶高分子成形体上には,必要に応じて保護層(図1(b)参照)を積層してもよい。これにより,架橋液晶高分子成形体を機械的刺激等から保護することができる。保護層としては,架橋液晶高分子成形体と一体的に可動可能であり,かつ,架橋液晶高分子成形体の活性光線による駆動を妨げない材料であれば特に限定されない。なお,本実施形態に係る光駆動型アクチュエータは,上述した要素部材以外の要素を含んでいてもよいことは言うまでもない。   A method for laminating and fixing the crosslinked liquid crystal polymer molded body on the support is not particularly limited, and a known method can be used. When laminating, it is important that the support and the crosslinked liquid crystal polymer molded article are sufficiently adhered. This is to prevent peeling or cracks from occurring when optically driven. A known method can be used as the bonding method. For example, a method of laminating with a cross-linked liquid crystal polymer molded body using a support having an adhesive function, and bonding using various coating methods such as bar coater coating between the support and the cross-linked liquid crystal polymer molded body. Examples thereof include a method of providing a layer (see FIG. 1B), a method of bonding a support and a crosslinked liquid crystal polymer molded body with a double-sided tape, and the like. When an intermediate layer such as an adhesive layer or a double-sided tape is provided, it is preferable to select a layer having excellent flexibility from the viewpoint of moving integrally with the crosslinked liquid crystal polymer molded body. The thickness of the adhesive layer can be set to, for example, 0.5 μm to 20 μm, but is not limited to this. A protective layer (see FIG. 1B) may be laminated on the crosslinked liquid crystal polymer molded body, if necessary. Thereby, a crosslinked liquid crystal polymer molded product can be protected from mechanical stimulation or the like. The protective layer is not particularly limited as long as the protective layer is a material that can move integrally with the crosslinked liquid crystal polymer molded body and that does not prevent the crosslinked liquid crystal polymer molded body from being driven by actinic rays. Needless to say, the optically driven actuator according to the present embodiment may include elements other than the element members described above.

光駆動型アクチュエータの光照射前の主面の形状(初期形態)は,架橋液晶高分子成形体及び支持体の材料,液晶の配向性を適宜選択することにより調整することができる。架橋液晶高分子成形体を支持体に積層することにより,両者の張力差,熱膨張係数差を利用して初期形態のバリエーションを高めることができる。必要に応じて,架橋液晶高分子成形体を支持体に積層後に,熱や圧力を加えることができる。本発明者らが鋭意検討を重ねたところ,同一材料の組み合わせにおいても,架橋液晶高分子のメソゲンの配向性(例えば,ホメオトロピック配向,ホモジニアス配向等)を変えることにより,光照射前の初期形態を大きく変え得ることを突き止めた。蒸着技術,高分子等の成形加工技術,マイクロ造形技術等を用いて所望の曲率や折りたたみ構造等を有する支持体を予め作製し,これに架橋液晶高分子成形体を積層することもできる。さらに,一般に支持体の方が架橋液晶高分子成形体に比して,他の部材との係合部や勘合部を一体成形することや接合することが容易なので,ニーズに応じた形態の光駆動型アクチュエータを提供しやすい。   The shape (initial form) of the main surface of the light-driven actuator before light irradiation can be adjusted by appropriately selecting the material of the crosslinked liquid crystal polymer molded body and the support and the orientation of the liquid crystal. By laminating the crosslinked liquid crystal polymer molded body on the support, variations in the initial form can be enhanced by utilizing the difference in tension and thermal expansion coefficient between the two. If necessary, heat or pressure can be applied after the crosslinked liquid crystal polymer molded body is laminated on the support. As a result of extensive investigations by the present inventors, even in the same material combination, by changing the orientation of the mesogen of the crosslinked liquid crystal polymer (for example, homeotropic alignment, homogeneous alignment, etc.), I found out that it can change a lot. A support having a desired curvature, folding structure, or the like can be prepared in advance using a deposition technique, a molding technique such as a polymer, a micro modeling technique, and the like, and a crosslinked liquid crystal polymer molded article can be laminated thereon. Furthermore, in general, the support is easier to integrally form and join the engaging part and the fitting part with other members than the cross-linked liquid crystal polymer molded article. Easy to provide drive actuator.

次に,本実施形態1に係る光駆動型アクチュエータの駆動方法について説明する。本実施形態1に係る光駆動型アクチュエータは,第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子が導入された架橋液晶高分子成形体に,フォトクロミック分子の異性化を起こすように前記活性光線を照射して,架橋液晶高分子成形体の形状変化を誘起することにより屈曲運動を誘起させるものである。ここで「屈曲運動」とは,シート状の可動部分を折る方向に変形させるもの,平坦な状態に戻す方向に変形させるもの,既に折られている状態を別の角度に変形させるもののいずれも含むものとする。   Next, a method for driving the optically driven actuator according to the first embodiment will be described. The light-driven actuator according to the first embodiment includes a photochromic molecule formed on a crosslinked liquid crystal polymer molded body into which a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray is introduced. Irradiation with the actinic ray so as to cause isomerization induces a bending motion by inducing a shape change of the crosslinked liquid crystal polymer molded body. Here, the term “bending motion” includes any one that deforms a sheet-like movable part in a folding direction, one that deforms in a direction to return to a flat state, or one that deforms an already folded state to another angle. Shall be.

光駆動型アクチュエータに第1の活性光線を照射すると,フォトクロミック分子の異性化が誘起され屈曲運動が誘起される。次いで,第2の活性光線に照射光源を切り替えると,フォトクロミック分子の異性化に伴って,前記屈曲運動とは異なるモードの屈曲運動が誘起される。   When the light-driven actuator is irradiated with the first actinic ray, isomerization of the photochromic molecule is induced and bending motion is induced. Next, when the irradiation light source is switched to the second actinic ray, a bending motion of a mode different from the bending motion is induced with the isomerization of the photochromic molecule.

屈曲運動を連続的に行いたい場合には,フォトクロミック分子の異性化を連続的に誘起する。フォトクロミック分子の異性化を連続的に誘起するためには,第1の活性光線及び第2の活性光線の両方を同時あるいは逐次的に照射すればよい。異性化が連続的に起こっていれば,光照射は断続的であっても構わない。なお,ここで言う「連続的」とは,特定のフォトクロミック分子を継続的に異性化せしめることを意味するのではなく,架橋液晶高分子成形体内のいずれかのフォトクロミック分子の異性化が起こっている状態であることを意味する。   In order to continuously perform the bending motion, isomerization of photochromic molecules is continuously induced. In order to continuously induce isomerization of the photochromic molecule, both the first actinic ray and the second actinic ray may be irradiated simultaneously or sequentially. If the isomerization occurs continuously, the light irradiation may be intermittent. Note that “continuous” as used herein does not mean that a specific photochromic molecule is continuously isomerized, but isomerization of any photochromic molecule in the crosslinked liquid crystal polymer molded body occurs. It means a state.

第1の活性光線,及び第2の活性光線の架橋液晶高分子成形体に対する照射位置は,同一としても異なるようにしてもよい。但し,異なる位置とする場合には,第1の活性光線,及び第2の活性光線のそれぞれの照射により,フォトクロミック分子の異性化を誘起できる位置とする。各光線の照射によって異性化を誘起して,メソゲンの配向変化を高分子骨格に伝搬する必要があるためである。第1の活性光線の照射によって異性化された箇所に,第2の活性光線の照射領域の少なくとも一部が含まれるようにすることが簡便である。   The irradiation positions of the first actinic ray and the second actinic ray on the crosslinked liquid crystal polymer molded body may be the same or different. However, when the positions are different, the positions are such that the isomerization of the photochromic molecule can be induced by the irradiation of the first actinic ray and the second actinic ray. This is because it is necessary to induce isomerization by irradiation of each light beam and to propagate the orientation change of the mesogen to the polymer skeleton. It is convenient that at least a part of the irradiation region of the second actinic ray is included in the portion isomerized by the irradiation of the first actinic ray.

前述した液晶の配向性の他,活性光線の照射位置や照射光強度,照射時間に応じて,シート状部の変形量(折れ曲がり角度)を適宜変更することができる。照射光強度は,導入したフォトクロミック分子の種類,フォトクロミック分子の導入率,架橋液晶高分子成形体の厚み,及び所望とする屈曲挙動等に応じて最適となるように選定するが,通常1〜1000mJ/cm程度である。所望の運動挙動やフォトクロミック分子に応じて非偏光,偏光のどちらを用いてもよい。照射光源としては,高圧水銀灯,レーザー光等の各種公知の光源を用いることができる。 In addition to the orientation of the liquid crystal described above, the deformation amount (bending angle) of the sheet-like portion can be appropriately changed according to the irradiation position of the actinic ray, the irradiation light intensity, and the irradiation time. The irradiation light intensity is selected so as to be optimal according to the type of the introduced photochromic molecule, the introduction rate of the photochromic molecule, the thickness of the crosslinked liquid crystal polymer molded product, the desired bending behavior, and the like, but usually 1 to 1000 mJ. / Cm 2 or so. Either non-polarized light or polarized light may be used depending on the desired movement behavior or photochromic molecule. As the irradiation light source, various known light sources such as a high-pressure mercury lamp and a laser beam can be used.

架橋液晶高分子成形体に対する第1の活性光線,及び第2の活性光線の照射部位は,ガラス転移温度以上となっていることが好ましい。高分子主鎖の運動に影響を与えるミクロブラウン運動は,高温で活発化する一方でガラス転移温度以下では凍結されるためである。なお,架橋液晶高分子成形体に光を照射すると,その一部は熱エネルギーに変換され得るが,この熱により照射領域が局部的にガラス転移温度以上となっているものも含まれる。ただし,架橋液晶高分子成形体に融点(Tm)が存在する場合には,照射部位の温度が融点より低い温度となる範囲で使用する。   It is preferable that the irradiation site of the first actinic ray and the second actinic ray with respect to the crosslinked liquid crystal polymer molded body has a glass transition temperature or higher. This is because the micro-Brownian motion, which affects the motion of the polymer main chain, is activated at high temperatures, while it is frozen below the glass transition temperature. Note that when the crosslinked liquid crystal polymer molded body is irradiated with light, a part of the polymer can be converted into thermal energy, but some of the irradiation region is locally at or above the glass transition temperature due to this heat. However, when the melting point (Tm) is present in the crosslinked liquid crystal polymer molded product, it is used in a range where the temperature of the irradiated part is lower than the melting point.

次に,本実施形態1に係る光駆動型アクチュエータが運動するメカニズムについて図2,図3を用いつつ説明する。以下,アゾベンゼンを側鎖型高分子のメソゲンに導入した架橋液晶高分子からなるフィルムを例にとり説明する。なお,図中の各部分のサイズや形状は,説明の便宜上のものであり,各部分の比率,形状等は実際とは異なる。   Next, the mechanism by which the optically driven actuator according to the first embodiment moves will be described with reference to FIGS. In the following, a film composed of a crosslinked liquid crystal polymer in which azobenzene is introduced into a side chain polymer mesogen will be described as an example. In addition, the size and shape of each part in the drawing are for convenience of explanation, and the ratio, shape, etc. of each part are different from actual ones.

図2(a)は,上記式(1)に示すアゾベンゼン分子の異性化の形状変化を模式的に図示した説明図である。図中,符号10は棒状のトランス体の形状を,符号20は屈曲したシス体の形状を模式的に示したものである。同図に示すように,アゾベンゼン分子に第1の活性光線として紫外光を照射すると棒状のトランス体10から屈曲したシス体20に異性化し,第2の活性光線として可視光を照射することによって元のトランス体10に戻る。すなわち,棒状のトランス体10と屈曲したシス体20を可逆的に光により変化せしめることができる。   FIG. 2A is an explanatory view schematically showing a change in the shape of the isomerization of the azobenzene molecule shown in the above formula (1). In the figure, reference numeral 10 schematically shows the shape of a rod-shaped transformer body, and reference numeral 20 schematically shows the shape of a bent cis body. As shown in the figure, when the azobenzene molecule is irradiated with ultraviolet light as the first active light, it is isomerized from the rod-shaped trans body 10 to the bent cis body 20 and irradiated with visible light as the second active light. Return to the transformer body 10. That is, the rod-like transformer body 10 and the bent cis body 20 can be reversibly changed by light.

図2(b)は,アゾベンゼンをメソゲン部位に導入した架橋液晶高分子フィルム(以下,単に「フィルム」ともいう)30の紫外光照射前後の様子を模式的に図示した部分拡大説明図である。図中,符号31は高分子主鎖を,符号11はアゾベンゼンがトランス体であるトランス型アゾベンゼン側鎖を,符号12はメソゲンにアゾベンゼンを含まない非アゾベンゼン側鎖を,符号21はアゾベンゼンがシス体であるシス型アゾベンゼン側鎖を示している。トランス型アゾベンゼン側鎖11に紫外光を照射するとアゾベンゼン部位が屈曲したシス型アゾベンゼン側鎖21に構造変化し,これにより非アゾベンゼン側鎖12の配向変化も誘起される。そして,この変化が高分子骨格に伝搬して架橋液晶高分子フィルム30の収縮が起こる。   FIG. 2B is a partially enlarged explanatory view schematically showing a state before and after ultraviolet irradiation of a crosslinked liquid crystal polymer film (hereinafter also simply referred to as “film”) 30 in which azobenzene is introduced into a mesogen site. In the figure, reference numeral 31 denotes a polymer main chain, reference numeral 11 denotes a trans-type azobenzene side chain in which azobenzene is a trans isomer, reference numeral 12 denotes a non-azobenzene side chain in which azobenzene does not contain azobenzene, and reference numeral 21 denotes a cis-benzene cis isomer. The cis-type azobenzene side chain is shown. When the trans-type azobenzene side chain 11 is irradiated with ultraviolet light, the structure changes to a cis-type azobenzene side chain 21 in which the azobenzene portion is bent, and thereby the orientation change of the non-azobenzene side chain 12 is also induced. Then, this change propagates to the polymer skeleton and the crosslinked liquid crystal polymer film 30 contracts.

ところで,アゾベンゼン分子は,トランス体からシス体への異性化を誘起する波長(360nm近傍)に高いモル吸光係数を持つ。このため,フィルム中のアゾベンゼン濃度が高くなると異性化を誘起する光はフィルム30を透過できなくなり,照射面側に存在するアゾベンゼン分子を選択的に光異性化することになる。その結果,フィルム30の厚み方向において収縮率に異方性が生じる。   By the way, the azobenzene molecule has a high molar extinction coefficient at a wavelength (near 360 nm) that induces isomerization from the trans form to the cis form. For this reason, when the azobenzene concentration in the film increases, the light that induces isomerization cannot be transmitted through the film 30, and the azobenzene molecules present on the irradiated surface side are selectively photoisomerized. As a result, anisotropy occurs in the shrinkage rate in the thickness direction of the film 30.

