WO2017033545A1 - Method for bonding two substrates and device for bonding two substrates - Google Patents

Method for bonding two substrates and device for bonding two substrates Download PDF

Info

Publication number
WO2017033545A1
WO2017033545A1 PCT/JP2016/068227 JP2016068227W WO2017033545A1 WO 2017033545 A1 WO2017033545 A1 WO 2017033545A1 JP 2016068227 W JP2016068227 W JP 2016068227W WO 2017033545 A1 WO2017033545 A1 WO 2017033545A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bonding
functional film
substrates
pressure plate
Prior art date
Application number
PCT/JP2016/068227
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 吉原
史敏 竹元
真 和佐本
鈴木 信二
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to JP2016560611A priority Critical patent/JP6065170B1/en
Publication of WO2017033545A1 publication Critical patent/WO2017033545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined

Definitions

  • the present invention relates to a method for bonding two substrates and a bonding apparatus for two substrates, and more specifically, a first substrate and a second substrate each having a functional film having a defined outer shape formed on the surface.
  • the present invention relates to a method for laminating a substrate and a laminating apparatus for two substrates.
  • Patent Document 1 includes a hydrophobic surface substrate having a surface on which an organosiloxy group exists such as a polydimethylsiloxane (PDMS) substrate and a hydrophilic surface substrate having a surface on which a hydroxyl group exists.
  • a method of matching is disclosed.
  • the surface on which the organosiloxy group is present on the hydrophobic surface substrate is subjected to an oxidation treatment by irradiating it with vacuum ultraviolet rays (ultraviolet rays having a wavelength of 220 nm or less) in the atmosphere, and this oxidized hydrophobic property is obtained.
  • the hydrophobic surface substrate and the hydrophilic surface substrate are bonded together by bringing the surface of the hydrophilic surface substrate on which the hydroxyl group exists into close contact with the surface of the surface substrate.
  • Patent Document 2 discloses a method of bonding a plurality of microchip substrates made of a resin such as cycloolefin polymer (COP).
  • COP cycloolefin polymer
  • one surface of each of the two substrates used for bonding is used as a bonding surface, and the entire bonding surfaces are bonded together.
  • the method of bonding the two substrates is not limited to the method of bonding the entire bonding surfaces together, for example, only a part of one of the surfaces (bonding surfaces) of each substrate.
  • a method of bonding two substrates using as a bonding region see, for example, Patent Document 3.
  • Patent Document 3 a bonding film having a defined outer shape is formed on a bonding surface of at least one of two substrates, and two sheets are formed using the bonding film.
  • a method of bonding the substrates is disclosed. In this method, two substrates are bonded together through a bonding process as shown in FIG.
  • FIG. 6 is an explanatory view showing an example of a bonding process in a conventional method for bonding two substrates, specifically, a bonding process in a method for bonding two substrates disclosed in Patent Document 3. It is explanatory drawing which shows an example.
  • this method of bonding two substrates first, two flat substrates, specifically, a first substrate 40 and a second substrate 45 are prepared.
  • a bonding film 43 having a prescribed outer shape is formed of a silicone material.
  • the bonding film 43 can be formed by using, for example, an ink jet printer.
  • the average thickness of the bonding film 43 is, for example, 10 nm to 10 ⁇ m.
  • a bonding film 43 is formed on the bonding surface of the first substrate 40.
  • the wavelengths of the ultraviolet rays L3 and L4 are, for example, 126 to 300 nm.
  • the surface of the bonding film 43 irradiated with the ultraviolet ray L3 in the first substrate 40 and the bonding surface of the second substrate 45 irradiated with the ultraviolet ray L4 are in close contact with each other.
  • the first substrate 40 and the second substrate 45 are stacked (stacking step).
  • the stack of the first substrate 40 and the second substrate 45 is added in the thickness direction (the direction in which the first substrate 40 and the second substrate 45 approach each other).
  • Pressure pressurizing step
  • the pressure applied to the stack is, for example, about 0.2 to 10 MPa.
  • the stack may be heated. In this case, the heating temperature is, for example, about 25 to 100 ° C.
  • the pressing direction of the stacked body of the first substrate 40 and the second substrate 45 is indicated by an arrow.
  • the two substrates are bonded via a bonding film.
  • the bonding strength of the two substrates can be appropriately controlled by the surface area of the bonding film, the number of bonding films formed, and the arrangement pattern of the plurality of bonding films.
  • the bonding strength can be set so that two bonded substrates can be easily separated.
  • a bonded body in which two substrates are bonded together through a bonding film may require an optical function in addition to a function that contributes to simple bonding depending on the intended use.
  • Specific examples include constituent members of a surface light source unit used as a backlight of a display, for example.
  • a certain type of surface-emitting light source unit includes a light source 51 composed of LEDs and lamps, a rectangular plate-shaped light guide plate 61, and a rectangular flat plate disposed on the lower surface of the light guide plate 61. And a reflector 63 in the form of a plate.
  • the surface-emitting light source unit includes a plurality of light sources 51, and the plurality of light sources 51 are made of LEDs.
  • the plurality of light sources 51 are arranged side by side at equal intervals along one side surface 61a (one end surface) of the light guide plate 61 so that each of the light sources 51 faces the side surface 61a.
  • the light guide plate 61 is a light-transmitting substrate made of light-transmitting resin such as COP (cycloolefin polymer) and acrylic resin, glass or the like.
  • the light from the light source 51 is incident on the light guide plate 61 on the side surface 61 a facing the light source 51.
  • the light guide plate 61 is designed to totally reflect light from the light source 51 introduced from the side surface 61a at the interface between the light guide plate 61 and air. That is, in the light guide plate 61, light introduced into the inside from the side surface (specifically, the side surface 61a) constituting one end surface is extracted from the side surface (specifically, the side surface 61b) constituting the other end surface. It is said that.
  • the optical path of the light emitted from the light source 51 and incident from the side surface 61a and introduced into the light guide plate 61 is indicated by a dashed arrow.
  • a diffusion member layer 66 and a reflection plate 63 are provided in this order on the lower surface of the light guide plate 61.
  • the diffusion member layer 66 is made of a material having a refractive index substantially equal to the refractive index of the light guide plate 61 (specifically, for example, epoxy resin, polyester resin, PMMA (polymethyl methacrylate) resin).
  • the diffusion member layer 66 is formed on the lower surface of the light guide plate 61 by screen printing or the like.
  • the reflecting plate 63 is a reflecting member made of aluminum or the like and having an upper surface as a reflecting surface. In the example of this figure, the diffusing member layer 66 has a pattern.
  • the light guide plate 61 is configured such that light incident on the side surface (side surface 61a) constituting one end surface of the light guide plate 61 repeats total reflection inside the light guide plate 61, and so on. It is designed to be emitted from the side surface (side surface 61b) constituting the end surface.
  • most of the light incident on the interface between the light guide plate 61 and the diffusing member layer 66 has substantially the same refractive index.
  • the difference in refractive index is small, it passes through this interface as it is and reaches the reflector 63. Then, the light that reaches the reflection plate 63 is reflected and scattered, enters the diffusion member layer 66 and the light guide plate 61 again, and returns to the inside of the diffusion member layer 66 and the light guide plate 61.
  • the reflected / scattered light light incident on the light guide plate 61 in a state different from the total reflection condition of the light guide plate 61 is not totally reflected on the upper surface of the light guide plate 61 and is emitted from the upper surface of the light guide plate 61. Is done. That is, the surface-emitting light source unit of FIG.
  • FIG. 7 functions as a surface-emitting light source that emits light from the entire upper surface of the light guide plate 61.
  • the optical path of the reflected / scattered light that has reached the reflecting plate 63 and is reflected / scattered is indicated by a solid line arrow.
  • the light emitting surface forming member can be obtained by the method for bonding two substrates disclosed in Patent Document 3 described above. In this case, the reflection plate is the first substrate, the diffusion member layer is the bonding film, and the light guide plate is the second substrate.
  • the diffusion member layer is required to have an optical function as well as a function contributing to bonding.
  • FIG. 8 is an explanatory diagram showing an example of the configuration of a pressure mechanism in a conventional two-substrate bonding apparatus, that is, a pressure mechanism used in a conventional two-layer bonding method.
  • Fig. 6 is an embodiment of the pressurization step shown in Fig. 6 (c) in the method of bonding two substrates disclosed in Patent Document 3.
  • This pressurizing mechanism includes a rectangular plate-like stage 73 on which a substrate is placed and a rectangular flat plate-like pressurizing plate 71.
  • the stage 73 has a flat substrate mounting surface 73A.
  • the pressure plate 71 is provided so as to be movable in the vertical direction on the substrate placement surface 73A.
  • the stacked body In the pressurizing process of the stacked body by the pressurizing mechanism, for example, the stacked body is mounted on the substrate mounting surface 73A of the stage 73 so that one substrate side (the first substrate 40 side) faces downward. In the placed state, the pressing is performed by the pressure plate 71 from the other substrate side (second substrate 45 side). Therefore, when the second substrate 45 is larger in deformability than the first substrate 40, specifically, for example, the constituent material of the second substrate 45 is the constituent material of the first substrate 40.
  • the second substrate 45 (the bonding surface of the second substrate 45) is deformed in the pressurizing step, as shown in FIG. In the peripheral region of 43, the first substrate 40 and the second substrate 45 are in direct contact without the bonding film 43 interposed therebetween. In many cases, the first substrate 40 and the second substrate 45 are bonded as they are. Further, when the first substrate 40 is larger in deformability than the second substrate 45, specifically, for example, the constituent material of the first substrate 40 is the constituent material of the second substrate 45.
  • the first substrate 40 (the bonding surface of the first substrate 40) is deformed in the pressurizing process, as shown in FIG. In the peripheral region of 43, the first substrate 40 and the second substrate 45 are in direct contact without the bonding film 43 interposed therebetween. In many cases, the first substrate 40 and the second substrate 45 are bonded as they are.
  • the light-emitting surface forming member of the surface-emitting light source unit is produced by the method of bonding two substrates disclosed in Patent Document 3, as shown in FIG.
  • the (second substrate 45) and the reflector (first substrate 40) are partly, specifically in the peripheral region of the diffusion member layer (bonding film 43), with the diffusion member layer (bonding film 43) interposed therebetween. Contact directly without touching. That is, in the obtained light emitting surface forming member, the light guide plate (second substrate 45) and the reflection plate (first substrate 40) have an undesired direct contact region 49. In the direct contact region 49, light incident on the interface between the light guide plate (second substrate 45) and the reflection plate (first substrate 40) is scattered in an undesired direction as stray light. Therefore, the light that is reflected and scattered by the reflecting plate (first substrate 40) and emitted from the upper surface of the light guide plate (second substrate 45) has an intensity distribution different from the predetermined intensity distribution due to the influence of the stray light. It will have.
  • the present invention has been made based on the above circumstances, and its purpose is to function the first substrate and the second substrate so that they do not directly contact each other without the functional film.
  • An object of the present invention is to provide a method for bonding two substrates and a bonding apparatus for two substrates that can be bonded together through a conductive film.
  • the first substrate and the second substrate on which the functional film having a defined outer shape is formed are bonded via the functional film.
  • a method of bonding two substrates A surface activation step for activating the surface of the functional film formed on the surface of the first substrate; Stacking the first substrate and the second substrate that have passed through the surface activation step so that the surface of the functional film and the bonding surface of the second substrate are in contact with each other. And a stack of the first substrate and the second substrate obtained in the stacking step is selectively applied to a contact portion between the functional film and the second substrate.
  • a pressurizing step of pressurizing in the thickness direction is included.
  • the pressing step uses a pressing plate having a protruding portion having a shape corresponding to the functional film formed on the surface of the first substrate. It is preferably performed by pressing the pressure plate in a state where the protrusion is positioned so as to face the functional film via the first substrate or the second substrate.
  • a substrate having a small deformability among the first substrate and the second substrate is in contact with the pressure plate. Is preferred.
  • the ultraviolet ray is irradiated on the bonding surface of the second substrate that is subjected to the stacking step, or a process gas that is made plasma by atmospheric plasma is brought into contact with the bonding surface. It is preferable.
  • the surface activation step is an ultraviolet irradiation process for irradiating the surface of the functional film formed on the surface of the first substrate with vacuum ultraviolet rays. It is preferable.
  • the surface activation step is performed by applying a process gas plasmatized by atmospheric pressure plasma to the surface of the functional film formed on the surface of the first substrate. It is preferable that it is a plasma gas treatment process to contact.
  • the apparatus for bonding two substrates of the present invention bonds a first substrate having a functional film having a defined outer shape on the surface and a second substrate through the functional film.
  • An apparatus for laminating two substrates for A pressurizing mechanism is provided for pressurizing the stack in a thickness direction in a state where the surface of the functional film of the first substrate and the bonding surface of the second substrate are in contact with each other;
  • the pressure mechanism includes a pressure plate having a protrusion having a shape corresponding to a functional film formed on the surface of the first substrate, and an alignment adjusting unit between the pressure plate and the stack.
  • the method is characterized in that a pressing force is selectively applied to a contact portion between the functional film and the second substrate.
  • the first substrate and the second substrate are formed on the surface of the first substrate in the pressurizing step of pressurizing the stack of the second substrate in the thickness direction.
  • a pressing force selectively acts on a contact portion between the functional film and the second substrate. Therefore, even if one of the first substrate and the second substrate has greater deformability than the other, the periphery of the functional film is bonded to the bonding surface of the first substrate and the second substrate. It is possible to prevent or sufficiently suppress the deformation in which the first substrate and the second substrate are in direct contact with each other without the functional film interposed therebetween in the region. Therefore, according to the method for bonding two substrates of the present invention, the first substrate and the second substrate are bonded via the functional film so that they are not in direct contact without the functional film. Can be matched.
  • a pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate, and the positions of the pressure plate and the stack A pressurizing mechanism provided with an alignment adjusting means is provided. And a pressurization mechanism is with respect to the contact part of the said functional film and the said 2nd board
  • the pressure can be selectively applied. For this reason, the first substrate and the second substrate are pressed by an easy method of pressing the stack in a state in which the surface of the functional film of the first substrate and the bonding surface of the second substrate are in contact with each other.
  • a substrate can be attached.
  • the functional film is formed on the bonding surface of the first substrate and the second substrate. It is possible to prevent or sufficiently suppress the deformation in which the first substrate and the second substrate are in direct contact with each other without passing through the functional film in the peripheral region. Therefore, according to the bonding apparatus for two substrates of the present invention, the first substrate and the second substrate are bonded via the functional film so as not to be in direct contact without the functional film. Can be matched.
  • the method for laminating two substrates of the present invention comprises the steps of (1) to (3) below, and the first substrate having a functional film having a defined outer shape formed on the surface:
  • the second substrate is bonded and bonded through the functional film.
  • a joined body is obtained in which the first substrate and the second substrate are joined via the functional film.
  • the “functional film” has a function (bonding function) that contributes to the bonding of at least two substrates.
  • the “functional film” is used for use of the obtained bonded body, if necessary. Accordingly, it has functions other than the bonding function such as an optical function as well as the bonding function.
  • the functional film may not have other functions (functions other than the bonding function).
  • the constituent material of the functional film is appropriately selected according to the function required for the functional film, the constituent material of the first substrate, the constituent material of the second substrate, and the like. Specific examples include polydimethylsiloxane (PDMS) and PET (polyethylene terephthalate) resin.
  • the surface activation step is an ultraviolet irradiation treatment step of irradiating the surface of the functional film on the first substrate with vacuum ultraviolet rays, or a process that is made plasma by atmospheric pressure plasma. It is preferable that it is a plasma gas treatment process in which a gas is brought into contact with the surface of the functional film in the first substrate.
  • a stack of the first substrate and the second substrate is selected for the contact portion between the functional film and the second substrate.
  • a suitable method for applying the applied pressure a method using a pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate can be cited. More specifically, the pressing step uses a pressure plate having a protrusion having a shape corresponding to the functional film formed on the first substrate, and the protrusion is the first substrate or the second substrate. It is preferably performed by pressing the pressure plate in a state of being positioned so as to face the functional film through the substrate.
  • Such a method includes a pressure plate having a protrusion corresponding to the functional film formed on the first substrate, and an alignment adjustment unit between the pressure plate and the stack, It can be carried out by an apparatus provided with a pressurizing mechanism for selectively applying a pressing force to a contact portion between the functional film and the second substrate, that is, an apparatus for bonding two substrates of the present invention.
  • a substrate having a small deformability among the first substrate and the second substrate is in contact with the pressure plate.
  • the substrate having a small deformability is brought into contact with the pressure plate, so that either the first substrate or the second substrate is deformed in the pressing step. Will not occur. Therefore, in the obtained bonded body, peeling between the first substrate and the second substrate caused by the occurrence of residual stress can be suppressed.
  • the pressure plate protrusion
  • an ultraviolet irradiation process for irradiating vacuum ultraviolet light on the bonding surface of the second substrate to be subjected to the stacking step or It is preferable to perform a plasma gas treatment in which a process gas converted into plasma by atmospheric plasma is brought into contact.
  • Preferred specific examples of the method for bonding two substrates of the present invention include a first bonding method and a second bonding method, which will be described later.
  • Which of the first bonding method and the second bonding method is used is appropriately selected according to the constituent material and thickness of the first substrate, the second constituent material and thickness, and the like.
  • the second substrate is compared with the first substrate because, for example, the constituent material of the first substrate is softer or thinner than the constituent material of the second substrate. If the deformability is small, it is preferable to use the first bonding method.
  • the first substrate can be compared with the second substrate because, for example, the constituent material of the second substrate is softer or thinner than the constituent material of the first substrate. In the case where the deformability is small, it is preferable to use the second bonding method.
  • the constituent materials of the two substrates include PET (polyethylene terephthalate) resin, COP (Cycloolefin polymer) and acrylic resin (specifically, for example, PMMA (polymethyl methacrylate) resin), glass (specifically, for example, non-alkali glass), and the like.
  • PET polyethylene terephthalate
  • COP Cycloolefin polymer
  • acrylic resin specifically, for example, PMMA (polymethyl methacrylate) resin
  • glass specifically, for example, non-alkali glass
  • first bonding method (1) A first embodiment of the first bonding method (hereinafter also referred to as “first bonding method (1)”) will be described in detail with reference to FIG.
  • the second substrate 15 is smaller in deformability than the first substrate 10, and specifically, for example, the first substrate 10 is PET. It is made of resin, and the second substrate 15 is made of COP, acrylic resin, or glass.
  • the functional film 13 is made of PDMS.
  • the joined body obtained is a constituent member of a surface-emitting light source unit used as a backlight of a display, specifically, a light guide plate made of COP, acrylic resin or glass, a diffusion member layer made of PDMS, and PET A reflecting plate made of a resin is used as a light emitting surface forming member formed by laminating in this order.
  • the functional film 13 has an optical function as well as a function contributing to bonding.
  • the steps (1) to (3) described above are performed, and as shown in FIG. 1 (a-2), the surface of the second substrate 15 used for the stacking step An ultraviolet irradiation treatment is performed on the (bonding surface).
  • the first bonding method (1) is performed in accordance with the use of the two substrate bonding apparatus of the present invention in the pressing step. -1), (b-2), (c) and (f), the first substrate 10 alignment adjustment processing, the pressure plate 21 alignment adjustment processing, and the pressure plate 21 retraction processing (temporary retraction processing). Including).
  • the surface activation process is an ultraviolet irradiation process.
  • the pressurizing mechanism is a substrate as shown in FIGS. 1 (b-1) to (f).
  • the stage 23 has a flat substrate placement surface 23A, and a plurality of (3 in the example of FIG. 1) extend perpendicularly from the substrate placement surface 23A at the peripheral portion of the substrate placement surface 23A. Book) positioning pins 25 are provided.
  • the positioning pins 25 are alignment adjusting means having a positioning function with respect to the substrate and the pressure plate 21.
  • the positioning pin 25 constitutes an alignment adjusting means for the stacked body (specifically, the stacked body of the first substrate 10 and the second substrate 15) and the pressure plate 21.
  • the pressure plate 21 has a protrusion 22B on the surface of the rectangular plate-like base material 22A (the lower surface in FIGS. 1C, 1D, 1E, and 1F). Then, the pressure plate 21 is such that the surface of the pressure plate 21 faces the substrate placement surface 23A and is positioned by the positioning pins 25, so that the protrusion 22B is placed on the substrate placement surface 23A.
  • the functional film 13 formed on one substrate 10 is opposed to the functional film 13.
  • the pressure plate 21 is provided to be movable in the vertical direction on the substrate placement surface 23A.
  • the pressure plate 21 has a base material 22A having the same vertical and horizontal dimensions as the first substrate 10 and the second substrate 15, and a protrusion height of 1 mm at the center of the base material 22A.
  • the protrusion 22B is provided.
  • a rectangular flat plate-like first substrate 10 and a rectangular flat plate-like second substrate having a surface having a size suitable for the surface of the first substrate 10. 15 are prepared. Then, a functional film 13 having a prescribed outer shape is formed on the surface of the first substrate 10 by screen printing or the like. In the first substrate 10, the surface on which the functional film 13 is formed serves as a bonding surface with the second substrate 15. On the other hand, in the second substrate 15, the surface having a size suitable for the bonding surface of the first substrate 10 is the bonding surface with the first substrate 10. In the example of this figure, a functional film 13 having a defined outer shape (specifically, a rectangular outer shape) and a thickness of 10 ⁇ m is formed on the first substrate 10 at the center of the bonding surface. ing.
  • first step first substrate surface activation step and second substrate ultraviolet irradiation treatment step
  • the bonding surface Vacuum ultraviolet rays (ultraviolet rays having a wavelength of 200 nm or less) L1, L2 on the bonding surface (upper surface in FIG. 1 (a-2)) of FIG. Irradiate.
  • the bonding surface of the first substrate 10 specifically, the surface of the functional film 13 (the upper surface in FIG. 1A-1) is activated. And modified so that the surface is suitable for bonding.
  • the surface of the functional film 13 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the surface of the functional film 13 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
  • the bonding surface of the first substrate 10 is cleaned by removing contaminants such as organic substances.
  • the second substrate ultraviolet irradiation treatment step is not necessarily a necessary step, but is preferably performed from the viewpoint of bonding efficiency. More specifically, as long as the bonding surface of the first substrate 10 is irradiated with the vacuum ultraviolet rays L1, that is, even the surface of the functional film 13 is activated, the first substrate 10 and the second substrate 15 Can be joined. However, the bonded surface of the second substrate 15 is cleaned by removing contaminants such as organic substances on the bonded surface of the second substrate 15 through the second substrate ultraviolet irradiation process. As described above, when the bonding surface of the second substrate 15 is cleaned, the two substrates can be bonded efficiently.
  • the bonding surface of the second substrate 15 is activated to become a surface suitable for bonding. It is modified as follows. Specifically, the bonding surface of the second substrate 15 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the bonding surface of the second substrate 15 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
  • a hydroxy group OH group
  • the light source that emits the vacuum ultraviolet rays L1 and L2 is an excimer lamp such as a xenon excimer lamp having a bright line at a wavelength of 172 nm, and a wavelength of 185 nm.
  • a low-pressure mercury lamp having an emission line and a deuterium lamp having an emission line in the wavelength range of 120 to 200 nm can be preferably used.
  • the illuminance of the vacuum ultraviolet rays L1 and L2 applied to the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 is, for example, 10 to 100 mW / cm 2 .
  • the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 depends on the constituent material of the functional film 13 and the state of the surface of the functional film 13. Alternatively, it is set as appropriate depending on the constituent material of the second substrate 15 and the state of the bonding surface of the second substrate 15, but for example, 5 to 120 seconds.
  • the first substrate 10 is placed on the substrate placement surface 23A of the stage 23 in the pressure mechanism.
  • alignment adjustment processing positioning adjustment processing
  • the peripheral side surface is made up of the plurality of positioning pins 25.
  • the substrate is positioned by being abutted against all of the substrates, and is placed at a predetermined position on the substrate placement surface 23A. In this way, the alignment adjustment process for the first substrate 10 is performed.
  • FIG. 1B-1 shows a state in which the first substrate 10 is placed on the substrate placement surface 23A of the stage 23, and the pressure plate 21 is positioned and arranged above the first substrate 10. It is a side view for description.
  • FIG. 1B-2 is an explanatory diagram showing the mounting state of the first substrate 10 on the substrate mounting surface 23A of the stage 23.
  • the pressure plate temporary retracting step is performed as necessary. Specifically, when the space between the functional film 13 formed on the first substrate 10 and the pressure plate 21 does not have a size that allows the second substrate 15 to be disposed, In other words, this is performed when the distance between the functional film 13 and the pressure plate 21 is smaller than the thickness of the second substrate 15. Therefore, the pressure plate temporary retracting step is omitted when the space between the functional film 13 and the pressure plate 21 has a size in which the second substrate 15 can be disposed.
  • the pressurizing plate temporary retracting step the pressurizing plate 21 is retracted by moving it upward as shown in FIG. In this way, the temporary retracting process of the pressure plate 21 is performed.
  • the pressure plate temporary retracting step it is possible to secure a space for placing the second substrate 15 between the functional film 13 formed on the first substrate 10 and the pressure plate 21. Therefore, the second substrate 15 can be disposed on the first substrate 10.
  • FIG.1 (c) the moving direction of the pressurization board 21 is shown by the arrow.
  • the pressure plate 21 is merely moved upward, so that the positional relationship between the first substrate 10 and the pressure plate 21 adjusted in the pressure plate alignment adjusting process (specifically, the pressure plate 21 is adjusted). The state in which the protrusions 22B are aligned with the functional film 13) is maintained.
  • the stacking step As shown in FIG. 1 (d), the surface of the functional film 13 formed on the first substrate 10 with the first substrate 10 and the second substrate 15 in a room temperature environment. And the bonding surface of the second substrate 15 are stacked in contact with each other.
  • the second substrate 15 is positioned by abutting the peripheral side surface of the second substrate 15 against all of the plurality of positioning pins 25 in the pressurizing mechanism, and is stacked on the first substrate 10. May be.
  • a stacked body is obtained in which the first substrate 10 and the second substrate 15 are bonded and bonded together in a state of being stacked via the functional film 13.
  • the first substrate 10 and the second substrate 15 are bonded by various chemical reaction processes.
  • the bonding surface (functional film) of the first substrate 10 is used. 13 surface) and the terminal hydroxyl group of the bonding surface of the second substrate 15 are considered to be bonded by hydrogen bonding.
  • the pressurizing step As shown in FIG. 1 (e), the stack obtained in the stacking step is subjected to pressurization using a pressurizing mechanism. Specifically, by moving the pressure plate 21 positioned above the stacked body downward, the protrusion 22B of the pressure plate 21 is brought into contact with the second substrate 15 to press the stacked body, Pressurize. In this pressurizing process, the protrusion 22B and the functional film 13 are aligned through the pressure plate alignment adjustment step, so that the protrusion 22B is functional via the second substrate 15. The film 13 is opposed to the film 13.
  • the stack obtained in the stacking process is selected for the contact portion between the functional film 13 formed on the first substrate 10 and the second substrate 15.
  • the pressure is applied in the thickness direction so that an applied pressure is applied.
  • a joined body in which the first substrate 10 and the second substrate 15 are firmly joined is obtained.
  • FIG.1 (e) the moving direction (pressurization direction) of the pressurization board 21 is shown by the arrow.
