WO2015151459A1 - Optical driving device - Google Patents

Optical driving device Download PDF

Info

Publication number
WO2015151459A1
WO2015151459A1 PCT/JP2015/001671 JP2015001671W WO2015151459A1 WO 2015151459 A1 WO2015151459 A1 WO 2015151459A1 JP 2015001671 W JP2015001671 W JP 2015001671W WO 2015151459 A1 WO2015151459 A1 WO 2015151459A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
driving device
drive
photomechanical
Prior art date
Application number
PCT/JP2015/001671
Other languages
French (fr)
Japanese (ja)
Inventor
池滝 慶記
秀子 小島
Original Assignee
オリンパス株式会社
国立大学法人愛媛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, 国立大学法人愛媛大学 filed Critical オリンパス株式会社
Publication of WO2015151459A1 publication Critical patent/WO2015151459A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements

Definitions

  • the present invention relates to an optical drive device.
  • an endoscope is known as an inspection medical device.
  • An endoscope is a technique developed for the purpose of examining the inside of a human body with minimal invasiveness. Initially, it started as an instrument for observing the inside of a body through a non-flexible tube, a so-called rigid endoscope. After that, a flexible endoscope was developed that can directly observe the inside of a body cavity by incorporating into the endoscope a glass fiber having the characteristic of transmitting light as it is from end to end even when bent. The so-called “fiberscope” has appeared.
  • the fiberscope guides the illumination light from the illumination light source through the light introduction fiber to illuminate the inside of the body cavity, and receives the scattered light from the affected area with a plurality of light receiving fibers (fiber bundles) bundled in a bundle. Transfer images. In the fiber bundle, each fiber constitutes a pixel to form an entire image. This enabled dynamic analysis by physicians and opened up a more advanced diagnosis path. Later, a “video scope (electronic scope)” with a CCD mounted on the distal end of the endoscope was developed, and an image of a portion to be examined (lesioned portion, etc.) can be displayed on a television monitor.
  • video scope electronic scope
  • the electronic scope can display the condition of the test part, which could not be seen before, as an image on the TV monitor, so that multiple doctors and nurses can view it simultaneously.
  • safety has been improved, oversight has been reduced, and diagnostic accuracy has been dramatically improved.
  • image processing becomes possible, and processing that increases the sharpness of an image and processing that makes a test part easier to see by enhancing a specific color signal can be expanded, thereby expanding the possibility of diagnosis by an endoscope. Brought the result.
  • the illumination light transmitted from one optical fiber is condensed on the test site by a condenser lens.
  • Signal light scattered or emitted from the test part is collected by the same lens and transmitted in the opposite direction to the illumination light through the same optical fiber.
  • the signal light from the test part is received by a plurality of light receiving optical fibers and transmitted.
  • the transmitted signal light is photoelectrically converted and stored as an information signal corresponding to one pixel of the test part.
  • Illumination light from one optical fiber is spatially scanned to obtain a two-dimensional spatial image. This is called a scanning endoscope.
  • the tip end portion of the optical fiber is spatially swung by an electromagnetic method using a coil and a magnet (see, for example, Patent Document 1).
  • the tip of the optical fiber is swung by a piezoelectric method using a piezoelectric element (see, for example, Patent Document 2).
  • the third method is a MEMS method in which a MEMS (Micro Electro Mechanical Systems) optical scanner is mounted at the distal end of an endoscope to deflect the reflection direction of illumination light emitted from an optical fiber (for example, non-patent) Reference 1).
  • MEMS Micro Electro Mechanical Systems
  • each of the above methods has technical problems.
  • a pulse with a high current needs to be applied to the coil, a secondary electromagnetic field pulse is generated in the body during use. Therefore, it is assumed that a subject wearing a pacemaker induces a malfunction of the pacemaker and is restricted in use.
  • the piezoelectric method has a problem in the composition of the piezoelectric element itself. That is, many piezoelectric elements contain lead harmful to the human body in order to improve time response and driving force. In recent years, the development of piezoelectric elements that do not contain lead is also progressing, but it cannot be denied that piezoelectric elements have a low function in time response.
  • a MEMS optical scanner In the MEMS method, a MEMS optical scanner has extremely high accuracy, and advanced processing, assembly, and control technology based on advanced composite technology is required (for example, http://www.marubun-zaidan.jp/pdf/ h20 # toshiy.pdf). Therefore, enormous production equipment and precision measurement equipment are required for production, and there is a concern that the cost may increase. In addition, since the MEMS optical scanner is larger in size than the optical fiber, the diameter of the distal end portion of the endoscope cannot be sufficiently reduced.
  • an object of the present invention made in view of the above-described circumstances is to provide an optical drive device that is excellent in versatility and can be configured simply and inexpensively.
  • An optical driving device that achieves the above object is as follows. Equipped with a displaceable driven part, equipped with a photomechanical driving part whose spatial structure reversibly changes by photoisomerization, The driven part is displaced by a change of the photomechanical driving part due to incidence of light driving light to the photomechanical driving part.
  • a plurality of the photomechanical drive units are mounted on the driven unit so as to displace the driven unit in different directions.
  • An optical drive light source unit that emits the optical drive light of at least two wavelengths that reversibly change the photomechanical drive unit; It is preferable to further include an introduction optical system that transmits the light driving light from the light driving light source unit to the photomechanical driving unit.
  • the light driving light source unit may switch the light driving light of two wavelengths in time series and introduce it into the introduction optical system.
  • the light-driven light source unit may be variable in intensity or time of the two-wavelength light-driven light to be emitted.
  • one of the two wavelengths of the light driving light has a long wavelength of 400 nm or longer and the other has a shorter wavelength than 400 nm.
  • the light-driven light source unit may include one light-driven laser light source, and a multiple wave having a different fundamental wave emitted from the light-driven laser light source may be used as the light drive light having two wavelengths.
  • the introduction optical system may be detachable from the light driving light source unit.
  • the driven part may be a light guide part.
  • the driven part comprises a light guide part, It is preferable to further include a photodetector that detects a light response signal from the irradiated portion irradiated with light emitted from the light guide portion.
  • control unit that controls the light-driven light source unit to cause the light-driven light to enter the photomechanical drive unit and that processes the output of the photodetector in synchronization with the control of the light-driven light source unit.
  • the control unit may display the output of the photodetector corresponding to the displacement of the light guide unit.
  • the light detector may detect scattered light or fluorescence as the light response signal.
  • the driven part may be a drug introduction tube.
  • the photomechanical drive unit may include a photochromic layer having salicylidene aniline, fulgide, azobenzene, diarylethene, spiropyran, bisimidazole, and derivatives of these molecules.
  • the photochromic layer is preferably bulky and has an optical plane on at least one surface.
  • the surface accuracy of the optical plane is preferably 1 ⁇ 4 or more of the wavelength of the light driving light.
  • optical members are bonded to the optical plane.
  • the optical member may be an optical thin film.
  • the optical thin film may be formed by sputtering or vapor deposition.
  • the driven part and the photomechanical driving part may be detachably mounted.
  • an optical drive device that is excellent in versatility and can be configured simply and inexpensively.
  • FIG. 5A shows the structure of the principal part of the optical drive device which concerns on 1st Embodiment. It is a figure for demonstrating the modification of the optical drive laser beam introduction layer of FIG. It is a figure for demonstrating the other modification of the optical drive laser beam introduction layer of FIG. It is a figure which shows the structure of an example of the principal part of the light source system of the optical drive device of FIG. It is a figure which shows an example of the branch optical fiber of FIG. It is a figure which shows the structure of the principal part of the optical drive device which concerns on 2nd Embodiment. It is the figure which looked at FIG. 5A from the optical fiber emission end surface side.
  • FIG. 1 is a diagram illustrating a configuration of a main part of the light driving device according to the first embodiment.
  • This optical drive device shows a basic configuration in the case of driving a flexible optical fiber 10 as a displaceable driven part, and is a photomechanical drive part attached to the exit end 11 of the optical fiber 10. 20.
  • the optical fiber 10 is supported so that the emission end 11 can be displaced, for example, at the tip of a tubular member.
  • the optical fiber 10 is made of, for example, a single mode fiber or a multimode fiber.
  • the light transmitted through the optical fiber 10 and emitted from the emission end face 12 is irradiated to an irradiated portion (not shown) via a condenser lens 30 attached to the distal end face of the tubular member, for example.
  • the photomechanical drive unit 20 is formed in a sheet-like rectangular shape, and is fused to the discharge end 11 that can be displaced with the extending direction of the optical fiber 10 as a long side.
  • the photomechanical drive unit 20 includes a bulk-shaped photochromic layer 21 and a light-driven laser light introduction layer 22 made of an optical thin film constituting an optical member.
  • the photochromic layer 21 is coated with a cladding layer 23 on the surface not in contact with the light-driven laser light introducing layer 22.
  • the cladding layer 23 is also coated on the surface of the light-driven laser light introducing layer 22 that is not in contact with the photochromic layer 21.
  • an optical fiber 40 constituting an introduction optical system is coupled to the end face 24 in the optical drive laser light introduction layer 22, and the optical drive laser light is introduced in the extending direction of the optical fiber 10 through the optical fiber 40.
  • the periphery of the photomechanical drive unit 20 except for the end face 24 side is preferably subjected to a light shielding process so that the light-driven laser light introduced into the light-driven laser light introduction layer 22 does not leak outside.
  • the photochromic layer 21 side is fused to the optical fiber 10, but the light-driven laser light introduction layer 22 side may be fused to the optical fiber 10.
  • the photochromic layer 21 is composed of, for example, salicylidene aniline, fulgide, azobenzene, diarylethene, spiropyran, bisimidazole, and derivatives of these molecules.
  • the crystal layer or polymer film composed of these molecules generates a strong torque or stress by greatly changing the molecular structure with photoisomerization by repeated irradiation with ultraviolet and visible light.
  • the photomechanical material has excellent durability and cost.
  • the light-driven laser light introducing layer 22 is composed of, for example, an optical thin film layer of SiO 2 that is transparent up to the ultraviolet region.
  • the bonding surface is an optical surface smoothed by optical polishing or ion smoothing in advance, and SiO 2 is sputtered or deposited on the surface of the photochromic layer 21.
  • the light-driven laser light introduction layer 22 may be formed by laminating.
  • the light-driven laser light introduction layer 22 may be formed by coating an acrylic-based resist agent on the surface of the photochromic layer 21 and heating or photocuring it. At this time, it is preferable that the optical smoothness (surface accuracy) of the coated surface is at least ⁇ / 4 which does not cause reversal of the phase of light.
  • the clad layer 23 is coated on a surface that is not a joint surface between the photochromic layer 21 and the light-driven laser light introducing layer 22.
  • the clad layer 23 is made of, for example, a highly reflective metal layer (for example, gold, silver, aluminum, etc.), or magnesium fluoride having a refractive index lower than that of the photochromic layer 21 and the light-driven laser light introducing layer 22.
  • the photochromic layer 21 is composed of azobenzene
  • ultraviolet light having a wavelength of 355 nm is incident as light-driven laser light
  • the photochromic layer 21 is bent and when visible light having a wavelength of 532 nm is incident, the photochromic layer 21 is incident. Returns to its original shape.
  • the degree of bending of the photochromic layer 21 generally varies depending on the number of molecules excited and photoisomerized. That is, the angle of bending changes depending on the amount of light acting on the photochromic layer 21. Therefore, if the intensity or time of the optically driven laser beam to the photochromic layer 21 is controlled, the bending angle can be controlled reliably.
  • a light scatterer is formed on the surface of the light-driven laser light introduction layer 22 in contact with the photochromic layer 21.
  • a cut may be formed on the surface opposite to the surface in contact with the photochromic layer 21 (see, for example, Japanese Patent Application Laid-Open No. 2011-244666).
  • FIG. 2A and 2B are diagrams for explaining two modified examples of the light-driven laser light introduction layer 22.
  • FIG. The light-driven laser light introducing layer 22 shown in FIG. 2A has a high refractive index sheet-like core layer 22a and low refractive index cladding layers 22b and 22c bonded to both surfaces thereof.
  • the photoclock layer 21 is joined to one clad layer 22b.
  • the other cladding layer 22c has a fine cut 22d that penetrates into the core layer 22a by etching or the like. A large number of the notches 22d are formed along the propagation direction of the optically driven laser beam.
  • the light-driven laser light introducing layer 22 shown in FIG. 2A propagates the light-driven laser light introduced into the core layer 22a while being totally reflected by the clad layers 22b and 22c on both sides. At that time, the light-driven laser light is scattered by the notch 22d, and the reflection angle is greatly changed. As a result, light-driven laser light scattered at an angle at which total reflection is not possible passes through the cladding layer 22b and enters the photochromic layer 21 to induce deformation of the photochromic layer 21.
  • 2B has a core layer 22a and low-refractive-index cladding layers 22b and 22c bonded to both surfaces, as in FIG. 2A.
  • a large number of cuts 22d are formed so as to penetrate into the core layer 22a by etching or the like.
  • the portion having the cut 22d is bent into a curved surface by thermoforming or the like, and the photochromic layer 21 is joined to the curved portion having the cut 22d.
  • the light-driven laser light introducing layer 22 shown in FIG. 2B propagates the light-driven laser light introduced into the core layer 22a while being totally reflected by the clad layers 22b and 22c on both sides. At this time, the light-driven laser light is scattered by the cut 22 d in the curved surface portion, is emitted from the light-driven laser light introduction layer 22, and enters the photochromic layer 21. Thereby, the photochromic layer 21 is deformed. According to the light-driven laser light introducing layer 22 in FIG. 2B, the scattering angle of the light-driven laser light incident on the photochromic layer 21 can be adjusted more effectively by bending the whole. Further, since the generation position and intensity of the scattered light can be adjusted by the formation position and number of the notches 22d, the bending position and the deformation angle of the photochromic layer 21 can be easily adjusted.
  • FIG. 3 is a diagram showing a configuration of an example of a main part of the light source system of the light driving device shown in FIG.
  • the light source system includes a light driving light source unit 50 and a control unit 60.