図3は,フィルムの厚み方向に対して,フィルム30の収縮率に異方性が生じる様子を模式的に図示した部分拡大説明図である。フィルム30(図3(a)参照)に紫外光を照射すると,照射領域においてトランス体からシス体に構造変化して,ドメインの配向変化が誘起される。そして,図3(b)に示すように厚み方向に収縮率の異方性が発生する。その結果,図3(c)に示すようにフィルム30が機械的な応答を示す。これに,可視光8を照射すると,照射領域においてシス体からトランス体に構造変化し,ドメインの新たな配向変化が誘起されて新たな収縮率の異方性が発生する。   FIG. 3 is a partially enlarged explanatory view schematically showing how anisotropy occurs in the shrinkage rate of the film 30 with respect to the thickness direction of the film. When the film 30 (see FIG. 3A) is irradiated with ultraviolet light, the structure changes from a trans isomer to a cis isomer in the irradiation region, thereby inducing a change in domain orientation. And as shown in FIG.3 (b), the anisotropy of a contraction rate generate | occur | produces in the thickness direction. As a result, the film 30 exhibits a mechanical response as shown in FIG. When visible light 8 is irradiated to this, the structure changes from a cis isomer to a trans isomer in the irradiated region, and a new orientation change of the domain is induced to generate a new anisotropy of the shrinkage rate.

光駆動型アクチュエータの厚みは特に限定されないが,変形を誘起できる厚みとする必要があり,用いる架橋液晶高分子や支持体の特性により適宜選定する。必ずしも厚み方向に収縮率の異方性を誘起する必要はなく,面方向における収縮率の異方的変形を誘起せしめて運動するように構成してもよい。   The thickness of the optically driven actuator is not particularly limited, but it needs to be a thickness that can induce deformation, and is appropriately selected depending on the properties of the crosslinked liquid crystal polymer used and the support. It is not always necessary to induce the anisotropy of the shrinkage rate in the thickness direction, and it may be configured to move by inducing anisotropic deformation of the shrinkage rate in the plane direction.

上述したようにアゾベンゼンのトランス体は,液晶相を安定化,若しくはそれ自体がメソゲンとして機能する。一方,アゾベンゼンのシス体は,屈曲構造により液晶相を不安定化する。従って,アゾベンゼンを用いた場合,紫外光照射によって等温的に液晶相から等方相への相転移を誘起し得る。このため,ドメインの配向変化をドラスチックに変更可能であり,配向変化を高効率で高分子骨格に伝搬し,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起しやすい。無論,架橋液晶高分子成形体の異方的かつ機械的な応答を誘起できればよく,液晶相から等方相への等温的相転移が必須ではないことは言うまでもない。なお,熱により異性化が可能なフォトクロミック分子においては,活性光線に代えて熱を用いることもできる。アゾベンゼンの場合には,可視光(上記例においては第2の活性光線)に代えて熱によりシス体からトランス体の異性化を誘起するようにしてもよい。   As described above, the trans form of azobenzene stabilizes the liquid crystal phase or itself functions as a mesogen. On the other hand, the cis form of azobenzene destabilizes the liquid crystal phase due to the bent structure. Therefore, when azobenzene is used, a phase transition from the liquid crystal phase to the isotropic phase can be induced isothermally by irradiation with ultraviolet light. For this reason, it is possible to change the orientation change of the domain drastically, propagate the change of orientation to the polymer skeleton with high efficiency, and easily induce an anisotropic and mechanical response of the crosslinked liquid crystal polymer molded body. Of course, it is only necessary to induce an anisotropic and mechanical response of the crosslinked liquid crystal polymer molded body, and it goes without saying that an isothermal phase transition from the liquid crystal phase to the isotropic phase is not essential. In photochromic molecules that can be isomerized by heat, heat can be used instead of actinic rays. In the case of azobenzene, isomerization of the trans isomer from the cis isomer may be induced by heat instead of visible light (second active light in the above example).

本実施形態1に係る光駆動型アクチュエータによれば,架橋液晶高分子成形体,支持体の材料,液晶の配向性を適宜選定することにより光照射前の架橋液晶高分子成形体の主面の形状(初期形態)のバリエーションを高めることが可能となる。支持体の材料は,架橋液晶高分子成形体に比して格段に選択肢が多いため,ニーズに応じた材料選定が可能となり設計自由度を上げることができる。光駆動型アクチュエータの初期形態のバリエーションを高めることにより,光照射前のみならず光運動を誘起している際の動的な動き,光照射後の形態のバリエーションも高めることができる。また,架橋液晶高分子成形体を支持体上に固定することにより,機械的強度,耐久性を高めることができる。また,光運動領域を架橋液晶高分子成形体の形成されていない非積層領域に拡張することができるので低コスト化を実現できる。本実施形態1に係る光駆動型アクチュエータにおいては,極めて簡易な構造であるので,それ自身の小型軽量化を達成できる。また,液晶構造と架橋構造を兼ね備えた架橋液晶高分子成形体を採用することにより,大きな機械的仕事を取り出すことが可能である。   According to the light-driven actuator according to the first embodiment, by appropriately selecting the cross-linked liquid crystal polymer molded body, the material of the support, and the orientation of the liquid crystal, the main surface of the cross-linked liquid crystal polymer molded body before light irradiation is selected. Variations in shape (initial form) can be enhanced. There are many choices for the material of the support compared to the cross-linked liquid crystal polymer molded body, so it is possible to select the material according to the needs and increase the degree of design freedom. By increasing the variation of the initial form of the light-driven actuator, it is possible to increase not only the light irradiation but also the dynamic movement when inducing the light motion and the variation of the form after the light irradiation. Further, the mechanical strength and durability can be improved by fixing the crosslinked liquid crystal polymer molded body on the support. In addition, since the photomotion region can be expanded to a non-laminated region where the crosslinked liquid crystal polymer molded body is not formed, cost reduction can be realized. Since the optically driven actuator according to the first embodiment has an extremely simple structure, it can achieve a reduction in size and weight. In addition, a large mechanical work can be taken out by adopting a crosslinked liquid crystal polymer molded body having both a liquid crystal structure and a crosslinked structure.

また,架橋液晶高分子成形体,支持体の種類や初期形態を選定することにより,温度や圧力等の条件を一定に保った状態において光照射を行うだけで複雑な動きを実現し得る。また,繰り返し使用できるという利点も有する。従って,マイクロマシンの可動部(例えば,ロボットの関節部)や,マイクロカテーテル等の医療用デバイス等として応用可能である。光駆動型アクチュエータを装置内部に搭載する場合においても,筐体等を活性光線が透過可能な材質により形成すれば,装置内部に光源を具備する必要はない。このため,装置の小型軽量化を実現できる。   In addition, by selecting the type and initial form of the crosslinked liquid crystal polymer molded body and the support, a complicated movement can be realized simply by irradiating light in a state where conditions such as temperature and pressure are kept constant. It also has the advantage that it can be used repeatedly. Therefore, it can be applied as a movable part of a micromachine (for example, a joint part of a robot), a medical device such as a microcatheter, or the like. Even when the optically driven actuator is mounted inside the apparatus, it is not necessary to provide a light source inside the apparatus if the casing or the like is made of a material that can transmit actinic rays. For this reason, the device can be reduced in size and weight.

[実施形態2]
バネのように伸縮可能な光駆動型アクチュエータの例について説明する。図4は,本実施形態2に係る光駆動型アクチュエータの一例を説明するための概略断面図である。なお,以降の説明において,前記実施形態と同一の要素部材は,同一符号を付し,適宜その説明を省略する。また,上記実施形態1と同様の点については適宜説明を省略し,異なる点について詳述する。
[Embodiment 2]
An example of an optically driven actuator that can expand and contract like a spring will be described. FIG. 4 is a schematic cross-sectional view for explaining an example of the optically driven actuator according to the second embodiment. In the following description, the same element members as those in the above embodiment are given the same reference numerals, and the description thereof is omitted as appropriate. Further, description of the same points as in the first embodiment will be omitted as appropriate, and different points will be described in detail.

本実施形態2に係る光駆動型アクチュエータ1aは,以下の点を除く基本的な構成は図1において説明した光駆動型アクチュエータ1と同じである。すなわち,本実施形態2に係る光駆動型アクチュエータ1aは,支持体フィルム3の形状,架橋液晶高分子フィルム2の積層個数,支持体フィルム3の端部の構造において,図1の例に係る光駆動型アクチュエータ1と相違する。より具体的には,支持体フィルム3は,波形のような湾曲部が複数あり,第1端部41が筐体の天板43に固設され,鉛直方向にぶらさがる構造となっている。そして,第1端部41と対向する第2端部42には弁体44が取り付けられている。架橋液晶高分子フィルム2は,支持体の湾曲部の山なり部にそれぞれ積層されている。   The light-driven actuator 1a according to the second embodiment has the same basic configuration as the light-driven actuator 1 described in FIG. 1 except for the following points. That is, the light-driven actuator 1a according to the second embodiment has the light according to the example of FIG. 1 in the shape of the support film 3, the number of the laminated liquid crystal polymer films 2, and the structure of the end of the support film 3. This is different from the drive type actuator 1. More specifically, the support film 3 has a plurality of curved portions such as corrugations, and the first end portion 41 is fixed to the top plate 43 of the housing and is suspended in the vertical direction. A valve body 44 is attached to the second end portion 42 facing the first end portion 41. The cross-linked liquid crystal polymer film 2 is laminated on each crest of the curved portion of the support.

本実施形態2に係る光駆動型アクチュエータ1aは,例えば次のようにして製造することができる。まず,可撓性のある支持体フィルムの一主面に接着層を積層し,次いで所望の間隔に架橋液晶高分子フィルムを積層する。その後,もう一方の主面に同じく接着層を積層し,先の架橋液晶高分子フィルムの非積層領域の略中央領域に架橋液晶高分子フィルムを積層する。そして,熱圧着することにより図4に示すような波形形状の支持体フィルム3を得る。その後,第1端部41を天板43に固設し,第2端部42に弁体44を取り付けることにより光駆動型アクチュエータ1aを得ることができる。可撓性のある支持体フィルム3の表裏両主面上に架橋液晶高分子フィルム2を所定の間隔で積層することにより,波形型の光駆動型アクチュエータを容易に製造できる。   The optically driven actuator 1a according to the second embodiment can be manufactured as follows, for example. First, an adhesive layer is laminated on one main surface of a flexible support film, and then a crosslinked liquid crystal polymer film is laminated at a desired interval. Thereafter, the adhesive layer is similarly laminated on the other main surface, and the crosslinked liquid crystal polymer film is laminated in a substantially central region of the non-laminated region of the previous crosslinked liquid crystal polymer film. And the waveform support body film 3 as shown in FIG. 4 is obtained by thermocompression bonding. Thereafter, the first end portion 41 is fixed to the top plate 43, and the valve element 44 is attached to the second end portion 42, whereby the optically driven actuator 1a can be obtained. By laminating the cross-linked liquid crystal polymer film 2 on the front and back main surfaces of the flexible support film 3 at a predetermined interval, a wave-shaped optically driven actuator can be easily manufactured.

本実施形態2に係る光駆動型アクチュエータ1aに第1の活性光線を照射すると,湾曲部が伸長する。次いで,架橋液晶高分子フィルム2に第2の活性光線を照射すると,元に戻ろうと収縮する。付勢力に応じて伸縮するバネのように,第1の活性光線及び第2の活性光線の照射に応じて伸縮運動を誘起することができる。所望とする伸長,収縮の程度に応じて光照射条件を設定すればよい。光照射は,複数の架橋液晶高分子フィルムに一括照射してもよいし,特定の架橋液晶高分子に照射してもよい。この伸縮運動により弁体44を図中上下動させ,弁体44の下部にある基板45を貫通するオリフィス46の開閉を可逆的に行うことができる。例えば,流体の流量を制御するマイクロリアクター等のマイクロ化学分析システムに用いることができる。   When the light-driven actuator 1a according to the second embodiment is irradiated with the first actinic ray, the bending portion extends. Next, when the cross-linked liquid crystal polymer film 2 is irradiated with the second actinic ray, it shrinks to return to its original state. Like a spring that expands and contracts according to the urging force, a stretching motion can be induced according to the irradiation of the first and second actinic rays. What is necessary is just to set light irradiation conditions according to the grade of the expansion | extension and shrinkage to make desired. The light irradiation may be applied to a plurality of crosslinked liquid crystal polymer films at once or to a specific crosslinked liquid crystal polymer. By this expansion and contraction movement, the valve body 44 can be moved up and down in the drawing, and the orifice 46 penetrating the substrate 45 below the valve body 44 can be opened and closed reversibly. For example, it can be used in a microchemical analysis system such as a microreactor that controls the flow rate of a fluid.

本実施形態2に係る光駆動型アクチュエータによれば,活性光線を照射することにより伸縮可能な光駆動型アクチュエータを得ることができる。架橋液晶高分子成形体を可撓性を有する支持体上に固定する構造を採用しているので,図4に示すような湾曲形状を容易に製造することができる。また,フォトクロミック分子の異性化に伴うメソゲンの配向変化を高効率で高分子骨格に伝搬することができるので,伸長方向及び収縮方向の両方に大きな出力及びストロークを発生することも可能である。なお,第2端部42に弁体44を取り付けた例について説明したが,これに代えて針やセンサ等を取り付けてもよい。退避可能なプローブ装置等に応用することも可能である。   According to the light-driven actuator according to the second embodiment, a light-driven actuator that can be expanded and contracted by irradiating actinic rays can be obtained. Since the structure in which the crosslinked liquid crystal polymer molded body is fixed on a flexible support is adopted, a curved shape as shown in FIG. 4 can be easily manufactured. In addition, since the orientation change of the mesogen accompanying the isomerization of the photochromic molecule can be propagated to the polymer skeleton with high efficiency, it is possible to generate a large output and stroke in both the extension direction and the contraction direction. In addition, although the example which attached the valve body 44 to the 2nd end part 42 was demonstrated, it may replace with this and a needle | hook, a sensor, etc. may be attached. It can also be applied to a retractable probe device or the like.