  • Specific methods for bonding the first substrate 10 and the second substrate 15 more firmly include the following methods (A) and (B).
  • Specific conditions in the pressing step are appropriately set according to the constituent material of the first substrate 10 and the constituent material of the second substrate 15.
  • the applied pressure is equal to or higher than the pressure capable of correcting the minute deformation generated in the first substrate 10 and the second substrate 15 during the pressurizing step, and the first substrate 10 and the first substrate The pressure is less than the pressure at which the second substrate 15 is deformed. Specifically, for example, 0.2 to 10 MPa.
  • the heating temperature is set to be lower than the temperature at which the first substrate 10 and the second substrate 15 are deformed.
  • the joined body is taken out from the pressurizing mechanism in the bonding apparatus for two substrates of the present invention.
  • a second embodiment of the first bonding method (hereinafter also referred to as “first bonding method (2)”) is a surface activation process (1) in the first bonding method (1) described above.
  • the first bonding method except that the first substrate surface activation step) is a plasma gas treatment step and that the second substrate plasma gas treatment step is provided instead of the second substrate ultraviolet irradiation treatment step.
  • the first bonding method (2) is the same as the first bonding method except that in the first step, the bonding surface of the first substrate and the bonding surface of the second substrate are treated with plasma gas. This is the same method as (1).
  • the process gas plasmatized by atmospheric pressure plasma is applied to the bonding surface of the first substrate. (Specifically, the surface of the functional film) and the bonding surface of the second substrate are brought into contact with each other.
  • the bonding surface of the first substrate By passing through the first substrate surface activation step, the bonding surface of the first substrate, specifically, the surface of the functional film is modified so as to become a surface suitable for bonding. Is done. In addition, the bonded surface of the first substrate is cleaned by removing contaminants such as organic substances.
  • the second substrate plasma gas treatment process is not necessarily a necessary process, but is preferably performed from the viewpoint of bonding efficiency. More specifically, the first substrate and the second substrate are bonded as long as the process gas is brought into contact with the bonding surface of the first substrate, that is, the surface of the functional film is activated. Can do. However, by passing through the second substrate plasma gas treatment step, contaminants such as organic substances are removed from the bonding surface of the second substrate, whereby the bonding surface is cleaned. By cleaning the bonding surface of the second substrate in this manner, the two substrates can be bonded efficiently. In the second plasma gas processing step, depending on the constituent material of the second substrate, the bonding surface of the second substrate is activated to be a surface suitable for bonding. Quality.
  • FIG. 2 is a cross-sectional view illustrating the configuration of an example of an atmospheric pressure plasma apparatus used in the method for bonding two substrates of the present invention.
  • This atmospheric pressure plasma apparatus has a rectangular parallelepiped casing 30 made of, for example, aluminum.
  • a plate-like electrode 31 electrically connected to the high-frequency power source 35 is horizontally disposed in the casing 30.
  • a dielectric layer 32 is formed on the lower surface of the electrode 31.
  • the electrode 31 is a high voltage side electrode and the casing 30 is a ground side electrode.
  • a gas supply port 33 for supplying process gas into the casing 30 is provided on the upper surface of the casing 30.
  • a plurality of nozzles 34 are formed on the lower surface of the casing 30 to discharge process gas that has been plasmatized by atmospheric pressure plasma in the casing 30 to the outside.
  • the process gas G1 is supplied from the gas supply port 33 into the casing 30 under atmospheric pressure or a pressure in the vicinity thereof.
  • a high frequency electric field is applied between the electrode 31 and the casing 30 via the dielectric layer 32 by the high frequency power source 35 in this state, a dielectric barrier discharge is generated between the electrode 31 and the casing 30.
  • the process gas G1 existing between the casing 30 and the dielectric layer 32 is ionized or excited to be turned into plasma.
  • the plasma-processed process gas G2 is discharged to the outside from the nozzle 34 of the casing 30 and comes into contact with a bonding surface of a substrate (not shown) disposed below the casing 30.
  • the process gas G1 containing nitrogen gas, argon gas or the like as a main component and containing 0.01 to 5% by volume of oxygen gas.
  • a mixed gas of nitrogen gas and clean dry air (CDA) can be used.
  • the power supplied from the high frequency power supply 35 has a frequency of 20 to 70 kHz and a voltage of 5 to 15 kVp-p. Further, the processing time by the plasma gas processing is, for example, 5 to 100 seconds.
  • the first substrate 10 is shaped in the pressing step.
  • a pressurizing force selectively acts on the contact portion between the provided functional film 13 and the second substrate 15. Therefore, even if the first substrate 10 has a larger deformability than the second substrate 15, the first substrate 10 is bonded to the bonding surface of the first substrate 10 in the peripheral region of the functional film 13. It is prevented or sufficiently suppressed that the substrate 10 and the second substrate 15 are deformed such that the substrate 10 and the second substrate 15 are in direct contact without interposing the functional film 13. Therefore, according to the first bonding method, the first substrate 10 and the second substrate 15 are bonded via the functional film 13 so as not to be in direct contact without passing through the functional film 13. be able to. That is, it is possible to avoid production of a bonded body in a state where the first substrate 10 and the second substrate 15 are in direct contact with each other in the peripheral region of the functional film 13.
  • the second substrate 15 is the light guide plate
  • the functional film 13 is the diffusion member layer
  • the first substrate 10 and the second substrate 15 having a low deformability specifically, the second substrate 15 is a pressure plate. Therefore, neither the first substrate 10 nor the second substrate 15 is deformed. Therefore, in the obtained bonded body, occurrence of peeling between the first substrate 10 and the second substrate 15 due to the residual stress is suppressed.
  • the first substrate 10 having a large deformability is brought into contact with the pressure plate 21, the first substrate 10 is bonded to the first substrate 10.
  • deformation specifically, a dent corresponding to the shape of the protrusion 22B
  • vacuum ultraviolet rays are irradiated to the bonding surface of the second substrate 15 in the second substrate ultraviolet irradiation process or the second substrate plasma gas processing process in the first process.
  • the contact surface of the second substrate 15 is cleaned by contacting the process gas that has been converted into plasma by atmospheric pressure plasma, so that the two substrates can be bonded efficiently.
  • the bonding apparatus for two substrates of the present invention since the bonding apparatus for two substrates of the present invention is used in the pressurizing step, by an easy method of pressing the stack with the pressure plate 21, The first substrate 10 and the second substrate 15 can be bonded together via the functional film 13.
  • first substrate 10 is less deformable than the second substrate 15, and specifically, for example, the first substrate 10 is It is made of COP, acrylic resin or glass, and the second substrate 15 is made of PET resin.
  • the functional film 13 is made of PDMS.
  • the joined body obtained is a constituent member of a surface-emitting light source unit used as a backlight of a display, specifically, a light guide plate made of COP, acrylic resin or glass, a diffusion member layer made of PDMS, and PET A reflecting plate made of a resin is used as a light emitting surface forming member formed by laminating in this order.
  • the functional film 13 has an optical function as well as a function contributing to bonding.
  • the second bonding method (1) the surface of the second substrate 15 subjected to the stacking step as shown in FIG. 4 (a-2) is obtained through the steps (1) to (3).
  • An ultraviolet irradiation treatment is performed on the (bonding surface).
  • the second bonding method (1) is performed by using the two substrate bonding apparatus of the present invention in the pressurizing step. -1), (b-2), (d), and (f), the second substrate 15 alignment adjustment processing, the pressure plate 21 alignment adjustment processing, and the pressure plate 21 retraction processing are performed. .
  • the pressurizing mechanism is the first as shown in FIGS. 4 (d) to (f). It has the same structure as the pressure mechanism of the bonding apparatus for two substrates of the present invention used in the bonding method. That is, in the two-substrate bonding apparatus of the present invention used in the second bonding method (1), the pressurizing mechanism includes a rectangular plate-like stage 23 for placing the substrate, and the first A pressure plate 21 having a protrusion 22B having a shape corresponding to the functional film 13 formed on the substrate 10 is provided.
  • the stage 23 has a flat substrate placement surface 23A, and a plurality of (3 in the example of FIG.
  • the positioning pins 25 are alignment adjusting means having a positioning function with respect to the substrate and the pressure plate 21.
  • the positioning pin 25 constitutes an alignment adjusting means for the stacked body (specifically, the stacked body of the first substrate 10 and the second substrate 15) and the pressure plate 21.
  • the pressure plate 21 has a protrusion 22B on the surface (the lower surface in FIGS. 4D, 4E, and 4F) of a rectangular plate-shaped substrate 22A.
  • the pressure plate 21 has the surface of the pressure plate 21 facing the substrate placement surface 23A and is positioned by the positioning pins 25, so that the protrusion 22B is placed on the substrate placement surface 23A.
  • the functional film 13 formed on the first substrate 10 is opposed to the functional film 13.
  • the pressure plate 21 is provided to be movable in the vertical direction on the substrate placement surface 23A.
  • the pressure plate 21 has a base material 22A having the same vertical and horizontal dimensions as the first substrate 10 and the second substrate 15, and a protrusion height of 1 mm at the center of the base material 22A.
  • the protrusion 22B is provided.
  • a rectangular flat plate-like first substrate 10 and a rectangular flat plate-like second substrate having a surface having a size suitable for the surface of the first substrate 10. 15 are prepared. Then, a functional film 13 having an outer shape defined by screen printing or the like is formed on the surface of the first substrate 10.
  • the surface on which the functional film 13 is formed serves as a bonding surface with the second substrate 15.
  • the surface having a size suitable for the bonding surface of the first substrate 10 is the bonding surface with the first substrate 10.
  • a functional film 13 having a defined outer shape (specifically, a rectangular outer shape) and a thickness of 10 ⁇ m is formed on the first substrate 10 at the center of the bonding surface. ing.
  • first substrate surface activation step and second substrate ultraviolet irradiation treatment step First step: first substrate surface activation step and second substrate ultraviolet irradiation treatment step
  • the bonding surface of the first substrate 10 ( 4A-1 and the bonding surface of the second substrate 15 (upper surface in FIG. 4A-2) are vacuum ultraviolet rays (ultraviolet rays having a wavelength of 200 nm or less) L1, L2 in an air atmosphere. Irradiate.
  • the bonding surface of the first substrate 10 specifically, the surface of the functional film 13 (upper surface in FIG. 4A-1) is activated. And modified so that the surface is suitable for bonding.
  • the surface of the functional film 13 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the surface of the functional film 13 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
  • the bonding surface of the first substrate 10 is cleaned by removing contaminants such as organic substances.
  • the second substrate ultraviolet irradiation treatment step is not necessarily a necessary step, but is preferably performed from the viewpoint of bonding efficiency. More specifically, as long as the bonding surface of the first substrate 10 is irradiated with the vacuum ultraviolet rays L1, that is, even the surface of the functional film 13 is activated, the first substrate 10 and the second substrate 15 Can be joined. However, the bonded surface of the second substrate 15 is cleaned by removing contaminants such as organic substances on the bonded surface of the second substrate 15 through the second substrate ultraviolet irradiation process. As described above, when the bonding surface of the second substrate 15 is cleaned, the two substrates can be bonded efficiently.
  • the bonding surface of the second substrate 15 is activated to become a surface suitable for bonding. It is modified as follows. Specifically, the bonding surface of the second substrate 15 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the bonding surface of the second substrate 15 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
  • a hydroxy group OH group
  • the light source that emits the vacuum ultraviolet rays L1 and L2 is an excimer lamp such as a xenon excimer lamp having a bright line at a wavelength of 172 nm, and a wavelength of 185 nm.
  • a low-pressure mercury lamp having an emission line and a deuterium lamp having an emission line in the wavelength range of 120 to 200 nm can be preferably used.
  • the illuminance of the vacuum ultraviolet rays L1 and L2 applied to the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 is, for example, 10 to 100 mW / cm 2 .
  • the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 depends on the constituent material of the functional film 13 and the state of the surface of the functional film 13. Alternatively, it is set as appropriate depending on the constituent material of the second substrate 15 and the state of the bonding surface of the second substrate 15, but for example, 5 to 120 seconds.
  • the second substrate 15 is placed on the substrate placement surface 23A of the stage 23, and An alignment adjustment process (positioning adjustment process) of the second substrate 15 is performed. Specifically, with the second substrate 15 in a state where the back surface (the lower surface in FIG. 4B-1) is in contact with the substrate placement surface 23A of the stage 23, the peripheral side surface is all of the plurality of positioning pins 25. The substrate is positioned by abutting and placed at a predetermined position on the substrate placement surface 23A. In this way, the alignment adjustment process for the second substrate 15 is performed.
  • FIG. 4B-1 is an explanatory side view showing a state where the second substrate 15 is placed on the placement surface 23A of the stage 23.
  • FIG. 4B-2 is an explanatory diagram showing the mounting state of the second substrate 15 on the substrate mounting surface 23A of the stage 23.
  • the stacking step As shown in FIG. 4C, the surface of the functional film 13 formed on the first substrate 10 with the first substrate 10 and the second substrate 15 in a room temperature environment. And the bonding surface of the second substrate 15 are stacked in contact with each other.
  • the first substrate 10 is positioned by abutting the peripheral side surface of the first substrate 10 against all of the plurality of positioning pins 25 in the pressurizing mechanism, and is stacked on the second substrate 15. May be.
  • a stacked body is obtained in which the first substrate 10 and the second substrate 15 are bonded and bonded together in a state of being stacked via the functional film 13.
  • the first substrate 10 and the second substrate 15 are bonded by various chemical reaction processes.
  • the bonding surface (functional film) of the first substrate 10 is used. 13 surface) and the terminal hydroxyl group of the bonding surface of the second substrate 15 are considered to be bonded by hydrogen bonding.
  • the alignment adjustment process of the pressure plate 21 is performed in a state where the stacked body is placed on the substrate placement surface 23 ⁇ / b> A of the stage 23. Specifically, the peripheral surface of the base material 22A is positioned in a plurality of positions in a state in which the pressure plate 21 faces the stacking body placed on the substrate placement surface 23A with the surface having the protrusion 22B slightly spaced from the stacked body. Positioning is done by hitting all of the pins 25. In this way, the alignment adjustment process of the pressure plate 21 is performed. Thus, the protruding portion 22B of the pressure plate 21 is aligned so as to face the functional film 13 through the first substrate 10 and the space.
  • the pressurizing step As shown in FIG. 4E, the stack obtained in the stacking step is subjected to a pressurizing process using a pressurizing mechanism. Specifically, by moving the pressure plate 21 positioned above the stack to move downward, the protrusion 22B of the pressure plate 21 is brought into contact with the first substrate 10 to press the stack. Pressurize. In this pressurizing process, the protrusion 22B and the functional film 13 are aligned by passing through the pressure plate alignment adjustment step, so that the protrusion 22B is functional via the first substrate 10. The film 13 is opposed to the film 13.
  • the stack obtained in the stacking process is selected for the contact portion between the functional film 13 formed on the first substrate 10 and the second substrate 15.
  • the pressure is applied in the thickness direction so that an applied pressure is applied.
  • a joined body in which the first substrate 10 and the second substrate 15 are firmly joined is obtained.
  • FIG.4 (e) the moving direction (pressurization direction) of the pressurization board 21 is shown by the arrow.
  • Specific methods for bonding the first substrate 10 and the second substrate 15 more firmly include the methods (A) and (B) described above.
  • Specific conditions in the pressing step are appropriately set according to the constituent material of the first substrate 10 and the constituent material of the second substrate 15.
  • the applied pressure is equal to or higher than the pressure capable of correcting the minute deformation generated in the first substrate 10 and the second substrate 15 during the pressurizing step, and the first substrate 10 and the first substrate The pressure is less than the pressure at which the second substrate 15 is deformed. Specifically, for example, 0.2 to 10 MPa.
  • the heating temperature is set to be lower than the temperature at which the first substrate 10 and the second substrate 15 are deformed.
  • the joined body is taken out from the pressurizing mechanism in the bonding apparatus for two substrates of the present invention.
  • a second embodiment of the second bonding method (hereinafter also referred to as “second bonding method (2)”) is a surface activation step (in the second bonding method (1) described above).
  • the second bonding method except that the first substrate surface activation step) is a plasma gas treatment step and that the second substrate plasma gas treatment step is provided instead of the second substrate ultraviolet irradiation treatment step.
  • This is the same method as (1). That is, in the second bonding method (2), in the first step, the second bonding is performed except that the bonding surface of the first substrate and the bonding surface of the second substrate are treated with plasma gas. This is the same method as method (1).
  • the process gas plasmatized by atmospheric pressure plasma is used as the bonding surface of the first substrate. (Specifically, the surface of the functional film) and the bonding surface of the second substrate are brought into contact with each other.
  • the bonding surface of the first substrate By passing through the first substrate surface activation step, the bonding surface of the first substrate, specifically, the surface of the functional film is modified so as to become a surface suitable for bonding. Is done. In addition, the bonded surface of the first substrate is cleaned by removing contaminants such as organic substances.
  • the second substrate plasma gas treatment process is not necessarily a necessary process, but is preferably performed from the viewpoint of bonding efficiency. More specifically, the first substrate and the second substrate are bonded as long as the process gas is brought into contact with the bonding surface of the first substrate, that is, the surface of the functional film is activated. Can do. However, by passing through the second substrate plasma gas treatment step, contaminants such as organic substances are removed from the bonding surface of the second substrate, whereby the bonding surface is cleaned. By cleaning the bonding surface of the second substrate in this manner, the two substrates can be bonded efficiently. In the second plasma gas processing step, depending on the constituent material of the second substrate, the bonding surface of the second substrate is activated to be a surface suitable for bonding. Quality.
  • an atmospheric pressure plasma apparatus is used as the plasma gas supply means.
  • the first substrate 10 is shaped in the pressing step.
  • a pressurizing force selectively acts on the contact portion between the provided functional film 13 and the second substrate 15. Therefore, even if the second substrate 15 has a larger deformability than the first substrate 10, the first substrate 15 is bonded to the bonding surface of the second substrate 15 in the peripheral region of the functional film 13. It is prevented or sufficiently suppressed that the substrate 10 and the second substrate 15 are deformed such that the substrate 10 and the second substrate 15 are in direct contact without interposing the functional film 13.
  • the first substrate 10 and the second substrate 15 are bonded via the functional film 13 so as not to be in direct contact without the functional film 13 being interposed. be able to. That is, it is possible to avoid production of a bonded body in a state where the first substrate 10 and the second substrate 15 are in direct contact with each other in the peripheral region of the functional film 13.
  • the first substrate 10 is the light guide plate
  • the functional film 13 is the diffusion member layer
  • the first substrate 10 and the second substrate 15 having a low deformability specifically, the first substrate 10 is a press plate. Therefore, neither the first substrate 10 nor the second substrate 15 is deformed. Therefore, in the obtained bonded body, occurrence of peeling between the first substrate 10 and the second substrate 15 due to the residual stress is suppressed.
  • vacuum ultraviolet rays are irradiated on the bonding surface of the second substrate 15 in the second substrate ultraviolet irradiation process or the second substrate plasma gas processing process of the first process.
  • the contact surface of the second substrate 15 is cleaned by contacting the process gas that has been converted into plasma by atmospheric pressure plasma, so that the two substrates can be bonded efficiently.
  • the two substrate bonding apparatus of the present invention since the two substrate bonding apparatus of the present invention is used in the pressing step, an easy method of pressing the stack against the pressure plate 21.
  • the first substrate 10 and the second substrate 15 can be bonded together via the functional film 13.
  • the method for bonding two substrates of the present invention is not limited to the above embodiment, and various modifications can be made.
  • a plurality of functional films may be formed on the surface of the first substrate.
  • the pressure plate is not limited to the one in which the protrusions are integrally formed on the base material as shown in FIGS. 1 and 4, and the flat base material and the protrusions that are separate from the base material
  • a combination with a forming member can also be used.
  • a combination of a rectangular flat plate-like base material and a shim (SIM) having a shape corresponding to the functional film formed on the surface of the first substrate may be used.
  • the alignment adjusting means for the pressure plate and the stacked body is not limited to one constituted by positioning pins as shown in FIGS. That is, the pressurizing mechanism is not limited to the one that performs alignment adjustment processing of the substrate and the pressure plate by the positioning pins as shown in FIGS. 1 and 4, and the alignment adjustment processing of the substrate and the pressure plate is performed by other alignment adjusting means. You may do it.
  • a known image processing unit may be used as the alignment adjustment unit.
  • the pressurization mechanism having such a configuration, when the first substrate is made of a transparent material, the first substrate is placed on the substrate placement surface of the stage, and then the first processing is performed by the image processing means. While detecting the position of the functional film on the surface of the substrate, the functional film is detected by detecting the image information of the alignment mark provided in the pressure mechanism corresponding to the position of the protrusion of the pressure plate. And the alignment adjustment process between the protrusions.
  • the first substrate is not made of a transparent material, the back surface of the first substrate (the surface opposite to the surface on which the functional film is formed) is aligned with the position of the functional film.
  • a rectangular flat plate substrate (sheet) made of PET resin having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 0.2 mm is prepared as the first substrate, and a PMMA having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 2 mm is prepared as the second substrate.
  • a rectangular flat substrate made of (polymethyl methacrylate) resin was prepared.
  • the second substrate has a constituent material that is harder than the first substrate and has a large thickness. Therefore, the second substrate is less deformable than the first substrate.
  • the bonding apparatus for two substrates of the present invention shown in FIG. was used to produce a joined body of the first substrate and the second substrate by the first bonding method (1).
  • the bonding surface of the first substrate and the bonding surface of the second substrate were each irradiated with a vacuum ultraviolet ray from a xenon excimer lamp in an air atmosphere (first substrate surface activation). Process and second substrate ultraviolet irradiation process).
  • the irradiation conditions of the vacuum ultraviolet rays were a bonding surface illuminance (irradiance) of 50 mW / cm 2 and an irradiation time of 100 seconds.
  • a space for placing the second substrate is secured by moving the pressure plate upward (pressure plate temporary retracting step), and then the surface of the functional film formed on the first substrate and the first substrate 2 is brought into contact with the bonding surface of the two substrates to obtain a stacked body (stacking step), and the obtained stacked body is pressed in the thickness direction of the stacked body by moving the pressure plate downward (acceleration). Pressure process).
  • the pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds. Thereafter, the pressure plate was moved upward (pressure plate retracting step), and the joined body (hereinafter, also referred to as “joined body (1-1)”) was taken out from the pressure mechanism.
  • the functional film formed on the first substrate and the second substrate were bonded together.
  • the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
  • the bonding region and the functional film arrangement region are indicated by hatching.
  • a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used.
  • a bonded body (hereinafter also referred to as “bonded body (1-2)”) was obtained by the same method as in the first bonding method (1).
  • the functional film formed on the first substrate and the second substrate were bonded together.
  • the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.
  • the bonding area is indicated by hatching, and the arrangement position of the functional film located in the bonding area is indicated by a solid square.
  • a rectangular flat plate substrate made of alkali-free glass having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 1 mm is prepared as a first substrate, and a rectangle made of PET resin having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 0.2 mm is prepared as a second substrate.
  • a flat substrate (sheet) was prepared.
  • the first substrate has a harder constituent material and a larger thickness than the second substrate, and thus has a smaller deformability than the second substrate.
  • the bonding apparatus for two substrates of the present invention shown in FIG. was used to produce a joined body of the first substrate and the second substrate by the second bonding method (1).
  • the bonding surface of the first substrate and the bonding surface of the second substrate were each irradiated with a vacuum ultraviolet ray from a xenon excimer lamp in an air atmosphere (first substrate surface activation). Process and second substrate ultraviolet irradiation process).
  • the irradiation conditions of the vacuum ultraviolet rays were a bonding surface illuminance (irradiance) of 50 mW / cm 2 and an irradiation time of 100 seconds.
  • the second substrate was placed on the substrate placement surface of the stage of the pressurizing mechanism with the bonding surface facing upward and the peripheral side surface being abutted against all of the alignment pins (second substrate). Alignment adjustment process).
  • the surface of the functional film formed on the first substrate is brought into contact with the bonding surface of the second substrate to obtain a stack (stacking step), and then the alignment of the pressure plate of the pressure mechanism An adjustment process was performed (pressure plate alignment adjustment step), and the obtained pressure plate was moved in the thickness direction by moving the pressure plate downward (pressure step).
  • the pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds. Thereafter, the pressure plate was moved upward (pressure plate retracting step), and the joined body (hereinafter also referred to as “joined body (2-1)”) was taken out from the pressurizing mechanism.
  • the joined body (2-1) was visually observed, as shown in FIG. 5A, the functional film formed on the first substrate and the second substrate were bonded together. As a result, the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
  • a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used.
  • a joined body (hereinafter also referred to as “joined body (2-2)”) was obtained in the same manner as in the second bonding method (1).
  • the functional film formed on the first substrate and the second substrate were bonded together.
  • the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.
  • a rectangular flat substrate (sheet) made of PET resin having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 0.2 mm is prepared as the first substrate, and a PET having a vertical and horizontal dimension of 100 mm ⁇ 100 mm and a thickness of 2 mm is prepared as the second substrate.
  • a resin-made rectangular flat substrate was prepared.
  • the second substrate is thicker than the first substrate, and thus has less deformability than the first substrate.
  • the atmospheric pressure plasma apparatus used here is a super invar in which the casing material is aluminum, and the electrode material is formed on the surface with a coating made of alumina having a thickness of 500 ⁇ m, and the electrode dimensions are 50 mm ⁇ 300 mm, the distance between the casing and the dielectric layer is 0.5 mm, the voltage is 7.0 kVp-p, the frequency is 60 kHz, and the rated power is 1100 VA.
  • each of the first substrate and the second substrate was disposed at a position 3 mm away from the nozzle below the atmospheric pressure plasma apparatus so that the bonding surface thereof faces the nozzle. Then, while supplying nitrogen gas having a flow rate of 150 L / min and clean dry air having a flow rate of 1 L / min (the oxygen concentration in the process gas is about 0.14 vol%) as the process gas into the casing, the atmospheric pressure plasma apparatus The plasma gas treatment for 5 seconds was performed on each of the bonding surface of the first substrate and the bonding surface of the second substrate. Next, after the first substrate is placed on the substrate placement surface of the stage of the pressure mechanism with the bonding surface facing upward and the peripheral side surface being abutted against all the alignment pins, the pressure is applied.
  • the pressure plate alignment adjustment process of the mechanism was performed (pressure plate alignment adjustment step). Then, a space for placing the second substrate is secured by moving the pressure plate upward (pressure plate temporary retracting step), and then the surface of the functional film formed on the first substrate and the first substrate 2 is brought into contact with the bonding surface of the two substrates to obtain a stacked body (stacking step), and the obtained stacked body is pressed in the thickness direction of the stacked body by moving the pressure plate downward (acceleration). Pressure process).
  • the pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds.
  • joind body (1-3) was taken out from the pressure mechanism.
  • the functional film formed on the first substrate and the second substrate were bonded together.
  • the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
  • a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used.
  • a bonded body (hereinafter also referred to as “bonded body (1-4)”) was obtained by the same method as in the first bonding method (2).
  • the functional film formed on the first substrate and the second substrate were bonded together.
  • the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.