  • the light drive light source unit 50 includes a light drive laser light source 51.
  • As the light-driven laser light source 51 one that emits laser light having a required wavelength is used according to the characteristics of the photochromic layer 21.
  • the photochromic layer 21 is made of azobenzene
  • the light-driven laser light source 51 uses a semiconductor laser-pumped Nd: YVO 4 laser that emits a fundamental wave having a wavelength of 1064 nm.
  • the laser light emitted from the light-driven laser light source 51 is branched into two optical paths and is incident on a third harmonic generation unit 52a and a second harmonic generation unit 52b including a nonlinear optical crystal such as KDP.
  • a third harmonic generation unit 52a and a second harmonic generation unit 52b including a nonlinear optical crystal such as KDP As a result, ultraviolet light having a wavelength of 355 nm, which is the third harmonic of the fundamental wave (wavelength 1064 nm), is emitted from the third harmonic generator 52a, and the second harmonic of the fundamental wave is emitted from the second harmonic generator 52b. Visible light having a wavelength of 532 nm is emitted. That is, two-wavelength active light (light-driven laser light) that reversibly photoisomerizes the photochromic layer 21 of the photomechanical drive unit 20 is obtained from one light-driven laser light source 51.
  • the light-driven laser light emitted from the third harmonic generation unit 52a is incident on the photoacoustic element (AOM) 53a.
  • the optically driven laser light emitted from the second harmonic generation unit 52b is incident on the AOM 53b.
  • the light-driven laser light emitted from the AOM 53a and the AOM 53b is coupled to the optical fiber 40 via, for example, a branch optical fiber 54 as shown in FIG. 4 and, if necessary, an extension optical fiber.
  • the light-driven laser light source 51, the AOM 53a, and the AOM 53b are controlled by the control unit 60.
  • the control unit 60 is configured by a host computer, for example.
  • the current of the pumping semiconductor laser of the light-driven laser light source 51 is controlled to control the output intensity of the third harmonic and the second harmonic obtained from the third harmonic generator 52a and the second harmonic generator 52b.
  • the light-driven laser light source 51 has an optical filter automatic replacement function, a shutter opening / closing function, and the like, these can also be controlled.
  • the irradiation time of ultraviolet light and visible light can be controlled independently.
  • the intensity or time is adjusted to the optical drive laser light introduction layer 22 of the photomechanical drive unit 20 from the optical drive laser light source 51 through the optical fiber 40 by the AOM 53a and AOM 53b.
  • the dynamically integrated optical fiber 10 can be repeatedly swung in a one-dimensional direction. Therefore, for example, if the light (probe light) emitted from the optical fiber 10 through the forceps channel of the endoscope is condensed on the test portion such as the stomach wall via the condenser lens 30, the surface inside the body cavity is desired by the probe light. Can be spatially scanned at a single speed.
  • the detection output is processed by the control unit 60 in accordance with the scanning position and output to, for example, a monitor.
  • the test part can be inspected.
  • FIG. 5A and FIG. 5B are diagrams illustrating a configuration of a main part of the light driving device according to the second embodiment.
  • this optical driving device enables the emission end 11 of the optical fiber 10 to be driven in a two-dimensional direction within an XY plane orthogonal to the extending direction of the emission end 11. . Therefore, the photomechanical drive unit 20X for driving in the X direction and the photomechanical drive unit 20Y for driving in the Y direction are fused to the outer periphery of the injection end portion 11 in a perpendicular positional relationship.
  • the photomechanical drive unit 20X and the photomechanical drive unit 20Y are configured similarly to the photomechanical drive unit 20 shown in FIG.
  • the optical drive laser beam is introduced into the optical drive laser beam introduction layer via the optical fiber 40X constituting the introduction optical system.
  • light-driven laser light is introduced into the light-driven laser light introduction layer via the optical fiber 40Y constituting the introduction optical system into the photomechanical drive unit 20Y.
  • FIG. 5B shows a view of FIG. 5A viewed from the exit end face 12 side of the optical fiber 10.
  • FIG. 6 is a diagram illustrating a configuration of an example of a main part of the light source system of the light driving device according to the second embodiment.
  • This light source system can emit ultraviolet light and visible light for driving in the X direction and ultraviolet light and visible light for driving in the X direction from the light driving light source unit 50, and the light source system shown in FIG. Different. Therefore, the same reference numerals are given to components having the same functions as those in FIG.
  • the third harmonic wave emitted from the third harmonic wave generation unit 52a is branched into two optical paths by a branch optical fiber 55a as shown in FIG. 4, for example, for the AOM 53aX for driving in the X direction and for driving in the Y direction. Is incident on the AOM 53aY.
  • the second harmonic wave emitted from the second harmonic wave generation unit 52b is branched into two optical paths by a branch optical fiber 55b similar to the branch optical fiber 55a, and the AOM 53bX for X direction driving and the AOM 53bY for Y direction driving Is incident on.
  • the optically driven laser light emitted from the AOM 53aX and the AOM 53bX is coupled to the optical fiber 40X via a branch optical fiber 54X similar to the branch optical fiber 54 and an extension optical fiber as necessary.
  • the optically driven laser light emitted from the AOM 53aY and the AOM 53bY is coupled to the optical fiber 40Y via a branch optical fiber 54Y similar to the branch optical fiber 54 and an extension optical fiber as necessary.
  • the light-driven laser light source 51, AOM 53aX, AOM 53aY, AOM 53bX, and AOM 53bY are controlled by the control unit 60.
  • the light of the photomechanical drive unit 20X is generated while the optical fiber 10 is displaced in the Y direction by making ultraviolet light incident on the optical drive laser light introduction layer of the photomechanical drive unit 20Y. If ultraviolet light and visible light are alternately incident on the drive laser light introduction layer and the optical fiber 10 is reciprocally displaced in the X direction, the light emitted from the optical fiber 10 causes, for example, the test portion to move at a desired speed. Raster scanning is possible.
  • the test portion is two-dimensionally scanned with light (probe light) mounted on an endoscope and emitted from the optical fiber 10, thereby scattering light or fluorescence generated from the test portion to the optical fiber 10 or If detection is performed via another light receiving fiber, a two-dimensional image of the test part can be obtained, and thereby the test part can be inspected (diagnosed).
  • light probe light
  • FIG. 7 is a diagram illustrating a configuration of a main part of a scanning endoscope according to the third embodiment.
  • This scanning endoscope includes the light driving device described in the second embodiment.
  • the same reference numerals are given to components having the same actions as the components described in the second embodiment, and description thereof is omitted.
  • the optical fiber 10 is disposed so as to extend into the insertion portion of the endoscope, and the emission end portion 11 is supported in a displaceable manner in the distal end portion of the insertion portion.
  • the condenser lens 30 is attached to the distal end portion of the insertion portion. 7 shows a so-called direct-view type in which light (probe) emitted from the optical fiber 10 is directly incident on the condenser lens 30, but is reflected in a side surface (circumferential surface) direction or an oblique side surface direction by a reflecting mirror.
  • the condensing lens 30 is mounted on the peripheral surface of the distal end portion of the insertion portion.
  • the optical fiber 10 is coupled to the optical connector of the optical fiber 80 via an optical connector 71 such as an FC connector and a relay adapter 72 as shown in FIG.
  • Probe light emitted from the probe light laser light source 90 is incident on the optical fiber 80.
  • the probe light incident on the optical fiber 80 is transmitted from the optical fiber 80 and the optical fiber 10 and is emitted from the emission end face 12 of the optical fiber 10.
  • the probe light is irradiated to the test portion through the condenser lens 30.
  • the probe light laser light source 90 one that emits laser light having a required wavelength is used in accordance with the part to be examined.
  • a He—Ne laser is used, and a fundamental wave with a wavelength of 633 nm is used as the probe light.
  • the control unit 60 controls the emission timing and intensity of the probe light.
  • the optical fiber 10 is also used as a light receiving fiber. Therefore, the probe light emitted from the probe light laser light source 90 is reflected by the beam splitter 91 and enters the optical fiber 80.
  • the beam splitter 91 for example, a dichroic mirror is used. Signal light such as scattered light and autofluorescence generated from the test part by probe light irradiation is collected by the condenser lens 30 and incident on the optical fiber 10, and transmitted through the optical fiber 10 and the optical fiber 80. Then, the light is emitted from the optical fiber 80, further passes through the beam splitter 91, and is received by the photodetector 92.
  • the photodetector 92 for example, a photomultiplier tube is used. The output of the photodetector 92 is input to the control unit 60.
  • the optical fiber 40X coupled to the photomechanical drive unit 20X is disposed so as to extend into the insertion portion of the endoscope, and is connected to the optical connector 71X outside the endoscope. Accordingly, it is detachably coupled to the output end of the branch optical fiber 54X of the light driving light source unit 50 through an extending optical fiber.
  • the optical fiber 40Y coupled to the photomechanical drive unit 20Y is disposed so as to extend into the insertion portion of the endoscope, and is connected to the optical connector 71Y outside the endoscope. Accordingly, it is detachably coupled to the output end of the branch optical fiber 54Y of the light driving light source unit 50 through an extending optical fiber.
  • the entire operation of the scanning endoscope according to the present embodiment is controlled by the control unit 60. That is, when the insertion portion of the endoscope is inserted into a desired portion to be examined such as a stomach wall and the start of scanning (examination) by the endoscope operator is operated, Control of the probe light laser light source 90 is started. Thereby, the optical fiber 10 is driven, and the test part is two-dimensionally scanned by the probe light. Then, the signal light generated at each scanning point is received by the photodetector 92 and input to the control unit 60, and required signal processing is performed.
  • the control unit 60 converts the output intensity of the optical drive laser light source 51 that drives the photomechanical drive units 20X and 20Y into the bending angle of the optical fiber 10, that is, scans the output intensity of the optical drive laser light source 51 with probe light. It has a calibration table for converting to point position information. Based on this calibration table, the control unit 60 performs the required signal processing and stores the output signal from the photodetector 92 at a corresponding address in the frame memory. Then, the control unit 60 displays the two-dimensional image information stored in the frame memory on the monitor. Thereby, the doctor can perform a real-time examination (diagnosis) in the body by operating the control unit 60 after inserting the endoscope.
  • diagnosis real-time examination
  • the endoscope insertion portion that is inserted into the body does not have an electromagnetic wave generation source, and the optically driven laser light is transmitted from outside the body to the photomechanical drive portions 20X and 20Y via the optical fibers 40X and 40Y.
  • the diameter of the endoscope tip can be easily reduced as compared with the case where the MEMS optical scanner is used, and the pain of the subject can be reduced.
  • all electrical control can be operated outside the body, secondary electromagnetic field pulses are not generated in the body as in the electromagnetic system, and no high voltage is introduced into the body as in the piezoelectric system. Therefore, it can be used for a subject wearing a pacemaker or the like, and versatility can be improved.
  • the photochromic layers of the photomechanical drive units 20X and 20Y are composed of non-toxic molecules such as salicylideneaniline, fulgide, azobenzene, diarylethene, spiropyran, and bisimidazole, the safety can be further improved.
  • the optical fiber 10 can be attached to and detached from the probe light laser light source 90 by the optical connector 71 outside the body.
  • the optical fibers 40X and 40Y coupled to the photomechanical drive units 20X and 20Y are also detachable from the light drive light source unit 50 by the optical connectors 71X and 71Y outside the body. Therefore, the probe light laser light source 90, the light drive light source unit 50, and the endoscope unit can be easily attached and detached outside the body. Thereby, the endoscope unit can be easily made “disposable”, and the problem of cleaning the endoscope can be solved.
  • an endoscopic examination for example, an examination of the stomach
  • the endoscope when the endoscope is inserted into the stomach, the subject's gastric juice, vomit, and bacteria and viruses adhere to the endoscope. Therefore, when the endoscope is used repeatedly, careful cleaning and disinfection is required for each inspection in order to prevent secondary infection, which is a heavy burden in terms of safety and cost.
  • the portion to be inserted into the body is the insertion portion (tube), the optical fibers 10, 40X, 40Y, the photomechanical drive units 20X, 20Y, and the condenser lens.
  • the insertion portion tube
  • the optical fibers 10, 40X, 40Y the optical fibers 10, 40X, 40Y
  • the photomechanical drive units 20X, 20Y the condenser lens.
  • everything can basically be made of a very inexpensive material, so it can be “disposable”. Therefore, safety and inspection costs can be reduced by using a new endoscope unit for each inspection.
  • the light source unit 50 obtains two-wavelength light-driven laser light (active light) that reversibly isomerizes the photochromic layer 21 from one light-driven laser light source 51. You may make it obtain the optical drive laser beam of a wavelength using a laser beam for exclusive use, respectively.
  • the present invention can be applied to various treatments of a living body by emitting therapeutic laser light from the optical fiber 10, which is limited to the inspection of a living body.
  • the present invention can be applied not only to medical use but also to industrial endoscopes and processing apparatuses, and can also be applied to uses for distributing light emitted from an optical fiber.
  • the light guide part displaced by the photomechanical drive part is not limited to an optical fiber, but may be a sheet-like optical waveguide. Therefore, the present invention can also be applied to uses for modulating the optical characteristics of the optical waveguide.
  • the photomechanical drive unit 20 shown in FIG. 1 and the photomechanical drive units 20X and 20Y shown in FIG. 4 may be detachably coupled to the optical fiber 10.
  • the displaceable driven part is not limited to the light guide part such as an optical fiber or an optical waveguide, but may be a flexible drug introduction tube 100 that can be inserted into a body cavity as shown in FIG. Good.
  • the X-direction drive photomechanical drive unit 20X and the Y-direction drive photomechanical drive unit 20Y are fused to the distal end portion of the drug introduction tube 100 in the same manner as in the second embodiment, and the drug introduction tube.
  • the drug 101 By driving the distal end portion of 100 to be deformed in the X direction and the Y direction, the drug 101 can be sprayed on the visceral sites aimed from outside the body.
  • the light drive light introduction layer may be fused to the driven unit.
  • SYMBOLS 10 Optical fiber 20, 20X, 20Y Photomechanical drive part 21 Photochromic layer 22 Optical drive laser light introduction layer 40, 40X, 40Y Optical fiber 50 Optical drive light source part 51 Optical drive laser light source 53a, 53b, 53aX, 53bX, 53aY, 53bY Photoacoustic element (AOM) 60 Control Unit 80 Optical Fiber 90 Probe Optical Laser Light Source 92 Photodetector 100 Drug Introducing Tube