[実施形態3]
屈曲自在に変形可能な光駆動型アクチュエータの例について説明する。図5(a)に本実施形態3に係る光駆動型アクチュエータ1bの模式的正面図,図5(b)にその側面図を示す。なお,図中の各部材の大きさや位置は説明の便宜上のものであり,各部分の比率,形状等は実際とは異なる。
本実施形態3に係る光駆動型アクチュエータ1bは,アーム形状の支持体フィルム3上に,複数の架橋液晶高分子フィルム2が積層されている。架橋液晶高分子フィルム2の積層位置は,アームの関節対応部分である。具体的には,ひじ部,手首部,指部にそれぞれ架橋液晶高分子フィルム2b,2b,2bが積層されている。
[Embodiment 3]
An example of a light-driven actuator that can be flexibly deformed will be described. FIG. 5A shows a schematic front view of the optically driven actuator 1b according to the third embodiment, and FIG. 5B shows a side view thereof. In addition, the size and position of each member in the figure are for convenience of explanation, and the ratio, shape, etc. of each part are different from actual ones.
In the light-driven actuator 1b according to the third embodiment, a plurality of crosslinked liquid crystal polymer films 2 are laminated on an arm-shaped support film 3. The laminated position of the cross-linked liquid crystal polymer film 2 is a joint corresponding portion of the arm. Specifically, cross-linked liquid crystal polymer films 2b 1 , 2b 2 , 2b 3 are laminated on the elbow part, wrist part, and finger part, respectively.

光駆動型アクチュエータ1bのアーム形状のひじ部に積層した架橋液晶高分子フィルム2bに第1の活性光線をこの光駆動型アクチュー得た1bの図中左側から照射すると,当該部分が光照射条件に応じて光照射方向(図中左方向)に湾曲する。変形された状態は,架橋液晶高分子成形体の組織状態がさらに構造的な変化を生ずる力を受けない間は安定にその形状を保持することができる。さらに,アーム形状の手首部,及び指部に積層した架橋液晶高分子フィルム2b,2bに同様の方法にて第1の活性光線を照射すると,例えば,図5(c)に示すように,これらの箇所を湾曲させることができる。 When a first actinic ray is irradiated to the cross-linked liquid crystal polymer film 2b 1 laminated on the arm-shaped elbow of the light-driven actuator 1b from the left side of the light-driven actuator 1b obtained in the figure, the relevant part is exposed to light irradiation conditions. In response to the light irradiation direction (left direction in the figure). The deformed state can stably maintain its shape while the structure of the crosslinked liquid crystal polymer molded body is not subjected to a force that causes further structural change. Further, when the first actinic ray is irradiated to the wrist-shaped wrist portion and the crosslinked liquid crystal polymer films 2b 2 and 2b 3 laminated on the finger portion by the same method, for example, as shown in FIG. , These points can be curved.

第1の活性光線の照射条件をコントロールすることにより,所望の屈曲形状に変形させることができる。また,第2の活性光線を照射することにより屈曲運動方向を反転させたり,光照射前の元の状態に戻したりすることができる。それぞれの架橋液晶高分子フィルム2を個別に照射する光源システムを採用することにより,複雑な動きを実現できる。例えば,光駆動型アクチュエータ1bの手のひら部で物を掴み,それを所望の位置に移動させて離すといういわゆるロボットアーム動作も可能である。手のひらで物を掴む構造に代えてアーム先端部にフックなどを取り付ける構造としてもよい。   By controlling the irradiation condition of the first actinic ray, it can be deformed into a desired bent shape. Further, by irradiating the second actinic ray, the bending motion direction can be reversed or the original state before the light irradiation can be restored. By adopting a light source system that individually irradiates each cross-linked liquid crystal polymer film 2, complicated movement can be realized. For example, a so-called robot arm operation is also possible in which an object is grasped by the palm of the light-driven actuator 1b, moved to a desired position and released. A structure in which a hook or the like is attached to the tip of the arm may be used instead of a structure in which an object is held by the palm.

本発明者らが鋭意検討を重ねたところ,光駆動型アクチュエータの自重による重力と光照射による屈曲力の大きさのバランスを調整することにより,屈曲自在に変形し得ることがわかった。光駆動型アクチュエータ自身の重力よりも光照射による屈曲力を大きくすることにより,光照射により屈曲形状からフラットに近い形状にし,さらに反対方向に続けて屈曲せしめることも可能である。光駆動型アクチュエータの自重による重力と屈曲力の大きさのバランス調整は,支持体を用いることで容易となる。   As a result of extensive studies by the present inventors, it has been found that the light-driven actuator can be flexibly deformed by adjusting the balance between the gravity due to its own weight and the bending force due to light irradiation. By making the bending force by light irradiation larger than the gravity of the light-driven actuator itself, it is possible to change the bent shape to a shape close to flat by light irradiation and to continue bending in the opposite direction. The balance adjustment between the gravity of the light-driven actuator due to its own weight and the magnitude of the bending force is facilitated by using a support.

支持体フィルム3の長軸方向に屈曲する例を述べたが,幅方向あるいは斜め方向に屈曲するように架橋液晶高分子フィルムを固定することもできる。斜め方向に屈曲するようにすることにより,ねじる動きを誘起することも可能である。また,支持体フィルムの両面の同一領域に架橋液晶高分子フィルムを固定して,所望の方向から光照射を行うようにしてもよい。なお,図5の例における活性光線と架橋液晶高分子成形体の屈曲運動方向は一例であり,この例に限定されないことは言うまでもない。また,所望の屈曲形状が第1の活性光線,若しくは第2の活性光線のいずれかにより達成できる場合には,両活性光線の照射による可逆的な異性化は必須ではない。この所望の屈曲形状は,架橋液晶高分子成形体の組織状態がさらに構造的な変化を生ずる力を受けない間は安定にその形状を保持することができる。   Although an example in which the support film 3 is bent in the major axis direction has been described, the crosslinked liquid crystal polymer film can also be fixed so as to be bent in the width direction or in the oblique direction. It is also possible to induce a twisting motion by bending in an oblique direction. Further, a crosslinked liquid crystal polymer film may be fixed to the same region on both sides of the support film, and light irradiation may be performed from a desired direction. In addition, it is needless to say that the actinic rays and the bending movement directions of the crosslinked liquid crystal polymer molded body in the example of FIG. 5 are examples, and are not limited to this example. In addition, when the desired bent shape can be achieved by either the first actinic ray or the second actinic ray, reversible isomerization by irradiation with both actinic rays is not essential. This desired bent shape can be stably maintained as long as the structure of the crosslinked liquid crystal polymer molded body is not subjected to a force that causes a further structural change.

本実施形態3に係る光駆動型アクチュエータによれば,支持体も連動して動かすことができるので,全体として大きく,かつなめらかに動かすことができる。支持体上に架橋液晶高分子成形体を固定する構造を採用することにより,機械的強度を高めることができる。また,所望の箇所に所望の動きをする架橋液晶高分子成形体を選定して固定するという極めてシンプルな方法なので複雑な動きと小型軽量化を同時に実現できる。屈曲自在に変形することが可能なので,複雑な動きをするマイクロマシン,医療用カテーテル,作業用リフト等に応用することが期待できる。   According to the optically driven actuator according to the third embodiment, the support can also be moved in conjunction with it, so that it can be moved large and smoothly as a whole. By adopting a structure in which the crosslinked liquid crystal polymer molded body is fixed on the support, the mechanical strength can be increased. In addition, since it is an extremely simple method of selecting and fixing a crosslinked liquid crystal polymer molded body that performs a desired movement at a desired location, a complicated movement and a reduction in size and weight can be realized at the same time. Since it can be deformed flexibly, it can be expected to be applied to micromachines, medical catheters, work lifts, etc. that perform complex movements.

[実施形態4]
尺取虫型の運動を行う光駆動型アクチュエータの例について説明する。本実施形態4に係る光駆動型アクチュエータは,屈曲運動方向を反転させて尺取虫のように移動する。
[Embodiment 4]
An example of a light-driven actuator that performs a worm-like movement will be described. The light-driven actuator according to the fourth embodiment moves like a worm by reversing the bending motion direction.

図6(a)は,本実施形態4に係る光駆動型アクチュエータ1cの一例を示す模式的斜視図である。光駆動型アクチュエータ1cは,図1と同様に一対の端部が載置面4と当接するアーチ型形状となっており,支持体フィルム3の主面の湾曲部位である中央領域に架橋液晶高分子フィルム2が積層された構造となっている。ただし,この一対の当接部の形状が異なる。図中左側の方の第1当接部7をフラット形状とし,図中右側の方の第2当接部8を略山形形状の頂部としている。   FIG. 6A is a schematic perspective view showing an example of an optically driven actuator 1c according to the fourth embodiment. As in FIG. 1, the optically driven actuator 1 c has an arch shape in which a pair of end portions are in contact with the mounting surface 4. The molecular film 2 is laminated. However, the shape of the pair of contact portions is different. The first contact portion 7 on the left side in the figure has a flat shape, and the second contact portion 8 on the right side in the drawing has a substantially chevron-shaped top.

図6(b)は,光照射前の光駆動型アクチュエータ1c(図6(a)参照)に第1の活性光線13を照射した際の形状変化を説明するための模式的斜視図である。第1の活性光線を照射すると,架橋液晶高分子フィルム2が伸長すると共に,支持体フィルム3もこれに連動して伸長する。フラット形状の第1当接部7は,第1の活性光線13を照射する前は載置面4の第1当接部初期ライン52の位置と当接しているが,第1の活性光線13を照射すると第1当接部移動ライン53にまで当接位置が移動する。一方,略山形形状の頂部を当接部とする第2当接部8は,第1の活性光線13の照射前後を通じて第2当接部初期ライン51上に位置する。すなわち,第1の活性光線13の照射による伸長運動により第1当接部7のみが前進する。これは,第2当接部8の方がフラット形状の第1当接部7に比して載置面4に対する圧力が高く,両当接部の移動度に差が出ることによるものと考えている。   FIG. 6B is a schematic perspective view for explaining a shape change when the first actinic ray 13 is irradiated to the light-driven actuator 1c (see FIG. 6A) before the light irradiation. When the first actinic ray is irradiated, the cross-linked liquid crystal polymer film 2 is stretched and the support film 3 is also stretched in conjunction with this. The flat first contact portion 7 is in contact with the position of the first contact portion initial line 52 of the mounting surface 4 before the first active light beam 13 is irradiated. , The contact position moves to the first contact part movement line 53. On the other hand, the second contact portion 8 having the substantially mountain-shaped top portion as the contact portion is located on the second contact portion initial line 51 before and after the irradiation with the first actinic ray 13. In other words, only the first abutting portion 7 moves forward by the extension movement caused by the irradiation of the first actinic ray 13. This is considered to be due to the fact that the pressure on the mounting surface 4 is higher in the second contact portion 8 than in the flat first contact portion 7 and the mobility of both contact portions is different. ing.

図6(c)は,伸長した光駆動型アクチュエータ1c(図6(b)参照)に第2の活性光線14を照射した際の形状変化を説明するための模式的斜視図である。第2の活性光線の照射により,架橋液晶高分子フィルム2が屈曲すると共に,支持体フィルム3もこれに連動して屈曲する。フラット形状の第1当接部7は,第2の活性光線照射後も当接位置が変わらない。すなわち,第1当接部移動ライン53に静止したままである。一方,略山形形状の頂部が当接部である第2当接部8は,第2の活性光線14の照射により第2当接部初期ライン51から第2当接部移動ライン54に当接位置が移動する。すなわち,第2の活性光線照射による屈曲運動により第2当接部8側が前進する。これは,第2当接部8の方が第1当接部7に比して載置面を蹴る力が大きく,両当接部の移動度に差が出ることによものと考えている。   FIG. 6C is a schematic perspective view for explaining the shape change when the second actinic ray 14 is irradiated to the extended optically driven actuator 1c (see FIG. 6B). By irradiation with the second actinic ray, the crosslinked liquid crystal polymer film 2 is bent, and the support film 3 is also bent in conjunction with this. The flat first contact portion 7 does not change its contact position even after the second actinic ray irradiation. That is, it remains stationary on the first contact part moving line 53. On the other hand, the second abutting portion 8 having a substantially chevron-shaped top as an abutting portion abuts on the second abutting portion moving line 54 from the second abutting portion initial line 51 by irradiation with the second actinic ray 14. The position moves. That is, the second contact portion 8 side moves forward by the bending motion by the second actinic ray irradiation. This is considered to be due to the fact that the second abutting portion 8 has a larger force for kicking the placement surface than the first abutting portion 7 and the mobility of both abutting portions is different. .

第1の活性光線,及び第2の活性光線を交互に照射して屈曲運動方向を反転させることにより,尺取虫型の移動を行うことができる。すなわち,屈曲運動方向を反転させながら,第1当接部を前輪,第2当接部を後輪であるかのように機能させながら順に前進させることができる。   By moving the first actinic ray and the second actinic ray alternately to reverse the direction of bending motion, it is possible to move the scale. That is, while reversing the bending motion direction, the first abutting portion can be moved forward while functioning as if it were a front wheel and the second abutting portion as a rear wheel.

本実施形態4においては,第1当接部としてフラット形状,第2当接部として略山形形状の頂部とした例を説明したが,これに限定されるものではなく,第1当接部の載置部に対する圧力を第2当接部のそれに比して小さく設計すればよい。このように構成することにより第1当接部を移動方向前部,第2当接部を移動方向後部とする尺取虫型のアクチュエータを得ることができる。第1当接部と第2当接部の形状を非対称形状とすることで,極めて簡便な構成で尺取虫のように移動する光駆動型のアクチュエータを得ることができる。移動をスムーズに行う観点から,第1当接部7及び第2当接部それぞれと,載置部との成す角度は鋭角とすることが好ましい。   In the fourth embodiment, the example in which the flat shape is used as the first contact portion and the top portion of the substantially chevron shape is used as the second contact portion is not limited to this. What is necessary is just to design the pressure with respect to a mounting part small compared with that of a 2nd contact part. By configuring in this way, it is possible to obtain a scale insect type actuator in which the first contact portion is the front portion in the moving direction and the second contact portion is the rear portion in the moving direction. By making the shape of the first contact part and the second contact part asymmetrical, it is possible to obtain a light-driven actuator that moves like a scale insect with a very simple configuration. From the viewpoint of smooth movement, it is preferable that the angle formed between the first contact portion 7 and the second contact portion and the placement portion is an acute angle.

