WO2013175745A1 - 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 - Google Patents

脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013175745A1
WO2013175745A1 PCT/JP2013/003145 JP2013003145W WO2013175745A1 WO 2013175745 A1 WO2013175745 A1 WO 2013175745A1 JP 2013003145 W JP2013003145 W JP 2013003145W WO 2013175745 A1 WO2013175745 A1 WO 2013175745A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel
arrestability
strength
Prior art date
Application number
PCT/JP2013/003145
Other languages
English (en)
French (fr)
Inventor
佳子 竹内
長谷 和邦
三田尾 眞司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147033223A priority Critical patent/KR20150002884A/ko
Priority to CN201380026675.7A priority patent/CN104334762B/zh
Priority to JP2014516659A priority patent/JP5812193B2/ja
Priority to BR112014028230-7A priority patent/BR112014028230B1/pt
Publication of WO2013175745A1 publication Critical patent/WO2013175745A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength thick steel plate excellent in brittle crack propagation arrestability and a method for producing the same, and in particular, a ship using a steel plate having a thickness of 50 mm or more, an offshore structure It is related with a thing suitable for large structures, such as a thing, a low-temperature storage tank, and a construction and civil engineering structure.
  • brittle crack propagation arrestability As a means to improve brittle crack propagation arrestability (brittle crack arrestability) of steel materials, a method of increasing the Ni content has been conventionally known. In a storage tank of liquefied natural gas (Liquefied Natural Gas) (LNG) 9% Ni steel is used on a commercial scale.
  • LNG liquefied Natural Gas
  • TMCP THERMO-MECHANICAL CONTROL PROCESS
  • Graining can be achieved, low temperature toughness can be improved, and excellent brittle cracking arrestability can be imparted.
  • Patent Document 1 proposes a steel material in which the microstructure of the surface layer is ultrafine crystallization in order to improve the brittle crack propagation arrestability without increasing the alloy cost.
  • the steel material with excellent brittle crack propagation characteristics described in Patent Document 1 is shear lips (plastic deformation region) generated in the steel surface layer when a brittle crack propagates. Focusing on the effect of improving the brittle crack propagation arrestability, the propagation of the propagating brittle crack is reduced by refining the crystal grains in the shear lips (plastic deformation region). It is characterized by absorbing energy.
  • the surface layer portion is cooled below the Ar 3 transformation point by controlled cooling after hot rolling, and then the controlled cooling is stopped and the surface layer portion is transformed.
  • the process of recuperate more than the point) is repeated one or more times.
  • the steel material is subjected to reduction, and it is repeatedly transformed or processed and recrystallized. ) Or bainite structure is described.
  • both surface portions of the steel material have an equivalent grain size.
  • the steel materials excellent in brittle crack propagation arrestability (brittle1 ⁇ 2crack arrestability) described in Patent Documents 1 and 2 are recuperate after cooling only the steel surface layer, and during recuperate. In this process, a specific structure is obtained, and control is not easy on an actual production scale. Particularly, in the case of a thick material having a plate thickness exceeding 50 mm, it is a process with a heavy load on the rolling and cooling equipment.
  • Patent Document 3 focuses on not only the refinement of ferrite crystal grains but also the subgrains formed in the ferrite crystal grains, and improves the brittle crack propagation arrestability (brittle crack arrestability). The technology on the extension of (THERMO-MECHANICAL CONTROL PROCESS) is described.
  • a method of improving brittle crack propagation characteristics by applying a reduction to transformed ferrite to develop a texture is also known.
  • the resistance to brittle fracture is increased by generating separation on the fracture surface of the steel material in a direction parallel to the plate surface and relaxing the stress at the tip of the brittle crack.
  • the (110) plane X-ray intensity ratio is set to 2 or more by controlled rolling, and coarse grains having a diameter equivalent to circles (diameter equivalent to a circle in the crystal grains) of 20 ⁇ m or more are set to 10% or less.
  • coarse grains having a diameter equivalent to circles (diameter equivalent to a circle in the crystal grains) of 20 ⁇ m or more are set to 10% or less.
  • Non-Patent Document 1 describes the stopping of brittle crack propagation of steel plates having a thickness of 65 mm. The characteristics (brittle crack arrestability) were evaluated, and the results of the brittle crack not stopping in the large brittle crack propagation stop test of the base metal were reported.
  • the Kca value ( ⁇ 10 ° C.) at the use temperature of ⁇ 10 ° C.) is less than 3000 N / mm 3/2.
  • Kca ⁇ 10 ° C.
  • Patent Documents 1 to 4 mainly have a thickness of about 50 mm from manufacturing conditions and disclosed experimental data, and have a thickness exceeding 50 mm. When it is applied to meat, it is unclear whether a predetermined characteristic can be obtained, and the characteristics against crack propagation in the plate thickness direction necessary for the hull structure have not been verified at all.
  • the present invention optimizes rolling conditions and achieves brittle crack propagation arrestability (brittle crack arrestability) that can be stably manufactured by an industrially simple process that controls texture in the thickness direction. It is an object of the present invention to provide an excellent high-strength steel plate having a thickness of 50 mm or more and a method for producing the same.
  • the inventors of the present invention have made extensive studies to achieve the above-mentioned problems, and stably obtain a high-strength thick steel plate having excellent crack propagation stopping characteristics even in a thick steel plate and the steel plate.
  • the following knowledge about the manufacturing method was obtained. 1.
  • the Charpy fracture surface is 1/2 + 6 mm of the plate thickness (t). Particularly good results are obtained when the transition temperature is below -40 ° C.
  • it is effective to reduce specific chemical components, particularly impurity elements Si and P.
  • the rolling conditions are also important. By rolling under specific hot rolling conditions that define the temperature at the center of the plate thickness, the microstructure can be made into a structure mainly composed of processed ferrite. As a result, further improvement in toughness is achieved.
  • the present invention has been made by further studying the obtained knowledge, that is, the present invention, 1.