Abstract

This optical driving device includes a photomechanical driving unit (20) connected to a displaceable driven part (10), the photomechanical driving unit (20) having a spatial structure reversibly changeable in accordance with photoisomerization. The driven part (10) is displaced by a change in the photomechanical driving unit (20) responsive to driving light incident on the photomechanical driving unit (20).

Description

光駆動装置Optical drive device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年4月1日に日本国に特許出願された特願2014-75516の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2014-75516 filed in Japan on April 1, 2014, the entire disclosure of which is incorporated herein by reference.
 本発明は、光駆動装置に関するものである。 The present invention relates to an optical drive device.
 例えば、検査医療機器として内視鏡が知られている。内視鏡は、人体の内部を低侵襲で検査をするとう目的で開発された技術である。初期は、非可撓性の管、いわゆる硬性鏡を通して体内を観察する器具としてスタートした。その後、曲がっていても光を端から端へそのまま伝える特性を有するガラス繊維を内視鏡に取り入れることで、体腔内を直接目視できる軟性鏡が開発された。いわゆる、「ファイバスコープ」が登場した。 For example, an endoscope is known as an inspection medical device. An endoscope is a technique developed for the purpose of examining the inside of a human body with minimal invasiveness. Initially, it started as an instrument for observing the inside of a body through a non-flexible tube, a so-called rigid endoscope. After that, a flexible endoscope was developed that can directly observe the inside of a body cavity by incorporating into the endoscope a glass fiber having the characteristic of transmitting light as it is from end to end even when bent. The so-called “fiberscope” has appeared.
 ファイバスコープは、照明光源からの照明光を光導入用ファイバにより導光して体腔内を照明し、患部からの散乱光を複数のバンドル状に束ねた受光用ファイバ(ファイババンドル)で受光して画像を転送する。ファイババンドルは、各ファイバが画素を構成して全体画像を形成する。これにより、医師による動的な分析が可能となり、より高度な診断の道が拓かれた。その後、内視鏡先端部にCCDが搭載された「ビデオスコープ(電子スコープ)」が開発され、テレビモニターに被検部(病変部等)の画像が映し出せるようになった。 The fiberscope guides the illumination light from the illumination light source through the light introduction fiber to illuminate the inside of the body cavity, and receives the scattered light from the affected area with a plurality of light receiving fibers (fiber bundles) bundled in a bundle. Transfer images. In the fiber bundle, each fiber constitutes a pixel to form an entire image. This enabled dynamic analysis by physicians and opened up a more advanced diagnosis path. Later, a “video scope (electronic scope)” with a CCD mounted on the distal end of the endoscope was developed, and an image of a portion to be examined (lesioned portion, etc.) can be displayed on a television monitor.
 電子スコープは、これまで見ることのできなかった被検部の状態をテレビモニターに画像として映し出せるので、複数の医師や看護士も同時に見ることができる。これにより、安全性も向上し、見落としも少なくなり、診断の精度が飛躍的に向上した。また、画像処理が可能になり、画像の鮮鋭度を高める処理や、特定の色信号を強調することで被検部を見易くする処理ができるようになり、内視鏡による診断の可能性を広げる結果をもたらした。 The electronic scope can display the condition of the test part, which could not be seen before, as an image on the TV monitor, so that multiple doctors and nurses can view it simultaneously. As a result, safety has been improved, oversight has been reduced, and diagnostic accuracy has been dramatically improved. In addition, image processing becomes possible, and processing that increases the sharpness of an image and processing that makes a test part easier to see by enhancing a specific color signal can be expanded, thereby expanding the possibility of diagnosis by an endoscope. Brought the result.
 しかし、このように機能改善された内視鏡であっても、いまだ大きな技術課題が存在する。それは、電子スコープであっても、体内に内視鏡を挿入する際に被験者に負担を与えることである。この課題に対して、内視鏡の径を細くする努力がなされている。その一つの取り組みとして、例えば1本の光ファイバからの照明光によって被検部を走査する、すなわち光を駆動する試みが始まっている。 However, even an endoscope with improved functions still has significant technical issues. That is, even with an electronic scope, it places a burden on the subject when the endoscope is inserted into the body. In response to this problem, efforts have been made to reduce the diameter of the endoscope. As one of the efforts, for example, an attempt to scan a test portion with illumination light from one optical fiber, that is, an attempt to drive light has started.
 具体的には、1本の光ファイバから伝送される照明光を、集光レンズにより被験部に集光する。被検部から散乱或いは発光する信号光は、同じレンズで捕集して、同じ光ファイバで照明光とは逆方向に伝送する。あるいは、被検部からの信号光は、受光用の複数の光ファイバで受光して伝送する。伝送された信号光は、光電変換されて被験部の1画素に対応する情報信号としてストアーする。1本の光ファイバからの照明光は、二次元的な空間画像を得るため空間走査される。これは、走査型内視鏡と呼ばれている。 Specifically, the illumination light transmitted from one optical fiber is condensed on the test site by a condenser lens. Signal light scattered or emitted from the test part is collected by the same lens and transmitted in the opposite direction to the illumination light through the same optical fiber. Alternatively, the signal light from the test part is received by a plurality of light receiving optical fibers and transmitted. The transmitted signal light is photoelectrically converted and stored as an information signal corresponding to one pixel of the test part. Illumination light from one optical fiber is spatially scanned to obtain a two-dimensional spatial image. This is called a scanning endoscope.
 これまでに提案された走査型内視鏡には、主に3種類の方式がある。第1の方式は、コイル及び磁石を用いる電磁方式により光ファイバ先端部を空間的に揺動させるものである(例えば、特許文献1参照)。第2の方式は、圧電素子を用いる圧電方式により光ファイバ先端部を揺動させるものである(例えば、特許文献2参照)。第3の方式は、内視鏡の先端部にMEMS(Micro Electro Mechanical Systems)光スキャナを搭載して、光ファイバから射出される照明光の反射方向を偏向するMEMS方式である(例えば、非特許文献1参照)。 There are mainly three types of scanning endoscopes proposed so far. In the first method, the tip end portion of the optical fiber is spatially swung by an electromagnetic method using a coil and a magnet (see, for example, Patent Document 1). In the second method, the tip of the optical fiber is swung by a piezoelectric method using a piezoelectric element (see, for example, Patent Document 2). The third method is a MEMS method in which a MEMS (Micro Electro Mechanical Systems) optical scanner is mounted at the distal end of an endoscope to deflect the reflection direction of illumination light emitted from an optical fiber (for example, non-patent) Reference 1).
特表2008-514970号公報Special table 2008-514970 gazette 特表2010-527028号公報Special table 2010-527028
 しかしながら、上記の各方式には、技術的な課題がある。例えば、電磁方式では、高電流を伴うパルスをコイルに印加する必要があることから、使用中に、体内で2次電磁場パルスが発生する。そのため、ペースメーカーを装着した被験者には、ペースメーカーの誤動作を誘発し、使用が制限されることが想定される。 However, each of the above methods has technical problems. For example, in the electromagnetic system, since a pulse with a high current needs to be applied to the coil, a secondary electromagnetic field pulse is generated in the body during use. Therefore, it is assumed that a subject wearing a pacemaker induces a malfunction of the pacemaker and is restricted in use.
 また、圧電方式は、圧電素子そのもの組成に課題がある。すなわち、多くの圧電素子には、時間応答性や駆動力を向上させるために、人体に有害な鉛が含有されている。近年では、鉛を含有しない圧電素子も開発が進んでいるが、圧電素子は時間応答性において機能が低いことが否めない。 Also, the piezoelectric method has a problem in the composition of the piezoelectric element itself. That is, many piezoelectric elements contain lead harmful to the human body in order to improve time response and driving force. In recent years, the development of piezoelectric elements that do not contain lead is also progressing, but it cannot be denied that piezoelectric elements have a low function in time response.
 MEMS方式は、MEMS光スキャナが極めて高精度であり、先端複合技術をベースにした高度な加工・組み立て・制御技術が要求される(例えば、http://www.marubun-zaidan.jp/pdf/h20#toshiy.pdf参照)。そのため、作製に莫大な生産設備や精密計測設備が要求され、コストアップを招くことが懸念される。また、MEMS光スキャナは、光ファイバに対してサイズが大きくなるため、内視鏡先端部の細径化が十分図れない。 In the MEMS method, a MEMS optical scanner has extremely high accuracy, and advanced processing, assembly, and control technology based on advanced composite technology is required (for example, http://www.marubun-zaidan.jp/pdf/ h20 # toshiy.pdf). Therefore, enormous production equipment and precision measurement equipment are required for production, and there is a concern that the cost may increase. In addition, since the MEMS optical scanner is larger in size than the optical fiber, the diameter of the distal end portion of the endoscope cannot be sufficiently reduced.
 したがって、上述した事情に鑑みてなされた本発明の目的は、汎用性に優れ、簡単かつ廉価に構成できる光駆動装置を提供することにある。 Therefore, an object of the present invention made in view of the above-described circumstances is to provide an optical drive device that is excellent in versatility and can be configured simply and inexpensively.
 上記目的を達成する本発明に係る光駆動装置は、
 変位可能な被駆動部に装着され、光異性化により空間的構造が可逆的に変化するフォトメカニカル駆動部を備え、
 前記フォトメカニカル駆動部への光駆動光の入射による該フォトメカニカル駆動部の変化により、前記被駆動部を変位させるものである。
An optical driving device according to the present invention that achieves the above object is as follows.
Equipped with a displaceable driven part, equipped with a photomechanical driving part whose spatial structure reversibly changes by photoisomerization,
The driven part is displaced by a change of the photomechanical driving part due to incidence of light driving light to the photomechanical driving part.
 前記被駆動部を異なる方向に変位させるように、前記フォトメカニカル駆動部が前記被駆動部に複数個装着されているとよい。 It is preferable that a plurality of the photomechanical drive units are mounted on the driven unit so as to displace the driven unit in different directions.
 前記フォトメカニカル駆動部を可逆的に変化させる少なくとも2波長の前記光駆動光を射出する光駆動光源部と、
 該光駆動光源部からの前記光駆動光を前記フォトメカニカル駆動部に伝送する導入光学系と、をさらに備えるとよい。
An optical drive light source unit that emits the optical drive light of at least two wavelengths that reversibly change the photomechanical drive unit;
It is preferable to further include an introduction optical system that transmits the light driving light from the light driving light source unit to the photomechanical driving unit.
 前記光駆動光源部は、2波長の前記光駆動光を時系列に切り替えて前記導入光学系に導入するとよい。 The light driving light source unit may switch the light driving light of two wavelengths in time series and introduce it into the introduction optical system.
 前記光駆動光源部は、射出する2波長の前記光駆動光の強度又は時間が可変であるとよい。 The light-driven light source unit may be variable in intensity or time of the two-wavelength light-driven light to be emitted.
 2波長の前記光駆動光は、一方が400nm以上の長波長であり、他方が400nmより短波長であるとよい。 It is preferable that one of the two wavelengths of the light driving light has a long wavelength of 400 nm or longer and the other has a shorter wavelength than 400 nm.
 前記光駆動光源部は、1つの光駆動レーザ光源を備え、該光駆動レーザ光源から射出される基本波の異なる倍数波を2波長の前記光駆動光とするとよい。 The light-driven light source unit may include one light-driven laser light source, and a multiple wave having a different fundamental wave emitted from the light-driven laser light source may be used as the light drive light having two wavelengths.
 前記導入光学系は、前記光駆動光源部に対して着脱可能であるとよい。 The introduction optical system may be detachable from the light driving light source unit.
 前記被駆動部は導光部からなるとよい。 The driven part may be a light guide part.
 前記被駆動部は導光部からなり、
 前記導光部から射出される光が照射される被照射部からの光応答信号を検出する光検出器をさらに備えるとよい。
The driven part comprises a light guide part,
It is preferable to further include a photodetector that detects a light response signal from the irradiated portion irradiated with light emitted from the light guide portion.
 前記光駆動光源部を制御して前記フォトメカニカル駆動部へ前記光駆動光を入射させるとともに、前記光駆動光源部の制御に同期して前記光検出器の出力を処理する制御部をさらに備えるとよい。 And further comprising a control unit that controls the light-driven light source unit to cause the light-driven light to enter the photomechanical drive unit and that processes the output of the photodetector in synchronization with the control of the light-driven light source unit. Good.
 前記制御部は、前記導光部の変位に対応させて前記光検出器の出力を表示するとよい。 The control unit may display the output of the photodetector corresponding to the displacement of the light guide unit.
 前記光検出器は、前記光応答信号として散乱光又は蛍光を検出するとよい。 The light detector may detect scattered light or fluorescence as the light response signal.
 前記被駆動部は薬剤導入管であってもよい。 The driven part may be a drug introduction tube.
 前記フォトメカニカル駆動部は、サリチリデンアニリン、フルギド、アゾベンゼン、ジアリールエテン、スピロピラン、ビスイミダゾールとそれら分子の誘導体を有するフォトクロミック層を備えるとよい。 The photomechanical drive unit may include a photochromic layer having salicylidene aniline, fulgide, azobenzene, diarylethene, spiropyran, bisimidazole, and derivatives of these molecules.
 前記フォトクロミック層はバルク状で、少なくとも一面に光学平面を有するとよい。 The photochromic layer is preferably bulky and has an optical plane on at least one surface.
 前記光学平面の面精度は、前記光駆動光の波長の1/4以上であるとよい。 The surface accuracy of the optical plane is preferably ¼ or more of the wavelength of the light driving light.
 前記光学平面に異なる光学部材が接合されているとよい。 It is preferable that different optical members are bonded to the optical plane.
 前記光学部材が光学薄膜であるとよい。 The optical member may be an optical thin film.
 前記光学薄膜がスパッタ又は蒸着により形成されているとよい。 The optical thin film may be formed by sputtering or vapor deposition.
 前記被駆動部及び前記フォトメカニカル駆動部は着脱可能に装着されてもよい。 The driven part and the photomechanical driving part may be detachably mounted.
 本発明によれば、汎用性に優れ、簡単かつ廉価に構成できる光駆動装置を提供することができる。 According to the present invention, it is possible to provide an optical drive device that is excellent in versatility and can be configured simply and inexpensively.