光駆動型アクチュエータの屈曲運動方向に応じて第1当接部7あるいは第2当接部8がそれぞれ静止点となる例について述べたが,これに限定されるものではなく,屈曲運動方向が伸長する方向に動く際,あるいは屈曲量が大きくなる方向に動く際の少なくともいずれか一方に,第1当接部7と第2当接部8の移動度差があればよい。当接部として端部を二つ設けた例を説明したが,端部以外の箇所に当接部を設けてもよい。アーチ型形状を二つ有する光駆動型アクチュエータとすることもできる。略山形形状の例として,頂点が三角形の例を挙げたがこれに限定されるものではなく,頂部がフラット部を有する山形形状も含むものとする。   Although an example in which the first contact portion 7 or the second contact portion 8 is a stationary point according to the bending motion direction of the optically driven actuator has been described, the present invention is not limited to this, and the bending motion direction extends. It is sufficient that there is a mobility difference between the first abutting portion 7 and the second abutting portion 8 when moving in the direction in which the first abutting portion 7 moves or in the direction in which the amount of bending increases. Although the example which provided two edge parts as a contact part was demonstrated, you may provide a contact part in places other than an edge part. An optically driven actuator having two arched shapes can also be used. As an example of a substantially chevron shape, an example in which the apex is a triangle is given, but the present invention is not limited to this, and it also includes a chevron shape having a flat portion at the top.

また,第1活性光線と第2活性光線を交互に照射する例について述べたが,これに限定されるものではなく,一方を常時ONにしておき,もう一方の活性光線のON,OFFを切り替えてもよい。また,架橋液晶高分子成形体を支持体上に積層する例について述べたがこれに限定されるものではなく,例えば,スペーサ等の間隙保持部材を介して架橋液晶高分子成形体と支持体を対向配置するようにしてもよい。   Moreover, although the example which irradiates the 1st actinic ray and the 2nd actinic ray alternately was described, it is not limited to this, One side is always set to ON and the other actinic ray is switched on and off. May be. Further, the example in which the crosslinked liquid crystal polymer molded body is laminated on the support has been described, but the present invention is not limited to this. For example, the crosslinked liquid crystal polymer molded body and the support are connected via a gap holding member such as a spacer. It may be arranged so as to face each other.

上記図6においては,支持体フィルム3に第1当接部7及び第2当接部8を設けた例を述べたが,これに限定されるものではなく他の要素部材に設けてもよい。例えば,支持体の端部に車輪を固設し,車輪の外輪部を当接部としてもよい。機械的強度を高める観点,設計自由度を高める観点,コスト低減の観点,自立性を確保する観点等から支持体を用いることが好ましいが,自立性を確保できれば架橋液晶高分子成形体のみから構成してもよい。また,可撓性のある支持体に代えて,幅方向に棒状の柱を複数設けることにより機械的強度を補強したり,可撓性のある枠体に架橋液晶高分子成形体を嵌めこむ構成とすることもできる。また,支持体に凹部や溝部を設け,当該部分に架橋液晶高分子成形体を埋め込む構造としてもよい。   Although the example which provided the 1st contact part 7 and the 2nd contact part 8 in the support body film 3 was described in the said FIG. 6, it is not limited to this, You may provide in another element member. . For example, a wheel may be fixed to the end portion of the support, and the outer ring portion of the wheel may be used as the contact portion. It is preferable to use a support from the viewpoints of increasing mechanical strength, increasing the degree of freedom in design, reducing costs, and ensuring self-sustainability. May be. Also, instead of a flexible support, a structure in which a plurality of rod-shaped columns are provided in the width direction to reinforce mechanical strength or a cross-linked liquid crystal polymer molded body is fitted into a flexible frame. It can also be. Moreover, it is good also as a structure which provides a recessed part and a groove part in a support body, and embeds a bridge | crosslinking liquid crystal polymer molded object in the said part.

本発明によれば,光エネルギーを機械エネルギーに変換可能な光駆動型アクチュエータ,及びこの光駆動型アクチュエータと光源を備える動力伝達システムを提供することができる。光を制御媒体としているので誘導雑音が発生せず,多重伝送などの大量高速度伝送が可能,非接触接続が容易となる等の利点を有する。また,構造体そのものを駆動素子とし,極めて簡便な構成で光エネルギーを機械エネルギーに直接変換することができるため,装置の小型軽量化,低コスト化の実現が容易となる。さらに,わずかな刺激によって大きな運動を誘起できるため,プラスチックモーターなどの駆動装置,マイクロマシンの可動部を初めとした多岐に亘る応用が期待できる。また,本発明に係る光駆動型アクチュエータによれば,エネルギー伝達のための配線が不要となり,遠方よりレーザー光等を照射するだけで運動をON,OFFすることができる。このため,光源の距離を任意に設定可能な動力伝達システムを提供することができる。   According to the present invention, it is possible to provide an optically driven actuator capable of converting optical energy into mechanical energy, and a power transmission system including the optically driven actuator and a light source. Since light is used as a control medium, there is an advantage that no inductive noise is generated, high-speed transmission such as multiplex transmission is possible, and non-contact connection is easy. In addition, since the structure itself is used as a drive element and light energy can be directly converted into mechanical energy with a very simple configuration, it is easy to realize a reduction in size and weight and cost of the apparatus. Furthermore, since a large motion can be induced by a slight stimulus, it can be expected to be used in a wide variety of applications, including drive devices such as plastic motors and movable parts of micromachines. Further, according to the optically driven actuator according to the present invention, no wiring for energy transmission is required, and the motion can be turned on and off simply by irradiating laser light or the like from a distance. For this reason, the power transmission system which can set the distance of a light source arbitrarily can be provided.

[実施例]
次に,実施例によりさらに本発明を具体的に説明するが,本発明の範囲は下記の実施例に限定されるものではない。なお,以下に記載する試薬等は,特に断らない限りは一般に市販されているものである。核磁気共鳴吸収スペクトル測定(HNMR)は,Lamda-300(300MHz)を用い,テトラメチルシラン(TMS)を内部標準とした。化合物の液晶性は,示差走査熱量計(DSC;SeikoI&E,SSC-5200,DSC220C),ホットステージ(Mettler,FP-90,FP-82HT),偏光顕微鏡(POM;OLYMPUS,BH-2)を用いて評価した。示差走査熱量計は,ポリマーの評価は昇温速度10℃/min,モノマーの評価は昇温,降温速度2℃/minとして,いずれも窒素雰囲気下で測定した。
[Example]
EXAMPLES Next, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example. The reagents and the like described below are generally commercially available unless otherwise specified. For nuclear magnetic resonance absorption spectrum measurement ( 1 HNMR), Lamda-300 (300 MHz) was used, and tetramethylsilane (TMS) was used as an internal standard. The liquid crystallinity of the compound is measured using a differential scanning calorimeter (DSC; Seiko I & E, SSC-5200, DSC220C), a hot stage (Mettler, FP-90, FP-82HT), and a polarizing microscope (POM; OLYMPUS, BH-2). evaluated. The differential scanning calorimeter was measured under a nitrogen atmosphere with a polymer evaluation rate of 10 ° C./min and a monomer evaluation of temperature increase and temperature decrease rate of 2 ° C./min.

光運動挙動は,CCDカメラ(オムロン製 VC-HRM20Z)を用いて観察した。紫外光については,UV−LED光源(キーエンス製 UV-400)を用いて365nmの単色光を取り出した。出力光の強度は,240mW/cmとした。また,可視光については,ハロゲンランプ光源(島津理化製 FLH-50)の白色光を用いた。出力光の強度は,545nmにおいて120mW/cmとした。また,測定サンプルと光源の照射距離は,15〜5mm程度とし,架橋液晶高分子成形体のほぼ真上方向から照射した。照射光は非偏光とした。特に記載のない場合には,室温下にて実験を行った。 The optical motion behavior was observed with a CCD camera (OMRON VC-HRM20Z). For ultraviolet light, 365-nm monochromatic light was extracted using a UV-LED light source (Keyence UV-400). The intensity of the output light was 240 mW / cm 2 . For the visible light, white light from a halogen lamp light source (FLH-50, Shimadzu Rika) was used. The intensity of the output light was 120 mW / cm 2 at 545 nm. Further, the irradiation distance between the measurement sample and the light source was set to about 15 to 5 mm, and the irradiation was performed almost directly above the crosslinked liquid crystal polymer molded body. Irradiation light was non-polarized light. Unless otherwise stated, experiments were performed at room temperature.

本実施例においては,架橋液晶高分子成形体の形態としてフィルム状のものを用いた。架橋液晶高分子は,フォトクロミック分子としてアゾベンゼン構造を導入した下記式(2)及び下記式(3)で示されるアミノ基を有するアクリル酸エステル系ポリマー(以下,それぞれ「CALP−Alk[1]」,「CALP−Alk[2]」と略記する)を用いた。
In this example, a film-like one was used as the form of the crosslinked liquid crystal polymer molded body. The crosslinked liquid crystal polymer is an acrylic acid ester polymer having an amino group represented by the following formula (2) and the following formula (3) in which an azobenzene structure is introduced as a photochromic molecule (hereinafter referred to as “CALP-Alk [1]”, (Abbreviated as “CALP-Alk [2]”).

上記式(2)で示されるCALP−Alk[1]は,単官能重合性モノマーである下記式(4)で示される9―〔4−(4―ノナニルオキシフェニルアゾ)フェノキシ〕ノナニルアクリレート(以下,「A9AB9」と略記する)と,架橋重合性モノマーである下記式(5)で示される4,4′−ビス〔9−(アクリロイルオキシ)ノナニルオキシ〕アゾベンゼン(以下,「DA9AB」と略記する)を混合し,液晶相を発現する条件下において共重合させることにより得た。
CALP-Alk [1] represented by the above formula (2) is a monofunctional polymerizable monomer 9- [4- (4-nonyloxyphenylazo) phenoxy] nonanyl acrylate represented by the following formula (4). (Hereinafter abbreviated as “A9AB9”) and 4,4′-bis [9- (acryloyloxy) nonanyloxy] azobenzene (hereinafter abbreviated as “DA9AB”) represented by the following formula (5) which is a crosslinking polymerizable monomer. To obtain a liquid crystal phase.

上記式(3)で示されるCALP−Alk[2]は,単官能重合性モノマーである下記式(6)で示される6−〔4−(4−ヘキシルオキシフェニルアゾ)フェノキシ〕ヘキシルアクリレート(以下,「A6AB6」と略記する)と,下記式(7)に示した架橋重合性モノマー4,4′−ビス〔6−(アクリロイルオキシ)ヘキシルオキシ〕アゾベンゼン(以下,「DA6AB」と略記する)を混合し,液晶相を発現する条件下において共重合させることにより得た。
The CALP-Alk [2] represented by the above formula (3) is a monofunctional polymerizable monomer 6- [4- (4-hexyloxyphenylazo) phenoxy] hexyl acrylate (hereinafter referred to as the following formula (6)). , “A6AB6”) and a crosslinkable monomer 4,4′-bis [6- (acryloyloxy) hexyloxy] azobenzene (hereinafter abbreviated as “DA6AB”) represented by the following formula (7): It was obtained by mixing and copolymerizing under the condition of developing a liquid crystal phase.

<架橋重合性モノマーの合成>
4−ニトロフェノール3.5g(25mmol),炭酸カリウム3.5mg(25mmol),9−ブロモノナノール7.0g(30mmol)をDMF5mlに分散し,その懸濁液を130℃で3時間加熱還流した。TLCで反応終了を確認し,溶液に酢酸エチル50mlと水30mlを加えた後,有機層を希塩酸,及び蒸留水を用いて洗浄し,溶液を減圧留去して乾燥した。乾燥固体をTHF50mlに溶解し,氷冷下撹拌した。これに5%Pd−C1.5gを加えた後,水素化ホウ素ナトリウム2.0g(50mmol)を3回に分けて加え,室温で2時間撹拌した。その後氷冷撹拌下で溶液に1N塩酸100mlを滴下した。固体炭酸カリウムをpH10になるまで加え,溶液を減圧濾過した。沈殿物と溶液から反応物を酢酸エチルで抽出し,溶液を減圧留去して乾燥を行い,赤褐色固体の4−(9−ヒドロキシノナニルオキシ)アニリン4.0g(16mmol)を得た。
<Synthesis of crosslinkable monomer>
4-Nitrophenol 3.5 g (25 mmol), potassium carbonate 3.5 mg (25 mmol), 9-bromononanol 7.0 g (30 mmol) were dispersed in DMF 5 ml, and the suspension was heated to reflux at 130 ° C. for 3 hours. . After confirming the completion of the reaction by TLC, 50 ml of ethyl acetate and 30 ml of water were added to the solution, and then the organic layer was washed with dilute hydrochloric acid and distilled water, and the solution was distilled off under reduced pressure and dried. The dried solid was dissolved in 50 ml of THF and stirred under ice cooling. To this was added 1.5 g of 5% Pd—C, and 2.0 g (50 mmol) of sodium borohydride was added in three portions, followed by stirring at room temperature for 2 hours. Thereafter, 100 ml of 1N hydrochloric acid was added dropwise to the solution with stirring under ice cooling. Solid potassium carbonate was added until pH 10 and the solution was filtered under reduced pressure. The reaction product was extracted from the precipitate and the solution with ethyl acetate, the solution was distilled off under reduced pressure and dried to obtain 4.0 g (16 mmol) of 4- (9-hydroxynonanyloxy) aniline as a reddish brown solid.

500mlのナスフラスコに,上記4−(9−ヒドロキシノナニルオキシ)アニリン4.0g(16mmol)と1Nの塩酸100mlを加え,氷冷下撹拌を行った。これに亜硝酸ナトリウム1.2g(17mmol)を溶解させた水溶液30mlをゆっくり滴下した。次にこの水溶液を0℃に保持したまま,水酸化ナトリウム2.0g(50mmol)とフェノール1.6g(17mmol)を水50mlに溶解させた水溶液を滴下し,さらに粉末炭酸カリウムをpHが9程度になるまで加え,4時間氷冷下撹拌した。その後,1Nの塩酸を加えてpH4とし,減圧濾過を行った。残渣を酢酸エチルに加熱溶解させた後に水で洗浄し,無水硫酸マグネシウムで乾燥した後,乾燥剤を濾過した。さらに酢酸エチルを減圧留去した。残渣を混合溶媒(酢酸エチル:ヘキサン=1:1)で再結晶したところ,褐色固体の4−ヒドロキシ−4'−(9−ヒドロキシノナニルオキシ)アゾベンゼン3.6g(10mmol)を得た。   To a 500 ml eggplant flask, 4.0 g (16 mmol) of 4- (9-hydroxynonanyloxy) aniline and 100 ml of 1N hydrochloric acid were added and stirred under ice cooling. 30 ml of an aqueous solution in which 1.2 g (17 mmol) of sodium nitrite was dissolved was slowly added dropwise thereto. Next, while maintaining this aqueous solution at 0 ° C., an aqueous solution in which 2.0 g (50 mmol) of sodium hydroxide and 1.6 g (17 mmol) of phenol were dissolved in 50 ml of water was dropped, and further, powdered potassium carbonate was adjusted to a pH of about 9. And stirred for 4 hours under ice-cooling. Thereafter, 1N hydrochloric acid was added to adjust the pH to 4, followed by filtration under reduced pressure. The residue was dissolved in ethyl acetate with heating, washed with water, dried over anhydrous magnesium sulfate, and the desiccant was filtered. Further, ethyl acetate was distilled off under reduced pressure. The residue was recrystallized with a mixed solvent (ethyl acetate: hexane = 1: 1) to obtain 3.6 g (10 mmol) of 4-hydroxy-4 ′-(9-hydroxynonanyloxy) azobenzene as a brown solid.