Abstract

The purpose of the present invention is to provide a method for bonding two substrates and a device for bonding two substrates, enabling a first substrate and a second substrate to bond via a functional film so as not to make direct contact with each other except for via the functional film. The method for bonding two substrates according to the present invention is for bonding, via a functional film having a specified peripheral shape, a second substrate and a first substrate having the functional film formed on the surface thereof, and is characterized by including: an ultraviolet ray irradiation step for irradiating, with ultraviolet rays under vacuum, the surface of the functional film formed on the surface of the first substrate; a stacking step for stacking the second substrate and the first substrate, which have undergone the ultraviolet ray irradiation step, such that the surface of the functional film and a bonding surface of the second substrate are in contact with each other; and a pressure application step for applying, in the thickness direction, pressure on a stacked body of the first substrate and the second substrate obtained through the stacking step such that pressure is applied selectively on the portion where the functional film and the second substrate make contact with each other.

Description

2枚の基板の貼り合わせ方法および2枚の基板の貼り合わせ装置Method for bonding two substrates and apparatus for bonding two substrates
 本発明は、2枚の基板の貼り合わせ方法および2枚の基板の貼り合わせ装置に関し、更に詳しくは、規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板との貼り合わせ方法および2枚の基板の貼り合わせ装置に関する。 The present invention relates to a method for bonding two substrates and a bonding apparatus for two substrates, and more specifically, a first substrate and a second substrate each having a functional film having a defined outer shape formed on the surface. The present invention relates to a method for laminating a substrate and a laminating apparatus for two substrates.
 近年、2枚の基板を貼り合わせる方法としては、各基板の貼り合わせ面に紫外線を照射して、紫外線照射面同士が密着するように両基板を積重して貼り合わせ、2枚の基板の接合体を得る手法が提案されている(例えば、特許文献1および特許文献2参照。)。この2枚の基板を貼り合わせる方法において、2枚の基板の積重体は、必要に応じて、適宜、加圧されたり、加熱されたり、あるいは加圧しながら加熱されてもよい。 In recent years, as a method of bonding two substrates, ultraviolet rays are irradiated on the bonding surfaces of the respective substrates, and the two substrates are stacked and bonded so that the ultraviolet irradiation surfaces are in close contact with each other. A technique for obtaining a joined body has been proposed (see, for example, Patent Document 1 and Patent Document 2). In the method of bonding the two substrates, the stacked body of the two substrates may be appropriately pressurized, heated, or heated while being pressurized as necessary.
 具体的に特許文献1には、ポリジメチルシロキサン(Polydimethylsiloxane:PDMS)基板のようなオルガノシロキシ基が存在する表面を有する疎水性表面基板と、水酸基が存在する表面を有する親水性表面基板とを貼り合わせる方法が開示されている。この方法においては、疎水性表面基板におけるオルガノシロキシ基が存在する表面に対して、大気中にて真空紫外線(波長220nm以下の紫外線)を照射して酸化処理を行い、この酸化処理された疎水性表面基板の表面に親水性表面基板における水酸基が存在する表面を密着させることにより、疎水性表面基板と親水性表面基板とが貼り合わせられる。 Specifically, Patent Document 1 includes a hydrophobic surface substrate having a surface on which an organosiloxy group exists such as a polydimethylsiloxane (PDMS) substrate and a hydrophilic surface substrate having a surface on which a hydroxyl group exists. A method of matching is disclosed. In this method, the surface on which the organosiloxy group is present on the hydrophobic surface substrate is subjected to an oxidation treatment by irradiating it with vacuum ultraviolet rays (ultraviolet rays having a wavelength of 220 nm or less) in the atmosphere, and this oxidized hydrophobic property is obtained. The hydrophobic surface substrate and the hydrophilic surface substrate are bonded together by bringing the surface of the hydrophilic surface substrate on which the hydroxyl group exists into close contact with the surface of the surface substrate.
 また、特許文献2には、シクロオレフィンポリマー (Cyclo Olefin Polymer:COP)などの樹脂よりなる複数のマイクロチップ用基板を貼り合わせる方法が開示されている。この方法においては、2枚の樹脂基板の少なくとも一方の基板の表面に対して、波長172nmに輝線を有するエキシマランプからの光を照射した後、両基板を、一方の基板におけるエキシマランプからの光が照射された表面と他方の基板の貼り合わせ面とが互いに接触した状態となるように積重し、得られた積重体を組成変形温度未満の温度に加熱すること、あるいは加熱することなく加圧することにより、2枚の樹脂基板が貼り合わせられる。 Patent Document 2 discloses a method of bonding a plurality of microchip substrates made of a resin such as cycloolefin polymer (COP). In this method, after irradiating light from an excimer lamp having an emission line at a wavelength of 172 nm to the surface of at least one of the two resin substrates, both substrates are irradiated with light from the excimer lamp on one substrate. Are stacked so that the surface irradiated with and the bonding surface of the other substrate are in contact with each other, and the resulting stack is heated to a temperature lower than the composition deformation temperature or applied without heating. By pressing, two resin substrates are bonded together.
 これらの紫外線を利用した貼り合わせ方法においては、貼り合わせに供する2枚の基板のそれぞれにおいて一方の面を貼り合わせ面とし、貼り合わせ面全面同士を貼り合わせている。
 しかしながら、2枚の基板を貼り合わせる方法は、貼り合わせ面全面同士を貼り合わせる手法に限定されるものではなく、例えば各基板の一方の面(貼り合わせ面)のうちの一部の領域のみを貼り合わせ領域として利用して、2枚の基板を貼り合わせる手法が提案されている(例えば、特許文献3参照。)。
 具体的に、特許文献3には、2枚の基板のうちの少なくとも一方の基板における貼り合わせ面上に、規定された外形を有する接合膜を形成し、その接合膜を利用して、2枚の基板を貼り合わせる方法が開示されている。この方法においては、図6に示されるような貼り合わせ工程を経ることにより、2枚の基板が貼り合わせられる。
In these bonding methods using ultraviolet rays, one surface of each of the two substrates used for bonding is used as a bonding surface, and the entire bonding surfaces are bonded together.
However, the method of bonding the two substrates is not limited to the method of bonding the entire bonding surfaces together, for example, only a part of one of the surfaces (bonding surfaces) of each substrate. There has been proposed a method of bonding two substrates using as a bonding region (see, for example, Patent Document 3).
Specifically, in Patent Document 3, a bonding film having a defined outer shape is formed on a bonding surface of at least one of two substrates, and two sheets are formed using the bonding film. A method of bonding the substrates is disclosed. In this method, two substrates are bonded together through a bonding process as shown in FIG.
 図6は、従来の2枚の基板の貼り合わせ方法における貼り合わせ工程の一例を示す説明図、具体的には特許文献3に開示されている2枚の基板の貼り合わせ方法における貼り合わせ工程の一例を示す説明図である。
 この2枚の基板の貼り合わせ方法においては、先ず、2枚の平板状の基板、具体的には第1の基板40と第2の基板45とを用意する。これらの2枚の基板のうちの一方の基板の貼り合わせ面上には、シリコーン材料により、規定された外形を有する接合膜43が形成されている。この接合膜43は、例えばインクジェットプリンタなどを用いることによって形成することができる。また、接合膜43の平均厚さは、例えば10nm~10μmである。
 この図の例においては、第1の基板40の貼り合わせ面上に接合膜43が形成されている。
FIG. 6 is an explanatory view showing an example of a bonding process in a conventional method for bonding two substrates, specifically, a bonding process in a method for bonding two substrates disclosed in Patent Document 3. It is explanatory drawing which shows an example.
In this method of bonding two substrates, first, two flat substrates, specifically, a first substrate 40 and a second substrate 45 are prepared. On the bonding surface of one of these two substrates, a bonding film 43 having a prescribed outer shape is formed of a silicone material. The bonding film 43 can be formed by using, for example, an ink jet printer. The average thickness of the bonding film 43 is, for example, 10 nm to 10 μm.
In the example of this figure, a bonding film 43 is formed on the bonding surface of the first substrate 40.
 そして、図6(a-1)および図6(a-2)に示すように、第1の基板40における接合膜43が形成された貼り合わせ面(図6(a-1)における上面)および第2の基板45の貼り合わせ面(図6(a-2)における上面)に、各々、紫外線L3,L4を照射する(紫外線照射処理工程)。ここに、紫外線L3,L4の波長は、例えば126~300nmである。
 次いで、図6(b)に示すように、第1の基板40における紫外線L3が照射された接合膜43の表面と、第2の基板45における紫外線L4が照射された貼り合わせ面とが密着するように、第1の基板40と第2の基板45とを積重する(積重工程)。
 その後、図6(c)に示すように、第1の基板40と第2の基板45との積重体を厚み方向(第1の基板40と第2の基板45とが互いに近づく方向)に加圧する(加圧工程)。ここに、積重体に対する加圧力は、例えば、0.2~10MPa程度である。なお、積重体を加圧することに代えて、積重体を加熱してもよい。その場合の加熱温度は、例えば25~100℃程である。
 図6(c)においては、第1の基板40と第2の基板45との積重体の加圧方向が矢印で示されている。
Then, as shown in FIGS. 6A-1 and 6A-2, a bonding surface (upper surface in FIG. 6A-1) on which the bonding film 43 is formed on the first substrate 40 and Ultraviolet rays L3 and L4 are respectively irradiated on the bonding surface (the upper surface in FIG. 6A-2) of the second substrate 45 (ultraviolet irradiation process step). Here, the wavelengths of the ultraviolet rays L3 and L4 are, for example, 126 to 300 nm.
Next, as shown in FIG. 6B, the surface of the bonding film 43 irradiated with the ultraviolet ray L3 in the first substrate 40 and the bonding surface of the second substrate 45 irradiated with the ultraviolet ray L4 are in close contact with each other. As described above, the first substrate 40 and the second substrate 45 are stacked (stacking step).
Thereafter, as shown in FIG. 6C, the stack of the first substrate 40 and the second substrate 45 is added in the thickness direction (the direction in which the first substrate 40 and the second substrate 45 approach each other). Pressure (pressurizing step). Here, the pressure applied to the stack is, for example, about 0.2 to 10 MPa. Instead of pressurizing the stack, the stack may be heated. In this case, the heating temperature is, for example, about 25 to 100 ° C.
In FIG. 6C, the pressing direction of the stacked body of the first substrate 40 and the second substrate 45 is indicated by an arrow.
 このような2枚の基板の貼り合わせ方法においては、接合膜を介して2枚の基板が貼り合わせられる。この方法によれば、接合膜の表面の面積、接合膜の形成数、および複数の接合膜の配置パターンにより、2枚の基板の接合強度を適宜制御することが可能となる。例えば、接合された2枚の基板を容易に剥離可能なように、接合強度を設定することも可能となる。 In such a method of bonding two substrates, the two substrates are bonded via a bonding film. According to this method, the bonding strength of the two substrates can be appropriately controlled by the surface area of the bonding film, the number of bonding films formed, and the arrangement pattern of the plurality of bonding films. For example, the bonding strength can be set so that two bonded substrates can be easily separated.
特許第3714338号公報Japanese Patent No. 3714338 特開2006-187730号公報JP 2006-187730 A 特開2009-132749号公報JP 2009-132749 A
 一方、2枚の基板が接合膜を介して貼り合わされてなる接合体は、その使用用途によっては、接合膜に、単なる接合に寄与する機能以外に、光学的機能が要求されることがある。具体例としては、例えばディスプレイのバックライトなどとして用いられる面発光光源ユニットの構成部材などが挙げられる。 On the other hand, a bonded body in which two substrates are bonded together through a bonding film may require an optical function in addition to a function that contributes to simple bonding depending on the intended use. Specific examples include constituent members of a surface light source unit used as a backlight of a display, for example.
 面発光光源ユニットの或る種のものは、図7に示すように、LEDおよびランプなどからなる光源51と、矩形平板状の導光板61と、導光板61の下面に配設された矩形平板状の反射板63とを備えている。
 この図の例において、面発光光源ユニットは、複数の光源51を備えており、当該複数の光源51はLEDからなるものである。そして、複数の光源51は、導光板61の1つの側面61a(一端面)に沿い、それぞれが当該側面61aに対向するように等間隔で並設されている。
As shown in FIG. 7, a certain type of surface-emitting light source unit includes a light source 51 composed of LEDs and lamps, a rectangular plate-shaped light guide plate 61, and a rectangular flat plate disposed on the lower surface of the light guide plate 61. And a reflector 63 in the form of a plate.
In the example of this figure, the surface-emitting light source unit includes a plurality of light sources 51, and the plurality of light sources 51 are made of LEDs. The plurality of light sources 51 are arranged side by side at equal intervals along one side surface 61a (one end surface) of the light guide plate 61 so that each of the light sources 51 faces the side surface 61a.
 この面発光光源ユニットにおいて、導光板61は、COP(シクロオレフィンポリマー)およびアクリル樹脂等の光透過性樹脂、ガラスなどからなる光透過性基板である。この導光板61には、光源51に対向する側面61aに、光源51からの光が入射する。そして、導光板61は、側面61aから内部に導入された光源51からの光を、当該導光板61と空気との界面で全反射するように設計されている。すなわち、導光板61は、一端面を構成する側面(具体的には、側面61a)から内部に導入された光が、他端面を構成する側面(具体的には、側面61b)から取り出されるものとされている。
 図7(a)においては、光源51から放射され、側面61aから入射して導光板61の内部に導入された光の光路が破線矢印で示されている。
In this surface-emitting light source unit, the light guide plate 61 is a light-transmitting substrate made of light-transmitting resin such as COP (cycloolefin polymer) and acrylic resin, glass or the like. The light from the light source 51 is incident on the light guide plate 61 on the side surface 61 a facing the light source 51. The light guide plate 61 is designed to totally reflect light from the light source 51 introduced from the side surface 61a at the interface between the light guide plate 61 and air. That is, in the light guide plate 61, light introduced into the inside from the side surface (specifically, the side surface 61a) constituting one end surface is extracted from the side surface (specifically, the side surface 61b) constituting the other end surface. It is said that.
In FIG. 7A, the optical path of the light emitted from the light source 51 and incident from the side surface 61a and introduced into the light guide plate 61 is indicated by a dashed arrow.
 また、導光板61の下面には、拡散部材層66と反射板63とがこの順に設けられている。
 拡散部材層66は、導光板61の屈折率とほぼ同等の屈折率を有する材料(具体的には、例えばエポキシ樹脂、ポリエステル樹脂、PMMA(ポリメタクリル酸メチル)樹脂)からなるものである。拡散部材層66は、導光板61の下面に、スクリーン印刷などによって形成される。
 反射板63は、アルミニウムなどよりなり、上面が反射面とされた反射部材である。
 この図の例において、拡散部材層66はパターンを有するものである。
Further, a diffusion member layer 66 and a reflection plate 63 are provided in this order on the lower surface of the light guide plate 61.
The diffusion member layer 66 is made of a material having a refractive index substantially equal to the refractive index of the light guide plate 61 (specifically, for example, epoxy resin, polyester resin, PMMA (polymethyl methacrylate) resin). The diffusion member layer 66 is formed on the lower surface of the light guide plate 61 by screen printing or the like.
The reflecting plate 63 is a reflecting member made of aluminum or the like and having an upper surface as a reflecting surface.
In the example of this figure, the diffusing member layer 66 has a pattern.
 このような構成の面発光光源ユニットは、側面61aから入射されて導光板61の内部に導入された光源51からの光が、当該導光体61の上面から出射されるものである。
 具体的に説明すると、導光板61は、先に述べたように、導光板61の一端面を構成する側面(側面61a)に入射した光が、導光板61の内部で全反射を繰り返し、他端面を構成する側面(側面61b)から出射されるように設計されたものである。しかしながら、導光板61の内部に導入された光源51からの光のうち、導光板61と拡散部材層66との界面に入射した光の大部分は、両者の屈折率がほぼ同等であって両者の屈折率差が小さいことから、この界面をそのまま通過して、反射板63に到達する。そして、反射板63に到達した光は、反射・散乱され、拡散部材層66および導光板61に再び入射して拡散部材層66および導光板61の内部に戻る。この反射・散乱光のうち、導光板61の全反射条件とは異なる状態で導光板61に入射したものは、導光板61の上面で全反射されることなく、この導光板61の上面から出射される。すなわち、図7の面発光光源ユニットは、導光板61の上面全体から光が出射される面発光光源として機能する。
 図7(a)には、反射板63に到達して反射・散乱された反射・散乱光の光路が実線矢印で示されている。
In the surface-emitting light source unit having such a configuration, light from the light source 51 incident from the side surface 61 a and introduced into the light guide plate 61 is emitted from the upper surface of the light guide body 61.
More specifically, as described above, the light guide plate 61 is configured such that light incident on the side surface (side surface 61a) constituting one end surface of the light guide plate 61 repeats total reflection inside the light guide plate 61, and so on. It is designed to be emitted from the side surface (side surface 61b) constituting the end surface. However, among the light from the light source 51 introduced into the light guide plate 61, most of the light incident on the interface between the light guide plate 61 and the diffusing member layer 66 has substantially the same refractive index. Since the difference in refractive index is small, it passes through this interface as it is and reaches the reflector 63. Then, the light that reaches the reflection plate 63 is reflected and scattered, enters the diffusion member layer 66 and the light guide plate 61 again, and returns to the inside of the diffusion member layer 66 and the light guide plate 61. Of the reflected / scattered light, light incident on the light guide plate 61 in a state different from the total reflection condition of the light guide plate 61 is not totally reflected on the upper surface of the light guide plate 61 and is emitted from the upper surface of the light guide plate 61. Is done. That is, the surface-emitting light source unit of FIG. 7 functions as a surface-emitting light source that emits light from the entire upper surface of the light guide plate 61.
In FIG. 7A, the optical path of the reflected / scattered light that has reached the reflecting plate 63 and is reflected / scattered is indicated by a solid line arrow.
 このような面発光光源ユニットを構成する、導光板と反射板との間に拡散部材層が介在されてなる部材(以下、「発光面形成部材」ともいう。)は、表面(貼り合わせ面)上に拡散部材層が形成された反射板と導光板とを貼り合わせることによって得られるものである。そして、発光面形成部材は、前述した特許文献3に開示されている2枚の基板の貼り合わせ方法によって得ることができる。この場合においては、反射板が第1の基板、拡散部材層が接合膜、導光板が第2の基板とされる。
 而して、発光面形成部材において、拡散部材層には、接合に寄与する機能と共に、光学的機能が要求されることになる。
A member (hereinafter, also referred to as “light emitting surface forming member”) having a diffusion member layer interposed between a light guide plate and a reflecting plate, which constitutes such a surface light source unit, is a surface (bonding surface). It is obtained by pasting together a reflection plate having a diffusion member layer formed thereon and a light guide plate. The light emitting surface forming member can be obtained by the method for bonding two substrates disclosed in Patent Document 3 described above. In this case, the reflection plate is the first substrate, the diffusion member layer is the bonding film, and the light guide plate is the second substrate.
Thus, in the light emitting surface forming member, the diffusion member layer is required to have an optical function as well as a function contributing to bonding.
 しかしながら、2枚の基板が接合膜を介して貼り合わされてなる接合体が当該接合膜に光学的機能が要求されてなるものである場合には、特許文献3に開示されている2枚の基板の貼り合わせ方法によっては、所期の接合体を得ることができない。その理由について以下に説明する。 However, in the case where a bonded body in which two substrates are bonded together through a bonding film is one in which an optical function is required for the bonding film, the two substrates disclosed in Patent Document 3 Depending on the bonding method, it is not possible to obtain the desired bonded body. The reason will be described below.
 特許文献3に開示されている2枚の基板の貼り合わせ方法において、第1の基板と第2の基板との積重体の加圧には、例えば図8に示すような加圧機構が設けられてなる2枚の基板の貼り合わせ装置が用いられる。
 図8は、従来の2枚の基板の貼り合わせ装置における加圧機構、すなわち従来の2枚の基板の貼り合わせ方法に用いられている加圧機構の構成の一例を示す説明図、具体的には、特許文献3に開示されている2枚の基板の貼り合わせ方法における、図6(c)で示されている加圧工程を具体化したものである。
 この加圧機構は、基板を載置するための矩形板状のステージ73と、矩形平板状の加圧板71とを備えたものである。ステージ73は、平坦な基板載置面73Aを有するものである。また、加圧板71は、基板載置面73A上において、上下方向に移動可能に設けられている。
 そして、この加圧機構による積重体の加圧処理は、例えば、積重体を、一方の基板側(第1の基板40側)が下方になるようにしてステージ73の基板載置面73Aに載置した状態で、他方の基板側(第2の基板45側)から加圧板71によって押圧することによって行われる。
 そのため、第2の基板45が第1の基板40に比して可変形性の大きいものである場合、具体的には、例えば第2の基板45の構成材料が第1の基板40の構成材料に比して軟性のものである場合には、図9(a)に示すように、加圧工程において、第2の基板45(第2の基板45の貼り合わせ面)が変形し、接合膜43の周辺領域において、第1の基板40と第2の基板45とが接合膜43を介さずに直接接触する。そして、多くの場合、第1の基板40と第2の基板45とはそのままの状態で接合されることとなる。
 また、第1の基板40が第2の基板45に比して可変形性の大きいものである場合、具体的には、例えば第1の基板40の構成材料が第2の基板45の構成材料に比して軟性のものである場合には、図9(b)に示すように、加圧工程において、第1の基板40(第1の基板40の貼り合わせ面)が変形し、接合膜43の周辺領域において、第1の基板40と第2の基板45とが接合膜43を介さずに直接接触する。そして、多くの場合、第1の基板40と第2の基板45とはそのままの状態で接合されることとなる。
In the method for bonding two substrates disclosed in Patent Document 3, for example, a pressurizing mechanism as shown in FIG. 8 is provided for pressurization of the stack of the first substrate and the second substrate. An apparatus for bonding two substrates is used.
FIG. 8 is an explanatory diagram showing an example of the configuration of a pressure mechanism in a conventional two-substrate bonding apparatus, that is, a pressure mechanism used in a conventional two-layer bonding method. Fig. 6 is an embodiment of the pressurization step shown in Fig. 6 (c) in the method of bonding two substrates disclosed in Patent Document 3.
This pressurizing mechanism includes a rectangular plate-like stage 73 on which a substrate is placed and a rectangular flat plate-like pressurizing plate 71. The stage 73 has a flat substrate mounting surface 73A. The pressure plate 71 is provided so as to be movable in the vertical direction on the substrate placement surface 73A.
In the pressurizing process of the stacked body by the pressurizing mechanism, for example, the stacked body is mounted on the substrate mounting surface 73A of the stage 73 so that one substrate side (the first substrate 40 side) faces downward. In the placed state, the pressing is performed by the pressure plate 71 from the other substrate side (second substrate 45 side).
Therefore, when the second substrate 45 is larger in deformability than the first substrate 40, specifically, for example, the constituent material of the second substrate 45 is the constituent material of the first substrate 40. 9A, the second substrate 45 (the bonding surface of the second substrate 45) is deformed in the pressurizing step, as shown in FIG. In the peripheral region of 43, the first substrate 40 and the second substrate 45 are in direct contact without the bonding film 43 interposed therebetween. In many cases, the first substrate 40 and the second substrate 45 are bonded as they are.
Further, when the first substrate 40 is larger in deformability than the second substrate 45, specifically, for example, the constituent material of the first substrate 40 is the constituent material of the second substrate 45. 9B, the first substrate 40 (the bonding surface of the first substrate 40) is deformed in the pressurizing process, as shown in FIG. In the peripheral region of 43, the first substrate 40 and the second substrate 45 are in direct contact without the bonding film 43 interposed therebetween. In many cases, the first substrate 40 and the second substrate 45 are bonded as they are.
 而して、面発光光源ユニットの発光面形成部材を、特許文献3に開示されている2枚の基板の貼り合わせ方法によって作製した場合には、図9(c)に示すように、導光板(第2の基板45)と反射板(第1の基板40)とが、一部、具体的には拡散部材層(接合膜43)の周辺領域において、拡散部材層(接合膜43)を介さずに直接接触する。すなわち、得られる発光面形成部材は、導光板(第2の基板45)と反射板(第1の基板40)とが不所望な直接接触領域49を有するものとなる。そして、直接接触領域49においては、導光板(第2の基板45)と反射板(第1の基板40)との界面に入射した光が迷光として不所望な方向に散乱されることになる。そのため、反射板(第1の基板40)により反射・散乱されて導光板(第2の基板45)の上面から出射される光は、その迷光の影響により、所定の強度分布とは異なる強度分布を有するものとなる。 Thus, when the light-emitting surface forming member of the surface-emitting light source unit is produced by the method of bonding two substrates disclosed in Patent Document 3, as shown in FIG. The (second substrate 45) and the reflector (first substrate 40) are partly, specifically in the peripheral region of the diffusion member layer (bonding film 43), with the diffusion member layer (bonding film 43) interposed therebetween. Contact directly without touching. That is, in the obtained light emitting surface forming member, the light guide plate (second substrate 45) and the reflection plate (first substrate 40) have an undesired direct contact region 49. In the direct contact region 49, light incident on the interface between the light guide plate (second substrate 45) and the reflection plate (first substrate 40) is scattered in an undesired direction as stray light. Therefore, the light that is reflected and scattered by the reflecting plate (first substrate 40) and emitted from the upper surface of the light guide plate (second substrate 45) has an intensity distribution different from the predetermined intensity distribution due to the influence of the stray light. It will have.
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、機能性膜を介さず直接接触することのないように、第1の基板と第2の基板とを機能性膜を介して貼り合わせることのできる2枚の基板の貼り合わせ方法および2枚の基板の貼り合わせ装置を提供することにある。 The present invention has been made based on the above circumstances, and its purpose is to function the first substrate and the second substrate so that they do not directly contact each other without the functional film. An object of the present invention is to provide a method for bonding two substrates and a bonding apparatus for two substrates that can be bonded together through a conductive film.
 本発明の2枚の基板の貼り合わせ方法は、規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板とを、当該機能性膜を介して貼り合わせる、2枚の基板の貼り合わせ方法であって、
 第1の基板の表面上に形成された機能性膜の表面を活性化する表面活性化工程、
 前記表面活性化工程を経由した第1の基板と第2の基板とを、前記機能性膜の表面と第2の基板の貼り合わせ面とが互いに接触した状態となるように積重する積重工程、および
 前記積重工程において得られた第1の基板と第2の基板との積重体を、前記機能性膜と当該第2の基板との接触部分に対して選択的に加圧力が作用するよう、厚み方向に加圧する加圧工程
を含むことを特徴とする。
In the method for laminating two substrates of the present invention, the first substrate and the second substrate on which the functional film having a defined outer shape is formed are bonded via the functional film. A method of bonding two substrates,
A surface activation step for activating the surface of the functional film formed on the surface of the first substrate;
Stacking the first substrate and the second substrate that have passed through the surface activation step so that the surface of the functional film and the bonding surface of the second substrate are in contact with each other. And a stack of the first substrate and the second substrate obtained in the stacking step is selectively applied to a contact portion between the functional film and the second substrate. Thus, a pressurizing step of pressurizing in the thickness direction is included.
 本発明の2枚の基板の貼り合わせ方法においては、前記加圧工程は、前記第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板を用い、当該突起部が当該第1の基板または前記第2の基板を介して当該機能性膜と対向するよう位置合わせされた状態において、当該加圧板を押圧することによって行われることが好ましい。
 このような本発明の2枚の基板の貼り合わせ方法においては、前記第1の基板および前記第2の基板のうちの可変形性の小さい基板が、前記加圧板に接触した状態とされることが好ましい。
In the method for laminating two substrates of the present invention, the pressing step uses a pressing plate having a protruding portion having a shape corresponding to the functional film formed on the surface of the first substrate. It is preferably performed by pressing the pressure plate in a state where the protrusion is positioned so as to face the functional film via the first substrate or the second substrate.
In such a method for bonding two substrates of the present invention, a substrate having a small deformability among the first substrate and the second substrate is in contact with the pressure plate. Is preferred.