第1実施の形態に係る光駆動装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the optical drive device which concerns on 1st Embodiment. 図1の光駆動レーザ光導入層の変形例を説明するための図である。It is a figure for demonstrating the modification of the optical drive laser beam introduction layer of FIG. 図1の光駆動レーザ光導入層の他の変形例を説明するための図である。It is a figure for demonstrating the other modification of the optical drive laser beam introduction layer of FIG. 図1の光駆動装置の光源システムの要部の一例の構成を示す図である。It is a figure which shows the structure of an example of the principal part of the light source system of the optical drive device of FIG. 図3の分岐光ファイバの一例を示す図である。It is a figure which shows an example of the branch optical fiber of FIG. 第2実施の形態に係る光駆動装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the optical drive device which concerns on 2nd Embodiment. 図5Aを光ファイバ射出端面側から見た図である。It is the figure which looked at FIG. 5A from the optical fiber emission end surface side. 第2実施の形態に係る光駆動装置の光源システムの要部の一例の構成を示す図である。It is a figure which shows the structure of an example of the principal part of the light source system of the optical drive device which concerns on 2nd Embodiment. 第3実施の形態に係る走査型内視鏡の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the scanning endoscope which concerns on 3rd Embodiment. 図7の光コネクタの一例を示す図である。It is a figure which shows an example of the optical connector of FIG. 本発明に係る光駆動装置の変形例を説明するための図である。It is a figure for demonstrating the modification of the optical drive device which concerns on this invention.
 以下、本発明の実施の形態について、図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施の形態)
 図1は、第1実施の形態に係る光駆動装置の要部の構成を示す図である。この光駆動装置は、変位可能な被駆動部として可撓性を有する光ファイバ10を駆動する場合の基本的構成を示すもので、光ファイバ10の射出端部11に装着されたフォトメカニカル駆動部20を備える。光ファイバ10は、射出端部11が例えば管状部材の先端部に変位可能に支持される。光ファイバ10は、例えばシングルモードファイバやマルチモードファイバからなる。光ファイバ10により伝送されて射出端面12から射出される光は、例えば管状部材の先端面に装着された集光レンズ30を経て図示しない被照射部に照射される。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a main part of the light driving device according to the first embodiment. This optical drive device shows a basic configuration in the case of driving a flexible optical fiber 10 as a displaceable driven part, and is a photomechanical drive part attached to the exit end 11 of the optical fiber 10. 20. The optical fiber 10 is supported so that the emission end 11 can be displaced, for example, at the tip of a tubular member. The optical fiber 10 is made of, for example, a single mode fiber or a multimode fiber. The light transmitted through the optical fiber 10 and emitted from the emission end face 12 is irradiated to an irradiated portion (not shown) via a condenser lens 30 attached to the distal end face of the tubular member, for example.
 フォトメカニカル駆動部20は、シート状で長方形状をなし、光ファイバ10の延在方向を長辺として変位可能な射出端部11に融着される。フォトメカニカル駆動部20は、一体に接合されたバルク状のフォトクロミック層21と光学部材を構成する光学薄膜からなる光駆動レーザ光導入層22とを備える。フォトクロミック層21には、光駆動レーザ光導入層22と接していない面にクラッド層23がコートされている。同様に、光駆動レーザ光導入層22のフォトクロミック層21と接していない面にも、クラッド層23がコートされている。 The photomechanical drive unit 20 is formed in a sheet-like rectangular shape, and is fused to the discharge end 11 that can be displaced with the extending direction of the optical fiber 10 as a long side. The photomechanical drive unit 20 includes a bulk-shaped photochromic layer 21 and a light-driven laser light introduction layer 22 made of an optical thin film constituting an optical member. The photochromic layer 21 is coated with a cladding layer 23 on the surface not in contact with the light-driven laser light introducing layer 22. Similarly, the cladding layer 23 is also coated on the surface of the light-driven laser light introducing layer 22 that is not in contact with the photochromic layer 21.
 光駆動レーザ光導入層22には、例えば端面24に導入光学系を構成する光ファイバ40が結合されて、光ファイバ40を経て光ファイバ10の延在方向に光駆動レーザ光が導入される。なお、端面24側を除くフォトメカニカル駆動部20の周囲は、好ましくは、光駆動レーザ光導入層22に導入された光駆動レーザ光が外部に漏れないように遮光処理がなされる。図1では、フォトクロミック層21側が光ファイバ10に融着されているが、光駆動レーザ光導入層22側が光ファイバ10に融着されてもよい。 For example, an optical fiber 40 constituting an introduction optical system is coupled to the end face 24 in the optical drive laser light introduction layer 22, and the optical drive laser light is introduced in the extending direction of the optical fiber 10 through the optical fiber 40. The periphery of the photomechanical drive unit 20 except for the end face 24 side is preferably subjected to a light shielding process so that the light-driven laser light introduced into the light-driven laser light introduction layer 22 does not leak outside. In FIG. 1, the photochromic layer 21 side is fused to the optical fiber 10, but the light-driven laser light introduction layer 22 side may be fused to the optical fiber 10.
 フォトクロミック層21は、例えば、サリチリデンアニリン、フルギド、アゾベンゼン、ジアリールエテン、スピロピラン、ビスイミダゾールとそれら分子の誘導体で構成される。これらの分子からなる結晶層又は高分子フィルムは、紫外・可視光の繰り返し照射により、光異性化に伴い大きく分子構造を変化させ強いトルク又は応力を発生する。加えて、耐久性に優れ、コスト面でも優れているフォトメカニカル材料である。 The photochromic layer 21 is composed of, for example, salicylidene aniline, fulgide, azobenzene, diarylethene, spiropyran, bisimidazole, and derivatives of these molecules. The crystal layer or polymer film composed of these molecules generates a strong torque or stress by greatly changing the molecular structure with photoisomerization by repeated irradiation with ultraviolet and visible light. In addition, the photomechanical material has excellent durability and cost.
 一方、光駆動レーザ光導入層22は、例えば紫外領域まで透明であるSiO2の光学薄膜層で構成される。この場合は、例えば、フォトクロミック層21をシート状に切削する際に、接合面を予め光学研磨又はイオンスムージング法により平滑化した光学面として、フォトクロミック層21の表面にSiO2をスパッタ又は蒸着等で積層することにより光駆動レーザ光導入層22を形成してもよい。あるいは、フォトクロミック層21の表面にアクリルベースのレジスト剤をコートし、加熱或いは光硬化させて光駆動レーザ光導入層22を形成してもよい。なお、この際、コート面の光学平滑度(面精度)は、最低でも光の位相の反転が起きないλ/4以上とするのが好ましい。 On the other hand, the light-driven laser light introducing layer 22 is composed of, for example, an optical thin film layer of SiO 2 that is transparent up to the ultraviolet region. In this case, for example, when the photochromic layer 21 is cut into a sheet shape, the bonding surface is an optical surface smoothed by optical polishing or ion smoothing in advance, and SiO 2 is sputtered or deposited on the surface of the photochromic layer 21. The light-driven laser light introduction layer 22 may be formed by laminating. Alternatively, the light-driven laser light introduction layer 22 may be formed by coating an acrylic-based resist agent on the surface of the photochromic layer 21 and heating or photocuring it. At this time, it is preferable that the optical smoothness (surface accuracy) of the coated surface is at least λ / 4 which does not cause reversal of the phase of light.
 クラッド層23は、フォトクロミック層21と光駆動レーザ光導入層22との接合面でない面にコートされる。クラッド層23は、例えば、反射率の高い金属層(例えば、金、銀、アルミ等)や、フォトクロミック層21及び光駆動レーザ光導入層22よりも屈折率が低いフッ化マグネシウムからなる。 The clad layer 23 is coated on a surface that is not a joint surface between the photochromic layer 21 and the light-driven laser light introducing layer 22. The clad layer 23 is made of, for example, a highly reflective metal layer (for example, gold, silver, aluminum, etc.), or magnesium fluoride having a refractive index lower than that of the photochromic layer 21 and the light-driven laser light introducing layer 22.
 図1において、光駆動レーザ光導入層22に、端面24側から可視光又は紫外光(光駆動レーザ光)が入射されると、入射光はクラッド層23で反射されて、フォトクロミック層21及び光駆動レーザ光導入層22に完全に閉じ込められる。すなわち、光駆動レーザ光導入層22から入射した光は、順次、フォトクロミック層21で吸収されながら伝搬する。 In FIG. 1, when visible light or ultraviolet light (light-driven laser light) is incident on the light-driven laser light introduction layer 22 from the end face 24 side, the incident light is reflected by the cladding layer 23, and the photochromic layer 21 and light It is completely confined in the drive laser light introducing layer 22. That is, the light incident from the light-driven laser light introducing layer 22 propagates while being sequentially absorbed by the photochromic layer 21.
 その結果、フォトクロミック層21の全ての空間領域に光が行き渡り、フォトクロミック層21の屈曲が起きる。これにより、フォトクロミック層21と力学的に一体な光ファイバ10も屈曲する。例えば、フォトクロミック層21がアゾベンゼンで構成されている場合、光駆動レーザ光として、波長355nmの紫外光を入射させると、フォトクロミック層21が屈曲し、波長532nmの可視光を入射させると、フォトクロミック層21が元の形状に戻る。 As a result, light spreads over all the spatial regions of the photochromic layer 21 and the photochromic layer 21 bends. As a result, the optical fiber 10 that is mechanically integrated with the photochromic layer 21 is also bent. For example, when the photochromic layer 21 is composed of azobenzene, when ultraviolet light having a wavelength of 355 nm is incident as light-driven laser light, the photochromic layer 21 is bent and when visible light having a wavelength of 532 nm is incident, the photochromic layer 21 is incident. Returns to its original shape.
 フォトクロミック層21は、一般に、励起して光異性化した分子の数に応じて屈曲の程度が変わる。すなわち、フォトクロミック層21に作用する光量によって、屈曲の角度が変わる。したがって、フォトクロミック層21への光駆動レーザ光の強度又は時間を制御すれば、屈曲の角度を確実に制御することができる。なお、光駆動レーザ光導入層22に導入された光駆動レーザ光をフォトクロミック層21に効率的に作用させるため、例えば光駆動レーザ光導入層22のフォトクロミック層21と接する面に光散乱体を形成したり、フォトクロミック層21と接する面とは反対側の面に切り込みを形成したりしてもよい(例えば、特開2011-244566号公報参照)。 The degree of bending of the photochromic layer 21 generally varies depending on the number of molecules excited and photoisomerized. That is, the angle of bending changes depending on the amount of light acting on the photochromic layer 21. Therefore, if the intensity or time of the optically driven laser beam to the photochromic layer 21 is controlled, the bending angle can be controlled reliably. In order to cause the light-driven laser light introduced into the light-driven laser light introduction layer 22 to act efficiently on the photochromic layer 21, for example, a light scatterer is formed on the surface of the light-driven laser light introduction layer 22 in contact with the photochromic layer 21. Alternatively, a cut may be formed on the surface opposite to the surface in contact with the photochromic layer 21 (see, for example, Japanese Patent Application Laid-Open No. 2011-244666).
 図2A及び図2Bは、光駆動レーザ光導入層22の二つの変形例を説明するための図である。図2Aに示す光駆動レーザ光導入層22は、高屈折率のシート状のコア層22aと、その両面に接合された低屈折率のクラッド層22b、22cとを有する。一方のクラッド層22bには、フォトクロック層21が接合される。他方のクラッド層22cには、エッチング等によりコア層22aまで侵入して微細な切れ込み22dが形成されている。切れ込み22dは、光駆動レーザ光の伝播方向に沿って多数形成されている。 2A and 2B are diagrams for explaining two modified examples of the light-driven laser light introduction layer 22. FIG. The light-driven laser light introducing layer 22 shown in FIG. 2A has a high refractive index sheet-like core layer 22a and low refractive index cladding layers 22b and 22c bonded to both surfaces thereof. The photoclock layer 21 is joined to one clad layer 22b. The other cladding layer 22c has a fine cut 22d that penetrates into the core layer 22a by etching or the like. A large number of the notches 22d are formed along the propagation direction of the optically driven laser beam.
 図2Aに示す光駆動レーザ光導入層22は、コア層22aに導入される光駆動レーザ光を両面のクラッド層22b、22cで全反射させながら伝播する。その際、光駆動レーザ光は、切れ込み22dで散乱され、反射角を大きく変える。その結果として、全反射できない角度で散乱された光駆動レーザ光が、クラッド層22bを透過してフォトクロミック層21に入射し、該フォトクロミック層21の変形を誘導させる。 The light-driven laser light introducing layer 22 shown in FIG. 2A propagates the light-driven laser light introduced into the core layer 22a while being totally reflected by the clad layers 22b and 22c on both sides. At that time, the light-driven laser light is scattered by the notch 22d, and the reflection angle is greatly changed. As a result, light-driven laser light scattered at an angle at which total reflection is not possible passes through the cladding layer 22b and enters the photochromic layer 21 to induce deformation of the photochromic layer 21.
 また、図2Bに示す光駆動レーザ光導入層22は、図2Aと同様に、コア層22aと、その両面に接合された低屈折率のクラッド層22b、22cとを有する。一方のクラッド層22bには、エッチング等によってコア層22aまで侵入して多数の切り込み22dが形成されている。切り込み22dを有する部分は、熱成形等により曲面状に折り曲げられており、この切り込み22dを有する曲面部分にフォトクロミック層21が接合される。 2B has a core layer 22a and low-refractive-index cladding layers 22b and 22c bonded to both surfaces, as in FIG. 2A. In one clad layer 22b, a large number of cuts 22d are formed so as to penetrate into the core layer 22a by etching or the like. The portion having the cut 22d is bent into a curved surface by thermoforming or the like, and the photochromic layer 21 is joined to the curved portion having the cut 22d.
 図2Bに示す光駆動レーザ光導入層22は、コア層22aに導入される光駆動レーザ光を両面のクラッド層22b、22cで全反射させながら伝播する。その際、光駆動レーザ光は、曲面部分の切れ込み22dで散乱されて光駆動レーザ光導入層22から射出されてフォトクロミック層21に入射する。これにより、フォトクロミック層21が変形される。図2Bの光駆動レーザ光導入層22によると、全体を折り曲げることで、フォトクロミック層21に入射する光駆動レーザ光の散乱角をより効果的に調整することができる。また、切れ込み22dの形成位置及び数により、散乱光の発生位置及び強度を調整できるので、フォトクロミック層21の屈曲する位置及び変形角度を容易に調整することが可能となる。 The light-driven laser light introducing layer 22 shown in FIG. 2B propagates the light-driven laser light introduced into the core layer 22a while being totally reflected by the clad layers 22b and 22c on both sides. At this time, the light-driven laser light is scattered by the cut 22 d in the curved surface portion, is emitted from the light-driven laser light introduction layer 22, and enters the photochromic layer 21. Thereby, the photochromic layer 21 is deformed. According to the light-driven laser light introducing layer 22 in FIG. 2B, the scattering angle of the light-driven laser light incident on the photochromic layer 21 can be adjusted more effectively by bending the whole. Further, since the generation position and intensity of the scattered light can be adjusted by the formation position and number of the notches 22d, the bending position and the deformation angle of the photochromic layer 21 can be easily adjusted.