上記4−ヒドロキシ−4'−(9−ヒドロキシノナニルオキシ)アゾベンゼン3.6g(10mmol)をDMF10mlに溶解し,溶液に炭酸カリウム3.5g(30mmol),9−ブロモノナノール3.5g(16mmol)を加え,130℃で3時間加熱還流した。TLCで反応終了を確認し,溶液に酢酸エチル50mlと水30mlを加えた後,有機層を希塩酸,蒸留水を用いて洗浄し,溶液を減圧留去・乾燥した。乾燥固体を酢酸エチルとヘキサンを用いて再結晶し,山吹色固体の4,4'−ビス(9−ヒドロキシノナニルオキシ)アゾベンゼン4.6g(9.3mmol)を得た。   3.6 g (10 mmol) of 4-hydroxy-4 ′-(9-hydroxynonanyloxy) azobenzene was dissolved in 10 ml of DMF, and 3.5 g (30 mmol) of potassium carbonate and 3.5 g (16 mmol) of 9-bromononanol were added to the solution. ) And heated to reflux at 130 ° C. for 3 hours. After confirming the completion of the reaction by TLC, 50 ml of ethyl acetate and 30 ml of water were added to the solution, the organic layer was washed with dilute hydrochloric acid and distilled water, and the solution was evaporated under reduced pressure and dried. The dried solid was recrystallized from ethyl acetate and hexane to obtain 4.6 g (9.3 mmol) of 4,4′-bis (9-hydroxynonanyloxy) azobenzene as a bright yellow solid.

上記4,4'−ビス(9−ヒドロキシノナニルオキシ)アゾベンゼン4.6g(9.3mmol)をTHFに150ml溶解し,硫酸マグネシウムによって予備乾燥した後,トリエチルアミン5.2ml(37mmol)を加えた。次いでヒドロキノンを少量加え,氷冷下撹拌した。THF30mlで希釈したアクリル酸クロリド3ml(37mmol)をゆっくりと滴下した。さらに2時間氷冷下撹拌した後,室温で12時間撹拌した。その後,炭酸カリウム水溶液をpH10になるまで加え,THFを減圧留去し,反応液を減圧濾過した。残留物をクロロホルムに溶解し,有機層を希塩酸と食塩水を用いて洗浄した後,溶媒を減圧留去した。残渣をカラムクロマトグラフィー(クロロホルム)によって精製し,混合溶媒(酢酸エチル:メタノール=1:1)で再結晶を行い目的物である4,4'−ビス[9−(アクリロイルオキシ)ノナニルオキシ]アゾベンゼン(DA9AB)1.0g(1.6mmol)を得た。下記にDA9ABの収率,及びHNMR測定の結果を示す。
・収率17%
HNMR(δ,CDCl3):1.2-1.4(m,20H),1.6(m,8H),4.0(t,4H),4.1(t,4H),5.7(dd,2H),6.0(dd,2H),6.3(dd,2H),6.9(m,4H),7.8(m,4H)
上記式(7)に示したDA6ABについては,上記特許文献4に記載の方法にて合成した。
The above 4,4′-bis (9-hydroxynonanyloxy) azobenzene (4.6 g, 9.3 mmol) was dissolved in 150 ml of THF, pre-dried with magnesium sulfate, and then added with 5.2 ml (37 mmol) of triethylamine. Next, a small amount of hydroquinone was added and stirred under ice cooling. 3 ml (37 mmol) of acrylic acid chloride diluted with 30 ml of THF was slowly added dropwise. The mixture was further stirred for 2 hours under ice cooling, and then stirred at room temperature for 12 hours. Thereafter, an aqueous potassium carbonate solution was added until the pH reached 10, THF was distilled off under reduced pressure, and the reaction solution was filtered under reduced pressure. The residue was dissolved in chloroform, the organic layer was washed with dilute hydrochloric acid and brine, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (chloroform), recrystallized with a mixed solvent (ethyl acetate: methanol = 1: 1), and 4,4′-bis [9- (acryloyloxy) nonanyloxy] azobenzene (the target product). DA9AB) 1.0 g (1.6 mmol) was obtained. The yield of DA9AB and the results of 1 HNMR measurement are shown below.
・ Yield 17%
· 1 HNMR (δ, CDCl 3 ): 1.2-1.4 (m, 20H), 1.6 (m, 8H), 4.0 (t, 4H), 4.1 (t, 4H), 5.7 (dd, 2H), 6.0 (dd , 2H), 6.3 (dd, 2H), 6.9 (m, 4H), 7.8 (m, 4H)
About DA6AB shown to the said Formula (7), it synthesize | combined by the method of the said patent document 4. FIG.

<単官能性モノマーの合成>
上記式(4)に示したA9AB9については,上記架橋重合性モノマーDA9ABと同様の手順で合成し,NMR測定により目的の化合物が得られていることを確認した。下記にA9AB9のHNMR測定の結果を示す。
HNMR
(δ,CDCl3);0.86(t,4H),1.2-1.4(m,20H),4.0(t,4H),4.1(t,2H),5.8(dd,1H),6.1(dd,1H),6.4(dd,1H),6.9(m,4H),7.8(m,4H)
また,上記式(6)に示したAB6ABについては,上記特許文献4に記載の方法にて合成した。
<Synthesis of monofunctional monomer>
A9AB9 represented by the above formula (4) was synthesized in the same procedure as the above-mentioned crosslinkable monomer DA9AB, and it was confirmed by NMR measurement that the target compound was obtained. The results of 1 HNMR measurement of A9AB9 are shown below.
1 HNMR
(Δ, CDCl 3 ); 0.86 (t, 4H), 1.2-1.4 (m, 20H), 4.0 (t, 4H), 4.1 (t, 2H), 5.8 (dd, 1H), 6.1 (dd, 1H) , 6.4 (dd, 1H), 6.9 (m, 4H), 7.8 (m, 4H)
AB6AB shown in the above formula (6) was synthesized by the method described in Patent Document 4.

得られたA9AB9,A6AB6,DA9AB,DA6ABの相転移温度を表1に示す。
Table 1 shows the phase transition temperatures of the obtained A9AB9, A6AB6, DA9AB, and DA6AB.

<架橋液晶高分子フィルムの作製>
中性洗剤及びイソプロピルアルコール中で超音波洗浄したガラス基板上に,ポリイミド前駆体であるポリアミド酸の薄膜をスピンコート法により作製した。そして,加熱処理することによりポリイミド配向膜を有するガラス基板を得た。次いで,ラビング装置(E.H.C.RM-50)を用いてポリイミド面をラビングした後,シリカスペーサーを介してラビング方向がアンチパラレルになるように基板を貼り合せてホモジニアスセルとした。ホメオトロピックセルは,基板の両面にホメオトロピック配向処理を施すことにより得た。
<Production of cross-linked liquid crystal polymer film>
A thin film of polyamic acid, which is a polyimide precursor, was prepared by spin coating on a glass substrate ultrasonically cleaned in a neutral detergent and isopropyl alcohol. And the glass substrate which has a polyimide orientation film was obtained by heat-processing. Next, the polyimide surface was rubbed using a rubbing apparatus (EHCRM-50), and then the substrate was bonded through a silica spacer so that the rubbing direction was anti-parallel, to obtain a homogeneous cell. The homeotropic cell was obtained by applying a homeotropic alignment treatment to both sides of the substrate.

上記式(2)のCALP−Alk[1]からなる架橋液晶高分子フィルムを以下のようにして得た。すなわち,上記化学式(4)のA9AB9(単官能重合性モノマー)を20mol%,上記化学式(5)のDA9AB(架橋重合性モノマー)を80mol%の割合で混合し,光重合開始剤として上記化学式(8)のIrgacure784を2mol%添加した試料を等方相温度(97℃以上)まで昇温した。そして,毛細管現象を利用して上記液晶セルに封入した。この液晶セルを0.1℃/minでスメクチック相を示す89℃まで降温し,メソゲンを一軸配向させた後,高圧水銀灯の波長540nm以上,光強度3mW/cmの可視光を2.5時間照射して重合を行った。
A crosslinked liquid crystal polymer film comprising CALP-Alk [1] of the above formula (2) was obtained as follows. That is, 20 mol% of A9AB9 (monofunctional polymerizable monomer) of the chemical formula (4) and DA9AB (crosslinked polymerizable monomer) of the chemical formula (5) were mixed at a ratio of 80 mol%, and the above chemical formula ( The sample to which 2 mol% of Irgacure 784 of 8) was added was heated to an isotropic phase temperature (97 ° C. or higher). And it enclosed with the said liquid crystal cell using the capillary phenomenon. This liquid crystal cell was cooled to 89 ° C. showing a smectic phase at 0.1 ° C./min, mesogens were uniaxially oriented, and then visible light having a wavelength of 540 nm or more and a light intensity of 3 mW / cm 2 was applied for 2.5 hours. Polymerization was performed by irradiation.

上記式(3)のCALP−Alk[2]からなる架橋液晶高分子フィルムを以下のようにして得た。すなわち,上記化学式(6)のA6AB6(単官能重合性モノマー)を80mol%,上記化学式(7)のDA6AB(架橋重合性モノマー)を20mol%の割合で混合し,光重合開始剤として下記化学式(8)のIrgacure784を2mol%添加した試料を等方相温度(95℃)まで昇温した。そして,毛細管現象を利用して上記液晶セルに封入した。この液晶セルを0.5℃/minでネマチック相を示す88℃まで降温してメソゲンを一軸配向させた後,高圧水銀灯の波長545nm以上,光強度3mW/cmの可視光を2時間照射して重合を行った。その後,セルを剥離することにより架橋液晶高分子フィルムを得た。CALP−Alk[1],及びCALP−Alk[2]についてDSC測定を行ったところ,前者は30℃付近に,後者は60℃付近にガラス転移温度が観測された。 A crosslinked liquid crystal polymer film comprising CALP-Alk [2] of the above formula (3) was obtained as follows. That is, 80 mol% of A6AB6 (monofunctional polymerizable monomer) of the above chemical formula (6) and 20 mol% of DA6AB (crosslinked polymerizable monomer) of the above chemical formula (7) were mixed, and the following chemical formula ( The sample to which 2 mol% of Irgacure 784 of 8) was added was heated to an isotropic phase temperature (95 ° C.). And it enclosed with the said liquid crystal cell using the capillary phenomenon. The liquid crystal cell was cooled to 88 ° C. showing a nematic phase at 0.5 ° C./min to uniaxially align the mesogen, and then irradiated with visible light having a wavelength of 545 nm or more and a light intensity of 3 mW / cm 2 for 2 hours. Polymerization was performed. Thereafter, the cell was peeled to obtain a crosslinked liquid crystal polymer film. When DSC measurement was performed on CALP-Alk [1] and CALP-Alk [2], glass transition temperatures were observed around 30 ° C. for the former and around 60 ° C. for the latter.

<光駆動型アクチュエータの作製> 支持体としてポリエチレンフィルム(未延伸フィルム,50μm,東セロ製)を用い,架橋液晶高分子フィルムと支持体からなる光駆動型アクチュエータを以下の方法により作製した。まず,自動塗工装置I型(テスター産業製 PI-1210)及びバーコーターを用いて,ポリエチレンフィルム主面の一端部に溶液状の接着剤を供給し,ポリエチレンフィルムの主面全体に均一に広がるように接着剤を引き伸ばし,110℃に加熱乾燥して接着層をコートしたフィルムを得た。接着剤としては,アローベースSB-1200(ユニチカ製,酸変性ポリエチレン樹脂水性分散体),アデカボンタイターHUX380(ADEKA製、ポリウレタン樹脂水性分散体)との混合物を用いた。次いで,このフィルムと架橋液晶高分子フィルムを110℃の条件下で熱圧着によりラミネートした。 <Preparation of light-driven actuator> A polyethylene film (unstretched film, 50 μm, manufactured by Tosero) was used as a support, and a light-driven actuator comprising a crosslinked liquid crystal polymer film and a support was prepared by the following method. First, using an automatic coating device type I (PI-1210 manufactured by Tester Sangyo) and a bar coater, a solution-like adhesive is supplied to one end of the polyethylene film main surface and spreads uniformly over the main surface of the polyethylene film. In this way, the adhesive was stretched and heated to 110 ° C. to obtain a film coated with an adhesive layer. As an adhesive, a mixture of Arrow Base SB-1200 (manufactured by Unitika, acid-modified polyethylene resin aqueous dispersion) and Adeka Bontiter HUX380 (manufactured by ADEKA, polyurethane resin aqueous dispersion) was used. Subsequently, this film and the crosslinked liquid crystal polymer film were laminated by thermocompression bonding at 110 ° C.

(実験例1) 光駆動型アクチュエータ1dとして,6mm×5mmサイズ,厚み20μmのホモジニアス配向のCALP−Alk[1]から構成される架橋液晶高分子フィルム2を,16mm×8mmサイズの支持体フィルム3の中央部領域に上述の方法により積層したものを用いた。接着層の厚みは10μmとした。図7(a)に,本実験例1に係る光駆動型アクチュエータ1dの光照射前の形状写真を示す。図7(b)は,この光駆動型アクチュエータ1dに第1の活性光線である紫外光を7s照射した際の形状を示す写真である。同図に示すように,架橋液晶高分子フィルム2と支持体フィルム3全体が連動してフラットな形状に変形した。第2の活性光線である可視光を照射すると,およそ15sで図7(a)の形状に戻った。紫外光と可視光を交互に照射することにより,繰り返し上述の運動を誘起できることを確認した。 (Experimental example 1) As a light-driven actuator 1d, a crosslinked liquid crystal polymer film 2 composed of CALP-Alk [1] of 6 mm × 5 mm size and 20 μm thickness is used as a support film 3 of 16 mm × 8 mm size. What was laminated | stacked on the center part area | region of the above-mentioned method was used. The thickness of the adhesive layer was 10 μm. FIG. 7A shows a photograph of the shape of the light-driven actuator 1d according to Experimental Example 1 before light irradiation. FIG. 7B is a photograph showing the shape when the light-driven actuator 1d is irradiated with ultraviolet light as the first actinic ray for 7s. As shown in the figure, the cross-linked liquid crystal polymer film 2 and the entire support film 3 were deformed into a flat shape in conjunction with each other. When visible light as the second actinic ray was irradiated, the shape returned to the shape of FIG. It was confirmed that the above motion can be induced repeatedly by alternately irradiating ultraviolet light and visible light.