  • Steel composition is mass%, C: 0.03-0.20%, Si: 0.1% or less, Mn: 0.5-2.2%, P: 0.008% or less, S: 0.00. 01% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, Al: 0.005 to 0.08%, N: 0.0075% or less, the balance being Fe and inevitable
  • It has a composition composed of mechanical impurities, is a structure mainly composed of ferrite whose microstructure has been processed, and has a Charpy fracture surface transition temperature of 1 ⁇ 2 + 6 mm part of the plate thickness (t) of ⁇ 40 ° C. or lower.
  • high-strength thick steel plate with excellent brittle crack arrestability.
  • the steel composition is further mass%, Cu: 0.01 to 0.5%, Ni: 0.01 to 1.0%, Cr: 0.01 to 0.5%, Mo: 0.01 to 0 0.5%, V: 0.001 to 0.1%, B: 0.003% or less, Ca: 0.005% or less, REM: 0.01% or less.
  • high strength steel plate high structural steel
  • the steel material (slab) having the composition described in 5.1 or 2 is heated to a temperature of 1000 to 1200 ° C., and rolling is performed at a central thickness of 30% or more in the austenite recrystallization temperature range.
  • a high-strength thick steel plate having an appropriately controlled texture in the thickness direction and excellent in brittle crack propagation characteristics (brittle crack arrestability) is obtained, and the thickness is 50 mm or more, preferably It is effective to apply to a steel plate having a plate thickness of more than 50 mm, more preferably a plate thickness of 55 mm or more, and even more preferably a plate thickness of 60 mm or more, because it exerts a marked advantage over the steel according to the prior art.
  • it is extremely useful in the industry, for example, by contributing to improved safety of ships by applying it to hatch side combing and deck members in the structure of large decks of bulk container ships and bulk carriers.
  • Base material toughness 2. chemical composition; Define the microstructure. 1. Base material toughness In order to suppress the growth of cracks, it is an important requirement that the base material toughness at the center of the plate thickness has good characteristics. In the steel plate according to the present invention, the Charpy fracture surface transition temperature at 1/2 + 6 mm part of the plate thickness (t) is specified.
  • the thickness (t ) Is defined as ⁇ 40 ° C. or lower.
  • the Charpy fracture surface transition temperature at 1/2 + 6 mm part of the plate thickness (t) is taken by shifting the center position of the Charpy impact test piece by 6 mm from the 1/2 part plate thickness (that is, the plate thickness center).
  • C 0.03 to 0.20%
  • C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.03% or more in order to ensure the desired strength. Not only is it deteriorated, it also has an adverse effect on toughness. Therefore, C is specified in the range of 0.03 to 0.20%. Preferably, the content is 0.05 to 0.15%.
  • Si 0.1% or less Si is effective as a deoxidizing element and as a steel strengthening element.
  • the content is made 0.1% or less in order to prevent toughness deterioration in the central part of the steel plate.
  • Mn 0.5 to 2.2% Mn is contained as a strengthening element. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.2%, the weldability deteriorates and the cost of the steel material increases, so 0.5 to 2.2%.
  • P 0.008% or less
  • P is an inevitable impurity in steel.
  • An increase in the amount of P causes a deterioration in toughness. Therefore, in order to keep the toughness of the central portion of the steel sheet favorable, the upper limit needs to be P: 0.008% or less.
  • S 0.01% or less S, like P, is an unavoidable impurity in steel. If it exceeds 0.01%, the toughness deteriorates, so 0.01% or less is desirable, and 0.005% or less is more desirable.
  • Nb 0.005 to 0.05%
  • Nb precipitates as NbC at the time of ferrite transformation or reheating, and contributes to the increase in strength.
  • Nb has the effect of expanding the non-recrystallized region in rolling in the austenite region, and contributes to the refinement of ferrite, so it is also effective in improving toughness.
  • it is necessary to contain 0.005% or more, but if it exceeds 0.05%, coarse NbC precipitates and conversely causes a decrease in toughness, so 0.005 to 0 .05%.
  • Ti 0.005 to 0.03%
  • Ti When Ti is contained in a trace amount, it forms nitrides, carbides, or carbonitrides, and has the effect of refining crystal grains and improving the base material toughness. The effect is obtained by containing 0.005% or more, but if it exceeds 0.03%, the toughness of the base metal and the weld heat affected zone is lowered, so 0.005 to 0.03% is set. .
  • Al acts as a deoxidizing agent, and for this purpose, it is necessary to contain 0.005% or more. However, if it contains more than 0.08%, the toughness is lowered and welding is performed. Reduce the toughness of the metal part. For this reason, Al is made 0.005 to 0.08%. Preferably, the content is 0.02 to 0.04%.
  • N 0.0075% or less N combines with Al in the steel, adjusts the crystal grain size at the time of rolling, and strengthens the steel. However, if it exceeds 0.0075%, the toughness deteriorates. 0075% or less.
  • the above is the basic component composition of the present invention, the balance being Fe and unavoidable impurities.
  • one or more of Cu, Ni, Cr, Mo, V, B, Ca, and REM are included. It is possible.
  • Cu, Ni, Cr, Mo Cu, Ni, Cr, and Mo are all elements that enhance the hardenability of steel. While contributing directly to strength improvement after rolling, it can be included for functional improvement such as toughness, high-temperature strength, or weather resistance, but excessive content deteriorates toughness and weldability.
  • the upper limit is preferably set to Cu: 0.5%, Ni: 1.0%, Cr: 0.5%, Mo: 0.5%, respectively.
  • the content is less than 0.01%, the effect does not appear. Therefore, when it is contained, it is preferable that the content is 0.01% or more.
  • V 0.001 to 0.1%
  • V is an element that improves the strength of the steel by precipitation strengthening as V (CN), and may be contained in an amount of 0.001% or more, but if it exceeds 0.1%, the toughness is lowered. Therefore, when V is contained, the content is preferably 0.001 to 0.1%.
  • B 0.003% or less B may be contained in a small amount as an element that enhances the hardenability of steel. However, if it exceeds 0.003%, the toughness of the welded portion is lowered. Therefore, when it is included, the content is preferably 0.003% or less.
  • REM 0.01% or less Ca
  • REM is necessary because it refines the structure of the weld heat-affected zone and improves toughness, and even if contained, the effect of the present invention is not impaired. You may make it contain according to it. However, if excessively contained, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when it is included, the upper limit of the content is 0.005% for Ca and 0.01% for REM. Is preferred.
  • the carbon equivalent (Ceq) represented by the following formula is preferably 0.45% or less.
  • Ceq C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5 (Each element symbol on the right side indicates the content (mass%) of the element.) 3.
  • Microstructure Toughness is greatly affected by the microstructure as well as the chemical composition.
  • a ferrite structure (ferrite structure) processed and flattened structure that is, a processed ferrite (hereinafter, simply referred to as processed ferrite) as a main component
  • the structure in the thickness direction is refined to improve toughness.
  • the structure mainly composed of processed ferrite refers to a structure in which the area fraction of the processed ferrite ferrite is 50% or more.
  • the balance is one or more selected from pearlite, bainite, martensite, island martensite (MA), and ferrite that has not been processed after transformation from austenite. 4).
  • Production Conditions As production conditions for the thick steel plate according to the present invention, the slab heating temperature, the cumulative reduction ratio in the austenite recrystallization temperature range in hot rolling, the cooling rate after rolling in the austenite recrystallization temperature range to Ar 3 points or less , Ar The cumulative rolling reduction and cooling rate at 3 points or less, the cooling stop temperature and the temper temperature are defined.
  • the temperature (° C.) is the temperature at the center of the plate thickness (1/2 t portion (t is the plate thickness)) of the steel plate.
  • the temperature at the center of the plate thickness of the steel plate is determined by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the temperature at the center of the plate thickness of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
  • Thick materials with a thickness of 50 mm or more used for outer plates of ship's hulls such as recent container ships and bulk carriers have Kca values at -10 ° C to ensure structural safety. It is necessary to obtain brittle crack propagation stopping performance with Kca ( ⁇ 10 ° C.) of 6000 N / mm 3/2 or more.
  • molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) (slab) by continuous casting or the like.
  • the obtained steel material (slab) is heated to a temperature of 1000 to 1200 ° C. and then hot-rolled.
  • the heating temperature is set to 1000 to 1200 ° C. From the viewpoint of toughness, the preferred heating temperature range is 1000 to 1150 ° C, more preferably 1000 to 1050 ° C.
  • hot rolling is performed such that the temperature at the center of the plate thickness is 30% or more in the austenite recrystallization temperature range. If the cumulative rolling reduction is less than 30%, the austenite is not sufficiently refined and the toughness is not improved.
  • the first cooling is performed until the temperature at the central portion of the sheet thickness becomes Ar 3 points or less.
  • the cooling rate up to the Ar 3 point or lower is set to 15 ° C./s or lower.
  • the Ar 3 point (° C.) is obtained by the following equation.
  • Ar 3 (° C.) 910-273C-74Mn-57Ni-16Cr-9Mo-5Cu
  • each element symbol is the content (% by mass) in steel, and 0 if not contained.
  • the rolled steel sheet is subjected to the second cooling to 600 ° C. or less at a cooling rate of 4 ° C./s or more.
  • the cooling rate is lower than 4 ° C./s, the structure becomes coarse and the toughness decreases.
  • the cooling stop temperature is set to 600 ° C. or less.
  • the tempering temperature is set to 1 Ac or less so as not to damage the structure obtained by rolling and cooling.
  • Ac 1 point (° C.) is obtained by the following equation.
  • Ac 1 point 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B
  • each element symbol is the content (% by mass) in steel, and 0 if not contained.
  • Molten steel (steel symbols A to P) of each composition shown in Table 1 is melted in a converter and made into a steel material (slab) (slab 280 mm thick) by a continuous casting method, with the first cooling in the middle After hot rolling to a plate thickness of 50 to 80 mm, second cooling is performed and Sample steels 1 to 22 were obtained.
  • Table 2 shows hot rolling conditions and cooling conditions.
  • a JIS 14A test piece having a diameter of 14 mm was taken from 1/4 part of the plate thickness (t) so that the longitudinal direction of the test piece was perpendicular to the rolling direction, a tensile test was performed, and the yield point ( Yield Strength (YS) and Tensile Strength (TS) were measured.
  • the microstructure was confirmed by observing three fields of view with an optical microscope at a magnification of 400 with respect to a cross section parallel to the rolling direction from 1 ⁇ 4 part of the plate thickness.
  • a JIS No. 4 impact test piece was taken so that the longitudinal axis direction of the test piece was parallel to the rolling direction so that a 1/2 + 6 mm portion of the plate thickness (t) was the center of the test piece, and a Charpy impact test was performed.
  • the fracture surface transition temperature (vTrs) was determined.
  • the Charpy fracture surface transition temperature at 1 ⁇ 2 + 6 mm part of the plate thickness (t) was ⁇ 40 ° C. or less within the scope of the present invention.
  • Table 3 shows the results of these tests.
  • Kca ⁇ 10 ° C.
  • the volume fraction of the processed ferrite was 50% or more.
  • test steel plates whose composition is outside the scope of the present invention production Nos. 12 to 18
  • steel sheets whose production conditions are outside the scope of the present invention and whose texture does not meet the provisions of the present invention In the production Nos. 19 to 22), the value of Kca ( ⁇ 10 ° C.) was 3800 N / mm 3/2 or less, which was not equivalent to the example of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 鋼組成が、質量%で、C:0.03~0.20%、Si:0.1%以下、Mn:0.5~2.2%、P、S、Nb:0.005~0.05%、Ti:0.005~0.03%、Al:0.005~0.08%、N:0.0075%以下、必要に応じて、Cu、Ni、Cr、Mo、V、B、Ca、REMの1種または2種以上、残部がFeおよび不可避的不純物からなる組成を有し、ミクロ組織が加工されたフェライトを主体とする組織であり、板厚(t)の1/2+6mm部のシャルピー破面遷移温度が-40℃以下である厚鋼板。上記組成の鋼素材(slab)を、1000~1200℃の温度に加熱し、板厚中央部がオーステナイト再結晶温度域での累積圧下率30%以上の圧延を行った後、15℃/s以下の冷却速度で板厚中央部の温度がAr点以下となるまで第1の冷却を行い、累積圧下率40%以上の圧延を行った後、4℃/s以上の冷却速度にて600℃以下まで第2の冷却を実施し、必要に応じてAc点以下の焼戻し(temper)を行う。

Description

脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
 本発明は、脆性き裂伝播停止特性(brittle crack arrestability)に優れた高強度厚鋼板(high-strength thick steel plate)およびその製造方法に関し、特に、板厚50mm以上の鋼板を用いる船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に好適なものに関する。
 船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊(brittle fracture)に伴う事故が経済や環境に及ぼす影響が大きいため、安全性の向上が常に求められる。使用される鋼材に対しては、その使用温度における靭性や、脆性き裂伝播停止特性(brittle crack arrestability)が要求されている。
 コンテナ船やバルクキャリアーなどの船舶はその構造上、船体外板(outer plate of ship’s hull)に高強度の厚肉材が使用される。最近は船体の大型化に伴い一層の高強度厚肉化が進展している。一般に、鋼板の脆性き裂伝播停止特性(brittle crack arrestability)は高強度あるいは厚肉材ほど劣化する傾向があるため、脆性き裂伝播停止特性(brittle crack arrestability)への要求も一段と高度化している。
 鋼材の脆性き裂伝播停止特性(brittle crack arrestability)を向上させる手段として、従来からNi含有量を増加させる方法が知られており、液化天然ガス(Liquefied Natural Gas)(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。
 しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。
 一方、LNGのような極低温(ultra low temperature)にまで至らない、船舶やラインパイプに使用される、板厚が50mm未満の鋼材に対しては、TMCP(THERMO-MECHANICAL CONTROL PROCESS)法により細粒化を図り、低温靭性を向上させて、優れた脆性き裂伝播停止特性(brittle crack arrestability)を付与することができる。
 また、合金コストを上昇させることなく、脆性き裂伝播停止特性(brittle crack arrestability)を向上させるため表層部の組織を超微細化(ultra fine crystallization)した鋼材が特許文献1で提案されている。
 特許文献1記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた鋼材は、脆性き裂が伝播する際、鋼材表層部に発生するシアリップ(塑性変形領域 shear-lips)(塑性変形領域)が脆性き裂伝播停止特性(brittle crack arrestability)の向上に効果があることに着目し、シアリップ(塑性変形領域 shear-lips)部分の結晶粒を微細化させて、伝播する脆性き裂が有する伝播エネルギーを吸収させることを特徴とする。
 製造方法として、熱間圧延後の制御冷却(controlled cooling)により表層部分をAr変態点(transformation point)以下に冷却し、その後制御冷却(controlled cooling)を停止して表層部分を変態点(transformation point)以上に復熱(recuperate)させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ又は加工再結晶させて、表層部分に超微細なフェライト組織(ferrite structure)又はベイナイト組織(bainite structure)を生成させることが記載されている。
 さらに、特許文献2では、フェライト-パーライト(pearlite)を主体のミクロ組織とする鋼材において脆性き裂伝播停止特性(brittle crack arrestability)を向上させるためには、鋼材の両表面部は円相当粒径(circle-equivalent average grain size):5μm以下、アスペクト比(aspect ratio of the grains):2以上のフェライト粒を有するフェライト組織(ferrite structure)を50%以上有する層で構成し、フェライト粒径のバラツキを抑えることが重要で、バラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率(rolling reduction)を12%以下とし局所的な再結晶現象を抑制することが記載されている。
 しかし、特許文献1、2に記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた鋼材は、鋼材表層部のみを一旦冷却した後に復熱(recuperate)させ、かつ復熱(recuperate)中に加工を加えることによって、特定の組織を得るもので、実生産規模では制御が容易でなく、特に板厚が50mmを超える厚肉材では圧延、冷却設備への負荷が大きいプロセスである。
 一方、特許文献3には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレイン(subgrain)に着目し、脆性き裂伝播停止特性(brittle crack arrestability)を向上させる、TMCP(THERMO-MECHANICAL CONTROL PROCESS)の延長上にある技術が記載されている。
 具体的には、板厚30~40mmにおいて、鋼板表層の冷却および復熱(recuperate)などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織(ferrite structure)を生成する圧延条件、(c)微細フェライトに集合組織(texture)を発達させるとともに加工(圧延)により導入した転位(dislocation)を熱的エネルギーにより再配置しサブグレイン(subgrain)を形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン(subgrain)粒の粗大化を抑制する冷却条件、によって脆性き裂伝播停止特性(brittle crack arrestability)を向上させる。
 また、制御圧延において、変態したフェライトに圧下を加えて集合組織(texture)を発達させることにより、脆性き裂伝播停止特性(brittle crack arrestability)を向上させる方法も知られている。鋼材の破壊面上にセパレーション(separation)を板面と平行な方向に生ぜしめ、脆性き裂先端の応力を緩和させることにより、脆性破壊(brittle fracture)に対する抵抗を高める。
 例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径(diameter equivalent to a circle in the crystal grains)20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊(brittle fracture)特性を向上させることが記載されている。
特公平7-100814号公報 特開2002-256375号公報 特許第3467767号公報 特許第3548349号公報
井上ら:厚手造船用鋼における長大脆性き裂伝播挙動、日本船舶海洋工学会講演論文集 第3号、 2006、 pp359-362。
 ところで、最近の6,000TEU(Twenty-foot Equivalent Unit)を超える大型コンテナ船では板厚50mmを超える厚鋼板が使用されるが、非特許文献1は、板厚65mmの鋼板の脆性き裂伝播停止特性(brittle crack arrestability)を評価し、母材の大型脆性き裂伝播停止試験で脆性き裂が停止しない結果を報告している。
 また、供試材のESSO試験(ESSO TEST COMPLIANT WITH WES 3003)では使用温度-10℃におけるKcaの値(以下、Kca(-10℃)と記す)が3000N/mm3/2に満たない結果が示され、50mmを超える板厚の鋼板を適用した船体構造の場合、安全性確保が課題となることが示唆されている。
 上述した特許文献1~4に記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れる鋼板は、製造条件や開示されている実験データから板厚50mm程度が主な対象で、50mmを超える厚肉材へ適用した場合、所定の特性が得られるか不明で、船体構造で必要な板厚方向のき裂伝播に対しての特性については全く検証されていない。
 そこで本発明は、圧延条件を最適化し、板厚方向での集合組織(texture)を制御する工業的に極めて簡易なプロセスで安定して製造し得る脆性き裂伝播停止特性(brittle crack arrestability)に優れる板厚50mm以上の高強度厚鋼板(high-strength thick steel plate)およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題の達成に向けて鋭意研究を重ね、厚肉鋼板でも優れたき裂伝播停止特性を有する高強度厚鋼板(high-strength thick steel plate)および当該鋼板を安定して得る製造方法について以下の知見を得た。
1.板厚50mm以上の厚鋼板において脆性き裂伝播停止特性(brittle crack arrestability)の向上には板厚中央部の靭性の向上が有効であり、板厚(t)の1/2+6mm部のシャルピー破面遷移温度が-40℃以下の場合に特に良好な結果が得られる。
2.上記靭性値の達成には、特定の化学成分、特に不純物元素であるSiおよびPの低減が有効である。
3.化学成分と並行して圧延条件も重要であり、板厚中央部の温度を規定した特定の熱間圧延条件で圧延することにより、ミクロ組織を加工されたフェライトを主体とする組織にすることができ、その結果、さらに靭性向上が達成される。
 本発明は得られた知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、C:0.03~0.20%、Si:0.1%以下、Mn:0.5~2.2%、P:0.008%以下、S:0.01%以下、Nb:0.005~0.05%、Ti:0.005~0.03%、Al:0.005~0.08%、N:0.0075%以下、残部がFeおよび不可避的不純物からなる組成を有し、ミクロ組織が加工されたフェライトを主体とする組織であり、板厚(t)の1/2+6mm部のシャルピー破面遷移温度が-40℃以下であることを特徴とする脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
2.鋼組成が、更に、質量%で、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下の1種または2種以上を含有することを特徴とする1記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
3.ミクロ組織における第2相として、パーライト、ベイナイト、マルテンサイト、島状マルテンサイト(MA)、及びオーステナイトから変態後、加工を受けていないフェライトの1種または2種以上を有することを特徴とする、1または2記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
4.板厚が50mm超えであることを特徴とする1~3のいずれか一つに記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
5.1または2に記載の組成を有する鋼素材(slab)を、1000~1200℃の温度に加熱し、板厚中央部がオーステナイト再結晶温度域での累積圧下率30%以上の圧延を行った後、15℃/s以下の冷却速度で板厚中央部の温度がAr点以下となるまで第1の冷却を行い、板厚中央部の温度がAr点以下の温度域において累積圧下率40%以上の圧延を行った後、4℃/s以上の冷却速度にて600℃以下まで第2の冷却を実施することを特徴とする脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)の製造方法。
6.前記第2の冷却の後、さらに、Ac点以下の温度に焼戻すことを特徴とする5に記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)の製造方法。
 本発明によれば、板厚方向に集合組織(texture)が適切に制御され、脆性き裂伝播停止特性(brittle crack arrestability)に優れる高強度厚肉鋼板が得られ、板厚50mm以上、好ましくは板厚50mm超え、より好ましくは板厚55mm以上、一層好ましくは板厚60mm以上の鋼板に適用することが、従来技術に係る鋼に対してより顕著な優位性を発揮するため、有効である。そして、例えば、造船分野では大型のコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングや甲板部材へ適用することにより船舶の安全性向上に寄与するなど、産業上極めて有用である。
 本発明では、1.母材靭性、2.化学成分、3.ミクロ組織を規定する。
1.母材靭性
 き裂の進展を抑制するためには、板厚中央部の母材靭性が良好な特性を有することが重要な要件となる。本発明に係る鋼板では板厚(t)の1/2+6mm部におけるシャルピー破面遷移温度について規定する。
 板厚50mm以上の厚肉材で、構造安全性を確保する上で目標とされるKca(-10℃)≧6000N/mm3/2の脆性き裂伝播停止性能を得るため、板厚(t)の1/2+6mm部におけるシャルピー破面遷移温度を-40℃以下と規定する。
 ここで、板厚(t)の1/2+6mm部におけるシャルピー破面遷移温度とは、シャルピー衝撃試験片の中心位置を板厚1/2部(すなわち、板厚中央部)から6mmずらして採取したシャルピー衝撃試験片に対して衝撃試験を実施した場合の破面遷移温度を指す。
 シャルピー衝撃試験片の中心位置を板厚1/2部から6mmずらす理由は中心偏析部の影響を避けるためである。フルサイズのシャルピー衝撃試験片の断面は10mm角(ノッチ部を除く)なので、上記のようにずらした場合には、シャルピー衝撃試験片は板厚1/2部から1mmはずれることになる。これにより、中心偏析の影響が外乱となることなく、鋼板内部の靱性を評価することができる。
 上述した靭性は、製造条件を適切に選択した場合に得られる。以下、本発明における鋼の化学成分、ミクロ組織および好ましい製造条件について説明する。
2.化学成分
説明において%は質量%とする。
 C:0.03~0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上含有することを必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03~0.20%の範囲に規定した。なお、好ましくは0.05~0.15%である。
 Si:0.1%以下
Siは脱酸元素として、また、鋼の強化元素として有効であるが、含有量が過度に多くなると靭性が極端に劣化するという欠点がある。従って、鋼板中央部の靭性低下を防ぐためにも、その含有量を0.1%以下とする。
 Mn:0.5~2.2%
Mnは、強化元素として含有させる。0.5%より少ないとその効果が十分でなく、2.2%を超えると溶接性が劣化し、鋼材コストも上昇するため、0.5~2.2%とする。
 P:0.008%以下
Pは、鋼中の不可避的不純物である。P量の増加は靭性の劣化を招くので鋼板中央部の靭性を良好に保つためには、その上限をP:0.008%以下とする必要がある。
 S:0.01%以下
Sは、Pと同様に鋼中の不可避的不純物である。0.01%を超えると靭性が劣化するため、0.01%以下が望ましく、0.005%以下がさらに望ましい。
 Nb:0.005~0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶域を拡大させる効果をもち、フェライトの細粒化に寄与するので、靭性の改善にも有効である。その効果を得るためには0.005%以上含有することが必要であるが0.05%を超えて含有すると、粗大なNbCが析出し逆に、靭性の低下を招くので0.005~0.05%とする。
 Ti:0.005~0.03%
Tiは微量を含有させることにより、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.005%以上含有することによって得られるが、0.03%を超えて含有すると、母材および溶接熱影響部の靭性を低下させるので、0.005~0.03%とする。
 Al:0.005~0.08%
Alは、脱酸剤として作用し、このためには0.005%以上含有することを必要とするが、0.08%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005~0.08%とする。なお、好ましくは、0.02~0.04%である。
 N:0.0075%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.0075%を超えると靭性が劣化するため、0.0075%以下とする。
 以上が本発明の基本成分組成で残部Feおよび不可避的不純物であるが、更に特性を向上させるため、Cu、Ni、Cr、Mo、V、B、Ca、REMの一種または二種以上を含有させることが可能である。
 Cu、Ni、Cr、Mo
Cu、Ni、Cr、Moはいずれも鋼の焼入れ性を高める元素である。圧延後の強度向上に直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために含有させることができるが、過度に含有すると靭性や溶接性を劣化させるため、含有させる場合には、それぞれ上限をCu:0.5%、Ni:1.0%、Cr:0.5%、Mo:0.5%とすることが好ましい。一方、含有量が0.01%未満であるとその効果が現れないため、含有する場合には、いずれも0.01%以上の含有量とすることが好ましい。
 V:0.001~0.1%
Vは、V(CN)として析出強化により、鋼の強度を向上する元素であり、0.001%以上含有してもよいが、0.1%を超えて含有すると、靭性を低下させる。このため、Vを含有させる場合には、0.001~0.1%とすることが好ましい。
 B:0.003%以下
Bは微量で鋼の焼き入れ性を高める元素として含有させてもよい。しかし、0.003%を超えて含有すると溶接部の靭性を低下させるので、含有させる場合には、0.003%以下の含有量とすることが好ましい。
 Ca:0.005%以下、REM:0.01%以下
Ca、REMは溶接熱影響部の組織を微細化し靭性を向上させ、含有しても本発明の効果が損なわれることはないので必要に応じて含有させてもよい。しかし、過度に含有すると、粗大な介在物を形成し母材の靭性を劣化させるので、含有させる場合には、含有量の上限をCaは0.005%、REMは0.01%とすることが好ましい。
 なお、構造用(for structural use)鋼としての溶接性を確保するため、次式で示される炭素当量(Ceq)が0.45%以下であることが好ましい。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5
(右辺の各元素記号は、その元素の含有量(質量%)を示すものとする。)
3.ミクロ組織
 靭性は化学成分の他、ミクロ組織にも大きな影響を受ける。本発明に係る鋼板では靭性に優れる組織として、特に、フェライト組織(ferrite structure)の中でも加工され扁平した組織、すなわち加工されたフェライト(以下、単に、加工フェライトとも称する)を主体とすることで、板厚方向の組織を細粒化させて靭性の向上を達成している。
 加工されたフェライトのみでは強度が不足する場合においては、所望の強度レベルに応じてパーライト、ベイナイト、マルテンサイト、島状マルテンサイト(MA)の1種または2種以上を第2相として分散させることで、強度と靭性の両立を達成することができる。
 本発明において、加工されたフェライトを主体とする組織とは、加工されたフェライトフェライトの面積分率が50%以上の組織を指す。残部は、パーライト、ベイナイト、マルテンサイト、島状マルテンサイト(MA)、さらに、オーステナイトから変態後、加工を受けていないフェライト、から選ばれる1種または2種以上である。
4.製造条件
 本発明に係る厚鋼板の製造条件として、スラブ加熱温度、熱間圧延におけるオーステナイト再結晶温度域での累積圧下率、オーステナイト再結晶温度域での圧延後からAr点以下までの冷却速度、Ar点以下での累積圧下率および冷却速度、冷却停止温度および焼戻し(temper)温度を規定する。以下の説明において温度(℃)は鋼板の板厚中央部(1/2t部(tは板厚))の温度とする。鋼板の板厚中央部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚中央部の温度が求められる。
 最近のコンテナ船やバルクキャリアーなどの船体外板(outer plate of ship’s hull)に用いられている板厚50mm以上の厚肉材では、構造安全性を確保するために-10℃におけるKca値であるKca(-10℃)が6000N/mm3/2以上の脆性き裂伝播停止性能を得る必要がある。まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(slab)(スラブ)とする。次いで、得られた鋼素材(slab)を、1000~1200℃の温度に加熱してから熱間圧延を行う。
 加熱温度が1000℃未満では、オーステナイト再結晶温度域での圧延時間が不足し、また、1200℃超えではオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、加熱温度は1000~1200℃とする。靭性の観点から好ましい加熱温度の範囲は1000~1150℃であり、より好ましくは1000~1050℃である。
 熱間圧延はまず、板厚中央部の温度がオーステナイト再結晶温度域での累積圧下率を30%以上とする圧延を行う。累積圧下率が30%未満であると、オーステナイトの細粒化が不十分で靭性が向上しない。
 オーステナイト再結晶温度域で圧延後、板厚中央部の温度がAr点以下となるまで第1の冷却を実施する。ここで、過度に急冷すると十分に再結晶する時間が得られないため、Ar点以下までの冷却速度を15℃/s以下とする。本発明ではAr3点(℃)を下式で求める。
Ar3(℃)=910-273C-74Mn-57Ni-16Cr-9Mo-5Cu
式において各元素記号は鋼中含有量(質量%)で、含有しない場合は0とする。
この第1の冷却を実施することにより、前記板厚の中央部の温度がオーステナイト再結晶温度域での圧延によって得られた、細粒化したオーステナイトを粗大化させることなく、次の板厚中央部の温度がAr点以下の温度域での圧延を実施できるので、最終的に得られる組織の細粒化にも寄与する。
 次に、板厚中央部の温度がAr点以下の温度域において累積圧下率40%以上の圧延を行う。この温度域での累積圧下率が40%以上でないと十分に組織が細粒化できず、靭性が劣化してしまう。
なお、亀裂伝播特性の向上には未再結晶域圧延よりもAr3点以下の温度域での圧延の方が効果が大きいため、できる限り有効な圧下をこの温度域に振り分ける必要がある。従って、本発明では未再結晶域圧延は行わない。
 圧延が終了した鋼板は、4℃/s以上の冷却速度にて600℃以下まで第2の冷却を実施する。冷却速度が4℃/sよりも小さいと組織が粗大化してしまい、靭性が低下してしまう。また、冷却停止温度は600℃より高いと冷却停止後にも再結晶が進行して所望の集合組織(texture)が得られないので冷却停止温度は600℃以下とする。
 冷却が終了した鋼板について、焼戻し(temper)処理を実施することも可能である。焼戻し(temper)を実施することにより、鋼板の靭性をさらに向上させることができる。焼戻し(temper)温度は、圧延・冷却で得られた組織を損なわないように、Ac点以下で行う。本発明ではAc点(℃)を下式で求める。
Ac点=751-26.6C+17.6Si-11.6Mn-169Al-23Cu-23Ni+24.1Cr+22.5Mo+233Nb-39.7V-5.7Ti-895B
式において各元素記号は鋼中含有量(質量%)で、含有しない場合は0とする。
 表1に示す各組成の溶鋼(鋼記号A~P)を、転炉で溶製し、連続鋳造法で鋼素材(slab)(スラブ280mm厚)とし、途中に第1の冷却をはさんで板厚50~80mmに熱間圧延後、第2の冷却を行いNo.1~22の供試鋼を得た。表2に熱間圧延条件と冷却条件を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた厚鋼板について、板厚(t)の1/4部よりΦ14mmのJIS14A号試験片を試験片の長手方向が圧延方向と直角となるように採取し、引張試験を行い、降伏点(Yield Strength)(YS)、引張強さ(Tensile Strength)(TS)を測定した。ミクロ組織は、板厚1/4部から圧延方向に平行断面について、倍率400倍で3視野を光学顕微鏡観察することにより、構成する組織の種類を確認した。
 また、板厚(t)の1/2+6mm部が試験片の中心となるように、JIS4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、破面遷移温度(vTrs)を求めた。板厚(t)の1/2+6mm部におけるシャルピー破面遷移温度が-40℃以下のものを本発明範囲内とした。
 次に、脆性き裂伝播停止特性(brittle crack arrestability)を評価するため、温度勾配型ESSO試験(ESSO TEST COMPLIANT WITH WES 3003)を行い、Kca(-10℃)を求めた。
 表3にこれらの試験結果を示す。板厚中央部における靭性値が本発明の範囲内である供試鋼板(製造No.1~11)の場合、Kca(-10℃)が6000N/mm3/2以上と優れた脆性き裂伝播停止性能を示した。なお、製造No.1~11の供試鋼板のミクロ組織は、いずれも、加工されたフェライトの体積分率が50%以上であった。
 一方、鋼板の成分組成が本発明範囲外の供試鋼板(製造No.12~18)および製造条件が本発明範囲外で、鋼板の集合組織(texture)が本発明の規定を満たさない鋼板(製造No.19~22)ではKca(-10℃)の値は3800N/mm3/2以下で本発明例に及ばなかった。
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  鋼組成が、質量%で、C:0.03~0.20%、Si:0.1%以下、Mn:0.5~2.2%、P:0.008%以下、S:0.01%以下、Nb:0.005~0.05%、Ti:0.005~0.03%、Al:0.005~0.08%、N:0.0075%以下、残部がFeおよび不可避的不純物からなる組成を有し、ミクロ組織が加工されたフェライトを主体とする組織であり、板厚(t)の1/2+6mm部のシャルピー破面遷移温度が-40℃以下であることを特徴とする脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
  2.  鋼組成が、更に、質量%で、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下の1種または2種以上を含有することを特徴とする請求項1記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
  3.  ミクロ組織における第2相として、パーライト、ベイナイト、マルテンサイト、島状マルテンサイト(MA)、及びオーステナイトから変態後、加工を受けていないフェライトの1種または2種以上を有することを特徴とする、請求項1または2記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
  4.  板厚が50mm超えであることを特徴とする請求項1~3のいずれか一つに記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)。
  5.  請求項1または2に記載の組成を有する鋼素材(slab)を、1000~1200℃の温度に加熱し、板厚中央部がオーステナイト再結晶温度域での累積圧下率30%以上の圧延を行った後、15℃/s以下の冷却速度で板厚中央部の温度がAr点以下となるまで第1の冷却を行い、板厚中央部の温度がAr点以下の温度域において累積圧下率40%以上の圧延を行った後、4℃/s以上の冷却速度にて600℃以下まで第2の冷却を実施することを特徴とする脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)の製造方法。
  6.  前記第2の冷却の後、さらに、Ac点以下の温度に焼戻すことを特徴とする請求項5に記載の脆性き裂伝播停止特性(brittle crack arrestability)に優れた構造用(for structural use)高強度厚鋼板(high-strength thick steel plate)の製造方法。
PCT/JP2013/003145 2012-05-21 2013-05-17 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 WO2013175745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147033223A KR20150002884A (ko) 2012-05-21 2013-05-17 취성 균열 전파 정지 특성이 우수한 구조용 고강도 후강판 및 그 제조 방법
CN201380026675.7A CN104334762B (zh) 2012-05-21 2013-05-17 脆性裂纹传播停止特性优良的结构用高强度厚钢板及其制造方法
JP2014516659A JP5812193B2 (ja) 2012-05-21 2013-05-17 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
BR112014028230-7A BR112014028230B1 (pt) 2012-05-21 2013-05-17 chapa de aço grossa de alta resistência para uso estrutural que tenha excelente capacidade de interrupção de fratura frágil, e método para produção da mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-115160 2012-05-21
JP2012115160 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013175745A1 true WO2013175745A1 (ja) 2013-11-28

Family

ID=49623456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003145 WO2013175745A1 (ja) 2012-05-21 2013-05-17 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法

Country Status (6)

Country Link
JP (1) JP5812193B2 (ja)
KR (1) KR20150002884A (ja)
CN (1) CN104334762B (ja)
BR (1) BR112014028230B1 (ja)
TW (1) TWI597369B (ja)
WO (1) WO2013175745A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116538A1 (ja) * 2018-12-07 2020-06-11 Jfeスチール株式会社 鋼板およびその製造方法
JP2020094281A (ja) * 2018-12-07 2020-06-18 Jfeスチール株式会社 鋼板およびその製造方法
WO2021199629A1 (ja) * 2020-03-30 2021-10-07 Jfeスチール株式会社 鋼板およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398970B2 (ja) * 2019-04-22 2023-12-15 株式会社神戸製鋼所 厚鋼板およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059651A (ja) * 1991-07-05 1993-01-19 Kobe Steel Ltd 脆性破壊伝播停止特性に優れる厚肉鋼板およびその製造方法
JPH083635A (ja) * 1994-06-15 1996-01-09 Kobe Steel Ltd 靱性の優れた鋼板の製造方法
JP2008045174A (ja) * 2006-08-18 2008-02-28 Jfe Steel Kk 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP2008214653A (ja) * 2007-02-28 2008-09-18 Jfe Steel Kk 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP2010150631A (ja) * 2008-12-26 2010-07-08 Jfe Steel Corp 耐食性に優れる船舶用形鋼およびその製造方法
JP2013133543A (ja) * 2011-12-27 2013-07-08 Jfe Steel Corp 厚鋼板及び厚鋼板の製造方法
JP2013136827A (ja) * 2011-11-28 2013-07-11 Jfe Steel Corp 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059651A (ja) * 1991-07-05 1993-01-19 Kobe Steel Ltd 脆性破壊伝播停止特性に優れる厚肉鋼板およびその製造方法
JPH083635A (ja) * 1994-06-15 1996-01-09 Kobe Steel Ltd 靱性の優れた鋼板の製造方法
JP2008045174A (ja) * 2006-08-18 2008-02-28 Jfe Steel Kk 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP2008214653A (ja) * 2007-02-28 2008-09-18 Jfe Steel Kk 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP2010150631A (ja) * 2008-12-26 2010-07-08 Jfe Steel Corp 耐食性に優れる船舶用形鋼およびその製造方法
JP2013136827A (ja) * 2011-11-28 2013-07-11 Jfe Steel Corp 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP2013133543A (ja) * 2011-12-27 2013-07-08 Jfe Steel Corp 厚鋼板及び厚鋼板の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116538A1 (ja) * 2018-12-07 2020-06-11 Jfeスチール株式会社 鋼板およびその製造方法
JP2020094281A (ja) * 2018-12-07 2020-06-18 Jfeスチール株式会社 鋼板およびその製造方法
JPWO2020116538A1 (ja) * 2018-12-07 2021-02-15 Jfeスチール株式会社 鋼板およびその製造方法
WO2021199629A1 (ja) * 2020-03-30 2021-10-07 Jfeスチール株式会社 鋼板およびその製造方法
JPWO2021199629A1 (ja) * 2020-03-30 2021-10-07
CN115135787A (zh) * 2020-03-30 2022-09-30 杰富意钢铁株式会社 钢板及其制造方法
JP7276443B2 (ja) 2020-03-30 2023-05-18 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
CN104334762B (zh) 2017-09-05
BR112014028230B1 (pt) 2019-10-29
TWI597369B (zh) 2017-09-01
KR20150002884A (ko) 2015-01-07
CN104334762A (zh) 2015-02-04
BR112014028230A2 (pt) 2017-06-27
JPWO2013175745A1 (ja) 2016-01-12
JP5812193B2 (ja) 2015-11-11
TW201402836A (zh) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5304925B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5733425B2 (ja) 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5434145B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5598618B1 (ja) 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法
JP6536514B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5598617B1 (ja) 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法
JP5304924B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5181496B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5035199B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5812193B2 (ja) 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5949113B2 (ja) 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP6112265B2 (ja) 高強度極厚鋼板およびその製造方法
JP6477743B2 (ja) 脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法
JP5838801B2 (ja) 厚鋼板及び厚鋼板の製造方法
JP6338022B2 (ja) 脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法
WO2018030186A1 (ja) 高強度厚鋼板およびその製造方法
JP5949114B2 (ja) 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法
WO2018030171A1 (ja) 高強度厚鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147033223

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014028230

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13794079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014028230

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141113