 図3は、図1に示した光駆動装置の光源システムの要部の一例の構成を示す図である。光源システムは、光駆動光源部50と制御部60とを備える。光駆動光源部50は、光駆動レーザ光源51を備える。光駆動レーザ光源51は、フォトクロミック層21の特性に応じて、所要の波長のレーザ光を射出するものが使用される。ここでは、説明の便宜上、フォトクロミック層21がアゾベンゼンで構成されているものとして、光駆動レーザ光源51は、波長1064nmの基本波を射出する半導体レーザ励起のNd:YVO4レーザを用いるものとする。 FIG. 3 is a diagram showing a configuration of an example of a main part of the light source system of the light driving device shown in FIG. The light source system includes a light driving light source unit 50 and a control unit 60. The light drive light source unit 50 includes a light drive laser light source 51. As the light-driven laser light source 51, one that emits laser light having a required wavelength is used according to the characteristics of the photochromic layer 21. Here, for convenience of explanation, it is assumed that the photochromic layer 21 is made of azobenzene, and the light-driven laser light source 51 uses a semiconductor laser-pumped Nd: YVO 4 laser that emits a fundamental wave having a wavelength of 1064 nm.
 光駆動レーザ光源51から射出されるレーザ光は、2光路に分岐されてKDP等の非線形光学結晶を備える3倍波発生部52a及び2倍波発生部52bに入射される。これにより、3倍波発生部52aからは、基本波(波長1064nm)の3倍波である波長355nmの紫外光が射出され、2倍波発生部52bからは、基本波の2倍波である波長532nmの可視光が射出される。つまり、1台の光駆動レーザ光源51から、フォトメカニカル駆動部20のフォトクロミック層21を可逆的に光異性化する2波長の活性光(光駆動レーザ光)が得られる。 The laser light emitted from the light-driven laser light source 51 is branched into two optical paths and is incident on a third harmonic generation unit 52a and a second harmonic generation unit 52b including a nonlinear optical crystal such as KDP. As a result, ultraviolet light having a wavelength of 355 nm, which is the third harmonic of the fundamental wave (wavelength 1064 nm), is emitted from the third harmonic generator 52a, and the second harmonic of the fundamental wave is emitted from the second harmonic generator 52b. Visible light having a wavelength of 532 nm is emitted. That is, two-wavelength active light (light-driven laser light) that reversibly photoisomerizes the photochromic layer 21 of the photomechanical drive unit 20 is obtained from one light-driven laser light source 51.
 3倍波発生部52aから射出される光駆動レーザ光は、光音響素子(AOM)53aに入射される。同様に、2倍波発生部52bから射出される光駆動レーザ光は、AOM53bに入射される。AOM53a及びAOM53bから射出される光駆動レーザ光は、例えば図4に示すような分岐光ファイバ54及び必要に応じて延長用の光ファイバを経て光ファイバ40に結合される。 The light-driven laser light emitted from the third harmonic generation unit 52a is incident on the photoacoustic element (AOM) 53a. Similarly, the optically driven laser light emitted from the second harmonic generation unit 52b is incident on the AOM 53b. The light-driven laser light emitted from the AOM 53a and the AOM 53b is coupled to the optical fiber 40 via, for example, a branch optical fiber 54 as shown in FIG. 4 and, if necessary, an extension optical fiber.
 光駆動レーザ光源51、AOM53a及びAOM53bは、制御部60により制御される。制御部60は、例えばホストコンピュータにより構成される。これにより、光駆動レーザ光源51の励起用半導体レーザの電流を制御して、3倍波発生部52a及び2倍波発生部52bから得られる3倍波及び2倍波の出力強度を制御することができる。また、光駆動レーザ光源51が、光学フィルターの自動交換機能やシャッターの開閉機能等を有する場合は、それらも制御することができる。また、AOM53a及びAOM53bを独立して制御することにより、紫外光及可視光の照射時間を独立に制御することができる。 The light-driven laser light source 51, the AOM 53a, and the AOM 53b are controlled by the control unit 60. The control unit 60 is configured by a host computer, for example. Thereby, the current of the pumping semiconductor laser of the light-driven laser light source 51 is controlled to control the output intensity of the third harmonic and the second harmonic obtained from the third harmonic generator 52a and the second harmonic generator 52b. Can do. Further, when the light-driven laser light source 51 has an optical filter automatic replacement function, a shutter opening / closing function, and the like, these can also be controlled. Further, by independently controlling the AOM 53a and the AOM 53b, the irradiation time of ultraviolet light and visible light can be controlled independently.
 本実施の形態に係る光駆動装置によると、フォトメカニカル駆動部20の光駆動レーザ光導入層22に、光駆動レーザ光源51から光ファイバ40を経て、AOM53a及びAOM53bにより強度又は時間が調整された紫外光と可視光とが時系列的に交互に入射されると、力学的に一体化された光ファイバ10を一次元方向に反復的に首振り運動させることができる。したがって、例えば内視鏡の鉗子チャネルを通して光ファイバ10から射出された光(プローブ光)を、集光レンズ30を経て胃壁等の被検部に集光すれば、体腔内表面をプローブ光により所望の速度で1元的に空間走査することができる。そして、被検部から発生する散乱光や蛍光を光ファイバ10又は他の受光用ファイバを経て検出し、その検出出力を制御部60により走査位置に対応させて処理して例えばモニタに出力すれば、被検部を検査することができる。 According to the optical drive device according to the present embodiment, the intensity or time is adjusted to the optical drive laser light introduction layer 22 of the photomechanical drive unit 20 from the optical drive laser light source 51 through the optical fiber 40 by the AOM 53a and AOM 53b. When ultraviolet light and visible light are incident alternately in time series, the dynamically integrated optical fiber 10 can be repeatedly swung in a one-dimensional direction. Therefore, for example, if the light (probe light) emitted from the optical fiber 10 through the forceps channel of the endoscope is condensed on the test portion such as the stomach wall via the condenser lens 30, the surface inside the body cavity is desired by the probe light. Can be spatially scanned at a single speed. Then, if scattered light or fluorescence generated from the test part is detected through the optical fiber 10 or other light receiving fiber, the detection output is processed by the control unit 60 in accordance with the scanning position and output to, for example, a monitor. The test part can be inspected.
(第2実施の形態)
 図5A及び図5Bは、第2実施の形態に係る光駆動装置の要部の構成を示す図である。この光駆動装置は、図1に示した構成において、光ファイバ10の射出端部11を、射出端部11の延在方向と直交するXY平面内で二次元方向に駆動可能としたものである。そのため、射出端部11の外周に、直交する位置関係で、X方向駆動用のフォトメカニカル駆動部20Xと、Y方向駆動用のフォトメカニカル駆動部20Yとが融着されている。フォトメカニカル駆動部20X及びフォトメカニカル駆動部20Yは、図1に示したフォトメカニカル駆動部20と同様に構成される。
(Second Embodiment)
FIG. 5A and FIG. 5B are diagrams illustrating a configuration of a main part of the light driving device according to the second embodiment. In the configuration shown in FIG. 1, this optical driving device enables the emission end 11 of the optical fiber 10 to be driven in a two-dimensional direction within an XY plane orthogonal to the extending direction of the emission end 11. . Therefore, the photomechanical drive unit 20X for driving in the X direction and the photomechanical drive unit 20Y for driving in the Y direction are fused to the outer periphery of the injection end portion 11 in a perpendicular positional relationship. The photomechanical drive unit 20X and the photomechanical drive unit 20Y are configured similarly to the photomechanical drive unit 20 shown in FIG.
 フォトメカニカル駆動部20Xには、導入光学系を構成する光ファイバ40Xを経て光駆動レーザ光導入層に光駆動レーザ光が導入される。同様に、フォトメカニカル駆動部20Yには、導入光学系を構成する光ファイバ40Yを経て光駆動レーザ光導入層に光駆動レーザ光が導入される。なお、図5Bは、図5Aを光ファイバ10の射出端面12側から見た図を示している。 In the photomechanical drive unit 20X, the optical drive laser beam is introduced into the optical drive laser beam introduction layer via the optical fiber 40X constituting the introduction optical system. Similarly, light-driven laser light is introduced into the light-driven laser light introduction layer via the optical fiber 40Y constituting the introduction optical system into the photomechanical drive unit 20Y. FIG. 5B shows a view of FIG. 5A viewed from the exit end face 12 side of the optical fiber 10.
 図6は、第2実施の形態に係る光駆動装置の光源システムの要部の一例の構成を示す図である。この光源システムは、光駆動光源部50からX方向駆動用の紫外光及び可視光と、X方向駆動用の紫外光及び可視光とを射出可能とした点が、図3に示した光源システムと異なる。そのため、図3と同一作用を成す構成要素には、同一符号を付して説明を省略する。 FIG. 6 is a diagram illustrating a configuration of an example of a main part of the light source system of the light driving device according to the second embodiment. This light source system can emit ultraviolet light and visible light for driving in the X direction and ultraviolet light and visible light for driving in the X direction from the light driving light source unit 50, and the light source system shown in FIG. Different. Therefore, the same reference numerals are given to components having the same functions as those in FIG.
 図6において、3倍波発生部52aから射出される3倍波は、例えば図4に示したような分岐光ファイバ55aにより2光路に分岐されて、X方向駆動用のAOM53aX及びY方向駆動用のAOM53aYに入射される。同様に、2倍波発生部52bから射出される2倍波は、分岐光ファイバ55aと同様の分岐光ファイバ55bにより2光路に分岐されて、X方向駆動用のAOM53bX及びY方向駆動用のAOM53bYに入射される。 In FIG. 6, the third harmonic wave emitted from the third harmonic wave generation unit 52a is branched into two optical paths by a branch optical fiber 55a as shown in FIG. 4, for example, for the AOM 53aX for driving in the X direction and for driving in the Y direction. Is incident on the AOM 53aY. Similarly, the second harmonic wave emitted from the second harmonic wave generation unit 52b is branched into two optical paths by a branch optical fiber 55b similar to the branch optical fiber 55a, and the AOM 53bX for X direction driving and the AOM 53bY for Y direction driving Is incident on.
 AOM53aX及びAOM53bXから射出される光駆動レーザ光は、分岐光ファイバ54と同様の分岐光ファイバ54X及び必要に応じて延長用の光ファイバを経て光ファイバ40Xに結合される。同様に、AOM53aY及びAOM53bYから射出される光駆動レーザ光は、分岐光ファイバ54と同様の分岐光ファイバ54Y及び必要に応じて延長用の光ファイバを経て光ファイバ40Yに結合される。 The optically driven laser light emitted from the AOM 53aX and the AOM 53bX is coupled to the optical fiber 40X via a branch optical fiber 54X similar to the branch optical fiber 54 and an extension optical fiber as necessary. Similarly, the optically driven laser light emitted from the AOM 53aY and the AOM 53bY is coupled to the optical fiber 40Y via a branch optical fiber 54Y similar to the branch optical fiber 54 and an extension optical fiber as necessary.
 光駆動レーザ光源51、AOM53aX、AOM53aY、AOM53bX及びAOM53bYは、制御部60により制御される。 The light-driven laser light source 51, AOM 53aX, AOM 53aY, AOM 53bX, and AOM 53bY are controlled by the control unit 60.
 本実施の形態に係る光駆動装置によると、例えばフォトメカニカル駆動部20Yの光駆動レーザ光導入層に紫外光を入射させて光ファイバ10をY方向に変位させながら、フォトメカニカル駆動部20Xの光駆動レーザ光導入層に紫外光と可視光とを交互に入射させて光ファイバ10をX方向に往復変位させれば、光ファイバ10から射出される光により、例えば被検部を所望の速度でラスター走査することができる。また、光ファイバ10から射出される光によりスパイラス走査するように、フォトメカニカル駆動部20X及びフォトメカニカル駆動部20Yに入射させる光駆動レーザ光を制御することもでき、種々の軌跡での二次元走査が可能となる。したがって、例えば、内視鏡に実装して光ファイバ10から射出される光(プローブ光)により被検部を二次元走査し、これにより被検部から発生する散乱光や蛍光を光ファイバ10又は他の受光用ファイバを経て検出すれば、被検部の二次元画像を得ることができ、これにより被検部を検査(診断)することができる。 According to the optical drive device according to the present embodiment, for example, the light of the photomechanical drive unit 20X is generated while the optical fiber 10 is displaced in the Y direction by making ultraviolet light incident on the optical drive laser light introduction layer of the photomechanical drive unit 20Y. If ultraviolet light and visible light are alternately incident on the drive laser light introduction layer and the optical fiber 10 is reciprocally displaced in the X direction, the light emitted from the optical fiber 10 causes, for example, the test portion to move at a desired speed. Raster scanning is possible. In addition, it is possible to control the optically driven laser light incident on the photomechanical drive unit 20X and the photomechanical drive unit 20Y so that the spurious scan is performed by the light emitted from the optical fiber 10, and two-dimensional scanning along various trajectories. Is possible. Therefore, for example, the test portion is two-dimensionally scanned with light (probe light) mounted on an endoscope and emitted from the optical fiber 10, thereby scattering light or fluorescence generated from the test portion to the optical fiber 10 or If detection is performed via another light receiving fiber, a two-dimensional image of the test part can be obtained, and thereby the test part can be inspected (diagnosed).
(第3実施の形態)
 図7は、第3実施の形態に係る走査型内視鏡の要部の構成を示す図である。この走査型内視鏡は、第2実施の形態に示した光駆動装置を備える。以下、第2実施の形態で説明した構成要素と同一作用をなす構成要素には、同一参照符号を付して説明を省略する。
(Third embodiment)
FIG. 7 is a diagram illustrating a configuration of a main part of a scanning endoscope according to the third embodiment. This scanning endoscope includes the light driving device described in the second embodiment. Hereinafter, the same reference numerals are given to components having the same actions as the components described in the second embodiment, and description thereof is omitted.
 図7において、光ファイバ10は、内視鏡の挿入部内に延在して配設され、挿入部の先端部内において、射出端部11が変位可能に支持されている。また、集光レンズ30は、挿入部の先端部に装着される。なお、図7では、光ファイバ10から射出される光(プローブ)を集光レンズ30に直接入射させるいわゆる直視型として示しているが、反射ミラーにより側面(周面)方向あるいは斜め側面方向に反射させるいわゆる側視型あるいは斜視型の場合は、挿入部の先端部周面に集光レンズ30が装着される。 7, the optical fiber 10 is disposed so as to extend into the insertion portion of the endoscope, and the emission end portion 11 is supported in a displaceable manner in the distal end portion of the insertion portion. Further, the condenser lens 30 is attached to the distal end portion of the insertion portion. 7 shows a so-called direct-view type in which light (probe) emitted from the optical fiber 10 is directly incident on the condenser lens 30, but is reflected in a side surface (circumferential surface) direction or an oblique side surface direction by a reflecting mirror. In the case of the so-called side view type or perspective type, the condensing lens 30 is mounted on the peripheral surface of the distal end portion of the insertion portion.