(実験例2) 次に,架橋液晶高分子成形体の種類を代えて上記実験例1と同様の実験を行った。すなわち,光駆動型アクチュエータ1eとして,5.5mm×4.5mm,厚み16μmのホモジニアス配向のCALP−Alk[2]から構成される架橋液晶高分子フィルム2を,14mm×5mmサイズの支持体フィルム3の中央部領域に上述の方法により積層したものを用いた。接着層の厚みは4μmとした。そして,60℃に設定したホットプレート(アズワン製,シャーマルホットプレート)上に光駆動型アクチュエータを載置して光運動挙動を検討した。 (Experimental example 2) Next, the experiment similar to the said experimental example 1 was done by changing the kind of bridge | crosslinking liquid crystal polymer molded object. That is, as the light-driven actuator 1e, a cross-linked liquid crystal polymer film 2 made of homogeneously oriented CALP-Alk [2] having a size of 5.5 mm × 4.5 mm and a thickness of 16 μm is used as a support film 3 having a size of 14 mm × 5 mm. What was laminated | stacked on the center part area | region of the above-mentioned method was used. The thickness of the adhesive layer was 4 μm. Then, an optically driven actuator was placed on a hot plate (manufactured by ASONE, Shamal hot plate) set to 60 ° C., and the optical motion behavior was examined.

図8(a)に,本実験例2に係る光駆動型アクチュエータの光照射前の形状写真を示す。図8(b)は,この光駆動型アクチュエータ1eに紫外光を6s照射した際の形状写真である。同図に示すように,架橋液晶高分子フィルム2と支持体フィルム3全体が連動してフラットな形状に変形した。図8(c)は,その後可視光を16s照射した際の形状写真である。同図に示すように,光照射前の元の形状に戻った。紫外光,可視光を交互に照射することにより,繰り返し上述の運動が誘起できることを確認した。   FIG. 8A shows a shape photograph of the light-driven actuator according to the second experimental example before light irradiation. FIG. 8B is a shape photograph when the light-driven actuator 1e is irradiated with ultraviolet light for 6s. As shown in the figure, the cross-linked liquid crystal polymer film 2 and the entire support film 3 were deformed into a flat shape in conjunction with each other. FIG. 8C is a shape photograph when visible light is irradiated for 16 s thereafter. As shown in the figure, it returned to its original shape before light irradiation. It was confirmed that the above motion can be induced repeatedly by alternately irradiating ultraviolet light and visible light.

(実験例3) 架橋液晶高分子成形体の液晶の配向性を代えて実験を行った。以下の点以外は,上記実験例2と同様とした。すなわち,本実験例3においては架橋液晶高分子成形体の配向として,ホモジニアス配向に代えてホメオトロピック配向のものを用いた。光駆動型アクチュエータ1fとして,9mm×5mm,厚み20μmのホメオトロピック配向のCALP−Alk[2]から構成される架橋液晶高分子フィルム2を,20mm×6mmサイズの支持体フィルム3の中央部領域に上述の方法により積層したものを用いた。接着層の厚みは4μmとした。 (Experimental example 3) It experimented by changing the orientation of the liquid crystal of a crosslinked liquid crystal polymer molding. Except for the following points, it was the same as the experimental example 2. That is, in this experimental example 3, as the orientation of the crosslinked liquid crystal polymer molded body, a homeotropic orientation was used instead of the homogeneous orientation. As a light-driven actuator 1f, a cross-linked liquid crystal polymer film 2 composed of CALP-Alk [2] having a homeotropic orientation of 9 mm × 5 mm and a thickness of 20 μm is provided in the central region of the support film 3 having a size of 20 mm × 6 mm. What was laminated | stacked by the above-mentioned method was used. The thickness of the adhesive layer was 4 μm.

本実験例3に係る光駆動型アクチュエータ1fの光照射前の形状写真を図9(a)に示す。図9(b)は,この光駆動型アクチュエータ1fに紫外光を21s照射した際の形状写真である。同図に示すように,緩やかに屈曲したフラットに近い架橋液晶高分子フィルム2と支持体フィルム3全体が,連動してより屈曲したアーチ型の形状に変形した。図9(c)は,その後可視光を150s照射した際の形状写真である。同図に示すように,光照射前の元の形状に戻ることを確認した。紫外光,可視光を交互に照射することにより,繰り返し上述の運動を誘起できた。   FIG. 9A shows a shape photograph of the light-driven actuator 1f according to Experimental Example 3 before light irradiation. FIG. 9B is a shape photograph when the light-driven actuator 1f is irradiated with ultraviolet light for 21 s. As shown in the figure, the cross-linked liquid crystal polymer film 2 and the entire support film 3 which are close to a flat and gently bent are deformed into a more bent arch shape in conjunction with each other. FIG. 9C is a shape photograph when visible light is irradiated for 150 s thereafter. As shown in the figure, it was confirmed that the original shape before light irradiation was restored. By alternately irradiating UV light and visible light, the above motion could be induced repeatedly.

(実験例4) 尺取虫型の光駆動型アクチュエータの一例について説明する。以下の点以外は,上記実験例1と同様とした。すなわち,本実験例4においては,光駆動型アクチュエータの載置面と当接する一の端部形状を略山形形状とした。支持体のサイズは11mm×5mm,架橋液晶高分子フィルムのサイズは6mm×4mmとした。照射プログラムは,以下の通りとした。すなわち,0s-3s紫外光,3s−8s可視光,8s−15s紫外光,15s−20s可視光,20s−25s紫外光,25s−31s可視光,31s−37s紫外光,37s−44s可視光,44s−50s紫外光,50s−55s可視光,55s−57s紫外光,57s−65s可視光とした。 (Experimental Example 4) An example of a lightworm-type light-driven actuator will be described. Except for the following points, the experiment was the same as Experimental Example 1. In other words, in the present experimental example 4, the shape of one end contacting the mounting surface of the optically driven actuator is a substantially chevron shape. The size of the support was 11 mm × 5 mm, and the size of the crosslinked liquid crystal polymer film was 6 mm × 4 mm. The irradiation program was as follows. That is, 0s-3s ultraviolet light, 3s-8s visible light, 8s-15s ultraviolet light, 15s-20s visible light, 20s-25s ultraviolet light, 25s-31s visible light, 31s-37s ultraviolet light, 37s-44s visible light, 44s-50s ultraviolet light, 50s-55s visible light, 55s-57s ultraviolet light, 57s-65s visible light were used.

本実験例4に係る光駆動型アクチュエータ1gの光照射前の形状写真を図10(a)に示す。図10中の右上に記載の時間は,照射実験開始後の時間を示している。この光駆動型アクチュエータ1gに紫外光を照射すると,屈曲したアーチ型形状から緩やかに屈曲したフラットに近い形状に変形した。これに,可視光を照射すると,緩やかに屈曲したフラットに近い形状から屈曲したアーチ型形状に変形する。図10(b)の写真は,照射実験を開始してから5秒経過した段階(紫外光を照射した後,可視光を照射している段階)の形状を示したものである。図10(c)は同様に15s後,図10(d)は30s後,図10(e)は50s後,図10(f)は65s後の写真を示している。紫外光を照射した際には,第2当接部8の当接位置が照射前後を通じて変わらないのに対し,第1当接部7は前進した。一方,可視光を照射した際には,第1当接部7の当接位置が照射前後を通じて変わらないのに対し,第2当接部8は第1当接部7側に前進した。紫外光と可視光を交互に照射することにより,屈曲運動方向を反転させながら尺取虫のように移動することを確認した。第1当接部7を移動方向前部,第2当接部8を移動方向後部として65sで約10mm移動した。紫外光,可視光を交互に照射することにより,繰り返し上述の運動が誘起できることを確認した。   A photograph of the shape of the light-driven actuator 1g according to Experimental Example 4 before light irradiation is shown in FIG. The time described in the upper right in FIG. 10 indicates the time after the start of the irradiation experiment. When this light-driven actuator 1g was irradiated with ultraviolet light, it was deformed from a bent arch shape to a shape that was close to a gently bent flat shape. On the other hand, when visible light is irradiated, it deforms from a shape that is close to a gently bent flat shape to a bent arch shape. The photograph in FIG. 10 (b) shows the shape at the stage where 5 seconds have elapsed since the start of the irradiation experiment (the stage in which visible light is irradiated after irradiation with ultraviolet light). Similarly, FIG. 10C shows a photograph after 15 seconds, FIG. 10D after 30 seconds, FIG. 10E after 50 seconds, and FIG. 10F after 65 seconds. When the ultraviolet light was irradiated, the contact position of the second contact part 8 did not change before and after irradiation, whereas the first contact part 7 moved forward. On the other hand, when the visible light is irradiated, the contact position of the first contact portion 7 does not change before and after the irradiation, whereas the second contact portion 8 advances toward the first contact portion 7 side. By irradiating UV light and visible light alternately, it was confirmed that it moved like a beetle while reversing the direction of bending motion. The first abutting portion 7 was moved about 10 mm in 65 s with the front portion in the moving direction and the second abutting portion 8 being the rear portion in the moving direction. It was confirmed that the above motion can be induced repeatedly by alternately irradiating ultraviolet light and visible light.

(実験例5) 架橋液晶高分子成形体の種類を代えて上記実験例4と同様の実験を行った。すなわち,光駆動型アクチュエータ1hとして,6mm×7mm,厚み20μmのホモジニアス配向のCALP−Alk[2]から構成される架橋液晶高分子フィルム2を,17mm×7mmサイズの支持体フィルム3の中央部領域に上述の方法により積層したものを用いた。接着層は5μm,保護層として接着層と同様のものを2μm積層した。そして,上記実験例2と同様に,60℃のホットプレート上で光運動挙動を検討した。その他の条件は,上記実験例1と同様とした。照射プログラムは,以下の通りとした。すなわち,0−9s紫外光,9−16s可視光,6−28s紫外光,28−37s可視光,37−46s紫外光,46−54s可視光,54−61s紫外光,61−70s可視光,71−80s紫外光,80−90s可視光とした。 (Experimental Example 5) The same experiment as in Experimental Example 4 was performed by changing the type of the crosslinked liquid crystal polymer molded body. That is, a cross-linked liquid crystal polymer film 2 composed of CALP-Alk [2] having a homogeneous orientation of 6 mm × 7 mm and a thickness of 20 μm is used as the light-driven actuator 1h, and the central region of the support film 3 having a size of 17 mm × 7 mm. The one laminated by the method described above was used. The adhesive layer was 5 μm, and a protective layer similar to the adhesive layer was laminated 2 μm. In the same manner as in Experimental Example 2, the optical motion behavior was examined on a 60 ° C. hot plate. Other conditions were the same as in Experimental Example 1 above. The irradiation program was as follows. That is, 0-9s ultraviolet light, 9-16s visible light, 6-28s ultraviolet light, 28-37s visible light, 37-46s ultraviolet light, 46-54s visible light, 54-61s ultraviolet light, 61-70s visible light, 71-80s ultraviolet light and 80-90s visible light were used.

本実験例5に係る光駆動型アクチュエータ1hの光照射前の形状写真を図11(a)に示す。この光駆動型アクチュエータ1hに紫外光を照射すると,屈曲したアーチ型形状からより緩やかに屈曲したフラットに近い形状に変形した。一方,この状態の光駆動型アクチュエータに可視光を照射すると,緩やかに屈曲したフラットに近い形状から屈曲したアーチ型形状に変形した。図11(b)は照射開始9s後,以降同様にして図11(c)は15s後,図11(d)は28s後,図11(e)は50s後,図11(f)は80s後,図11(g)は90s後の写真を示している。紫外光と可視光を切り替え照射することにより,屈曲運動方向を反転させながら尺取虫のように移動することを確認した。第1当接部7を移動方向前部,第2当接部8を移動方向後部として120sで約17mm移動した。紫外光,可視光を交互に照射することにより,上述の運動を繰り返し誘起できた。   A photograph of the shape of the light-driven actuator 1h according to Experimental Example 5 before light irradiation is shown in FIG. When this light-driven actuator 1h was irradiated with ultraviolet light, it was deformed from a bent arch shape to a shape that was closer to a bent shape. On the other hand, when the light-driven actuator in this state was irradiated with visible light, it deformed from a shape that was gently bent to a bent arch shape. FIG. 11 (b) is 9s after the start of irradiation, and after that, FIG. 11 (c) is after 15s, FIG. 11 (d) is after 28s, FIG. 11 (e) is after 50s, and FIG. 11 (f) is after 80s. FIG. 11 (g) shows a photograph after 90 s. By switching and irradiating ultraviolet light and visible light, it was confirmed that it moved like a beetle insect while reversing the bending motion direction. The first abutting portion 7 was moved about 17 mm in 120 s with the front portion in the moving direction and the second abutting portion 8 being the rear portion in the moving direction. By alternately irradiating UV light and visible light, the above motion could be induced repeatedly.

