WO2013175807A1 - Method for laminating works and touch panel - Google Patents

Method for laminating works and touch panel Download PDF

Info

Publication number
WO2013175807A1
WO2013175807A1 PCT/JP2013/051058 JP2013051058W WO2013175807A1 WO 2013175807 A1 WO2013175807 A1 WO 2013175807A1 JP 2013051058 W JP2013051058 W JP 2013051058W WO 2013175807 A1 WO2013175807 A1 WO 2013175807A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane coupling
coupling agent
silicon substrate
substrate
bonding
Prior art date
Application number
PCT/JP2013/051058
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 晃
金市 森田
鈴木 信二
Original Assignee
ウシオ電機株式会社
信越化学工業株式会社
崇越電通股▲フン▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社, 信越化学工業株式会社, 崇越電通股▲フン▼有限公司 filed Critical ウシオ電機株式会社
Priority to CN201380006114.0A priority Critical patent/CN104169084B/en
Publication of WO2013175807A1 publication Critical patent/WO2013175807A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a work bonding method that can be used for manufacturing touch panels, organic EL (Organic Electro-Luminescence), organic semiconductors, solar battery panels, and the like, and touch panels manufactured by this method.
  • a work and silicon having a hydrophobic surface such as a resin such as PET (Polyethylene terephthalate) with a hard coat layer provided on the surface.
  • a workpiece having a hydrophilic surface such as glass
  • a workpiece having a hydrophobic surface such as a resin having a hard coat layer on the surface, and the like.
  • a transparent conductive film such as an ITO (Indium Tin Oxide) transparent electrode is applied to the surface of a member made of glass or the above resin, and a workpiece having a hydrophobic surface is made of silicon. More particularly, the present invention relates to a method for bonding workpieces to each other with a member interposed therebetween, and a touch panel manufactured by bonding these workpieces.
  • ITO Indium Tin Oxide
  • a touch panel is known as a product manufactured by bonding a work.
  • a touch panel is capable of controlling on / off of a switch, data input, and the like by touching a display on which an image is displayed with a finger or a pen, and has been rapidly spread in recent years.
  • touch panels are widely used in gadgets such as mobile phones, mobile game machines, tablet terminals, car navigation devices, bank ATMs, ticket vending machines, and the like.
  • FIG. 18 shows a schematic diagram of a touch panel including a video display device and a touch sensor module.
  • a projected capacitive touch panel is shown.
  • the touch panel 100 includes an image display device 30 such as an LCD panel and a position input device 10 arranged on the upper portion thereof.
  • the position input device 10 processes the position input information from the touch sensor module 10a and the touch sensor module 10a for detecting the portion of the touch sensor surface that is touched with a finger, a pen, or the like.
  • the touch panel control unit 10b controls the image display device 30 based on it.
  • the touch sensor module 10a is provided with a PET film 14 having a first transparent conductive film (for example, ITO electrode) pattern and a second transparent conductive film (for example, an ITO electrode) pattern.
  • the glass substrate 16 is laminated, and the first ITO electrode 13, the PET film 14, the second ITO electrode 15, and the glass substrate 16 are laminated in this order from the top.
  • a light-transmitting hard coat layer 14a is provided on both surfaces of the PET film 14 to prevent the PET film 14 from being damaged. That is, the first transparent conductive film pattern is provided on the hard coat layer 14 a on the PET film 14.
  • the hard coat layer 14a is made of, for example, acrylate resin.
  • a cover glass 11 is installed on the side of the PET film 14 on which the first ITO electrode 13 is applied.
  • a black matrix 12 is formed on the periphery of the surface of the cover glass 11 on the side facing the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied.
  • On the lower side of the glass substrate 16 there is a wiring layer 21 that is electrically connected to the first ITO electrode 13 and the second ITO electrode 15 and further electrically connected to the touch panel control unit 10b described later. Provided.
  • the wiring layer 21 is disposed on the lower side of the glass substrate 16 so as to be shielded by the black matrix 12 provided on the cover glass 11 when observed from the cover glass 11 side. That is, the wiring layer 21 is provided at a position that does not interfere with the image displayed on the touch panel.
  • the touch panel control unit 10 b includes a touch panel (TP) control IC unit 22 and an FPC (flexible printed circuit board) 23, and the touch panel control IC unit 22 is provided on the FPC 23.
  • the FPC 23 has an annular structure in which an opening is provided in the central portion so as to be shielded by the black matrix 12 provided in the cover glass 11 when observed from the cover glass 11 side, and the touch panel control IC portion. 22 is provided in the upper part of this annular structure part. That is, the touch panel control unit 10b is provided at a position that does not interfere with an image displayed on the touch panel. As described above, the touch panel control unit 10b is electrically connected to the wiring layer 21 of the touch sensor module 10a, and is also electrically connected to the image display device 30.
  • the touch sensor module 10a and the touch panel control unit 10b described above are stacked on the image display device 30 including the image display panel 32 such as an LCD panel to constitute a touch panel.
  • a polarizing film 31 is provided on the surface of the image display panel 32.
  • the touch panel laminated in order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 from the top is bonded with an ultraviolet curable adhesive 24 (UV Resin). . That is, the surface on which the wiring layer 21 of the glass substrate 16 of the touch sensor module 10a is provided, and the polarizing film on the surface of the touch panel control unit 10b and the image display device 30 are bonded by UV Resin. Note that a portion of the touch sensor module 10a where the wiring layer 21 of the glass substrate 16 is not provided, an opening portion of the touch panel control unit 10b, and the like are filled with UV Resin.
  • the touch panel detects position information such as a finger touching the cover glass 11 with the touch panel sensor module 10a, and based on a control signal from the touch panel control unit 10b that has received the position information, It controls the operation.
  • the first ITO electrode 13 is an electrode pattern in which a plurality of electrode pattern units extending in the Y direction are arranged in parallel in the X direction. That is, the first ITO electrode 13 is composed of a plurality of electrode pattern units.
  • the second ITO electrode 15 is an electrode pattern in which a plurality of electrode pattern units extending in the X direction are arranged in parallel in the Y direction.
  • the second ITO electrode 15 is composed of a plurality of electrode pattern units.
  • a high frequency voltage is applied to each electrode pattern unit by a power source (not shown).
  • the electrode pattern unit is arranged near the finger in the finger and the first ITO electrode 13, and the finger and the second ITO electrode 15 are close to the finger.
  • Capacitances are formed between the arranged electrode pattern units, and current flows in each unit. By detecting this current change, the position of the finger on the cover glass 11 is detected.
  • the first ITO electrode 13 detects the position of the finger in the X direction
  • the second ITO electrode 15 detects the position of the finger in the Y direction.
  • the first ITO electrode 13 and the second ITO electrode 15 are arranged in a matrix in the XY two-dimensional direction, whereby the touch panel sensor module 10a is covered.
  • the position of the finger in contact with the glass 11 in the XY two-dimensional direction is detected.
  • a signal related to the position of the finger in contact with the cover glass 11 detected by the touch panel sensor module 10a is transmitted to the touch panel control unit 10b.
  • the PET film 14 and the cover glass 11 in the touch panel sensor module 10a between the surface of the PET film 14 on which the first ITO electrode 13 is applied and the lower surface of the cover glass 11.
  • the PET film 14 and the glass substrate 16 between the PET film 14 and the glass substrate 16 (the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 and the second ITO electrode 15 of the glass substrate 16 are provided). If an air layer is interposed between the surface and the air surface, light is reflected at the interface due to the difference in refractive index at the interface between each surface and the air layer. Degradation occurs.
  • the air layer is replaced with a transparent material having a refractive index close to that of the cover glass 11, the PET film 14, and the glass substrate 16 in comparison with air, so that the touch panel display In order to suppress a decrease in brightness and a decrease in contrast.
  • the lower surface of the cover glass 11 and the surface of the PET film 14 on the first ITO electrode 13 side are joined by the transparent adhesive member 19 having a refractive index as described above compared with air.
  • the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 and the surface of the glass substrate 16 on which the second ITO electrode 15 is provided are also bonded by the adhesive member as described above. Is done.
  • an optical adhesive tape (Optically ⁇ Clear Adhesive Tape: hereinafter referred to as OCA tape) using a highly transparent acrylic adhesive as exemplified in Patent Document 1 and Patent Document 2 is used.
  • a highly transparent curable resin Optically Clear Resin: hereinafter referred to as OCR
  • the lower surface of the cover glass 11 is bonded to the first ITO electrode 13 side surface of the PET film 14, and the first ITO electrode 13 of the PET film 14 is bonded.
  • the surface of the hard coat layer 14a opposite to the surface and the surface of the glass substrate 16 on which the second ITO electrode 15 is provided it is possible to suppress a decrease in brightness and a decrease in contrast of the touch panel display. It becomes possible to do.
  • the OCA tape or OCR is used, the following problems and problems need to be considered.
  • the adhesive strength is strong, so the reworkability is poor. That is, since it is difficult to peel it off and use it again, high bonding accuracy is required when using the OCA tape.
  • the OCA tape is hard, when there is a step structure on the surface such as the surface on the first ITO electrode 13 side of the PET film 14 or the surface on which the second ITO electrode 15 of the glass substrate 16 is provided, Bubbles are likely to be mixed into the stepped portion when pasting.
  • the OCA tape has poor reworkability, and bubbles are likely to be mixed in the stepped portion of the surface, so that the pasting process is difficult. Therefore, it is difficult to use the OCA tape in the case of an object to be joined whose joining surface has a large area.
  • the OCA tape is relatively expensive.
  • joining by OCR is performed as follows. That is, OCR is applied to at least one joint surface of two workpieces, the two workpieces are overlapped, and the OCR is cured by heating or ultraviolet (UV) irradiation, so that the two workpieces are combined. Join.
  • UV ultraviolet
  • OCR generally has a high viscosity, it is difficult to uniformly apply it to the joint surface. Therefore, for example, there may be a problem that the cover glass 11 bonding surface and the PET film 14 bonding surface are bonded in a non-parallel state.
  • OCR has a low heat-resistant temperature
  • UV curable OCR it is necessary to consider the effect of the OCR temperature rise during UV irradiation. That is, if the distance between the UV light source 40 and the OCR bonding surface is too short, the OCR is heated to a temperature higher than the heat resistance temperature of the OCR. Therefore, the distance between the UV light source 40 and the OCR bonding surface needs to be increased to some extent. In this case, however, the UV intensity at the OCR bonding surface is also weakened. become longer.
  • the joined state of the two workpieces is not always desirable.
  • the distance between the cover glass 11 and the PET film 14 or the distance between the glass substrate 16 and the image display panel 32 is not sufficient.
  • the performance of the touch panel deteriorates.
  • the temporal resistance is not always sufficient, and when a certain amount of time elapses after bonding, the OCR itself is colored, for example, becomes yellow. Therefore, in the case of the touch panel, the image looks discolored. OCR is also relatively expensive.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a reworkability that does not develop color even when used for a long time, has a relatively short processing time, is relatively inexpensive, It is to provide a work bonding method that can be easily joined even to a member with a large surface area. Also, such a bonding method is used to suppress a decrease in luminance and a decrease in contrast. It is to provide a touch panel.
  • the present invention relates to a work having a hydrophilic surface such as glass, a work having a hydrophobic surface such as a resin, a work having a hydrophobic surface by applying a transparent conductive film to the surface of the glass or resin, etc.
  • a work having a hydrophilic surface and a work having a hydrophobic surface are bonded together, or when a work having a hydrophobic surface is bonded to each other, the conventional OCA tape or
  • the present invention provides a technique of using a member made of silicon instead of OCR and bonding them together. Furthermore, the present invention provides a technique for bonding a member made of the silicone to the second and third works having the hydrophobic surface.
  • a touch panel will be described.
  • the lower surface (first work surface) of the cover glass 11 and the first ITO electrode 13 side surface (second work surface) of the PET film 14 are attached.
  • the surface of the hard coat layer 14a (the surface of the first work) opposite to the first ITO electrode 13 side of the PET film 14 and the second ITO electrode 15 of the glass substrate 16 are provided.
  • a member made of silicon is used in place of the conventional OCA tape or OCR when the two surfaces are bonded together (the surface of the second workpiece).
  • a silicon substrate When the surface of a member made of silicon (hereinafter referred to as a silicon substrate) is irradiated with ultraviolet rays in the atmosphere, the surface is oxidized to become a hydrophilic surface, and a glass substrate or a resin substrate is stacked on the surface. It is known that both substrates are bonded together by pressurizing or heating a combined glass substrate or resin substrate and a silicon substrate irradiated with ultraviolet rays for a predetermined time.
  • the surface of the silicon (PDMS) substrate 17 is shown in FIG.
  • the surface has an organosiloxy group (hydrophobic surface).
  • ultraviolet rays having a wavelength of 220 nm or less for example, ultraviolet rays having a central wavelength of 172 nm emitted from a xenon excimer lamp
  • active oxygen is generated on the substrate surface.
  • the substrate surface is oxidized. That is, as shown in FIG. 2B, the methyl group related to the organosiloxy group is eliminated, and the active oxygen is bonded to the silicon atom to which the methyl group is bonded.
  • the substrate surface is in a state in which a hydroxy group (OH group) is bonded to a silicon atom. It becomes.
  • OH group hydroxy group
  • Silicone is a relatively stable material, and unlike OCR, the silicon itself does not color even after a certain amount of time has elapsed after bonding. Therefore, even if it is used as a bonding material for each substrate of the touch panel display, the touch panel image is not affected by discoloration. Since silicon is a relatively soft material, the surface of the hard coat layer 14a on the first ITO electrode 13 side of the PET film 14 and the surface of the glass substrate 16 on the first wiring layer 21 side are used. Even when there is a step structure on a rough surface, it is possible to easily suppress the mixing of bubbles into the step portion at the time of attachment. That is, it is possible to easily join even a member having a large joint surface.
  • bonding using a silicon substrate does not include a step of applying to the bonding surface like OCR, and is not bonding by a curing reaction like OCR. There is no problem of uniformity of coating or deformation during curing.
  • the UV light source and silicon substrate surface during silicon substrate surface treatment can be reduced and the UV intensity at the silicon substrate surface is greater than the UV intensity at the OCR interface. That is, in the UV irradiation process on the silicon substrate, the UV utilization efficiency is higher than in the UV irradiation process on the OCR bonding surface. Further, according to the experiments by the inventors, the UV irradiation process to the silicon substrate, the heating process and the pressurizing process of the bonded substrate such as the silicon substrate and the glass substrate, based on the time required for the UV curing reaction of the OCR. It was found that the time required for was shorter. In general, a silicon substrate is less expensive than an OCA tape or OCR.
  • the bonding is not completed immediately after the glass substrate or the resin substrate and the silicon substrate irradiated with ultraviolet rays are overlapped. Bonding is completed by applying pressure or heating. Therefore, it is easy to separate the two substrates immediately after the overlapping. Therefore, for example, when the alignment between the glass substrate or the resin substrate and the silicon substrate irradiated with ultraviolet rays is insufficient, if they are just after being superposed, they are peeled off once, and then the ultraviolet rays are applied to the silicon substrate again. Irradiation makes it possible to perform the bonding process. That is, it is rich in reworkability compared with the OCA tape.
  • FIG. 1 shows a configuration example of a touch panel assembled using the bonding method of the present invention.
  • the basic configuration is the same as that shown in FIG. 18, and includes a position input device 10 including a touch sensor module 10a and a touch panel control unit 10b, and an image display device 30.
  • a silicon substrate 17a in which a silane coupling agent is introduced is provided between the first ITO electrode 13 provided on the surface of the hard coat layer 14a of the PET film 14 and the cover glass 11. It is done.
  • a silicon substrate 17 b into which a silane coupling agent is introduced is provided between the hard coat layer 14 a of the PET film 14 and the second ITO electrode 15 provided on the surface of the glass substrate 16.
  • the surface of a normal silicon substrate was irradiated with ultraviolet rays (UV) to make the surface a hydrophilic surface, and the first ITO electrode 13 was applied to the hydrophilic surface and the surface of the silicon substrate. It was found that bonding was not possible even when the PET film 14 and the glass substrate 16 provided with the second ITO electrode 15 on the surface were superposed. Similarly, bonding is possible even when the hydrophilic surface of the silicon substrate obtained by UV irradiation and the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 are overlapped. I found it impossible.
  • UV ultraviolet rays
  • the bonding surface of the silicon substrate which is a hydrophilic surface, the surface where the first ITO electrode 13 of the PET film 14 (which is a hydrophobic surface) is applied, and the first ITO electrode 13 of the PET film 14 It has been found that it is difficult to join the surface of the hard coat layer 14a opposite to the surface on which the second ITO electrode 15 is applied to the surface opposite to the surface on which the second ITO electrode 15 is applied.
  • the inventors diligently studied and used a silicon substrate into which a silane coupling agent was introduced instead of a normal silicon substrate, and irradiated the UV onto the surface of the silicon substrate into which the silane coupling agent was introduced. Then, the surface is a surface suitable for bonding, the surface suitable for bonding, the surface on which the first ITO electrode 13 of the PET film 14 which is a hydrophobic surface is applied, and the first ITO of the PET film 14 By superimposing the surface of the hard coat layer 14a opposite to the surface to which the electrode 13 is applied, or the surface to which the second ITO electrode 15 provided on the surface of the glass substrate 16 is applied. The present inventors have found that it is possible to bond a silicon substrate introduced with a silane coupling agent and these surfaces.
  • the cover glass 11 which is a hydrophilic surface and the surface suitable for bonding of the above-described silicon substrate into which the silane coupling agent has been introduced, UV irradiation on the normal silicon substrate is performed. It was found that the cover glass 11 can be bonded to the silicon substrate into which the silane coupling agent has been introduced in the same manner as when the hydrophilic surface and the surface of the cover glass 11 are overlapped. .
  • the silicon substrate into which the silane coupling agent is introduced is a silicon substrate formed by introducing a silane coupling agent into an uncured silicone resin and then curing it.
  • a silane coupling agent for example, an epoxy-based, acrylic-based, or methacryl-based silane coupling agent can be used to obtain a silicon substrate suitable for the bonding of the present invention.
  • the surface-modified surface is a surface on which the first ITO electrode 13 of the PET film 14 is applied, A second ITO electrode 15 provided on the surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 of the PET film 14 is applied and on the surface of the glass substrate 16 is applied. It became possible to join to any of the surfaces.
  • the mechanism is not clearly understood, but it is considered that the mechanism is as follows. Hereinafter, this possible mechanism will be described with reference to FIGS.
  • the surface of a silicon substrate 17a introduced with a silane coupling agent is modified by ultraviolet (UV) irradiation, and the surface is bonded to the surface of the PET film 14 on which the first ITO electrode 13 is applied.
  • UV ultraviolet
  • FIG. 3A shows the state of the silane coupling agent present on the surface of the silicon substrate 17a introduced with the silane coupling agent.
  • Silane coupling agents have two types of functional groups with different reactivity in one molecule. In the silicon substrate into which the silane coupling agent is introduced, a part of the silane coupling agent is considered to be exposed on the surface of the above-described silicon substrate.
  • a functional group represented by RO O is oxygen
  • X is a functional group bonded to an organic material. Since the first ITO electrode 13 on the PET film 14 is an inorganic substance, it chemically bonds with the functional group RO.
  • an excimer lamp is applied to the surface of the silicon substrate 17a into which a silane coupling agent is introduced in the atmosphere containing moisture (H 2 O) and carbon dioxide (CO 2 ).
  • UV irradiation the silane coupling agent partially exposed on the surface of the silicon substrate 17a introduced with the silane coupling agent is modified.
  • the surface of the silicon substrate 17a into which the silane coupling agent has been introduced has (a) a portion bonded to a carboxyl group (termination is an OH group), and (b) an OH group bonded by an oxidation reaction with oxygen radicals. And (c) the functional groups RO and X are considered to be mixed with the portions remaining without being decomposed or detached.
  • the silane coupling agent introduced with ultraviolet rays (UV) by irradiating the surface of the silicon substrate 17a with the silane coupling agent introduced with ultraviolet rays (UV), some of the functional groups in the silane coupling agent partially exposed on the surface are decomposed and detached. To do. In this case, the terminal portion of the part where the functional group is decomposed / detached becomes an OH group, so that a part of the surface of the silicon substrate 17a into which the silane coupling agent has been introduced becomes a hydrophilic surface. It is considered to be. Further, as described above, the remaining functional group RO has a characteristic of chemically bonding with the inorganic material.
  • UV ultraviolet rays
  • the ultraviolet-ray (UV) irradiation process by the ultraviolet-ray (UV) irradiation process, the state where the part which is hydrophilic in the partial area
  • the surface of the silicon substrate 17a having the introduced silane coupling agent introduced thereon is modified by UV irradiation so that a part of the originally hydrophobic portion is modified into a region terminated with an OH group.
  • a chemical bond is generated between the portion where the functional group RO remains on the surface of the silicon substrate 17a and the hydrophobic portion of the surface of the PET film 14 on which the first ITO electrode 13 is applied.
  • dehydration of the bonding surface occurs by heating the silicon substrate 17a into which the superimposed silane coupling agent is introduced and the surface of the PET film 14 on which the first ITO electrode 13 is applied.
  • the silicon substrate 17a finally introduced with the silane coupling agent and the surface of the PET film 14 on which the first ITO electrode 13 is applied are the oxygen covalent bond and the surface of the silicon substrate 17a. It is considered that the functional group RO remaining on the surface and the hydrophobic portion of the surface of the PET film 14 on which the first ITO electrode 13 is applied are bonded by chemical bonding.
  • a work surface having a hydrophobic surface, a member made of silicon into which a silane coupling agent has been introduced are irradiated with ultraviolet rays, and the surface of the workpiece irradiated with ultraviolet rays and the silicon
  • the member made of is laminated so as to be in contact with the surface irradiated with ultraviolet light, and is pressed so that the contact surface of the member made of the laminated work and the silicon is pressurized or laminated work.
  • the silane coupling agent converts the first work having a hydrophilic surface and the second work having a hydrophobic surface. Bonding with the introduced silicon substrate interposed. (3) One surface of the first work having a hydrophobic surface, one surface of the second work having a hydrophobic surface, and a silicone into which a silane coupling agent is introduced. The both surfaces of the member are irradiated with ultraviolet rays, and the first workpiece and the silicon member and the second workpiece are laminated so that the surfaces irradiated with the ultraviolet rays are in contact with each other.
  • the first workpiece having a hydrophobic surface and the second workpiece having a hydrophobic surface are heated to a silane cup by heating the member made of silicon while applying pressure so that the contact surface is pressurized. Bonding is performed with a silicon substrate having a ring agent introduced therebetween.
  • a touch sensor module having a substrate coated with a transparent conductive film and a touch panel provided with an image display device, a transparent conductive film whose surface is modified by ultraviolet irradiation is applied to the touch sensor module.
  • a substrate made of a silicon having a silane coupling agent introduced and modified on both sides by ultraviolet irradiation, and each of the substrate and the silicon made member irradiated with the ultraviolet rays. are laminated with the surfaces facing each other.
  • an epoxy, acrylic or methacrylic silane coupling agent is used as the silane coupling agent of the above (1) to (4).
  • a work surface having a hydrophobic surface and a member made of silicon to which a silane coupling agent has been introduced by irradiating ultraviolet light onto the member made of the work surface and the silicon.
  • the surface irradiated with ultraviolet light can be made a surface suitable for bonding, and the workpiece having the hydrophobic surface and the member made of silicon into which the silane coupling agent has been introduced can be reliably bonded. For this reason, it becomes possible to bond a member made of a resin such as PET having a hydrophobic surface, a work provided with a transparent conductive film, etc., and a silicone into which a silane coupling agent is introduced.
  • Irradiation of ultraviolet rays on both sides of a member made of silicon, ultraviolet rays of a workpiece having a hydrophilic surface, a workpiece having a hydrophobic surface, and a member made of silicon into which a silane coupling agent is introduced Laminate so that the irradiated surfaces face each other, or irradiate one surface of a workpiece having a hydrophobic surface with ultraviolet rays, and apply ultraviolet rays to both surfaces of a silicon member into which a silane coupling agent is introduced.
  • Laminate so that the work piece having a hydrophobic surface and the silicon member into which the silane coupling agent is introduced and the ultraviolet light irradiation surface of the work piece having the hydrophobic surface are opposed to each other.
  • Rukoto can Since coloring after a long time does not occur in the silicone, coloring after a long time does not occur as in the case of pasting together by OCA tape or OCR. For this reason, the influence of discoloration does not generate
  • B Even when a step structure such as a conductive thin film is present on the joint surface, the silicon deforms and adheres according to the step, so that bubbles can be prevented from being mixed into the step portion at the time of attachment. Easy.
  • a component made of silicon is used to bond the components, and the touch sensor module is bonded.
  • FIG. 2 is a diagram (1) for explaining the joining of a surface of a PET film on which an ITO electrode is applied and a silicon substrate into which a silane coupling agent is introduced.
  • FIG. 6 is a diagram (2) illustrating the bonding between the surface of the PET film on which the ITO electrode is applied and the silicon substrate into which the silane coupling agent has been introduced. It is a figure explaining the joining process (A-1) of the cover glass and the PET film on which the first transparent conductive film (ITO electrode) is applied.
  • FIG. 1 is a diagram for explaining a bonding process (B-1) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is.
  • FIG. 2 is a diagram for explaining a bonding process (B-1) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. It is a figure explaining the joining process (A-2) of a cover glass and the PET film by which the 1st transparent conductive film (ITO) was given to the surface.
  • FIG. 1 is a diagram for explaining a bonding process (B-1) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. It is a figure explaining the joining process (A-2) of a cover glass and
  • FIG. 1 is a diagram for explaining a bonding step (B-2) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is.
  • FIG. 2 is a diagram for explaining a bonding process (B-2) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. It is a figure explaining the joining process (A-3) of the cover glass and the PET film on which the first transparent conductive film (ITO) is applied.
  • FIG. 3 is a schematic diagram of a touch panel including a video display device and a touch sensor module.
  • FIG. 1 is a diagram showing a first configuration example of the touch panel according to the present invention.
  • the basic configuration is the same as that shown in FIG. 18, and the touch panel 100 includes an image display device 30 such as an LCD panel and a position input device 10 disposed above the image display device 30.
  • the position input device 10 processes the position input information from the touch sensor module 10a and the touch sensor module 10a for detecting the portion of the touch sensor surface that is touched with a finger, a pen, or the like.
  • the touch panel control unit 10b controls the image display device 30 based on it.
  • the touch sensor module 10a includes a PET film 14 provided with a first transparent conductive film (for example, ITO electrode) pattern shown in FIG. 18B and a second film shown in FIG. 18C.
  • the glass substrate 16 is provided with a transparent conductive film (for example, ITO electrode) pattern, and the cover glass 11, the silicon substrate 17a, the first ITO electrode 13, and the PET film are arranged from the top. 14, the silicon substrate 17b, the second ITO electrode 15, and the glass substrate 16 are laminated in this order.
  • a light-transmitting hard coat layer 14a is provided on both surfaces of the PET film 14 to prevent the PET film 14 from being damaged.
  • the hard coat layer 14a is made of, for example, acrylate resin.
  • a black matrix 12 is formed on the periphery of the surface of the cover glass 11 on the side facing the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied.
  • a wiring layer 21 that is electrically connected to the first ITO electrode 13 and the second ITO electrode 15 and is also electrically connected to the touch panel control unit 10b is provided.
  • the wiring layer 21 is disposed on the lower side of the glass substrate 16 so as to be shielded by the black matrix 12 provided on the cover glass 11 when observed from the cover glass 11 side.
  • the touch panel control unit 10 b includes the touch panel (TP) control IC unit 22 and the FPC (flexible printed circuit board) 23, and the touch panel control IC unit 22 is provided on the FPC 23.
  • the FPC 23 has an annular structure in which an opening is provided in the central portion so as to be shielded by the black matrix 12 provided in the cover glass 11 when observed from the cover glass 11 side, and the touch panel control IC portion. 22 is provided in the upper part of this annular structure part.
  • the touch panel control unit 10b is electrically connected to the wiring layer 21 of the touch sensor module 10a, and is also electrically connected to the image display device 30.
  • the touch sensor module 10a and the touch panel control unit 10b described above are stacked on the image display device 30 to constitute a touch panel.
  • the substrate of the first transparent conductive film (for example, the first ITO electrode 13) in the touch sensor module 10a is the PET film 14, and the second transparent conductive film (for example, the first transparent conductive film)
  • the glass substrate 16 is the second ITO electrode 15).
  • the thickness of each substrate and each layer is exaggerated for ease of explanation, and the relative relationship between the actual thickness of each substrate and each layer is shown in FIG. It is different from what is shown.
  • Step A-1 Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface
  • FIG. This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate interposed therebetween, and has a hydrophilic surface.
  • Cover glass 11 corresponds to the first work
  • the first transparent conductive film (ITO) corresponds to the second work having a hydrophobic surface is the surface of the hard coat layer 14a. It is the PET film 14 applied to the.
  • the region where the silane coupling agent is exposed on the surface of the substrate 17a is modified so that the hydrophilic region terminated with an OH group and the remaining region of the functional group RO are mixed. Further, the region where the silane coupling agent is not exposed on the surface of the silicon substrate 17a is oxidized to be modified into a hydrophilic region.
  • the silicon substrate surface thus modified is referred to as “silicon substrate surface suitable for bonding”.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
  • the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a introduced with the silane coupling agent are overlapped.
  • the bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent.
  • the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, UV irradiation may be performed simultaneously on the surface of the silicon substrate 17a introduced with the silane coupling agent and the bonding surface of the cover glass 11.
  • UV light such as an excimer lamp is formed on the surface of the pattern of the first ITO electrode 13.
  • UV light emitted from the light source 40 is irradiated to modify a part of the patterned surface of the first ITO electrode 13 of the PET film 14 into a region terminated with an OH group.
  • transparent conductive film surface suitable for bonding the surface thus modified is referred to as “transparent conductive film surface suitable for bonding”.
  • the UV-irradiated surface of the silicon substrate 17a into which the silane coupling agent has been introduced and the surface of the PET film 14 that has been subjected to the UV-irradiation-treated first ITO electrode 13 are overlaid, and an appropriate overlay is obtained. Further, the silicon substrate 17a and the PET film 14 are pressurized or heated, and the silicon substrate 17a into which the silane coupling agent is introduced (joined with the cover glass 11), the first substrate An ITO electrode 13 is bonded to a PET film 14 having a surface.
  • the bonding method employed in this step (A-1) is as follows. (1) The silicon substrate 17a introduced with a silane coupling agent is bonded to the lower surface of the cover glass 11, which is the first work having a hydrophilic surface. In the bonding method, the silicon substrate 17a is irradiated with ultraviolet rays so that the ultraviolet irradiation surface is a silicon substrate surface suitable for bonding, and the surface is laminated on the cover glass 11 to have a hydrophilic surface.
  • the cover glass 11 which is one work and the silicon substrate 17a introduced with the silane coupling agent are bonded. As described above, the joint surface of the cover glass 11 may be irradiated with ultraviolet rays.
  • the surface is modified so that the ultraviolet irradiation surface of the PET film 14 is a transparent conductive film surface suitable for bonding.
  • Both ultraviolet irradiation surfaces are overlapped.
  • a PET film 14 as a second work having a hydrophobic surface, a silicon substrate 17a having a silane coupling agent introduced therein, and a first work having a hydrophilic surface. Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the cover glass 11. In (4) of this bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
  • Step B-1 Joining process between PET film with first transparent conductive film (ITO electrode) on the surface and glass with second transparent conductive film (ITO electrode) on the surface 6 and FIG.
  • This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced.
  • the first work having a hydrophobic surface corresponds to the PET film 14 to which the cover glass 11 is bonded
  • the second work having the hydrophobic surface corresponds to the second work. It is the glass substrate 16 with which the transparent conductive film (ITO electrode 15) was given to the surface.
  • the cover glass 11 is bonded to the surface of the hard coat layer 14a on which the first ITO electrode 13 pattern has been applied via a silicon substrate 17a into which a silane coupling agent has been introduced.
  • an excimer lamp or the like is provided on the surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 pattern is applied.
  • Irradiation with UV light emitted from an ultraviolet (UV) light source 40 modifies a part of the surface of the hard coat layer 14a into a region terminated with an OH group.
  • UV light source 40 modifies a part of the surface of the hard coat layer 14a into a region terminated with an OH group.
  • the surface thus modified is referred to as “hard coat layer surface suitable for bonding”.
  • the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the PET film 14 are overlapped, and the PET film 14 and the silicon substrate 17b are appropriately pressurized. Or heating, the silicon substrate 17b into which the silane coupling agent has been introduced and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are joined.
  • a silicon in which a silane coupling agent bonded to PET film 14 is introduced.
  • the surface of the substrate 17b opposite to the bonding surface with the PET film 14 is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, so that the silicon is suitable for bonding.
  • UV light source 40 such as an excimer lamp
  • a portion of the surface of the glass substrate 16 on which the second ITO electrode 15 pattern is applied is modified to a region terminated with an OH group.
  • the surface modified in this way is referred to as a transparent conductive film surface suitable for bonding, similar to the case where the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied is irradiated with UV.
  • the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the glass substrate 16 are superposed, and the glass substrate 16 and the silicon into which the silane coupling agent has been introduced as appropriate.
  • the silicon substrate 17b is pressurized or heated to bond the silicon substrate 17b bonded to the PET film 14 and the glass substrate 16 having the second ITO electrode 15 applied to the surface thereof.
  • a resin substrate for example, a PET film 14
  • the second ITO electrode 15 applied to the surface may be used instead of the glass substrate 16 having the second ITO electrode 15 applied to the surface. There is no change in the procedure of step 2.
  • the bonding method in this step (B-1) is as follows. (1) In the PET film 14 in which the surface of the silicon substrate 17b into which the silane coupling agent is introduced and the first glass having a hydrophobic surface and the cover glass 11 are joined, the PET film 14 The surface of the hard coat layer 14a to which the cover glass 11 is not bonded is irradiated with ultraviolet rays to change the ultraviolet irradiation surface of the silicon substrate 17b to a silicon substrate surface suitable for bonding. And the ultraviolet irradiation surface of the PET film 14 bonded to the cover glass 11 is used as a hard coat layer surface suitable for bonding. (2) Both ultraviolet irradiation surfaces are overlapped.
  • the silicon substrate 17b into which the silane coupling agent has been introduced and the PET film 14 (cover glass 11 bonded) as the first work having a hydrophobic surface are superposed in this order.
  • the workpiece is heated while being pressurized.
  • the surface of the glass substrate 16 which is the second work having the surface is irradiated with ultraviolet rays to the surface of the glass substrate 16 on which the second transparent conductive film (ITO electrode 15) is applied.
  • the ultraviolet irradiation surface is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the glass substrate 16 is made a transparent conductive film surface suitable for bonding. (5) Superimpose both ultraviolet irradiation surfaces. (6) From above, a PET film 14 (joined with the cover glass 11) as a first work having a hydrophobic surface, a silicon substrate 17b into which a silane coupling agent has been introduced, and a hydrophobic surface Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the glass substrate 16 as the second workpiece. In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
  • the touch sensor module in the touch panel shown in FIG. 1 is configured through [Step A-1] and [Step B-1] employing the bonding method of the present invention.
  • the touch sensor module 10a and the touch panel control unit 10b are stacked on the image display device 30 such as an LCD panel to constitute a touch panel.
  • the structure example of the touch panel control unit 10b and the bonding of the touch panel laminated in the order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 are the same as those in the related art, and therefore detailed here. Description is omitted.
  • a touch sensor module in a touch panel is constructed by the following method. That is, when bonding each component of the touch sensor module, a silicon (substrate) into which a silane coupling agent is introduced instead of the conventional OCA tape or OCR is used, and the silane coupling agent is introduced.
  • the joint surface between the silicon (substrate) and each component is irradiated with ultraviolet rays.
  • the surface on which the conductive thin film (for example, ITO electrode) of the touch sensor module is provided the surface on which the conductive thin film is provided is irradiated with ultraviolet rays.
  • the surface on which the conductive thin film is not provided on the substrate on which the conductive thin film is provided is a hydrophobic surface, the surface is also irradiated with ultraviolet rays.
  • the silicone does not color after a long time, and the touch panel image, which is the final product, does not affect the color. Even when a step structure such as a conductive thin film is present on the joint surface, the silicon deforms and adheres according to the step, so that it is easy to prevent air bubbles from being mixed into the stepped portion during bonding. It is. Further, it is possible to easily join a member having a large joint surface.
  • the bonding is not performed by a curing reaction such as OCR, problems such as difficulty in realizing coating uniformity in the coating process on the bonding surface peculiar to OCR and deformation during curing can be avoided.
  • the heat resistant temperature is higher than that of OCR, the ultraviolet irradiation light source and the irradiation surface of the silicon substrate can be brought close to each other, and the light irradiation surface of the silicon substrate can be efficiently modified.
  • the ultraviolet curable OCR when the ultraviolet curable OCR is used, the heat resistance of the OCR itself is low, so the ultraviolet curable OCR application surface and the ultraviolet irradiation light source 40 cannot be brought too close to each other. The intensity of ultraviolet rays becomes small, and the utilization efficiency of ultraviolet rays becomes small. As a result, the time required for the OCR curing reaction for bonding increases.
  • a silicon substrate is less expensive than an OCA tape or OCR.
  • the glass substrate or resin substrate and the silicon substrate into which the silane coupling agent to which ultraviolet rays have been applied are superimposed are immediately bonded. Rather than being completed, the bonding is completed by pressurizing or heating both substrates for a predetermined time. Therefore, it is easy to separate the two substrates immediately after the overlapping. Therefore, for example, when the alignment between the glass substrate or the resin substrate and the silicon substrate into which the silane coupling agent irradiated with ultraviolet rays is insufficient, if they are just after being overlapped, both are peeled off once, It is possible to perform the bonding process by irradiating the silicon substrate again with ultraviolet rays. That is, it is rich in reworkability compared with the OCA tape.
  • the conductive thin film of the silicon substrate and the conductive thin film substrate of the touch sensor module which were conventionally difficult to bond even by using surface modification treatment by ultraviolet irradiation.
  • the silicon substrate is used for bonding to the surface and bonding of the silicon substrate to the conductive thin film substrate when the surface is hydrophobic.
  • the silicon substrate is used for bonding to the surface and bonding of the silicon substrate to the conductive thin film substrate when the surface is hydrophobic.
  • a silicon (substrate) into which a silane coupling agent is introduced instead of the conventional OCA tape or OCR is used, and the silane coupling agent is introduced.
  • the touch sensor module can be configured by irradiating ultraviolet rays onto the bonding surface between the silicon (substrate) and each component and bonding the components of the touch sensor module.
  • the cover glass 11 is first bonded to the silicon substrate 17a into which the silane coupling agent has been introduced, and then the silane coupling agent bonded to the cover glass 11 is bonded.
  • the cover glass 11 and the PET film 14 provided with the first transparent conductive film (ITO electrode 13) on the surface were joined in the order of joining the introduced silicon substrate 17a and the PET film 14.
  • the order of attaching the workpieces is not limited to the order shown in [Step A-1] and [Step B-1].
  • the silicon substrate 17a into which the silane coupling agent is introduced and the PET film 14 are first joined, and then the PET film 14 and the joined silane coupling agent are introduced.
  • the cover glass 11 and the PET film 14 having the first transparent conductive film (ITO electrode) applied thereto may be bonded in the order of bonding the silicon substrate 17a and the cover glass 11. .
  • ITO electrode transparent conductive film
  • Step B-1 first, the silicon substrate 17b into which the silane coupling agent has been introduced and the glass substrate 16 are bonded together, and then the glass substrate 16 and the bonded silane coupling agent are bonded.
  • the touch sensor module may be configured by joining the silicon substrate 17b into which the agent is introduced. (Hereinafter, such a step instead of step B-1 will be referred to as [step B-2].)
  • Step A-2 Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface
  • FIG. This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate introduced with a silane coupling agent interposed therebetween.
  • the cover glass 11 corresponds to the first work having a hydrophilic surface
  • the first transparent conductive film (ITO electrode 13) corresponds to the second work having a hydrophobic surface.
  • the surface of the silicon substrate suitable for bonding means that the region where the silane coupling agent is exposed on the surface of the silicon substrate is the remaining of the hydrophilic region terminated with OH groups and the functional group RO. Silicon substrate surface that has been modified to have a mixed region, and the region where the silane coupling agent is not exposed on the surface of the silicon substrate has been modified to a hydrophilic region by oxidation Say that.
  • the PET film 14 in which the first ITO electrode 13 having a pattern as shown in FIG. 18B is applied to the surface of the hard coat layer 14a as shown in FIG.
  • the surface of the hard coat layer 14a on which the first ITO electrode 13 pattern has been applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the above PET film.
  • UV light source 40 such as an excimer lamp
  • the surface of the hard coat layer 14a provided with the first ITO electrode 13 pattern at 14 is used as a transparent conductive film surface suitable for bonding.
  • the surface of the transparent conductive film suitable for bonding is a part of the hydrophobic surface (the surface of the hard coat layer 14a) on which the transparent conductive film (the first ITO electrode 13 pattern) is applied. Refers to a surface that has been modified into a region terminated with an OH group.
  • the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced and the UV irradiation-treated surface of the PET film 14 are overlapped, and the silicon substrate 17a and the PET film 14 are appropriately pressurized. Or heating, the silicon substrate 17a into which the silane coupling agent is introduced and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are joined.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the surface of the silicon substrate 17a, into which the silane coupling agent has been introduced, on the side opposite to the bonding surface with the PET film 14.
  • the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced is used as a silicon substrate surface suitable for bonding.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
  • the UV-irradiated surface of the silicon substrate 17a to which the silane coupling agent joined to the PET film 14 is introduced and the joining surface of the cover glass 11 are overlaid, and the overlaid cover glass 11 and the above are appropriately combined.
  • the bonding strength is increased by pressurizing or heating the silicon substrate 17a.
  • the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, the UV irradiation may be performed simultaneously on the surface of the silicon substrate 17a introduced with the silane coupling agent bonded to the PET film 14 and the cover surface of the cover glass 11.
  • the bonding method in this step (A-2) is as follows. (1) For the first transparent conductive film (ITO electrode 13) of the PET film 14 which is the second work having the surface of the silicon substrate 17a into which the silane coupling agent is introduced and the hydrophobic surface By irradiating ultraviolet rays, the ultraviolet irradiation surface of the silicon substrate 17a is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the PET film 14 is used as a transparent conductive film surface suitable for bonding. . (2) Both ultraviolet irradiation surfaces are overlapped.
  • PET film 14 which is a second work having a hydrophobic surface, a silicon substrate 17a into which a silane coupling agent has been introduced, and a first work having a hydrophilic surface. Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the cover glass 11. In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
  • Step B-2 Joining process of PET film having a first transparent conductive film (ITO electrode) applied to the surface and glass having a second transparent conductive film (ITO electrode) applied to the surface 9 and FIG.
  • This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate, and has a hydrophobic surface.
  • the first work corresponds to the PET film 14 to which the cover glass 11 is bonded
  • the second work having a hydrophobic surface corresponds to the second transparent conductive film (ITO electrode).
  • the surface on which the second ITO electrode 15 pattern is applied.
  • UV light source 40 such as an excimer lamp
  • the transparent conductive film surface suitable for bonding means that, as described above, a part of the surface of the glass substrate 16 to which the transparent conductive film (second ITO electrode 15 pattern) is applied is OH-based. This refers to a surface that has been modified into a region terminated by.
  • the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent is introduced and the UV-irradiated surface of the glass substrate 16 are overlapped, and the glass substrate 16 and the silicon substrate 17b are appropriately pressurized.
  • the silicon substrate 17b into which the silane coupling agent has been introduced is bonded to the glass substrate 16 having the second ITO electrode 15 applied to the surface by heating or the like.
  • an excimer lamp or the like is formed on the surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the glass substrate 16 on the side opposite to the bonding surface with the glass substrate 16.
  • UV light emitted from an ultraviolet (UV) light source 40 is irradiated to make the UV irradiation surface of the silicon substrate 17b suitable for bonding.
  • the surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 pattern is applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp.
  • UV light source 40 such as an excimer lamp.
  • the surface of the hard coat layer 14a irradiated with UV light as described above is the hard coat layer surface suitable for bonding.
  • the hard coat layer surface suitable for bonding means a surface in which a part of the surface of the hard coat layer 14a is modified into a region terminated with an OH group. .
  • the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the PET film 14 are overlapped, and the PET film 14 and the silicon substrate 17b are appropriately pressurized. Or heating the glass substrate 16 to bond the silicon substrate 17b introduced with the silane coupling agent and the PET film 14 having the first ITO electrode 13 applied to the surface thereof.
  • the bonding method in this step (B-2) is as follows. (1) The surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the second transparent conductive film (ITO electrode 15) of the glass substrate 16 as the second work having a hydrophobic surface are formed on the surface. By irradiating the applied surface with ultraviolet rays, the ultraviolet irradiation surface of the silicon substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the glass substrate 16 is suitable for bonding. The surface of the transparent conductive film. (2) Both ultraviolet irradiation surfaces are overlapped.
  • the surface of the hard coat layer 14a opposite to the surface of the PET substrate on which the first transparent conductive film 13 (ITO electrode) is applied is irradiated with ultraviolet rays, so that the silicon substrate 17b
  • the surface irradiated with ultraviolet light is modified to a silicon substrate surface suitable for bonding, and the surface irradiated with ultraviolet light of the PET film 14 is made a hard coat layer surface suitable for bonding. (5) Superimpose both ultraviolet irradiation surfaces.
  • a PET film 14 (cover glass 11 bonded) as a first work having a hydrophobic surface, a silicon substrate 17b introduced with a silane coupling agent, and having a hydrophobic surface Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the glass substrate 16 as the second workpiece.
  • pressurization or heating may be used, but it is preferable to heat while applying pressure.
  • the cover glass 11, the silicon substrate 17 a into which the silane coupling agent is introduced, and the PET film 14 may be bonded at a time.
  • a step is referred to as [Step A-3].
  • the cover glass 11, the joined PET film 14, the silicon substrate 17b introduced with the silane coupling agent, and the glass substrate 16 are once combined.
  • such a step will be referred to as [Step B-3].
  • Step A-3 Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface
  • This step is shown in FIG.
  • This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate introduced with a silane coupling agent interposed therebetween.
  • the cover glass 11 corresponds to the first work having a hydrophilic surface
  • the first transparent conductive film (ITO electrode 13) corresponds to the second work having a hydrophobic surface.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to both surfaces of a silicon substrate 17a into which a silane coupling agent has been introduced to introduce the silane coupling agent. Both surfaces of the silicon substrate 17a thus formed are silicon substrate surfaces suitable for bonding.
  • the pattern of the first ITO electrode 13 is applied by irradiating the surface of the ITO electrode 13 with the UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp.
  • the surface is a transparent conductive film suitable for bonding.
  • the UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to the joint surface of the cover glass 11.
  • the other surface that has been subjected to UV irradiation treatment of the PET film 14 is superposed.
  • the cover glass 11, the silicon substrate 17 a, and the PET film 14 are laminated in this order, and the cover glass 11 and the silane coupling agent are introduced by appropriately pressing or heating the work.
  • the silicon substrate 17a thus formed and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are bonded at a time.
  • the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, the UV irradiation to the joint surface of the cover glass 11, both surfaces of the silicon substrate 17a, and the primer coat surface of the PET film 14 may be performed simultaneously or individually.
  • the bonding method in this step (A-3) is as follows.
  • the first transparent conductive film (ITO electrode 13) of the PET film 14 which is a work is irradiated with ultraviolet rays, and the ultraviolet irradiation surface of the silicon substrate 17a is placed on the surface of the silicon substrate suitable for bonding.
  • the surface of the PET film 14 is irradiated with ultraviolet rays so that the surface is a transparent conductive film suitable for bonding.
  • the ultraviolet irradiation surface of the cover glass is activated or impurities are decomposed and removed.
  • the other surface subjected to the UV irradiation treatment and the surface subjected to the UV irradiation treatment of the PET film 14 are overlapped.
  • the contact surface of each workpiece laminated in the order of the cover glass 11, the silicon substrate 17a into which the silane coupling agent has been introduced, and the PET film 14 is heated while being pressed, Join the workpieces at once.
  • pressurization or heating may be used, but it is desirable to heat while applying pressure.
  • Step B-3 Joining process between PET film having first transparent conductive film (ITO electrode) applied to surface and glass having second transparent conductive film (ITO electrode) applied to the surface 12 shows.
  • This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced.
  • the first work having a hydrophobic surface corresponds to the PET film 14 to which the cover glass 11 is bonded
  • the second work having the hydrophobic surface corresponds to the second work. It is the glass substrate 16 with which the transparent conductive film (ITO electrode 15) was given to the surface.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on both surfaces of a silicon substrate 17b into which a silane coupling agent has been introduced.
  • the surface is a silicon substrate surface suitable for bonding.
  • the surface of the cover glass 11 to which the cover glass 11 is bonded.
  • the surface of the opposite hard coat layer 14a is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the hard coat layer 14a irradiated with the above-described UV light is irradiated.
  • the surface is a hard coat layer surface suitable for bonding.
  • the pattern of the second ITO electrode 15 is changed as shown in FIG. UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to the applied surface, and the surface on which the second ITO electrode 15 pattern of the glass substrate 16 is applied is joined.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to the applied surface, and the surface on which the second ITO electrode 15 pattern of the glass substrate 16 is applied is joined.
  • UV light source 40 such as an excimer lamp
  • the other surface is superposed on the surface of the glass substrate 16 that has been subjected to the UV irradiation treatment.
  • the work laminated in the order of the PET film 14 to which the cover glass 11 has been bonded, the silicon substrate 17b, and the glass substrate 16 is appropriately pressed or heated to cover the cover glass.
  • the PET film 14 to which 11 has been bonded, the silicon substrate 17b into which the silane coupling agent has been introduced, and the glass substrate 16 having the second ITO electrode 15 applied on the surface thereof are bonded together. As shown in FIG.
  • the surface of the cover glass 11 to which the cover glass 11 is bonded is shown in the PET film 14 to which the cover glass 11 is bonded through the silicon substrate 17a into which the silane coupling agent has been introduced.
  • the bonding method in this step (B-3) is as follows. (1) A hard coat layer on the opposite side of the surface of the PET film 14 to which the cover glass 11 is bonded, which is the first work having a hydrophobic surface and to which the cover glass 11 is bonded 14a, the second transparent conductive film (ITO electrode 15) of the glass substrate 16 which is a second work having a hydrophobic surface, and both surfaces of the silicon substrate 17b into which the silane coupling agent is introduced.
  • the surface applied to the surface is irradiated with ultraviolet rays to modify the ultraviolet irradiation surface of the PET film 14 into a hard coat layer surface suitable for bonding, and the ultraviolet irradiation surface of the silicon substrate 17b.
  • the UV-irradiated surface of the PET film 14 one surface of the silicon substrate 17b into which the silane coupling agent has been introduced, and the UV irradiation of the silicon substrate 17b.
  • the other processed surface and the primer coat surface of the glass substrate 16 that has been subjected to the UV irradiation processing are overlapped.
  • contact surfaces of the workpieces laminated in the order of the PET film 14 to which the cover glass 11 has been bonded, the silicon substrate 17b into which the silane coupling agent has been introduced, and the glass substrate 16 are added.
  • Each workpiece is joined at one time by heating while pressing.
  • pressurization or heating may be used, but it is desirable to heat while applying pressure.
  • the substrate of the first transparent conductive film for example, ITO electrode 13
  • the PET film 14 is the PET film 14
  • the second transparent conductive film for example, the ITO electrode
  • the bonding method of the present invention employed when assembling a touch sensor module in which the substrate 15) is the glass substrate 16 has been shown.
  • the joining method of the present invention employed when assembling the touch sensor module in the configuration example of the touch panel shown in FIG. 13 will be described.
  • a glass substrate As a substrate for a transparent conductive film, a glass substrate is superior in visibility and durability as compared with a film substrate. In other words, the glass substrate has higher light transmittance than the film substrate, can reduce the influence of light confusion and substrate distortion, and has less discoloration due to ultraviolet rays, etc. It is superior to this. In addition, the glass substrate is excellent in durability and water resistance in a wide temperature range, and has higher weather resistance than the film substrate. In a touch panel for mechanical equipment or a touch panel for outdoor use that requires high visibility and weather resistance, there is an increasing demand for using a glass substrate as a substrate for a transparent conductive film. The use of a glass substrate for any of the substrates has been studied. In addition, thinning of the glass substrate is being realized, and as with the film substrate, it has become possible to cope with the degree of freedom of shape and the thinning of the panel.
  • FIG. 13 shows the case where both the substrate of the first transparent conductive film (for example, ITO electrode 13) and the substrate of the second transparent conductive film (for example, ITO electrode 15) are glass substrates 16a and 16b.
  • FIG. 13A shows a case where the first transparent conductive film 13 and the second transparent conductive film 15 face each other across the silicon substrate 17b into which the silane coupling agent is introduced.
  • the touch sensor module 10a includes a cover glass 11, a silicon substrate 17a introduced with a silane coupling agent, a first glass substrate 16a, a first ITO electrode 13, and a silane.
  • the silicon substrate 17b into which the coupling agent is introduced, the second ITO electrode 15, and the second glass substrate 16b are laminated in this order.
  • Other configurations are the same as those in FIG.
  • FIG. 13B shows a case where only the second transparent conductive film 15 of the first transparent conductive film 13 and the second transparent conductive film 15 is in contact with the silicon substrate 17b into which the silane coupling agent is introduced.
  • the touch sensor module 10a includes a cover glass 11, a silicon substrate 17a into which a silane coupling agent is introduced, a first ITO electrode 13, a first glass substrate 16a, The silicon substrate 17b into which the silane coupling agent is introduced, the second ITO electrode 15, and the second glass substrate 16b are laminated in this order.
  • Other configurations are the same as those in FIG. In the configuration example of the touch panel shown in FIG.
  • Step C-1 Joining Step of Cover Glass and First Glass Substrate with First Transparent Conductive Film (ITO Electrode) Surface
  • This step is shown in FIG.
  • This step is a bonding step between the cover glass 11 and the first glass substrate 16a having the first transparent conductive film (ITO electrode) applied on the surface.
  • This step is a previous step prior to [Step 3] to which the bonding method of the present invention is applied.
  • UV light emitted from an ultraviolet (UV) light source 40 such as a lamp is irradiated to make the surface of the silicon substrate 17a suitable for bonding.
  • UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
  • the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced are overlapped.
  • the bonding strength is increased by pressurizing or heating the overlaid cover glass 11 and the silicon substrate 17a. Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, UV irradiation on the surface of the silicon substrate 17a and the joint surface of the cover glass 11 may be performed simultaneously.
  • the UV irradiation surface of the first glass substrate 16a and the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent bonded to the cover glass 11 is introduced are overlapped.
  • the bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent.
  • the surface on the opposite side to the surface on which the first ITO electrode 13 is applied in the first glass substrate 16a (the bonding surface of the first glass substrate 16a) itself is a hydrophilic surface. It is not always necessary to irradiate UV light. However, by irradiating the bonding surface of the first glass substrate 16a with UV light, the bonding surface of the first glass substrate 16a is activated or impurities on the bonding surface of the first glass substrate 16a are decomposed. Since it is removed, the first glass substrate 16a and the silicon substrate 17a introduced with the silane coupling agent are more reliably bonded. Further, UV irradiation may be simultaneously performed on the surface of the silicon substrate 17a and the bonding surface of the first glass substrate 16a.
  • Step D-1 A first glass substrate having a first transparent conductive film (ITO electrode) applied on its surface and a second glass substrate having a second transparent conductive film (ITO electrode) provided on its surface;
  • FIG. 15 shows this process.
  • This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced.
  • the first work having a hydrophobic surface corresponds to the first work in which the cover glass 11 is bonded to one surface and the first ITO electrode 13 is applied to the other surface.
  • the glass substrate 16a which corresponds to the second work having a hydrophobic surface, is a second glass substrate 16b having a surface provided with a second transparent conductive film (ITO electrode).
  • the silane coupling agent is A silicon substrate surface suitable for bonding the surface of the silicon substrate 17b by irradiating the surface of the introduced silicon substrate 17b with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp.
  • UV light source 40 such as an excimer lamp.
  • the surface of the first ITO electrode 13 on which the pattern is applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp to thereby irradiate the first glass substrate 16a.
  • UV light source 40 such as an excimer lamp
  • the surface on which the first ITO electrode 13 pattern is applied is a transparent conductive film surface suitable for bonding.
  • the UV irradiation surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the surface of the first glass substrate 16a that have been subjected to the UV irradiation treatment are overlapped, and the first glass substrate 16a and the above silicon are appropriately selected.
  • the substrate 17b is pressurized or heated to cover the silicon substrate 17b into which the silane coupling agent is introduced and the cover glass 11 is bonded to one surface, and the first ITO electrode 13 is bonded to the other surface. Is bonded to the first glass substrate 16a.
  • the surface on which the second ITO electrode pattern is applied Is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the surface of the second glass substrate 16b on which the second ITO electrode 15 pattern is applied is suitable for bonding.
  • UV light source 40 such as an excimer lamp
  • the UV irradiation surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the first glass substrate 16a and the surface irradiated with the UV irradiation of the second glass substrate 16b are overlapped, and the first The second glass substrate 16b and the first glass substrate 16a and the silicon substrate 17b already bonded are pressurized or heated to introduce the silane coupling agent bonded to the first glass substrate 16a. Further, the silicon substrate 17b and the second glass substrate 16b on the surface of which the second ITO electrode 15 is applied are bonded.
  • the bonding method in this step (D-1) is as follows. (1) The surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the first glass substrate 16a (which has been bonded to the cover glass 11), which is the first work having a hydrophobic surface. The surface of the silicon substrate 17b is irradiated with ultraviolet rays to modify the ultraviolet irradiation surface of the silicon substrate 17b to a silicon substrate surface suitable for bonding.
  • the ultraviolet-irradiated surface of the glass substrate 16a is a transparent conductive film surface suitable for bonding.
  • Both ultraviolet irradiation surfaces are overlapped.
  • the silicon substrate 17b into which the silane coupling agent has been introduced and the first glass substrate 16a (cover glass 11 bonded) as the first work having a hydrophobic surface are stacked in this order. Heat while pressing the contact surface of each workpiece.
  • the surface of the second glass substrate 16b, which is the second work having a hydrophobic surface, on which the second transparent conductive film (ITO electrode 15) is applied is irradiated with ultraviolet rays, so that the silicon
  • the ultraviolet irradiation surface of the glass substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the second glass substrate 16b is made a transparent conductive film surface suitable for bonding.
  • a first glass substrate 16a (cover glass 11 bonded) as a first work having a hydrophobic surface, a silicon substrate 17b into which a silane coupling agent is introduced, hydrophobic Heating is performed while pressurizing the contact surfaces of the workpieces that are stacked in the order of the second glass substrate 16b, which is the second workpiece having the surface.
  • first pressurization or heating may be used, but it is preferable to heat while applying pressure.
  • Step C-2 Joining Step of Cover Glass and First Glass Substrate with First Transparent Conductive Film (ITO Electrode) Provided on the Surface
  • This step is shown in FIG.
  • This process shows a method of bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced.
  • the cover glass 11 corresponds to the first work having a hydrophilic surface
  • the first transparent conductive film (ITO electrode) corresponds to the second work having a hydrophobic surface. Is the first glass substrate 16a provided on the surface.
  • the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a introduced with the silane coupling agent are overlapped.
  • the bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a.
  • the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, UV irradiation may be performed simultaneously on the surface of the silicon substrate into which the silane coupling agent has been introduced and the cover surface of the cover glass 11.
  • an ultraviolet (UV) light source such as an excimer lamp is formed on the surface of the silicon substrate 17a into which the silane coupling agent joined to the cover glass 11 is introduced, on the side opposite to the joint surface with the cover glass 11.
  • the UV light emitted from 40 is irradiated so that the UV irradiation surface of the silicon substrate 17a is a silicon substrate surface suitable for bonding.
  • the UV-irradiated surface of the silicon substrate 17a introduced with the silane coupling agent and the UV-irradiated surface of the first glass substrate 16a are overlaid, and the overlaid cover glass 11 and the above are appropriately combined.
  • the silicon substrate 17a to which the silane coupling agent having the cover glass 11 bonded is introduced by pressing or heating the silicon substrate 17a and the first ITO electrode 13 are applied to the surface.
  • the first glass substrate 16a is bonded.
  • the bonding method employed in this step (C-2) is as follows. (1) The silicon substrate 17a introduced with a silane coupling agent is bonded to the lower surface of the cover glass 11, which is the first work having a hydrophilic surface. In the bonding method, the silicon substrate 17a is irradiated with ultraviolet rays so that the ultraviolet-irradiated surface is a silicon substrate surface suitable for bonding, and the surface is laminated on the cover glass 11 to form a first work piece. The cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent are joined. As described above, the joint surface of the cover glass 11 may be irradiated with ultraviolet rays.
  • the surface of the first glass substrate 16a, which is the first glass substrate 16a, is irradiated with ultraviolet rays on the surface of the first transparent conductive film (ITO electrode 13), and the ultraviolet irradiation surface of the silicon substrate 17a is suitable for bonding.
  • the surface of the first glass substrate 16a is modified to a transparent conductive film surface suitable for bonding.
  • Both ultraviolet irradiation surfaces are overlapped.
  • the cover glass 11 as the first work having a hydrophilic surface, the silicon substrate 17a into which the silane coupling agent is introduced, and the first glass as the second work Heating is performed while pressing the contact surfaces of the workpieces stacked in the order of the substrate 16a.
  • pressurization or heating may be used, but it is desirable to heat while applying pressure.
  • Step D-2 A first glass substrate having a first transparent conductive film (ITO electrode) applied on its surface and a second glass substrate having a second transparent conductive film (ITO electrode) provided on its surface;
  • FIG. 17 shows this process. Also in this step, a method of bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced is shown.
  • the first work piece having a hydrophilic surface corresponds to the first glass substrate 16a in which the cover glass 11 is bonded to one surface on which the first ITO electrode 13 is applied.
  • Corresponding to the second work having a hydrophobic surface is the second glass substrate 16b having a second transparent conductive film (ITO electrode) applied on the surface.
  • the first work as a first work having a hydrophilic surface
  • the second glass substrate 16b which is a second work having a surface opposite to the surface of the first ITO electrode 13 bonded to the cover glass 11 and a hydrophobic surface, of the glass substrate 16a of the second glass substrate 16a.
  • the first glass substrate 16a (already bonded to the cover glass 11) and the silicon substrate 17b introduced with a silane coupling agent are bonded. .
  • the surface of the silicon substrate 17b into which the silane coupling agent has been introduced is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp.
  • the UV irradiation surface of the substrate 17b is a silicon substrate surface suitable for bonding.
  • an excimer lamp or the like is applied to the surface opposite to the first ITO electrode 13 side that has been bonded to the cover glass 11 of the first glass substrate 16a in the previous step. UV light emitted from the ultraviolet (UV) light source 40 is irradiated.
  • the UV irradiation surface of the silicon substrate 17b into which the silane coupling agent is introduced and the UV irradiation surface of the first glass substrate 16a are overlapped, and the first glass substrate 16a and the silicon substrate 17b are appropriately combined.
  • the silicon substrate 17b in which the silane coupling agent is introduced and the first glass substrate 16a having the cover glass 11 bonded to one surface are bonded by pressurizing or heating the contact surface. To do.
  • UV light source 40 such as an excimer lamp
  • the UV irradiation surface of the silicon substrate 17b is used as a silicon substrate surface suitable for bonding.
  • the second ITO electrode 15 pattern is applied to the second glass substrate 16b having the second ITO electrode 15 having a pattern as shown in FIG.
  • an ultraviolet (UV) light source 40 such as an excimer lamp
  • the surface of the second glass substrate 16b provided with the second ITO electrode 15 pattern is joined.
  • a suitable transparent conductive film surface is used.
  • the UV irradiation surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the first glass substrate 16a and the surface irradiated with the UV irradiation of the second glass substrate 16b are overlapped, and the first The silane coupling agent bonded to the first glass substrate 16a is introduced by pressurizing or heating the second glass substrate 16b and the silicon substrate 17b bonded to the first glass substrate 16a. Further, the silicon substrate 17b and the second glass substrate 16b on the surface of which the second ITO electrode 15 is applied are bonded.
  • the bonding method in this step (D-2) is as follows. (1) A first work having a hydrophilic surface, which is covered through a silicon substrate 17a in which a silane coupling agent is introduced on one surface on which the first ITO electrode 13 is applied. And irradiating the other surface of the first glass substrate 16a to which the glass 11 is bonded and the surface of the silicon substrate 17b into which the silane coupling agent has been introduced with ultraviolet rays of both works. A first glass substrate 16a, which is a first work having a hydrophilic surface, and the silicon substrate 17b are laminated so that the irradiation surface is in close contact with each other, thereby forming a first work having a hydrophilic surface.
  • the first glass substrate 16a and the silicon substrate 17b into which the silane coupling agent is introduced are bonded.
  • the surface of the second glass substrate 16b, which is the second work having a hydrophobic surface, on which the second transparent conductive film (ITO electrode 15) is applied is irradiated with ultraviolet rays, so that the silicon-
  • the ultraviolet irradiation surface of the glass substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the second glass substrate 16b is used as a transparent conductive film surface suitable for bonding.
  • a first glass substrate 16a (cover glass 11 bonded), which is a first work having a hydrophilic surface, a silicon substrate 17b into which a silane coupling agent is introduced, hydrophobic Heating is performed while pressurizing the contact surfaces of the workpieces that are stacked in the order of the second glass substrate 16b, which is the second workpiece having the surface.
  • first pressurization or heating may be used, but it is desirable to heat while applying pressure.
  • the touch sensor module in the touch panel shown in FIG. 13A is configured through [Step C-1] and [Step D-1] employing the bonding method of the present invention. Further, the touch sensor module in the touch panel shown in FIG. 13B is configured through [Step C-2] and [Step D-2] employing the bonding method of the present invention.
  • the touch sensor module 10a and the touch panel control unit 10b are stacked on the image display device 30 such as an LCD panel to constitute a touch panel.
  • the structure example of the touch panel control unit 10b and the bonding of the touch panel laminated in the order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 are the same as those in the related art, and therefore detailed here. Description is omitted.
  • a silicon (substrate) into which a silane coupling agent is introduced is used in place of the conventional OCA tape or OCR when the components of the touch sensor module are bonded.
  • ultraviolet rays are irradiated to the bonding surface between the silicon (substrate) into which the silane coupling agent is introduced and each component (for example, a substrate provided with a conductive thin film such as an ITO electrode). Therefore, the same effect as in the first embodiment can be achieved.
  • the touch sensor module constructed in the second embodiment uses only a glass substrate as the substrate of the transparent conductive film, a touch panel incorporating this touch sensor module has high visibility and weather resistance. Will have.
  • the bonding method of the present invention is suitable for bonding to the bonding surface between the first workpiece and the second workpiece in which the conductive film is applied to the bonding surface by ultraviolet irradiation.
  • a first work and a second work are laminated with a silicon substrate having a silane coupling agent having a surface interposed therebetween, and the first and second works are laminated.
  • bonding of a silicon substrate and a conductive thin film surface of a conductive thin film substrate which could not be bonded even by using a surface modification treatment by ultraviolet irradiation, is conventionally performed.
  • the above silicon substrate is irradiated by irradiating ultraviolet rays onto the silicon substrate into which the silane coupling agent has been introduced.
  • a surface of the silicon substrate suitable for bonding is made to be a surface state of a silicon substrate suitable for bonding, and the surface of the conductive thin film substrate is irradiated with ultraviolet light to make the surface of the conductive thin film substrate suitable for bonding.
  • the uncured silicone resin As the uncured silicone resin, the following two resins were used.
  • the one-pack type silicone resin cures only the main agent by a curing reaction such as thermal curing.
  • a two-component silicone resin is composed of a main agent and a curing agent, and these two components are mixed and then cured by a curing reaction such as thermosetting.
  • silane coupling agents (B-1) Isocyanate silane coupling agent KBE-9007 (manufactured by Shin-Etsu Chemical) (B-2) Epoxy silane coupling agent KBE-403 (manufactured by Shin-Etsu Chemical) (B-3) Aminoisocyanate silane coupling agent KBM-903 (manufactured by Shin-Etsu Chemical) The structural formula of each silane coupling agent is shown below.
  • (I-1) Silicon Substrate Formation Using One-Part Silicone Resin (X-32-3095) and Silane Coupling Agent Silicone Substrate Using One-Part Silicone Resin and Silane Coupling Agent Substrate formation was performed by the following procedure. First, a silane coupling agent was introduced to an uncured X-32-3095 solution at a concentration of 2% by weight, and then stirred for about 10 minutes. Next, this mixed solution was transferred to a glass dish and allowed to stand at room temperature for 1 hour. In this step, bubbles generated during stirring are removed. Next, the mixed solution after defoaming was heated at 80 ° C. for 4 hours to perform primary curing. Thereafter, secondary curing was performed by heating at 150 ° C. for 0.5 hour. As will be described later, a cured silicon substrate was not necessarily obtained depending on the silane coupling agent, but the shape of the obtained silicon substrate was 50 mm in diameter and 3 mm in thickness.
  • the silane coupling agent KBE-9007 is considered to be a substance that inhibits curing.
  • either of the one-component silicone resin X-32-3095 and the two-component silicone resin SIM260 can be obtained through the above procedure.
  • the resin was also cured. That is, a silicon substrate having a silane coupling agent introduced therein was obtained.
  • the silicon substrate obtained here was transparent and hardly absorbed light, and was found to be suitable as an intervening substance for joining the components of the touch panel.
  • any one of the one-part silicone resin X-32-3095 and the two-part silicone resin SIM260 can be obtained through the above procedure.
  • the silicone resin was also cured, and a silicon substrate having a silane coupling agent introduced therein was obtained.
  • the foam generated during the stirring of the mixed solution of the silicone resin and the silane coupling agent is removed by the defoaming step.
  • foaming occurred in the silicon substrate.
  • a heating step for secondary curing of the silicone resin SIM260 foaming occurred in the silicone substrate.
  • the silicon substrate obtained here has bubbles inside, when it is used as an intervening substance for joining the components of the touch panel, the visibility of the image is remarkably deteriorated.
  • an epoxy-based silane coupling agent to be introduced into the silicone resin is desirable.
  • the silicon substrate and the PET film are superposed so that the VUV irradiation surfaces of the X-32-3095 series silicon substrate and the PET film into which the silane coupling agent KBE-403 is introduced are in contact with each other. While applying a pressure of 0.25 Mpa to both, it heated so that both temperature might be set to 100 degreeC. The heating time was 30 seconds. Through the procedure described above, the X-32-3095 silicon substrate and the PET film into which the silane coupling agent KBE-403 was introduced were bonded.
  • SIM-260 When SIM-260 is used as the silicone resin
  • the bonding surface of the SIM-260 based silicon substrate into which the silane coupling agent KBE-403 has been introduced and the conductive thin film of the PET film are applied.
  • the coated surface was irradiated with ultraviolet rays.
  • the ultraviolet light source used was an excimer lamp that emits vacuum ultraviolet rays (VUV) having a center wavelength of 172 nm. Irradiation conditions were an irradiance of 5 mW / cm 2 on the irradiated surface and an irradiation time of 180 seconds.
  • VUV vacuum ultraviolet rays
  • the silicon substrate and the PET film are superimposed so that the VUV irradiation surfaces of the SIM-260 type silicon substrate and the PET film into which the silane coupling agent KBE-403 is introduced are in contact with each other. While applying a pressure of 0.25 Mpa, the both were heated to 100 ° C. The heating time was 30 seconds.
  • the SIM-260 based silicon substrate into which the silane coupling agent KBE-403 was introduced and the PET film were joined.
  • this experiment enables the pasting of a silicon substrate and a conductive thin film surface of a conductive thin film substrate, which could not be bonded even by using a surface modification treatment by ultraviolet irradiation. It has been found. Similarly, it is considered possible to bond the silicon substrate and the conductive thin film substrate when the surface is hydrophobic.
  • a silicone member suitable for the bonding of the present invention can be obtained by introducing an epoxy silane coupling agent into a silicone member.
  • an epoxy silane coupling agent for the bonding of the present invention.
  • the silane coupling agent to be introduced into the member made of silicon in addition to the epoxy type, the following silane coupling agents (B-4) and (B-5) may be used, or when the epoxy type silane coupling agent is used:
  • the epoxy type silane coupling agent is used:
  • a member made of silicon suitable for the joining of the present invention can be obtained.
  • the bonding method of the present invention can also be applied to a case where a touch sensor module having a configuration other than the touch sensor module having the configuration shown in FIGS. 1 and 13 is configured.
  • a touch sensor module having a configuration other than the touch sensor module having the configuration shown in FIGS. 1 and 13 is configured.
  • the first and second glass substrates 16a and 16b to which the transparent conductive film is applied are applied to the first and second resin substrates made of the PET film 14 or the like.
  • [Step C-1] shown in FIG. 14 is replaced with [Step A-1] shown in FIG.
  • the subsequent [Step D-1] can be applied as it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided are: a method for laminating works, ensuring excellent reworkability, non-discoloration, a relatively short treatment time, and a relatively low cost; and a touch panel produced by this method. According to the method, a cover glass (11) which has a hydrophilic surface is bonded to a silicone substrate (17a) which contains a silane coupling agent by: subjecting the lamination faces of the cover glass (11) and the substrate (17a) to ultraviolet irradiation; stacking the resulting works; and subjecting the obtained stack to pressing/heating to form a laminate. Further, the first ITO electrode (13) provided on a hard coat layer (14a) present on a PET film (14) having a hydrophobic surface is bonded to the silicone substrate (17a) which contains a silane coupling agent by: subjecting the surface of the ITO electrode (13) and the lamination face of the silicone substrate (17a) to ultraviolet irradiation; stacking the resulting works; and subjecting the obtained stack to pressing/heating to form a laminate. Similarly, a silicone substrate (17b) which contains a silane coupling agent is bonded to both the second ITO electrode (15) present on a glass substrate (16) and another hard coat layer (14a) present on the PET film (14) by: subjecting the surface of the second ITO electrode (15), the surface of the hard coat layer (14a) and the lamination faces of the substrate (17b) to ultraviolet irradiation; stacking the resulting works; and subjecting the obtained stack to pressing/heating to form a laminate.

Description

ワ-クの貼り合わせ方法およびタッチパネルWork bonding method and touch panel
 本発明は、タッチパネルや有機EL(有機エレクトロルミネッセンス、Organic Electro-Luminescence)、有機半導体、太陽電池パネルの製造等に用いることができるワ-クの貼り合わせ方法、およびこの方法で製造されるタッチパネルに関する。さらに、詳細には、例えば表面にハ-ドコ-ト層が設けられたPET(ポリエチレンテレフタラ-ト:Polyethylene terephthalate)等の樹脂のように表面が疎水性を有するワ-クとシリコ-ンからなる部材を貼り合わせたり、例えばガラス等の表面が親水性を有するワ-クや、例えば表面にハ-ドコ-ト層が設けられた樹脂のように表面が疎水性を有するワ-ク、さらには、ガラスもしくは上記樹脂からなる部材の表面に例えばITO(酸化インジウムスズ:Indium Tin Oxide)透明電極のような透明導電膜が施され、表面が疎水性を有するワ-クを、シリコ-ンからなる部材を介在させて互いに貼り合わせるためのワ-クの貼り合わせ方法、および、これらのワ-クを貼り合わせることにより製造されるタッチパネルに関する。 TECHNICAL FIELD The present invention relates to a work bonding method that can be used for manufacturing touch panels, organic EL (Organic Electro-Luminescence), organic semiconductors, solar battery panels, and the like, and touch panels manufactured by this method. . In more detail, for example, from a work and silicon having a hydrophobic surface such as a resin such as PET (Polyethylene terephthalate) with a hard coat layer provided on the surface. For example, a workpiece having a hydrophilic surface such as glass, a workpiece having a hydrophobic surface such as a resin having a hard coat layer on the surface, and the like. A transparent conductive film such as an ITO (Indium Tin Oxide) transparent electrode is applied to the surface of a member made of glass or the above resin, and a workpiece having a hydrophobic surface is made of silicon. More particularly, the present invention relates to a method for bonding workpieces to each other with a member interposed therebetween, and a touch panel manufactured by bonding these workpieces.
 近年、ワ-クを貼り合わせて製造される有機EL、有機半導体、太陽電池等が注目されている。また、ワ-クを貼り合わせて製造されるものとしてタッチパネルが知られている。タッチパネルは、画像が表示されるディスプレイに指やペン等で触れることによりスイッチのon-off、デ-タ入力等の制御が可能なものであって、近年、急速に普及している。例えば、携帯電話、携帯ゲ-ム機、タブレット端末などのガジェット、カ-ナビゲ-ション装置、銀行のATM、切符自動販売機等でタッチパネルは広く用いられている。 In recent years, attention has been paid to organic EL, organic semiconductors, solar cells, and the like, which are manufactured by bonding workpieces together. In addition, a touch panel is known as a product manufactured by bonding a work. A touch panel is capable of controlling on / off of a switch, data input, and the like by touching a display on which an image is displayed with a finger or a pen, and has been rapidly spread in recent years. For example, touch panels are widely used in gadgets such as mobile phones, mobile game machines, tablet terminals, car navigation devices, bank ATMs, ticket vending machines, and the like.
 図18に、映像表示装置とタッチセンサモジュ-ルからなるタッチパネルの模式図を示す。例として、投影静電容量方式のタッチパネルを示す。
 図18に示すように、タッチパネル100はLCDパネル等の画像表示装置30とその上部に配置される位置入力装置10とからなる。
 位置入力装置10は、タッチセンサ表面において指やペン等で接触された部分を検出するためのタッチセンサモジュ-ル10aと、タッチセンサモジュ-ル10aからの位置入力情報を処理し、上記情報に基づき画像表示装置30を制御するタッチパネル制御部10bからなる。
FIG. 18 shows a schematic diagram of a touch panel including a video display device and a touch sensor module. As an example, a projected capacitive touch panel is shown.
As shown in FIG. 18, the touch panel 100 includes an image display device 30 such as an LCD panel and a position input device 10 arranged on the upper portion thereof.
The position input device 10 processes the position input information from the touch sensor module 10a and the touch sensor module 10a for detecting the portion of the touch sensor surface that is touched with a finger, a pen, or the like. The touch panel control unit 10b controls the image display device 30 based on it.
 タッチセンサモジュ-ル10aは、第1の透明導電膜(例えば、ITO電極)パタ-ンが施されたPETフィルム14と、第2の透明導電膜(例えば、ITO電極)パタ-ンが施されたガラス基板16が積層された構造であり、上から第1のITO電極13、PETフィルム14、第2のITO電極15、ガラス基板16の順に積層される。なお、PETフィルム14の両面には、PETフィルム14の傷付き防止のため光透過性のハ-ドコ-ト層14aが設けられる。すなわち、第1の透明導電膜パタ-ンは、PETフィルム14上のハ-ドコ-ト層14a上に設けられる。ハ-ドコ-ト層14aは、例えば、アクリレ-ト樹脂等からなる。 The touch sensor module 10a is provided with a PET film 14 having a first transparent conductive film (for example, ITO electrode) pattern and a second transparent conductive film (for example, an ITO electrode) pattern. The glass substrate 16 is laminated, and the first ITO electrode 13, the PET film 14, the second ITO electrode 15, and the glass substrate 16 are laminated in this order from the top. A light-transmitting hard coat layer 14a is provided on both surfaces of the PET film 14 to prevent the PET film 14 from being damaged. That is, the first transparent conductive film pattern is provided on the hard coat layer 14 a on the PET film 14. The hard coat layer 14a is made of, for example, acrylate resin.
 更に、PETフィルム14の第1のITO電極13が施された側にはカバ-ガラス11が設置される。PETフィルム14の第1のITO電極13パタ-ンが施された表面と対向する側のカバ-ガラス11表面の周縁部にはブラックマトリクス12が形成されている。
 一方、ガラス基板16の下側には、第1のITO電極13、第2のITO電極15と電気的に接続され、更に後で示すタッチパネル制御部10bとも電気的に接続される配線層21が設けられる。
 配線層21は、カバ-ガラス11側から観察した際、カバ-ガラス11に設けられたブラックマトリックス12によって遮蔽されるように、ガラス基板16の下側にて配置される。すなわち、配線層21は、タッチパネルにおいて表示される画像を干渉しない位置に設けられる。
Further, a cover glass 11 is installed on the side of the PET film 14 on which the first ITO electrode 13 is applied. A black matrix 12 is formed on the periphery of the surface of the cover glass 11 on the side facing the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied.
On the other hand, on the lower side of the glass substrate 16, there is a wiring layer 21 that is electrically connected to the first ITO electrode 13 and the second ITO electrode 15 and further electrically connected to the touch panel control unit 10b described later. Provided.
The wiring layer 21 is disposed on the lower side of the glass substrate 16 so as to be shielded by the black matrix 12 provided on the cover glass 11 when observed from the cover glass 11 side. That is, the wiring layer 21 is provided at a position that does not interfere with the image displayed on the touch panel.
 タッチパネル制御部10bは、タッチパネル(TP)コントロ-ルIC部22とFPC(フレキシブルプリント基板)23とからなり、FPC23上にタッチパネルコントロ-ルIC部22が設けられる。FPC23は、カバ-ガラス11側から観察した際、カバ-ガラス11に設けられたブラックマトリックス12によって遮蔽されるように、中央部分に開口が設けられた環状構造であり、タッチパネルコントロ-ルIC部22はこの環状構造部分の上部に設けられる。すなわち、タッチパネル制御部10bは、タッチパネルにおいて表示される画像を干渉しない位置に設けられる。上記したようにタッチパネル制御部10bは、タッチセンサモジュ-ル10aの配線層21と電気的に接続され、また、画像表示装置30とも電気的に接続される。 The touch panel control unit 10 b includes a touch panel (TP) control IC unit 22 and an FPC (flexible printed circuit board) 23, and the touch panel control IC unit 22 is provided on the FPC 23. The FPC 23 has an annular structure in which an opening is provided in the central portion so as to be shielded by the black matrix 12 provided in the cover glass 11 when observed from the cover glass 11 side, and the touch panel control IC portion. 22 is provided in the upper part of this annular structure part. That is, the touch panel control unit 10b is provided at a position that does not interfere with an image displayed on the touch panel. As described above, the touch panel control unit 10b is electrically connected to the wiring layer 21 of the touch sensor module 10a, and is also electrically connected to the image display device 30.
 上記したタッチセンサモジュ-ル10a、タッチパネル制御部10bが、LCDパネル等の画像表示パネル32から構成される画像表示装置30上に積層されてタッチパネルが構成される。なお、画像表示パネル32の表面には、偏光フィルム31が設けられている。なお、図18に示すように、上からタッチセンサモジュ-ル10a、タッチパネル制御部10b、画像表示装置30の順に積層されるタッチパネルは、紫外線硬化性接着剤24(UV Resin)にて接合される。すなわち、タッチセンサモジュ-ル10aのガラス基板16の配線層21が設けられた表面と、タッチパネル制御部10bと画像表示装置30表面の偏光フィルムはUV Resinにて接合される。なお、タッチセンサモジュ-ル10aのガラス基板16の配線層21が設けられていない部分やタッチパネル制御部10bの開口部分などは、UV Resinが充填された状態となる。 The touch sensor module 10a and the touch panel control unit 10b described above are stacked on the image display device 30 including the image display panel 32 such as an LCD panel to constitute a touch panel. A polarizing film 31 is provided on the surface of the image display panel 32. In addition, as shown in FIG. 18, the touch panel laminated in order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 from the top is bonded with an ultraviolet curable adhesive 24 (UV Resin). . That is, the surface on which the wiring layer 21 of the glass substrate 16 of the touch sensor module 10a is provided, and the polarizing film on the surface of the touch panel control unit 10b and the image display device 30 are bonded by UV Resin. Note that a portion of the touch sensor module 10a where the wiring layer 21 of the glass substrate 16 is not provided, an opening portion of the touch panel control unit 10b, and the like are filled with UV Resin.
 タッチパネルは、カバ-ガラス11上に接触した指等の位置情報をタッチパネルセンサモジュ-ル10aにて検出し、その位置情報を受信したタッチパネル制御部10bからの制御信号に基づいて画像表示装置30の動作を制御するものである。
 図18(b)に示すように、第1のITO電極13は、Y方向に伸びる電極パタ-ン単位が複数、X方向に並列に配置された電極パタ-ンである。すなわち、第1のITO電極13は複数の電極パタ-ン単位からなる。
 一方、図18(c)に示すように、第2のITO電極15は、X方向に伸びる電極パタ-ン単位が複数、Y方向に並列に配置された電極パタ-ンである。すなわち、第2のITO電極15は複数の電極パタ-ン単位からなる。
 これらの各電極パタ-ン単位に図示を省略した電源により高周波電圧を印加しておく。タッチパネルのカバ-ガラス11に指が近づくと、指と第1のITO電極13において指に近い位置に配置されている電極パタ-ン単位、指と第2のITO電極15において指に近い位置に配置されている電極パタ-ン単位との間に静電容量(コンデンサ)が形成され、それぞれ電流が流れる。この電流変化を検出することにより、カバ-ガラス11上の指の位置が検出される。
The touch panel detects position information such as a finger touching the cover glass 11 with the touch panel sensor module 10a, and based on a control signal from the touch panel control unit 10b that has received the position information, It controls the operation.
As shown in FIG. 18B, the first ITO electrode 13 is an electrode pattern in which a plurality of electrode pattern units extending in the Y direction are arranged in parallel in the X direction. That is, the first ITO electrode 13 is composed of a plurality of electrode pattern units.
On the other hand, as shown in FIG. 18C, the second ITO electrode 15 is an electrode pattern in which a plurality of electrode pattern units extending in the X direction are arranged in parallel in the Y direction. That is, the second ITO electrode 15 is composed of a plurality of electrode pattern units.
A high frequency voltage is applied to each electrode pattern unit by a power source (not shown). When the finger approaches the cover glass 11 of the touch panel, the electrode pattern unit is arranged near the finger in the finger and the first ITO electrode 13, and the finger and the second ITO electrode 15 are close to the finger. Capacitances (capacitors) are formed between the arranged electrode pattern units, and current flows in each unit. By detecting this current change, the position of the finger on the cover glass 11 is detected.
 すなわち、図18(b)(c)から明らかなように、第1のITO電極13は指のX方向の位置、第2のITO電極15は指のY方向の位置を検出する。図18(d)に示すように、第1のITO電極13と第2のITO電極15とをX-Y二次元方向のマトリックス状に配置することにより、タッチパネルセンサモジュ-ル10aは、カバ-ガラス11に接触した指のX-Y二次元方向の位置を検出する。
 タッチパネルセンサモジュ-ル10aにより検出されたカバ-ガラス11に接触した指の位置に関する信号は、タッチパネル制御部10bへと送信される。
That is, as apparent from FIGS. 18B and 18C, the first ITO electrode 13 detects the position of the finger in the X direction, and the second ITO electrode 15 detects the position of the finger in the Y direction. As shown in FIG. 18 (d), the first ITO electrode 13 and the second ITO electrode 15 are arranged in a matrix in the XY two-dimensional direction, whereby the touch panel sensor module 10a is covered. The position of the finger in contact with the glass 11 in the XY two-dimensional direction is detected.
A signal related to the position of the finger in contact with the cover glass 11 detected by the touch panel sensor module 10a is transmitted to the touch panel control unit 10b.
 ここで、タッチパネルセンサモジュ-ル10aにおけるPETフィルム14とカバ-ガラス11との間(PETフィルム14の第1のITO電極13が施された表面とカバ-ガラス11の下側表面との間)、あるいはPETフィルム14とガラス基板16との間(PETフィルム14の第1のITO電極13側と反対側のハ-ドコ-ト層14a表面とガラス基板16の第2のITO電極15が設けられた表面との間)に空気層が介在すると、各表面と空気層との界面における屈折率の相違により当該界面での光の反射が発生し、輝度の低下やコントラストの低下といったタッチパネルにおける表示画質の劣化が発生する。 Here, between the PET film 14 and the cover glass 11 in the touch panel sensor module 10a (between the surface of the PET film 14 on which the first ITO electrode 13 is applied and the lower surface of the cover glass 11). Or between the PET film 14 and the glass substrate 16 (the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 and the second ITO electrode 15 of the glass substrate 16 are provided). If an air layer is interposed between the surface and the air surface, light is reflected at the interface due to the difference in refractive index at the interface between each surface and the air layer. Degradation occurs.
 よって、このような空気層をなくすために、空気と比較して屈折率がカバ-ガラス11やPETフィルム14、ガラス基板16の屈折率に近い透明物質により空気層を置換して、タッチパネルディスプレイの輝度の低下やコントラストの低下を抑制することが行われている。
 具体的には、空気と比較して上記したような屈折率を有する透明の接着部材19により、カバ-ガラス11の下側表面とPETフィルム14の第1のITO電極13側表面とが接合される。また、PETフィルム14の第1のITO電極13側と反対側のハ-ドコ-ト層14a表面とガラス基板16の第2のITO電極15が設けられた表面とも上記したような接着部材により接合される。
Therefore, in order to eliminate such an air layer, the air layer is replaced with a transparent material having a refractive index close to that of the cover glass 11, the PET film 14, and the glass substrate 16 in comparison with air, so that the touch panel display In order to suppress a decrease in brightness and a decrease in contrast.
Specifically, the lower surface of the cover glass 11 and the surface of the PET film 14 on the first ITO electrode 13 side are joined by the transparent adhesive member 19 having a refractive index as described above compared with air. The Further, the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 and the surface of the glass substrate 16 on which the second ITO electrode 15 is provided are also bonded by the adhesive member as described above. Is done.
 接着部材としては、例えば、特許文献1、特許文献2に例示されているような透明性の高いアクリル系粘着剤を使用した光学用粘着テ-プ(Optically Clear Adhesive Tape:以下OCAテ-プという)や、特許文献3、特許文献4に例示されているような透明性の高い硬化型樹脂(Optically Clear Resin:以下OCRという)が用いられる。 As the adhesive member, for example, an optical adhesive tape (Optically 使用 Clear Adhesive Tape: hereinafter referred to as OCA tape) using a highly transparent acrylic adhesive as exemplified in Patent Document 1 and Patent Document 2 is used. ) And a highly transparent curable resin (Optically Clear Resin: hereinafter referred to as OCR) as exemplified in Patent Literature 3 and Patent Literature 4.
特開平9-251159号公報JP-A-9-251159 特開2011-74308号公報JP 2011-74308 A 特開2009-48214号公報JP 2009-48214 A 特開2010-257208号公報JP 2010-257208 A 特許第3714338号公報Japanese Patent No. 3714338 特開2006-187730号公報JP 2006-187730 A 国際公開2008/087800号International Publication No. 2008/087800 特開2008-19348号公報JP 2008-19348 A
 上記したように、OCAテ-プ、OCRを使用して、カバ-ガラス11の下側表面とPETフィルム14の第1のITO電極13側表面の接合、PETフィルム14の第1のITO電極13側と反対側のハ-ドコ-ト層14a表面とガラス基板16の第2のITO電極15が設けられた表面との接合を実施することにより、タッチパネルディスプレイの輝度の低下やコントラストの低下を抑制することが可能となる。
 しかしながら、OCAテ-プ、OCRの使用する場合、以下のような問題点や不具合も考慮する必要がある。
As described above, using the OCA tape and OCR, the lower surface of the cover glass 11 is bonded to the first ITO electrode 13 side surface of the PET film 14, and the first ITO electrode 13 of the PET film 14 is bonded. By controlling the surface of the hard coat layer 14a opposite to the surface and the surface of the glass substrate 16 on which the second ITO electrode 15 is provided, it is possible to suppress a decrease in brightness and a decrease in contrast of the touch panel display. It becomes possible to do.
However, when the OCA tape or OCR is used, the following problems and problems need to be considered.
 OCAテ-プの場合、接着力が強力であるためリワ-ク性が乏しい。すなわち、一度剥がして再度使用することは難しいので、OCAテ-プ使用時には、高い貼り合わせ精度が要求される。
 また、OCAテ-プは硬いので、PETフィルム14の第1のITO電極13側表面やガラス基板16の第2のITO電極15が設けられた表面のような表面に段差構造が存在する場合、貼り付け時上記段差部分に気泡が混入しやすい。
 更には、上記したようにOCAテ-プはリワ-ク性が乏しく、表面の段差部分で気泡が混入しやすいので、貼り付け処理が難しい。よって、接合面の面積が大面積であるような被接合対象の場合、OCAテ-プを使用することは困難である。また、OCAテ-プは比較的高価である。
In the case of the OCA tape, the adhesive strength is strong, so the reworkability is poor. That is, since it is difficult to peel it off and use it again, high bonding accuracy is required when using the OCA tape.
Further, since the OCA tape is hard, when there is a step structure on the surface such as the surface on the first ITO electrode 13 side of the PET film 14 or the surface on which the second ITO electrode 15 of the glass substrate 16 is provided, Bubbles are likely to be mixed into the stepped portion when pasting.
Furthermore, as described above, the OCA tape has poor reworkability, and bubbles are likely to be mixed in the stepped portion of the surface, so that the pasting process is difficult. Therefore, it is difficult to use the OCA tape in the case of an object to be joined whose joining surface has a large area. In addition, the OCA tape is relatively expensive.
 一方、OCRによる接合は以下のように行われる。すなわち、2枚のワ-クの少なくとも一方の接合面にOCR塗布して当該2枚のワ-クを重ね合わせ、加熱や紫外線(UV)照射によりOCRを硬化させて上記2枚のワ-クを接合する。ここで、OCRは一般に粘度が高いので、接合面に均一に塗布するのは難しい。よって、例えば、カバ-ガラス11接合面とPETフィルム14接合面とが非平行の状態で接合されるという不具合も発生しうる。 On the other hand, joining by OCR is performed as follows. That is, OCR is applied to at least one joint surface of two workpieces, the two workpieces are overlapped, and the OCR is cured by heating or ultraviolet (UV) irradiation, so that the two workpieces are combined. Join. Here, since OCR generally has a high viscosity, it is difficult to uniformly apply it to the joint surface. Therefore, for example, there may be a problem that the cover glass 11 bonding surface and the PET film 14 bonding surface are bonded in a non-parallel state.
 また、OCRは耐熱温度が低く、紫外線(UV)硬化性のOCRの場合UV照射時のOCRの温度上昇の影響を考慮する必要がある。すなわち、UV光源40とOCR接合面との距離が近すぎると、OCRが当該OCRの耐熱温度以上に加熱されてしまう。よって、UV光源40とOCR接合面との距離はある程度大きくする必要があるが、この場合、OCR接合面でのUV強度も弱くなるので、結果的にUV硬化性OCRの場合、硬化プロセス時間が長くなる。 Also, OCR has a low heat-resistant temperature, and in the case of ultraviolet (UV) curable OCR, it is necessary to consider the effect of the OCR temperature rise during UV irradiation. That is, if the distance between the UV light source 40 and the OCR bonding surface is too short, the OCR is heated to a temperature higher than the heat resistance temperature of the OCR. Therefore, the distance between the UV light source 40 and the OCR bonding surface needs to be increased to some extent. In this case, however, the UV intensity at the OCR bonding surface is also weakened. become longer.
 また、OCRは硬化の際変形が生じるので、2枚のワ-クの接合状態が必ずしも望ましいものになるとは限らない。例えば、カバ-ガラス11とPETフィルム14の接合やガラス基板16と画像表示パネル32の接合の場合、カバ-ガラス11とPETフィルム14との間隔やガラス基板16と画像表示パネル32の間隔が不均一になることもあり、タッチパネルの性能が劣化する。
 更には、OCRの場合も時間的耐性が必ずしも十分ではなく、貼り合わせ後ある程度の時間が経過すると、OCR自体に着色が発生し、例えば、黄色くなる。よって、タッチパネルの場合、画像が変色して見えてしまう。また、OCRも価格が比較的高い。
Further, since the OCR is deformed during curing, the joined state of the two workpieces is not always desirable. For example, in the case where the cover glass 11 and the PET film 14 are bonded or the glass substrate 16 and the image display panel 32 are bonded, the distance between the cover glass 11 and the PET film 14 or the distance between the glass substrate 16 and the image display panel 32 is not sufficient. In some cases, the performance of the touch panel deteriorates.
Furthermore, even in the case of OCR, the temporal resistance is not always sufficient, and when a certain amount of time elapses after bonding, the OCR itself is colored, for example, becomes yellow. Therefore, in the case of the touch panel, the image looks discolored. OCR is also relatively expensive.
 本発明は上記事情に鑑みなされたものであって、本発明の目的は、リワ-ク性が良好で長時間使用しても発色せず、処理時間が比較的短く、比較的安価で、接合面が大面積の部材に対しても容易に接合可能なワ-クの貼り合わせ方法を提供することであり、また、このような貼り合わせ方法を採用して輝度の低下やコントラストの低下を抑制したタッチパネルを提供することである。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a reworkability that does not develop color even when used for a long time, has a relatively short processing time, is relatively inexpensive, It is to provide a work bonding method that can be easily joined even to a member with a large surface area. Also, such a bonding method is used to suppress a decrease in luminance and a decrease in contrast. It is to provide a touch panel.
 本発明は、ガラス等の親水性表面を持つワ-ク、樹脂等の疎水性表面を持つワ-ク、ガラスや樹脂等の表面に透明導電膜が施され疎水性表面を持つワ-ク等、親水性表面を持つワ-クと疎水性表面を持つワ-クとを貼り合わせる場合、あるいは、疎水性表面を持つワ-ク同士を相互に貼り合わせる場合において、従来のOCAテ-プまたはOCRに代えてシリコ-ンからなる部材を使用して、これらを貼り合わせる技術を提供するものである。さらに、上記疎水性表面を持つ第2、第3のワ-クに、上記シリコ-ンからなる部材を貼り合わせる技術を提供するものである。 The present invention relates to a work having a hydrophilic surface such as glass, a work having a hydrophobic surface such as a resin, a work having a hydrophobic surface by applying a transparent conductive film to the surface of the glass or resin, etc. When a work having a hydrophilic surface and a work having a hydrophobic surface are bonded together, or when a work having a hydrophobic surface is bonded to each other, the conventional OCA tape or The present invention provides a technique of using a member made of silicon instead of OCR and bonding them together. Furthermore, the present invention provides a technique for bonding a member made of the silicone to the second and third works having the hydrophobic surface.
 具体例としては、タッチパネルについて説明する。図18に示すタッチパネルにおいて、カバ-ガラス11の下側表面(第1のワ-クの表面)とPETフィルム14の第1のITO電極13側表面(第2のワ-クの表面)の貼り合わせや、PETフィルム14の第1のITO電極13側の反対側のハ-ドコ-ト層14a表面(第1のワ-クの表面)とガラス基板16の第2のITO電極15が設けられた表面(第2のワ-クの表面)とを貼り合わせるに際し、従来のOCAテ-プまたはOCRに代えてシリコ-ンからなる部材を使用するものである。 As a specific example, a touch panel will be described. In the touch panel shown in FIG. 18, the lower surface (first work surface) of the cover glass 11 and the first ITO electrode 13 side surface (second work surface) of the PET film 14 are attached. The surface of the hard coat layer 14a (the surface of the first work) opposite to the first ITO electrode 13 side of the PET film 14 and the second ITO electrode 15 of the glass substrate 16 are provided. A member made of silicon is used in place of the conventional OCA tape or OCR when the two surfaces are bonded together (the surface of the second workpiece).
 大気中においてシリコ-ンからなる部材(以下シリコ-ン基板という)表面に紫外線を照射すると当該表面が酸化されて親水性表面となり、このような表面にガラス基板や樹脂基板を重ね合わせて、重ね合わせたガラス基板や樹脂基板と紫外線を照射したシリコ-ン基板とを所定の時間加圧したり、加熱したりすることにより、両基板が接合されることが知られている。 When the surface of a member made of silicon (hereinafter referred to as a silicon substrate) is irradiated with ultraviolet rays in the atmosphere, the surface is oxidized to become a hydrophilic surface, and a glass substrate or a resin substrate is stacked on the surface. It is known that both substrates are bonded together by pressurizing or heating a combined glass substrate or resin substrate and a silicon substrate irradiated with ultraviolet rays for a predetermined time.
 例えば、特許文献5に記載されているように、シリコ-ン基板がポリジメチルシロキサン(Polydimethylsiloxane:PDMS)基板である場合、シリコ-ン(PDMS)基板17の表面は、図2(a)に示すように、オルガノシロキシ基が存在する表面(疎水性表面)となっている。
 大気中に保持されるこの基板17の表面に、波長220nm以下の紫外線(例えば、キセノンエキシマランプから放出される中心波長172nmの紫外線)を照射することにより、基板表面にて活性酸素が発生する。この活性酸素と基板表面とが接触することにより、当該基板表面が酸化される。すなわち、図2(b)に示すように、オルガノシロキシ基に係るメチル基が脱離され、当該メチル基が結合していたケイ素原子に活性酸素が結合された状態となる。
For example, as described in Patent Document 5, when the silicon substrate is a polydimethylsiloxane (PDMS) substrate, the surface of the silicon (PDMS) substrate 17 is shown in FIG. Thus, the surface has an organosiloxy group (hydrophobic surface).
By irradiating the surface of the substrate 17 held in the atmosphere with ultraviolet rays having a wavelength of 220 nm or less (for example, ultraviolet rays having a central wavelength of 172 nm emitted from a xenon excimer lamp), active oxygen is generated on the substrate surface. When the active oxygen comes into contact with the substrate surface, the substrate surface is oxidized. That is, as shown in FIG. 2B, the methyl group related to the organosiloxy group is eliminated, and the active oxygen is bonded to the silicon atom to which the methyl group is bonded.
 大気中には水分が存在しているので上記した活性酸素と水素とが結合し、図2(c)に示すように、基板表面は、ケイ素原子にヒドロキシ基(OH基)が結合された状態となる。このような表面にガラス基板16の親水性表面を重ね合わせて両表面を密着させることにより、図2(d)に示すように、PDMS基板17の表面とガラス表面との界面において水素結合が形成され、両基板は接合される。 Since moisture exists in the atmosphere, the above-mentioned active oxygen and hydrogen are combined, and as shown in FIG. 2C, the substrate surface is in a state in which a hydroxy group (OH group) is bonded to a silicon atom. It becomes. By superimposing the hydrophilic surfaces of the glass substrate 16 on these surfaces and bringing them into close contact, hydrogen bonds are formed at the interface between the surface of the PDMS substrate 17 and the glass surface, as shown in FIG. Both substrates are bonded together.
 シリコ-ンは比較的安定した素材であり、OCRとは異なり、貼り合わせ後ある程度の時間が経過してもシリコ-ン自体の着色は発生しない。よって、タッチパネルディスプレイの各基板の接合材料として使用しても、タッチパネルの画像に変色の影響は発生しない。
 また、シリコ-ンは比較的柔らかい素材であるので、PETフィルム14の第1のITO電極13側のハ-ドコ-ト層14a表面やガラス基板16の第1の配線層21側の表面のような表面に段差構造が存在する場合であっても、貼り付け時の上記段差部分への気泡混入を容易に抑制することができる。すなわち、接合面が大面積の部材に対しても容易に接合することが可能である。
Silicone is a relatively stable material, and unlike OCR, the silicon itself does not color even after a certain amount of time has elapsed after bonding. Therefore, even if it is used as a bonding material for each substrate of the touch panel display, the touch panel image is not affected by discoloration.
Since silicon is a relatively soft material, the surface of the hard coat layer 14a on the first ITO electrode 13 side of the PET film 14 and the surface of the glass substrate 16 on the first wiring layer 21 side are used. Even when there is a step structure on a rough surface, it is possible to easily suppress the mixing of bubbles into the step portion at the time of attachment. That is, it is possible to easily join even a member having a large joint surface.
 また、上記したように、シリコ-ン基板を用いた接合は、OCRのように接合面への塗布といった工程はなく、また、OCRのような硬化反応による接合ではないので、OCRを使用する場合の塗布の均一性の問題や硬化時の変形の問題は発生しない。 In addition, as described above, bonding using a silicon substrate does not include a step of applying to the bonding surface like OCR, and is not bonding by a curing reaction like OCR. There is no problem of uniformity of coating or deformation during curing.
 シリコ-ンはOCRと比べ耐熱温度が高いので、OCR硬化時における紫外線(UV)光源とOCR接合面との距離に比べ、シリコ-ン基板表面処理時におけるUV光源とシリコ-ン基板表面との距離を小さくすることができ、シリコ-ン基板表面でのUV強度はOCR接合面でのUV強度より大きい。すなわち、シリコ-ン基板へのUV照射工程においては、OCR接合面へのUV照射工程より、UVの利用効率が大きい。
 また、発明者らの実験によれば、OCRのUV硬化反応に要する時間より、シリコ-ン基板へのUV照射工程、シリコ-ン基板とガラス基板等の被接合基板の加熱工程や加圧工程に要する時間の方が短いことが分かった。
 また、一般にシリコ-ン基板は、OCAテ-プやOCRと比較すると価格が安価である。
Since silicon has a higher heat resistance temperature than OCR, compared with the distance between the ultraviolet (UV) light source and OCR bonding surface during OCR curing, the UV light source and silicon substrate surface during silicon substrate surface treatment The distance can be reduced and the UV intensity at the silicon substrate surface is greater than the UV intensity at the OCR interface. That is, in the UV irradiation process on the silicon substrate, the UV utilization efficiency is higher than in the UV irradiation process on the OCR bonding surface.
Further, according to the experiments by the inventors, the UV irradiation process to the silicon substrate, the heating process and the pressurizing process of the bonded substrate such as the silicon substrate and the glass substrate, based on the time required for the UV curing reaction of the OCR. It was found that the time required for was shorter.
In general, a silicon substrate is less expensive than an OCA tape or OCR.
 シリコ-ン基板を用いた接合の場合、ガラス基板や樹脂基板と紫外線を照射したシリコ-ン基板とを重ね合わせてすぐ接合が完了するのではなく、上記したように所定の時間だけ両基板を加圧したり、加熱したりすることによって接合が完了する。よって、重ね合わせた直後に両基板を分離するのは容易である。よって、例えばガラス基板や樹脂基板と紫外線を照射したシリコ-ン基板との位置合わせが不十分であるとき、重ね合わせた直後であるならば両者を一度剥がして、再度シリコ-ン基板に紫外線を照射して接合工程を行うことが可能となる。すなわち、OCAテ-プと比較すると、リワ-ク性に富んでいる。 In the case of bonding using a silicon substrate, the bonding is not completed immediately after the glass substrate or the resin substrate and the silicon substrate irradiated with ultraviolet rays are overlapped. Bonding is completed by applying pressure or heating. Therefore, it is easy to separate the two substrates immediately after the overlapping. Therefore, for example, when the alignment between the glass substrate or the resin substrate and the silicon substrate irradiated with ultraviolet rays is insufficient, if they are just after being superposed, they are peeled off once, and then the ultraviolet rays are applied to the silicon substrate again. Irradiation makes it possible to perform the bonding process. That is, it is rich in reworkability compared with the OCA tape.
 図1に本発明の接合方法を用いて組み上げたタッチパネルの構成例を示す。
 基本的な構成は、前記図18に示したものと同じであり、タッチセンサモジュ-ル10aとタッチパネル制御部10bから構成される位置入力装置10と、画像表示装置30から構成され、本発明においては、PETフィルム14のハ-ドコ-ト層14aの表面に設けられた第1のITO電極13と、カバ-ガラス11との間にシランカップリング剤が導入されたシリコ-ン基板17aが設けられる。また、PETフィルム14のハ-ドコ-ト層14aと、ガラス基板16の表面に設けられた第2のITO電極15の間にシランカップリング剤が導入されたシリコ-ン基板17bが設けられる。
FIG. 1 shows a configuration example of a touch panel assembled using the bonding method of the present invention.
The basic configuration is the same as that shown in FIG. 18, and includes a position input device 10 including a touch sensor module 10a and a touch panel control unit 10b, and an image display device 30. A silicon substrate 17a in which a silane coupling agent is introduced is provided between the first ITO electrode 13 provided on the surface of the hard coat layer 14a of the PET film 14 and the cover glass 11. It is done. Further, a silicon substrate 17 b into which a silane coupling agent is introduced is provided between the hard coat layer 14 a of the PET film 14 and the second ITO electrode 15 provided on the surface of the glass substrate 16.
 ここで、発明者等の実験の結果、以下のような知見が得られた。すなわち、通常のシリコ-ン基板の表面に紫外線(UV)を照射して当該表面を親水性表面とし、このシリコ-ン基板の親水性表面と、表面に第1のITO電極13が施されたPETフィルム14や表面に第2のITO電極15が設けられたガラス基板16とを重ね合わせても接合ができないことが分かった。同様に、UV照射によって得られたシリコ-ン基板の親水性表面と、PETフィルム14の第1のITO電極13側と反対側のハ-ドコ-ト層14a表面とを重ね合わせても接合ができないことが分かった。 Here, as a result of experiments by the inventors, the following knowledge was obtained. That is, the surface of a normal silicon substrate was irradiated with ultraviolet rays (UV) to make the surface a hydrophilic surface, and the first ITO electrode 13 was applied to the hydrophilic surface and the surface of the silicon substrate. It was found that bonding was not possible even when the PET film 14 and the glass substrate 16 provided with the second ITO electrode 15 on the surface were superposed. Similarly, bonding is possible even when the hydrophilic surface of the silicon substrate obtained by UV irradiation and the surface of the hard coat layer 14a opposite to the first ITO electrode 13 side of the PET film 14 are overlapped. I found it impossible.
 すなわち、親水性表面であるシリコ-ン基板の接合面と、(疎水性表面である)PETフィルム14の第1のITO電極13が施されている面、PETフィルム14の第1のITO電極13が施されている面とは反対側のハ-ドコ-ト層14a表面、ガラス基板16の第2のITO電極15が施されている面とは、接合が難しいことが分かった。 That is, the bonding surface of the silicon substrate which is a hydrophilic surface, the surface where the first ITO electrode 13 of the PET film 14 (which is a hydrophobic surface) is applied, and the first ITO electrode 13 of the PET film 14 It has been found that it is difficult to join the surface of the hard coat layer 14a opposite to the surface on which the second ITO electrode 15 is applied to the surface opposite to the surface on which the second ITO electrode 15 is applied.
 発明者らは鋭意検討し、通常のシリコ-ン基板の代わりにシランカップリング剤を導入したシリコ-ン基板を用いて、当該シランカップリング剤を導入したシリコ-ン基板の表面にUVを照射して当該表面を接合に適した表面とし、この接合に適した表面と、疎水性表面であるPETフィルム14の第1のITO電極13が施されている面、PETフィルム14の第1のITO電極13が施されている面とは反対側のハ-ドコ-ト層14a表面、あるいはガラス基板16の表面に設けられた第2のITO電極15が施されている面とを重ね合わせることにより、シランカップリング剤を導入したシリコ-ン基板とこれらの面とを接合することが可能である事を見出した。 The inventors diligently studied and used a silicon substrate into which a silane coupling agent was introduced instead of a normal silicon substrate, and irradiated the UV onto the surface of the silicon substrate into which the silane coupling agent was introduced. Then, the surface is a surface suitable for bonding, the surface suitable for bonding, the surface on which the first ITO electrode 13 of the PET film 14 which is a hydrophobic surface is applied, and the first ITO of the PET film 14 By superimposing the surface of the hard coat layer 14a opposite to the surface to which the electrode 13 is applied, or the surface to which the second ITO electrode 15 provided on the surface of the glass substrate 16 is applied. The present inventors have found that it is possible to bond a silicon substrate introduced with a silane coupling agent and these surfaces.
 また、親水性表面であるカバ-ガラス11の表面と上記したシランカップリング剤を導入したシリコ-ン基板の接合に適した表面とを重ねあわせることにより、通常のシリコ-ン基板におけるUV照射により親水化された表面とカバ-ガラス11の表面とを重ね合わせたときと同様、シランカップリング剤を導入したシリコ-ン基板とカバ-ガラス11とを接合することが可能であることを見出した。 Further, by superimposing the surface of the cover glass 11 which is a hydrophilic surface and the surface suitable for bonding of the above-described silicon substrate into which the silane coupling agent has been introduced, UV irradiation on the normal silicon substrate is performed. It was found that the cover glass 11 can be bonded to the silicon substrate into which the silane coupling agent has been introduced in the same manner as when the hydrophilic surface and the surface of the cover glass 11 are overlapped. .
 ここで、シランカップリング剤を導入したシリコ-ン基板とは、未硬化のシリコ-ン樹脂にシランカップリング剤を導入して、その後硬化させて形成したシリコ-ン基板である。シランカップリング剤としては、例えば、エポキシ系、アクリル系、または、メタクリル系のシランカップリング剤を用いることで、本発明の接合に適したシリコ-ン基板を得ることができる。 Here, the silicon substrate into which the silane coupling agent is introduced is a silicon substrate formed by introducing a silane coupling agent into an uncured silicone resin and then curing it. As the silane coupling agent, for example, an epoxy-based, acrylic-based, or methacryl-based silane coupling agent can be used to obtain a silicon substrate suitable for the bonding of the present invention.
 シランカップリング剤が導入されたシリコ-ン基板17a、17bの表面改質を行うことにより、当該表面改質された面が、PETフィルム14の第1のITO電極13が施されている面、PETフィルム14の第1のITO電極13が施されている面とは反対側のハ-ドコ-ト層14a表面、ガラス基板16の表面に設けられた第2のITO電極15が施されている面うちのいずれの面とも接合可能となった。そのとなるメカニズムは必ずしも明確には分かっていないが、概略以下のようなメカニズムであると考えられる。以下、この考えられるメカニズムについて、図3、図4を参照しながら説明する。
 例として、シランカップリング剤が導入されたシリコ-ン基板17aの表面を紫外線(UV)照射により改質し当該表面と、PETフィルム14の第1のITO電極13が施されている面と接合させる場合を考察する。なお、図3(a)のシランカップリング剤が導入されたシリコ-ン基板17aは、予め図2に示したような方法でカバ-ガラス11と接合されているものとする。
By performing the surface modification of the silicon substrates 17a and 17b into which the silane coupling agent is introduced, the surface-modified surface is a surface on which the first ITO electrode 13 of the PET film 14 is applied, A second ITO electrode 15 provided on the surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 of the PET film 14 is applied and on the surface of the glass substrate 16 is applied. It became possible to join to any of the surfaces. The mechanism is not clearly understood, but it is considered that the mechanism is as follows. Hereinafter, this possible mechanism will be described with reference to FIGS.
As an example, the surface of a silicon substrate 17a introduced with a silane coupling agent is modified by ultraviolet (UV) irradiation, and the surface is bonded to the surface of the PET film 14 on which the first ITO electrode 13 is applied. Consider the case. It is assumed that the silicon substrate 17a introduced with the silane coupling agent of FIG. 3A is bonded to the cover glass 11 in advance by the method shown in FIG.
 図3(a)は、シランカップリング剤が導入されたシリコ-ン基板17aの表面に存在するシランカップリング剤の状態を示す。
 シランカップリング剤は、1つの分子中に反応性の異なる2種類の官能基を有する。シランカップリング剤が導入されたシリコ-ン基板において、シランカップリング剤の一部は、上記したシリコ-ン基板の表面に露出していると考えられる。
 図3(a)において、RO(Oは酸素)で示す官能基は無機材料と化学結合する官能基であり、Xは有機材料と結合する官能基である。PETフィルム14上の第1のITO電極13は無機物であるので、官能基ROと化学結合する。
FIG. 3A shows the state of the silane coupling agent present on the surface of the silicon substrate 17a introduced with the silane coupling agent.
Silane coupling agents have two types of functional groups with different reactivity in one molecule. In the silicon substrate into which the silane coupling agent is introduced, a part of the silane coupling agent is considered to be exposed on the surface of the above-described silicon substrate.
In FIG. 3A, a functional group represented by RO (O is oxygen) is a functional group chemically bonded to an inorganic material, and X is a functional group bonded to an organic material. Since the first ITO electrode 13 on the PET film 14 is an inorganic substance, it chemically bonds with the functional group RO.
 図3(b)に示すように、水分(HO)、二酸化炭素(CO)を含む大気中にて、シランカップリング剤が導入されたシリコ-ン基板17aの表面に対してエキシマランプ等の紫外線(UV)光源40から放出される紫外線(UV)を照射する。UV照射により、シランカップリング剤が導入されたシリコ-ン基板17aの表面に一部が露出したシランカップリング剤が改質される。
 具体的には、(a)シリコ-ン基板17aの表面に一部が露出したシランカップリング剤の官能基Xの分解反応やUV 照射による空気中の水分、二酸化炭素の化学反応の結果、カルボキシル基(-COOH)がシリコ-ン基板17aの表面の一部に形成されたり、(b)シランカップリング剤の官能基RO、Xが分解・離脱して、紫外線照射による空気中の水分、二酸化炭素の化学反応の結果生成した酸素ラジカルとが反応してシリコ-ン基板17aの表面の一部にヒドロキシ基(-OH)が形成されるものと考えられる。また、(c)分解されなかった官能基RO、Xも表面に残存すると考えられる。
As shown in FIG. 3B, an excimer lamp is applied to the surface of the silicon substrate 17a into which a silane coupling agent is introduced in the atmosphere containing moisture (H 2 O) and carbon dioxide (CO 2 ). Irradiate ultraviolet rays (UV) emitted from an ultraviolet (UV) light source 40 such as the above. By UV irradiation, the silane coupling agent partially exposed on the surface of the silicon substrate 17a introduced with the silane coupling agent is modified.
Specifically, (a) as a result of the decomposition reaction of the functional group X of the silane coupling agent partially exposed on the surface of the silicon substrate 17a, the chemical reaction of moisture in water and carbon dioxide by UV irradiation, The group (—COOH) is formed on a part of the surface of the silicon substrate 17a, or (b) the functional groups RO and X of the silane coupling agent are decomposed and separated, so that It is considered that the oxygen radical generated as a result of the chemical reaction of carbon reacts to form a hydroxy group (—OH) on a part of the surface of the silicon substrate 17a. In addition, (c) functional groups RO and X that have not been decomposed are considered to remain on the surface.
 まとめると、シランカップリング剤が導入されたシリコ-ン基板17aの表面は、(a)カルボキシル基と結合した部分(終端はOH基)、(b)酸素ラジカルによる酸化反応でOH基が結合している部分、そして(c)官能基RO、Xが分解・脱離せずに残存した部分とが混在しているものと考えられる。 In summary, the surface of the silicon substrate 17a into which the silane coupling agent has been introduced has (a) a portion bonded to a carboxyl group (termination is an OH group), and (b) an OH group bonded by an oxidation reaction with oxygen radicals. And (c) the functional groups RO and X are considered to be mixed with the portions remaining without being decomposed or detached.
 すなわち、シランカップリング剤が導入されたシリコ-ン基板17aの表面に紫外線(UV)を照射することにより、上記表面に一部が露出したシランカップリング剤において官能基の一部が分解・離脱する。この一部の官能基が分解・離脱した部分は、いずれの場合も終端がOH基となるので、シランカップリング剤が導入されたシリコ-ン基板17aの表面の一部は、親水性表面になるものと考えられる。また、上記したように残存した官能基ROは無機材料と化学結合する特性を有する。 That is, by irradiating the surface of the silicon substrate 17a with the silane coupling agent introduced with ultraviolet rays (UV), some of the functional groups in the silane coupling agent partially exposed on the surface are decomposed and detached. To do. In this case, the terminal portion of the part where the functional group is decomposed / detached becomes an OH group, so that a part of the surface of the silicon substrate 17a into which the silane coupling agent has been introduced becomes a hydrophilic surface. It is considered to be. Further, as described above, the remaining functional group RO has a characteristic of chemically bonding with the inorganic material.
 そして、図4(c)に示すように、紫外線(UV)照射処理により、一部の領域において親水性である部分と無機物と化学反応する官能基RO基が残存する部分とが混在する状態となったシランカップリング剤が導入されたシリコ-ン基板17aの表面に、UV照射により、元々疎水性である部分の一部がOH基で終端された領域に改質されてなるPETフィルム14の第1のITO電極13が施されている面とを重ね合わせることにより、上記シリコ-ン基板17a表面の親水性部分とPETフィルム14の第1のITO電極13が施されている面の親水性部分との間で水素結合が形成される。一方、上記シリコ-ン基板17a表面の官能基ROが残存する部分とPETフィルム14の第1のITO電極13が施されている面の疎水性部分との間では化学結合が発生する。ここで、重ね合わせたシランカップリング剤が導入されたシリコ-ン基板17aと、PETフィルム14の第1のITO電極13が施されている面とを加熱することにより接合面の脱水が発生し、最終的にシランカップリング剤が導入されたシリコ-ン基板17aとPETフィルム14の第1のITO電極13が施されている面とは、酸素の共有結合、および上記シリコ-ン基板17a表面に残存する官能基ROとPETフィルム14の第1のITO電極13が施されている面の疎水性部分との間での化学結合により接合されるものと考えられる。 And as shown in FIG.4 (c), by the ultraviolet-ray (UV) irradiation process, the state where the part which is hydrophilic in the partial area | region and the part in which the functional group RO group which chemically reacts with an inorganic substance remains are mixed The surface of the silicon substrate 17a having the introduced silane coupling agent introduced thereon is modified by UV irradiation so that a part of the originally hydrophobic portion is modified into a region terminated with an OH group. By superimposing the surface on which the first ITO electrode 13 is applied, the hydrophilic portion on the surface of the silicon substrate 17a and the hydrophilicity on the surface on which the first ITO electrode 13 of the PET film 14 is applied. Hydrogen bonds are formed between the parts. On the other hand, a chemical bond is generated between the portion where the functional group RO remains on the surface of the silicon substrate 17a and the hydrophobic portion of the surface of the PET film 14 on which the first ITO electrode 13 is applied. Here, dehydration of the bonding surface occurs by heating the silicon substrate 17a into which the superimposed silane coupling agent is introduced and the surface of the PET film 14 on which the first ITO electrode 13 is applied. The silicon substrate 17a finally introduced with the silane coupling agent and the surface of the PET film 14 on which the first ITO electrode 13 is applied are the oxygen covalent bond and the surface of the silicon substrate 17a. It is considered that the functional group RO remaining on the surface and the hydrophobic portion of the surface of the PET film 14 on which the first ITO electrode 13 is applied are bonded by chemical bonding.
 なお、図3、図4では、シランカップリング剤が導入されたシリコ-ン基板17aの表面とPETフィルム14の第1のITO電極13が施されている面とを接合する場合を考察したが、PETフィルム14の第1のITO電極13が施されている面に代えてPETフィルム14の第1のITO電極13が施されている面とは反対側のハ-ドコ-ト層14a表面、あるいはガラス基板16の第2のITO電極15が施されている面とを接合する場合も同様のメカニズムで接合が可能になるものと考えられる。 In FIGS. 3 and 4, the case where the surface of the silicon substrate 17a into which the silane coupling agent has been introduced and the surface of the PET film 14 on which the first ITO electrode 13 is applied is joined is considered. The surface of the hard coat layer 14a opposite to the surface of the PET film 14 on which the first ITO electrode 13 is applied instead of the surface of the PET film 14 on which the first ITO electrode 13 is applied; Or it is thought that joining is possible by the same mechanism also when joining the surface where the 2nd ITO electrode 15 of the glass substrate 16 is given.
 以上に基づき、本発明においては、次のように前記課題を解決する。
(1)疎水性表面を持つワ-ク面と、シランカップリング剤が導入されたシリコ-ンからなる部材に紫外線を照射し、上記ワ-クの紫外線を照射した面と、上記シリコ-ンからなる部材の紫外線を照射した面とが接触するように積層し、上記積層したワ-クとシリコ-ンからなる部材の接触面が加圧されるように加圧し、あるいは積層したワ-クとシリコ-ンからなる部材を加熱し、あるいは、積層したワ-クとシリコ-ンからなる部材をその接触面が加圧されるように加圧しながら加熱することにより、疎水性表面を持つワ-クとシランカップリング剤が導入されたシリコ-ンからなる部材とを貼り合わせる。
(2)親水性表面を持つ第1のワ-クの一方の面と、疎水性表面を持つ第2のワ-クの一方の面と、シランカップリング剤が導入されたシリコ-ンからなる部材の両面に紫外線を照射し、第1のワ-クとシリコ-ンからなる部材と第2のワ-クを、上記紫外線が照射された面が接触するように積層し、上記接触面が加圧されるように加圧し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材を加熱し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材をその接触面が加圧されるように加圧しながら加熱することにより、親水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介在させて貼り合わせる。
(3)疎水性表面を持つ第1のワ-クの一方の面と、疎水性表面を持つ第2のワ-クの一方の面と、シランカップリング剤が導入されたシリコ-ンからなる部材の両面に、紫外線を照射し、上記第1のワ-クと上記シリコ-ンからなる部材と第2のワ-クを、上記紫外線が照射された面が接触するように積層し、上記接触面が加圧されるように加圧し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材を加熱し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材をその接触面が加圧されるように加圧しながら加熱することにより、疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介在させて貼り合わせる。
(4)透明導電膜が施された基板を有するタッチセンサモジュ-ルと、画像表示装置を備えたタッチパネルにおいて、上記タッチセンサモジュ-ルに、紫外線照射により表面が改質された透明導電膜が施された基板と、シランカップリング剤が導入され両面が紫外線照射により改質されたシリコ-ンからなる部材を設け、上記基板と上記シリコ-ンからなる部材の、上記紫外線が照射されたそれぞれの面を対向させて積層する。
(5)上記(1)~(4)のシランカップリング剤として、エポキシ系、アクリル系、または、メタクリル系のシランカップリング剤を用いる。
Based on the above, the present invention solves the above problems as follows.
(1) A work surface having a hydrophobic surface, a member made of silicon into which a silane coupling agent has been introduced are irradiated with ultraviolet rays, and the surface of the workpiece irradiated with ultraviolet rays and the silicon The member made of is laminated so as to be in contact with the surface irradiated with ultraviolet light, and is pressed so that the contact surface of the member made of the laminated work and the silicon is pressurized or laminated work. By heating the member made of silicon and silicon, or by heating the member made of laminated work and silicon so as to pressurize the contact surface, the wafer having a hydrophobic surface is obtained. And bonding the silicon and the member made of silicon into which the silane coupling agent is introduced.
(2) One surface of the first work having a hydrophilic surface, one surface of the second work having a hydrophobic surface, and a silicon into which a silane coupling agent is introduced. The both surfaces of the member are irradiated with ultraviolet rays, and the first workpiece and the silicon member and the second workpiece are laminated so that the surfaces irradiated with the ultraviolet rays are in contact with each other. The first and second workpieces and silicon are heated or laminated to be pressurized, or the first and second workpieces and silicon are laminated. By heating the member while applying pressure so that the contact surface is pressurized, the silane coupling agent converts the first work having a hydrophilic surface and the second work having a hydrophobic surface. Bonding with the introduced silicon substrate interposed.
(3) One surface of the first work having a hydrophobic surface, one surface of the second work having a hydrophobic surface, and a silicone into which a silane coupling agent is introduced. The both surfaces of the member are irradiated with ultraviolet rays, and the first workpiece and the silicon member and the second workpiece are laminated so that the surfaces irradiated with the ultraviolet rays are in contact with each other. Pressing so that the contact surface is pressurized, or heating the laminated first and second workpieces and silicon members, or laminating the first and second workpieces and silicon The first workpiece having a hydrophobic surface and the second workpiece having a hydrophobic surface are heated to a silane cup by heating the member made of silicon while applying pressure so that the contact surface is pressurized. Bonding is performed with a silicon substrate having a ring agent introduced therebetween.
(4) In a touch sensor module having a substrate coated with a transparent conductive film and a touch panel provided with an image display device, a transparent conductive film whose surface is modified by ultraviolet irradiation is applied to the touch sensor module. And a substrate made of a silicon having a silane coupling agent introduced and modified on both sides by ultraviolet irradiation, and each of the substrate and the silicon made member irradiated with the ultraviolet rays. Are laminated with the surfaces facing each other.
(5) As the silane coupling agent of the above (1) to (4), an epoxy, acrylic or methacrylic silane coupling agent is used.
 本発明においては、以下の効果を得ることができる。
(1)疎水性表面を持つワ-ク面と、シランカップリング剤が導入されたシリコ-ンからなる部材に、紫外線を照射することにより、上記ワ-クの表面およびシリコ-ンからなる部材の紫外線照射面を接合に適した表面にすることができ、上記疎水性表面を持つワ-クとシランカップリング剤が導入されたシリコ-ンからなる部材とを確実に接合することが出来る。
 このため、疎水性表面を持つPET等の樹脂、透明導電膜が施されたワ-ク等とシランカップリング剤が導入されたシリコ-ンからなる部材を貼り合わせることが可能となる。
(2)親水性表面を持つワ-クの一方の面に紫外線を照射し、疎水性表面を持つワ-クの一方の面に紫外線を照射し、また、シランカップリング剤が導入されたシリコ-ンからなる部材の両面に紫外線を照射し、親水性表面を持つワ-クと、疎水性表面を持つワ-クと、シランカップリング剤が導入されたシリコ-ンからなる部材との紫外線照射面が対向するように積層し、あるいは、疎水性表面を持つワ-クの一方の表面に紫外線を照射し、また、シランカップリング剤が導入されたシリコ-ンからなる部材の両面に紫外線を照射し、疎水性表面を持つワ-クとシランカップリング剤が導入されたシリコ-ンからなる部材と疎水性表面を持つワ-クの紫外線照射面が対向するように積層し、これらを貼り合わせることにより、以下の効果を得ることができる。
(a)シリコ-ンには長時間経過後の着色が発生しないので、OCAテ-プやOCRにより貼り合わせる場合のように、長時間経過後の着色が発生しない。
 このため、タッチパネルの製造に適用することで、タッチパネルの画像に変色の影響が発生しない。
(b)導電性薄膜のような段差構造が接合面に存在する場合であっても、シリコ-ンは段差に応じて変形・密着するので貼り付け時の上記段差部分への気泡混入の抑制が容易である。
(c)OCRを使用して貼り合わせる場合のように、塗布均一性実現の困難さ、硬化時の変形といった問題は回避することができ、また、シリコ-ンはOCRより耐熱温度が高いので、紫外線照射光源とシリコ-ンの照射面を近接させることができ、効率的にシリコ-ンの光照射面を改質することができる。
(d)一般にシリコ-ンからなる部材は、OCAテ-プやOCRと比較すると価格が安価であるので、製造コストを低減化することができる。
(e)シリコ-ンからなる部材を用いた接合の場合、ワ-クとシリコ-ンからなる部材を重ね合わせてもすぐ接合が完了するのではなく、所定の時間だけ加圧したり、加熱したりすることによって接合が完了する。このため、重ね合わせた直後にワ-クとシリコ-ンを分離するのは容易である。よって、ワ-クとシリコ-ンからなる部材との位置合わせが不十分であるとき、重ね合わせた直後であるならば両者を一度剥がして、再度シリコ-ンからなる部材に紫外線を照射して接合工程を行うことが可能となる。すなわち、OCAテ-プと比較すると、リワ-ク性に富んでいる。
(f)従来、紫外線照射による表面改質処理を用いても接合させることが困難であったシリコ-ンからなる部材と、タッチセンサモジュ-ルの表面が疎水性の導電性薄膜基板表面との貼り合わせが可能となる。このため、タッチセンサモジュ-ルの各構成要素の貼り合わせに際して、従来のOCAテ-プまたはOCRに代えてシリコ-ンからなる部材を使用して各構成要素の貼り合わせ、タッチセンサモジュ-ルを構成することが可能となる。
(3)シリコ-ンからなる部材に導入するシランカップリング剤として、エポキシ系、アクリル系、または、メタクリル系のシランカップリング剤を用いることにより、疎水性表面を持つワ-クとの接合に好適なシリコ-ンからなる部材を得ることができる。
In the present invention, the following effects can be obtained.
(1) A work surface having a hydrophobic surface and a member made of silicon to which a silane coupling agent has been introduced, by irradiating ultraviolet light onto the member made of the work surface and the silicon. The surface irradiated with ultraviolet light can be made a surface suitable for bonding, and the workpiece having the hydrophobic surface and the member made of silicon into which the silane coupling agent has been introduced can be reliably bonded.
For this reason, it becomes possible to bond a member made of a resin such as PET having a hydrophobic surface, a work provided with a transparent conductive film, etc., and a silicone into which a silane coupling agent is introduced.
(2) One surface of a workpiece having a hydrophilic surface is irradiated with ultraviolet rays, one surface of a workpiece having a hydrophobic surface is irradiated with ultraviolet rays, and a silico coupling agent is introduced. Irradiation of ultraviolet rays on both sides of a member made of silicon, ultraviolet rays of a workpiece having a hydrophilic surface, a workpiece having a hydrophobic surface, and a member made of silicon into which a silane coupling agent is introduced Laminate so that the irradiated surfaces face each other, or irradiate one surface of a workpiece having a hydrophobic surface with ultraviolet rays, and apply ultraviolet rays to both surfaces of a silicon member into which a silane coupling agent is introduced. Are laminated so that the work piece having a hydrophobic surface and the silicon member into which the silane coupling agent is introduced and the ultraviolet light irradiation surface of the work piece having the hydrophobic surface are opposed to each other. By bonding, the following effects are achieved: Rukoto can.
(A) Since coloring after a long time does not occur in the silicone, coloring after a long time does not occur as in the case of pasting together by OCA tape or OCR.
For this reason, the influence of discoloration does not generate | occur | produce in the image of a touch panel by applying to manufacture of a touch panel.
(B) Even when a step structure such as a conductive thin film is present on the joint surface, the silicon deforms and adheres according to the step, so that bubbles can be prevented from being mixed into the step portion at the time of attachment. Easy.
(C) As in the case of bonding using OCR, it is possible to avoid problems such as difficulty in realizing coating uniformity and deformation at the time of curing, and since silicon has a higher heat resistant temperature than OCR, The ultraviolet light source and the irradiation surface of the silicon can be brought close to each other, and the light irradiation surface of the silicon can be modified efficiently.
(D) Generally, a member made of silicon is less expensive than an OCA tape or OCR, so that the manufacturing cost can be reduced.
(E) In the case of joining using a member made of silicon, the joining is not completed immediately even if the work and silicon members are overlapped, but is pressurized or heated for a predetermined time. To complete the joining. For this reason, it is easy to separate the work and the silicon immediately after the superposition. Therefore, when the alignment between the workpiece and the silicon member is insufficient, if they are just after being overlapped, they are peeled off once, and the silicon member is again irradiated with ultraviolet rays. It becomes possible to perform a joining process. That is, it is rich in reworkability compared with the OCA tape.
(F) Conventionally, a member made of silicon, which has been difficult to be bonded even by using a surface modification treatment by ultraviolet irradiation, and a surface of the conductive thin film substrate where the surface of the touch sensor module is hydrophobic Bonding becomes possible. For this reason, when the components of the touch sensor module are bonded together, instead of the conventional OCA tape or OCR, a component made of silicon is used to bond the components, and the touch sensor module is bonded. Can be configured.
(3) By using an epoxy, acrylic or methacrylic silane coupling agent as a silane coupling agent to be introduced into a member made of silicon, it is possible to join a workpiece having a hydrophobic surface. A member made of a suitable silicone can be obtained.
本発明の接合方法を用いて組み上げたタッチパネルの構成例を示すである。It is an example of composition of a touch panel assembled using the joining method of the present invention. 表面が親水性のガラス基板と紫外線照射したPDMS基板との接合を説明する図である。It is a figure explaining joining of the PDMS board | substrate which the surface hydrophilic glass substrate and ultraviolet rays irradiated. PETフィルムのITO電極が施されている面と、シランカップリング剤が導入されたシリコ-ン基板との接合を説明する図(1)である。FIG. 2 is a diagram (1) for explaining the joining of a surface of a PET film on which an ITO electrode is applied and a silicon substrate into which a silane coupling agent is introduced. PETフィルムのITO電極が施されている面と、シランカップリング剤が導入されたシリコ-ン基板との接合を説明する図(2)である。FIG. 6 is a diagram (2) illustrating the bonding between the surface of the PET film on which the ITO electrode is applied and the silicon substrate into which the silane coupling agent has been introduced. カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施されたPETフィルムとの接合工程(A-1)を説明する図である。It is a figure explaining the joining process (A-1) of the cover glass and the PET film on which the first transparent conductive film (ITO electrode) is applied. 第1の透明導電膜(ITO)が表面に施されたPETフィルムと第2の透明導電膜(ITO)が表面に施されたガラスとの接合工程(B-1)を説明する図(1)である。FIG. 1 is a diagram for explaining a bonding process (B-1) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. 第1の透明導電膜(ITO)が表面に施されたPETフィルムと第2の透明導電膜(ITO)が表面に施されたガラスとの接合工程(B-1)を説明する図(2)である。FIG. 2 is a diagram for explaining a bonding process (B-1) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. カバ-ガラスと第1の透明導電膜(ITO)が表面に施されたPETフィルムとの接合工程(A-2)を説明する図である。It is a figure explaining the joining process (A-2) of a cover glass and the PET film by which the 1st transparent conductive film (ITO) was given to the surface. 第1の透明導電膜(ITO)が表面に施されたPETフィルムと第2の透明導電膜(ITO)が表面に施されたガラスとの接合工程(B-2)を説明する図(1)である。FIG. 1 is a diagram for explaining a bonding step (B-2) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. 第1の透明導電膜(ITO)が表面に施されたPETフィルムと第2の透明導電膜(ITO)が表面に施されたガラスとの接合工程(B-2)を説明する図(2)である。FIG. 2 is a diagram for explaining a bonding process (B-2) between a PET film having a first transparent conductive film (ITO) applied to the surface and a glass having a second transparent conductive film (ITO) applied to the surface; It is. カバ-ガラスと第1の透明導電膜(ITO)が表面に施されたPETフィルムとの接合工程(A-3)を説明する図である。It is a figure explaining the joining process (A-3) of the cover glass and the PET film on which the first transparent conductive film (ITO) is applied. 第1の透明導電膜(ITO)が表面に施されたPETフィルムと第2の透明導電膜(ITO)が表面に施されたガラスとの接合工程(B-3)を説明する図である。It is a figure explaining the joining process (B-3) of the PET film by which the surface of the 1st transparent conductive film (ITO) was given, and the glass by which the 2nd transparent conductive film (ITO) was given by the surface. 本発明の接合方法を用いて組み上げたタッチパネルの他の構成例を示すである。It is another example of a structure of the touch panel assembled using the joining method of the present invention. カバ-ガラスと第1の透明導電膜(ITO)が表面に施された第1のガラス基板との接合工程(C-1)を説明する図である。It is a figure explaining the joining process (C-1) with the 1st glass substrate by which the cover glass and the 1st transparent conductive film (ITO) were given to the surface. 第1の透明導電膜(ITO)が表面に施された第1のガラス基板と第2の透明導電膜(ITO)が表面に施された第2のガラス基板との接合工程(D-1)を説明する図である。Bonding step (D-1) between the first glass substrate having the first transparent conductive film (ITO) applied to the surface and the second glass substrate having the second transparent conductive film (ITO) applied to the surface FIG. カバ-ガラスと第1の透明導電膜(ITO)が表面に施された第1のガラス基板との接合工程(C-2)を説明する図である。It is a figure explaining the joining process (C-2) of the cover glass and the 1st glass substrate by which the surface of the 1st transparent conductive film (ITO) was given. 第1の透明導電膜(ITO)が表面に施された第1のガラス基板と第2の透明導電膜(ITO)が表面に施された第2のガラス基板との接合工程(D-2)を説明する図である。Bonding step (D-2) of the first glass substrate having the first transparent conductive film (ITO) applied to the surface and the second glass substrate having the second transparent conductive film (ITO) applied to the surface FIG. 映像表示装置とタッチセンサモジュ-ルからなるタッチパネルの模式図である。FIG. 3 is a schematic diagram of a touch panel including a video display device and a touch sensor module.
 以下、本発明の実施の形態をタッチパネルを製造する場合を例として説明するが、本発明はタッチパネル以外に前記有機EL、有機半導体、太陽電池等の製造にも適用できる。 
(1)実施の形態1
 図1は、前記した本発明のタッチパネルの第1の構成例を示す図である。
 前記図18に示したものと基本的構成は同じであり、タッチパネル100はLCDパネル等の画像表示装置30とその上部に配置される位置入力装置10とからなる。
 位置入力装置10は、タッチセンサ表面において指やペン等で接触された部分を検出するためのタッチセンサモジュ-ル10aと、タッチセンサモジュ-ル10aからの位置入力情報を処理し、上記情報に基づき画像表示装置30を制御するタッチパネル制御部10bからなる。
Hereinafter, although the case where a touch panel is manufactured is described as an example of the embodiment of the present invention, the present invention can be applied to the manufacture of the organic EL, organic semiconductor, solar cell and the like in addition to the touch panel.
(1) Embodiment 1
FIG. 1 is a diagram showing a first configuration example of the touch panel according to the present invention.
The basic configuration is the same as that shown in FIG. 18, and the touch panel 100 includes an image display device 30 such as an LCD panel and a position input device 10 disposed above the image display device 30.
The position input device 10 processes the position input information from the touch sensor module 10a and the touch sensor module 10a for detecting the portion of the touch sensor surface that is touched with a finger, a pen, or the like. The touch panel control unit 10b controls the image display device 30 based on it.
 タッチセンサモジュ-ル10aは、図18(b)に示した第1の透明導電膜(例えば、ITO電極)パタ-ンが施されたPETフィルム14と、図18(c)に示した第2の透明導電膜(例えば、ITO電極)パタ-ンが施されたガラス基板16に積層された構造であり、上からカバ-ガラス11、シリコ-ン基板17a、第1のITO電極13、PETフィルム14、シリコ-ン基板17b、第2のITO電極15、ガラス基板16の順に積層される。なお、PETフィルム14の両面には、PETフィルム14の傷付き防止のため光透過性のハ-ドコ-ト層14aが設けられる。ハ-ドコ-ト層14aは、前記したように例えば、アクリレ-ト樹脂等からなる。 The touch sensor module 10a includes a PET film 14 provided with a first transparent conductive film (for example, ITO electrode) pattern shown in FIG. 18B and a second film shown in FIG. 18C. The glass substrate 16 is provided with a transparent conductive film (for example, ITO electrode) pattern, and the cover glass 11, the silicon substrate 17a, the first ITO electrode 13, and the PET film are arranged from the top. 14, the silicon substrate 17b, the second ITO electrode 15, and the glass substrate 16 are laminated in this order. A light-transmitting hard coat layer 14a is provided on both surfaces of the PET film 14 to prevent the PET film 14 from being damaged. As described above, the hard coat layer 14a is made of, for example, acrylate resin.
 PETフィルム14の第1のITO電極13パタ-ンが施された表面と対向する側のカバ-ガラス11表面の周縁部にはブラックマトリクス12が形成されている。
 ガラス基板16の下側には、第1のITO電極13、第2のITO電極15と電気的に接続され、タッチパネル制御部10bとも電気的に接続される配線層21が設けられる。配線層21は、カバ-ガラス11側から観察した際、カバ-ガラス11に設けられたブラックマトリックス12によって遮蔽されるように、ガラス基板16の下側にて配置される。
 タッチパネル制御部10bは、前記したようにタッチパネル(TP)コントロ-ルIC部22とFPC(フレキシブルプリント基板)23とからなり、FPC23上にタッチパネルコントロ-ルIC部22が設けられる。FPC23は、カバ-ガラス11側から観察した際、カバ-ガラス11に設けられたブラックマトリックス12によって遮蔽されるように、中央部分に開口が設けられた環状構造であり、タッチパネルコントロ-ルIC部22はこの環状構造部分の上部に設けられる。
 タッチパネル制御部10bは、タッチセンサモジュ-ル10aの配線層21と電気的に接続され、また、画像表示装置30とも電気的に接続される。
 上記したタッチセンサモジュ-ル10a、タッチパネル制御部10bが画像表示装置30上に積層されて、タッチパネルが構成される。
A black matrix 12 is formed on the periphery of the surface of the cover glass 11 on the side facing the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied.
On the lower side of the glass substrate 16, a wiring layer 21 that is electrically connected to the first ITO electrode 13 and the second ITO electrode 15 and is also electrically connected to the touch panel control unit 10b is provided. The wiring layer 21 is disposed on the lower side of the glass substrate 16 so as to be shielded by the black matrix 12 provided on the cover glass 11 when observed from the cover glass 11 side.
As described above, the touch panel control unit 10 b includes the touch panel (TP) control IC unit 22 and the FPC (flexible printed circuit board) 23, and the touch panel control IC unit 22 is provided on the FPC 23. The FPC 23 has an annular structure in which an opening is provided in the central portion so as to be shielded by the black matrix 12 provided in the cover glass 11 when observed from the cover glass 11 side, and the touch panel control IC portion. 22 is provided in the upper part of this annular structure part.
The touch panel control unit 10b is electrically connected to the wiring layer 21 of the touch sensor module 10a, and is also electrically connected to the image display device 30.
The touch sensor module 10a and the touch panel control unit 10b described above are stacked on the image display device 30 to constitute a touch panel.
 図1に示すタッチパネルにおいては、タッチセンサモジュ-ル10aにおける第1の透明導電膜(例えば、第1のITO電極13)の基板がPETフィルム14であり、第2の透明導電膜(例えば、第2のITO電極15)の基板がガラス基板16であるような例である。なお、図1に示すタッチパネルの構成例において、各基板、各層の厚みは説明を容易にするために誇張して描かれており、実際の各基板、各層の厚みの相対関係は、図1に示すものとは相違する。 In the touch panel shown in FIG. 1, the substrate of the first transparent conductive film (for example, the first ITO electrode 13) in the touch sensor module 10a is the PET film 14, and the second transparent conductive film (for example, the first transparent conductive film) In this example, the glass substrate 16 is the second ITO electrode 15). In the configuration example of the touch panel shown in FIG. 1, the thickness of each substrate and each layer is exaggerated for ease of explanation, and the relative relationship between the actual thickness of each substrate and each layer is shown in FIG. It is different from what is shown.
 以下、上記タッチセンサモジュ-ルを製造するための各ワ-クの貼り合わせ工程について説明する。
 〔工程A-1〕カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施されたPETフィルムとの接合工程
 本工程を図5に示す。本工程は、親水性表面を有する第1のワ-クと疎水性表面を有する第2のワ-クをシリコ-ン基板を介在させて貼り合わせ方法を示すものであり、親水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11、疎水性表面を持つ第2のワ-クに相当するのは第1の透明導電膜(ITO)がハ-ドコ-ト層14a表面に施されたPETフィルム14である。
In the following, the steps of bonding the workpieces for manufacturing the touch sensor module will be described.
[Step A-1] Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface This step is shown in FIG. This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate interposed therebetween, and has a hydrophilic surface. Cover glass 11 corresponds to the first work, and the first transparent conductive film (ITO) corresponds to the second work having a hydrophobic surface is the surface of the hard coat layer 14a. It is the PET film 14 applied to the.
(a)カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合
 親水性表面を持つ第1のワ-クであるカバ-ガラス11の下側表面と疎水性表面を持つ第2のワ-クであるPETフィルム14の第1のITO電極13側表面とを接合するのに先立って、まず、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合を行う。
 図5(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17aの表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、シリコ-ン基板17aの表面におけるシランカップリング剤が露出している領域をOH基で終端された親水性領域および官能基ROの残存領域が混在した状態に改質する。また、シリコ-ン基板17aの表面におけるシランカップリング剤が露出していない領域を酸化して親水性領域に改質する。以下、このように改質されたシリコ-ン基板表面を「接合に適したシリコ-ン基板表面」と称する。
 次に、カバ-ガラス11の接合面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
(A) Bonding of the cover glass 11 and the silicon substrate 17a into which the silane coupling agent is introduced The lower surface and the hydrophobic surface of the cover glass 11 which is the first work having a hydrophilic surface Prior to bonding the surface of the first ITO electrode 13 side of the PET film 14 which is the second workpiece, first, the cover glass 11 and the silicon substrate 17a into which the silane coupling agent is introduced are firstly used. And joining.
As shown in FIG. 5 (a), the surface of a silicon substrate 17a introduced with a silane coupling agent is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The region where the silane coupling agent is exposed on the surface of the substrate 17a is modified so that the hydrophilic region terminated with an OH group and the remaining region of the functional group RO are mixed. Further, the region where the silane coupling agent is not exposed on the surface of the silicon substrate 17a is oxidized to be modified into a hydrophilic region. Hereinafter, the silicon substrate surface thus modified is referred to as “silicon substrate surface suitable for bonding”.
Next, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
 その後、カバ-ガラス11の接合面とシランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とを重ね合わせる。適宜、重ね合わせたカバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとを加圧したり、加熱することにより、接合強度を増加させる。 Thereafter, the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a introduced with the silane coupling agent are overlapped. The bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent.
 なお、カバ-ガラス11自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、カバ-ガラス11の接合面にUV光を照射することにより、カバ-ガラス11の接合面が活性化されたり、カバ-ガラス11表面の不純物が分解して除去されるので、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。
 また、シランカップリング剤が導入されたシリコ-ン基板17a表面とカバ-ガラス11の接合面へのUV照射は同時に行っても良い。
Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded.
Further, UV irradiation may be performed simultaneously on the surface of the silicon substrate 17a introduced with the silane coupling agent and the bonding surface of the cover glass 11.
(b)カバ-ガラス11と接合したシリコ-ン基板17aとPETフィルム14との接合
次に、図5(b)に示すように、シランカップリング剤が導入されたシリコ-ン基板17aの表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、シランカップリング剤が導入されたシリコ-ン基板17aのUV照射面を接合に適したシリコ-ン基板表面とする。
(B) Bonding of Silicon Substrate 17a Bonded to Cover Glass 11 and PET Film 14 Next, as shown in FIG. 5 (b), the surface of the silicon substrate 17a introduced with a silane coupling agent A silicon substrate suitable for bonding the UV irradiation surface of the silicon substrate 17a in which a silane coupling agent is introduced by irradiating the substrate with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The surface.
 一方、第1のITO電極13がハ-ドコ-ト層14a表面に施されたPETフィルム14において、第1のITO電極13のパタ-ンが施された面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、PETフィルム14の第1のITO電極13のパタ-ンが施された面の一部をOH基で終端された領域に改質する。以下、このように改質された面を「接合に適した透明導電膜表面」と称する。 On the other hand, in the PET film 14 in which the first ITO electrode 13 is applied to the surface of the hard coat layer 14a, ultraviolet light (UV) such as an excimer lamp is formed on the surface of the pattern of the first ITO electrode 13. ) UV light emitted from the light source 40 is irradiated to modify a part of the patterned surface of the first ITO electrode 13 of the PET film 14 into a region terminated with an OH group. Hereinafter, the surface thus modified is referred to as “transparent conductive film surface suitable for bonding”.
 その後、シランカップリング剤が導入されたシリコ-ン基板17aのUV照射処理した表面と、PETフィルム14のUV照射処理した第1のITO電極13施された面とを重ね合わせ、適宜、重ね合わせた上記シリコ-ン基板17aと、PETフィルム14とを加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17a(カバ-ガラス11と接合済み)と、第1のITO電極13が表面に施されたPETフィルム14とを接合する。 Thereafter, the UV-irradiated surface of the silicon substrate 17a into which the silane coupling agent has been introduced and the surface of the PET film 14 that has been subjected to the UV-irradiation-treated first ITO electrode 13 are overlaid, and an appropriate overlay is obtained. Further, the silicon substrate 17a and the PET film 14 are pressurized or heated, and the silicon substrate 17a into which the silane coupling agent is introduced (joined with the cover glass 11), the first substrate An ITO electrode 13 is bonded to a PET film 14 having a surface.
 すなわち、本工程(A-1)において採用された接合方法は以下の通りである。
(1)親水性表面を持つ第1のワ-クであるカバ-ガラス11の下側表面に、シランカップリング剤が導入されたシリコ-ン基板17aを接合する。接合方法は、上記シリコ-ン基板17aに紫外線を照射して紫外線照射面を接合に適したシリコ-ン基板表面とし、当該表面をカバ-ガラス11上に積層して、親水性表面を持つ第1のワ-クであるカバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aを接合する。なお、上記したように、カバ-ガラス11の接合面にも紫外線を照射してもよい。
(2)親水性表面を持つ第1のワ-クであるカバ-ガラス11に接合されたシランカップリング剤を導入したシリコ-ン基板17a表面と、疎水性表面を持つ第2のワ-クであるPETフィルム14の第1の透明導電膜(ITO電極13)が表面に施された面に紫外線を照射して、上記シリコ-ン基板17aの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記PETフィルム14の紫外線照射面を接合に適した透明導電膜表面とする。
(3)両紫外線照射面同士を重ね合わせる。
(4)上から、疎水性表面を持つ第2のワ-クであるPETフィルム14、シランカップリング剤が導入されたシリコ-ン基板17a、親水性表面を持つ第1のワ-クであるカバ-ガラス11の順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(4)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method employed in this step (A-1) is as follows.
(1) The silicon substrate 17a introduced with a silane coupling agent is bonded to the lower surface of the cover glass 11, which is the first work having a hydrophilic surface. In the bonding method, the silicon substrate 17a is irradiated with ultraviolet rays so that the ultraviolet irradiation surface is a silicon substrate surface suitable for bonding, and the surface is laminated on the cover glass 11 to have a hydrophilic surface. The cover glass 11 which is one work and the silicon substrate 17a introduced with the silane coupling agent are bonded. As described above, the joint surface of the cover glass 11 may be irradiated with ultraviolet rays.
(2) The surface of the silicon substrate 17a introduced with the silane coupling agent joined to the cover glass 11, which is the first work having a hydrophilic surface, and the second work having a hydrophobic surface. A silicon substrate suitable for bonding the ultraviolet-irradiated surface of the silicon substrate 17a by irradiating the surface of the PET film 14 with the first transparent conductive film (ITO electrode 13) on the surface. The surface is modified so that the ultraviolet irradiation surface of the PET film 14 is a transparent conductive film surface suitable for bonding.
(3) Both ultraviolet irradiation surfaces are overlapped.
(4) From the top, a PET film 14 as a second work having a hydrophobic surface, a silicon substrate 17a having a silane coupling agent introduced therein, and a first work having a hydrophilic surface. Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the cover glass 11.
In (4) of this bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
〔工程B-1〕第1の透明導電膜(ITO電極)が表面に施されたPETフィルムと第2の透明導電膜(ITO電極)が表面に施されたガラスとの接合工程
 本工程を図6、図7に示す。本工程は、疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介して貼り合わせ方法を示すものであり、疎水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11が接合されているPETフィルム14、疎水性表面を持つ第2のワ-クに相当するのは第2の透明導電膜(ITO電極15)が表面に施されたガラス基板16である。
[Step B-1] Joining process between PET film with first transparent conductive film (ITO electrode) on the surface and glass with second transparent conductive film (ITO electrode) on the surface 6 and FIG. This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced. The first work having a hydrophobic surface corresponds to the PET film 14 to which the cover glass 11 is bonded, and the second work having the hydrophobic surface corresponds to the second work. It is the glass substrate 16 with which the transparent conductive film (ITO electrode 15) was given to the surface.
(a)シランカップリング剤が導入されたシリコ-ン基板17bとPETフィルム14(カバ-ガラス11と接合済み)との接合
 図6(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17b表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面とする。
(A) Bonding of the silicon substrate 17b into which the silane coupling agent has been introduced and the PET film 14 (already bonded to the cover glass 11) As shown in FIG. 6 (a), the silane coupling agent has been introduced. The surface of the silicon substrate 17b is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, so that the ultraviolet irradiation surface of the silicon substrate 17b is a silicon substrate surface suitable for bonding. .
 次に第1のITO電極13パタ-ンが施されているハ-ドコ-ト層14aの表面にシランカップリング剤が導入されたシリコ-ン基板17aを介してカバ-ガラス11が接合されているPETフィルム14において、図6(a)に示すように、第1のITO電極13パタ-ンが施されている面の反対側のハ-ドコ-ト層14a表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記ハ-ドコ-ト層14a表面の一部をOH基で終端された領域に改質する。以下、このように改質された面を「接合に適したハ-ドコ-ト層表面」と称する。
 その後、シランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面とPETフィルム14のUV照射処理した面とを重ね合わせ、適宜、PETフィルム14と上記シリコ-ン基板17bとを加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17bと第1のITO電極13が表面に施されたPETフィルム14とを接合する。
Next, the cover glass 11 is bonded to the surface of the hard coat layer 14a on which the first ITO electrode 13 pattern has been applied via a silicon substrate 17a into which a silane coupling agent has been introduced. 6A, an excimer lamp or the like is provided on the surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 pattern is applied. Irradiation with UV light emitted from an ultraviolet (UV) light source 40 modifies a part of the surface of the hard coat layer 14a into a region terminated with an OH group. Hereinafter, the surface thus modified is referred to as “hard coat layer surface suitable for bonding”.
Thereafter, the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the PET film 14 are overlapped, and the PET film 14 and the silicon substrate 17b are appropriately pressurized. Or heating, the silicon substrate 17b into which the silane coupling agent has been introduced and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are joined.
(b)PETフィルム14(カバ-ガラス11と接合済み)とガラス基板16との接合
 図7(b)に示すように、PETフィルム14と接合されたシランカップリング剤が導入されたシリコ-ン基板17bの、PETフィルム14との接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、当該表面を接合に適したシリコ-ン基板表面とする。
 次に、例えば、図18(c)のようなパタ-ンの第2のITO電極15が表面に施されたガラス基板16の表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、ガラス基板16の第2のITO電極15パタ-ンが施された面の一部をOH基で終端された領域に改質する。以下、このように改質された面を、PETフィルム14の第1のITO電極13パタ-ンが施された面にUV照射したときと同様、接合に適した透明導電膜表面と称する。
(B) Bonding of PET film 14 (already bonded to cover glass 11) and glass substrate 16 As shown in FIG. 7 (b), a silicon in which a silane coupling agent bonded to PET film 14 is introduced. The surface of the substrate 17b opposite to the bonding surface with the PET film 14 is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, so that the silicon is suitable for bonding. The substrate surface.
Next, for example, a second ITO electrode 15 having a pattern as shown in FIG. 18C is emitted from an ultraviolet (UV) light source 40 such as an excimer lamp to the surface of the glass substrate 16 provided on the surface. A portion of the surface of the glass substrate 16 on which the second ITO electrode 15 pattern is applied is modified to a region terminated with an OH group. Hereinafter, the surface modified in this way is referred to as a transparent conductive film surface suitable for bonding, similar to the case where the surface of the PET film 14 on which the first ITO electrode 13 pattern is applied is irradiated with UV.
その後、シランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面と、ガラス基板16のUV照射表面とを重ね合わせ、適宜、ガラス基板16と上記シランカップリング剤が導入されたシリコ-ン基板17bとを加圧したり加熱したりして、PETフィルム14と接合されたシリコ-ン基板17bと、第2のITO電極15が表面に施されたガラス基板16とを接合する。
 なお、第2のITO電極15が表面に施されたガラス基板16の代わりに、第2のITO電極15が表面に施された樹脂基板(例えば、PETフィルム14)が用いられる場合もあるが、工程2の手順に変化はない。
Thereafter, the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the glass substrate 16 are superposed, and the glass substrate 16 and the silicon into which the silane coupling agent has been introduced as appropriate. The silicon substrate 17b is pressurized or heated to bond the silicon substrate 17b bonded to the PET film 14 and the glass substrate 16 having the second ITO electrode 15 applied to the surface thereof.
In addition, instead of the glass substrate 16 having the second ITO electrode 15 applied to the surface, a resin substrate (for example, a PET film 14) having the second ITO electrode 15 applied to the surface may be used. There is no change in the procedure of step 2.
 すなわち、本工程(B-1)における接合方法は以下の通りである。
(1)シランカップリング剤が導入されたシリコ-ン基板17b表面と、疎水性表面を持つ第1のワ-クであってカバ-ガラス11が接合されているPETフィルム14において、PETフィルム14の上記カバ-ガラス11が接合されていないハ-ドコ-ト層14a表面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記カバ-ガラス11と接合されているPETフィルム14の紫外線照射面を接合に適したハ-ドコ-ト層面とする。
(2)両紫外線照射面同士を重ね合わせる。
(3)上から、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第1のワ-クであるPETフィルム14(カバ-ガラス11接合済み)の順に重ね合わせられているワ-クを加圧しながら、加熱する。
(4)疎水性表面を持つ第1のワ-クであるPETフィルム14(カバ-ガラス11と接合済み)に接合されたシランカップリング剤が導入されたシリコ-ン基板17b表面と、疎水性表面を持つ第2のワ-クであるガラス基板16の第2の透明導電膜(ITO電極15)が表面に施されている面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記ガラス基板16の紫外線照射面を接合に適した透明導電膜表面とする。
(5)両紫外線照射面同士を重ね合わせる。
(6)上から、疎水性表面を持つ第1のワ-クであるPETフィルム14(カバ-ガラス11と接合済み)、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第2のワ-クであるガラス基板16の順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(3)(6)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (B-1) is as follows.
(1) In the PET film 14 in which the surface of the silicon substrate 17b into which the silane coupling agent is introduced and the first glass having a hydrophobic surface and the cover glass 11 are joined, the PET film 14 The surface of the hard coat layer 14a to which the cover glass 11 is not bonded is irradiated with ultraviolet rays to change the ultraviolet irradiation surface of the silicon substrate 17b to a silicon substrate surface suitable for bonding. And the ultraviolet irradiation surface of the PET film 14 bonded to the cover glass 11 is used as a hard coat layer surface suitable for bonding.
(2) Both ultraviolet irradiation surfaces are overlapped.
(3) From above, the silicon substrate 17b into which the silane coupling agent has been introduced and the PET film 14 (cover glass 11 bonded) as the first work having a hydrophobic surface are superposed in this order. The workpiece is heated while being pressurized.
(4) The surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the PET film 14 (which has been bonded to the cover glass 11), which is the first work having a hydrophobic surface, and hydrophobic The surface of the glass substrate 16 which is the second work having the surface is irradiated with ultraviolet rays to the surface of the glass substrate 16 on which the second transparent conductive film (ITO electrode 15) is applied. The ultraviolet irradiation surface is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the glass substrate 16 is made a transparent conductive film surface suitable for bonding.
(5) Superimpose both ultraviolet irradiation surfaces.
(6) From above, a PET film 14 (joined with the cover glass 11) as a first work having a hydrophobic surface, a silicon substrate 17b into which a silane coupling agent has been introduced, and a hydrophobic surface Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the glass substrate 16 as the second workpiece.
In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
 本発明の接合方法を採用した〔工程A-1〕と〔工程B-1〕を経て、図1に示すタッチパネルにおけるタッチセンサモジュ-ルが構成される。
 このタッチセンサモジュ-ル10aとタッチパネル制御部10bがLCDパネル等の画像表示装置30上に積層されて、タッチパネルが構成される。ここで、タッチパネル制御部10bの構造例や、タッチセンサモジュ-ル10a、タッチパネル制御部10b、画像表示装置30の順に積層されるタッチパネルの接合は、従来技術と同様であるので、ここでは詳細な説明を省略する。
The touch sensor module in the touch panel shown in FIG. 1 is configured through [Step A-1] and [Step B-1] employing the bonding method of the present invention.
The touch sensor module 10a and the touch panel control unit 10b are stacked on the image display device 30 such as an LCD panel to constitute a touch panel. Here, the structure example of the touch panel control unit 10b and the bonding of the touch panel laminated in the order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 are the same as those in the related art, and therefore detailed here. Description is omitted.
 本実施の形態1は、タッチパネルにおけるタッチセンサモジュ-ルを以下のような方法で構築するものである。すなわち、タッチセンサモジュ-ルの各構成要素の貼り合わせに際して、従来のOCAテ-プまたはOCRに代えてシランカップリング剤を導入したシリコ-ン(基板)を使用し、シランカップリング剤を導入したシリコ-ン(基板)と各構成要素の接合面に紫外線を照射するものである。
 そして、タッチセンサモジュ-ルの導電性薄膜(例えば、ITO電極)が設けられている基板において、上記導電性薄膜が設けられている面に紫外線を照射するものである。
 更には、上記導電性薄膜が設けられている基板の上記導電性薄膜が設けられていない側表面が疎水性表面である場合、当該表面にも紫外線を照射するものである。
In the first embodiment, a touch sensor module in a touch panel is constructed by the following method. That is, when bonding each component of the touch sensor module, a silicon (substrate) into which a silane coupling agent is introduced instead of the conventional OCA tape or OCR is used, and the silane coupling agent is introduced. The joint surface between the silicon (substrate) and each component is irradiated with ultraviolet rays.
In the substrate on which the conductive thin film (for example, ITO electrode) of the touch sensor module is provided, the surface on which the conductive thin film is provided is irradiated with ultraviolet rays.
Furthermore, when the surface on which the conductive thin film is not provided on the substrate on which the conductive thin film is provided is a hydrophobic surface, the surface is also irradiated with ultraviolet rays.
 本発明の貼り合わせ方法によってタッチセンサモジュ-ルを構築することにより、以下のような利点が得られる。
 すなわち、OCAテ-プやOCRとは異なり、シリコ-ンには長時間経過後の着色が発生せず、最終製品であるタッチパネルの画像に変色の影響が発生しない。
 また、導電性薄膜のような段差構造が接合面に存在する場合であっても、シリコ-ンは段差に応じて変形・密着するので貼り付け時の上記段差部分への気泡混入の抑制が容易である。また、接合面が大面積の部材に対しても容易に接合することが可能である。
By constructing a touch sensor module by the bonding method of the present invention, the following advantages can be obtained.
That is, unlike the OCA tape and OCR, the silicone does not color after a long time, and the touch panel image, which is the final product, does not affect the color.
Even when a step structure such as a conductive thin film is present on the joint surface, the silicon deforms and adheres according to the step, so that it is easy to prevent air bubbles from being mixed into the stepped portion during bonding. It is. Further, it is possible to easily join a member having a large joint surface.
 また、OCRのような硬化反応による接合ではないので、OCR特有の接合面への塗布工程における塗布均一性実現の困難さ、硬化時の変形といった問題は回避される。また、OCRより耐熱温度が高いので、紫外線照射光源とシリコ-ン基板の照射面を近接させることができ、効率的にシリコ-ン基板の光照射面を改質することが可能となる。これに対し、紫外線硬化性OCRを使用する場合は、OCR自体の耐熱性が低いので、紫外線硬化性OCR塗布面と紫外線照射光源40とをあまり近づけることができず、当該紫外線硬化性OCR塗布面での紫外線強度が小さくなり、紫外線の利用効率が小さくなる。これに伴い、貼り合わせのためのOCR硬化反応に要する時間が長時間化する。
 また、一般にシリコ-ン基板は、OCAテ-プやOCRと比較すると価格が安価である。
Further, since the bonding is not performed by a curing reaction such as OCR, problems such as difficulty in realizing coating uniformity in the coating process on the bonding surface peculiar to OCR and deformation during curing can be avoided. Further, since the heat resistant temperature is higher than that of OCR, the ultraviolet irradiation light source and the irradiation surface of the silicon substrate can be brought close to each other, and the light irradiation surface of the silicon substrate can be efficiently modified. On the other hand, when the ultraviolet curable OCR is used, the heat resistance of the OCR itself is low, so the ultraviolet curable OCR application surface and the ultraviolet irradiation light source 40 cannot be brought too close to each other. The intensity of ultraviolet rays becomes small, and the utilization efficiency of ultraviolet rays becomes small. As a result, the time required for the OCR curing reaction for bonding increases.
In general, a silicon substrate is less expensive than an OCA tape or OCR.
 更に、シランカップリング剤を導入したシリコ-ン基板を用いた接合の場合、ガラス基板や樹脂基板と紫外線を照射したシランカップリング剤が導入されたシリコ-ン基板とを重ね合わせてすぐ接合が完了するのではなく、所定の時間だけ両基板を加圧したり、加熱したりすることによって接合が完了する。よって、重ね合わせた直後に両基板を分離するのは容易である。よって、例えばガラス基板や樹脂基板と紫外線を照射したシランカップリング剤が導入されたシリコ-ン基板との位置合わせが不十分であるとき、重ね合わせた直後であるならば両者を一度剥がして、再度シリコ-ン基板に紫外線を照射して接合工程を行うことが可能となる。すなわち、OCAテ-プと比較すると、リワ-ク性に富んでいる。 Furthermore, in the case of bonding using a silicon substrate into which a silane coupling agent has been introduced, the glass substrate or resin substrate and the silicon substrate into which the silane coupling agent to which ultraviolet rays have been applied are superimposed are immediately bonded. Rather than being completed, the bonding is completed by pressurizing or heating both substrates for a predetermined time. Therefore, it is easy to separate the two substrates immediately after the overlapping. Therefore, for example, when the alignment between the glass substrate or the resin substrate and the silicon substrate into which the silane coupling agent irradiated with ultraviolet rays is insufficient, if they are just after being overlapped, both are peeled off once, It is possible to perform the bonding process by irradiating the silicon substrate again with ultraviolet rays. That is, it is rich in reworkability compared with the OCA tape.
 特に本発明の貼り合わせ方法においては、従来、紫外線照射による表面改質処理を用いても接合させることが困難であったシリコ-ン基板とタッチセンサモジュ-ルの導電性薄膜基板の導電性薄膜表面との貼り合わせ、シリコ-ン基板と表面が疎水性である場合の導電性薄膜基板との貼り合わせについても、シランカップリング剤を導入したシリコ-ン基板を用いることにより、当該シリコ-ン基板を紫外線照射により表面改質する(接合に適した表面状態)にするとともに、導電性薄膜表面、基板の疎水性表面を紫外線照射により表面改質する(接合に適した表面状態にする)ことを可能としたので、上記した貼り合わせを可能とすることできた。
 すなわち、タッチセンサモジュ-ルの各構成要素の貼り合わせに際して、従来のOCAテ-プまたはOCRに代えてシランカップリング剤を導入したシリコ-ン(基板)を使用し、シランカップリング剤を導入したシリコ-ン(基板)と各構成要素の接合面に紫外線を照射して、タッチセンサモジュ-ルの各構成要素の貼り合わせて当該タッチセンサモジュ-ルを構成することが可能となった。
In particular, in the bonding method of the present invention, the conductive thin film of the silicon substrate and the conductive thin film substrate of the touch sensor module, which were conventionally difficult to bond even by using surface modification treatment by ultraviolet irradiation. Also for bonding to the surface and bonding of the silicon substrate to the conductive thin film substrate when the surface is hydrophobic, by using the silicon substrate into which the silane coupling agent has been introduced, the silicon substrate is used. Surface modification of the substrate by UV irradiation (surface state suitable for bonding), and surface modification of the conductive thin film surface and the hydrophobic surface of the substrate by UV irradiation (surface condition suitable for bonding) Therefore, the above-mentioned bonding can be performed.
That is, when bonding each component of the touch sensor module, a silicon (substrate) into which a silane coupling agent is introduced instead of the conventional OCA tape or OCR is used, and the silane coupling agent is introduced. The touch sensor module can be configured by irradiating ultraviolet rays onto the bonding surface between the silicon (substrate) and each component and bonding the components of the touch sensor module.
〔実施の形態1の変形例(1)〕
 実施の形態1においては、本発明の接合方法を採用した〔工程A-1〕と〔工程B-1〕を経て、図1に示すタッチパネルにおけるタッチセンサモジュ-ルを構成する例を示した。
[Modification (1) of Embodiment 1]
In the first embodiment, an example in which the touch sensor module in the touch panel shown in FIG. 1 is configured through [Step A-1] and [Step B-1] employing the bonding method of the present invention is shown.
 すなわち、〔工程A-1〕においては、まずカバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとを接合し、次にこのカバ-ガラス11と接合したシランカップリング剤が導入されたシリコ-ン基板17aとPETフィルム14とを接合するという順番で、カバ-ガラス11と第1の透明導電膜(ITO電極13)が表面に施されたPETフィルム14とを接合した。
 また、〔工程B-1〕においては、まず〔工程A-1〕により構成されたシランカップリング剤が導入されたシリコ-ン基板17aを介してカバ-ガラス11と接合されたPETフィルム14とシランカップリング剤が導入されたシリコ-ン基板17bとを接合し、次にこのカバ-ガラス11と接合済のPETフィルム14と接合されているシランカップリング剤が導入されたシリコ-ン基板17bとガラス基板16とを接合するという順番で、PETフィルム14と接合しているシランカップリング剤が導入されたシリコ-ン基板17bと第2のITO電極15が表面に施されたガラス基板16とを接合してタッチセンサモジュ-ル10bを構成した。
That is, in [Step A-1], the cover glass 11 is first bonded to the silicon substrate 17a into which the silane coupling agent has been introduced, and then the silane coupling agent bonded to the cover glass 11 is bonded. The cover glass 11 and the PET film 14 provided with the first transparent conductive film (ITO electrode 13) on the surface were joined in the order of joining the introduced silicon substrate 17a and the PET film 14.
In [Step B-1], first, the PET film 14 bonded to the cover glass 11 through the silicon substrate 17a introduced with the silane coupling agent constituted in [Step A-1] The silicon substrate 17b into which the silane coupling agent has been introduced is bonded to the silicon substrate 17b into which the silane coupling agent has been introduced, and then the cover glass 11 and the bonded PET film 14 have been introduced into the silicon substrate 17b into which the silane coupling agent has been introduced. And a glass substrate 16 having a surface on which a second ITO electrode 15 is applied, and a silicon substrate 17b in which a silane coupling agent bonded to the PET film 14 is introduced. Were joined to form a touch sensor module 10b.
 しかしながら、ワ-クを貼り合わせる順番は上記〔工程A-1〕〔工程B-1〕に示す順番に限るものではない。
 例えば、上記〔工程A-1〕において、まずシランカップリング剤を導入したシリコ-ン基板17aとPETフィルム14とを接合し、次にこのPETフィルム14と接合済みのシランカップリング剤が導入されたシリコ-ン基板17aとカバ-ガラス11とを接合するという順番で、カバ-ガラス11と第1の透明導電膜(ITO電極)が表面に施されたPETフィルム14とを接合してもよい。(以下、このような工程を〔工程A-2〕と呼ぶことにする。)
However, the order of attaching the workpieces is not limited to the order shown in [Step A-1] and [Step B-1].
For example, in the above [Step A-1], the silicon substrate 17a into which the silane coupling agent is introduced and the PET film 14 are first joined, and then the PET film 14 and the joined silane coupling agent are introduced. Further, the cover glass 11 and the PET film 14 having the first transparent conductive film (ITO electrode) applied thereto may be bonded in the order of bonding the silicon substrate 17a and the cover glass 11. . (Hereinafter, such a step is referred to as [Step A-2].)
 同様に、上記〔工程B-1〕において、まずシランカップリング剤が導入されたシリコ-ン基板17bとガラス基板16とを接合し、次にこのガラス基板16と接合済みのシランカップリング剤が導入されたシリコ-ン基板17bとカバ-ガラス11と接合済のPETフィルム14とを接合するという順番で、カバ-ガラス11と接合済のPETフィルム14とガラス基板16と接合済のシランカップリング剤が導入されたシリコ-ン基板17bとを接合してタッチセンサモジュ-ルを構成してもよい。(以下、このような工程B-1に代わる工程を〔工程B-2〕と呼ぶことにする。) Similarly, in the above [Step B-1], first, the silicon substrate 17b into which the silane coupling agent has been introduced and the glass substrate 16 are bonded together, and then the glass substrate 16 and the bonded silane coupling agent are bonded. Silane coupling in which the cover glass 11 and the bonded PET film 14 and the glass substrate 16 are bonded in the order of bonding the introduced silicon substrate 17b, the cover glass 11 and the bonded PET film 14. The touch sensor module may be configured by joining the silicon substrate 17b into which the agent is introduced. (Hereinafter, such a step instead of step B-1 will be referred to as [step B-2].)
 以下、図8、図9、図10を用いて、本発明の接合方法を採用した〔工程A-2〕と〔工程B-2〕を経て図1に示すタッチパネルにおけるタッチセンサモジュ-ルを構成する例を説明する。
 〔工程A-2〕カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施されたPETフィルムとの接合工程
 本工程を図8に示す。本工程は、親水性表面を有する第1のワ-クと疎水性表面を有する第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介在させて貼り合わせ方法を示すものであり、親水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11、疎水性表面を有する第2のワ-クに相当するのは第1の透明導電膜(ITO電極13)がハ-ドコ-ト層14a表面に施されたPETフィルム14である。
Hereinafter, the touch sensor module in the touch panel shown in FIG. 1 is constructed through [Step A-2] and [Step B-2] using the bonding method of the present invention with reference to FIGS. An example will be described.
[Step A-2] Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface This step is shown in FIG. This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate introduced with a silane coupling agent interposed therebetween. The cover glass 11 corresponds to the first work having a hydrophilic surface, and the first transparent conductive film (ITO electrode 13) corresponds to the second work having a hydrophobic surface. ) Is the PET film 14 applied to the surface of the hard coat layer 14a.
(a)シランカップリング剤が導入されたシリコ-ン基板17aとPETフィルム14との接合
 シランカップリング剤が導入されたシリコ-ン基板17aの表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、シランカップリング剤が導入されたシリコ-ン基板17a表面を接合に適したシリコ-ン基板表面とする。上記したように、接合に適したシリコ-ン基板表面とは、シリコ-ン基板の表面におけるシランカップリング剤が露出している領域をOH基で終端された親水性領域および官能基ROの残存領域が混在した状態に改質されていて、また、シリコ-ン基板の表面におけるシランカップリング剤が露出していない領域が酸化により親水性領域に改質されているようなシリコ-ン基板表面のことを言う。
(A) Bonding of Silicone Substrate 17a Introduced with Silane Coupling Agent and PET Film 14 From an ultraviolet (UV) light source 40 such as an excimer lamp on the surface of silicon substrate 17a introduced with a silane coupling agent By irradiating the emitted UV light, the surface of the silicon substrate 17a into which the silane coupling agent has been introduced is made a silicon substrate surface suitable for bonding. As described above, the surface of the silicon substrate suitable for bonding means that the region where the silane coupling agent is exposed on the surface of the silicon substrate is the remaining of the hydrophilic region terminated with OH groups and the functional group RO. Silicon substrate surface that has been modified to have a mixed region, and the region where the silane coupling agent is not exposed on the surface of the silicon substrate has been modified to a hydrophilic region by oxidation Say that.
 また、例えば、図18(b)のようなパタ-ンの第1のITO電極13がハ-ドコ-ト層14a表面に施されたPETフィルム14において、図8(a)に示すように、上記第1のITO電極13パタ-ンが施されたハ-ドコ-ト層14a表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記したPETフィルム14における第1のITO電極13パタ-ンが施されたハ-ドコ-ト層14a表面を接合に適した透明導電膜表面とする。上記したように、接合に適した透明導電膜表面とは、透明導電膜(第1のITO電極13パタ-ン)が施された疎水性表面(ハ-ドコ-ト層14a表面)の一部がOH基で終端された領域に改質されているような表面のことを言う。 Further, for example, in the PET film 14 in which the first ITO electrode 13 having a pattern as shown in FIG. 18B is applied to the surface of the hard coat layer 14a, as shown in FIG. The surface of the hard coat layer 14a on which the first ITO electrode 13 pattern has been applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the above PET film. The surface of the hard coat layer 14a provided with the first ITO electrode 13 pattern at 14 is used as a transparent conductive film surface suitable for bonding. As described above, the surface of the transparent conductive film suitable for bonding is a part of the hydrophobic surface (the surface of the hard coat layer 14a) on which the transparent conductive film (the first ITO electrode 13 pattern) is applied. Refers to a surface that has been modified into a region terminated with an OH group.
 その後、シランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とPETフィルム14のUV照射処理した面とを重ね合わせ、適宜、上記シリコ-ン基板17aとPETフィルム14とを加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17aと第1のITO電極13が表面に施されたPETフィルム14とを接合する。 Thereafter, the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced and the UV irradiation-treated surface of the PET film 14 are overlapped, and the silicon substrate 17a and the PET film 14 are appropriately pressurized. Or heating, the silicon substrate 17a into which the silane coupling agent is introduced and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are joined.
(b)PETフィルム14と接合したシランカップリング剤が導入されたシリコ-ン基板17aとカバ-ガラス11との接合
 次に、図8(b)に示すように、PETフィルム14と接合済みのシランカップリング剤が導入されたシリコ-ン基板17aの、PETフィルム14との接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、シランカップリング剤が導入されたシリコ-ン基板17aのUV照射面を接合に適したシリコ-ン基板表面とする。
 また、カバ-ガラス11の接合面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
(B) Joining of Silicone Substrate 17a Introduced with Silane Coupling Agent Joined to PET Film 14 and Cover Glass 11 Next, as shown in FIG. UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the surface of the silicon substrate 17a, into which the silane coupling agent has been introduced, on the side opposite to the bonding surface with the PET film 14. The UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced is used as a silicon substrate surface suitable for bonding.
Further, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
 その後、PETフィルム14と接合されたシランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とカバ-ガラス11の接合面とを重ね合わせ、適宜、重ね合わせたカバ-ガラス11と上記シリコ-ン基板17aとを加圧したり、加熱することにより、接合強度を増加させる。 Thereafter, the UV-irradiated surface of the silicon substrate 17a to which the silane coupling agent joined to the PET film 14 is introduced and the joining surface of the cover glass 11 are overlaid, and the overlaid cover glass 11 and the above are appropriately combined. The bonding strength is increased by pressurizing or heating the silicon substrate 17a.
 なお、カバ-ガラス11自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、カバ-ガラス11の接合面にUV光を照射することにより、カバ-ガラス11の接合面が活性化されたり、カバ-ガラス11表面の不純物が分解して除去されるので、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。
 また、PETフィルム14と接合済みのシランカップリング剤が導入されたシリコ-ン基板17a表面とカバ-ガラス11の接合面へのUV照射は同時に行っても良い。
Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded.
Further, the UV irradiation may be performed simultaneously on the surface of the silicon substrate 17a introduced with the silane coupling agent bonded to the PET film 14 and the cover surface of the cover glass 11.
 すなわち、本工程(A-2)における接合方法は以下の通りである。
(1)シランカップリング剤が導入されたシリコ-ン基板17a表面と、疎水性表面を持つ第2のワ-クであるPETフィルム14の第1の透明導電膜(ITO電極13)に対して紫外線を照射して、上記シリコ-ン基板17aの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記PETフィルム14の紫外線照射面を接合に適した透明導電膜表面とする。
(2)両紫外線照射面同士を重ね合わせる。
(3)疎水性表面を持つ第2のワ-クであるPETフィルム14とシランカップリング剤が導入されたシリコ-ン基板17aとが重ね合わせられているワ-クをの接触面を加圧しながら、加熱する。
(4)次に、疎水性表面を持つ第2のワ-クであるPETフィルム14に接合済みのシランカップリング剤が導入されたシリコ-ン基板17a表面に紫外線を照射し、紫外線照射面を接合に適したシリコ-ン基板表面とする。なお、親水性表面を持つ第1のワ-クであるカバ-ガラス11の接合面に対しても紫外線を照射する。
(5)両紫外線照射面同士を重ね合わせる。
(6)上から、疎水性表面を持つ第2のワ-クであるPETフィルム14、シランカップリング剤が導入されたシリコ-ン基板17a、親水性表面を持つ第1のワ-クであるカバ-ガラス11の順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(3)(6)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (A-2) is as follows.
(1) For the first transparent conductive film (ITO electrode 13) of the PET film 14 which is the second work having the surface of the silicon substrate 17a into which the silane coupling agent is introduced and the hydrophobic surface By irradiating ultraviolet rays, the ultraviolet irradiation surface of the silicon substrate 17a is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the PET film 14 is used as a transparent conductive film surface suitable for bonding. .
(2) Both ultraviolet irradiation surfaces are overlapped.
(3) Pressurizing the contact surface of the work in which the PET film 14 as the second work having a hydrophobic surface and the silicon substrate 17a into which the silane coupling agent is introduced are superposed. While heating.
(4) Next, the surface of the silicon substrate 17a in which the silane coupling agent bonded to the PET film 14 which is the second work having a hydrophobic surface is introduced is irradiated with ultraviolet rays, and the ultraviolet irradiation surface is formed. A silicon substrate surface suitable for bonding is used. It should be noted that ultraviolet rays are also applied to the joint surface of the cover glass 11 which is the first work having a hydrophilic surface.
(5) Superimpose both ultraviolet irradiation surfaces.
(6) From the top, PET film 14, which is a second work having a hydrophobic surface, a silicon substrate 17a into which a silane coupling agent has been introduced, and a first work having a hydrophilic surface. Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the cover glass 11.
In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
〔工程B-2〕第1の透明導電膜(ITO電極)が表面に施されたPETフィルムと第2の透明導電膜(ITO電極)が表面に施されたガラスとの接合工程
 本工程を図9、図10に示す。本工程は、疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシリコ-ン基板を介して貼り合わせ方法を示すものであり、疎水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11が接合されているPETフィルム14、疎水性表面を持つ第2のワ-クに相当するのは第2の透明導電膜(ITO電極)が表面に施されたガラス基板16である。
[Step B-2] Joining process of PET film having a first transparent conductive film (ITO electrode) applied to the surface and glass having a second transparent conductive film (ITO electrode) applied to the surface 9 and FIG. This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate, and has a hydrophobic surface. The first work corresponds to the PET film 14 to which the cover glass 11 is bonded, and the second work having a hydrophobic surface corresponds to the second transparent conductive film (ITO electrode). Is a glass substrate 16 provided on the surface.
(a)シランカップリング剤が導入されたシリコ-ン基板17bとガラス基板16との接合
 図9(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17b表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17b表面を接合に適したシリコ-ン基板表面とする。
(A) Bonding of Silicon Substrate 17b Introduced with Silane Coupling Agent and Glass Substrate 16 As shown in FIG. 9A, an excimer lamp is formed on the surface of the silicon substrate 17b introduced with the silane coupling agent. The surface of the silicon substrate 17b is made a silicon substrate surface suitable for bonding by irradiating UV light emitted from an ultraviolet (UV) light source 40 such as the above.
 また、例えば、図18(c)のようなパタ-ンの第2のITO電極15が表面に施されたガラス基板16において、上記第2のITO電極15パタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記ガラス基板16の第2のITO電極15パタ-ンが施された面を接合に適した透明導電膜表面とする。上記したように、接合に適した透明導電膜表面とは、上記したように、透明導電膜(第2のITO電極15パタ-ン)が施されたガラス基板16の表面の一部がOH基で終端された領域に改質されているような表面のことを言う。 Further, for example, in the glass substrate 16 on the surface of which the second ITO electrode 15 having a pattern as shown in FIG. 18 (c) is applied, the surface on which the second ITO electrode 15 pattern is applied. A transparent conductive film surface suitable for bonding the surface of the glass substrate 16 on which the second ITO electrode 15 pattern has been applied by irradiating UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp And As described above, the transparent conductive film surface suitable for bonding means that, as described above, a part of the surface of the glass substrate 16 to which the transparent conductive film (second ITO electrode 15 pattern) is applied is OH-based. This refers to a surface that has been modified into a region terminated by.
 その後、シランカップリング剤を導入したシリコ-ン基板17bのUV照射表面とガラス基板16のUV照射処理した面とを重ね合わせ、適宜、ガラス基板16と上記シリコ-ン基板17bとを加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17bと第2のITO電極15が表面に施されたガラス基板16とを接合する。 Thereafter, the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent is introduced and the UV-irradiated surface of the glass substrate 16 are overlapped, and the glass substrate 16 and the silicon substrate 17b are appropriately pressurized. The silicon substrate 17b into which the silane coupling agent has been introduced is bonded to the glass substrate 16 having the second ITO electrode 15 applied to the surface by heating or the like.
 図10(b)に示すように、ガラス基板16と接合されたシランカップリング剤が導入されたシリコ-ン基板17bの、ガラス基板16との接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bのUV照射面を接合に適したシリコ-ン基板表面とする。 As shown in FIG. 10B, an excimer lamp or the like is formed on the surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the glass substrate 16 on the side opposite to the bonding surface with the glass substrate 16. UV light emitted from an ultraviolet (UV) light source 40 is irradiated to make the UV irradiation surface of the silicon substrate 17b suitable for bonding.
 次に第1のITO電極13パタ-ンが施されている面にシリコ-ン基板17aを介してカバ-ガラス11が接合されているPETフィルム14において、図10(b)に示すように、第1のITO電極13パタ-ンが施されている面の反対側のハ-ドコ-ト層14a表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記しUV光を照射したハ-ドコ-ト層14a表面を接合に適したハ-ドコ-ト層表面とする。上記したように、接合に適したハ-ドコ-ト層表面とは、ハ-ドコ-ト層14a表面の一部がOH基で終端された領域に改質されたような表面のことをいう。 Next, in the PET film 14 in which the cover glass 11 is bonded to the surface on which the first ITO electrode 13 pattern is applied via the silicon substrate 17a, as shown in FIG. The surface of the hard coat layer 14a opposite to the surface on which the first ITO electrode 13 pattern is applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The surface of the hard coat layer 14a irradiated with UV light as described above is the hard coat layer surface suitable for bonding. As described above, the hard coat layer surface suitable for bonding means a surface in which a part of the surface of the hard coat layer 14a is modified into a region terminated with an OH group. .
 その後、シランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面とPETフィルム14のUV照射処理した面とを重ね合わせ、適宜、PETフィルム14と上記シリコ-ン基板17bとを加圧したり加熱したりして、ガラス基板16と接合されたシランカップリング剤が導入されたシリコ-ン基板17bと第1のITO電極13が表面に施されたPETフィルム14とを接合する。 Thereafter, the UV-irradiated surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the UV-irradiated surface of the PET film 14 are overlapped, and the PET film 14 and the silicon substrate 17b are appropriately pressurized. Or heating the glass substrate 16 to bond the silicon substrate 17b introduced with the silane coupling agent and the PET film 14 having the first ITO electrode 13 applied to the surface thereof.
 すなわち、本工程(B-2)における接合方法は以下の通りである。
(1)シランカップリング剤が導入されたシリコ-ン基板17b表面と、疎水性表面を持つ第2のワ-クであるガラス基板16の第2の透明導電膜(ITO電極15)が表面に施された面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記ガラス基板16の紫外線照射面を接合に適した透明導電膜表面とする。
(2)両紫外線照射面同士を重ね合わせる。
(3)シランカップリング剤が導入されたシリコ-ン基板17bと疎水性表面を持つ第2のワ-クであるガラス基板16が重ね合わせられているワ-クの接触面を加圧しながら、加熱する。
(4)疎水性表面を持つ第2のワ-クであるガラス基板16に接合されたシランカップリング剤が導入されたシリコ-ン基板17b表面と、疎水性表面を持つ第1のワ-クであるPET基板の第1の透明導電膜13(ITO電極)が表面に施された面の反対側のハ-ドコ-ト層14a表面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記PETフィルム14の紫外線照射面を接合に適したハ-ドコ-ト層表面とする。
(5)両紫外線照射面同士を重ね合わせる。
(6)上から、疎水性表面を持つ第1のワ-クであるPETフィルム14(カバ-ガラス11接合済み)、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第2のワ-クであるガラス基板16の順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(3)(6)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (B-2) is as follows.
(1) The surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the second transparent conductive film (ITO electrode 15) of the glass substrate 16 as the second work having a hydrophobic surface are formed on the surface. By irradiating the applied surface with ultraviolet rays, the ultraviolet irradiation surface of the silicon substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the glass substrate 16 is suitable for bonding. The surface of the transparent conductive film.
(2) Both ultraviolet irradiation surfaces are overlapped.
(3) While pressurizing the contact surface of the workpiece on which the silicon substrate 17b into which the silane coupling agent has been introduced and the glass substrate 16 as the second workpiece having a hydrophobic surface are superimposed, Heat.
(4) The surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the glass substrate 16 as the second work having a hydrophobic surface, and the first work having the hydrophobic surface. The surface of the hard coat layer 14a opposite to the surface of the PET substrate on which the first transparent conductive film 13 (ITO electrode) is applied is irradiated with ultraviolet rays, so that the silicon substrate 17b The surface irradiated with ultraviolet light is modified to a silicon substrate surface suitable for bonding, and the surface irradiated with ultraviolet light of the PET film 14 is made a hard coat layer surface suitable for bonding.
(5) Superimpose both ultraviolet irradiation surfaces.
(6) From the top, a PET film 14 (cover glass 11 bonded) as a first work having a hydrophobic surface, a silicon substrate 17b introduced with a silane coupling agent, and having a hydrophobic surface Heating is performed while pressurizing the contact surfaces of the workpieces stacked in the order of the glass substrate 16 as the second workpiece.
In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
〔実施の形態1の変形例(2)〕
 実施の形態1の〔工程A-1〕〔工程B-1〕、ならびに実施の形態1の変形例(1)の〔工程A-2〕〔工程B-2〕は、2つのワ-クの貼り合わせを繰り返すことにより構成されている。しかしながら、各工程において3つのワ-クを一度に貼り合わせるように構成してもよい。
[Modification (2) of Embodiment 1]
[Step A-1] and [Step B-1] in Embodiment 1 and [Step A-2] and [Step B-2] in Modification (1) of Embodiment 1 are performed in two works. It is configured by repeating pasting. However, you may comprise so that three workpieces may be bonded together in each process.
 例えば、上記〔工程A-1〕〔工程A-2〕において、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとPETフィルム14とを一度に接合してもよい。(以下、このような工程を〔工程A-3〕と呼ぶことにする。)
 同様に、上記〔工程B-1〕〔工程B-2〕において、カバ-ガラス11と接合済のPETフィルム14とシランカップリング剤が導入されたシリコ-ン基板17bとガラス基板16とを一度に接合してもよい(以下、このような工程を〔工程B-3〕と呼ぶことにする。)。
For example, in [Step A-1] and [Step A-2], the cover glass 11, the silicon substrate 17 a into which the silane coupling agent is introduced, and the PET film 14 may be bonded at a time. (Hereinafter, such a step is referred to as [Step A-3].)
Similarly, in the above [Step B-1] and [Step B-2], the cover glass 11, the joined PET film 14, the silicon substrate 17b introduced with the silane coupling agent, and the glass substrate 16 are once combined. (Hereinafter, such a step will be referred to as [Step B-3].)
 以下、図11、図12を用いて、本発明の接合方法を採用した〔工程A-3〕と〔工程B-3〕を経て図1に示すタッチパネルにおけるタッチセンサモジュ-ルを構成する例を説明する。 Hereinafter, an example of configuring the touch sensor module in the touch panel shown in FIG. 1 through [Step A-3] and [Step B-3] using the bonding method of the present invention will be described with reference to FIGS. explain.
〔工程A-3〕カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施されたPETフィルムとの接合工程
 本工程を図11に示す。本工程は、親水性表面を有する第1のワ-クと疎水性表面を有する第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介在させて貼り合わせ方法を示すものであり、親水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11、疎水性表面を有する第2のワ-クに相当するのは第1の透明導電膜(ITO電極13)がハ-ドコ-ト層14a表面に施されたPETフィルム14である。
[Step A-3] Joining Step of Cover Glass and PET Film with First Transparent Conductive Film (ITO Electrode) Surface This step is shown in FIG. This process shows a method for bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface with a silicon substrate introduced with a silane coupling agent interposed therebetween. The cover glass 11 corresponds to the first work having a hydrophilic surface, and the first transparent conductive film (ITO electrode 13) corresponds to the second work having a hydrophobic surface. ) Is the PET film 14 applied to the surface of the hard coat layer 14a.
 図11に示すようにシランカップリング剤が導入されたシリコ-ン基板17aの両面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シランカップリング剤が導入されたシリコ-ン基板17aの両面を接合に適したシリコ-ン基板表面とする。
また、例えば、図18(b)のようなパタ-ンの第1のITO電極13がハ-ドコ-ト層14a表面に施されたPETフィルム14において、図11に示すように、上記第1のITO電極13のパタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、第1のITO電極13のパタ-ンが施された面を接合に適した透明導電膜表面とする。
 更に、図11に示すようにカバ-ガラス11の接合面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
As shown in FIG. 11, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to both surfaces of a silicon substrate 17a into which a silane coupling agent has been introduced to introduce the silane coupling agent. Both surfaces of the silicon substrate 17a thus formed are silicon substrate surfaces suitable for bonding.
Further, for example, in the PET film 14 in which the first ITO electrode 13 having a pattern as shown in FIG. 18B is applied to the surface of the hard coat layer 14a, as shown in FIG. The pattern of the first ITO electrode 13 is applied by irradiating the surface of the ITO electrode 13 with the UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The surface is a transparent conductive film suitable for bonding.
Further, as shown in FIG. 11, the UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to the joint surface of the cover glass 11.
 その後、カバ-ガラス11のUV照射処理された接合面とシランカップリング剤が導入されたシリコ-ン基板17aのUV照射処理された一方の面、ならびに、上記シリコ-ン基板17aのUV照射処理された他方の面とPETフィルム14のUV照射処理された面とを重ね合わせる。そして、カバ-ガラス11、上記シリコ-ン基板17a、PETフィルム14の順番で積層されたワ-クを、適宜、加圧したり加熱したりして、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aと第1のITO電極13が表面に施されたPETフィルム14とを一度に接合する。 Thereafter, the UV-irradiated bonding surface of the cover glass 11, one surface of the silicon substrate 17 a into which the silane coupling agent has been introduced, and the UV irradiation treatment of the silicon substrate 17 a. The other surface that has been subjected to UV irradiation treatment of the PET film 14 is superposed. The cover glass 11, the silicon substrate 17 a, and the PET film 14 are laminated in this order, and the cover glass 11 and the silane coupling agent are introduced by appropriately pressing or heating the work. The silicon substrate 17a thus formed and the PET film 14 having the first ITO electrode 13 applied on the surface thereof are bonded at a time.
 なお、カバ-ガラス11自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、カバ-ガラス11の接合面にUV光を照射することにより、カバ-ガラス11の接合面が活性化されたり、カバ-ガラス11表面の不純物が分解して除去されるので、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。
 また、カバ-ガラス11の接合面と、上記シリコ-ン基板17a両面と、PETフィルム14のプライマ-コ-ト面へのUV照射は同時に行っても個別に行っても良い。
Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded.
Further, the UV irradiation to the joint surface of the cover glass 11, both surfaces of the silicon substrate 17a, and the primer coat surface of the PET film 14 may be performed simultaneously or individually.
 すなわち、本工程(A-3)における接合方法は以下の通りである。
(1)親水性表面を持つ第1のワ-クであるカバ-ガラス11の接合面と、シランカップリング剤が導入されたシリコ-ン基板17aの両面と、疎水性表面を持つ第2のワ-クであるPETフィルム14の第1の透明導電膜(ITO電極13)に対して紫外線を照射して、上記シリコ-ン基板17aの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記PETフィルム14の紫外線照射面を接合に適した透明導電膜表面とする。カバ-ガラスの紫外線照射面は、活性化されたり、不純物が分解して除去される。
(2)その後、カバ-ガラス11のUV照射処理された接合面とシランカップリング剤が導入されたシリコ-ン基板17aのUV照射処理された一方の面、ならびに、上記シリコ-ン基板17aのUV照射処理された他方の面とPETフィルム14のUV照射処理された面とを重ね合わせる。
(3)そして、カバ-ガラス11、シランカップリング剤が導入されたシリコ-ン基板17a、PETフィルム14の順番で積層された各ワ-クの接触面を加圧しながら、加熱して、各ワ-クを一度に接合する。
 なお、本接合方法の(4)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (A-3) is as follows.
(1) A cover surface of a cover glass 11 as a first work having a hydrophilic surface, both surfaces of a silicon substrate 17a introduced with a silane coupling agent, and a second surface having a hydrophobic surface. The first transparent conductive film (ITO electrode 13) of the PET film 14 which is a work is irradiated with ultraviolet rays, and the ultraviolet irradiation surface of the silicon substrate 17a is placed on the surface of the silicon substrate suitable for bonding. The surface of the PET film 14 is irradiated with ultraviolet rays so that the surface is a transparent conductive film suitable for bonding. The ultraviolet irradiation surface of the cover glass is activated or impurities are decomposed and removed.
(2) Thereafter, the UV-irradiated bonding surface of the cover glass 11, one surface of the silicon substrate 17 a on which the silane coupling agent has been introduced, and the silicon substrate 17 a The other surface subjected to the UV irradiation treatment and the surface subjected to the UV irradiation treatment of the PET film 14 are overlapped.
(3) Then, the contact surface of each workpiece laminated in the order of the cover glass 11, the silicon substrate 17a into which the silane coupling agent has been introduced, and the PET film 14 is heated while being pressed, Join the workpieces at once.
In (4) of this bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
〔工程B-3〕第1の透明導電膜(ITO電極)が表面に施されたPETフィルムと第2の透明導電膜(ITO電極)が表面に施されたガラスとの接合工程
 本工程を図12に示す。本工程は、疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介して貼り合わせ方法を示すものであり、疎水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11が接合されているPETフィルム14、疎水性表面を持つ第2のワ-クに相当するのは第2の透明導電膜(ITO電極15)が表面に施されたガラス基板16である。
[Step B-3] Joining process between PET film having first transparent conductive film (ITO electrode) applied to surface and glass having second transparent conductive film (ITO electrode) applied to the surface 12 shows. This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced. The first work having a hydrophobic surface corresponds to the PET film 14 to which the cover glass 11 is bonded, and the second work having the hydrophobic surface corresponds to the second work. It is the glass substrate 16 with which the transparent conductive film (ITO electrode 15) was given to the surface.
 図12に示すようにシランカップリング剤が導入されたシリコ-ン基板17bの両面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bの表面を接合に適したシリコ-ン基板表面とする。
 また、図12に示すように、シランカップリング剤が導入されたシリコ-ン基板17aを介してカバ-ガラス11が接合されているPETフィルム14において、カバ-ガラス11が接合されている面の反対側のハ-ドコ-ト層14aの表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記しUV光を照射したハ-ドコ-ト層14a表面を接合に適したハ-ドコ-ト層表面とする。
As shown in FIG. 12, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on both surfaces of a silicon substrate 17b into which a silane coupling agent has been introduced. The surface is a silicon substrate surface suitable for bonding.
In addition, as shown in FIG. 12, in the PET film 14 to which the cover glass 11 is bonded through the silicon substrate 17a into which the silane coupling agent is introduced, the surface of the cover glass 11 to which the cover glass 11 is bonded. The surface of the opposite hard coat layer 14a is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the hard coat layer 14a irradiated with the above-described UV light is irradiated. The surface is a hard coat layer surface suitable for bonding.
 更に、例えば図18(c)のようなパタ-ンの第2のITO電極15が表面に施されたガラス基板16において、図12に示すように上記第2のITO電極15のパタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記ガラス基板16の第2のITO電極15パタ-ンが施された面を接合に適した透明導電膜表面とする。 Further, for example, in the glass substrate 16 on the surface of which the second ITO electrode 15 having a pattern as shown in FIG. 18C is applied, the pattern of the second ITO electrode 15 is changed as shown in FIG. UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is applied to the applied surface, and the surface on which the second ITO electrode 15 pattern of the glass substrate 16 is applied is joined. A suitable transparent conductive film surface is used.
 その後、PETフィルム14のUV照射処理された面とシランカップリング剤が導入されたシリコ-ン基板17bのUV照射処理された一方の面、ならびに、上記シリコ-ン基板17bのUV照射処理された他方の面とガラス基板16のUV照射処理された面とを重ね合わせる。
 そして、カバ-ガラス11が接合済みであるPETフィルム14、上記シリコ-ン基板17b、ガラス基板16の順番で積層されたワ-クを、適宜、加圧したり加熱したりして、カバ-ガラス11が接合済みであるPETフィルム14とシランカップリング剤が導入されたシリコ-ン基板17bと第2のITO電極15が表面に施されたガラス基板16とを一度に接合する。
 なお、図12に示すように、シランカップリング剤が導入されたシリコ-ン基板17aを介してカバ-ガラス11が接合されているPETフィルム14において、カバ-ガラス11が接合されている面の反対側のハ-ドコ-ト層14aの表面と、シリコ-ン基板17b両面と、第2のITO電極15が表面に施されたガラス基板16のITO電極15のパタ-ンが施された面へのUV照射は同時に行っても個別に行っても良い。
Thereafter, the UV-irradiated surface of the PET film 14, one surface of the silicon substrate 17 b into which the silane coupling agent was introduced, and the above-mentioned silicon substrate 17 b were UV-irradiated. The other surface is superposed on the surface of the glass substrate 16 that has been subjected to the UV irradiation treatment.
Then, the work laminated in the order of the PET film 14 to which the cover glass 11 has been bonded, the silicon substrate 17b, and the glass substrate 16 is appropriately pressed or heated to cover the cover glass. The PET film 14 to which 11 has been bonded, the silicon substrate 17b into which the silane coupling agent has been introduced, and the glass substrate 16 having the second ITO electrode 15 applied on the surface thereof are bonded together.
As shown in FIG. 12, in the PET film 14 to which the cover glass 11 is bonded through the silicon substrate 17a into which the silane coupling agent has been introduced, the surface of the cover glass 11 to which the cover glass 11 is bonded is shown. The surface of the hard electrode layer 14a on the opposite side, both surfaces of the silicon substrate 17b, and the surface of the glass substrate 16 on which the second ITO electrode 15 is applied, the pattern of the ITO electrode 15 being applied. UV irradiation may be performed simultaneously or individually.
 すなわち、本工程(B-3)における接合方法は以下の通りである。
(1)疎水性表面を持つ第1のワ-クであってカバ-ガラス11が接合されているPETフィルム14のカバ-ガラス11が接合されている面の反対側のハ-ドコ-ト層14a表面と、シランカップリング剤が導入されたシリコ-ン基板17bの両面と、疎水性表面を持つ第2のワ-クであるガラス基板16の第2の透明導電膜(ITO電極15)が表面に施された面に対して紫外線を照射して、上記PETフィルム14の紫外線照射面を接合に適したハ-ドコ-ト層表面に改質し、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記ガラス基板16の紫外線照射面を接合に適した透明導電膜表面とする。
(2)その後、PETフィルム14のUV照射処理された面とシランカップリング剤が導入されたシリコ-ン基板17bのUV照射処理された一方の面、ならびに、上記シリコ-ン基板17bのUV照射処理された他方の面とガラス基板16のUV照射処理されたプライマ-コ-ト面とを重ね合わせる。
(3)そして、カバ-ガラス11が接合済みであるPETフィルム14、シランカップリング剤が導入されたシリコ-ン基板17b、ガラス基板16の順番で積層された各ワ-クの接触面を加圧しながら、加熱して、各ワ-クを一度に接合する。
 なお、本接合方法の(3)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (B-3) is as follows.
(1) A hard coat layer on the opposite side of the surface of the PET film 14 to which the cover glass 11 is bonded, which is the first work having a hydrophobic surface and to which the cover glass 11 is bonded 14a, the second transparent conductive film (ITO electrode 15) of the glass substrate 16 which is a second work having a hydrophobic surface, and both surfaces of the silicon substrate 17b into which the silane coupling agent is introduced. The surface applied to the surface is irradiated with ultraviolet rays to modify the ultraviolet irradiation surface of the PET film 14 into a hard coat layer surface suitable for bonding, and the ultraviolet irradiation surface of the silicon substrate 17b. Is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the glass substrate 16 is made a transparent conductive film surface suitable for bonding.
(2) Thereafter, the UV-irradiated surface of the PET film 14, one surface of the silicon substrate 17b into which the silane coupling agent has been introduced, and the UV irradiation of the silicon substrate 17b. The other processed surface and the primer coat surface of the glass substrate 16 that has been subjected to the UV irradiation processing are overlapped.
(3) Then, contact surfaces of the workpieces laminated in the order of the PET film 14 to which the cover glass 11 has been bonded, the silicon substrate 17b into which the silane coupling agent has been introduced, and the glass substrate 16 are added. Each workpiece is joined at one time by heating while pressing.
In (3) of the present bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
〔実施の形態2〕
 実施の形態1においては、図1に示すタッチパネルの構成例において、第1の透明導電膜(例えば、ITO電極13)の基板がPETフィルム14であり、第2の透明導電膜(例えば、ITO電極15)の基板がガラス基板16であるようなタッチセンサモジュ-ルを組み上げる際に採用される本発明の接合方法を示した。
 実施の形態2においては、図13に示すタッチパネルの構成例におけるタッチセンサモジュ-ルを組み上げる際に採用される本発明の接合方法を示す。
[Embodiment 2]
In the first embodiment, in the configuration example of the touch panel shown in FIG. 1, the substrate of the first transparent conductive film (for example, ITO electrode 13) is the PET film 14, and the second transparent conductive film (for example, the ITO electrode). The bonding method of the present invention employed when assembling a touch sensor module in which the substrate 15) is the glass substrate 16 has been shown.
In the second embodiment, the joining method of the present invention employed when assembling the touch sensor module in the configuration example of the touch panel shown in FIG. 13 will be described.
 透明導電膜の基板としてガラス基板は、フィルム基板と比較すると視認性、耐久性が優れている。すなわち、ガラス基板はフィルム基板と比較すると光透過性が高く、光の錯乱や基板歪みの影響を小さくすることが可能であり、また紫外線などによる変色が少ないので、視認性の点でフィルム基板に対して優位である。また、ガラス基板は広い温度範囲での耐久性や耐水性についても優れており、フィルム基板と比較すると耐候性が高い。高い視認性や耐候性が求められる機械設備用タッチパネルや屋外使用のタッチパネルにおいて、透明導電膜の基板としてガラス基板を用いる要請が高くなってきており、近年、第1、第2の透明導電膜のいずれの基板にもガラス基板を用いることが検討されている。また、ガラス基板の薄板化も実現されつつあり、フィルム基板と同様、形状の自由度、パネルの薄型化にも対応可能となってきている。 As a substrate for a transparent conductive film, a glass substrate is superior in visibility and durability as compared with a film substrate. In other words, the glass substrate has higher light transmittance than the film substrate, can reduce the influence of light confusion and substrate distortion, and has less discoloration due to ultraviolet rays, etc. It is superior to this. In addition, the glass substrate is excellent in durability and water resistance in a wide temperature range, and has higher weather resistance than the film substrate. In a touch panel for mechanical equipment or a touch panel for outdoor use that requires high visibility and weather resistance, there is an increasing demand for using a glass substrate as a substrate for a transparent conductive film. The use of a glass substrate for any of the substrates has been studied. In addition, thinning of the glass substrate is being realized, and as with the film substrate, it has become possible to cope with the degree of freedom of shape and the thinning of the panel.
 図13は、第1の透明導電膜(例えば、ITO電極13)の基板、第2の透明導電膜(例えば、ITO電極15)の基板双方をガラス基板16a,16bとしたときに、本発明の接合方法を用いて組み上げたタッチパネルの構成例を示す。ここで、図13(a)は、シランカップリング剤が導入されたシリコ-ン基板17bを挟んで第1の透明導電膜13と第2の透明導電膜15とが対向する場合である。
 図13(a)において、タッチセンサモジュ-ル10aは、上からカバ-ガラス11、シランカップリング剤を導入したシリコ-ン基板17a、第1のガラス基板16a、第1のITO電極13、シランカップリング剤が導入されたシリコ-ン基板17b、第2のITO電極15、第2のガラス基板16bの順に積層される。その他の構成は、図1と同じである。
FIG. 13 shows the case where both the substrate of the first transparent conductive film (for example, ITO electrode 13) and the substrate of the second transparent conductive film (for example, ITO electrode 15) are glass substrates 16a and 16b. The structural example of the touch panel assembled using the joining method is shown. Here, FIG. 13A shows a case where the first transparent conductive film 13 and the second transparent conductive film 15 face each other across the silicon substrate 17b into which the silane coupling agent is introduced.
13A, the touch sensor module 10a includes a cover glass 11, a silicon substrate 17a introduced with a silane coupling agent, a first glass substrate 16a, a first ITO electrode 13, and a silane. The silicon substrate 17b into which the coupling agent is introduced, the second ITO electrode 15, and the second glass substrate 16b are laminated in this order. Other configurations are the same as those in FIG.
 図13(b)は、第1の透明導電膜13と第2の透明導電膜15のうち、第2の透明導電膜15のみシランカップリング剤が導入されたシリコ-ン基板17bと接触する場合である。
 図13(b)において、タッチセンサモジュ-ル10aは、上からカバ-ガラス11、シランカップリング剤が導入されたシリコ-ン基板17a、第1のITO電極13、第1のガラス基板16a、シランカップリング剤が導入されたシリコ-ン基板17b、第2のITO電極15、第2のガラス基板16bの順に積層される。その他の構成は、図13(a)と同じである。
 なお、図13に示すタッチパネルの構成例において、各基板、各層の厚みは説明を容易にするために誇張して描かれており、実際の各基板、各層の厚みの相対関係は、図13に示すものとは相違する。
 まず、図13(a)に示す構成例のタッチパネルを製造する際に用いられる本発明の接合方法について図14、図15により説明する。
FIG. 13B shows a case where only the second transparent conductive film 15 of the first transparent conductive film 13 and the second transparent conductive film 15 is in contact with the silicon substrate 17b into which the silane coupling agent is introduced. It is.
In FIG. 13B, the touch sensor module 10a includes a cover glass 11, a silicon substrate 17a into which a silane coupling agent is introduced, a first ITO electrode 13, a first glass substrate 16a, The silicon substrate 17b into which the silane coupling agent is introduced, the second ITO electrode 15, and the second glass substrate 16b are laminated in this order. Other configurations are the same as those in FIG.
In the configuration example of the touch panel shown in FIG. 13, the thickness of each substrate and each layer is exaggerated for easy explanation, and the relative relationship between the actual thickness of each substrate and each layer is shown in FIG. 13. It is different from what is shown.
First, the joining method of the present invention used when manufacturing the touch panel having the configuration example shown in FIG. 13A will be described with reference to FIGS.
〔工程C-1〕カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板との接合工程
 本工程を図14に示す。本工程では、カバ-ガラス11と第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板16aとの接合工程である。本工程は、本発明の接合方法が適用される〔工程3〕に先立つ前工程である。
[Step C-1] Joining Step of Cover Glass and First Glass Substrate with First Transparent Conductive Film (ITO Electrode) Surface This step is shown in FIG. This step is a bonding step between the cover glass 11 and the first glass substrate 16a having the first transparent conductive film (ITO electrode) applied on the surface. This step is a previous step prior to [Step 3] to which the bonding method of the present invention is applied.
(a)カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合
 図14(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17a表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17a表面を接合に適したシリコ-ン基板表面とする。
 次に、カバ-ガラス11の接合面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
(A) Bonding of Cover Glass 11 to Silicon Substrate 17a Introduced with Silane Coupling Agent As shown in FIG. 14 (a), an excimer is formed on the surface of the silicon substrate 17a introduced with the silane coupling agent. UV light emitted from an ultraviolet (UV) light source 40 such as a lamp is irradiated to make the surface of the silicon substrate 17a suitable for bonding.
Next, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
 その後、カバ-ガラス11の接合面とシランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とを重ね合わせる。適宜、重ね合わせたカバ-ガラス11と上記シリコ-ン基板17aとを加圧したり、加熱することにより、接合強度を増加させる。
 なお、カバ-ガラス11自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、カバ-ガラス11の接合面にUV光を照射することにより、カバ-ガラス11の接合面が活性化されたり、カバ-ガラス11表面の不純物が分解して除去されるので、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。また、上記シリコ-ン基板17a表面とカバ-ガラス11の接合面へのUV照射は同時に行っても良い。
Thereafter, the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent has been introduced are overlapped. As appropriate, the bonding strength is increased by pressurizing or heating the overlaid cover glass 11 and the silicon substrate 17a.
Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded. Further, UV irradiation on the surface of the silicon substrate 17a and the joint surface of the cover glass 11 may be performed simultaneously.
(b)カバ-ガラス11と接合しているシランカップリング剤が導入されたシリコ-ン基板17aと第1のガラス基板16との接合
 次に、図14(b)に示すように、カバ-ガラス11と接合済みのシランカップリング剤が導入されたシリコ-ン基板17aの、カバ-ガラス11との接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17aのUV照射面を接合に適したシリコ-ン基板表面とする。
 一方、例えば、図18(b)のようなパタ-ンの第1のITO電極13が表面に第1のガラス基板16aにおいて、第1のITO電極13が施された面と反対側の面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
(B) Bonding of Silicon Substrate 17a Introduced with Silane Coupling Agent Bonded to Cover Glass 11 and First Glass Substrate 16 Next, as shown in FIG. It is emitted from an ultraviolet (UV) light source 40 such as an excimer lamp on the surface of the silicon substrate 17a into which the silane coupling agent bonded to the glass 11 is introduced, on the side opposite to the bonding surface with the cover glass 11. The UV irradiation surface of the silicon substrate 17a is used as a silicon substrate surface suitable for bonding.
On the other hand, for example, the first ITO electrode 13 having a pattern as shown in FIG. 18B is formed on the surface of the first glass substrate 16a on the surface opposite to the surface on which the first ITO electrode 13 is applied. On the other hand, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated.
 その後、第1のガラス基板16aのUV照射表面とカバ-ガラス11と接合済みのシランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とを重ね合わせる。適宜、重ね合わせたカバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとを加圧したり、加熱することにより、接合強度を増加させる。 Thereafter, the UV irradiation surface of the first glass substrate 16a and the UV irradiation surface of the silicon substrate 17a into which the silane coupling agent bonded to the cover glass 11 is introduced are overlapped. The bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent.
 なお、上記したように、第1のガラス基板16aにおける第1のITO電極13が施された面と反対側の面(第1のガラス基板16aの接合面)自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、第1のガラス基板16aの接合面にUV光を照射することにより、第1のガラス基板16aの接合面が活性化されたり、第1のガラス基板16aの接合面の不純物が分解して除去されるので、第1のガラス基板16aとシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。
 また、上記シリコ-ン基板17a表面と第1のガラス基板16aの接合面へのUV照射は同時に行っても良い。
As described above, the surface on the opposite side to the surface on which the first ITO electrode 13 is applied in the first glass substrate 16a (the bonding surface of the first glass substrate 16a) itself is a hydrophilic surface. It is not always necessary to irradiate UV light. However, by irradiating the bonding surface of the first glass substrate 16a with UV light, the bonding surface of the first glass substrate 16a is activated or impurities on the bonding surface of the first glass substrate 16a are decomposed. Since it is removed, the first glass substrate 16a and the silicon substrate 17a introduced with the silane coupling agent are more reliably bonded.
Further, UV irradiation may be simultaneously performed on the surface of the silicon substrate 17a and the bonding surface of the first glass substrate 16a.
〔工程D-1〕第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板と第2の透明導電膜(ITO電極)が表面に施された第2のガラス基板との接合工程
 本工程を図15に示す。本工程は、疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介して貼り合わせ方法を示すものであり、疎水性表面を持つ第1のワ-クに相当するのは一方の面にカバ-ガラス11が接合されていて他方の面に第1のITO電極13が施されている第1のガラス基板16a、疎水性表面を持つ第2のワ-クに相当するのは第2の透明導電膜(ITO電極)が表面に施された第2のガラス基板16bである。
[Step D-1] A first glass substrate having a first transparent conductive film (ITO electrode) applied on its surface and a second glass substrate having a second transparent conductive film (ITO electrode) provided on its surface; FIG. 15 shows this process. This process shows a method of bonding a first work having a hydrophobic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced. The first work having a hydrophobic surface corresponds to the first work in which the cover glass 11 is bonded to one surface and the first ITO electrode 13 is applied to the other surface. The glass substrate 16a, which corresponds to the second work having a hydrophobic surface, is a second glass substrate 16b having a surface provided with a second transparent conductive film (ITO electrode).
(a)第1のガラス基板16a(カバ-ガラス11と接合済み)とシランカップリング剤が導入されたシリコ-ン基板17bとの接合
 図15(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17bの表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bの表面を接合に適したシリコ-ン基板表面とする。
(A) Bonding of the first glass substrate 16a (already bonded to the cover glass 11) and the silicon substrate 17b introduced with the silane coupling agent As shown in FIG. 15 (a), the silane coupling agent is A silicon substrate surface suitable for bonding the surface of the silicon substrate 17b by irradiating the surface of the introduced silicon substrate 17b with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. And
 次に、図15(a)に示すように、先の工程において一方の面にカバ-ガラス11が接合されていて他方の面に第1のITO電極13が施されている第1のガラス基板16aにおいて、上記第1のITO電極13のパタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記第1のガラス基板16aの第1のITO電極13パタ-ンが施された面を接合に適した透明導電膜表面とする。 Next, as shown in FIG. 15 (a), the first glass substrate in which the cover glass 11 is bonded to one surface in the previous step and the first ITO electrode 13 is applied to the other surface. In 16a, the surface of the first ITO electrode 13 on which the pattern is applied is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp to thereby irradiate the first glass substrate 16a. The surface on which the first ITO electrode 13 pattern is applied is a transparent conductive film surface suitable for bonding.
 その後、シランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面と第1のガラス基板16aのUV照射処理した面とを重ね合わせ、適宜、第1のガラス基板16aと上記シリコ-ン基板17bとを加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17bと一方の面にカバ-ガラス11が接合されていて他方の面に第1のITO電極13が施されている第1のガラス基板16aとを接合する。 Thereafter, the UV irradiation surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the surface of the first glass substrate 16a that have been subjected to the UV irradiation treatment are overlapped, and the first glass substrate 16a and the above silicon are appropriately selected. The substrate 17b is pressurized or heated to cover the silicon substrate 17b into which the silane coupling agent is introduced and the cover glass 11 is bonded to one surface, and the first ITO electrode 13 is bonded to the other surface. Is bonded to the first glass substrate 16a.
(b)第1のガラス基板16a(カバ-ガラス11と接合済み)と第2のガラス基板16bとの接合
 次に、図15(b)に示すように、第1のガラス基板16aと接合されたシランカップリング剤が導入されたシリコ-ン基板17bの、第1のガラス基板16aとの接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bのUV照射面を接合に適したシリコ-ン基板表面とする。
(B) Joining of the first glass substrate 16a (already joined to the cover glass 11) and the second glass substrate 16b Next, as shown in FIG. 15 (b), the first glass substrate 16a is joined. UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp on the surface of the silicon substrate 17b into which the silane coupling agent has been introduced, opposite to the bonding surface with the first glass substrate 16a. The UV irradiation surface of the silicon substrate 17b is used as a silicon substrate surface suitable for bonding.
 一方、例えば、図18(c)のようなパタ-ンの第2のITO電極15が表面に施された第2のガラス基板16bにおいて、上記第2のITO電極パタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記第2のガラス基板16bの第2のITO電極15パタ-ンが施された面を接合に適した透明導電膜表面とする。 On the other hand, for example, in the second glass substrate 16b having the second ITO electrode 15 having a pattern as shown in FIG. 18C, the surface on which the second ITO electrode pattern is applied. Is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, and the surface of the second glass substrate 16b on which the second ITO electrode 15 pattern is applied is suitable for bonding. The surface of the transparent conductive film.
 その後、第1のガラス基板16aと接合されたシランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面と第2のガラス基板16bのUV照射処理した面とを重ね合わせ、適宜、第2のガラス基板16bと第1のガラス基板16aと接合済みの上記シリコ-ン基板17bとを加圧したり加熱したりして、第1のガラス基板16aと接合済みのシランカップリング剤が導入されたシリコ-ン基板17bと、第2のITO電極15が表面に施された第2のガラス基板16bとを接合する。 Thereafter, the UV irradiation surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the first glass substrate 16a and the surface irradiated with the UV irradiation of the second glass substrate 16b are overlapped, and the first The second glass substrate 16b and the first glass substrate 16a and the silicon substrate 17b already bonded are pressurized or heated to introduce the silane coupling agent bonded to the first glass substrate 16a. Further, the silicon substrate 17b and the second glass substrate 16b on the surface of which the second ITO electrode 15 is applied are bonded.
 すなわち、本工程(D-1)における接合方法は以下の通りである。
(1)シランカップリング剤が導入されたシリコ-ン基板17bの表面と、疎水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11と接合済み)の第1のITO電極13が施されている面とに対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記第1のガラス基板16aの紫外線照射面を接合に適した透明導電膜表面とする。
(2)両紫外線照射面同士を重ね合わせる。
(3)上から、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11接合済み)の順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
(4)疎水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11接合済み)に接合されたシランカップリング剤が導入されたシリコ-ン基板17bの表面と、疎水性表面を持つ第2のワ-クである第2のガラス基板16bの第2の透明導電膜(ITO電極15)が表面に施された面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記第2のガラス基板16bの紫外線照射面を接合に適した透明導電膜表面とする。
(5)両紫外線照射面同士を重ね合わせる。
(6)上から、疎水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11接合済み)、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第2のワ-クである第2のガラス基板16bの順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(3)(6)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (D-1) is as follows.
(1) The surface of the silicon substrate 17b into which the silane coupling agent has been introduced and the first glass substrate 16a (which has been bonded to the cover glass 11), which is the first work having a hydrophobic surface. The surface of the silicon substrate 17b is irradiated with ultraviolet rays to modify the ultraviolet irradiation surface of the silicon substrate 17b to a silicon substrate surface suitable for bonding. The ultraviolet-irradiated surface of the glass substrate 16a is a transparent conductive film surface suitable for bonding.
(2) Both ultraviolet irradiation surfaces are overlapped.
(3) From above, the silicon substrate 17b into which the silane coupling agent has been introduced and the first glass substrate 16a (cover glass 11 bonded) as the first work having a hydrophobic surface are stacked in this order. Heat while pressing the contact surface of each workpiece.
(4) a surface of a silicon substrate 17b introduced with a silane coupling agent bonded to a first glass substrate 16a (cover glass 11 bonded) which is a first work having a hydrophobic surface; The surface of the second glass substrate 16b, which is the second work having a hydrophobic surface, on which the second transparent conductive film (ITO electrode 15) is applied is irradiated with ultraviolet rays, so that the silicon The ultraviolet irradiation surface of the glass substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the second glass substrate 16b is made a transparent conductive film surface suitable for bonding.
(5) Superimpose both ultraviolet irradiation surfaces.
(6) From the top, a first glass substrate 16a (cover glass 11 bonded) as a first work having a hydrophobic surface, a silicon substrate 17b into which a silane coupling agent is introduced, hydrophobic Heating is performed while pressurizing the contact surfaces of the workpieces that are stacked in the order of the second glass substrate 16b, which is the second workpiece having the surface.
In (3) and (6) of this bonding method, only pressurization or heating may be used, but it is preferable to heat while applying pressure.
 次に、図13(b)に示す構成例のタッチパネルを製造する際に適用される本発明の接合方法について図16、図17により説明する。
〔工程C-2〕カバ-ガラスと第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板との接合工程
 本工程を図16に示す。本工程は、親水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介して貼り合わせ方法を示すものであり、親水性表面を持つ第1のワ-クに相当するのはカバ-ガラス11、疎水性表面を持つ第2のワ-クに相当するのは第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板16aである。
Next, the joining method of the present invention applied when manufacturing the touch panel having the configuration example shown in FIG. 13B will be described with reference to FIGS.
[Step C-2] Joining Step of Cover Glass and First Glass Substrate with First Transparent Conductive Film (ITO Electrode) Provided on the Surface This step is shown in FIG. This process shows a method of bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced. The cover glass 11 corresponds to the first work having a hydrophilic surface, and the first transparent conductive film (ITO electrode) corresponds to the second work having a hydrophobic surface. Is the first glass substrate 16a provided on the surface.
(a)カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合
第1のワ-クであるカバ-ガラス11の下側表面と第2のワ-クである第1のガラス基板16aの第1のITO電極13側表面とを接合するのに先立って、まず、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合を行う。
 図16(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17a表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17a表面を接合に適したシリコ-ン基板表面とする。
 次に、カバ-ガラス11の接合面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
(A) The lower surface of the cover glass 11 as the first work and the second work as the second work, which join the cover glass 11 and the silicon substrate 17a into which the silane coupling agent is introduced. Prior to bonding the surface of the first glass substrate 16a to the first ITO electrode 13 side, first, the cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent are bonded.
As shown in FIG. 16A, the surface of the silicon substrate 17a into which the silane coupling agent has been introduced is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The surface of the substrate 17a is a silicon substrate surface suitable for bonding.
Next, UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp is irradiated on the joint surface of the cover glass 11.
 その後、カバ-ガラス11の接合面とシランカップリング剤が導入されたシリコ-ン基板17aのUV照射表面とを重ね合わせる。適宜、重ね合わせたカバ-ガラス11と上記シリコ-ン基板17aとを加圧したり、加熱することにより、接合強度を増加させる。 Thereafter, the bonding surface of the cover glass 11 and the UV irradiation surface of the silicon substrate 17a introduced with the silane coupling agent are overlapped. The bonding strength is increased by appropriately pressing or heating the overlapped cover glass 11 and the silicon substrate 17a.
 なお、カバ-ガラス11自体は親水性表面であるため、必ずしもUV光を照射する必要はない。しかしながら、カバ-ガラス11の接合面にUV光を照射することにより、カバ-ガラス11の接合面が活性化されたり、カバ-ガラス11表面の不純物が分解して除去されるので、カバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aとの接合がより確実に行われる。
また、シランカップリング剤が導入されたシリコ-ン基板表面とカバ-ガラス11の接合面へのUV照射は同時に行っても良い。
Since the cover glass 11 itself has a hydrophilic surface, it is not always necessary to irradiate UV light. However, by irradiating the joint surface of the cover glass 11 with UV light, the joint surface of the cover glass 11 is activated and impurities on the surface of the cover glass 11 are decomposed and removed, so that the cover glass is removed. 11 and the silicon substrate 17a into which the silane coupling agent is introduced are more reliably bonded.
Further, UV irradiation may be performed simultaneously on the surface of the silicon substrate into which the silane coupling agent has been introduced and the cover surface of the cover glass 11.
(b)カバ-ガラス11と接合しているシランカップリング剤が導入されたシリコ-ン基板17aと、第1のガラス基板16aとの接合
 次に、図16(b)に示すように、例えば、図18(b)のようなパタ-ンの第1のITO電極13が施された第1のガラス基板16aにおいて、上記第1のITO電極13パタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記第1のガラス基板16aのUV照射面を接合に適した透明導電膜表面とする。
(B) Bonding of Silicon Substrate 17a Introduced with Silane Coupling Agent Bonded to Cover Glass 11 and First Glass Substrate 16a Next, as shown in FIG. In the first glass substrate 16a provided with the first ITO electrode 13 having the pattern as shown in FIG. 18B, the excimer is applied to the surface provided with the first ITO electrode 13 pattern. By irradiating UV light emitted from an ultraviolet (UV) light source 40 such as a lamp, the UV irradiation surface of the first glass substrate 16a is made a transparent conductive film surface suitable for bonding.
 一方、カバ-ガラス11と接合されたシランカップリング剤が導入されたシリコ-ン基板17aの、カバ-ガラス11との接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17aのUV照射面を接合に適したシリコ-ン基板表面とする。 On the other hand, an ultraviolet (UV) light source such as an excimer lamp is formed on the surface of the silicon substrate 17a into which the silane coupling agent joined to the cover glass 11 is introduced, on the side opposite to the joint surface with the cover glass 11. The UV light emitted from 40 is irradiated so that the UV irradiation surface of the silicon substrate 17a is a silicon substrate surface suitable for bonding.
 その後、シランカップリング剤が導入されたシリコ-ン基板17aのUV照射処理した表面と第1のガラス基板16aのUV照射処理した面とを重ね合わせ、適宜、重ね合わせたカバ-ガラス11と上記シリコ-ン基板17aとを加圧したり加熱したりして、カバ-ガラス11が接合されたシランカップリング剤が導入されたシリコ-ン基板17aと、第1のITO電極13が表面に施された第1のガラス基板16aとを接合する。 Thereafter, the UV-irradiated surface of the silicon substrate 17a introduced with the silane coupling agent and the UV-irradiated surface of the first glass substrate 16a are overlaid, and the overlaid cover glass 11 and the above are appropriately combined. The silicon substrate 17a to which the silane coupling agent having the cover glass 11 bonded is introduced by pressing or heating the silicon substrate 17a and the first ITO electrode 13 are applied to the surface. The first glass substrate 16a is bonded.
 すなわち、本工程(C-2)において採用された接合方法は以下の通りである。
(1)親水性表面を持つ第1のワ-クであるカバ-ガラス11の下側表面に、シランカップリング剤が導入されたシリコ-ン基板17aを接合する。接合方法は、上記シリコ-ン基板17aに紫外線を照射して紫外線照射面を接合に適したシリコ-ン基板表面とし、当該表面をカバ-ガラス11上に積層して、第1のワ-クであるカバ-ガラス11とシランカップリング剤が導入されたシリコ-ン基板17aを接合する。なお、上記したように、カバ-ガラス11の接合面にも紫外線を照射してもよい。
(2)親水性表面を持つ第1のワ-クであるカバ-ガラス11に接合されたシランカップリング剤が導入されたシリコ-ン基板17a表面と、疎水性表面を持つ第2のワ-クである第1のガラス基板16aの第1の透明導電膜(ITO電極13)が施された面に対して紫外線を照射して、上記シリコ-ン基板17aの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記第1のガラス基板16aの紫外線照射面を接合に適した透明導電膜表面とする。
(3)両紫外線照射面同士を重ね合わせる。
(4)上から、親水性表面を持つ第1のワ-クであるカバ-ガラス11、シランカップリング剤が導入されたシリコ-ン基板17a、第2のワ-クである第1のガラス基板16aの順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(4)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method employed in this step (C-2) is as follows.
(1) The silicon substrate 17a introduced with a silane coupling agent is bonded to the lower surface of the cover glass 11, which is the first work having a hydrophilic surface. In the bonding method, the silicon substrate 17a is irradiated with ultraviolet rays so that the ultraviolet-irradiated surface is a silicon substrate surface suitable for bonding, and the surface is laminated on the cover glass 11 to form a first work piece. The cover glass 11 and the silicon substrate 17a introduced with the silane coupling agent are joined. As described above, the joint surface of the cover glass 11 may be irradiated with ultraviolet rays.
(2) The surface of the silicon substrate 17a introduced with the silane coupling agent joined to the cover glass 11, which is the first work having a hydrophilic surface, and the second work having a hydrophobic surface. The surface of the first glass substrate 16a, which is the first glass substrate 16a, is irradiated with ultraviolet rays on the surface of the first transparent conductive film (ITO electrode 13), and the ultraviolet irradiation surface of the silicon substrate 17a is suitable for bonding. The surface of the first glass substrate 16a is modified to a transparent conductive film surface suitable for bonding.
(3) Both ultraviolet irradiation surfaces are overlapped.
(4) From the top, the cover glass 11 as the first work having a hydrophilic surface, the silicon substrate 17a into which the silane coupling agent is introduced, and the first glass as the second work Heating is performed while pressing the contact surfaces of the workpieces stacked in the order of the substrate 16a.
In (4) of this bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
〔工程D-2〕第1の透明導電膜(ITO電極)が表面に施された第1のガラス基板と第2の透明導電膜(ITO電極)が表面に施された第2のガラス基板との接合工程
 本工程を図17に示す。本工程においても、親水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシランカップリング剤が導入されたシリコ-ン基板を介して貼り合わせ方法を示すものであり、親水性表面を持つ第1のワ-クに相当するのは第1のITO電極13が施されている一方の面にカバ-ガラス11が接合されている第1のガラス基板16a、疎水性表面を持つ第2のワ-クに相当するのは第2の透明導電膜(ITO電極)が表面に施された第2のガラス基板16bである。
[Step D-2] A first glass substrate having a first transparent conductive film (ITO electrode) applied on its surface and a second glass substrate having a second transparent conductive film (ITO electrode) provided on its surface; FIG. 17 shows this process. Also in this step, a method of bonding a first work having a hydrophilic surface and a second work having a hydrophobic surface through a silicon substrate into which a silane coupling agent has been introduced is shown. The first work piece having a hydrophilic surface corresponds to the first glass substrate 16a in which the cover glass 11 is bonded to one surface on which the first ITO electrode 13 is applied. Corresponding to the second work having a hydrophobic surface is the second glass substrate 16b having a second transparent conductive film (ITO electrode) applied on the surface.
(a)第1のガラス基板16a(カバ-ガラス11と接合済み)とシランカップリング剤が導入されたシリコ-ン基板17bとの接合
 親水性表面を持つ第1のワ-クである第1のガラス基板16aの、カバ-ガラス11と接合済みの第1のITO電極13側と反対側表面と、疎水性表面を持つ第2のワ-クである第2のガラス基板16bの第2のITO電極15側表面とを接合するのに先立って、まず、第1のガラス基板16a(カバ-ガラス11と接合済み)とシランカップリング剤が導入されたシリコ-ン基板17bとの接合を行う。
(A) Bonding of the first glass substrate 16a (already bonded to the cover glass 11) and the silicon substrate 17b into which the silane coupling agent has been introduced The first work as a first work having a hydrophilic surface The second glass substrate 16b, which is a second work having a surface opposite to the surface of the first ITO electrode 13 bonded to the cover glass 11 and a hydrophobic surface, of the glass substrate 16a of the second glass substrate 16a. Prior to bonding the ITO electrode 15 side surface, first, the first glass substrate 16a (already bonded to the cover glass 11) and the silicon substrate 17b introduced with a silane coupling agent are bonded. .
 図17(a)に示すように、シランカップリング剤が導入されたシリコ-ン基板17b表面にエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bのUV照射面を接合に適したシリコ-ン基板表面とする。
 次に、図17(a)に示すように、先の工程において第1のガラス基板16aのカバ-ガラス11と接合済みである第1のITO電極13側と反対側表面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射する。
As shown in FIG. 17 (a), the surface of the silicon substrate 17b into which the silane coupling agent has been introduced is irradiated with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp. The UV irradiation surface of the substrate 17b is a silicon substrate surface suitable for bonding.
Next, as shown in FIG. 17A, an excimer lamp or the like is applied to the surface opposite to the first ITO electrode 13 side that has been bonded to the cover glass 11 of the first glass substrate 16a in the previous step. UV light emitted from the ultraviolet (UV) light source 40 is irradiated.
 その後、シランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面と第1のガラス基板16aのUV照射面とを重ね合わせ、適宜、第1のガラス基板16aと上記シリコ-ン基板17bとの接触面を加圧したり加熱したりして、シランカップリング剤が導入されたシリコ-ン基板17bと一方の面にカバ-ガラス11が接合されている第1のガラス基板16aとを接合する。 Thereafter, the UV irradiation surface of the silicon substrate 17b into which the silane coupling agent is introduced and the UV irradiation surface of the first glass substrate 16a are overlapped, and the first glass substrate 16a and the silicon substrate 17b are appropriately combined. The silicon substrate 17b in which the silane coupling agent is introduced and the first glass substrate 16a having the cover glass 11 bonded to one surface are bonded by pressurizing or heating the contact surface. To do.
(b)第1のガラス基板16a(カバ-ガラス11と接合済み)と第2のガラス基板16bとの接合
 次に、図17(b)に示すように、第1のガラス基板16aと接合されたシランカップリング剤が導入されたシリコ-ン基板17bの、第1のガラス基板16aとの接合面とは反対側の表面に、エキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記シリコ-ン基板17bのUV照射面を接合に適したシリコ-ン基板表面とする。
(B) Bonding of First Glass Substrate 16a (Coupled with Cover Glass 11) and Second Glass Substrate 16b Next, as shown in FIG. 17B, the first glass substrate 16a is bonded. UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp on the surface of the silicon substrate 17b into which the silane coupling agent has been introduced, opposite to the bonding surface with the first glass substrate 16a. The UV irradiation surface of the silicon substrate 17b is used as a silicon substrate surface suitable for bonding.
 一方、例えば、図18(c)のようなパタ-ンの第2のITO電極15が表面に施された第2のガラス基板16bにおいて、上記第2のITO電極15パタ-ンが施された面に対してエキシマランプ等の紫外線(UV)光源40から放出されるUV光を照射して、上記第2のガラス基板16bの第2のITO電極15パタ-ンが施された面を接合に適した透明導電膜表面とする。 On the other hand, for example, the second ITO electrode 15 pattern is applied to the second glass substrate 16b having the second ITO electrode 15 having a pattern as shown in FIG. By irradiating the surface with UV light emitted from an ultraviolet (UV) light source 40 such as an excimer lamp, the surface of the second glass substrate 16b provided with the second ITO electrode 15 pattern is joined. A suitable transparent conductive film surface is used.
 その後、第1のガラス基板16aと接合されたシランカップリング剤が導入されたシリコ-ン基板17bのUV照射表面と第2のガラス基板16bのUV照射処理した面とを重ね合わせ、適宜、第2のガラス基板16bと第1のガラス基板16aと接合された上記シリコ-ン基板17bとを加圧したり加熱したりして、第1のガラス基板16aと接合されたシランカップリング剤が導入されたシリコ-ン基板17bと、第2のITO電極15が表面に施された第2のガラス基板16bとを接合する。 Thereafter, the UV irradiation surface of the silicon substrate 17b introduced with the silane coupling agent bonded to the first glass substrate 16a and the surface irradiated with the UV irradiation of the second glass substrate 16b are overlapped, and the first The silane coupling agent bonded to the first glass substrate 16a is introduced by pressurizing or heating the second glass substrate 16b and the silicon substrate 17b bonded to the first glass substrate 16a. Further, the silicon substrate 17b and the second glass substrate 16b on the surface of which the second ITO electrode 15 is applied are bonded.
 すなわち、本工程(D-2)における接合方法は以下の通りである。
(1)親水性表面を持つ第1のワ-クであって、第1のITO電極13が施されている一方の面にシランカップリング剤が導入されたシリコ-ン基板17aを介してカバ-ガラス11が接合されている第1のガラス基板16aの他方の面と、シランカップリング剤が導入されたシリコ-ン基板17b表面とに対して紫外線を照射して、両ワ-クの紫外線照射面が密着するように親水性表面を持つ第1のワ-クである第1のガラス基板16aと上記シリコ-ン基板17bとを積層して、親水性表面を持つ第1のワ-クである第1のガラス基板16aとシランカップリング剤が導入されたシリコ-ン基板17bを接合する。
(2)親水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11接合済み)に接合されたシランカップリング剤が導入されたシリコ-ン基板17b表面と、疎水性表面を持つ第2のワ-クである第2のガラス基板16bの第2の透明導電膜(ITO電極15)が表面に施された面に対して紫外線を照射して、上記シリコ-ン基板17bの紫外線照射面を接合に適したシリコ-ン基板表面に改質し、上記第2のガラス基板16bの紫外線照射面を接合に適した透明導電膜表面とする。
(3)両紫外線照射面同士を重ね合わせる。
(4)上から、親水性表面を持つ第1のワ-クである第1のガラス基板16a(カバ-ガラス11接合済み)、シランカップリング剤が導入されたシリコ-ン基板17b、疎水性表面を持つ第2のワ-クである第2のガラス基板16bの順に重ね合わせられている各ワ-クの接触面を加圧しながら、加熱する。
 なお、本接合方法の(4)においては、加圧のみ、加熱のみでもよいが、加圧しながら加熱したほうが望ましい。
That is, the bonding method in this step (D-2) is as follows.
(1) A first work having a hydrophilic surface, which is covered through a silicon substrate 17a in which a silane coupling agent is introduced on one surface on which the first ITO electrode 13 is applied. And irradiating the other surface of the first glass substrate 16a to which the glass 11 is bonded and the surface of the silicon substrate 17b into which the silane coupling agent has been introduced with ultraviolet rays of both works. A first glass substrate 16a, which is a first work having a hydrophilic surface, and the silicon substrate 17b are laminated so that the irradiation surface is in close contact with each other, thereby forming a first work having a hydrophilic surface. The first glass substrate 16a and the silicon substrate 17b into which the silane coupling agent is introduced are bonded.
(2) a surface of a silicon substrate 17b into which a silane coupling agent bonded to a first glass substrate 16a (cover glass 11 bonded) as a first work having a hydrophilic surface is introduced; The surface of the second glass substrate 16b, which is the second work having a hydrophobic surface, on which the second transparent conductive film (ITO electrode 15) is applied is irradiated with ultraviolet rays, so that the silicon- The ultraviolet irradiation surface of the glass substrate 17b is modified to a silicon substrate surface suitable for bonding, and the ultraviolet irradiation surface of the second glass substrate 16b is used as a transparent conductive film surface suitable for bonding.
(3) Both ultraviolet irradiation surfaces are overlapped.
(4) From above, a first glass substrate 16a (cover glass 11 bonded), which is a first work having a hydrophilic surface, a silicon substrate 17b into which a silane coupling agent is introduced, hydrophobic Heating is performed while pressurizing the contact surfaces of the workpieces that are stacked in the order of the second glass substrate 16b, which is the second workpiece having the surface.
In (4) of this bonding method, only pressurization or heating may be used, but it is desirable to heat while applying pressure.
 本発明の接合方法を採用した〔工程C-1〕と〔工程D-1〕を経て、図13(a)に示すタッチパネルにおけるタッチセンサモジュ-ルが構成される。
 また、本発明の接合方法を採用した〔工程C-2〕と〔工程D-2〕を経て、図13(b)に示すタッチパネルにおけるタッチセンサモジュ-ルが構成される。
The touch sensor module in the touch panel shown in FIG. 13A is configured through [Step C-1] and [Step D-1] employing the bonding method of the present invention.
Further, the touch sensor module in the touch panel shown in FIG. 13B is configured through [Step C-2] and [Step D-2] employing the bonding method of the present invention.
 このタッチセンサモジュ-ル10aとタッチパネル制御部10bがLCDパネル等の画像表示装置30上に積層されて、タッチパネルが構成される。ここで、タッチパネル制御部10bの構造例や、タッチセンサモジュ-ル10a、タッチパネル制御部10b、画像表示装置30の順に積層されるタッチパネルの接合は、従来技術と同様であるので、ここでは詳細な説明を省略する。 The touch sensor module 10a and the touch panel control unit 10b are stacked on the image display device 30 such as an LCD panel to constitute a touch panel. Here, the structure example of the touch panel control unit 10b and the bonding of the touch panel laminated in the order of the touch sensor module 10a, the touch panel control unit 10b, and the image display device 30 are the same as those in the related art, and therefore detailed here. Description is omitted.
 本実施の形態2においても、タッチセンサモジュ-ルの各構成要素の貼り合わせに際して、従来のOCAテ-プまたはOCRに代えてシランカップリング剤が導入されたシリコ-ン(基板)を使用し、シランカップリング剤が導入されたシリコ-ン(基板)と各構成要素(例えば、ITO電極等の導電性薄膜が設けられている基板)との接合面に紫外線を照射するものである。よって、実施の形態1のときと同様の効果を奏することが可能となる。
 特に本実施の形態2において構築したタッチセンサモジュ-ルは、透明導電膜の基板としてガラス基板のみを使用しているので、このタッチセンサモジュ-ルを組み込んだタッチパネルは、高い視認性や耐候性を有することになる。
In the second embodiment, a silicon (substrate) into which a silane coupling agent is introduced is used in place of the conventional OCA tape or OCR when the components of the touch sensor module are bonded. In addition, ultraviolet rays are irradiated to the bonding surface between the silicon (substrate) into which the silane coupling agent is introduced and each component (for example, a substrate provided with a conductive thin film such as an ITO electrode). Therefore, the same effect as in the first embodiment can be achieved.
In particular, since the touch sensor module constructed in the second embodiment uses only a glass substrate as the substrate of the transparent conductive film, a touch panel incorporating this touch sensor module has high visibility and weather resistance. Will have.
[実験例]
 上記したように、本発明の貼り合わせ方法においては、第1のワ-クと接合面に導電性薄膜が施されている第2のワ-クとの接合面に紫外線照射により接合に適した面を有するシランカップリング剤が導入されたシリコ-ン基板を介在させて第1のワ-クと第2のワ-クとを積層し、積層した第1のワ-クおよび第2のワ-クを加熱・加圧処理を施して、第1のワ-クと第2のワ-クとを貼り合わせるものである。特に、本発明の貼り合わせ方法においては、従来、紫外線照射による表面改質処理を用いても接合させることが不可能であったシリコ-ン基板と導電性薄膜基板の導電性薄膜表面との貼り合わせやシリコ-ン基板と表面が疎水性である場合の導電性薄膜基板との貼り合わせについても、シランカップリング剤が導入されたシリコ-ン基板に紫外線を照射することにより上記シリコ-ン基板の紫外線照射表面を接合に適したシリコ-ン基板表面状態とし、上記導電性薄膜基板に紫外線を照射することにより上記導電性薄膜基板の紫外線照射表面を接合に適した導電性薄膜表面状態とすることにより、上記貼り合わせを可能としたものである。
[Experimental example]
As described above, the bonding method of the present invention is suitable for bonding to the bonding surface between the first workpiece and the second workpiece in which the conductive film is applied to the bonding surface by ultraviolet irradiation. A first work and a second work are laminated with a silicon substrate having a silane coupling agent having a surface interposed therebetween, and the first and second works are laminated. -Heating and pressurizing the workpiece and bonding the first workpiece and the second workpiece together. In particular, in the bonding method of the present invention, bonding of a silicon substrate and a conductive thin film surface of a conductive thin film substrate, which could not be bonded even by using a surface modification treatment by ultraviolet irradiation, is conventionally performed. In addition, for the bonding of the silicon substrate to the conductive thin film substrate when the surface is hydrophobic, the above silicon substrate is irradiated by irradiating ultraviolet rays onto the silicon substrate into which the silane coupling agent has been introduced. A surface of the silicon substrate suitable for bonding is made to be a surface state of a silicon substrate suitable for bonding, and the surface of the conductive thin film substrate is irradiated with ultraviolet light to make the surface of the conductive thin film substrate suitable for bonding. Thus, the above-mentioned bonding can be performed.
 以下、シランカップリング剤が導入されたシリコ-ン基板と導電性薄膜が施された導電性薄膜基板とを接合する場合の実験例を示す。
(I)シランカップリング剤を導入したシリコ-ン基板の作成
先ず、シランカップリング剤を導入したシリコ-ン基板を作成した。上記したように、シランカップリング剤を導入したシリコ-ン基板は、未硬化のシリコ-ン樹脂にシランカップリング剤を導入して、その後硬化させて形成した。
Hereinafter, experimental examples in the case of bonding a silicon substrate into which a silane coupling agent has been introduced and a conductive thin film substrate to which a conductive thin film has been applied will be described.
(I) Preparation of a silicon substrate into which a silane coupling agent was introduced First, a silicon substrate into which a silane coupling agent was introduced was prepared. As described above, the silicon substrate into which the silane coupling agent was introduced was formed by introducing the silane coupling agent into an uncured silicone resin and then curing it.
 未硬化のシリコ-ン樹脂としては、以下の2つの樹脂を用いた。
(A-1)一液型シリコ-ン樹脂X-32-3095(信越化学製)
(A-2)二液型シリコ-ン樹脂SIM260(信越化学製)
 ここで、一液型シリコ-ン樹脂は、主剤のみを熱硬化等の硬化反応により硬化させるものである。一方、二液型シリコ-ン樹脂は、主剤および硬化剤からなり、これら二液を混合後、熱硬化等の硬化反応により硬化させるものである。
As the uncured silicone resin, the following two resins were used.
(A-1) One-part silicone resin X-32-3095 (manufactured by Shin-Etsu Chemical)
(A-2) Two-part silicone resin SIM260 (manufactured by Shin-Etsu Chemical)
Here, the one-pack type silicone resin cures only the main agent by a curing reaction such as thermal curing. On the other hand, a two-component silicone resin is composed of a main agent and a curing agent, and these two components are mixed and then cured by a curing reaction such as thermosetting.
 また、シランカップリング剤としては、以下の3つを用いた
(B-1)イソシアネ-ト系シランカップリング剤KBE-9007(信越化学製)
(B-2)エポキシ系シランカップリング剤KBE-403(信越化学製)
(B-3)アミノイソシアネ-ト系シランカップリング剤KBM-903(信越化学製)
 なお、各シランカップリング剤の構造式を以下に記す。
The following three silane coupling agents were used: (B-1) Isocyanate silane coupling agent KBE-9007 (manufactured by Shin-Etsu Chemical)
(B-2) Epoxy silane coupling agent KBE-403 (manufactured by Shin-Etsu Chemical)
(B-3) Aminoisocyanate silane coupling agent KBM-903 (manufactured by Shin-Etsu Chemical)
The structural formula of each silane coupling agent is shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(I-1)一液型シリコ-ン樹脂(X-32-3095)とシランカップリング剤を用いたシリコ-ン基板形成
 一液型シリコ-ン樹脂とシランカップリング剤を用いたシリコ-ン基板形成は、以下のような手順で行った。
 まず、未硬化のX-32-3095溶液にシランカップリング剤を2%重量濃度になるように導入した後、約10分間の撹拌を行った。
 次に、ガラス製シャ-レにこの混合溶液を移し、1時間、室温にて放置した。この工程は、攪拌時に発生した泡の脱泡を行うものである。
 次に、脱泡後の混合溶液を80度、4時間保持の条件で加熱し、一次硬化を行った。
 その後、150°C、0.5時間の加熱を行って二次硬化を実施した。後に示すように、シランカップリング剤によっては、必ずしも硬化したシリコ-ン基板が得られなかったが、得られたシリコ-ン基板の形状は直径50mm、厚み3mmであった。
(I-1) Silicon Substrate Formation Using One-Part Silicone Resin (X-32-3095) and Silane Coupling Agent Silicone Substrate Using One-Part Silicone Resin and Silane Coupling Agent Substrate formation was performed by the following procedure.
First, a silane coupling agent was introduced to an uncured X-32-3095 solution at a concentration of 2% by weight, and then stirred for about 10 minutes.
Next, this mixed solution was transferred to a glass dish and allowed to stand at room temperature for 1 hour. In this step, bubbles generated during stirring are removed.
Next, the mixed solution after defoaming was heated at 80 ° C. for 4 hours to perform primary curing.
Thereafter, secondary curing was performed by heating at 150 ° C. for 0.5 hour. As will be described later, a cured silicon substrate was not necessarily obtained depending on the silane coupling agent, but the shape of the obtained silicon substrate was 50 mm in diameter and 3 mm in thickness.
(I-2)二液型シリコ-ン樹脂(SIM260)とシランカップリング剤を用いたシリコ-ン基板形成
 二液型シリコ-ン樹脂とシランカップリング剤を用いたシリコ-ン基板形成は、以下のような手順で行った。
 まず、主剤と硬化剤からなるSIM260溶液に、このSIM260溶液の総量に対し、2%重量濃度となるようにシランカップリング剤を導入した後、約10分間の撹拌を行った。
 次に、ガラス製シャ-レにこの混合溶液を移し、16時間、室温にて放置した。二液型シリコ-ン樹脂は、主剤と硬化剤とを混合することにより一次硬化が開始される。すなわち、この工程は、攪拌時に発生した泡の脱泡と一次硬化を行うものである。
 その後、150°C、0.5時間の加熱を行って二次硬化を実施した。後に示すように、シランカップリング剤によっては、必ずしも硬化したシリコ-ン基板が得られなかったが、得られたシリコ-ン基板の形状は直径50mm、厚み1mmであった。
 表1に、各シリコ-ン樹脂、各シランカップリング剤を用いて、上記シリコ-ン基板形成手順を実施したときの結果を示す。
(I-2) Silicon Substrate Formation Using Two-Component Silicone Resin (SIM260) and Silane Coupling Agent Silicon Substrate Formation Using Two-Component Silicone Resin and Silane Coupling Agent The procedure was as follows.
First, a silane coupling agent was introduced into a SIM260 solution composed of a main agent and a curing agent so as to have a 2% weight concentration with respect to the total amount of the SIM260 solution, and then stirred for about 10 minutes.
Next, this mixed solution was transferred to a glass dish and allowed to stand at room temperature for 16 hours. The two-component silicone resin is primarily cured by mixing the main agent and the curing agent. That is, this step performs defoaming and primary curing of bubbles generated during stirring.
Thereafter, secondary curing was performed by heating at 150 ° C. for 0.5 hour. As will be described later, although a cured silicon substrate was not necessarily obtained depending on the silane coupling agent, the shape of the obtained silicon substrate was 50 mm in diameter and 1 mm in thickness.
Table 1 shows the results when the above silicon substrate forming procedure was carried out using each silicone resin and each silane coupling agent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、イソシアネ-ト系のシランカップリング剤KBE-9007を用いた場合、上記手順を経ても、一液型シリコ-ン樹脂X-32-3095、二液型シリコ-ン樹脂SIM260のいずれのシリコ-ン樹脂も硬化しなかった。また、未硬化の各シリコ-ン樹脂とシランカップリング剤KBE-9007の混合溶液はいずれも白濁状態であった。すなわち、X-32-3095、SIM260にとって、シランカップリング剤KBE-9007は、硬化を阻害する物質であるものと考えられる。 As is clear from Table 1, when the isocyanate-based silane coupling agent KBE-9007 is used, the one-part silicone resin X-32-3095, the two-part silicone, None of the silicone resin of resin SIM260 cured. The mixed solutions of the uncured silicone resin and the silane coupling agent KBE-9007 were all cloudy. That is, for X-32-3095 and SIM260, the silane coupling agent KBE-9007 is considered to be a substance that inhibits curing.
 また、エポキシ系のシランカップリング剤KBE-403を用いた場合、上記手順を経ることにより、一液型シリコ-ン樹脂X-32-3095、二液型シリコ-ン樹脂SIM260のいずれのシリコ-ン樹脂も硬化した。すなわち、シランカップリング剤が導入されたシリコ-ン基板が得られた。ここで得られたシリコ-ン基板は、透明で光は殆ど吸収せず、タッチパネルの各構成要素を接合するために介在する物質として適していることが分かった。 In addition, when the epoxy silane coupling agent KBE-403 is used, either of the one-component silicone resin X-32-3095 and the two-component silicone resin SIM260 can be obtained through the above procedure. The resin was also cured. That is, a silicon substrate having a silane coupling agent introduced therein was obtained. The silicon substrate obtained here was transparent and hardly absorbed light, and was found to be suitable as an intervening substance for joining the components of the touch panel.
 また、アミノ系のシランカップリング剤KBM-903を用いた場合、上記手順を経ることにより、一液型シリコ-ン樹脂X-32-3095、二液型シリコ-ン樹脂SIM260のいずれのシリコ-ン樹脂も硬化し、シランカップリング剤が導入されたシリコ-ン基板が得られた。しかしながら、脱泡工程によりシリコ-ン樹脂とシランカップリング剤の混合液の攪拌時に生じた泡を取り除いたにも係らず、シリコ-ン樹脂X-32-3095の一次硬化、二次硬化のための加熱工程を実施した結果、シリコ-ン基板内での発泡が発生した。また、シリコ-ン樹脂SIM260の二次硬化のための加熱工程を実施した結果、シリコ-ン基板内での発泡が発生した。
 すなわち、ここで得られたシリコ-ン基板は、内部に泡が存在しているので、タッチパネルの各構成要素を接合するために介在する物質として使用した場合、画像の視認性が著しく悪くなる。
 以上のように、シリコ-ン樹脂に導入するシランカップリング剤としては、エポキシ系のものが望ましいことが分かった。
In addition, when the amino-based silane coupling agent KBM-903 is used, any one of the one-part silicone resin X-32-3095 and the two-part silicone resin SIM260 can be obtained through the above procedure. The silicone resin was also cured, and a silicon substrate having a silane coupling agent introduced therein was obtained. However, for the primary curing and secondary curing of the silicone resin X-32-3095, the foam generated during the stirring of the mixed solution of the silicone resin and the silane coupling agent is removed by the defoaming step. As a result of performing the heating step, foaming occurred in the silicon substrate. In addition, as a result of performing a heating step for secondary curing of the silicone resin SIM260, foaming occurred in the silicone substrate.
That is, since the silicon substrate obtained here has bubbles inside, when it is used as an intervening substance for joining the components of the touch panel, the visibility of the image is remarkably deteriorated.
As described above, it has been found that an epoxy-based silane coupling agent to be introduced into the silicone resin is desirable.
(II)シランカップリング剤を導入したシリコ-ン基板と表面に導電性薄膜が施されたPETフィルムとの接合実験
 次に、前述の様に作成したシランカップリング剤が導入されたシリコ-ン基板を2種類を用いて接合実験を行った。すなわち、シランカップリング剤としてはKBE-403を用い、シリコ-ン樹脂としてはX-32-3095およびSIM260を用いて形成した二種類のシリコ-ン基板を用いた。
(II) Bonding experiment between a silicon substrate having a silane coupling agent introduced and a PET film having a conductive thin film on the surface Next, a silicon having a silane coupling agent prepared as described above was introduced. A bonding experiment was performed using two types of substrates. Specifically, KBE-403 was used as the silane coupling agent, and two types of silicon substrates formed using X-32-3095 and SIM260 were used as the silicone resin.
(II-1)シリコ-ン樹脂として、X-32-3095を使用した場合
 シランカップリング剤KBE-403が導入されたX-32-3095系のシリコ-ン基板の接合面とPETフィルムの導電性薄膜が施された面に対し紫外線を照射した。
 紫外線光源は、中心波長が172nmである真空紫外線(VUV)を放出するエキシマランプを使用し、照射条件は、照射面上の放射照度が5mW/cm、照射時間が180秒であった。
(II-1) When X-32-3095 is used as the silicone resin, the bonding surface of the X-32-3095 series silicon substrate into which the silane coupling agent KBE-403 has been introduced and the conductivity of the PET film The surface on which the conductive thin film was applied was irradiated with ultraviolet rays.
The ultraviolet light source used was an excimer lamp that emits vacuum ultraviolet rays (VUV) having a center wavelength of 172 nm. Irradiation conditions were an irradiance of 5 mW / cm 2 on the irradiated surface and an irradiation time of 180 seconds.
 VUV照射後、シランカップリング剤KBE-403が導入されたX-32-3095系のシリコ-ン基板およびPETフィルムのVUV照射面同士が接するように当該シリコ-ン基板およびPETフィルムを重ね合わせ、両者に圧力0.25Mpaの圧力を加えながら、両者の温度が100°Cとなるように加熱した。加熱時間は30秒であった。以上のような手順により、シランカップリング剤KBE-403が導入されたX-32-3095系のシリコ-ン基板およびPETフィルムは接合された。 After the VUV irradiation, the silicon substrate and the PET film are superposed so that the VUV irradiation surfaces of the X-32-3095 series silicon substrate and the PET film into which the silane coupling agent KBE-403 is introduced are in contact with each other. While applying a pressure of 0.25 Mpa to both, it heated so that both temperature might be set to 100 degreeC. The heating time was 30 seconds. Through the procedure described above, the X-32-3095 silicon substrate and the PET film into which the silane coupling agent KBE-403 was introduced were bonded.
(II-2)シリコ-ン樹脂として、SIM-260を使用した場合
 シランカップリング剤KBE-403が導入されたSIM-260系のシリコ-ン基板の接合面とPETフィルムの導電性薄膜が施された面に対し紫外線を照射した。
 紫外線光源は、中心波長が172nmである真空紫外線(VUV)を放出するエキシマランプを使用し、照射条件は、照射面上の放射照度が5mW/cm、照射時間が180秒であった。
(II-2) When SIM-260 is used as the silicone resin The bonding surface of the SIM-260 based silicon substrate into which the silane coupling agent KBE-403 has been introduced and the conductive thin film of the PET film are applied. The coated surface was irradiated with ultraviolet rays.
The ultraviolet light source used was an excimer lamp that emits vacuum ultraviolet rays (VUV) having a center wavelength of 172 nm. Irradiation conditions were an irradiance of 5 mW / cm 2 on the irradiated surface and an irradiation time of 180 seconds.
 VUV照射後、シランカップリング剤KBE-403が導入されたSIM-260系のシリコ-ン基板およびPETフィルムのVUV照射面同士が接するように当該シリコ-ン基板およびPETフィルムを重ね合わせ、両者に圧力0.25Mpaの圧力を加えながら、両者の温度が100°Cとなるように加熱した。加熱時間は30秒であった。以上のような手順により、シランカップリング剤KBE-403が導入されたSIM-260系のシリコ-ン基板およびPETフィルムは接合された。 After the VUV irradiation, the silicon substrate and the PET film are superimposed so that the VUV irradiation surfaces of the SIM-260 type silicon substrate and the PET film into which the silane coupling agent KBE-403 is introduced are in contact with each other. While applying a pressure of 0.25 Mpa, the both were heated to 100 ° C. The heating time was 30 seconds. By the above procedure, the SIM-260 based silicon substrate into which the silane coupling agent KBE-403 was introduced and the PET film were joined.
 すなわち、本実験により、従来、紫外線照射による表面改質処理を用いても接合させることが不可能であったシリコ-ン基板と導電性薄膜基板の導電性薄膜表面との貼り合わせが可能であることが判明した。同様に、シリコ-ン基板と表面が疎水性である場合の導電性薄膜基板との貼り合わせも可能であると考えられる。 In other words, this experiment enables the pasting of a silicon substrate and a conductive thin film surface of a conductive thin film substrate, which could not be bonded even by using a surface modification treatment by ultraviolet irradiation. It has been found. Similarly, it is considered possible to bond the silicon substrate and the conductive thin film substrate when the surface is hydrophobic.
 なお上記実験例では、シリコ-ンからなる部材に、エポキシ系シランカップリング剤を導入することにより、本発明の接合に適したシリコ-ンからなる部材が得られることを示したが、シリコ-ンからなる部材に導入するシランカップリング剤としては、エポキシ系以外に、以下(B-4)(B-5)のシランカップリング剤を用いても、エポキシ系シランカップリング剤を用いた場合と同様、本発明の接合に適したシリコ-ンからなる部材を得ることができることが確認されている。
(B-4)メタクリル系シランカップリング剤KBM-503(信越化学製)
(B-5)アクリル系シランカップリング剤KBM-503(信越化学製)
 上記シランカップリング剤の構造式を以下に記す。
In the above experimental example, it was shown that a silicone member suitable for the bonding of the present invention can be obtained by introducing an epoxy silane coupling agent into a silicone member. As the silane coupling agent to be introduced into the member made of silicon, in addition to the epoxy type, the following silane coupling agents (B-4) and (B-5) may be used, or when the epoxy type silane coupling agent is used: Similarly, it has been confirmed that a member made of silicon suitable for the joining of the present invention can be obtained.
(B-4) Methacrylic silane coupling agent KBM-503 (manufactured by Shin-Etsu Chemical)
(B-5) Acrylic silane coupling agent KBM-503 (manufactured by Shin-Etsu Chemical)
The structural formula of the silane coupling agent is shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の貼り合わせ方法は、図1、図13に示した構成のタッチセンサモジュ-ル以外の構成のタッチセンサモジュ-ルを構成する場合にも適用可能である。
 例えば、図13(a)において、透明導電膜が施される第1、第2のガラス基板16a,16bをPETフィルム14等からなる第1、第2の樹脂基板とした場合にも適用される。この場合、図14に示す〔工程C-1〕が、図5に示す〔工程A-1〕に置き換わる。なお、それに続く〔工程D-1〕はそのまま適用可能である。
The bonding method of the present invention can also be applied to a case where a touch sensor module having a configuration other than the touch sensor module having the configuration shown in FIGS. 1 and 13 is configured.
For example, in FIG. 13A, the first and second glass substrates 16a and 16b to which the transparent conductive film is applied are applied to the first and second resin substrates made of the PET film 14 or the like. . In this case, [Step C-1] shown in FIG. 14 is replaced with [Step A-1] shown in FIG. The subsequent [Step D-1] can be applied as it is.
10    位置入力装置
10a    タッチセンサモジュ-ル
10b    タッチパネル制御部
11    カバ-ガラス
12    ブラックマトリクス
13    第1のITO電極(第1の透明導電膜)
14    PETフィルム
14a  ハ-ドコ-ト層
15    第2のITO電極(第2の透明導電膜)
16,16a,16b    ガラス基板
17   シリコ-ン(PDMS)基板
17a,17b   シランカップリング剤が導入されたシリコ-ン(PDMS)基板
21    配線層
22    タッチパネル(TP)コントロ-ルIC部
23    FPC(フレキシブルプリント基板)
30    画像表示装置
31    偏光フィルム
32    画像表示パネル
40    紫外線(UV)光源
100  タッチパネル
 
DESCRIPTION OF SYMBOLS 10 Position input device 10a Touch sensor module 10b Touch panel control part 11 Cover glass 12 Black matrix 13 1st ITO electrode (1st transparent conductive film)
14 PET film 14a Hard coat layer 15 Second ITO electrode (second transparent conductive film)
16, 16a, 16b Glass substrate 17 Silicon (PDMS) substrate 17a, 17b Silicon (PDMS) substrate into which a silane coupling agent has been introduced 21 Wiring layer 22 Touch panel (TP) control IC section 23 FPC (flexible) Printed board)
30 Image display device 31 Polarizing film 32 Image display panel 40 Ultraviolet (UV) light source 100 Touch panel

Claims (6)

  1. 疎水性表面を持つワ-クとシリコ-ンからなる部材とを貼り合わせる方法であって、
     上記シリコ-ンからなる部材には、シランカップリング剤が導入されていて、
     上記ワ-クと、上記シリコ-ンからなる部材に紫外線を照射し、
     上記ワ-クの紫外線を照射した面と、上記シリコ-ンからなる部材の紫外線を照射した面が接触するように積層し、
     上記積層したワ-クとシリコ-ンからなる部材の接触面が加圧されるように加圧し、あるいは積層したワ-クとシリコ-ンからなる部材を加熱し、あるいは、積層したワ-クとシリコ-ンからなる部材をその接触面が加圧されるように加圧しながら加熱する
    ことを特徴とするワ-クの貼り合わせ方法。
    A method of bonding a workpiece having a hydrophobic surface and a member made of silicone,
    A silane coupling agent is introduced into the above-mentioned silicon member,
    Irradiating the member made of the workpiece and the silicone with ultraviolet rays,
    Lamination is performed so that the surface of the workpiece irradiated with ultraviolet light and the surface of the silicon member irradiated with ultraviolet light are in contact with each other.
    Pressurization is performed so that the contact surface of the member made of the laminated work and silicon is pressurized, or the member made of the laminated work and silicon is heated, or the laminated work is made. A work bonding method characterized by heating a member made of silicon and silicon so that the contact surface is pressurized.
  2. 親水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシリコ-ンからなる部材を介在させて貼り合わせる方法であって、
     上記シリコ-ンからなる部材には、シランカップリング剤が導入されていて、
     第1のワ-クの一方の面と、上記第2のワ-クの一方の面と、上記シリコ-ンからなる部材の両面に紫外線を照射し、
     上記第1のワ-クと上記シリコ-ンからなる部材と第2のワ-クを、上記紫外線が照射された面が接触するように積層し、
     上記接触面が加圧されるように加圧し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材を加熱し、あるいは積層した第1および第2のワ-クとシリコ-ンからなる部材をその接触面が加圧されるように加圧しながら加熱する
    ことを特徴とするワ-クの貼り合わせ方法。
    A method in which a first work having a hydrophilic surface and a second work having a hydrophobic surface are bonded together with a silicon member interposed therebetween,
    A silane coupling agent is introduced into the above-mentioned silicon member,
    Irradiating one surface of the first work, one surface of the second work, and both surfaces of the silicon member,
    The first workpiece, the silicon member, and the second workpiece are laminated so that the surfaces irradiated with the ultraviolet rays are in contact with each other.
    The first and second workpieces and silicon laminated are heated or laminated so that the contact surface is pressurized, or the laminated first and second workpieces and silicon members are heated. A work laminating method, wherein a member made of metal is heated while being pressed so that its contact surface is pressed.
  3. 疎水性表面を持つ第1のワ-クと、疎水性表面を持つ第2のワ-クをシリコ-ンからなる部材を介在させて貼り合わせる方法であって、
     上記シリコ-ンからなる部材には、シランカップリング剤が導入されていて、
     第1のワ-クの一方の面と、第2のワ-クの一方の面と、上記シリコ-ンからなる部材の両面に紫外線を照射し、
     上記第1のワ-クと上記シリコ-ンからなる部材と第2のワ-クを、上記紫外線が照射された面が接触するように積層し、
     上記接触面が加圧されるように加圧し、あるいは積層したワ-クを加熱し、あるいは積層したワ-クをその接触面が加圧されるように加圧しながら加熱する
    ことを特徴とするワ-クの貼り合わせ方法。 
    A method in which a first workpiece having a hydrophobic surface and a second workpiece having a hydrophobic surface are bonded together with a silicon member interposed therebetween,
    A silane coupling agent is introduced into the above-mentioned silicon member,
    Irradiating one surface of the first work, one surface of the second work, and both surfaces of the above-mentioned silicon member,
    The first workpiece, the silicon member, and the second workpiece are laminated so that the surfaces irradiated with the ultraviolet rays are in contact with each other.
    Pressurizing so as to pressurize the contact surface, or heating the stacked workpiece, or heating the stacked workpiece while pressing so that the contact surface is pressed Work pasting method.
  4.  上記シランカップリング剤は、エポキシ系、アクリル系、または、メタクリル系のシランカップリング剤である
    ことを特徴とする請求項1、請求項2もしくは請求項3のいずれか一項に記載のワ-クの貼り合わせ方法。
    The said silane coupling agent is an epoxy-based, acrylic-based, or methacryl-based silane coupling agent, according to any one of claims 1, 2, and 3. How to paste together.
  5.  透明導電膜が施された基板を有するタッチセンサモジュ-ルと、画像表示装置とを備えたタッチパネルであって、
     上記タッチセンサモジュ-ルは、
     紫外線照射により改質された透明導電膜が施された基板と、紫外線照射により表面が改質されたシランカップリング剤が導入されているシリコ-ンからなる部材とを含み、上記基板と上記シリコ-ンからなる部材の、上記紫外線が照射されたそれぞれの面が対向して積層されている
    ことを特徴とするタッチパネル。
    A touch panel comprising a touch sensor module having a substrate provided with a transparent conductive film, and an image display device,
    The touch sensor module
    A substrate on which a transparent conductive film modified by ultraviolet irradiation is applied; and a member made of silicon into which a silane coupling agent whose surface has been modified by ultraviolet irradiation is introduced. A touch panel, characterized in that the surfaces of the members made of ン are irradiated with the respective surfaces irradiated with the ultraviolet rays facing each other.
  6.  上記シランカップリング剤は、エポキシ系、アクリル系、または、メタクリル系のシランカップリング剤である
    ことを特徴とする請求項5に記載のタッチパネル。
    The touch panel according to claim 5, wherein the silane coupling agent is an epoxy-based, acrylic-based, or methacryl-based silane coupling agent.
PCT/JP2013/051058 2012-05-22 2013-01-21 Method for laminating works and touch panel WO2013175807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380006114.0A CN104169084B (en) 2012-05-22 2013-01-21 The applying method of workpiece and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116365A JP5362072B2 (en) 2012-05-22 2012-05-22 Work bonding method and touch panel
JP2012-116365 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013175807A1 true WO2013175807A1 (en) 2013-11-28

Family

ID=49623512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051058 WO2013175807A1 (en) 2012-05-22 2013-01-21 Method for laminating works and touch panel

Country Status (4)

Country Link
JP (1) JP5362072B2 (en)
CN (1) CN104169084B (en)
TW (1) TWI537781B (en)
WO (1) WO2013175807A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522322B2 (en) * 2013-12-12 2019-05-29 株式会社トクヤマ Method of manufacturing replica mold for nanoimprinting
KR20150084458A (en) * 2014-01-14 2015-07-22 삼성전기주식회사 Touch panel
WO2017033545A1 (en) * 2015-08-26 2017-03-02 ウシオ電機株式会社 Method for bonding two substrates and device for bonding two substrates
JP6065170B1 (en) * 2015-08-26 2017-01-25 ウシオ電機株式会社 Method for bonding two substrates and apparatus for bonding two substrates
CN107463029B (en) * 2017-08-25 2020-11-24 深圳市华星光电技术有限公司 Self-orientation liquid crystal display panel and manufacturing method thereof
CN108511635B (en) * 2018-06-07 2020-03-06 京东方科技集团股份有限公司 Preparation method of flexible display substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208290A (en) * 2004-01-22 2005-08-04 Konica Minolta Opto Inc Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP3714338B2 (en) * 2003-04-23 2005-11-09 ウシオ電機株式会社 Joining method
WO2008007787A1 (en) * 2006-07-13 2008-01-17 Kyoto University Method of bonding resins by light irradiation and process for producing resin article
JP2008149520A (en) * 2006-12-15 2008-07-03 Nagase Chemtex Corp Method for producing adhesive body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458416A (en) * 2007-12-12 2009-06-17 胜华科技股份有限公司 Touching control panel and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714338B2 (en) * 2003-04-23 2005-11-09 ウシオ電機株式会社 Joining method
JP2005208290A (en) * 2004-01-22 2005-08-04 Konica Minolta Opto Inc Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
WO2008007787A1 (en) * 2006-07-13 2008-01-17 Kyoto University Method of bonding resins by light irradiation and process for producing resin article
JP2008149520A (en) * 2006-12-15 2008-07-03 Nagase Chemtex Corp Method for producing adhesive body

Also Published As

Publication number Publication date
JP2013242756A (en) 2013-12-05
CN104169084B (en) 2016-01-06
JP5362072B2 (en) 2013-12-11
TWI537781B (en) 2016-06-11
CN104169084A (en) 2014-11-26
TW201409319A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
WO2013175807A1 (en) Method for laminating works and touch panel
JP5362050B2 (en) Work bonding method and touch panel
JP5686777B2 (en) Touch display device and manufacturing method
KR20150104282A (en) Flexible and lightweight touch screen panel and module using highly strengthened surface hardness film based flexible cover windows
JP2010122563A (en) Display and method for manufacturing the same
KR20120123429A (en) Method for manufacturing hard translucent plate laminate and apparatus for bonding hard translucent plates
JP6970255B2 (en) Information processing equipment
KR101486118B1 (en) Laminate including optically clear adhesive layer and method of preparing the same
JP2006018800A (en) Touch panel with high durability
CN110879672A (en) Touch screen laminating process, touch screen and touch display equipment
TW201425026A (en) Transparent surface material equipped with adhesive layer, manufacturing method therefor, and display device
TW201318868A (en) Method for manufacturing layered body
KR20160130977A (en) Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
CN113557137A (en) Transfer foil for touch sensor and method for manufacturing conductive film for touch sensor
CN103715364A (en) Display device, and manufacture method for the same by layered soft element
CN202422050U (en) Touch display device
US20140030492A1 (en) Method of manufacturing touch panel and touch panel
TW201545016A (en) Touching display device and production method thereof
CN111752415B (en) Touch module, preparation method thereof and display device
US20210291489A1 (en) Laminating structure of optical clear binder of optical panel
JP2015207058A (en) Method for manufacturing touch panels, and touch panel
CN115254562B (en) Buffer layer applied to flexible OLED screen bending and bonding and curing method thereof
JP2019094427A (en) Active energy ray-curable adhesive and laminate
JP2013180918A (en) Method for manufacturing glass substrate and method for manufacturing glass substrate with electrode pattern
CN106155446A (en) The frame patch method of the preparation method of touch-screen, touch-screen and LCM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793672

Country of ref document: EP

Kind code of ref document: A1