 光ファイバ10は、内視鏡外部において、例えば図8に示すようなFCコネクタ等の光コネクタ71及び中継アダプタ72を介して光ファイバ80の光コネクタに結合される。光ファイバ80には、プローブ光レーザ光源90から射出されるプローブ光が入射される。光ファイバ80に入射されたプローブ光は、光ファイバ80及び光ファイバ10を伝送して、光ファイバ10の射出端面12から射出される。これにより、集光レンズ30を経て被検部にプローブ光が照射される。 The optical fiber 10 is coupled to the optical connector of the optical fiber 80 via an optical connector 71 such as an FC connector and a relay adapter 72 as shown in FIG. Probe light emitted from the probe light laser light source 90 is incident on the optical fiber 80. The probe light incident on the optical fiber 80 is transmitted from the optical fiber 80 and the optical fiber 10 and is emitted from the emission end face 12 of the optical fiber 10. As a result, the probe light is irradiated to the test portion through the condenser lens 30.
 プローブ光レーザ光源90は、被検部等に応じて、所要の波長のレーザ光を射出するものが使用される。ここでは、便宜上、He-Neレーザを用い、その波長633nmの基本波をプローブ光として用いる。プローブ光レーザ光源90は、制御部60によりプローブ光の射出タイミングや強度等が制御される。 As the probe light laser light source 90, one that emits laser light having a required wavelength is used in accordance with the part to be examined. Here, for convenience, a He—Ne laser is used, and a fundamental wave with a wavelength of 633 nm is used as the probe light. In the probe light laser light source 90, the control unit 60 controls the emission timing and intensity of the probe light.
 本実施の形態では、光ファイバ10を受光用ファイバとしても兼用される。そのため、プローブ光レーザ光源90から射出されるプローブ光は、ビームスプリッタ91で反射されて光ファイバ80に入射される。ビームスプリッタ91は、例えばダイクロイックミラーが使用される。また、プローブ光の照射により被検部から発生する散乱光や自家蛍光等の信号光は、集光レンズ30により集光されて光ファイバ10に入射し、光ファイバ10及び光ファイバ80を伝送して光ファイバ80から射出され、さらにビームスプリッタ91を透過して光検出器92で受光される。光検出器92は、例えば光電子増倍管が使用される。光検出器92の出力は、制御部60に入力される。 In the present embodiment, the optical fiber 10 is also used as a light receiving fiber. Therefore, the probe light emitted from the probe light laser light source 90 is reflected by the beam splitter 91 and enters the optical fiber 80. As the beam splitter 91, for example, a dichroic mirror is used. Signal light such as scattered light and autofluorescence generated from the test part by probe light irradiation is collected by the condenser lens 30 and incident on the optical fiber 10, and transmitted through the optical fiber 10 and the optical fiber 80. Then, the light is emitted from the optical fiber 80, further passes through the beam splitter 91, and is received by the photodetector 92. For the photodetector 92, for example, a photomultiplier tube is used. The output of the photodetector 92 is input to the control unit 60.
 一方、フォトメカニカル駆動部20Xに結合された光ファイバ40Xは、内視鏡の挿入部内に延在して配設され、内視鏡外部において光コネクタ71Xに接続されて、中継アダプタ72X及び必要に応じて延長用の光ファイバを経て、光駆動光源部50の分岐光ファイバ54Xの出力端に着脱自在に結合される。同様に、フォトメカニカル駆動部20Yに結合された光ファイバ40Yは、内視鏡の挿入部内に延在して配設され、内視鏡外部において光コネクタ71Yに接続されて、中継アダプタ72Y及び必要に応じて延長用の光ファイバを経て、光駆動光源部50の分岐光ファイバ54Yの出力端に着脱自在に結合される。 On the other hand, the optical fiber 40X coupled to the photomechanical drive unit 20X is disposed so as to extend into the insertion portion of the endoscope, and is connected to the optical connector 71X outside the endoscope. Accordingly, it is detachably coupled to the output end of the branch optical fiber 54X of the light driving light source unit 50 through an extending optical fiber. Similarly, the optical fiber 40Y coupled to the photomechanical drive unit 20Y is disposed so as to extend into the insertion portion of the endoscope, and is connected to the optical connector 71Y outside the endoscope. Accordingly, it is detachably coupled to the output end of the branch optical fiber 54Y of the light driving light source unit 50 through an extending optical fiber.
 本実施の形態に係る走査型内視鏡は、制御部60によって全体の動作が制御される。すなわち、内視鏡の挿入部が胃壁等の所望の被検部に挿入されて、内視鏡操作者による走査(検査)の開始が操作されると、制御部60による光駆動光源部50及びプローブ光レーザ光源90の制御が開始される。これにより、光ファイバ10が駆動されて、プローブ光により被検部が二次元走査される。そして、各走査点において発生した信号光は、光検出器92で受光されて制御部60に入力され、所要の信号処理が行われる。 The entire operation of the scanning endoscope according to the present embodiment is controlled by the control unit 60. That is, when the insertion portion of the endoscope is inserted into a desired portion to be examined such as a stomach wall and the start of scanning (examination) by the endoscope operator is operated, Control of the probe light laser light source 90 is started. Thereby, the optical fiber 10 is driven, and the test part is two-dimensionally scanned by the probe light. Then, the signal light generated at each scanning point is received by the photodetector 92 and input to the control unit 60, and required signal processing is performed.
 制御部60は、フォトメカニカル駆動部20X、20Yをそれぞれ駆動する光駆動レーザ光源51の出力強度を、光ファイバ10の屈曲角に変換する、つまり光駆動レーザ光源51の出力強度をプローブ光による走査点の位置情報に変換する較正テーブルを有している。制御部60は、この較正テーブルに基づいて、光検出器92からの出力信号を、所要の信号処理を施してフレームメモリの対応するアドレスに格納する。そして、制御部60は、フレームメモリに格納された二次元画像情報をモニタに表示する。これにより、医師は、内視鏡を挿入後、制御部60を操作することで、体内のリアルタイム検査(診断)が可能となる。 The control unit 60 converts the output intensity of the optical drive laser light source 51 that drives the photomechanical drive units 20X and 20Y into the bending angle of the optical fiber 10, that is, scans the output intensity of the optical drive laser light source 51 with probe light. It has a calibration table for converting to point position information. Based on this calibration table, the control unit 60 performs the required signal processing and stores the output signal from the photodetector 92 at a corresponding address in the frame memory. Then, the control unit 60 displays the two-dimensional image information stored in the frame memory on the monitor. Thereby, the doctor can perform a real-time examination (diagnosis) in the body by operating the control unit 60 after inserting the endoscope.
 本実施の形態によると、体内に挿入される内視鏡挿入部に電磁波の発生源を有しておらず、体外から光ファイバ40X、40Yを経てフォトメカニカル駆動部20X、20Yに光駆動レーザ光を導入して光ファイバ10を駆動している。したがって、MEMS光スキャナを使用する場合と比較して内視鏡先端部の細径化が容易に図れ、被検者の苦痛を軽減できる。また、電気的制御を全て体外で操作できるので、電磁方式におけるように体内で2次電磁場パルスが発生せず、また圧電方式のように体内に高電圧が導入されることもない。したがって、ペースメーカー等を装着した被験者にも使用可能となり、汎用性を向上できる。しかも、フォトメカニカル駆動部20X、20Yのフォトクロミック層は、サリチリデンアニリン、フルギド、アゾベンゼン、ジアリールエテン、スピロピラン、ビスイミダゾール等の毒性を有しない分子で構成されるので、安全性もより向上できる。 According to the present embodiment, the endoscope insertion portion that is inserted into the body does not have an electromagnetic wave generation source, and the optically driven laser light is transmitted from outside the body to the photomechanical drive portions 20X and 20Y via the optical fibers 40X and 40Y. To drive the optical fiber 10. Therefore, the diameter of the endoscope tip can be easily reduced as compared with the case where the MEMS optical scanner is used, and the pain of the subject can be reduced. Further, since all electrical control can be operated outside the body, secondary electromagnetic field pulses are not generated in the body as in the electromagnetic system, and no high voltage is introduced into the body as in the piezoelectric system. Therefore, it can be used for a subject wearing a pacemaker or the like, and versatility can be improved. In addition, since the photochromic layers of the photomechanical drive units 20X and 20Y are composed of non-toxic molecules such as salicylideneaniline, fulgide, azobenzene, diarylethene, spiropyran, and bisimidazole, the safety can be further improved.
 また、光ファイバ10は、体外において光コネクタ71によりプローブ光レーザ光源90に着脱可能となっている。同様に、フォトメカニカル駆動部20X、20Yに結合された光ファイバ40X、40Yも、体外において光コネクタ71X、71Yにより光駆動光源部50に着脱可能となっている。したがって、プローブ光レーザ光源90及び光駆動光源部50と内視鏡ユニットとを、体外で簡単に着脱することができる。これにより、内視鏡ユニットを簡単に「使い捨て」とすることができ、内視鏡の洗浄の問題も解決することができる。 Further, the optical fiber 10 can be attached to and detached from the probe light laser light source 90 by the optical connector 71 outside the body. Similarly, the optical fibers 40X and 40Y coupled to the photomechanical drive units 20X and 20Y are also detachable from the light drive light source unit 50 by the optical connectors 71X and 71Y outside the body. Therefore, the probe light laser light source 90, the light drive light source unit 50, and the endoscope unit can be easily attached and detached outside the body. Thereby, the endoscope unit can be easily made “disposable”, and the problem of cleaning the endoscope can be solved.
 すなわち、内視鏡検査、例えば胃の検査では、内視鏡を胃まで挿入すると、被験者の胃液や吐しゃ物、さらには細菌やウィルス等が内視鏡に付着する。そのため、内視鏡を繰り返し使用する場合は、2次感染を防止するために、検査毎に入念な洗浄及び消毒が必要となり、安全面及びコスト面で大きな負担となる。 That is, in an endoscopic examination, for example, an examination of the stomach, when the endoscope is inserted into the stomach, the subject's gastric juice, vomit, and bacteria and viruses adhere to the endoscope. Therefore, when the endoscope is used repeatedly, careful cleaning and disinfection is required for each inspection in order to prevent secondary infection, which is a heavy burden in terms of safety and cost.
 これに対し、本実施の形態に係る走査型内視鏡は、体内に挿入される部分が、挿入部(チューブ)、光ファイバ10、40X、40Y、フォトメカニカル駆動部20X、20Y、集光レンズ30等で、全てが基本的に極めて廉価素材で構成することができるので、「使い捨て」が可能となる。したがって、検査毎に、新しい内視鏡ユニットを使用することで、安全性及び検査費用の低減が図れる。 On the other hand, in the scanning endoscope according to the present embodiment, the portion to be inserted into the body is the insertion portion (tube), the optical fibers 10, 40X, 40Y, the photomechanical drive units 20X, 20Y, and the condenser lens. At 30 mag, everything can basically be made of a very inexpensive material, so it can be “disposable”. Therefore, safety and inspection costs can be reduced by using a new endoscope unit for each inspection.
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上記実施の形態では、光源部50を1台の光駆動レーザ光源51からフォトクロミック層21を可逆的に異性化する2波長の光駆動レーザ光(活性光)を得るようにしたが、2波長の光駆動レーザ光をそれぞれ専用のレーザ光源を用いて得るようにしてもよい。 It should be noted that the present invention is not limited to the above embodiment, and many variations or modifications are possible. For example, in the above embodiment, the light source unit 50 obtains two-wavelength light-driven laser light (active light) that reversibly isomerizes the photochromic layer 21 from one light-driven laser light source 51. You may make it obtain the optical drive laser beam of a wavelength using a laser beam for exclusive use, respectively.
 また、本発明は、生体の検査に限らす、光ファイバ10から治療用のレーザ光を射出することで、生体の種々の治療にも適用することができる。また、医療用に限らず、工業用の内視鏡や加工装置にも適用できるとともに、光ファイバから射出される光を振り分ける用途等にも適用できる。さらに、フォトメカニカル駆動部によって変位させる導光部は、光ファイバに限らず、シート状の光導波路であってもよい。したがって、本発明は、光導波路の光学特性を変調する用途等にも適用できる。また、図1に示したフォトメカニカル駆動部20や、図4に示したフォトメカニカル駆動部20X、20Yは、光ファイバ10に着脱自在に結合されてもよい。 In addition, the present invention can be applied to various treatments of a living body by emitting therapeutic laser light from the optical fiber 10, which is limited to the inspection of a living body. Further, the present invention can be applied not only to medical use but also to industrial endoscopes and processing apparatuses, and can also be applied to uses for distributing light emitted from an optical fiber. Furthermore, the light guide part displaced by the photomechanical drive part is not limited to an optical fiber, but may be a sheet-like optical waveguide. Therefore, the present invention can also be applied to uses for modulating the optical characteristics of the optical waveguide. Further, the photomechanical drive unit 20 shown in FIG. 1 and the photomechanical drive units 20X and 20Y shown in FIG. 4 may be detachably coupled to the optical fiber 10.
 さらに、変位可能な被駆動部は、光ファイバや光導波路等の導光部に限らず、例えば図9に示すような体腔内に挿入可能な可撓性を有する薬剤導入管100であってもよい。この場合、薬剤導入管100の先端部に、第2実施の形態と同様にX方向駆動用のフォトメカニカル駆動部20X及びY方向駆動用のフォトメカニカル駆動部20Yを融着して、薬剤導入管100の先端部をX方向及びY方向に変形駆動することにより、体外から狙った内臓部位に薬剤101を散布することが可能となる。また、フォトメカニカル駆動部は、光駆動光導入層が被駆動部に融着されてもよい。 Further, the displaceable driven part is not limited to the light guide part such as an optical fiber or an optical waveguide, but may be a flexible drug introduction tube 100 that can be inserted into a body cavity as shown in FIG. Good. In this case, the X-direction drive photomechanical drive unit 20X and the Y-direction drive photomechanical drive unit 20Y are fused to the distal end portion of the drug introduction tube 100 in the same manner as in the second embodiment, and the drug introduction tube. By driving the distal end portion of 100 to be deformed in the X direction and the Y direction, the drug 101 can be sprayed on the visceral sites aimed from outside the body. In the photomechanical drive unit, the light drive light introduction layer may be fused to the driven unit.
 10 光ファイバ
 20、20X、20Y フォトメカニカル駆動部
 21 フォトクロミック層
 22 光駆動レーザ光導入層
 40、40X、40Y 光ファイバ
 50 光駆動光源部
 51 光駆動レーザ光源
 53a、53b、53aX、53bX、53aY、53bY 光音響素子(AOM)
 60 制御部
 80 光ファイバ
 90 プローブ光レーザ光源
 92 光検出器
 100 薬剤導入管
DESCRIPTION OF SYMBOLS 10 Optical fiber 20, 20X, 20Y Photomechanical drive part 21 Photochromic layer 22 Optical drive laser light introduction layer 40, 40X, 40Y Optical fiber 50 Optical drive light source part 51 Optical drive laser light source 53a, 53b, 53aX, 53bX, 53aY, 53bY Photoacoustic element (AOM)
60 Control Unit 80 Optical Fiber 90 Probe Optical Laser Light Source 92 Photodetector 100 Drug Introducing Tube