(実験例6) 屈曲自在に変形可能な光駆動型アクチュエータについて検討を行った。以下の点以外は,上記実験例1と同様にして実験を行った。すなわち,光駆動型アクチュエータ1iとして,全長34mm,幅4mmの支持体フィルム3上に,5mm×3mm,厚み20μmのホモジニアス配向のCALP−Alk[1]から構成される第1の架橋液晶高分子フィルム2i,及び8mm×3mm,厚み20μmのホモジニアス配向のCALP−Alk[1]から構成される架橋液晶高分子フィルム2iを積層したものを用いた。第1の架橋液晶高分子フィルム2i全長34mmの支持体フィルム3の一端部から13mm〜18mmの位置に,第2の架橋液晶高分子フィルム2iは支持体フィルム3の先と同じ一端部から23mm〜31mmの位置に固定した。接着層の厚みは2μmとした。光照射は,架橋液晶高分子フィルム主面の略垂直方向から,当該部位のほぼ全面が照射されるように行った。照射プログラムは,以下の通りとした。括弧内に照射領域を示す。すなわち,0s-4s紫外光(第1の架橋液晶高分子フィルム2i),4s−8s可視光(第1の架橋液晶高分子フィルム2i),8s−12s紫外光(第2の架橋液晶高分子フィルム2i),12s−18s紫外光(第1の架橋液晶高分子フィルム2i),18s−25s可視光(第1の架橋液晶高分子フィルム2i),25s−28s紫外光(第2の架橋液晶高分子フィルム2i),28s−30s可視光(第2の架橋液晶高分子フィルム2i)とした。光駆動型アクチュエータの作製方法は,上記実験例1と同様とした。 (Experimental example 6) The optically driven actuator which can be bent freely was examined. The experiment was performed in the same manner as in Experimental Example 1 except for the following points. That is, as the light-driven actuator 1i, the first cross-linked liquid crystal polymer film composed of homogeneously aligned CALP-Alk [1] having a length of 34 mm and a width of 4 mm on a support film 3 having a length of 5 mm × 3 mm and a thickness of 20 μm. 2i 1, and 8 mm × 3 mm, was used as the laminating composed crosslinked liquid crystal polymer film 2i 2 from CALP-Alk homogeneously oriented in the thickness 20 [mu] m [1]. The first cross-linking the liquid crystal polymer film 2i 1 is the position of 13mm~18mm from one end of the support film 3 of the total length 34 mm, a second crosslinked liquid crystal polymer film 2i 2 are the same one as the above support film 3 It fixed to the position of 23 mm-31 mm from the part. The thickness of the adhesive layer was 2 μm. The light irradiation was performed so that almost the entire surface of the cross-linked liquid crystal polymer film was irradiated from substantially the vertical direction. The irradiation program was as follows. The irradiation area is shown in parentheses. That is, 0s-4s ultraviolet light (first crosslinked liquid crystal polymer film 2i 1 ), 4s-8s visible light (first crosslinked liquid crystal polymer film 2i 1 ), 8s-12s ultraviolet light (second crosslinked liquid crystal high film). Molecular film 2i 2 ), 12s-18s ultraviolet light (first crosslinked liquid crystal polymer film 2i 1 ), 18s-25s visible light (first crosslinked liquid crystal polymer film 2i 1 ), 25s-28s ultraviolet light (second liquid crystal polymer film 2i 2) of crosslinking, and the 28s-30s visible light (second crosslinking the liquid crystal polymer film 2i 2). The method for manufacturing the optically driven actuator was the same as in Experimental Example 1.

本実験例6に係る光駆動型アクチュエータ1iの光照射前の形状写真を図12(a)に示す。光照射前の初期形状は,同図に示すように,全体として楕円形状となっている。載置面4との固定部を下側とし,第1の架橋液晶高分子フィルム2iが図中右側の湾曲部を,第2の架橋液晶高分子フィルム2iが図中左側の湾曲部を構成している。第2の架橋液晶高分子フィルム2iの一端部が載置面4に固定された支持体フィルム3上に接触して重なっている。この楕円形状の光駆動型アクチュエータ1iに,上述の照射プログラムにて光照射した際の形状写真を図12(b)〜図12(l)に示す。より詳細には,図12(b)は照射開始2s後,以降同様にして図12(c)は4s後,図12(d)は7s後,図12(e)は10s後,図12(f)は12s後,図12(g)は14s後,図12(h)は16s後,図12(i)は20s後,図12(j)は24s後,図12(k)は27s後,図12(l)は30s後の写真を示している。 A photograph of the shape of the light-driven actuator 1i according to Experimental Example 6 before light irradiation is shown in FIG. The initial shape before light irradiation is an elliptical shape as a whole as shown in FIG. The first cross-linked liquid crystal polymer film 2 i 1 has a curved portion on the right side in the figure, and the second cross-linked liquid crystal polymer film 2 i 2 has a curved portion on the left side in the figure. It is composed. One end of the second crosslinked liquid crystal polymer film 2 i 2 is in contact with and overlapped with the support film 3 fixed to the mounting surface 4. FIGS. 12 (b) to 12 (l) show shape photographs when the elliptical light-driven actuator 1i is irradiated with light by the above-described irradiation program. More specifically, FIG. 12B shows the irradiation after 2 s, FIG. 12C shows after 4 s, FIG. 12D shows after 7 s, FIG. 12E shows after 10 s, FIG. f) after 12 s, FIG. 12 (g) after 14 s, FIG. 12 (h) after 16 s, FIG. 12 (i) after 20 s, FIG. 12 (j) after 24 s, and FIG. 12 (k) after 27 s. FIG. 12 (l) shows a photograph after 30 seconds.

第1の架橋液晶高分子フィルム2iに紫外光を照射すると,第1の架橋液晶高分子フィルム2iが湾曲形状からフラットな形状になる方向に屈曲運動し,載置面4に固定された支持体フィルム3と第1の架橋液晶高分子フィルム2iとの境界近傍を中心として,第1の架橋液晶高分子フィルム2iが図中時計方向に回転した(図12(b),(c)参照)。この際,載置面4に固定されていない支持体フィルム3及びこれに固定されている第2の架橋液晶高分子フィルム2iも光照射前の形態をほぼ保持しながら同様に回転した。紫外光照射により,第1の架橋液晶高分子フィルム2iと第2の架橋液晶高分子フィルム2iの間隙に位置する支持体フィルム3と載置面4との成す角度が図中およそ時計2時の位置まで動いた段階で可視光照射に切り替えた。その結果,図中反時計方向に回転した(図12(d)参照)。可視光照射により,第1の架橋液晶高分子フィルム2iと第2の架橋液晶高分子フィルム2iの間隙に位置する支持体フィルム3と,載置面4との成す角度がおよそ時計方向12時まで動いた段階で,第2の架橋液晶高分子フィルム2iに紫外光を照射するように切り替えた。すると,第2の架橋液晶高分子フィルム2iが,図中時計方向に回転して当該部位がフラットに近い形状となった(図12(e)参照)。さらに,紫外光を照射し続けると,第2の架橋液晶高分子フィルム2iが,光照射前の屈曲方向と反対側に屈曲した(図12(f)参照)。 When the first cross-linked liquid crystal polymer film 2 i 1 is irradiated with ultraviolet light, the first cross-linked liquid crystal polymer film 2 i 1 bends in a direction from a curved shape to a flat shape and is fixed to the mounting surface 4. The first cross-linked liquid crystal polymer film 2 i 1 is rotated clockwise in the figure around the vicinity of the boundary between the support film 3 and the first cross-linked liquid crystal polymer film 2 i 1 (FIGS. 12B and 12C). )reference). At this time, the support film 3 not fixed to the mounting surface 4 and the second crosslinked liquid crystal polymer film 2i 2 fixed to the support film 3 were similarly rotated while substantially maintaining the form before light irradiation. The angle formed between the support film 3 and the mounting surface 4 positioned in the gap between the first cross-linked liquid crystal polymer film 2 i 1 and the second cross-linked liquid crystal polymer film 2 i 2 by ultraviolet light irradiation is approximately a clock 2 in the figure. When it moved to the time position, it switched to visible light irradiation. As a result, it was rotated counterclockwise in the figure (see FIG. 12D). By the visible light irradiation, the angle formed between the support film 3 positioned in the gap between the first crosslinked liquid crystal polymer film 2 i 1 and the second crosslinked liquid crystal polymer film 2 i 2 and the mounting surface 4 is approximately clockwise 12. At the stage of moving to the time, the second crosslinked liquid crystal polymer film 2i 2 was switched to irradiate with ultraviolet light. Then, the second cross-linked liquid crystal polymer film 2i 2 was rotated clockwise in the figure, and the part became a shape close to flat (see FIG. 12 (e)). Furthermore, when the ultraviolet light was continuously irradiated, the second crosslinked liquid crystal polymer film 2i 2 was bent to the side opposite to the bending direction before the light irradiation (see FIG. 12 (f)).

次いで,第1の架橋液晶高分子フィルム2iに紫外光を照射すると,第1の架橋液晶高分子フィルム2iと載置面4との成す角度がおよそ時計方向12時の位置から時計方向2時と3時の間ぐらいの位置まで回転した(図12(g),(h)参照)。可視光照射に切り替えると,図12(i),(j)に示すように図中反時計方向に回転した。次いで,第2の架橋液晶高分子フィルム2iに紫外光,可視光を照射すると,それぞれ図12(k),図12(l)に示すように形状変化した。光照射領域,光照射時間,光強度等を制御することにより,支持体フィルム3の可動可能領域全体を大きく,なめらかに動かすことができた。 Next, when the first cross-linked liquid crystal polymer film 2 i 1 is irradiated with ultraviolet light, the angle formed between the first cross-linked liquid crystal polymer film 2 i 1 and the mounting surface 4 is approximately clockwise 2 from the position at 12 o'clock. It rotated to a position between about 3:00 and 3 o'clock (see FIGS. 12 (g) and 12 (h)). When switched to visible light irradiation, it rotated counterclockwise in the figure as shown in FIGS. Next, when the second crosslinked liquid crystal polymer film 2i 2 was irradiated with ultraviolet light and visible light, the shape changed as shown in FIGS. 12 (k) and 12 (l), respectively. By controlling the light irradiation area, light irradiation time, light intensity, etc., the entire movable area of the support film 3 could be moved smoothly and smoothly.

本発明に係る光駆動型アクチュエータ,及びこの光駆動型アクチュエータを備える動力伝達システムは,上記光運動特性を利用して,例えば,プラスチックモーター,スイッチング素子,玩具,ロボットのアーム,医療用カテーテル,マイクロ化学分析システム,マイクロマシン等の種々の用途に用いることができる。   An optically driven actuator according to the present invention and a power transmission system including the optically driven actuator, for example, use the optical motion characteristics described above, for example, a plastic motor, a switching element, a toy, a robot arm, a medical catheter, a micro It can be used for various applications such as chemical analysis systems and micromachines.

本実施形態1に係る光駆動型アクチュエータの形状の一例を示す模式的斜視図。FIG. 3 is a schematic perspective view showing an example of the shape of the optically driven actuator according to the first embodiment. (a)はアゾベンゼン分子の異性化を説明するための模式図,(b)は架橋液晶高分子の構造変化を説明するための模式図。(A) is a schematic diagram for demonstrating the isomerization of an azobenzene molecule, (b) is a schematic diagram for demonstrating the structural change of a bridge | crosslinking liquid crystal polymer. 架橋液晶高分子成形体の異方的変形を説明するための部分拡大図。The elements on larger scale for demonstrating the anisotropic deformation | transformation of a crosslinked liquid crystal polymer molded object. 本実施形態2に係る光駆動型アクチュエータの一例を説明するための模式的断面図。FIG. 6 is a schematic cross-sectional view for explaining an example of an optically driven actuator according to the second embodiment. (a)は本実施形態3に係る光駆動型アクチュエータの一例を説明するための模式的正面図,(b)及び(c)はその側面図。(A) is a typical front view for demonstrating an example of the optical drive type actuator which concerns on this Embodiment 3, (b) and (c) are the side views. 本実施形態4に係る光駆動型アクチュエータの運動挙動の一例を説明するための模式図。FIG. 10 is a schematic diagram for explaining an example of motion behavior of an optically driven actuator according to the fourth embodiment. (a)は実験例1に係る光照射前の光駆動型アクチュエータの写真,(b)は紫外光照射後の光駆動型アクチュエータの写真。(A) is a photograph of a light-driven actuator before light irradiation according to Experimental Example 1, and (b) is a photograph of a light-driven actuator after ultraviolet light irradiation. (a)〜(c)は,実験例2に係る光駆動型アクチュエータの写真。(A)-(c) is a photograph of the optically driven actuator according to Experimental Example 2. (a)〜(c)は,実験例3に係る光駆動型アクチュエータの写真。(A)-(c) is a photograph of the optically driven actuator according to Experimental Example 3. (a)〜(f)は,実験例4に係る光駆動型アクチュエータの写真。(A)-(f) is a photograph of the optically driven actuator according to Experimental Example 4. (a)〜(g)は,実験例5に係る光駆動型アクチュエータの写真。(A)-(g) is a photograph of the optically driven actuator according to Experimental Example 5. (a)〜(l)は,実験例6に係る光駆動型アクチュエータの写真。(A)-(l) is a photograph of the optically driven actuator according to Experimental Example 6. 従来例に係る光駆動型アクチュエータの模式的斜視図。The typical perspective view of the optically driven actuator which concerns on a prior art example.