 本発明の2枚の貼り合わせ方法においては、前記積重工程に供される、第2の基板の貼り合わせ面に、真空紫外線を照射する、または、大気プラズマによってプラズマ化したプロセスガスを接触させることが好ましい。 In the two-layer bonding method of the present invention, the ultraviolet ray is irradiated on the bonding surface of the second substrate that is subjected to the stacking step, or a process gas that is made plasma by atmospheric plasma is brought into contact with the bonding surface. It is preferable.
 本発明の2枚の基板の貼り合わせ方法においては、前記表面活性化工程は、前記第1の基板の表面上に形成された機能性膜の表面に真空紫外線を照射する紫外線照射処理工程であることが好ましい。 In the method for laminating two substrates of the present invention, the surface activation step is an ultraviolet irradiation process for irradiating the surface of the functional film formed on the surface of the first substrate with vacuum ultraviolet rays. It is preferable.
 本発明の2枚の基板の貼り合わせ方法においては、前記表面活性化工程は、大気圧プラズマによってプラズマ化したプロセスガスを、前記第1の基板の表面上に形成された機能性膜の表面に接触させるプラズマガス処理工程であることが好ましい。 In the method for laminating two substrates of the present invention, the surface activation step is performed by applying a process gas plasmatized by atmospheric pressure plasma to the surface of the functional film formed on the surface of the first substrate. It is preferable that it is a plasma gas treatment process to contact.
 本発明の2枚の基板の貼り合わせ装置は、規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板とを、当該機能性膜を介して貼り合わせるための2枚の基板の貼り合わせ装置であって、
 前記第1の基板における機能性膜の表面と前記第2の基板の貼り合わせ面とが互いに接触した状態の積重体を厚み方向に加圧するための加圧機構が設けられており、
 前記加圧機構が、前記第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板、および、当該加圧板と前記積重体との位置合わせ調整手段を備え、当該機能性膜と前記第2の基板との接触部分に対して選択的に加圧力を作用させるものであることを特徴とする。
The apparatus for bonding two substrates of the present invention bonds a first substrate having a functional film having a defined outer shape on the surface and a second substrate through the functional film. An apparatus for laminating two substrates for
A pressurizing mechanism is provided for pressurizing the stack in a thickness direction in a state where the surface of the functional film of the first substrate and the bonding surface of the second substrate are in contact with each other;
The pressure mechanism includes a pressure plate having a protrusion having a shape corresponding to a functional film formed on the surface of the first substrate, and an alignment adjusting unit between the pressure plate and the stack. The method is characterized in that a pressing force is selectively applied to a contact portion between the functional film and the second substrate.
 本発明の2枚の基板の貼り合わせ方法においては、第1の基板と第2の基板との積重体を厚み方向に加圧する加圧工程において、当該第1の基板の表面上に形成された機能性膜と当該第2の基板との接触部分に対して選択的に加圧力が作用する。そのため、第1の基板および第2の基板の一方が他方に比して可変形性が大きいものであっても、第1の基板および第2の基板の貼り合わせ面に、機能性膜の周辺領域において第1の基板と第2の基板とが当該機能性膜を介することなく直接接触するような変形が生じることを防止または十分に抑制することができる。
 従って、本発明の2枚の基板の貼り合わせ方法によれば、機能性膜を介さず直接接触することのないように、第1の基板と第2の基板とを機能性膜を介して貼り合わせることができる。
In the method for laminating two substrates of the present invention, the first substrate and the second substrate are formed on the surface of the first substrate in the pressurizing step of pressurizing the stack of the second substrate in the thickness direction. A pressing force selectively acts on a contact portion between the functional film and the second substrate. Therefore, even if one of the first substrate and the second substrate has greater deformability than the other, the periphery of the functional film is bonded to the bonding surface of the first substrate and the second substrate. It is possible to prevent or sufficiently suppress the deformation in which the first substrate and the second substrate are in direct contact with each other without the functional film interposed therebetween in the region.
Therefore, according to the method for bonding two substrates of the present invention, the first substrate and the second substrate are bonded via the functional film so that they are not in direct contact without the functional film. Can be matched.
 本発明の2枚の基板の貼り合わせ装置においては、第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板、および、加圧板と積重体との位置合わせ調整手段を備えた加圧機構が設けられている。そして、加圧機構は、機能性膜が表面上に形成された第1の基板と第2の基板との積重体に対して、当該機能性膜と当該第2の基板との接触部分に対して選択的に加圧力を作用させることのできるものである。そのため、第1の基板における機能性膜の表面と第2の基板の貼り合わせ面とが互いに接触した状態の積重体を加圧板によって押圧するという容易な手法によって、第1の基板と第2の基板とを貼り合わせることができる。その結果、第1の基板および第2の基板の一方が他方に比して可変形性が大きいものであっても、第1の基板および第2の基板の貼り合わせ面に、機能性膜の周辺領域において第1の基板と第2の基板とが当該機能性膜を介することなく直接接触するような変形が生じることを防止または十分に抑制することができる。
 従って、本発明の2枚の基板の貼り合わせ装置によれば、機能性膜を介さず直接接触することのないように、第1の基板と第2の基板とを機能性膜を介して貼り合わせることができる。
In the bonding apparatus for two substrates of the present invention, a pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate, and the positions of the pressure plate and the stack A pressurizing mechanism provided with an alignment adjusting means is provided. And a pressurization mechanism is with respect to the contact part of the said functional film and the said 2nd board | substrate with respect to the stack of the 1st board | substrate with which the functional film was formed on the surface, and the 2nd board | substrate. Thus, the pressure can be selectively applied. For this reason, the first substrate and the second substrate are pressed by an easy method of pressing the stack in a state in which the surface of the functional film of the first substrate and the bonding surface of the second substrate are in contact with each other. A substrate can be attached. As a result, even if one of the first substrate and the second substrate has a larger deformability than the other, the functional film is formed on the bonding surface of the first substrate and the second substrate. It is possible to prevent or sufficiently suppress the deformation in which the first substrate and the second substrate are in direct contact with each other without passing through the functional film in the peripheral region.
Therefore, according to the bonding apparatus for two substrates of the present invention, the first substrate and the second substrate are bonded via the functional film so as not to be in direct contact without the functional film. Can be matched.
本発明の2枚の基板の貼り合わせ方法の貼り合わせ工程の一例を示す説明図である。It is explanatory drawing which shows an example of the bonding process of the bonding method of the 2 board | substrate of this invention. 本発明の2枚の基板の貼り合わせ方法に用いられる大気圧プラズマ装置の一例における構成を示す説明用断面図である。It is sectional drawing for description which shows the structure in an example of the atmospheric pressure plasma apparatus used for the bonding method of the 2 board | substrate of this invention. 本発明の2枚の貼り合わせ方法において得られる接合体の一例を、本発明の2枚の基板の貼り合わせ装置の一例における加圧機構と共に示す説明図である。It is explanatory drawing which shows an example of the conjugate | zygote obtained in the bonding method of 2 sheets of this invention with the pressurization mechanism in an example of the bonding apparatus of 2 sheets of this invention. 本発明の2枚の基板の貼り合わせ方法の貼り合わせ工程の他の例を示す説明図である。It is explanatory drawing which shows the other example of the bonding process of the bonding method of the 2 board | substrate of this invention. 実験例1、実験例2および実験例3において得られた接合体の接合領域を示す説明図である。It is explanatory drawing which shows the joining area | region of the conjugate | zygote obtained in Experimental example 1, Experimental example 2, and Experimental example 3. FIG. 従来の2枚の基板の貼り合わせ方法における貼り合わせ工程の一例を示す説明図である。It is explanatory drawing which shows an example of the bonding process in the conventional bonding method of two board | substrates. 従来の面発光光源ユニットの構成の一例を示す説明用図であり、(a)は、面発光光源ユニットの側面図であり、(b)は、(a)のA方向矢視図である。It is explanatory drawing which shows an example of a structure of the conventional surface emitting light source unit, (a) is a side view of a surface emitting light source unit, (b) is an A direction arrow directional view of (a). 従来の2枚の基板の貼り合わせ装置における加圧機構の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the pressurization mechanism in the conventional bonding apparatus of two board | substrates. 従来の2枚の基板の貼り合わせ方法によって得られる接合体を示す説明図である。It is explanatory drawing which shows the joined body obtained by the bonding method of the conventional 2 board | substrate.
 以下、本発明の2枚の基板の貼り合わせ方法および2枚の基板の貼り合わせ装置の実施の形態について説明する。 Hereinafter, embodiments of the method for bonding two substrates and the apparatus for bonding two substrates of the present invention will be described.
 本発明の2枚の基板の貼り合わせ方法は、下記の(1)~(3)の工程を経ることにより、規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板とを、当該機能性膜を介して貼り合わせて接合することを特徴とするものである。この本発明の2枚の基板の貼り合わせ方法によれば、第1の基板と第2の基板とが機能性膜を介して接合されてなる接合体が得られる。
 ここに、「機能性膜」とは、少なくとも2枚の基板の接合に寄与する機能(接合機能)を有するものであり、必要に応じて、具体的には得られる接合体の使用用途などに応じて、接合機能と共に光学的機能などの接合機能以外の機能を有するものである。なお、機能性膜は、接合機能を有するものであれば、その他の機能(接合機能以外の機能)を有さないものであってもよい。また、機能性膜の構成材料は、機能性膜に必要とされる機能、第1の基板の構成材料および第2の基板の構成材料などに応じて適宜選択される。具体的には、例えばポリジメチルシロキサン(Polydimethylsiloxane:PDMS)およびPET(ポリエチレンテレフタラート)樹脂などが挙げられる。
The method for laminating two substrates of the present invention comprises the steps of (1) to (3) below, and the first substrate having a functional film having a defined outer shape formed on the surface: The second substrate is bonded and bonded through the functional film. According to the method for bonding two substrates of the present invention, a joined body is obtained in which the first substrate and the second substrate are joined via the functional film.
Here, the “functional film” has a function (bonding function) that contributes to the bonding of at least two substrates. Specifically, the “functional film” is used for use of the obtained bonded body, if necessary. Accordingly, it has functions other than the bonding function such as an optical function as well as the bonding function. As long as the functional film has a bonding function, the functional film may not have other functions (functions other than the bonding function). The constituent material of the functional film is appropriately selected according to the function required for the functional film, the constituent material of the first substrate, the constituent material of the second substrate, and the like. Specific examples include polydimethylsiloxane (PDMS) and PET (polyethylene terephthalate) resin.
(1)第1の基板の表面上に形成された機能性膜の表面を活性化する表面活性化工程
(2)表面活性化工程を経由した第1の基板と第2の基板とを、機能性膜の表面と第2の基板の貼り合わせ面とが互いに接触した状態となるように積重する積重工程
(3)積重工程において得られた第1の基板と第2の基板との積重体を、機能性膜と第2の基板との接触部分に対して選択的に加圧力が作用するよう、厚み方向に加圧する加圧工程
(1) Surface activation step for activating the surface of the functional film formed on the surface of the first substrate (2) The first substrate and the second substrate that have passed through the surface activation step are functioned Stacking step (3) in which the surface of the conductive film and the bonding surface of the second substrate are in contact with each other, and (3) the first substrate and the second substrate obtained in the stacking step Pressurizing step of pressurizing the stack in the thickness direction so that a pressing force selectively acts on a contact portion between the functional film and the second substrate
 本発明の2枚の基板の貼り合わせ方法において、表面活性化工程は、第1の基板における機能性膜の表面に真空紫外線を照射する紫外線照射処理工程、または、大気圧プラズマによってプラズマ化したプロセスガスを、第1の基板における機能性膜の表面に接触させるプラズマガス処理工程であることが好ましい。 In the method for laminating two substrates of the present invention, the surface activation step is an ultraviolet irradiation treatment step of irradiating the surface of the functional film on the first substrate with vacuum ultraviolet rays, or a process that is made plasma by atmospheric pressure plasma. It is preferable that it is a plasma gas treatment process in which a gas is brought into contact with the surface of the functional film in the first substrate.
 また、発明の2枚の基板の貼り合わせ方法の加圧工程において、第1の基板と第2の基板との積重体に、機能性膜と当該第2の基板との接触部分に対して選択的に加圧力を作用させるための好適な手法としては、第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板を用いる手法が挙げられる。
 具体的に説明すると、加圧工程は、第1の基板に形設された機能性膜に対応した形状の突起部を有する加圧板を用い、当該突起部が当該第1の基板または第2の基板を介して当該機能性膜と対向するよう位置合わせされた状態において、当該加圧板を押圧することによって行われることが好ましい。そして、このような手法は、第1の基板に形設された機能性膜に対応した形状の突起部を有する加圧板、および、当該加圧板と積重体との位置合わせ調整手段を備え、当該機能性膜と第2の基板との接触部分に対して選択的に加圧力を作用させる加圧機構が設けられた装置、すなわち本発明の2枚の基板の貼り合わせ装置によって実施することができる。
In the pressurizing step of the method for bonding two substrates of the invention, a stack of the first substrate and the second substrate is selected for the contact portion between the functional film and the second substrate. As a suitable method for applying the applied pressure, a method using a pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate can be cited.
More specifically, the pressing step uses a pressure plate having a protrusion having a shape corresponding to the functional film formed on the first substrate, and the protrusion is the first substrate or the second substrate. It is preferably performed by pressing the pressure plate in a state of being positioned so as to face the functional film through the substrate. Such a method includes a pressure plate having a protrusion corresponding to the functional film formed on the first substrate, and an alignment adjustment unit between the pressure plate and the stack, It can be carried out by an apparatus provided with a pressurizing mechanism for selectively applying a pressing force to a contact portion between the functional film and the second substrate, that is, an apparatus for bonding two substrates of the present invention. .
 このような手法においては、第1の基板および第2の基板のうちの可変形性の小さい基板が、加圧板に接触した状態とされることが好ましい。
 第1の基板および第2の基板のうちの可変形性の小さい基板が加圧板に接触した状態とされることにより、加圧工程において、第1の基板および第2の基板のいずれにも変形が生じることがない。そのため、得られる接合体において、残留応力の発生に起因して生じる第1の基板と第2の基板との剥離を抑制することができる。
 一方、第1の基板および第2の基板のうちの可変形性の大きい基板が加圧板に接触した状態とされた場合には、加圧板に接触した状態とされた基板に、加圧板(突起部)との接触面において突起部の形状に対応した凹みが生じて残留応力が発生するおそれがある。残留応力が発生した場合には、得られる接合体において、第1の基板と第2の基板とが剥離しやすくなるおそれがある。
In such a method, it is preferable that a substrate having a small deformability among the first substrate and the second substrate is in contact with the pressure plate.
Of the first substrate and the second substrate, the substrate having a small deformability is brought into contact with the pressure plate, so that either the first substrate or the second substrate is deformed in the pressing step. Will not occur. Therefore, in the obtained bonded body, peeling between the first substrate and the second substrate caused by the occurrence of residual stress can be suppressed.
On the other hand, when the highly deformable substrate of the first substrate and the second substrate is in contact with the pressure plate, the pressure plate (protrusion) is placed on the substrate in contact with the pressure plate. There is a possibility that a dent corresponding to the shape of the protruding portion is generated on the contact surface with the portion) and residual stress is generated. When the residual stress is generated, the first substrate and the second substrate may be easily peeled in the obtained bonded body.
 また、本発明の2枚の基板の貼り合わせ方法においては、貼り合わせ効率の観点から、積重工程に供する第2の基板の貼り合わせ面に対して、真空紫外線を照射する紫外線照射処理、または、大気プラズマによってプラズマ化したプロセスガスを接触させるプラズマガス処理を行うことが好ましい。 In the method for bonding two substrates of the present invention, from the viewpoint of bonding efficiency, an ultraviolet irradiation process for irradiating vacuum ultraviolet light on the bonding surface of the second substrate to be subjected to the stacking step, or It is preferable to perform a plasma gas treatment in which a process gas converted into plasma by atmospheric plasma is brought into contact.
 本発明の2枚の基板の貼り合わせ方法の好ましい具体例としては、後述する、第1の貼り合わせ方法および第2の貼り合わせ方法が挙げられる。
 第1の貼り合わせ方法および第2の貼り合わせ方法のいずれの方法を利用するかは、第1の基板の構成材料および厚み、並びに第2の構成材料および厚みなどに応じて適宜選択される。
 具体的には、例えば第1の基板の構成材料が第2の基板の構成材料に比して軟性のものまたは厚みの小さいものであることなどによって、第2の基板が第1の基板に比して可変形性の小さいものである場合には、第1の貼り合わせ方法を利用することが好ましい。一方、例えば第2の基板の構成材料が第1の基板の構成材料に比して軟性のものまたは厚みの小さいものであることなどによって、第1の基板が第2の基板に比して可変形性の小さいものである場合には、第2の貼り合わせ方法を利用することが好ましい。
Preferred specific examples of the method for bonding two substrates of the present invention include a first bonding method and a second bonding method, which will be described later.
Which of the first bonding method and the second bonding method is used is appropriately selected according to the constituent material and thickness of the first substrate, the second constituent material and thickness, and the like.
Specifically, the second substrate is compared with the first substrate because, for example, the constituent material of the first substrate is softer or thinner than the constituent material of the second substrate. If the deformability is small, it is preferable to use the first bonding method. On the other hand, the first substrate can be compared with the second substrate because, for example, the constituent material of the second substrate is softer or thinner than the constituent material of the first substrate. In the case where the deformability is small, it is preferable to use the second bonding method.
 本発明の2枚の基板の貼り合わせ方法に供される2枚の基板(具体的には、第1の基板および第2の基板)の構成材料としては、PET(ポリエチレンテレフタラート)樹脂、COP(シクロオレフィンポリマー)およびアクリル樹脂(具体的には、例えばPMMA(ポリメタクリル酸メチル)樹脂)等の樹脂、ガラス(具体的には、例えば無アルカリガラス)などが挙げられる。 The constituent materials of the two substrates (specifically, the first substrate and the second substrate) used in the method for bonding the two substrates of the present invention include PET (polyethylene terephthalate) resin, COP (Cycloolefin polymer) and acrylic resin (specifically, for example, PMMA (polymethyl methacrylate) resin), glass (specifically, for example, non-alkali glass), and the like.
[第1の貼り合わせ方法]
 以下、本発明の2枚の基板の貼り合わせ方法に係る第1の貼り合わせ方法の2つの実施形態について説明する。
[First bonding method]
Hereinafter, two embodiments of the first bonding method according to the bonding method of two substrates of the present invention will be described.
<第1の貼り合わせ方法の第1の実施形態>
 第1の貼り合わせ方法の第1の実施形態(以下、「第1の貼り合わせ方法(1)」ともいう。)について、図1を用いて詳細に説明する。
 この第1の貼り合わせ方法(1)においては、第2の基板15が第1の基板10に比して可変形性の小さいものであり、具体的には、例えば第1の基板10がPET樹脂よりなるものであり、第2の基板15が、COP、アクリル樹脂またはガラスよりなるものである。また、機能性膜13がPDMSよりなるものである。そして、得られる接合体は、ディスプレイのバックライトなどとして用いられる面発光光源ユニットの構成部材、具体的には、COP、アクリル樹脂またはガラスよりなる導光板と、PDMSよりなる拡散部材層と、PET樹脂よりなる反射板とがこの順に積層されてなる発光面形成部材として用いられるものである。この接合体において、機能性膜13は、接合に寄与する機能と共に、光学的機能を有するものである。
<First Embodiment of First Bonding Method>
A first embodiment of the first bonding method (hereinafter also referred to as “first bonding method (1)”) will be described in detail with reference to FIG.
In the first bonding method (1), the second substrate 15 is smaller in deformability than the first substrate 10, and specifically, for example, the first substrate 10 is PET. It is made of resin, and the second substrate 15 is made of COP, acrylic resin, or glass. The functional film 13 is made of PDMS. And the joined body obtained is a constituent member of a surface-emitting light source unit used as a backlight of a display, specifically, a light guide plate made of COP, acrylic resin or glass, a diffusion member layer made of PDMS, and PET A reflecting plate made of a resin is used as a light emitting surface forming member formed by laminating in this order. In this bonded body, the functional film 13 has an optical function as well as a function contributing to bonding.
 第1の貼り合わせ方法(1)は、上記の(1)~(3)の工程を経ると共に、図1(a-2)に示すように、積重工程に供する第2の基板15の表面(貼り合わせ面)に対して紫外線照射処理を行うものである。また、第1の貼り合わせ方法(1)は、図1(e)に示すように、加圧工程において、本発明の2枚の基板の貼り合わせ装置を用いることに伴って、図1(b-1)、(b-2)、(c)および(f)に示すような第1の基板10のアライメント調整処理、加圧板21のアライメント調整処理および加圧板21の退避処理(一時退避処理を含む)を行うものである。
 そして、第1の貼り合わせ方法(1)においては、図1(a-1)に示すように、表面活性化工程は、紫外線照射処理工程である。
In the first bonding method (1), the steps (1) to (3) described above are performed, and as shown in FIG. 1 (a-2), the surface of the second substrate 15 used for the stacking step An ultraviolet irradiation treatment is performed on the (bonding surface). In addition, as shown in FIG. 1 (e), the first bonding method (1) is performed in accordance with the use of the two substrate bonding apparatus of the present invention in the pressing step. -1), (b-2), (c) and (f), the first substrate 10 alignment adjustment processing, the pressure plate 21 alignment adjustment processing, and the pressure plate 21 retraction processing (temporary retraction processing). Including).
In the first bonding method (1), as shown in FIG. 1 (a-1), the surface activation process is an ultraviolet irradiation process.
 第1の貼り合わせ方法(1)に用いられる本発明の2枚の基板の貼り合わせ装置において、加圧機構は、図1(b-1)~(f)に示されているように、基板(具体的には、第1の基板10および第2の基板15)を載置するための矩形板状のステージ23と、第1の基板10に形設された機能性膜13に対応した形状の突起部22Bを有する加圧板21とを備えたものである。ステージ23は、平坦な基板載置面23Aを有するものであり、この基板載置面23Aの周縁部には、当該基板載置面23Aから垂直に突出して伸びる複数(図1の例においては3本)の位置決めピン25が設けられている。この位置決めピン25は、基板および加圧板21に対する位置決め機能を有するアライメント調整手段である。すなわち、位置決めピン25により、積重体(具体的には、第1の基板10と第2の基板15との積重体)と加圧板21との位置合わせ調整手段が構成されている。加圧板21は、矩形板状の基材22Aの表面(図1(c)、(d)、(e)および(f)における下面)に突起部22Bを有するものである。そして、この加圧板21は、当該加圧板21の表面が基板載置面23Aと対向し、位置決めピン25によって位置決めされることによって、突起部22Bが、基板載置面23Aに載置された第1の基板10に形設された機能性膜13と対向した状態とされる。また、加圧板21は、基板載置面23A上において、上下方向に移動可能に設けられている。
 図の例において、加圧板21は、基材22Aが、第1の基板10および第2の基板15と同様の縦横寸法を有しており、この基材22Aの中央部に、突出高さ1mmの突起部22Bを有するものである。
In the bonding apparatus for two substrates of the present invention used in the first bonding method (1), the pressurizing mechanism is a substrate as shown in FIGS. 1 (b-1) to (f). (Specifically, a rectangular plate-like stage 23 on which the first substrate 10 and the second substrate 15 are placed, and a shape corresponding to the functional film 13 formed on the first substrate 10. And a pressure plate 21 having a protruding portion 22B. The stage 23 has a flat substrate placement surface 23A, and a plurality of (3 in the example of FIG. 1) extend perpendicularly from the substrate placement surface 23A at the peripheral portion of the substrate placement surface 23A. Book) positioning pins 25 are provided. The positioning pins 25 are alignment adjusting means having a positioning function with respect to the substrate and the pressure plate 21. That is, the positioning pin 25 constitutes an alignment adjusting means for the stacked body (specifically, the stacked body of the first substrate 10 and the second substrate 15) and the pressure plate 21. The pressure plate 21 has a protrusion 22B on the surface of the rectangular plate-like base material 22A (the lower surface in FIGS. 1C, 1D, 1E, and 1F). Then, the pressure plate 21 is such that the surface of the pressure plate 21 faces the substrate placement surface 23A and is positioned by the positioning pins 25, so that the protrusion 22B is placed on the substrate placement surface 23A. The functional film 13 formed on one substrate 10 is opposed to the functional film 13. The pressure plate 21 is provided to be movable in the vertical direction on the substrate placement surface 23A.
In the example shown in the figure, the pressure plate 21 has a base material 22A having the same vertical and horizontal dimensions as the first substrate 10 and the second substrate 15, and a protrusion height of 1 mm at the center of the base material 22A. The protrusion 22B is provided.
 第1の貼り合わせ方法(1)においては、先ず、矩形平板状の第1の基板10と、当該第1の基板10の表面に適合した大きさの表面を有する矩形平板状の第2の基板15とを用意する。そして、第1の基板10の表面に、スクリーン印刷などにより、規定された外形を有する機能性膜13を形成する。第1の基板10においては、機能性膜13が形成された表面が第2の基板15との貼り合わせ面となる。一方、第2の基板15においては、第1の基板10の貼り合わせ面に適合した大きさの表面が第1の基板10との貼り合わせ面となる。
 この図の例において、第1の基板10には、規定された外形(具体的には、矩形状の外形)を有する、厚み10μmの機能性膜13が、貼り合わせ面の中央部に形成されている。
In the first bonding method (1), first, a rectangular flat plate-like first substrate 10 and a rectangular flat plate-like second substrate having a surface having a size suitable for the surface of the first substrate 10. 15 are prepared. Then, a functional film 13 having a prescribed outer shape is formed on the surface of the first substrate 10 by screen printing or the like. In the first substrate 10, the surface on which the functional film 13 is formed serves as a bonding surface with the second substrate 15. On the other hand, in the second substrate 15, the surface having a size suitable for the bonding surface of the first substrate 10 is the bonding surface with the first substrate 10.
In the example of this figure, a functional film 13 having a defined outer shape (specifically, a rectangular outer shape) and a thickness of 10 μm is formed on the first substrate 10 at the center of the bonding surface. ing.
(第1工程:第1の基板表面活性化工程および第2の基板紫外線照射処理工程)
 第1の基板表面活性化工程および第2の基板紫外線照射処理工程においては、図1(a-1)および図1(a-2)に示すように、第1の基板10の貼り合わせ面(図1(a-1)における上面)および第2の基板15の貼り合わせ面(図1(a-2)における上面)に、大気雰囲気下において、真空紫外線(波長200nm以下の紫外線)L1,L2を照射する。
(First step: first substrate surface activation step and second substrate ultraviolet irradiation treatment step)
In the first substrate surface activation process and the second substrate ultraviolet irradiation process, as shown in FIGS. 1 (a-1) and 1 (a-2), the bonding surface ( Vacuum ultraviolet rays (ultraviolet rays having a wavelength of 200 nm or less) L1, L2 on the bonding surface (upper surface in FIG. 1 (a-2)) of FIG. Irradiate.
 第1の基板表面活性化工程を経ることにより、第1の基板10の貼り合わせ面、具体的には、機能性膜13の表面(図1(a-1)における上面)が、活性化されて貼り合わせに適した面となるように改質される。具体的には、機能性膜13の表面が、例えばヒドロキシ基(OH基)が存在する状態となって親水化される。すなわち、機能性膜13の表面は、大気中の水分に由来のヒドロキシ基が導入されることによって、ヒドロキシ基でターミネートされる。また、第1の基板10の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。 Through the first substrate surface activation step, the bonding surface of the first substrate 10, specifically, the surface of the functional film 13 (the upper surface in FIG. 1A-1) is activated. And modified so that the surface is suitable for bonding. Specifically, the surface of the functional film 13 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the surface of the functional film 13 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere. In addition, the bonding surface of the first substrate 10 is cleaned by removing contaminants such as organic substances.
 第2の基板紫外線照射処理工程は、必ずしも必要な工程ではないが、貼り合わせ効率の観点からは行うことが好ましいものである。
 具体的に説明すると、第1の基板10の貼り合わせ面にさえ真空紫外線L1を照射すれば、すなわち機能性膜13の表面さえ活性化すれば、第1の基板10と第2の基板15とを接合することができる。然るに、第2の基板紫外線照射処理工程を経ることにより、第2の基板15の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。このように第2の基板15の貼り合わせ面がクリーニングされることによれば、2枚の基板の貼り合わせを効率的に行うことができる。
 また、第2の基板紫外線照射処理工程においては、第2の基板15の構成材料によっては、第2の基板15の貼り合わせ面が、活性化されることにより、貼り合わせに適した面となるように改質される。具体的には、第2の基板15の貼り合わせ面が、例えばヒドロキシ基(OH基)が存在する状態となって親水化される。すなわち、第2の基板15の貼り合わせ面は、大気中の水分に由来のヒドロキシ基が導入されることによって、ヒドロキシ基でターミネートされる。
The second substrate ultraviolet irradiation treatment step is not necessarily a necessary step, but is preferably performed from the viewpoint of bonding efficiency.
More specifically, as long as the bonding surface of the first substrate 10 is irradiated with the vacuum ultraviolet rays L1, that is, even the surface of the functional film 13 is activated, the first substrate 10 and the second substrate 15 Can be joined. However, the bonded surface of the second substrate 15 is cleaned by removing contaminants such as organic substances on the bonded surface of the second substrate 15 through the second substrate ultraviolet irradiation process. As described above, when the bonding surface of the second substrate 15 is cleaned, the two substrates can be bonded efficiently.
Further, in the second substrate ultraviolet irradiation process, depending on the constituent material of the second substrate 15, the bonding surface of the second substrate 15 is activated to become a surface suitable for bonding. It is modified as follows. Specifically, the bonding surface of the second substrate 15 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the bonding surface of the second substrate 15 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
 第1の基板表面活性化工程および第2の基板紫外線照射処理工程において、各々、真空紫外線L1,L2を放射する光源としては、波長172nmに輝線を有するキセノンエキシマランプ等のエキシマランプ、波長185nmに輝線を有する低圧水銀ランプ、波長120~200nmの範囲に輝線を有する重水素ランプを好適に用いることができる。
 第1の基板10の貼り合わせ面および第2の基板15の貼り合わせ面の各々に照射される真空紫外線L1,L2の照度は、例えば10~100mW/cmである。
 また、第1の基板10の貼り合わせ面および第2の基板15の貼り合わせ面の各々に対する真空紫外線L1,L2の照射時間は、機能性膜13の構成材料および機能性膜13の表面の状態、または第2の基板15の構成材料および第2の基板15の貼り合わせ面の状態に応じて適宜設定されるが、例えば5~120秒間である。
In the first substrate surface activation process and the second substrate ultraviolet irradiation process, the light source that emits the vacuum ultraviolet rays L1 and L2 is an excimer lamp such as a xenon excimer lamp having a bright line at a wavelength of 172 nm, and a wavelength of 185 nm. A low-pressure mercury lamp having an emission line and a deuterium lamp having an emission line in the wavelength range of 120 to 200 nm can be preferably used.
The illuminance of the vacuum ultraviolet rays L1 and L2 applied to the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 is, for example, 10 to 100 mW / cm 2 .
The irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 depends on the constituent material of the functional film 13 and the state of the surface of the functional film 13. Alternatively, it is set as appropriate depending on the constituent material of the second substrate 15 and the state of the bonding surface of the second substrate 15, but for example, 5 to 120 seconds.
(第2工程:加圧板アライメント調整工程)
 加圧板アライメント調整工程においては、図1(b-1)および図1(b-2)に示すように、加圧機構におけるステージ23の基板載置面23Aに第1の基板10を載置した状態で加圧板21のアライメント調整処理(位置決め調整処理)を行う。
 具体的には、先ず、第1の基板10を、裏面(図1(b-1)における下面)がステージ23の基板載置面23Aと接触した状態において、周側面を複数の位置決めピン25の全てに突き当てることによって位置決めし、基板載置面23Aの所定の位置に載置する。このようにして、第1の基板10のアライメント調整処理が行われる。次いで、加圧板21を、突起部22Bを有する表面が基板載置面23Aに載置された第1の基板10に形設された機能性膜13と僅かに離間して対向した状態において、基材22Aの周側面を複数の位置決めピン25の全てに突き当てることによって位置決めする。このようにして、加圧板21のアライメント調整処理が行われる。以て、加圧板21の突起部22Bが、空間を介して機能性膜13と対向するよう位置合わせされた状態となる。
 図1(b-1)は、ステージ23の基板載置面23Aに第1の基板10が載置され、当該第1の基板10の上方に加圧板21が位置決めされて配置された状態を示す説明用側面図である。また、図1(b-2)は、ステージ23の基板載置面23Aにおける第1の基板10の載置状態を示す説明図である。
(Second step: pressure plate alignment adjustment step)
In the pressure plate alignment adjustment step, as shown in FIGS. 1B-1 and 1B-2, the first substrate 10 is placed on the substrate placement surface 23A of the stage 23 in the pressure mechanism. In the state, alignment adjustment processing (positioning adjustment processing) of the pressure plate 21 is performed.
Specifically, first, in the state where the back surface (the lower surface in FIG. 1 (b-1)) of the first substrate 10 is in contact with the substrate mounting surface 23A of the stage 23, the peripheral side surface is made up of the plurality of positioning pins 25. The substrate is positioned by being abutted against all of the substrates, and is placed at a predetermined position on the substrate placement surface 23A. In this way, the alignment adjustment process for the first substrate 10 is performed. Next, in a state where the pressure plate 21 is opposed to the functional film 13 formed on the first substrate 10 placed on the substrate placement surface 23A with the surface having the protrusion 22B slightly spaced from the base plate 23B. Positioning is performed by abutting the peripheral side surface of the material 22 </ b> A against all of the plurality of positioning pins 25. In this way, the alignment adjustment process of the pressure plate 21 is performed. Thus, the protruding portion 22B of the pressure plate 21 is aligned so as to face the functional film 13 through the space.
FIG. 1B-1 shows a state in which the first substrate 10 is placed on the substrate placement surface 23A of the stage 23, and the pressure plate 21 is positioned and arranged above the first substrate 10. It is a side view for description. FIG. 1B-2 is an explanatory diagram showing the mounting state of the first substrate 10 on the substrate mounting surface 23A of the stage 23. FIG.
(第3工程:加圧板一時退避工程)
 加圧板一時退避工程は、必要に応じて行われるものである。
 具体的には、第1の基板10に形設された機能性膜13と加圧板21との間の空間が、第2の基板15を配置することのできる大きさを有していない場合、すなわち第2の基板15の厚みに比して、機能性膜13と加圧板21との離間距離が小さい場合に行われるものである。よって、加圧板一時退避工程は、機能性膜13と加圧板21との間の空間が、第2の基板15を配置することのできる大きさを有している場合には、省略される。
(Third step: Pressure plate temporary evacuation step)
The pressure plate temporary retracting step is performed as necessary.
Specifically, when the space between the functional film 13 formed on the first substrate 10 and the pressure plate 21 does not have a size that allows the second substrate 15 to be disposed, In other words, this is performed when the distance between the functional film 13 and the pressure plate 21 is smaller than the thickness of the second substrate 15. Therefore, the pressure plate temporary retracting step is omitted when the space between the functional film 13 and the pressure plate 21 has a size in which the second substrate 15 can be disposed.
 そして、加圧板一時退避工程においては、図1(c)に示すように、加圧板21を上方に移動させることによって退避させる。このようにして、加圧板21の一時退避処理が行われる。
 この加圧板一時退避工程を経ることにより、第1の基板10に形設された機能性膜13と加圧板21との間において、第2の基板15を配置するための空間を確保することができ、よって第1の基板10上に第2の基板15を配置することが可能となる。
 図1(c)においては、加圧板21の移動方向が矢印で示されている。
In the pressurizing plate temporary retracting step, the pressurizing plate 21 is retracted by moving it upward as shown in FIG. In this way, the temporary retracting process of the pressure plate 21 is performed.
By passing through the pressure plate temporary retracting step, it is possible to secure a space for placing the second substrate 15 between the functional film 13 formed on the first substrate 10 and the pressure plate 21. Therefore, the second substrate 15 can be disposed on the first substrate 10.
In FIG.1 (c), the moving direction of the pressurization board 21 is shown by the arrow.
 加圧板一時退避工程においては、加圧板21を上方に移動させるだけなので、加圧板アライメント調整工程において調整された第1の基板10と加圧板21との位置関係(具体的には、加圧板21の突起部22Bが機能性膜13と位置合わせされた状態)は維持される。 In the pressure plate temporary retracting process, the pressure plate 21 is merely moved upward, so that the positional relationship between the first substrate 10 and the pressure plate 21 adjusted in the pressure plate alignment adjusting process (specifically, the pressure plate 21 is adjusted). The state in which the protrusions 22B are aligned with the functional film 13) is maintained.
(第4工程:積重工程)
 積重工程においては、図1(d)に示すように、室温環境下において、第1の基板10および第2の基板15を、第1の基板10に形設された機能性膜13の表面と第2の基板15の貼り合わせ面とが互いに接触した状態に積重する。ここに、第2の基板15は、当該第2の基板15の周側面を、加圧機構における複数の位置決めピン25の全てに突き当てることによって位置決めし、第1の基板10上に積重してもよい。
 この積重工程を経ることにより、第1の基板10と第2の基板15とが機能性膜13を介して積層した状態で貼り合わされて接合した積重体が得られる。
 この積重工程において、第1の基板10と第2の基板15との接合は、様々な化学反応プロセスを経ることによって行われるが、例えば、第1の基板10の貼り合わせ面(機能性膜13の表面)の終端のヒドロキシ基と第2の基板15の貼り合わせ面の終端のヒドロキシ基とによる水素結合により接合されると考えられる。
(4th process: stacking process)
In the stacking step, as shown in FIG. 1 (d), the surface of the functional film 13 formed on the first substrate 10 with the first substrate 10 and the second substrate 15 in a room temperature environment. And the bonding surface of the second substrate 15 are stacked in contact with each other. Here, the second substrate 15 is positioned by abutting the peripheral side surface of the second substrate 15 against all of the plurality of positioning pins 25 in the pressurizing mechanism, and is stacked on the first substrate 10. May be.
By passing through this stacking step, a stacked body is obtained in which the first substrate 10 and the second substrate 15 are bonded and bonded together in a state of being stacked via the functional film 13.
In this stacking step, the first substrate 10 and the second substrate 15 are bonded by various chemical reaction processes. For example, the bonding surface (functional film) of the first substrate 10 is used. 13 surface) and the terminal hydroxyl group of the bonding surface of the second substrate 15 are considered to be bonded by hydrogen bonding.
(第5工程:加圧工程)
 加圧工程においては、図1(e)に示すように、積重工程において得られた積重体を、加圧機構を用いて加圧処理する。
 具体的には、積重体の上方に位置している加圧板21を下方に移動させることによって当該加圧板21の突起部22Bを第2の基板15に接触させて積重体を押圧することにより、加圧処理を行う。この加圧処理においては、加圧板アライメント調整工程を経ることによって突起部22Bと機能性膜13との位置合わせがなされていることから、突起部22Bは、第2の基板15を介して機能性膜13と対向した状態とされる。
 このようにして、加圧工程においては、積重工程において得られた積重体を、第1の基板10に形設された機能性膜13と第2の基板15との接触部分に対して選択的に加圧力が作用するよう、厚み方向に加圧する。
 この加圧工程を経ることにより、第1の基板10と第2の基板15とが強固に接合された接合体が得られる。
 図1(e)においては、加圧板21の移動方向(加圧方向)が矢印で示されている。
(Fifth step: Pressurization step)
In the pressurizing step, as shown in FIG. 1 (e), the stack obtained in the stacking step is subjected to pressurization using a pressurizing mechanism.
Specifically, by moving the pressure plate 21 positioned above the stacked body downward, the protrusion 22B of the pressure plate 21 is brought into contact with the second substrate 15 to press the stacked body, Pressurize. In this pressurizing process, the protrusion 22B and the functional film 13 are aligned through the pressure plate alignment adjustment step, so that the protrusion 22B is functional via the second substrate 15. The film 13 is opposed to the film 13.
In this way, in the pressurizing process, the stack obtained in the stacking process is selected for the contact portion between the functional film 13 formed on the first substrate 10 and the second substrate 15. The pressure is applied in the thickness direction so that an applied pressure is applied.
By passing through this pressurizing step, a joined body in which the first substrate 10 and the second substrate 15 are firmly joined is obtained.
In FIG.1 (e), the moving direction (pressurization direction) of the pressurization board 21 is shown by the arrow.
 そして、第1の基板10と第2の基板15とを強固に接合するためには、積重体に対して、加圧処理と共に加温処理を行うことが好ましい。 In order to firmly bond the first substrate 10 and the second substrate 15, it is preferable to perform a heating process together with a pressure process on the stacked body.
 第1の基板10と第2の基板15とをより強固に接合するための具体的な方法としては、下記の(A)および(B)などの手法が挙げられる。 Specific methods for bonding the first substrate 10 and the second substrate 15 more firmly include the following methods (A) and (B).
(A)第1の基板10と第2の基板15との積重体を厚み方向に加圧しながら加熱する方法
(B)第1の基板10と第2の基板15との積重体を厚み方向に加圧し、加圧を解除した後に加熱する方法
(A) Method of heating while pressing the stack of the first substrate 10 and the second substrate 15 in the thickness direction (B) The stack of the first substrate 10 and the second substrate 15 in the thickness direction Method of heating after pressurizing and releasing pressure
 加圧工程における具体的な条件は、第1の基板10の構成材料および第2の基板15の構成材料などに応じて適宜設定される。
 加圧条件において、加圧力は、加圧工程中において第1の基板10および第2の基板15に生じた微小な変形を矯正することのできる圧力以上であって、第1の基板10および第2の基板15に変形が生じる圧力未満とされる。具体的には、例えば0.2~10MPaである。
 また、第1の基板10および第2の基板15を加熱する場合の加熱条件において、加熱温度は、第1の基板10および第2の基板15に変形が生じる温度未満とされる。
Specific conditions in the pressing step are appropriately set according to the constituent material of the first substrate 10 and the constituent material of the second substrate 15.
Under the pressurizing condition, the applied pressure is equal to or higher than the pressure capable of correcting the minute deformation generated in the first substrate 10 and the second substrate 15 during the pressurizing step, and the first substrate 10 and the first substrate The pressure is less than the pressure at which the second substrate 15 is deformed. Specifically, for example, 0.2 to 10 MPa.
In the heating conditions when heating the first substrate 10 and the second substrate 15, the heating temperature is set to be lower than the temperature at which the first substrate 10 and the second substrate 15 are deformed.
(第6工程:加圧板退避工程)
 加圧板退避工程においては、図1(f)に示すように、加圧板21を上方に移動させることによって退避させる。このようにして、加圧板21の退避処理が行われる。
 この加圧板退避工程を経ることにより、第1の基板10と第2の基板15とが機能性膜13を介して接合されてなる接合体を、加圧機構から取り出すことが可能となる。
 図1(f)においては、加圧板21の移動方向が矢印で示されている。
(Sixth step: pressure plate retracting step)
In the pressure plate retracting step, the pressure plate 21 is retracted by moving it upward as shown in FIG. In this manner, the retracting process of the pressure plate 21 is performed.
By passing through the pressurizing plate retracting step, it is possible to take out the joined body formed by joining the first substrate 10 and the second substrate 15 via the functional film 13 from the pressurizing mechanism.
In FIG. 1 (f), the moving direction of the pressure plate 21 is indicated by an arrow.
 そして、接合体が、本発明の2枚の基板の貼り合わせ装置における加圧機構から取り出される。 Then, the joined body is taken out from the pressurizing mechanism in the bonding apparatus for two substrates of the present invention.
<第1の貼り合わせ方法の第2の実施形態>
 第1の貼り合わせ方法の第2の実施形態(以下、「第1の貼り合わせ方法(2)」ともいう。)は、前述の第1の貼り合わせ方法(1)において、表面活性化工程(第1の基板表面活性化工程)がプラズマガス処理工程であること、および第2の基板紫外線照射処理工程に代えて第2の基板プラズマガス処理工程を有すること以外は、第1の貼り合わせ方法(1)と同様の手法である。すなわち、第1の貼り合わせ方法(2)は、第1工程にて、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面をプラスマガス処理すること以外は、第1の貼り合わせ方法(1)と同様の手法である。
<Second Embodiment of First Bonding Method>
A second embodiment of the first bonding method (hereinafter also referred to as “first bonding method (2)”) is a surface activation process (1) in the first bonding method (1) described above. The first bonding method except that the first substrate surface activation step) is a plasma gas treatment step and that the second substrate plasma gas treatment step is provided instead of the second substrate ultraviolet irradiation treatment step. This is the same method as (1). That is, the first bonding method (2) is the same as the first bonding method except that in the first step, the bonding surface of the first substrate and the bonding surface of the second substrate are treated with plasma gas. This is the same method as (1).
 この第1の貼り合わせ方法(2)の第1の基板表面活性化工程および第2の基板プラズマガス処理工程においては、大気圧プラズマによってプラズマ化したプロセスガスを、第1の基板の貼り合わせ面(具体的には、機能性膜の表面)および第2の基板の貼り合わせ面に接触させる。 In the first substrate surface activation step and the second substrate plasma gas treatment step of the first bonding method (2), the process gas plasmatized by atmospheric pressure plasma is applied to the bonding surface of the first substrate. (Specifically, the surface of the functional film) and the bonding surface of the second substrate are brought into contact with each other.
 第1の基板表面活性化工程を経ることにより、第1の基板の貼り合わせ面、具体的には、機能性膜の表面が、活性化されて貼り合わせに適した面となるように改質される。また、第1の基板の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。 By passing through the first substrate surface activation step, the bonding surface of the first substrate, specifically, the surface of the functional film is modified so as to become a surface suitable for bonding. Is done. In addition, the bonded surface of the first substrate is cleaned by removing contaminants such as organic substances.
 第2の基板プラズマガス処理工程は、必ずしも必要な工程ではないが、貼り合わせ効率の観点からは行うことが好ましいものである。
 具体的に説明すると、第1の基板の貼り合わせ面にさえプロセスガスを接触させれば、すなわち機能性膜の表面さえ活性化すれば、第1の基板と第2の基板とを接合することができる。然るに、第2の基板プラズマガス処理工程を経ることにより、第2の基板の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。このように第2の基板の貼り合わせ面がクリーニングされることによれば、2枚の基板の貼り合わせを効率的に行うことができる。
 また、第2のプラズマガス処理工程においては、第2の基板の構成材料によっては、第2の基板の貼り合わせ面が、活性化されることにより、貼り合わせに適した面となるように改質される。
The second substrate plasma gas treatment process is not necessarily a necessary process, but is preferably performed from the viewpoint of bonding efficiency.
More specifically, the first substrate and the second substrate are bonded as long as the process gas is brought into contact with the bonding surface of the first substrate, that is, the surface of the functional film is activated. Can do. However, by passing through the second substrate plasma gas treatment step, contaminants such as organic substances are removed from the bonding surface of the second substrate, whereby the bonding surface is cleaned. By cleaning the bonding surface of the second substrate in this manner, the two substrates can be bonded efficiently.
In the second plasma gas processing step, depending on the constituent material of the second substrate, the bonding surface of the second substrate is activated to be a surface suitable for bonding. Quality.
 第1の基板表面活性化工程および第2の基板プラズマガス処理工程において、各々、プラズマガス供給手段としては、大気圧プラズマ装置が用いられる。
 図2は、本発明の2枚の基板の貼り合わせ方法に用いられる大気圧プラズマ装置の一例における構成を示す説明用断面図である。この大気圧プラズマ装置は、例えばアルミニウムからなる直方体状のケーシング30を有する。このケーシング30内には、高周波電源35に電気的に接続された板状の電極31が水平に配置されている。この電極31の下面には、誘電体層32が形成されている。この例の大気圧プラズマ装置においては、電極31が高圧側電極とされ、ケーシング30が接地側電極とされている。
 ケーシング30の上面には、ケーシング30内にプロセスガスを供給するガス供給口33が設けられている。また、ケーシング30の下面には、ケーシング30内において大気圧プラズマによってプラズマ化したプロセスガスを外部に放出する複数のノズル34が形成されている。
In each of the first substrate surface activation step and the second substrate plasma gas processing step, an atmospheric pressure plasma apparatus is used as the plasma gas supply means.
FIG. 2 is a cross-sectional view illustrating the configuration of an example of an atmospheric pressure plasma apparatus used in the method for bonding two substrates of the present invention. This atmospheric pressure plasma apparatus has a rectangular parallelepiped casing 30 made of, for example, aluminum. A plate-like electrode 31 electrically connected to the high-frequency power source 35 is horizontally disposed in the casing 30. A dielectric layer 32 is formed on the lower surface of the electrode 31. In the atmospheric pressure plasma apparatus of this example, the electrode 31 is a high voltage side electrode and the casing 30 is a ground side electrode.
A gas supply port 33 for supplying process gas into the casing 30 is provided on the upper surface of the casing 30. In addition, a plurality of nozzles 34 are formed on the lower surface of the casing 30 to discharge process gas that has been plasmatized by atmospheric pressure plasma in the casing 30 to the outside.
 このような大気圧プラズマ装置においては、大気圧またはその近傍の圧力下において、プロセスガスG1がガス供給口33からケーシング30内に供給される。この状態で高周波電源35によって電極31とケーシング30との間に誘電体層32を介して高周波電界が印加されると、電極31とケーシング30との間には誘電体バリア放電が生じる。その結果、ケーシング30と誘電体層32との間に存在するプロセスガスG1が電離または励起されてプラズマ化する。そして、プラズマ化したプロセスガスG2は、ケーシング30のノズル34から外部に放出され、ケーシング30の下方に配置された基板(図示省略)の貼り合わせ面に接触する。
 以上において、プロセスガスG1としては、窒素ガス、アルゴンガスなどを主成分とし、酸素ガスを0.01~5体積%含有してなるものを使用することが好ましい。または、窒素ガスとクリーンドライエア(CDA)との混合ガスを用いることも可能である。
 また、高周波電源35から供給される電力は、周波数が20~70kHz、電圧が5~15kVp-p である。
 また、プラズマガス処理による処理時間は、例えば5~100秒間である。
In such an atmospheric pressure plasma apparatus, the process gas G1 is supplied from the gas supply port 33 into the casing 30 under atmospheric pressure or a pressure in the vicinity thereof. When a high frequency electric field is applied between the electrode 31 and the casing 30 via the dielectric layer 32 by the high frequency power source 35 in this state, a dielectric barrier discharge is generated between the electrode 31 and the casing 30. As a result, the process gas G1 existing between the casing 30 and the dielectric layer 32 is ionized or excited to be turned into plasma. Then, the plasma-processed process gas G2 is discharged to the outside from the nozzle 34 of the casing 30 and comes into contact with a bonding surface of a substrate (not shown) disposed below the casing 30.
In the above, it is preferable to use the process gas G1 containing nitrogen gas, argon gas or the like as a main component and containing 0.01 to 5% by volume of oxygen gas. Alternatively, a mixed gas of nitrogen gas and clean dry air (CDA) can be used.
The power supplied from the high frequency power supply 35 has a frequency of 20 to 70 kHz and a voltage of 5 to 15 kVp-p.
Further, the processing time by the plasma gas processing is, for example, 5 to 100 seconds.
 このような第1の貼り合わせ方法(具体的には、第1の貼り合わせ方法(1)および第1の貼り合わせ方法(2))においては、加圧工程において、第1の基板10に形設された機能性膜13と第2の基板15との接触部分に対して選択的に加圧力が作用する。そのため、第1の基板10が第2の基板15に比して可変形性が大きいものであっても、第1の基板10の貼り合わせ面に、機能性膜13の周辺領域において第1の基板10と第2の基板15とが当該機能性膜13を介することなく直接接触するような変形が生じることが防止または十分に抑制される。
 従って、第1の貼り合わせ方法によれば、機能性膜13を介さず直接接触することのないように、第1の基板10と第2の基板15とを機能性膜13を介して貼り合わせることができる。すなわち、機能性膜13の周囲領域において第1の基板10と第2の基板15とが直接接触した状態の接合体が生産されることを回避することができる。
In such a first bonding method (specifically, the first bonding method (1) and the first bonding method (2)), the first substrate 10 is shaped in the pressing step. A pressurizing force selectively acts on the contact portion between the provided functional film 13 and the second substrate 15. Therefore, even if the first substrate 10 has a larger deformability than the second substrate 15, the first substrate 10 is bonded to the bonding surface of the first substrate 10 in the peripheral region of the functional film 13. It is prevented or sufficiently suppressed that the substrate 10 and the second substrate 15 are deformed such that the substrate 10 and the second substrate 15 are in direct contact without interposing the functional film 13.
Therefore, according to the first bonding method, the first substrate 10 and the second substrate 15 are bonded via the functional film 13 so as not to be in direct contact without passing through the functional film 13. be able to. That is, it is possible to avoid production of a bonded body in a state where the first substrate 10 and the second substrate 15 are in direct contact with each other in the peripheral region of the functional film 13.
 而して、第1の貼り合わせ方法によって面発光光源ユニットの発光面形成部材を作製することによれば、例えば、第2の基板15を導光板、機能性膜13を拡散部材層、第1の基板10を反射板とすると、導光板(第2の基板15)の一部分と反射板(第1の基板10)の一部分とが、拡散部材層(機能性膜13)を介さず、当該拡散部材層の周辺領域において直接接触することが回避される。よって、得られる発光面形成部材においては、導光板(第2の基板15)と反射板(第1の基板10)とが直接接触する領域が存在することに起因して生じる迷光が導光板(第2の基板15)の上面から出射される光に重畳されることが防止されるため、導光板(第2の基板15)の上面から所定の強度分布を有する光を取り出すことができる。 Thus, by producing the light emitting surface forming member of the surface emitting light source unit by the first bonding method, for example, the second substrate 15 is the light guide plate, the functional film 13 is the diffusion member layer, the first When the substrate 10 is a reflector, a part of the light guide plate (second substrate 15) and a part of the reflector (first substrate 10) are not diffused through the diffusion member layer (functional film 13). Direct contact in the peripheral region of the member layer is avoided. Therefore, in the light emitting surface forming member obtained, stray light generated due to the presence of a region where the light guide plate (second substrate 15) and the reflection plate (first substrate 10) are in direct contact with each other does not cause the light guide plate ( Since it is prevented from being superimposed on the light emitted from the upper surface of the second substrate 15), light having a predetermined intensity distribution can be extracted from the upper surface of the light guide plate (second substrate 15).
 また、第1の貼り合わせ方法においては、加圧工程において、第1の基板10および第2の基板15のうちの可変形性の小さい基板、具体的には第2の基板15が、加圧板21に接触した状態とされることから、第1の基板10および第2の基板15のいずれにも変形が生じることがない。そのため、得られる接合体において、残留応力に起因する第1の基板10と第2の基板15との剥離の発生が抑制される。
 具体的に説明すると、図3に示されているように、可変形性の大きい第1の基板10が加圧板21に接触した状態とされた場合には、第1の基板10においては、貼り合わせ面には変形が生じないものの、加圧板21が接触した面には変形(具体的には、突起部22Bの形状に対応した凹み)が生じて残留応力が発生するおそれがある。そして、残留応力が発生した場合には、得られる接合体において、その残留応力に起因して第1の基板10と第2の基板15との間に剥離が生じるおそれがある。然るに、可変形性の小さい第2の基板15を加圧板21に接触した状態とすることにより、加圧板21によって積重体に局所的に加圧力が作用された場合であっても、それに起因して積重体に変形が生じることを防止または十分に抑制することができる。
In the first bonding method, in the pressurizing step, the first substrate 10 and the second substrate 15 having a low deformability, specifically, the second substrate 15 is a pressure plate. Therefore, neither the first substrate 10 nor the second substrate 15 is deformed. Therefore, in the obtained bonded body, occurrence of peeling between the first substrate 10 and the second substrate 15 due to the residual stress is suppressed.
Specifically, as shown in FIG. 3, when the first substrate 10 having a large deformability is brought into contact with the pressure plate 21, the first substrate 10 is bonded to the first substrate 10. Although the mating surfaces are not deformed, deformation (specifically, a dent corresponding to the shape of the protrusion 22B) may occur on the surface with which the pressure plate 21 is in contact, which may cause residual stress. And when residual stress generate | occur | produces, in the obtained bonded body, there exists a possibility that peeling may arise between the 1st board | substrate 10 and the 2nd board | substrate 15 resulting from the residual stress. However, when the second substrate 15 having a small deformability is brought into contact with the pressure plate 21, even when a pressure is locally applied to the stack by the pressure plate 21, it is caused by that. Thus, deformation of the stacked body can be prevented or sufficiently suppressed.
 また、第1の貼り合わせ方法においては、第1工程の第2の基板紫外線照射処理工程または第2の基板プラズマガス処理工程にて、第2の基板15の貼り合わせ面に、真空紫外線を照射すること、または、大気圧プラズマによってプラズマ化したプロセスガスを接触することにより、第2の基板15の貼り合わせ面がクリーニングされるため、2枚の基板の貼り合わせを効率的に行うことができる。 In the first bonding method, vacuum ultraviolet rays are irradiated to the bonding surface of the second substrate 15 in the second substrate ultraviolet irradiation process or the second substrate plasma gas processing process in the first process. In addition, the contact surface of the second substrate 15 is cleaned by contacting the process gas that has been converted into plasma by atmospheric pressure plasma, so that the two substrates can be bonded efficiently. .
 また、第1の貼り合わせ方法においては、加圧工程にて本発明の2枚の基板の貼り合わせ装置が用いられていることから、積重体を加圧板21によって押圧するという容易な手法によって、第1の基板10と第2の基板15とを機能性膜13を介して貼り合わせることができる。 Further, in the first bonding method, since the bonding apparatus for two substrates of the present invention is used in the pressurizing step, by an easy method of pressing the stack with the pressure plate 21, The first substrate 10 and the second substrate 15 can be bonded together via the functional film 13.
[第2の貼り合わせ方法]
 以下、本発明の2枚の基板の貼り合わせ方法に係る第2の貼り合わせ方法の2つの実施形態について説明する。
[Second bonding method]
Hereinafter, two embodiments of the second bonding method according to the method for bonding two substrates of the present invention will be described.
<第2の貼り合わせ方法の第1の実施形態>
 第2の貼り合わせ方法の第1の実施形態(以下、「第2の貼り合わせ方法(1)」ともいう。)について、図4を用いて詳細に説明する。
 この第2の貼り合わせ方法(1)においては、第1の基板10が第2の基板15に比して可変形性の小さいものであり、具体的には、例えば第1の基板10が、COP、アクリル樹脂またはガラスよりなるものであり、第2の基板15がPET樹脂よりなるものである。また、機能性膜13がPDMSよりなるものである。そして、得られる接合体は、ディスプレイのバックライトなどとして用いられる面発光光源ユニットの構成部材、具体的には、COP、アクリル樹脂またはガラスよりなる導光板と、PDMSよりなる拡散部材層と、PET樹脂よりなる反射板とがこの順に積層されてなる発光面形成部材として用いられるものである。この接合体において、機能性膜13は、接合に寄与する機能と共に、光学的機能を有するものである。
<First Embodiment of Second Bonding Method>
A first embodiment of the second bonding method (hereinafter also referred to as “second bonding method (1)”) will be described in detail with reference to FIG.
In the second bonding method (1), the first substrate 10 is less deformable than the second substrate 15, and specifically, for example, the first substrate 10 is It is made of COP, acrylic resin or glass, and the second substrate 15 is made of PET resin. The functional film 13 is made of PDMS. And the joined body obtained is a constituent member of a surface-emitting light source unit used as a backlight of a display, specifically, a light guide plate made of COP, acrylic resin or glass, a diffusion member layer made of PDMS, and PET A reflecting plate made of a resin is used as a light emitting surface forming member formed by laminating in this order. In this bonded body, the functional film 13 has an optical function as well as a function contributing to bonding.
 第2の貼り合わせ方法(1)は、上記の(1)~(3)の工程を経ると共に、図4(a-2)に示すように、積重工程に供する第2の基板15の表面(貼り合わせ面)に対して紫外線照射処理を行うものである。また、第2の貼り合わせ方法(1)は、図4(e)に示すように、加圧工程において、本発明の2枚の基板の貼り合わせ装置を用いることに伴って、図4(b-1)、(b-2)、(d)および(f)に示すような第2の基板15のアライメント調整処理および加圧板21のアライメント調整処理および加圧板21の退避処理を行うものである。 In the second bonding method (1), the surface of the second substrate 15 subjected to the stacking step as shown in FIG. 4 (a-2) is obtained through the steps (1) to (3). An ultraviolet irradiation treatment is performed on the (bonding surface). In addition, as shown in FIG. 4 (e), the second bonding method (1) is performed by using the two substrate bonding apparatus of the present invention in the pressurizing step. -1), (b-2), (d), and (f), the second substrate 15 alignment adjustment processing, the pressure plate 21 alignment adjustment processing, and the pressure plate 21 retraction processing are performed. .
 第2の貼り合わせ方法(1)に用いられる本発明の2枚の基板の貼り合わせ装置において、加圧機構は、図4(d)~(f)に示されているように、第1の貼り合わせ方法に用いられる本発明の2枚の基板の貼り合わせ装置の加圧機構と同様の構成のものである。
 すなわち、第2の貼り合わせ方法(1)に用いられる本発明の2枚の基板の貼り合わせ装置において、加圧機構は、基板を載置するための矩形板状のステージ23と、第1の基板10に形設された機能性膜13に対応した形状を有する突起部22Bを有する加圧板21とを備えたものである。ステージ23は、平坦な基板載置面23Aを有するものであり、この基板載置面23Aの周縁部には、当該基板載置面23Aから垂直に突出して伸びる複数(図4の例においては3本)の位置決めピン25が設けられている。この位置決めピン25は、基板および加圧板21に対する位置決め機能を有するアライメント調整手段である。すなわち、位置決めピン25によって積重体(具体的には、第1の基板10と第2の基板15との積重体)と加圧板21との位置合わせ調整手段が構成されている。加圧板21は、矩形板状の基材22Aの表面(図4(d)、(e)および(f)における下面)に突起部22Bを有するものである。そして、この加圧板21は、当該加圧板21の表面が、基板載置面23Aと対向し、位置決めピン25によって位置決めされることによって、突起部22Bが、基板載置面23Aに載置された第1の基板10に形設された機能性膜13と対向した状態とされる。また、加圧板21は、基板載置面23A上において、上下方向に移動可能に設けられている。
 図の例において、加圧板21は、基材22Aが、第1の基板10および第2の基板15と同様の縦横寸法を有しており、この基材22Aの中央部に、突出高さ1mmの突起部22Bを有するものである。
In the bonding apparatus for two substrates of the present invention used in the second bonding method (1), the pressurizing mechanism is the first as shown in FIGS. 4 (d) to (f). It has the same structure as the pressure mechanism of the bonding apparatus for two substrates of the present invention used in the bonding method.
That is, in the two-substrate bonding apparatus of the present invention used in the second bonding method (1), the pressurizing mechanism includes a rectangular plate-like stage 23 for placing the substrate, and the first A pressure plate 21 having a protrusion 22B having a shape corresponding to the functional film 13 formed on the substrate 10 is provided. The stage 23 has a flat substrate placement surface 23A, and a plurality of (3 in the example of FIG. 4) extend perpendicularly from the substrate placement surface 23A at the peripheral portion of the substrate placement surface 23A. Book) positioning pins 25 are provided. The positioning pins 25 are alignment adjusting means having a positioning function with respect to the substrate and the pressure plate 21. In other words, the positioning pin 25 constitutes an alignment adjusting means for the stacked body (specifically, the stacked body of the first substrate 10 and the second substrate 15) and the pressure plate 21. The pressure plate 21 has a protrusion 22B on the surface (the lower surface in FIGS. 4D, 4E, and 4F) of a rectangular plate-shaped substrate 22A. The pressure plate 21 has the surface of the pressure plate 21 facing the substrate placement surface 23A and is positioned by the positioning pins 25, so that the protrusion 22B is placed on the substrate placement surface 23A. The functional film 13 formed on the first substrate 10 is opposed to the functional film 13. The pressure plate 21 is provided to be movable in the vertical direction on the substrate placement surface 23A.
In the example shown in the figure, the pressure plate 21 has a base material 22A having the same vertical and horizontal dimensions as the first substrate 10 and the second substrate 15, and a protrusion height of 1 mm at the center of the base material 22A. The protrusion 22B is provided.
 第2の貼り合わせ方法(1)においては、先ず、矩形平板状の第1の基板10と、当該第1の基板10の表面に適合した大きさの表面を有する矩形平板状の第2の基板15とを用意する。そして、第1の基板10の表面に、スクリーン印刷などによって規定された外形を有する機能性膜13を形成する。第1の基板10においては、機能性膜13が形成された表面が第2の基板15との貼り合わせ面となる。一方、第2の基板15においては、第1の基板10の貼り合わせ面に適合した大きさの表面が第1の基板10との貼り合わせ面となる。
 この図の例において、第1の基板10には、規定された外形(具体的には、矩形状の外形)を有する、厚み10μmの機能性膜13が、貼り合わせ面の中央部に形成されている。
In the second bonding method (1), first, a rectangular flat plate-like first substrate 10 and a rectangular flat plate-like second substrate having a surface having a size suitable for the surface of the first substrate 10. 15 are prepared. Then, a functional film 13 having an outer shape defined by screen printing or the like is formed on the surface of the first substrate 10. In the first substrate 10, the surface on which the functional film 13 is formed serves as a bonding surface with the second substrate 15. On the other hand, in the second substrate 15, the surface having a size suitable for the bonding surface of the first substrate 10 is the bonding surface with the first substrate 10.
In the example of this figure, a functional film 13 having a defined outer shape (specifically, a rectangular outer shape) and a thickness of 10 μm is formed on the first substrate 10 at the center of the bonding surface. ing.
(第1工程:第1の基板表面活性化工程および第2の基板紫外線照射処理工程)
 第1の基板表面活性化工程および第2の基板紫外線照射処理工程においては、図4(a-1)および図4(a-2)に示すように、第1の基板10の貼り合わせ面(図4(a-1)における上面)および第2の基板15の貼り合わせ面(図4(a-2)における上面)に、大気雰囲気下において、真空紫外線(波長200nm以下の紫外線)L1,L2を照射する。
(First step: first substrate surface activation step and second substrate ultraviolet irradiation treatment step)
In the first substrate surface activation process and the second substrate ultraviolet irradiation process, as shown in FIGS. 4A-1 and 4A-2, the bonding surface of the first substrate 10 ( 4A-1 and the bonding surface of the second substrate 15 (upper surface in FIG. 4A-2) are vacuum ultraviolet rays (ultraviolet rays having a wavelength of 200 nm or less) L1, L2 in an air atmosphere. Irradiate.
 第1の基板表面活性化工程を経ることにより、第1の基板10の貼り合わせ面、具体的には、機能性膜13の表面(図4(a-1)における上面)が、活性化されて貼り合わせに適した面となるように改質される。具体的には、機能性膜13の表面が、例えばヒドロキシ基(OH基)が存在する状態となって親水化される。すなわち、機能性膜13の表面は、大気中の水分に由来のヒドロキシ基が導入されることによって、ヒドロキシ基でターミネートされる。また、第1の基板10の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。 Through the first substrate surface activation step, the bonding surface of the first substrate 10, specifically, the surface of the functional film 13 (upper surface in FIG. 4A-1) is activated. And modified so that the surface is suitable for bonding. Specifically, the surface of the functional film 13 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the surface of the functional film 13 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere. In addition, the bonding surface of the first substrate 10 is cleaned by removing contaminants such as organic substances.
 第2の基板紫外線照射処理工程は、必ずしも必要な工程ではないが、貼り合わせ効率の観点からは、行うことが好ましいものである。
 具体的に説明すると、第1の基板10の貼り合わせ面にさえ真空紫外線L1を照射すれば、すなわち機能性膜13の表面さえ活性化すれば、第1の基板10と第2の基板15とを接合することはできる。然るに、第2の基板紫外線照射処理工程を経ることにより、第2の基板15の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。このように第2の基板15の貼り合わせ面がクリーニングされることによれば、2枚の基板の貼り合わせを効率的に行うことができる。
 また、第2の基板紫外線照射処理工程においては、第2の基板15の構成材料によっては、第2の基板15の貼り合わせ面が、活性化されることにより、貼り合わせに適した面となるように改質される。具体的には、第2の基板15の貼り合わせ面が、例えばヒドロキシ基(OH基)が存在する状態となって親水化される。すなわち、第2の基板15の貼り合わせ面は、大気中の水分に由来のヒドロキシ基が導入されることによって、ヒドロキシ基でターミネートされる。
The second substrate ultraviolet irradiation treatment step is not necessarily a necessary step, but is preferably performed from the viewpoint of bonding efficiency.
More specifically, as long as the bonding surface of the first substrate 10 is irradiated with the vacuum ultraviolet rays L1, that is, even the surface of the functional film 13 is activated, the first substrate 10 and the second substrate 15 Can be joined. However, the bonded surface of the second substrate 15 is cleaned by removing contaminants such as organic substances on the bonded surface of the second substrate 15 through the second substrate ultraviolet irradiation process. As described above, when the bonding surface of the second substrate 15 is cleaned, the two substrates can be bonded efficiently.
Further, in the second substrate ultraviolet irradiation process, depending on the constituent material of the second substrate 15, the bonding surface of the second substrate 15 is activated to become a surface suitable for bonding. It is modified as follows. Specifically, the bonding surface of the second substrate 15 is hydrophilized in a state where, for example, a hydroxy group (OH group) exists. That is, the bonding surface of the second substrate 15 is terminated with a hydroxy group by introducing a hydroxy group derived from moisture in the atmosphere.
 第1の基板表面活性化工程および第2の基板紫外線照射処理工程において、各々、真空紫外線L1,L2を放射する光源としては、波長172nmに輝線を有するキセノンエキシマランプ等のエキシマランプ、波長185nmに輝線を有する低圧水銀ランプ、波長120~200nmの範囲に輝線を有する重水素ランプを好適に用いることができる。
 第1の基板10の貼り合わせ面および第2の基板15の貼り合わせ面の各々に照射される真空紫外線L1,L2の照度は、例えば10~100mW/cmである。
 また、第1の基板10の貼り合わせ面および第2の基板15の貼り合わせ面の各々に対する真空紫外線L1,L2の照射時間は、機能性膜13の構成材料および機能性膜13の表面の状態、または第2の基板15の構成材料および第2の基板15の貼り合わせ面の状態に応じて適宜設定されるが、例えば5~120秒間である。
In the first substrate surface activation process and the second substrate ultraviolet irradiation process, the light source that emits the vacuum ultraviolet rays L1 and L2 is an excimer lamp such as a xenon excimer lamp having a bright line at a wavelength of 172 nm, and a wavelength of 185 nm. A low-pressure mercury lamp having an emission line and a deuterium lamp having an emission line in the wavelength range of 120 to 200 nm can be preferably used.
The illuminance of the vacuum ultraviolet rays L1 and L2 applied to the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 is, for example, 10 to 100 mW / cm 2 .
The irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first substrate 10 and the bonding surface of the second substrate 15 depends on the constituent material of the functional film 13 and the state of the surface of the functional film 13. Alternatively, it is set as appropriate depending on the constituent material of the second substrate 15 and the state of the bonding surface of the second substrate 15, but for example, 5 to 120 seconds.
(第2工程:第2の基板アライメント調整工程)
 第2の基板アライメント調整工程においては、図4(b-1)および図4(b-2)に示すように、ステージ23の基板載置面23Aに第2の基板15を載置し、当該第2の基板15のアライメント調整処理(位置決め調整処理)を行う。
 具体的には、第2の基板15を、裏面(図4(b-1)における下面)がステージ23の基板載置面23Aと接触した状態において、周側面を複数の位置決めピン25の全てに突き当てることによって位置決めし、基板載置面23Aの所定の位置に載置する。このようにして、第2の基板15のアライメント調整処理が行われる。
 図4(b-1)は、ステージ23の載置面23Aに第2の基板15が載置された状態を示す説明用側面図である。また、図4(b-2)は、ステージ23の基板載置面23Aにおける第2の基板15の載置状態を示す説明図である。
(Second step: second substrate alignment adjustment step)
In the second substrate alignment adjustment step, as shown in FIGS. 4B-1 and 4B-2, the second substrate 15 is placed on the substrate placement surface 23A of the stage 23, and An alignment adjustment process (positioning adjustment process) of the second substrate 15 is performed.
Specifically, with the second substrate 15 in a state where the back surface (the lower surface in FIG. 4B-1) is in contact with the substrate placement surface 23A of the stage 23, the peripheral side surface is all of the plurality of positioning pins 25. The substrate is positioned by abutting and placed at a predetermined position on the substrate placement surface 23A. In this way, the alignment adjustment process for the second substrate 15 is performed.
4B-1 is an explanatory side view showing a state where the second substrate 15 is placed on the placement surface 23A of the stage 23. FIG. FIG. 4B-2 is an explanatory diagram showing the mounting state of the second substrate 15 on the substrate mounting surface 23A of the stage 23. FIG.
(第3工程:積重工程)
 積重工程においては、図4(c)に示すように、室温環境下において、第1の基板10および第2の基板15を、第1の基板10に形設された機能性膜13の表面と第2の基板15の貼り合わせ面とが互いに接触した状態に積重する。ここに、第1の基板10は、当該第1の基板10の周側面を、加圧機構における複数の位置決めピン25の全てに突き当てることによって位置決めし、第2の基板15上に積重してもよい。
 この積重工程を経ることにより、第1の基板10と第2の基板15とが機能性膜13を介して積層した状態で貼り合わされて接合した積重体が得られる。
 この積重工程において、第1の基板10と第2の基板15との接合は、様々な化学反応プロセスを経ることによって行われるが、例えば、第1の基板10の貼り合わせ面(機能性膜13の表面)の終端のヒドロキシ基と第2の基板15の貼り合わせ面の終端のヒドロキシ基とによる水素結合により接合されると考えられる。
(Third process: stacking process)
In the stacking step, as shown in FIG. 4C, the surface of the functional film 13 formed on the first substrate 10 with the first substrate 10 and the second substrate 15 in a room temperature environment. And the bonding surface of the second substrate 15 are stacked in contact with each other. Here, the first substrate 10 is positioned by abutting the peripheral side surface of the first substrate 10 against all of the plurality of positioning pins 25 in the pressurizing mechanism, and is stacked on the second substrate 15. May be.
By passing through this stacking step, a stacked body is obtained in which the first substrate 10 and the second substrate 15 are bonded and bonded together in a state of being stacked via the functional film 13.
In this stacking step, the first substrate 10 and the second substrate 15 are bonded by various chemical reaction processes. For example, the bonding surface (functional film) of the first substrate 10 is used. 13 surface) and the terminal hydroxyl group of the bonding surface of the second substrate 15 are considered to be bonded by hydrogen bonding.
(第4工程:加圧板アライメント調整工程)
 加圧板アライメント調整工程においては、図4(d)に示すように、ステージ23の基板載置面23Aに積重体が載置された状態で、加圧板21のアライメント調整処理を行う。
 具体的には、加圧板21を、突起部22Bを有する表面が基板載置面23Aに載置された積重体と僅かに離間して対向した状態において、基材22Aの周側面を複数の位置決めピン25の全てに突き当てることによって位置決めする。このようにして、加圧板21のアライメント調整処理が行われる。以て、加圧板21の突起部22Bが、第1の基板10および空間を介して機能性膜13と対向するよう位置合わせされた状態となる。
(4th process: pressure plate alignment adjustment process)
In the pressure plate alignment adjustment step, as shown in FIG. 4D, the alignment adjustment process of the pressure plate 21 is performed in a state where the stacked body is placed on the substrate placement surface 23 </ b> A of the stage 23.
Specifically, the peripheral surface of the base material 22A is positioned in a plurality of positions in a state in which the pressure plate 21 faces the stacking body placed on the substrate placement surface 23A with the surface having the protrusion 22B slightly spaced from the stacked body. Positioning is done by hitting all of the pins 25. In this way, the alignment adjustment process of the pressure plate 21 is performed. Thus, the protruding portion 22B of the pressure plate 21 is aligned so as to face the functional film 13 through the first substrate 10 and the space.
(第5工程:加圧工程)
 加圧工程においては、図4(e)に示すように、積重工程において得られた積重体を、加圧機構を用いて加圧処理する。
 具体的には、積重体の上方に位置している加圧板21を下方に移動させることによって当該加圧板21の突起部22Bを第1の基板10に接触させて積重体を押圧することにより、加圧処理を行う。この加圧処理においては、加圧板アライメント調整工程を経ることによって突起部22Bと機能性膜13との位置合わせがなされていることから、突起部22Bは、第1の基板10を介して機能性膜13と対向した状態とされる。
 このようにして、加圧工程においては、積重工程において得られた積重体を、第1の基板10に形設された機能性膜13と第2の基板15との接触部分に対して選択的に加圧力が作用するよう、厚み方向に加圧する。
 この加圧工程を経ることにより、第1の基板10と第2の基板15とが強固に接合された接合体が得られる。
 図4(e)においては、加圧板21の移動方向(加圧方向)が矢印で示されている。
(Fifth step: Pressurization step)
In the pressurizing step, as shown in FIG. 4E, the stack obtained in the stacking step is subjected to a pressurizing process using a pressurizing mechanism.
Specifically, by moving the pressure plate 21 positioned above the stack to move downward, the protrusion 22B of the pressure plate 21 is brought into contact with the first substrate 10 to press the stack. Pressurize. In this pressurizing process, the protrusion 22B and the functional film 13 are aligned by passing through the pressure plate alignment adjustment step, so that the protrusion 22B is functional via the first substrate 10. The film 13 is opposed to the film 13.
In this way, in the pressurizing process, the stack obtained in the stacking process is selected for the contact portion between the functional film 13 formed on the first substrate 10 and the second substrate 15. The pressure is applied in the thickness direction so that an applied pressure is applied.
By passing through this pressurizing step, a joined body in which the first substrate 10 and the second substrate 15 are firmly joined is obtained.
In FIG.4 (e), the moving direction (pressurization direction) of the pressurization board 21 is shown by the arrow.
 そして、第1の基板10と第2の基板15とを強固に接合するためには、積重体に対して、加圧処理と共に加温処理を行うことが好ましい。 In order to firmly bond the first substrate 10 and the second substrate 15, it is preferable to perform a heating process together with a pressure process on the stacked body.
 第1の基板10と第2の基板15とをより強固に接合するための具体的な方法としては、上記の(A)および(B)などの手法が挙げられる。 Specific methods for bonding the first substrate 10 and the second substrate 15 more firmly include the methods (A) and (B) described above.
 加圧工程における具体的な条件は、第1の基板10の構成材料および第2の基板15の構成材料に応じて適宜設定される。
 加圧条件において、加圧力は、加圧工程中において第1の基板10および第2の基板15に生じた微小な変形を矯正することのできる圧力以上であって、第1の基板10および第2の基板15に変形が生じる圧力未満とされる。具体的には、例えば0.2~10MPaである。
 また、第1の基板10および第2の基板15を加熱する場合の加熱条件において、加熱温度は、第1の基板10および第2の基板15に変形が生じる温度未満とされる。
Specific conditions in the pressing step are appropriately set according to the constituent material of the first substrate 10 and the constituent material of the second substrate 15.
Under the pressurizing condition, the applied pressure is equal to or higher than the pressure capable of correcting the minute deformation generated in the first substrate 10 and the second substrate 15 during the pressurizing step, and the first substrate 10 and the first substrate The pressure is less than the pressure at which the second substrate 15 is deformed. Specifically, for example, 0.2 to 10 MPa.
In the heating conditions when heating the first substrate 10 and the second substrate 15, the heating temperature is set to be lower than the temperature at which the first substrate 10 and the second substrate 15 are deformed.
(第6工程:加圧板退避工程)
 加圧板退避工程においては、図4(f)に示すように、加圧板21を上方に移動させることによって退避させる。このようにして、加圧板21の退避処理が行われる。
 この加圧板退避工程を経ることにより、第1の基板10と第2の基板15とが機能性膜13を介して接合されてなる接合体を、加圧機構から取り出すことが可能となる。
 図4(f)においては、加圧板21の移動方向が矢印で示されている。
(Sixth step: pressure plate retracting step)
In the pressure plate retracting step, as shown in FIG. 4F, the pressure plate 21 is retracted by moving upward. In this manner, the retracting process of the pressure plate 21 is performed.
By passing through the pressurizing plate retracting step, it is possible to take out the joined body formed by joining the first substrate 10 and the second substrate 15 via the functional film 13 from the pressurizing mechanism.
In FIG. 4F, the moving direction of the pressure plate 21 is indicated by an arrow.
 そして、接合体が、本発明の2枚の基板の貼り合わせ装置における加圧機構から取り出される。 Then, the joined body is taken out from the pressurizing mechanism in the bonding apparatus for two substrates of the present invention.
<第2の貼り合わせ方法の第2の実施形態>
 第2の貼り合わせ方法の第2の実施形態(以下、「第2の貼り合わせ方法(2)」ともいう。)は、前述の第2の貼り合わせ方法(1)において、表面活性化工程(第1の基板表面活性化工程)がプラズマガス処理工程であること、および第2の基板紫外線照射処理工程に代えて第2の基板プラズマガス処理工程を有すること以外は、第2の貼り合わせ方法(1)と同様の手法である。すなわち、第2の貼り合わせ方法(2)は、第1工程にて、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面をプラズマガス処理すること以外は、第2の貼り合わせ方法(1)と同様の手法である。
<Second Embodiment of Second Bonding Method>
A second embodiment of the second bonding method (hereinafter also referred to as “second bonding method (2)”) is a surface activation step (in the second bonding method (1) described above). The second bonding method except that the first substrate surface activation step) is a plasma gas treatment step and that the second substrate plasma gas treatment step is provided instead of the second substrate ultraviolet irradiation treatment step. This is the same method as (1). That is, in the second bonding method (2), in the first step, the second bonding is performed except that the bonding surface of the first substrate and the bonding surface of the second substrate are treated with plasma gas. This is the same method as method (1).
 この第2の貼り合わせ方法(2)の第1の基板表面活性化工程および第2の基板プラズマガス処理工程においては、大気圧プラズマによってプラズマ化したプロセスガスを、第1の基板の貼り合わせ面(具体的には、機能性膜の表面)および第2の基板の貼り合わせ面に接触させる。 In the first substrate surface activation step and the second substrate plasma gas treatment step of the second bonding method (2), the process gas plasmatized by atmospheric pressure plasma is used as the bonding surface of the first substrate. (Specifically, the surface of the functional film) and the bonding surface of the second substrate are brought into contact with each other.
 第1の基板表面活性化工程を経ることにより、第1の基板の貼り合わせ面、具体的には、機能性膜の表面が、活性化されて貼り合わせに適した面となるように改質される。また、第1の基板の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。 By passing through the first substrate surface activation step, the bonding surface of the first substrate, specifically, the surface of the functional film is modified so as to become a surface suitable for bonding. Is done. In addition, the bonded surface of the first substrate is cleaned by removing contaminants such as organic substances.
 第2の基板プラズマガス処理工程は、必ずしも必要な工程ではないが、貼り合わせ効率の観点からは行うことが好ましいものである。
 具体的に説明すると、第1の基板の貼り合わせ面にさえプロセスガスを接触させれば、すなわち機能性膜の表面さえ活性化すれば、第1の基板と第2の基板とを接合することができる。然るに、第2の基板プラズマガス処理工程を経ることにより、第2の基板の貼り合わせ面において、有機物などの汚染物質が除去されることにより、当該貼り合わせ面がクリーニングされる。このように第2の基板の貼り合わせ面がクリーニングされることによれば、2枚の基板の貼り合わせを効率的に行うことができる。
 また、第2のプラズマガス処理工程においては、第2の基板の構成材料によっては、第2の基板の貼り合わせ面が、活性化されることにより、貼り合わせに適した面となるように改質される。
The second substrate plasma gas treatment process is not necessarily a necessary process, but is preferably performed from the viewpoint of bonding efficiency.
More specifically, the first substrate and the second substrate are bonded as long as the process gas is brought into contact with the bonding surface of the first substrate, that is, the surface of the functional film is activated. Can do. However, by passing through the second substrate plasma gas treatment step, contaminants such as organic substances are removed from the bonding surface of the second substrate, whereby the bonding surface is cleaned. By cleaning the bonding surface of the second substrate in this manner, the two substrates can be bonded efficiently.
In the second plasma gas processing step, depending on the constituent material of the second substrate, the bonding surface of the second substrate is activated to be a surface suitable for bonding. Quality.
 第1の基板表面活性化工程および第2の基板プラズマガス処理工程において、各々、プラズマガス供給手段としては、大気圧プラズマ装置が用いられる。 In the first substrate surface activation step and the second substrate plasma gas processing step, an atmospheric pressure plasma apparatus is used as the plasma gas supply means.
 このような第2の貼り合わせ方法(具体的には、第2の貼り合わせ方法(1)および第2の貼り合わせ方法(2))においては、加圧工程において、第1の基板10に形設された機能性膜13と第2の基板15との接触部分に対して選択的に加圧力が作用する。そのため、第2の基板15が第1の基板10に比して可変形性が大きいものであっても、第2の基板15の貼り合わせ面に、機能性膜13の周辺領域において第1の基板10と第2の基板15とが当該機能性膜13を介することなく直接接触するような変形が生じることが防止または十分に抑制される。
 従って、第2の貼り合わせ方法によれば、機能性膜13を介さず直接接触することのないように、第1の基板10と第2の基板15とを機能性膜13を介して貼り合わせることができる。すなわち、機能性膜13の周囲領域において第1の基板10と第2の基板15とが直接接触した状態の接合体が生産されることを回避することができる。
In such a second bonding method (specifically, the second bonding method (1) and the second bonding method (2)), the first substrate 10 is shaped in the pressing step. A pressurizing force selectively acts on the contact portion between the provided functional film 13 and the second substrate 15. Therefore, even if the second substrate 15 has a larger deformability than the first substrate 10, the first substrate 15 is bonded to the bonding surface of the second substrate 15 in the peripheral region of the functional film 13. It is prevented or sufficiently suppressed that the substrate 10 and the second substrate 15 are deformed such that the substrate 10 and the second substrate 15 are in direct contact without interposing the functional film 13.
Therefore, according to the second bonding method, the first substrate 10 and the second substrate 15 are bonded via the functional film 13 so as not to be in direct contact without the functional film 13 being interposed. be able to. That is, it is possible to avoid production of a bonded body in a state where the first substrate 10 and the second substrate 15 are in direct contact with each other in the peripheral region of the functional film 13.
 而して、第2の貼り合わせ方法によって面発光光源ユニットの発光面形成部材を作製することによれば、例えば、第1の基板10を導光板、機能性膜13を拡散部材層、第2の基板15を反射板とすると、導光板(第1の基板10)の一部分と反射板(第2の基板15)の一部分とが、拡散部材層(機能性膜13)を介さず、当該拡散部材層の周辺領域において直接接触することが回避される。よって、得られる発光面形成部材においては、導光板(第1の基板10)と反射板(第2の基板15)とが直接接触する領域が存在することに起因して生じる迷光が導光板(第1の基板10)の上面から出射される光に重畳されることが防止されるため、導光板(第1の基板10)の上面から所定の強度分布を有する光を取り出すことができる。 Thus, by producing the light emitting surface forming member of the surface emitting light source unit by the second bonding method, for example, the first substrate 10 is the light guide plate, the functional film 13 is the diffusion member layer, the second When the substrate 15 is a reflector, a part of the light guide plate (first substrate 10) and a part of the reflector (second substrate 15) are not diffused through the diffusion member layer (functional film 13). Direct contact in the peripheral region of the member layer is avoided. Therefore, in the light emitting surface forming member to be obtained, stray light generated due to the presence of a region where the light guide plate (first substrate 10) and the reflection plate (second substrate 15) are in direct contact with each other does not cause the light guide plate ( Since it is prevented from being superimposed on the light emitted from the upper surface of the first substrate 10), light having a predetermined intensity distribution can be extracted from the upper surface of the light guide plate (first substrate 10).
 また、第2の貼り合わせ方法においては、加圧工程において、第1の基板10および第2の基板15のうちの可変形性の小さい基板、具体的には第1の基板10が、加圧板21に接触した状態とされることから、第1の基板10および第2の基板15のいずれにも変形が生じることがない。そのため、得られる接合体において、残留応力に起因する第1の基板10と第2の基板15との剥離の発生が抑制される。 In the second bonding method, in the pressurizing step, the first substrate 10 and the second substrate 15 having a low deformability, specifically, the first substrate 10 is a press plate. Therefore, neither the first substrate 10 nor the second substrate 15 is deformed. Therefore, in the obtained bonded body, occurrence of peeling between the first substrate 10 and the second substrate 15 due to the residual stress is suppressed.
 また、第2の貼り合わせ方法においては、第1工程の第2の基板紫外線照射処理工程または第2の基板プラズマガス処理工程にて、第2の基板15の貼り合わせ面に、真空紫外線を照射すること、または、大気圧プラズマによってプラズマ化したプロセスガスを接触することにより、第2の基板15の貼り合わせ面がクリーニングされるため、2枚の基板の貼り合わせを効率的に行うことができる。 In the second bonding method, vacuum ultraviolet rays are irradiated on the bonding surface of the second substrate 15 in the second substrate ultraviolet irradiation process or the second substrate plasma gas processing process of the first process. In addition, the contact surface of the second substrate 15 is cleaned by contacting the process gas that has been converted into plasma by atmospheric pressure plasma, so that the two substrates can be bonded efficiently. .
 また、第2の貼り合わせ方法においては、加圧工程にて本発明の2枚の基板の貼り合わせ装置が用いられていることから、積重体を加圧板21に対して押圧するという容易な手法によって、第1の基板10と第2の基板15とを機能性膜13を介して貼り合わせることができる。 Further, in the second bonding method, since the two substrate bonding apparatus of the present invention is used in the pressing step, an easy method of pressing the stack against the pressure plate 21. Thus, the first substrate 10 and the second substrate 15 can be bonded together via the functional film 13.
 本発明の2枚の基板の貼り合わせ方法においては、上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、第1の基板の表面上には、複数の機能性膜が形成されていてもよい。
 また、加圧板としては、図1および図4に示すように突起部が基材に一体的に形成されたものに限定されず、平板状の基材と、当該基材とは別個の突起部形成用部材とを組み合わせたものを用いることもできる。具体的には、例えば、矩形平板状の基材と、第1の基板の表面上に形成された機能性膜に対応した形状を有するシム(SIM)とを組み合わせたものなどが挙げられる。このような構成の加圧板においては、突起部形成用部材を、第1の基板の表面上に形成された機能性膜に対応する位置に配置するために、突起部形成用部材をアライメント調整処理、すなわち配置位置を調整する必要がある。
 また、本発明の2枚の基板の貼り合わせ装置において、加圧板と積重体との位置合わせ調整手段は、図1および図4に示すように位置決めピンによって構成されるものに限定されない。すなわち、加圧機構は、図1および図4に示すように位置決めピンによって基板および加圧板のアライメント調整処理を行うものに限定されず、他のアライメント調整手段によって基板および加圧板のアライメント調整処理を行うものであってもよい。具体的には、例えば、公知の画像処理手段を位置合わせ調整手段として利用するものであってもよい。このような構成の加圧機構においては、第1の基板が透明材料よりなるものである場合には、ステージの基板載置面に第1の基板を載置した後、画像処理手段によって第1の基板の表面上における機能性膜の位置を観察しながら、加圧板の突起部の位置に対応して加圧機構に設けられているアライメントマークの画像情報を検出することにより、当該機能性膜と突起部とのアライメント調整処理が行われる。一方、第1の基板が透明材料よりなるものでない場合には、第1の基板の裏面(機能性膜が形成されている表面と反対側の面)に、機能性膜の位置と対応したアライメントマークを設けて、この第1の基板のアライメントマークと加圧機構に設けられているアライメントマークの画像情報を検出することにより、当該機能性膜と突起部とのアライメント調整処理が行われる。
The method for bonding two substrates of the present invention is not limited to the above embodiment, and various modifications can be made.
For example, a plurality of functional films may be formed on the surface of the first substrate.
In addition, the pressure plate is not limited to the one in which the protrusions are integrally formed on the base material as shown in FIGS. 1 and 4, and the flat base material and the protrusions that are separate from the base material A combination with a forming member can also be used. Specifically, for example, a combination of a rectangular flat plate-like base material and a shim (SIM) having a shape corresponding to the functional film formed on the surface of the first substrate may be used. In the pressure plate having such a configuration, in order to arrange the protrusion forming member at a position corresponding to the functional film formed on the surface of the first substrate, the protrusion forming member is aligned and adjusted. That is, it is necessary to adjust the arrangement position.
Further, in the apparatus for laminating two substrates of the present invention, the alignment adjusting means for the pressure plate and the stacked body is not limited to one constituted by positioning pins as shown in FIGS. That is, the pressurizing mechanism is not limited to the one that performs alignment adjustment processing of the substrate and the pressure plate by the positioning pins as shown in FIGS. 1 and 4, and the alignment adjustment processing of the substrate and the pressure plate is performed by other alignment adjusting means. You may do it. Specifically, for example, a known image processing unit may be used as the alignment adjustment unit. In the pressurization mechanism having such a configuration, when the first substrate is made of a transparent material, the first substrate is placed on the substrate placement surface of the stage, and then the first processing is performed by the image processing means. While detecting the position of the functional film on the surface of the substrate, the functional film is detected by detecting the image information of the alignment mark provided in the pressure mechanism corresponding to the position of the protrusion of the pressure plate. And the alignment adjustment process between the protrusions. On the other hand, when the first substrate is not made of a transparent material, the back surface of the first substrate (the surface opposite to the surface on which the functional film is formed) is aligned with the position of the functional film. By providing the mark and detecting image information of the alignment mark of the first substrate and the alignment mark provided in the pressurizing mechanism, the alignment adjustment process between the functional film and the protrusion is performed.
 以下、本発明の実験例について説明する。 Hereinafter, experimental examples of the present invention will be described.
〔実験例1〕
 第1の基板として、縦横寸法100mm×100mm、厚み0.2mmのPET樹脂製の矩形平板状基板(シート)を用意し、また第2の基板としては、縦横寸法100mm×100mm、厚み2mmのPMMA(ポリメタクリル酸メチル)樹脂製の矩形平板状基板を用意した。第2の基板は、第1の基板に比して、構成材料が硬性のものであり、かつ厚みが大きいものであり、よって第1の基板に比して可変形性の小さいものである。
 そして、第1の基板の表面上に、スクリーン印刷によって縦横寸法10mm×10mm、厚み10μmのPDMS製の機能性膜を形成した後、図1において示した本発明の2枚の基板の貼り合わせ装置を用いて、第1の貼り合わせ方法(1)により、第1の基板と第2の基板との接合体を作製した。
 具体的には、先ず、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面に、各々、大気雰囲気下において、キセノンエキシマランプの真空紫外線を照射した(第1の基板表面活性化工程および第2の基板紫外線照射処理工程)。真空紫外線の照射条件は、貼り合わせ面照度(放射照度)50mW/cm2、照射時間100秒間とした。
 次いで、加圧機構のステージの基板載置面に、第1の基板を、貼り合わせ面を上方にし、周側面が位置合わせピンの全てに突き当てられた状態に載置した後、当該加圧機構の加圧板のアライメント調整処理を行った(加圧板アライメント調整工程)。
 そして、加圧板を上方に移動することによって第2の基板を配置するための空間を確保し(加圧板一時退避工程)、その後、第1の基板に形設された機能性膜の表面と第2の基板の貼り合わせ面とを接触させて積重体を得(積重工程)、得られた積重体を、加圧板を下方に移動させることによって当該積重体の厚み方向に加圧した(加圧工程)。加圧条件は、加圧力5MPa、加圧時間5秒間とした。
 その後、加圧板を上方に移動し(加圧板退避工程)、加圧機構から接合体(以下、「接合体(1-1)」ともいう。)を取り出した。
 得られた接合体(1-1)を目視にて観察したところ、図5(a)に示すように、第1の基板に形設された機能性膜と第2の基板とが接合されているだけで、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触しておらず、不所望な直接接触領域が形成されていなかった。
 図5(a)においては、接合領域および機能性膜の配置領域がハッチングによって示されている。
[Experimental Example 1]
A rectangular flat plate substrate (sheet) made of PET resin having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 0.2 mm is prepared as the first substrate, and a PMMA having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 2 mm is prepared as the second substrate. A rectangular flat substrate made of (polymethyl methacrylate) resin was prepared. The second substrate has a constituent material that is harder than the first substrate and has a large thickness. Therefore, the second substrate is less deformable than the first substrate.
Then, after forming a functional film made of PDMS having a vertical and horizontal dimension of 10 mm × 10 mm and a thickness of 10 μm on the surface of the first substrate by screen printing, the bonding apparatus for two substrates of the present invention shown in FIG. Was used to produce a joined body of the first substrate and the second substrate by the first bonding method (1).
Specifically, first, the bonding surface of the first substrate and the bonding surface of the second substrate were each irradiated with a vacuum ultraviolet ray from a xenon excimer lamp in an air atmosphere (first substrate surface activation). Process and second substrate ultraviolet irradiation process). The irradiation conditions of the vacuum ultraviolet rays were a bonding surface illuminance (irradiance) of 50 mW / cm 2 and an irradiation time of 100 seconds.
Next, after the first substrate is placed on the substrate placement surface of the stage of the pressure mechanism with the bonding surface facing upward and the peripheral side surface being abutted against all the alignment pins, the pressure is applied. The pressure plate alignment adjustment process of the mechanism was performed (pressure plate alignment adjustment step).
Then, a space for placing the second substrate is secured by moving the pressure plate upward (pressure plate temporary retracting step), and then the surface of the functional film formed on the first substrate and the first substrate 2 is brought into contact with the bonding surface of the two substrates to obtain a stacked body (stacking step), and the obtained stacked body is pressed in the thickness direction of the stacked body by moving the pressure plate downward (acceleration). Pressure process). The pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds.
Thereafter, the pressure plate was moved upward (pressure plate retracting step), and the joined body (hereinafter, also referred to as “joined body (1-1)”) was taken out from the pressure mechanism.
When the obtained bonded body (1-1) was visually observed, as shown in FIG. 5 (a), the functional film formed on the first substrate and the second substrate were bonded together. As a result, the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
In FIG. 5A, the bonding region and the functional film arrangement region are indicated by hatching.
 また、加圧機構を構成する加圧板として、突起部を有さず、ステージの基板載置面に対向する表面が平坦であるもの、具体的には矩形平板状のものを用いたこと以外は、第1の貼り合わせ方法(1)と同様の手法によって接合体(以下、「接合体(1-2)」ともいう。)を得た。
 得られた接合体(1-2)を目視にて観察したところ、図5(b)に示すように、第1の基板に形設された機能性膜と第2の基板とが接合されているだけではなく、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触し、不所望な直接接触領域が形成されていた。
 図5(b)においては、接合領域がハッチングによって示されており、この接合領域中に位置している機能性膜の配置位置が実線四角によって示されている。
Also, as the pressure plate constituting the pressure mechanism, a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used. Then, a bonded body (hereinafter also referred to as “bonded body (1-2)”) was obtained by the same method as in the first bonding method (1).
When the obtained bonded body (1-2) was visually observed, as shown in FIG. 5B, the functional film formed on the first substrate and the second substrate were bonded together. In addition, the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.
In FIG. 5 (b), the bonding area is indicated by hatching, and the arrangement position of the functional film located in the bonding area is indicated by a solid square.
〔実験例2〕
 第1の基板として、縦横寸法100mm×100mm、厚み1mmの無アルカリガラス製の矩形平板状基板を用意し、第2の基板として、縦横寸法100mm×100mm、厚み0.2mmのPET樹脂製の矩形平板状基板(シート)を用意した。第1の基板は、第2の基板に比して、構成材料が硬性のものであり、かつ厚みが大きいものであり、よって第2の基板に比して可変形性の小さいものである。
 そして、第1の基板の表面上に、スクリーン印刷によって縦横寸法10mm×10mm、厚み10μmのPET製の機能性膜を形成した後、図4において示した本発明の2枚の基板の貼り合わせ装置を用いて、第2の貼り合わせ方法(1)により、第1の基板と第2の基板との接合体を作製した。
 具体的には、先ず、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面に、各々、大気雰囲気下において、キセノンエキシマランプの真空紫外線を照射した(第1の基板表面活性化工程および第2の基板紫外線照射処理工程)。真空紫外線の照射条件は、貼り合わせ面照度(放射照度)50mW/cm2、照射時間100秒間とした。
 次いで、加圧機構のステージの基板載置面に、第2の基板を、貼り合わせ面を上方にし、周側面が位置合わせピンの全てに突き当てられた状態に載置した(第2の基板アライメント調整工程)。
 そして、第1の基板に形設された機能性膜の表面と第2の基板の貼り合わせ面とを接触させて積重体を得(積重工程)、その後、加圧機構の加圧板のアライメント調整処理を行って(加圧板アライメント調整工程)、当該加圧板を下方に移動させることにより、得られた積重体を厚み方向に加圧した(加圧工程)。加圧条件は、加圧力5MPaおよび加圧時間5秒間とした。
 その後、加圧板を上方に移動し(加圧板退避工程)、加圧機構から接合体(以下、「接合体(2-1)」ともいう。)を取り出した。
 得られた接合体(2-1)を目視にて観察したところ、図5(a)に示すように、第1の基板に形設された機能性膜と第2の基板とが接合されているだけで、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触しておらず、不所望な直接接触領域が形成されていなかった。
[Experiment 2]
A rectangular flat plate substrate made of alkali-free glass having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 1 mm is prepared as a first substrate, and a rectangle made of PET resin having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 0.2 mm is prepared as a second substrate. A flat substrate (sheet) was prepared. The first substrate has a harder constituent material and a larger thickness than the second substrate, and thus has a smaller deformability than the second substrate.
Then, after a functional film made of PET having a vertical and horizontal dimension of 10 mm × 10 mm and a thickness of 10 μm is formed on the surface of the first substrate by screen printing, the bonding apparatus for two substrates of the present invention shown in FIG. Was used to produce a joined body of the first substrate and the second substrate by the second bonding method (1).
Specifically, first, the bonding surface of the first substrate and the bonding surface of the second substrate were each irradiated with a vacuum ultraviolet ray from a xenon excimer lamp in an air atmosphere (first substrate surface activation). Process and second substrate ultraviolet irradiation process). The irradiation conditions of the vacuum ultraviolet rays were a bonding surface illuminance (irradiance) of 50 mW / cm 2 and an irradiation time of 100 seconds.
Next, the second substrate was placed on the substrate placement surface of the stage of the pressurizing mechanism with the bonding surface facing upward and the peripheral side surface being abutted against all of the alignment pins (second substrate). Alignment adjustment process).
Then, the surface of the functional film formed on the first substrate is brought into contact with the bonding surface of the second substrate to obtain a stack (stacking step), and then the alignment of the pressure plate of the pressure mechanism An adjustment process was performed (pressure plate alignment adjustment step), and the obtained pressure plate was moved in the thickness direction by moving the pressure plate downward (pressure step). The pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds.
Thereafter, the pressure plate was moved upward (pressure plate retracting step), and the joined body (hereinafter also referred to as “joined body (2-1)”) was taken out from the pressurizing mechanism.
When the obtained bonded body (2-1) was visually observed, as shown in FIG. 5A, the functional film formed on the first substrate and the second substrate were bonded together. As a result, the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
 また、加圧機構を構成する加圧板として、突起部を有さず、ステージの基板載置面に対向する表面が平坦であるもの、具体的には矩形平板状のものを用いたこと以外は、第2の貼り合わせ方法(1)と同様の手法によって接合体(以下、「接合体(2-2)」ともいう。)を得た。
 得られた接合体(2-2)を目視にて観察したところ、図5(b)に示すように、第1の基板上に形成された機能性膜と第2の基板とが接合されているだけではなく、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触し、不所望な直接接触領域が形成されていた。
Also, as the pressure plate constituting the pressure mechanism, a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used. Then, a joined body (hereinafter also referred to as “joined body (2-2)”) was obtained in the same manner as in the second bonding method (1).
When the obtained bonded body (2-2) was visually observed, as shown in FIG. 5B, the functional film formed on the first substrate and the second substrate were bonded together. In addition, the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.
〔実験例3〕
 第1の基板として、縦横寸法100mm×100mm、厚み0.2mmのPET樹脂製の矩形平板状基板(シート)を用意し、また第2の基板としては、縦横寸法100mm×100mm、厚み2mmのPET樹脂製の矩形平板状基板を用意した。第2の基板は、第1の基板に比して厚みが大きいものであり、よって第1の基板に比して可変形性の小さいものである。
 そして、第1の基板の表面上に、スクリーン印刷によって縦横寸法10mm×10mm、厚み10μmのPDMS製の機能性膜を形成した後、図1において示した本発明の2枚の基板の貼り合わせ装置を用いて、第1の貼り合わせ方法(2)により、第1の基板と第2の基板との接合体を作製した。
 具体的には、先ず、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面に対して、図2において示した大気圧プラズマ装置を用いてプラズマガス処理を行った(第1の基板表面活性化工程および第2の基板プラスマ処理理工程)。ここに、用いた大気圧プラズマ装置は、ケーシングの材質がアルミニウムであり、電極の材質が表面に溶射によって厚みが500μmのアルミナよりなる皮膜が形成されたスーパーインバーであり、電極の寸法が50mm×300mmであり、ケーシングと誘電体層との離間距離が0.5mmであり、電圧が7.0kVp-pであり、周波数が60kHzであり、定格電力が1100VAである仕様のものである。
 すなわち、上記の大気圧プラズマ装置の下方におけるノズルから3mm離間した位置に、第1の基板および第2の基板の各々を、その貼り合わせ面がノズルに対向するよう配置した。そして、プロセスガスとして、流量が150L/minの窒素ガスおよび流量が1L/minのクリーンドライエア(プロセスガス中の酸素濃度が約0.14体積%)をケーシング内に供給しながら、大気圧プラズマ装置を作動させることにより、第1の基板の貼り合わせ面および第2の基板の貼り合わせ面の各々に対して5秒間のプラズマガス処理を行った。
 次いで、加圧機構のステージの基板載置面に、第1の基板を、貼り合わせ面を上方にし、周側面が位置合わせピンの全てに突き当てられた状態に載置した後、当該加圧機構の加圧板のアライメント調整処理を行った(加圧板アライメント調整工程)。
 そして、加圧板を上方に移動することによって第2の基板を配置するための空間を確保し(加圧板一時退避工程)、その後、第1の基板に形設された機能性膜の表面と第2の基板の貼り合わせ面とを接触させて積重体を得(積重工程)、得られた積重体を、加圧板を下方に移動させることによって当該積重体の厚み方向に加圧した(加圧工程)。加圧条件は、加圧力5MPa、加圧時間5秒間とした。
 その後、加圧板を上方に移動し(加圧板退避工程)、加圧機構から接合体(以下、「接合体(1-3)」ともいう。)を取り出した。
 得られた接合体(1-3)を目視にて観察したところ、図5(a)に示すように、第1の基板に形設された機能性膜と第2の基板とが接合されているだけで、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触しておらず、不所望な直接接触領域が形成されていなかった。
[Experimental Example 3]
A rectangular flat substrate (sheet) made of PET resin having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 0.2 mm is prepared as the first substrate, and a PET having a vertical and horizontal dimension of 100 mm × 100 mm and a thickness of 2 mm is prepared as the second substrate. A resin-made rectangular flat substrate was prepared. The second substrate is thicker than the first substrate, and thus has less deformability than the first substrate.
Then, after forming a functional film made of PDMS having a vertical and horizontal dimension of 10 mm × 10 mm and a thickness of 10 μm on the surface of the first substrate by screen printing, the bonding apparatus for two substrates of the present invention shown in FIG. Was used to produce a joined body of the first substrate and the second substrate by the first bonding method (2).
Specifically, first, plasma gas treatment was performed on the bonding surface of the first substrate and the bonding surface of the second substrate using the atmospheric pressure plasma apparatus shown in FIG. Substrate surface activation step and second substrate plasma processing step). The atmospheric pressure plasma apparatus used here is a super invar in which the casing material is aluminum, and the electrode material is formed on the surface with a coating made of alumina having a thickness of 500 μm, and the electrode dimensions are 50 mm × 300 mm, the distance between the casing and the dielectric layer is 0.5 mm, the voltage is 7.0 kVp-p, the frequency is 60 kHz, and the rated power is 1100 VA.
That is, each of the first substrate and the second substrate was disposed at a position 3 mm away from the nozzle below the atmospheric pressure plasma apparatus so that the bonding surface thereof faces the nozzle. Then, while supplying nitrogen gas having a flow rate of 150 L / min and clean dry air having a flow rate of 1 L / min (the oxygen concentration in the process gas is about 0.14 vol%) as the process gas into the casing, the atmospheric pressure plasma apparatus The plasma gas treatment for 5 seconds was performed on each of the bonding surface of the first substrate and the bonding surface of the second substrate.
Next, after the first substrate is placed on the substrate placement surface of the stage of the pressure mechanism with the bonding surface facing upward and the peripheral side surface being abutted against all the alignment pins, the pressure is applied. The pressure plate alignment adjustment process of the mechanism was performed (pressure plate alignment adjustment step).
Then, a space for placing the second substrate is secured by moving the pressure plate upward (pressure plate temporary retracting step), and then the surface of the functional film formed on the first substrate and the first substrate 2 is brought into contact with the bonding surface of the two substrates to obtain a stacked body (stacking step), and the obtained stacked body is pressed in the thickness direction of the stacked body by moving the pressure plate downward (acceleration). Pressure process). The pressurizing conditions were a pressure of 5 MPa and a pressurization time of 5 seconds.
Thereafter, the pressure plate was moved upward (pressure plate retracting step), and the joined body (hereinafter also referred to as “joined body (1-3)”) was taken out from the pressure mechanism.
When the obtained bonded body (1-3) was visually observed, as shown in FIG. 5A, the functional film formed on the first substrate and the second substrate were bonded together. As a result, the first substrate and the second substrate are not in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is not formed.
 また、加圧機構を構成する加圧板として、突起部を有さず、ステージの基板載置面に対向する表面が平坦であるもの、具体的には矩形平板状のものを用いたこと以外は、第1の貼り合わせ方法(2)と同様の手法によって接合体(以下、「接合体(1-4)」ともいう。)を得た。
 得られた接合体(1-4)を目視にて観察したところ、図5(b)に示すように、第1の基板に形設された機能性膜と第2の基板とが接合されているだけではなく、当該機能性膜の周辺領域において第1の基板と第2の基板とが直接接触し、不所望な直接接触領域が形成されていた。
Also, as the pressure plate constituting the pressure mechanism, a projection plate is not provided and the surface facing the substrate mounting surface of the stage is flat, specifically, a rectangular flat plate is used. Then, a bonded body (hereinafter also referred to as “bonded body (1-4)”) was obtained by the same method as in the first bonding method (2).
When the obtained bonded body (1-4) was visually observed, as shown in FIG. 5B, the functional film formed on the first substrate and the second substrate were bonded together. In addition, the first substrate and the second substrate are in direct contact with each other in the peripheral region of the functional film, and an undesired direct contact region is formed.
 実験例1、実験例2および実験例3の結果を下記の表1および表2に示す。 Results of Experimental Example 1, Experimental Example 2 and Experimental Example 3 are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実験例1、実験例2および実験例3の結果から、本発明の2枚の基板の貼り合わせ方法によれば、機能性膜を介さず直接接触することのないように、第1の基板と第2の基板とを機能性膜を介して貼り合わせることができることが確認された。 From the results of Experimental Example 1, Experimental Example 2, and Experimental Example 3 described above, according to the method for bonding two substrates of the present invention, the first It was confirmed that the substrate and the second substrate can be bonded together via a functional film.
10  第1の基板
13  機能性膜
15  第2の基板
21  加圧板
22A  基材
22B  突起部
23  ステージ
23A  基板載置面
25  位置決めピン
30  ケーシング
31  電極
32  誘電体層
33  ガス供給口
34  ノズル
35  高周波電源
40  第1の基板
43  接合膜
45  第2の基板
49  直接接触領域
51  光源
61  導光板
61a,61b  側面
63  反射板
66  拡散部材層
71  加圧板
73  ステージ
73A  基板載置面
L1,L2  真空紫外線
L3,L4  紫外線

                                                                                
DESCRIPTION OF SYMBOLS 10 1st board | substrate 13 Functional film | membrane 15 2nd board | substrate 21 Pressure plate 22A Base material 22B Protrusion part 23 Stage 23A Substrate mounting surface 25 Positioning pin 30 Casing 31 Electrode 32 Dielectric layer 33 Gas supply port 34 Nozzle 35 High frequency power supply 40 First substrate 43 Bonding film 45 Second substrate 49 Direct contact area 51 Light source 61 Light guide plate 61a, 61b Side surface 63 Reflector plate 66 Diffusing member layer 71 Pressure plate 73 Stage 73A Substrate mounting surface L1, L2 Vacuum ultraviolet ray L3 L4 UV

Claims (7)

  1.  規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板とを、当該機能性膜を介して貼り合わせる、2枚の基板の貼り合わせ方法であって、
     第1の基板の表面上に形成された機能性膜の表面を活性化する表面活性化工程、
     前記表面活性化工程を経由した第1の基板と第2の基板とを、前記機能性膜の表面と第2の基板の貼り合わせ面とが互いに接触した状態となるように積重する積重工程、および
     前記積重工程において得られた第1の基板と第2の基板との積重体を、前記機能性膜と当該第2の基板との接触部分に対して選択的に加圧力が作用するよう、厚み方向に加圧する加圧工程
    を含むことを特徴とする2枚の基板の貼り合わせ方法。
    A method of bonding two substrates, in which a first substrate and a second substrate having a functional film having a defined outer shape formed on the surface are bonded via the functional film,
    A surface activation step for activating the surface of the functional film formed on the surface of the first substrate;
    Stacking the first substrate and the second substrate that have passed through the surface activation step so that the surface of the functional film and the bonding surface of the second substrate are in contact with each other. And a stack of the first substrate and the second substrate obtained in the stacking step is selectively applied to a contact portion between the functional film and the second substrate. A method for bonding two substrates, including a pressing step of pressing in the thickness direction.
  2.  前記加圧工程は、前記第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板を用い、当該突起部が当該第1の基板または前記第2の基板を介して当該機能性膜と対向するよう位置合わせされた状態において、当該加圧板を押圧することによって行われることを特徴とする請求項1に記載の2枚の基板の貼り合わせ方法。 The pressurizing step uses a pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate, and the protrusion is the first substrate or the second substrate. 2. The method for bonding two substrates according to claim 1, wherein the method is performed by pressing the pressure plate in a state of being positioned so as to face the functional film via the substrate.
  3.  前記第1の基板および前記第2の基板のうちの可変形性の小さい基板が、前記加圧板に接触した状態とされることを特徴とする請求項2に記載の2枚の基板の貼り合わせ方法。 The bonding of two substrates according to claim 2, wherein a substrate having a small deformability among the first substrate and the second substrate is in contact with the pressure plate. Method.
  4.  前記積重工程に供される、第2の基板の貼り合わせ面に、真空紫外線を照射する、または、大気プラズマによってプラズマ化したプロセスガスを接触させることを特徴とする請求項1乃至請求項3のいずれかに記載の2枚の基板の貼り合わせ方法。 4. A process gas that is subjected to the stacking step and is irradiated with vacuum ultraviolet rays or brought into plasma by atmospheric plasma is brought into contact with the bonding surface of the second substrate. A method for bonding two substrates according to any one of the above.
  5.  前記表面活性化工程は、前記第1の基板の表面上に形成された機能性膜の表面に真空紫外線を照射する紫外線照射処理工程であることを特徴とする請求項1乃至請求項3のいずれかに記載の2枚の基板の貼り合わせ方法。 The surface activation step is an ultraviolet ray irradiation treatment step of irradiating the surface of the functional film formed on the surface of the first substrate with vacuum ultraviolet rays. A method for bonding two substrates according to any one of the above.
  6.   前記表面活性化工程は、大気圧プラズマによってプラズマ化したプロセスガスを、前記第1の基板の表面上に形成された機能性膜の表面に接触させるプラズマガス処理工程であることを特徴とする請求項1乃至請求項3のいずれかに記載の2枚の基板の貼り合わせ方法。 The surface activation step is a plasma gas treatment step in which a process gas converted into plasma by atmospheric pressure plasma is brought into contact with the surface of a functional film formed on the surface of the first substrate. The method for bonding two substrates according to any one of claims 1 to 3.
  7.  規定された外形を有する機能性膜が表面上に形成された第1の基板と第2の基板とを、当該機能性膜を介して貼り合わせるための2枚の基板の貼り合わせ装置であって、
     前記第1の基板における機能性膜の表面と前記第2の基板の貼り合わせ面とが互いに接触した状態の積重体を厚み方向に加圧するための加圧機構が設けられており、
     前記加圧機構が、前記第1の基板の表面上に形成された機能性膜に対応した形状の突起部を有する加圧板、および、当該加圧板と前記積重体との位置合わせ調整手段とを備え、当該機能性膜と前記第2の基板との接触部分に対して選択的に加圧力を作用させるものであることを特徴とする2枚の基板の貼り合わせ装置。
                                                                                    
    An apparatus for laminating two substrates for laminating a first substrate and a second substrate having a functional film having a defined outer shape formed on the surface via the functional film. ,
    A pressurizing mechanism is provided for pressurizing the stack in a thickness direction in a state where the surface of the functional film of the first substrate and the bonding surface of the second substrate are in contact with each other;
    A pressure plate having a protrusion having a shape corresponding to the functional film formed on the surface of the first substrate; and an alignment adjusting unit between the pressure plate and the stack. An apparatus for laminating two substrates, wherein a pressing force is selectively applied to a contact portion between the functional film and the second substrate.
PCT/JP2016/068227 2015-08-26 2016-06-20 Method for bonding two substrates and device for bonding two substrates WO2017033545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560611A JP6065170B1 (en) 2015-08-26 2016-06-20 Method for bonding two substrates and apparatus for bonding two substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166985 2015-08-26
JP2015166985 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033545A1 true WO2017033545A1 (en) 2017-03-02

Family

ID=58099900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068227 WO2017033545A1 (en) 2015-08-26 2016-06-20 Method for bonding two substrates and device for bonding two substrates

Country Status (2)

Country Link
TW (1) TW201718271A (en)
WO (1) WO2017033545A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028922A (en) * 2007-07-24 2009-02-12 Seiko Epson Corp Joining method, joint article, droplet ejection head and droplet ejection device
JP2009035719A (en) * 2007-07-11 2009-02-19 Seiko Epson Corp Joined article and joining method
JP2009074002A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Adhesion sheet, joining method and joined body
JP2009132749A (en) * 2007-11-28 2009-06-18 Seiko Epson Corp Bonding method and bonded body
JP2010278228A (en) * 2009-05-28 2010-12-09 Seiko Epson Corp Bonding method and bonding body
JP2011235559A (en) * 2010-05-11 2011-11-24 Seiko Epson Corp Bonding film transfer sheet, and bonding method
JP2013242756A (en) * 2012-05-22 2013-12-05 Ushio Inc Workpiece laminating method and touch panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035719A (en) * 2007-07-11 2009-02-19 Seiko Epson Corp Joined article and joining method
JP2009028922A (en) * 2007-07-24 2009-02-12 Seiko Epson Corp Joining method, joint article, droplet ejection head and droplet ejection device
JP2009074002A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Adhesion sheet, joining method and joined body
JP2009132749A (en) * 2007-11-28 2009-06-18 Seiko Epson Corp Bonding method and bonded body
JP2010278228A (en) * 2009-05-28 2010-12-09 Seiko Epson Corp Bonding method and bonding body
JP2011235559A (en) * 2010-05-11 2011-11-24 Seiko Epson Corp Bonding film transfer sheet, and bonding method
JP2013242756A (en) * 2012-05-22 2013-12-05 Ushio Inc Workpiece laminating method and touch panel

Also Published As

Publication number Publication date
TW201718271A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11391880B2 (en) Optical member and method for producing same
US10487183B2 (en) Method of bonding substrates and method of producing microchip
TW200930671A (en) Method and apparatus for sealing a glass package
KR20160106485A (en) Imprinting device
JP6740593B2 (en) Work sticking method and work sticking device
US20150103319A1 (en) Polarization conversion element, projector, and method for manufacturing polarization conversion element
TWI537780B (en) Workpiece fit method and touch panel
TWI303191B (en) Method of manufacturing optical sheet, optical sheet, planar lighting apparatus, and electro optical apparatus
JP6065170B1 (en) Method for bonding two substrates and apparatus for bonding two substrates
JP5362072B2 (en) Work bonding method and touch panel
WO2017033545A1 (en) Method for bonding two substrates and device for bonding two substrates
JP2017126416A (en) Method for manufacturing light guide device
TW201643394A (en) Detection sensor and method for manufacturing same
JP2009061735A (en) Method and apparatus for laminating ultraviolet curable waveguide material
KR101355504B1 (en) Diffusion tool and pattern forming appratus
US10286640B2 (en) Process for laminating works together
JP2013101783A (en) Manufacturing method of light guide plate, light guide plate, edge-light plane light source device and transmission type image display device
KR102250076B1 (en) Laminating system
KR20140036128A (en) Patterning method
JP6885099B2 (en) Display device manufacturing method and light irradiation device
TW201511843A (en) Adhesive dissipation apparatus and method thereof, manufacturing apparatus for member of display device and method thereof
JP2004273238A (en) Method of manufacturing surface lighting source element member
JP2016219239A (en) Surface light source unit manufacturing method, and surface light source unit
WO2023074572A1 (en) Optical laminate, optical device, and method for producing optical laminate
JP7142738B2 (en) Lamination apparatus and lamination method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560611

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838892

Country of ref document: EP

Kind code of ref document: A1