Claims (21)

  1.  変位可能な被駆動部に結合され、光異性化により空間的構造が可逆的に変化するフォトメカニカル駆動部を備え、
     前記フォトメカニカル駆動部への光駆動光の入射による該フォトメカニカル駆動部の変化により、前記被駆動部を変位させる、光駆動装置。
    A photomechanical drive unit that is coupled to a displaceable driven unit and whose spatial structure changes reversibly by photoisomerization,
    An optical driving device that displaces the driven part by a change of the photomechanical driving part due to incidence of light driving light to the photomechanical driving part.
  2.  請求項1に記載の光駆動装置において、
     前記被駆動部を異なる方向に変位させるように、前記フォトメカニカル駆動部が前記被駆動部に複数個結合されている、光駆動装置。
    The light driving device according to claim 1,
    An optical drive device, wherein a plurality of the photomechanical drive units are coupled to the driven unit so as to displace the driven unit in different directions.
  3.  請求項1又は2に記載の光駆動装置において、
     前記フォトメカニカル駆動部を可逆的に変化させる少なくとも2波長の前記光駆動光を射出する光駆動光源部と、
     該光駆動光源部からの前記光駆動光を前記フォトメカニカル駆動部に伝送する導入光学系と、をさらに備える、光駆動装置。
    The light driving device according to claim 1 or 2,
    An optical drive light source unit that emits the optical drive light of at least two wavelengths that reversibly change the photomechanical drive unit;
    An optical drive device further comprising: an introduction optical system that transmits the optical drive light from the optical drive light source unit to the photomechanical drive unit.
  4.  請求項3に記載の光駆動装置において、
     前記光駆動光源部は、2波長の前記光駆動光を時系列に切り替えて前記導入光学系に導入する、光駆動装置。
    The light driving device according to claim 3,
    The light drive light source unit is a light drive device that switches the light drive light of two wavelengths to the introduction optical system by switching in time series.
  5.  請求項3又は4に記載の光駆動装置において、
     前記光駆動光源部は、射出する2波長の前記光駆動光の強度又は時間が可変である、光駆動装置。
    The light driving device according to claim 3 or 4,
    The optical drive light source unit is an optical drive device in which the intensity or time of the emitted optical drive light of two wavelengths is variable.
  6.  請求項3乃至5のいずれかに記載の光駆動装置において、
     2波長の前記光駆動光は、一方が400nm以上の長波長であり、他方が400nmより短波長である、光駆動装置。
    The light driving device according to any one of claims 3 to 5,
    One of the two-wavelength light driving light has a long wavelength of 400 nm or more and the other has a wavelength shorter than 400 nm.
  7.  請求項3乃至6のいずれかに記載の光駆動装置において、
     前記光駆動光源部は、1つの光駆動レーザ光源を備え、該光駆動レーザ光源から射出される基本波の異なる倍数波を2波長の前記光駆動光とする、光駆動装置。
    The light driving device according to any one of claims 3 to 6,
    The optical drive light source unit includes an optical drive laser light source, and uses multiple wave different from the fundamental wave emitted from the optical drive laser light source as the optical drive light having two wavelengths.
  8.  請求項3乃至7のいずれかに記載の光駆動装置において、
     前記導入光学系は、前記光駆動光源部に対して着脱可能である、光駆動装置。
    The light driving device according to any one of claims 3 to 7,
    The optical drive device, wherein the introduction optical system is detachable from the optical drive light source unit.
  9.  請求項1乃至8のいずれかに記載の光駆動装置において、
     前記被駆動部は導光部からなる、光駆動装置。
    The light driving device according to any one of claims 1 to 8,
    The driven unit is a light driving device including a light guide unit.
  10.  請求項3乃至8のいずれかに記載の光駆動装置において、
     前記被駆動部は導光部からなり、
     前記導光部から射出される光が照射される被照射部からの光応答信号を検出する光検出器をさらに備える、光駆動装置。
    The light driving device according to any one of claims 3 to 8,
    The driven part comprises a light guide part,
    An optical driving device further comprising a photodetector for detecting a light response signal from an irradiated portion irradiated with light emitted from the light guide portion.
  11.  請求項10に記載の光駆動装置において、
     前記光駆動光源部を制御して前記フォトメカニカル駆動部へ前記光駆動光を入射させるとともに、前記光駆動光源部の制御に同期して前記光検出器の出力を処理する制御部をさらに備える、光駆動装置。
    The light driving device according to claim 10,
    The optical drive light source unit is controlled to cause the light drive light to enter the photomechanical drive unit, and further includes a control unit that processes the output of the photodetector in synchronization with the control of the light drive light source unit. Light drive device.
  12.  請求項11に記載の光駆動装置において、
     前記制御部は、前記導光部の変位に対応させて前記光検出器の出力を表示する、光駆動装置。
    The light driving device according to claim 11,
    The said control part is a light drive device which displays the output of the said photodetector corresponding to the displacement of the said light guide part.
  13.  請求項10乃至12のいずれかに記載の光駆動装置において、
     前記光検出器は、前記光応答信号として散乱光又は蛍光を検出する、光駆動装置。
    The light driving device according to any one of claims 10 to 12,
    The light detector is a light driving device that detects scattered light or fluorescence as the light response signal.
  14.  請求項1乃至8のいずれかに記載の光駆動装置において、
     前記被駆動部は薬剤導入管からなる、光駆動装置。
    The light driving device according to any one of claims 1 to 8,
    The optically driven device, wherein the driven part comprises a drug introduction tube.
  15.  請求項1乃至14のいずれかに記載の光駆動装置において、
     前記フォトメカニカル駆動部は、サリチリデンアニリン、フルギド、アゾベンゼン、ジアリールエテン、スピロピラン、ビスイミダゾールとそれら分子の誘導体を有するフォトクロミック層を備える、光駆動装置。
    The light driving device according to claim 1,
    The photomechanical drive unit includes a photochromic layer having salicylidene aniline, fulgide, azobenzene, diarylethene, spiropyran, bisimidazole, and derivatives of these molecules.
  16.  請求項15に記載の光駆動装置において、
     前記フォトクロミック層はバルク状で、少なくとも一面に光学平面を有する、光駆動装置。
    The light driving device according to claim 15,
    The optical driving device, wherein the photochromic layer is bulky and has an optical plane on at least one surface.
  17.  請求項16に記載の光駆動装置において、
     前記光学平面の面精度は、前記光駆動光の波長の1/4以上である、光駆動装置。
    The light driving device according to claim 16, wherein
    The optical driving device, wherein the surface accuracy of the optical plane is ¼ or more of the wavelength of the optical driving light.
  18.  請求項16又は17に記載の光駆動装置において、
     前記光学平面に異なる光学部材が接合されている、光駆動装置。
    The light driving device according to claim 16 or 17,
    An optical driving device in which different optical members are bonded to the optical plane.
  19.  請求項18に記載の光駆動装置において、
     前記光学部材が光学薄膜である、光駆動装置。
    The light driving device according to claim 18,
    An optical driving device, wherein the optical member is an optical thin film.
  20.  請求項19に記載の光駆動装置において、
     前記光学薄膜がスパッタ又は蒸着により形成されている、光駆動装置。
    The light driving device according to claim 19,
    An optical driving device in which the optical thin film is formed by sputtering or vapor deposition.
  21.  請求項1乃至20のいずれかに記載の光駆動装置において、
     前記被駆動部及び前記フォトメカニカル駆動部は着脱可能に装着されている、光駆動装置。
    The light driving device according to any one of claims 1 to 20,
    The optical driving device, wherein the driven part and the photomechanical driving part are detachably mounted.
PCT/JP2015/001671 2014-04-01 2015-03-24 Optical driving device WO2015151459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-075516 2014-04-01
JP2014075516A JP2015197602A (en) 2014-04-01 2014-04-01 Photo drive unit

Publications (1)

Publication Number Publication Date
WO2015151459A1 true WO2015151459A1 (en) 2015-10-08

Family

ID=54239806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001671 WO2015151459A1 (en) 2014-04-01 2015-03-24 Optical driving device

Country Status (2)

Country Link
JP (1) JP2015197602A (en)
WO (1) WO2015151459A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029243A (en) * 2020-08-18 2020-12-04 武汉大学 Light-driven flexible film based on salicylaldehyde Schiff base, and preparation method and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301703A (en) * 1994-04-28 1995-11-14 Olympus Optical Co Ltd Antireflection film for high precision optical parts
JPH08215316A (en) * 1995-02-16 1996-08-27 Terumo Corp Catheter
JPH08322786A (en) * 1995-05-30 1996-12-10 Toshiba Medical Eng Co Ltd Diagnosing/treating apparatus for inside of organism
JPH10199009A (en) * 1997-01-09 1998-07-31 Seiko Epson Corp Photodetecting means, optical head, optical head adjusting method, and optical recorder
JPH10258020A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Tubular inserter
JP2006034543A (en) * 2004-07-26 2006-02-09 Olympus Corp Endoscope and repairing method of the same
US6999221B1 (en) * 2003-11-17 2006-02-14 Alabama A&M University Bimorphic polymeric photomechanical actuator
JP2006072266A (en) * 2004-09-06 2006-03-16 Olympus Corp Optical characteristic variable optical element
JP2006102325A (en) * 2004-10-07 2006-04-20 Keio Gijuku Tubule excessively bent by light
JP2006133747A (en) * 2004-10-06 2006-05-25 Nikon Corp Microscope device and laser unit
JP2008228368A (en) * 2007-03-08 2008-09-25 Tokyo Institute Of Technology Optical drive actuator and power transmission system
JP2009516568A (en) * 2005-11-23 2009-04-23 ユニヴァーシティ オブ ワシントン Scanning a beam with variable sequential framing using interrupted scanning resonances

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301703A (en) * 1994-04-28 1995-11-14 Olympus Optical Co Ltd Antireflection film for high precision optical parts
JPH08215316A (en) * 1995-02-16 1996-08-27 Terumo Corp Catheter
JPH08322786A (en) * 1995-05-30 1996-12-10 Toshiba Medical Eng Co Ltd Diagnosing/treating apparatus for inside of organism
JPH10199009A (en) * 1997-01-09 1998-07-31 Seiko Epson Corp Photodetecting means, optical head, optical head adjusting method, and optical recorder
JPH10258020A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Tubular inserter
US6999221B1 (en) * 2003-11-17 2006-02-14 Alabama A&M University Bimorphic polymeric photomechanical actuator
JP2006034543A (en) * 2004-07-26 2006-02-09 Olympus Corp Endoscope and repairing method of the same
JP2006072266A (en) * 2004-09-06 2006-03-16 Olympus Corp Optical characteristic variable optical element
JP2006133747A (en) * 2004-10-06 2006-05-25 Nikon Corp Microscope device and laser unit
JP2006102325A (en) * 2004-10-07 2006-04-20 Keio Gijuku Tubule excessively bent by light
JP2009516568A (en) * 2005-11-23 2009-04-23 ユニヴァーシティ オブ ワシントン Scanning a beam with variable sequential framing using interrupted scanning resonances
JP2008228368A (en) * 2007-03-08 2008-09-25 Tokyo Institute Of Technology Optical drive actuator and power transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEKO KOSHIMA ET AL.: "Photomechanical Crystals and the Molecular Machines", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 89 th, no. 1, 13 March 2009 (2009-03-13), pages 58 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029243A (en) * 2020-08-18 2020-12-04 武汉大学 Light-driven flexible film based on salicylaldehyde Schiff base, and preparation method and application thereof
CN112029243B (en) * 2020-08-18 2021-05-04 武汉大学 Light-driven flexible film based on salicylaldehyde Schiff base, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2015197602A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
US8537203B2 (en) Scanning beam with variable sequential framing using interrupted scanning resonance
US6975898B2 (en) Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US9561078B2 (en) Multi-cladding optical fiber scanner
JP6463903B2 (en) Endoscope system
JP3869589B2 (en) Fiber bundle and endoscope apparatus
JP4494127B2 (en) Tomographic image observation device, endoscope device, and probe used for them
US20080221388A1 (en) Side viewing optical fiber endoscope
JP2004222870A (en) Probe for endoscope
CN101268953A (en) Medical apparatus
WO2012078843A2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
JPH1172431A (en) Optical tomographic imaging apparatus
Lee et al. Confocal laser endomicroscope with distal MEMS scanner for real-time histopathology
JP2011217835A (en) Device for detecting shape of endoscope
WO2015151459A1 (en) Optical driving device
JP3318295B2 (en) Optical tomographic imaging system
JP4996153B2 (en) Endoscope device for magnification observation
Wang et al. Low-cost and highly flexible intraoperative endomicroscopy system for cellular imaging
JP2022008481A (en) Endoscope
JP2018099441A (en) Imaging device and endoscope
JP2004065965A (en) Optical scanning probe
JP4827636B2 (en) Endoscope device for magnification observation
WO2021210089A1 (en) Imaging device, endoscope, and endoscope tip part
US20230277864A1 (en) Therapeutic light irradiation unit, therapeutic light irradiation apparatus, and endoscope
US20160324407A1 (en) Test system having laser treatment function
JP6542349B2 (en) Optical drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772703

Country of ref document: EP

Kind code of ref document: A1