符号の説明Explanation of symbols

1 光駆動型アクチュエータ
2 架橋液晶高分子フィルム
3 支持体フィルム
4 載置面
5 接着層
6 保護層
7 第1当接部
8 第2当接部
10 トランス体
11 トランス型アゾベンゼン側鎖
12 非アゾベンゼン側鎖
13 紫外光
14 可視光
20 シス体
21 シス型側鎖
30 架橋液晶高分子フィルム
31 高分子主鎖
41 第1端部
42 第2端部
43 天板
44 弁体
45 基板
46 オリフィス
51 第2当接部初期ライン
52 第1当接部初期ライン
53 第2当接部移動ライン
54 第1当接部移動ライン
DESCRIPTION OF SYMBOLS 1 Light drive type actuator 2 Crosslinked liquid crystal polymer film 3 Support film 4 Mounting surface 5 Adhesive layer 6 Protective layer 7 First contact portion 8 Second contact portion 10 Transformer body 11 Trans-type azobenzene side chain 12 Non-azobenzene side Chain 13 Ultraviolet light 14 Visible light 20 Cis body 21 Cis-type side chain 30 Cross-linked liquid crystal polymer film 31 Polymer main chain 41 First end 42 Second end 43 Top plate 44 Valve element 45 Substrate 46 Orifice 51 Second Contact initial line 52 First contact initial line 53 Second contact moving line 54 First contact moving line

Claims (13)

第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,
前記第1の活性光線,及び第2の活性光線を照射して前記架橋液晶高分子成形体の屈曲運動方向を反転させて,尺取虫のように移動する光駆動型アクチュエータ。
A light-driven actuator comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray,
A light-driven actuator that moves like a worm by irradiating the first actinic ray and the second actinic ray to reverse the bending motion direction of the crosslinked liquid crystal polymer molded body.
請求項1に記載の光駆動型アクチュエータにおいて,
載置部との当接部として,前記尺取虫のように移動する移動方向前部に第1当接部を,前記移動方向後部に第2当接部を設け,
前記第1当接部の前記載置部に対する圧力を前記第2当接部のそれに比して小さくすることを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to claim 1,
As the contact portion with the mounting portion, a first contact portion is provided at the front portion in the movement direction that moves like the scale insect, and a second contact portion is provided at the rear portion in the movement direction,
An optically driven actuator characterized in that a pressure applied to the mounting portion of the first contact portion is smaller than that of the second contact portion.
請求項2に記載の光駆動型アクチュエータにおいて,
前記第1当接部と前記第2当接部の形状を非対称とすることを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to claim 2,
An optically driven actuator characterized in that the shapes of the first contact portion and the second contact portion are asymmetric.
請求項2又は3に記載の光駆動型アクチュエータにおいて,
前記第1当接部をフラット形状とし,前記第2当接部を略山形形状の頂部とすることを特徴とする光駆動型アクチュエータ。
The light-driven actuator according to claim 2 or 3,
An optically driven actuator characterized in that the first abutting portion has a flat shape and the second abutting portion has a substantially chevron-shaped top.
請求項1,2,3又は4に記載の光駆動型アクチュエータにおいて,
前記架橋液晶高分子成形体を可撓性のある支持体上に固定し,前記第1の活性光線及び第2の活性光線の照射に応じて,前記支持体を前記架橋液晶高分子成形体と連動して変形させることを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to claim 1, 2, 3, or 4,
The crosslinked liquid crystal polymer molded body is fixed on a flexible support, and the support is bonded to the crosslinked liquid crystal polymer molded body in response to the irradiation with the first actinic ray and the second actinic ray. An optically driven actuator characterized by being deformed in conjunction.
第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備えるシート状の光駆動型アクチュエータであって,
メソゲン部位を配向制御して重合,又は架橋することにより得た前記架橋液晶高分子成形体を,可撓性を有する支持体上に積層することにより,前記第1の活性光線及び第2の活性光線の照射前の主面の形状を調整した光駆動型アクチュエータ。
A sheet-like light-driven actuator comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray,
By laminating the cross-linked liquid crystal polymer molded body obtained by polymerizing or cross-linking by controlling the orientation of mesogen sites, the first actinic ray and the second active light are laminated. A light-driven actuator that adjusts the shape of the main surface before light irradiation.
請求項6に記載の光駆動型アクチュエータにおいて,
前記架橋液晶高分子成形体が,前記メソゲンをホモジニアス 、ツイスト、ホメオトロピック 、ハイブリッド、ベンド又はスプレー配向させて重合することにより得られたことを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to claim 6,
A light-driven actuator obtained by polymerizing the cross-linked liquid crystal polymer molded body by polymerizing the mesogen by homogeneous, twist, homeotropic, hybrid, bend or spray alignment.
請求項6又は7に記載の光駆動型アクチュエータにおいて,
前記支持体には,前記架橋液晶高分子成形体が積層されていない非積層領域があり,
前記第1の活性光線と第2の活性光線の照射に応じて前記架橋液晶高分子成形体の形状変化を誘起し,これに連動させて前記支持体における非積層領域の少なくとも一部の形状変化を誘起する光駆動型アクチュエータ。
The optically driven actuator according to claim 6 or 7,
The support has a non-laminated region where the crosslinked liquid crystal polymer molded body is not laminated,
In response to irradiation with the first actinic ray and the second actinic ray, a shape change of the crosslinked liquid crystal polymer molded body is induced, and in association with this, a shape change of at least a part of the non-laminated region in the support is performed. Light-driven actuator that induces
第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,
前記架橋液晶高分子成形体は可撓性を有する支持体上に固定され,前記架橋液晶高分子成形体に対する前記第1の活性光線,及び第2の活性光線の照射条件に応じて,バネのように伸縮する光駆動型アクチュエータ。
A light-driven actuator comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray,
The cross-linked liquid crystal polymer molded body is fixed on a flexible support, and depending on the irradiation conditions of the first active light beam and the second active light beam to the cross-linked liquid crystal polymer molded body, Light-driven actuator that expands and contracts like this.
第1の活性光線,及び第2の活性光線の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータであって,
前記架橋液晶高分子成形体は可撓性を有する支持体上に固定され,前記架橋液晶高分子成形体に対する前記第1の活性光線,及び第2の活性光線の照射条件に応じて,屈曲自在に変形する光駆動型アクチュエータ。
A light-driven actuator comprising a crosslinked liquid crystal polymer molded body containing a photochromic molecule that can be reversibly isomerized by irradiation with a first actinic ray and a second actinic ray,
The crosslinked liquid crystal polymer molded body is fixed on a flexible support, and can be bent according to the irradiation conditions of the first actinic ray and the second actinic ray to the crosslinked liquid crystal polymer molded body. Light-driven actuator that transforms into
請求項5〜10のいずれか1項に記載の光駆動型アクチュエータにおいて,
前記支持体が高分子成形体であることを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to any one of claims 5 to 10,
An optically driven actuator, wherein the support is a polymer molded body.
請求項1〜11のいずれか1項に記載の光駆動型アクチュエータにおいて,
前記フォトクロミック分子が,アゾベンゼンであることを特徴とする光駆動型アクチュエータ。
The optically driven actuator according to any one of claims 1 to 11,
A light-driven actuator, wherein the photochromic molecule is azobenzene.
請求項1〜12のいずれか1項に記載の光駆動型アクチュエータと,当該光駆動型アクチュエータに前記第1の活性光線,及び第2の活性光線を照射する光源を備える動力伝達システム。   A power transmission system comprising: the optically driven actuator according to any one of claims 1 to 12; and a light source that irradiates the optically driven actuator with the first active light beam and the second active light beam.
JP2007058593A 2007-03-08 2007-03-08 Optically driven actuator and power transmission system Expired - Fee Related JP5224261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058593A JP5224261B2 (en) 2007-03-08 2007-03-08 Optically driven actuator and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058593A JP5224261B2 (en) 2007-03-08 2007-03-08 Optically driven actuator and power transmission system

Publications (2)

Publication Number Publication Date
JP2008228368A true JP2008228368A (en) 2008-09-25
JP5224261B2 JP5224261B2 (en) 2013-07-03

Family

ID=39846336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058593A Expired - Fee Related JP5224261B2 (en) 2007-03-08 2007-03-08 Optically driven actuator and power transmission system

Country Status (1)

Country Link
JP (1) JP5224261B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068691A (en) * 2008-09-12 2010-03-25 Tokyo Institute Of Technology Optical-driving actuator, its manufacturing method, and power transfer system
WO2013176287A2 (en) * 2012-05-25 2013-11-28 大研医器株式会社 Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact
WO2015151459A1 (en) * 2014-04-01 2015-10-08 オリンパス株式会社 Optical driving device
JP2017505600A (en) * 2014-01-28 2017-02-16 浙江大学 Flexible smart power structure
JPWO2016135775A1 (en) * 2015-02-25 2017-11-30 オリンパス株式会社 Optical drive device
CN107696022A (en) * 2017-09-06 2018-02-16 上海交通大学 Multidirectional wriggling soft robot
WO2018054799A1 (en) 2016-09-21 2018-03-29 Koninklijke Philips N.V. Actuator device, actuation method and manufacturing method
WO2020027379A1 (en) * 2018-08-01 2020-02-06 서울대학교 산학협력단 Actuator using photo-responsive shape-changing construct and method of driving same
WO2020141665A1 (en) * 2019-01-02 2020-07-09 서울대학교산학협력단 Photo-responsive self-deforming structure and method of driving same
CN115260783A (en) * 2022-08-10 2022-11-01 东南大学 Liquid crystal elastomer actuator and application
CN116690533A (en) * 2023-04-26 2023-09-05 哈尔滨工业大学 Module based on paper folding structure and bionic soft motion robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236327B2 (en) 2014-01-31 2017-11-22 日東電工株式会社 Method for producing photoresponsive cross-linked liquid crystal polymer film
KR101817225B1 (en) * 2016-06-03 2018-02-21 서울대학교산학협력단 Photo-responsive composite actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159443A (en) * 1997-11-27 1999-06-15 Toshio Kunugi Highly sensitive electrically deforming method of pyrrole high polymer film or fiber
JP2003128732A (en) * 2001-10-24 2003-05-08 National Institute Of Advanced Industrial & Technology Photoresponsive polymer membrane material
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
WO2005075605A1 (en) * 2004-02-04 2005-08-18 Koninklijke Philips Electronics N.V. Flexible foil moveable by non-mechanical means
JP2005229216A (en) * 2004-02-10 2005-08-25 Fuji Photo Film Co Ltd Direction control device, automatic tracing system and actuator
JP2006282990A (en) * 2005-03-10 2006-10-19 Jsr Corp Thermoplastic resin composition, method for producing the same, and optical actuator material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159443A (en) * 1997-11-27 1999-06-15 Toshio Kunugi Highly sensitive electrically deforming method of pyrrole high polymer film or fiber
JP2003128732A (en) * 2001-10-24 2003-05-08 National Institute Of Advanced Industrial & Technology Photoresponsive polymer membrane material
JP2005023151A (en) * 2003-06-30 2005-01-27 Jsr Corp Optically driven actuator, molecular valve and photoresponsive material
WO2005075605A1 (en) * 2004-02-04 2005-08-18 Koninklijke Philips Electronics N.V. Flexible foil moveable by non-mechanical means
JP2007521971A (en) * 2004-02-04 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flexible foil movable by non-mechanical means
JP2005229216A (en) * 2004-02-10 2005-08-25 Fuji Photo Film Co Ltd Direction control device, automatic tracing system and actuator
JP2006282990A (en) * 2005-03-10 2006-10-19 Jsr Corp Thermoplastic resin composition, method for producing the same, and optical actuator material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068691A (en) * 2008-09-12 2010-03-25 Tokyo Institute Of Technology Optical-driving actuator, its manufacturing method, and power transfer system
WO2013176287A2 (en) * 2012-05-25 2013-11-28 大研医器株式会社 Deformation method for crosslinkable liquid-crystal polymer material, and optically driven compact
WO2013176287A3 (en) * 2012-05-25 2014-01-16 大研医器株式会社 Deformation method for crosslinkable liquid-crystal polymer material, and optically drivable compact
JP2017505600A (en) * 2014-01-28 2017-02-16 浙江大学 Flexible smart power structure
WO2015151459A1 (en) * 2014-04-01 2015-10-08 オリンパス株式会社 Optical driving device
JPWO2016135775A1 (en) * 2015-02-25 2017-11-30 オリンパス株式会社 Optical drive device
US11274253B2 (en) 2016-09-21 2022-03-15 Koninklijke Philips N.V. Actuator device, actuation method and manufacturing method
WO2018054799A1 (en) 2016-09-21 2018-03-29 Koninklijke Philips N.V. Actuator device, actuation method and manufacturing method
RU2744599C2 (en) * 2016-09-21 2021-03-11 Конинклейке Филипс Н.В. Actuator apparatus, method of actuation and method of manufacture
CN107696022B (en) * 2017-09-06 2021-01-08 上海交通大学 Multidirectional wriggling software robot
CN107696022A (en) * 2017-09-06 2018-02-16 上海交通大学 Multidirectional wriggling soft robot
WO2020027379A1 (en) * 2018-08-01 2020-02-06 서울대학교 산학협력단 Actuator using photo-responsive shape-changing construct and method of driving same
US20210332805A1 (en) * 2018-08-01 2021-10-28 Seoul National University R&Db Foundation Actuator using photo-responsive shape-changing construct and method of driving same
US11598319B2 (en) 2018-08-01 2023-03-07 Seoul National University R&Db Foundation Actuator using photo-responsive shape-changing construct and method of driving same
WO2020141665A1 (en) * 2019-01-02 2020-07-09 서울대학교산학협력단 Photo-responsive self-deforming structure and method of driving same
US11897184B2 (en) 2019-01-02 2024-02-13 Seoul National University R&Db Foundation Photo-responsive self-deforming structure and method of driving same
CN115260783A (en) * 2022-08-10 2022-11-01 东南大学 Liquid crystal elastomer actuator and application
CN115260783B (en) * 2022-08-10 2024-05-28 东南大学 Liquid crystal elastomer actuator and application
CN116690533A (en) * 2023-04-26 2023-09-05 哈尔滨工业大学 Module based on paper folding structure and bionic soft motion robot
CN116690533B (en) * 2023-04-26 2024-05-07 哈尔滨工业大学 Module based on paper folding structure and bionic soft motion robot

Also Published As

Publication number Publication date
JP5224261B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224261B2 (en) Optically driven actuator and power transmission system
Zhang et al. 4D printing of a liquid crystal elastomer with a controllable orientation gradient
Fang et al. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via Michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers
Godman et al. Synthesis of elastomeric liquid crystalline polymer networks via chain transfer
Mahimwalla et al. Azobenzene photomechanics: prospects and potential applications
Jiang et al. Actuators based on liquid crystalline elastomer materials
Yang et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions
Lee et al. Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks
Wang et al. Hydrogen bond enhances photomechanical swing of liquid-crystalline polymer bilayer films
White et al. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers
Tang et al. Optical pendulum generator based on photomechanical liquid-crystalline actuators
Chang et al. Liquid crystals obtained from disclike mesogenic diacetylenes and their polymerization
Ube et al. Photomobile polymer materials with crosslinked liquid‐crystalline structures: molecular design, fabrication, and functions
Meng et al. Various shape memory effects of stimuli-responsive shape memory polymers
Yamada et al. Photomobile polymer materials—various three-dimensional movements
Kitagawa et al. Crystal Thickness Dependence of Photoinduced Crystal Bending of 1, 2-Bis (2-methyl-5-(4-(1-naphthoyloxymethyl) phenyl)-3-thienyl) perfluorocyclopentene
Ohm et al. Applications of liquid crystalline elastomers
US20150315012A1 (en) Light driven liquid crystal elastomer actuator
Yang et al. Multitemperature memory actuation of a liquid crystal polymer network over a broad nematic–isotropic phase transition induced by large Strain
EP1713882B1 (en) Flexible foil moveable by non-mechanical means
Ube et al. Photoinduced motions of thermoplastic polyurethanes containing azobenzene moieties in main chains
Yin et al. Chiral liquid crystalline elastomer for twisting motion without preset alignment of mesogens
Hu et al. Programmable 3d shape-change liquid crystalline elastomer based on a vertically aligned monodomain with cross-link gradient
Dradrach et al. Traveling wave rotary micromotor based on a photomechanical response in liquid crystal polymer networks
JP5067964B2 (en) Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

R150 Certificate of patent or registration of utility model

Ref document number: 5224261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees