WO2013174221A1 - 波浪动力系统的复位弹簧调节装置和方法 - Google Patents

波浪动力系统的复位弹簧调节装置和方法 Download PDF

Info

Publication number
WO2013174221A1
WO2013174221A1 PCT/CN2013/075626 CN2013075626W WO2013174221A1 WO 2013174221 A1 WO2013174221 A1 WO 2013174221A1 CN 2013075626 W CN2013075626 W CN 2013075626W WO 2013174221 A1 WO2013174221 A1 WO 2013174221A1
Authority
WO
WIPO (PCT)
Prior art keywords
stepping motor
spring
sensor
control module
tension
Prior art date
Application number
PCT/CN2013/075626
Other languages
English (en)
French (fr)
Inventor
曲言明
Original Assignee
Qu Yanming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qu Yanming filed Critical Qu Yanming
Publication of WO2013174221A1 publication Critical patent/WO2013174221A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to a return spring adjusting device for a wave power system.
  • Ocean wave energy is an endless renewable energy resource. How to use such abundant energy resources to serve human beings is an important topic that has been studied by predecessors and modern people. The use of wave energy to generate electricity is one of the major issues.
  • the wave energy harvesting device mainly has an oscillating water column, a pendulum plate, a rocker arm, a raft type using two floating body angles, and two floating bodies in a vertical direction.
  • the relative motion of the oscillating float, etc. belongs to the reciprocating absorption energy in the absorption.
  • the reset spring adjusting device of the wave power system comprises a spring, a stepping motor with a braking function, a torque or tension sensor, a single chip control module, and a power source;
  • the spring, stepping motor, torque or tension sensor can be arranged at random. After serially connecting into the transmission chain, the first and last spindles and the frame are respectively connected, the sensor signal is sent to the single-chip control module, and the single-chip control module issues a control command to the stepping motor. Provides power for stepper motors, microcontroller control circuits, and sensors.
  • the spring is a worm spring
  • the main shaft is connected with the inner end of the worm spring
  • the outer end of the worm spring is fixed on the barrel
  • the barrel can be freely rotated around the main shaft
  • the barrel is linked with the mover of the stepping motor, the stepping motor
  • the casing is connected to one end of the torque sensor, and the other end of the torque sensor is fixed to the frame;
  • the stepping motor and the torque sensor are interchanged, that is, the barrel is linked with one end of the torque sensor, and the torque sensor is The other 3 ⁇ 4 and the electric L are connected to the glaze, and the casing of the electric L is set back on the L frame.
  • the sensor can also be plugged between the spindle and the worm.
  • the barrel can also be coupled to the end of the mover or torque sensor of the stepper motor via a mechanical transmission mechanism;
  • the mechanical transmission mechanism can be a belt transmission, that is, the outer end of the worm spring is fixed on the inner wall of the pulley barrel, and the pulley barrel is coupled to the other pulley through the belt, and the pulley is connected with the mover shaft of the stepping motor.
  • the casing of the stepping motor is connected to one end of the torque sensor, and the other end of the torque sensor is fixed to the frame;
  • the mechanical transmission mechanism can be gear type, that is, the outer end of the worm spring is fixed on the inner wall of the gear barrel, and the other gear corresponding to the gear barrel is connected with the mover shaft of the stepping motor, and the casing of the stepping motor is
  • the torque sensor has one end connected to the shaft and the other end fixed to the frame;
  • the mechanical transmission mechanism can be a reel type, that is, the outer end of the worm spring is fixed on the inner wall of the reel barrel, and the reel barrel is coupled to another small reel through the string, and the movement of the small reel and the stepping motor
  • the sub-shaft is connected, the casing of the stepping motor is connected to one end of the torque sensor, and the other end is fixed on the frame;
  • the mechanical transmission mechanism can be a chain type, that is, the outer end of the worm spring is fixed on the inner wall of the sprocket barrel, and the sprocket barrel is coupled to the other small sprocket through the chain, the small sprocket and the mover shaft of the stepping motor Even, the casing of the stepping motor is connected to one end of the torque sensor, and the other end is fixed to the frame;
  • the mover of the stepping motor is connected with the main shaft, the casing is connected with the tension spring by a linear and rotary conversion mechanism, the other end of the tension spring is connected with the tension sensor, and the other end of the tension sensor is fixed on the frame;
  • the outer part of the stepping motor, or the connection part of the casing and the linear and rotary conversion mechanism, is provided with a brush and a slip ring for connecting the stepping motor and the power supply, and the single chip control module.
  • the tension sensor can also be replaced by a torque sensor that is interposed between the spindle and the stepper motor mover.
  • the position of the tension spring and the tension sensor are interchangeable.
  • the linear and rotary conversion mechanism may be a string wheel and a string mechanism or a rack and pinion structure.
  • the linear and rotary conversion mechanism is a fine rope wheel and a string mechanism, that is, the casing of the stepping motor is connected with the string wheel shaft, the string wheel is wrapped with a string, and the other end of the string is attached to the tension spring;
  • the gear and pinion type that is, the casing of the stepping motor is connected with the gear shaft, the corresponding rack of the gear is connected with the tension spring, and the other end of the tension spring is attached to the tension sensor, and the tension sensor is The other end is fixed to the frame;
  • displacement sensor + tension spring can also be used.
  • the specific structure is: including tension spring, stepping motor with brake function, displacement sensor, single-chip microcomputer control module, power supply;
  • the stepper motor mover is connected with the main shaft, and the casing is connected to the tension spring through a linear and rotary conversion mechanism and a displacement sensor.
  • the other end of the tension spring is fixed on the frame, and the displacement sensor uses the frame as a reference object to send a signal to the single chip microcomputer to control.
  • the module, the single-chip microcomputer control module issues a control command to the stepping motor; the power supply provides power for the stepping motor, the sensor, and the single-chip microcomputer control module.
  • angle sensor + worm spring can also be used.
  • the specific structure is: including a worm spring, a stepping motor with a brake function, an angle sensor, a single-chip microcomputer control module, and a power supply;
  • the inner end of the spiral spring is fixed on the main shaft, the outer end is fixed on the barrel, the barrel is linked with the stepping motor rotor, and the stepping motor casing is fixed on the frame;
  • the angle sensor monitors the rotation angle of the main shaft, and sends a signal to the single chip microcomputer.
  • the control module, the single chip control module issues a control command to the stepping motor;
  • the angle sensor can be used as a reference base to monitor the rotation angle of the main shaft relative to the frame, and can also monitor the rotation angle of the main shaft relative to the barrel according to the barrel as a reference;
  • the power supply provides power to the early machine control module, the ⁇ motor, and the sensor.
  • the principle of a spring adjustment device using a worm spring and a torque sensor is:
  • the two ends of the worm, the two ends of the torque sensor, the casing of the stepping motor and the mover are connected in series to form a linkage drive chain, and the mechanical transmission mechanism can also be inserted therein, and the first end of the transmission chain is coupled with the main shaft, and the end is coupled.
  • the single-chip microcomputer control module measures the torque of the worm spring through the torque sensor. When the torque exceeds or is less than the set value, the single-chip microcomputer control module issues a control command to the stepping motor to rotate it, and the stepping motor rotates, causing the transmission chain to The worm is released or tightened, thereby reducing or increasing the working torque of the worm spring. After the stepping motor is rotated, the single-chip control module controls the power-off brake;
  • the principle of the spring adjusting device using the tension spring and the tension sensor is: the casing and the mover of the stepping motor, the linear and rotary transmission conversion mechanism, the two ends of the tension spring, and the two ends of the tension sensor are coupled to each other to form a transmission chain,
  • the first end of the transmission chain is coupled to the main shaft, and the end is connected to the frame;
  • the single-chip microcomputer control module measures the tension of the tension spring by the tension sensor. When the tension exceeds or is less than the set value, the single-chip control module issues a control command to the stepping motor to rotate it.
  • the rotation of the stepping motor causes the tension spring on the transmission chain to be released or tightened, thereby reducing or increasing the working tension of the tension spring.
  • the single-chip microcomputer control module brakes off the electric brake.
  • the principle of the spring adjusting device using the worm spring and the angle sensor is: the two ends of the worm spring, the casing of the stepping motor and the mover are connected in series to form a linkage transmission chain, and the mechanical transmission mechanism can also be inserted therein; The first end of the chain is coupled to the main shaft, and the end is coupled to the frame; the angle sensor monitors the rotation angle of the main shaft, and sends a signal to the single-chip control module;
  • the rotation angle may be relative to the frame, or may be relative to the barrel. If it is relative to the frame, the MCU control module initializes two variables of the spindle rotation number and the barrel rotation number. The number of revolutions of the spindle rotation is cumulatively counted. When the initial difference exceeds the set number of revolutions, the MCU control module converts the number of revolutions of the barrel to the number of revolutions of the stepper motor, and then to the stepper motor.
  • the control command is issued to rotate the number of revolutions; the single-chip microcomputer control module also performs cumulative counting on the number of revolutions of the barrel, so that the difference between the accumulated value of the barrel and the accumulated value of the spindle does not exceed a certain range; The rotation causes the worm spring on the transmission chain to be released or tightened, thereby reducing or increasing the working torque of the worm spring.
  • the single-chip control module controls the power-off brake; if the angle sensor monitors the spindle relative At the angle of the barrel, the MCU control module does not accumulate the number of revolutions of the stepper motor, but only issues a control command to the stepper motor.
  • the number of revolutions of the integrated value of the angle sensor can be limited to a certain range.
  • the principle of the spring adjusting device using the tension spring and the displacement sensor is as follows: the casing and the mover of the stepping motor, the linear and rotary transmission conversion mechanism, and the two ends of the tension spring are coupled to each other to form a transmission chain, and the first end of the transmission chain is coupled.
  • Spindle, end coupling frame; displacement sensor is fixed at the connection between the tension spring and the linear and rotary transmission conversion mechanism, the reference object is the frame, and the single-chip microcomputer control module measures the tension of the tension spring through the displacement sensor, and gives the displacement exceeds the set interval.
  • the single-chip microcomputer control module issues a control command to the stepping motor to rotate it, and the rotation of the stepping motor causes the tension spring on the transmission chain to be released or tightened, thereby reducing or increasing the working tension of the tension spring, and the stepping motor rotating After completion, the MCU control module brakes off the power.
  • stepper motor (with brake function)
  • stepper motor rotor
  • the reset spring adjusting device of the wave power system comprises a spring, a stepping motor with a braking function, a torque or tension sensor, a single chip control module, and a power source;
  • the spring, stepping motor, torque or tension sensor can be arranged at random. After serially connecting into the transmission chain, the first and last spindles and the frame are respectively connected, the sensor signal is sent to the single-chip control module, and the single-chip control module issues a control command to the stepping motor. Provides power for stepper motors, microcontroller control circuits, and sensors.
  • the spring is a worm spring
  • the main shaft is connected with the inner end of the worm spring
  • the outer end of the worm spring is fixed on the barrel
  • the barrel can be freely rotated around the main shaft
  • the barrel is linked with the mover of the stepping motor, the stepping motor
  • the casing is connected to one end of the torque sensor, and the other end of the torque sensor is fixed to the frame;
  • the position of the stepping motor and the torque sensor are interchanged, that is, the barrel is connected with one end of the torque sensor, and the other end of the torque sensor is connected with the mover shaft of the stepping motor, and the casing of the stepping motor is fixed on the frame.
  • the sensor can also be plugged between the spindle and the worm.
  • the barrel can also be coupled to the end of the mover or torque sensor of the stepper motor via a mechanical transmission mechanism;
  • the mechanical transmission mechanism can be a belt transmission, that is, the outer end of the worm spring is fixed on the inner wall of the pulley barrel, and the pulley barrel is coupled to the other pulley through the belt, and the pulley is connected with the mover shaft of the stepping motor.
  • the casing of the stepping motor is connected to one end of the torque sensor, and the other end of the torque sensor is fixed to the frame;
  • the mechanical transmission mechanism can be gear type, that is, the outer end of the worm spring is fixed on the inner wall of the gear barrel, and the other gear corresponding to the gear barrel is connected with the mover shaft of the stepping motor, and the casing of the stepping motor is
  • the torque sensor has one end connected to the shaft and the other end fixed to the frame;
  • the mechanical transmission mechanism can be a reel type, that is, the outer end of the worm spring is fixed on the inner wall of the reel barrel, and the reel barrel is coupled to another small reel through the string, and the movement of the small reel and the stepping motor
  • the sub-shaft is connected, the casing of the stepping motor is connected to one end of the torque sensor, and the other end is fixed on the frame;
  • the mechanical transmission mechanism can be a chain type, that is, the outer end of the worm spring is fixed on the inner wall of the sprocket barrel, and the sprocket barrel is coupled to the other small sprocket through the chain, the small sprocket and the mover shaft of the stepping motor Even, the casing of the stepping motor is connected to one end of the torque sensor, and the other end is fixed to the frame;
  • the mover of the stepping motor is connected with the main shaft, the casing is connected with the tension spring by a linear and rotary conversion mechanism, the other end of the tension spring is connected with the tension sensor, and the other end of the tension sensor is fixed on the frame;
  • the outer part of the stepping motor, or the connection part of the casing and the linear and rotary conversion mechanism, is provided with a brush and a slip ring for connecting the stepping motor and the power supply, and the single chip control module.
  • the tension sensor can also be replaced by a torque sensor that is interposed between the spindle and the stepper motor mover.
  • the position of the tension spring and the tension sensor are interchangeable.
  • the linear and rotary conversion mechanism may be a string wheel and a string mechanism or a rack and pinion structure.
  • the linear and rotary conversion mechanism is a fine rope wheel and a string mechanism, that is, the casing of the stepping motor is connected with the string wheel shaft, the string wheel is wrapped with a string, and the other end of the string is attached to the tension spring;
  • the gear and pinion type that is, the casing of the stepping motor is connected with the gear shaft, the corresponding rack of the gear is connected with the tension spring, and the other end of the tension spring is attached to the tension sensor, and the tension sensor is The other end is fixed to the rack.
  • the displacement sensor + tension spring can also be used.
  • the specific structure is: including a tension spring, a stepping motor with a brake function, a displacement sensor, a single-chip microcomputer control module, and a power supply;
  • the stepper motor mover is connected with the main shaft, and the casing is connected to the tension spring through a linear and rotary conversion mechanism and a displacement sensor.
  • the other end of the tension spring is fixed on the frame, and the displacement sensor uses the frame as a reference object to send a signal to the single chip microcomputer to control.
  • the module, the single-chip microcomputer control module issues a control command to the stepping motor; the power supply provides power for the stepping motor, the sensor, and the single-chip microcomputer control module.
  • angle sensor + worm spring can also be used.
  • the specific structure is: including a worm spring, a stepping motor with a brake function, an angle sensor, a single-chip microcomputer control module, and a power supply;
  • the inner end of the spiral spring is fixed on the main shaft, the outer end is fixed on the barrel, the barrel is linked with the stepping motor rotor, and the stepping motor casing is fixed on the frame;
  • the angle sensor monitors the rotation angle of the main shaft, and sends a signal to the single chip microcomputer.
  • the control module, the single chip control module issues a control command to the stepping motor;
  • the angle sensor can monitor the rotation angle of the main shaft relative to the frame based on the frame, and can also monitor the rotation angle of the main shaft relative to the barrel according to the barrel.
  • the power supply provides power to the microcontroller control module, stepper motor, and sensor.
  • the principle of a spring adjustment device using a worm spring and a torque sensor is:
  • the two ends of the worm, the two ends of the torque sensor, the casing of the stepping motor and the mover are connected in series to form a linkage drive chain, and the mechanical transmission mechanism can also be inserted therein, and the first end of the transmission chain is coupled with the main shaft, and the end is coupled.
  • the single-chip microcomputer control module measures the torque of the worm spring through the torque sensor. When the torque exceeds or is less than the set value, the single-chip microcomputer control module issues a control command to the stepping motor to rotate it, and the stepping motor rotates, causing the transmission chain to The worm is released or tightened, thereby reducing or increasing the working torque of the worm spring. After the stepping motor is rotated, the single-chip control module controls the power-off brake;
  • the principle of the spring adjusting device using the tension spring and the tension sensor is: the casing and the mover of the stepping motor, the linear and rotary transmission conversion mechanism, the two ends of the tension spring, and the two ends of the tension sensor are coupled to each other to form a transmission chain,
  • the first end of the transmission chain is coupled to the main shaft, and the end is connected to the frame;
  • the single-chip microcomputer control module measures the tension of the tension spring by the tension sensor. When the tension exceeds or is less than the set value, the single-chip control module issues a control command to the stepping motor to rotate it.
  • the rotation of the stepping motor causes the tension spring on the transmission chain to be released or tightened, thereby reducing or increasing the working tension of the tension spring.
  • the single-chip microcomputer control module brakes off the electric brake.
  • the principle of the spring adjusting device using the worm spring and the angle sensor is: the two ends of the worm spring, the casing of the stepping motor and the mover are connected in series to form a linkage transmission chain, and the mechanical transmission mechanism can also be inserted therein; The first end of the chain is coupled to the main shaft, and the end is coupled to the frame; the angle sensor monitors the rotation angle of the main shaft, and sends a signal to the single-chip control module;
  • the rotation angle may be relative to the frame, or may be relative to the barrel. If it is relative to the frame, the MCU control module initializes two variables of the spindle rotation number and the barrel rotation number. The number of revolutions of the spindle rotation is cumulatively counted. When the initial difference exceeds the set number of revolutions, the MCU control module converts the number of revolutions of the barrel to the number of revolutions of the stepper motor, and then to the stepper motor.
  • the control command is issued to rotate the number of revolutions; the single-chip microcomputer control module also performs cumulative counting on the number of revolutions of the barrel, so that the difference between the accumulated value of the barrel and the accumulated value of the spindle does not exceed a certain range; The rotation causes the worm spring on the transmission chain to be released or tightened, thereby reducing or increasing the working torque of the worm spring.
  • the single-chip control module controls the power-off brake; if the angle sensor monitors the spindle relative At the angle of the barrel, the MCU control module does not accumulate the number of revolutions of the stepper motor, but only sends a control command to the stepper motor.
  • the cumulative value of the number of revolutions of the angle sensor can be limited to a certain range.
  • the principle of the spring adjusting device using the tension spring and the displacement sensor is as follows: the casing and the mover of the stepping motor, the linear and rotary transmission conversion mechanism, and the two ends of the tension spring are coupled to each other to form a transmission chain, and the first end of the transmission chain is coupled.
  • Main shaft, end coupling frame; displacement sensor is fixed at the connection between the tension spring and the linear and rotary transmission conversion mechanism, the reference object is the frame, the single chip microcomputer
  • the control module measures the pulling force of the yellowing by the displacement sensor, and gives the setting value when the displacement exceeds or is less than ten.
  • the early machine control module issues a control command to the stepping motor to rotate, and the rotation of the stepping motor causes the transmission chain to be driven.
  • the tension spring is released or tightened, thereby reducing or increasing the working tension of the tension spring.
  • the single-chip control module brakes off the power.
  • Figure 1 is a summary of the spindle + spring + stepper motor + sensor + rack series relationship. It can be seen that there are 6 ways of arrangement, A and B respectively represent the inner or outer end of the spring, or the rotor of the stepper motor and The two ends of the casing, or sensor.
  • Figure 2 is the structural diagram of the worm + reel + motor + sensor type adjustment device
  • Figure 3 is the schematic diagram of the motor + reel + tension spring + displacement sensor type adjustment device
  • Figure 4 is the motor + reel + tension spring + sensor structure Schematic, these three figures are applicable to the floating rope wheel power plant (see patent CN 101963125 A)
  • the main shaft 4 is coupled to the stepper motor mover 11 and the stepper motor housing 12 is coupled to the small reel 15 shaft.
  • the small reel 15 is wound with a string, and the guide wheel 21 is attached to the tension spring.
  • the other end of the tension spring 9 is connected to the tension sensor 10, and the other end of the tension sensor is fixed to the frame 22.
  • the single chip microcomputer control module 8 receives the tension signal from the tension sensor 10 and issues a control command to the stepping motor.
  • the stepping motor Since the stepping motor is continuously rotating on the main shaft 4 when the tension spring 9 is in operation, the electric power and control signals of the stepping motor are guided by the slip ring 13 and the brush 14, and if the sensor is connected to the main shaft 4, It can be rotated continuously, and the signal needs to be taken out.
  • This method can also be used.
  • it can also be wireless.
  • the wireless transmitting end is set on the sensor, and the wireless receiving end is set at the input end of the single-chip control module.
  • the above process is the case where the tension spring 9 operates within the set range. If the peak of the wave is too large (or tidal) to cause the floating body 1 to rise too much, the tension spring 9 is excessively stretched, and the single chip control module 8 is detected by the tension sensor 10, and then immediately sends out to the stepping motor 7. Control command, the switch of the stepping motor 7 is turned on, according to the instruction issued by the single chip, a certain number of revolutions is rotated, and the small reel 15 is rotated by a certain number of revolutions along the pulling force of the tension spring 9, so that the tension spring 9 is contracted, thereby reducing the pulling force The tension spring 9 is not excessively elongated, resulting in damage.
  • the brake is immediately turned off, and then the mover 11 of the stepping motor and the casing 12 cannot be freely rotated, which is equivalent to the consolidation, and thus the step of the tension of the tension spring 9 is not caused.
  • the feed motor continues to rotate so that the tension of the tension spring 9 is too small, and the callback procedure is initiated.
  • the single chip control module 8 It is detected by the tension sensor 10, and then a control command is immediately sent to the stepping motor 7, the switch of the stepping motor 7 is turned on, and a certain number of revolutions is rotated according to the command from the single chip microcomputer, and the small reel 15 is rotated against the pulling force of the tension spring 9. After a certain number of revolutions, the tension spring 9 is stretched, so that the pulling force is increased, thereby returning the return torque of the reel 3 to normal.
  • the brake is immediately turned off, and then the mover 11 of the stepping motor and the casing 12 cannot be freely rotated, which is equivalent to consolidation, so that the tension of the tension spring 9 is not To pull the stepper motor to rotate itself.
  • the working tension of the tension spring is allowed to be between 200N and 400N. If the tension spring works at 200 ⁇ 300N, it will not be triggered. In actual operation, the tension change interval is 300 ⁇ 400N, 400N triggers the MCU control module 8 For the control action of the stepping motor 6, the stepping motor 6 rotates a certain number of revolutions (the algorithm for obtaining the number of revolutions is a single-chip microcomputer that converts the tension value and the gear ratio of the tension spring according to the amplitude to be adjusted, and converts it into a stepping motor.
  • the algorithm for obtaining the number of revolutions is a single-chip microcomputer that converts the tension value and the gear ratio of the tension spring according to the amplitude to be adjusted, and converts it into a stepping motor.
  • the tension of the tension spring is reduced by 50N, and it becomes about 250 ⁇ 350N, so that the tension spring can still be in a good working state, which not only maintains sufficient pulling force, but also reduces the stress of the tension spring and reduces fatigue.
  • the control action of the MCU control module is triggered again, the 50N is adjusted again, and so on.
  • the structure of the lane hairspring 19 is the middle lane of the middle 2, and the inner surface is the top surface.
  • the alley roller barrel 19 is coupled to the other small reel 15 via the string 16, the small reel 15 is connected to the mover shaft of the stepping motor 6, and the casing of the stepping motor 6 is axially connected to one end of the torque sensor 7. The other end is fixed on the frame 22;
  • the working principle is similar. It is assumed that the set worm spring torque is allowed to be between 20 ⁇ 50Nm. Actually, the torque of the worm spring 5 is 40 ⁇ 50Nm, and it may continue to increase, but at 50Nm, it is controlled by the MCU control module.
  • the single-chip control module 8 issues an instruction to the stepping motor 6, and the stepping motor 6 executes the instruction to rotate a certain number of revolutions (the number of revolutions is a single-chip control module according to a small amplitude of 5Nm, combined with two
  • the transmission ratio of the reel calculated, drives the small reel 15 to rotate, thereby releasing a part of the string 16, and the reel barrel 19 can be rotated by a certain angle, the torque of the worm 5 It can be reduced by 5Nm and become 35 ⁇ 45Nm. If the working torque of the worm spring hits the red line of 50Nm again, it will be triggered again. Similarly, if the working torque of the worm spring is less than 20Nm, the MCU control module will be triggered to issue a control command to drive the stepping motor. 6 tightening the worm spring to increase the torque by 5Nm.
  • the outer end of the worm spring is linked with the stepping motor 6 through the reel string transmission mechanism, and the transmission mechanism is used to reduce the driving torque, so that the working torque of the stepping motor 6 can be small, and the step of buying a large torque is not required.
  • the transmission mechanism is used to reduce the driving torque, so that the working torque of the stepping motor 6 can be small, and the step of buying a large torque is not required.
  • it is advantageous to reduce the cost, and the rotation speed of the stepping motor 6 relative to the worm spring 5 is also high, which is advantageous for improving the adjustment precision.
  • Fig. 5 and Fig. 6 show another type of wave power generation system, the rope control device of the oscillating piston type wave power generation system (patent application 2012103827619), which also contains a return spring.
  • the principle of the oscillating piston type is that it is completely hydraulically reset when working normally. Only when the wave height exceeds the stroke of the hydraulic cylinder, the lower rope control device is unlocked, so that under the action of the hydraulic pressure, the piston rod pulls the rope, so that the rope control device is released. A part of the rope is taken out, and the worm spring 5 is also tightened; during the falling of the wave, the elastic potential of the worm spring 5 is released, and the rope is retracted.
  • the work of the worm 5 is nothing more than being tensioned and stored, and the external force is released and released.
  • the main shaft 4 is fixed to the inner end of the worm spring 5, and the outer end of the worm spring 5 is fixed to the inner wall of the pulley barrel 23, and the structure of the pulley barrel 23 is like
  • the barrel of the barrel has a wheel.
  • the pulley barrel 23 is coupled to the small pulley 24 via the timing belt 17, the small pulley is coupled to one end of the torque sensor 7, and the other end of the torque sensor 7 is coupled to the mover shaft of the stepping motor 6, the stepping motor 6 It is fixed to the frame 22.
  • the single-chip microcomputer control module 8 monitors the torque of the coil 5 through the torque sensor 7, and issues a control command to the stepping motor 6.
  • the right part is the cross-sectional structure of the wheeled barrel, and the bearing barrel 18 is embedded on both sides of the pulley barrel 23, through which the spindle 4 passes, and the pulley barrel 23 is freely rotatable around the spindle 4.
  • the structure is to replace the pulley barrel with the gear barrel 23, the pinion 26 is connected to the casing of the stepping motor 6, and the mover of the stepping motor 6 is connected to the torque sensor 7, torque
  • the sensor 7 is fixed to the frame.
  • the mechanism for adjustment is the same as in Figure 2 and will not be repeated.
  • Figure 3 is a spring adjustment device based on a displacement sensor.
  • the stepping motor 6 is connected to the small reel 15 through the main shaft, the small reel is wrapped with a string 16 , and the other end of the string 16 is connected to the tension spring 9 .
  • a displacement sensor 27 is mounted at the joint, and the reference of the displacement sensor is a grating. 28, fixed on the frame 22. The other end of the tension spring 9 is fixed to the frame 22.
  • the MCU control module 8 receives the displacement signal from the displacement sensor 27 and controls the stepping motor 6.
  • the single-chip microcomputer control module 8 determines the tension of the tension spring by the displacement sensor 27, and when the displacement exceeds the set interval, the single-chip microcomputer control module 8 issues a control command to the stepping motor 6, causing it to rotate, and the rotation of the stepping motor 6 causes the transmission chain.
  • the upper tension spring 9 is released or tightened, thereby reducing or increasing the working tension of the tension spring 9. After the stepping motor is rotated, the single chip control module brakes off the electric brake.
  • Fig. 7 is a spring adjusting device based on an angle sensor and a wrap spring.
  • the inner end of the worm spring 5 is fixed on the main shaft 4, and the outer end of the worm spring 5 is fixed on the inner wall of the gear barrel 25.
  • the bearing barrel 28 is embedded on both sides of the gear barrel 25, and is placed on the main shaft so that it can be wound around the main shaft 4 Rotating, the pinion gear 26 corresponding to the gear barrel 25 is connected to the mover shaft of the stepping motor 6, and the stepping motor is mounted on the frame.
  • the angle sensor 29 uses the frame as a reference to monitor the rotation angle of the main shaft.
  • the installation method is that the rotation axis of the angle sensor is connected with the main shaft 4 axis, and the angle sensor is fixed to the casing. On the rack 22.
  • the MCU control module shall initially zero the two variables of the cumulative number of revolutions of the spindle 4 and the number of revolutions of the barrel, and then receive the angle change signal from the angle sensor 29, and the MCU control module 8 pairs the spindle 4 The number of revolutions of the rotation is cumulatively counted.
  • the allowable range of the set spindle 4 relative to the barrel 25 is between -8 rpm and 8 rpm.
  • the cumulative number of revolutions of the spindle 4 rotation number is 3 to 5 revolutions, and no action is triggered.
  • the single-chip microcomputer rotates the barrel for 2 revolutions, first rotates the barrel twice to combine the transmission ratio, converts the rotation number of the stepping motor 6, and then converts A control command is issued to rotate the stepper motor 6 to the required number of revolutions.
  • the barrel is also rotated 2 turns in the positive direction, 4 to 8 turns of the spindle 4, and 2 turns of the barrel are subtracted, and the relative rotation of the spindle with respect to the barrel is 2 to 6 turns. Meet the requirements between the set -8 rpm ⁇ 8 rpm.
  • Fig. 8 is also a spring adjusting device based on an angle sensor and a wrap spring.
  • the difference is that the angle sensor 29 monitors the rotation angle of the main shaft with the barrel as a reference.
  • the installation of the angle sensor is: the rotation axis of the angle sensor is connected with the main shaft 4 axis.
  • the angle sensor housing is connected to the barrel of the barrel. In this way, during operation, the casing of the angle sensor continuously rotates, and the signal can be guided into the single-chip control module 8 through a wireless method or a slip ring or a carbon brush method, and the single-chip microcomputer control module 8 controls the stepping motor 6.
  • the angle of rotation of the spindle 4 relative to the barrel 25 is monitored by the angle sensor 29, and the single-chip microcomputer control module accumulates the number of revolutions of the spindle 4, and by issuing a control command to the stepping motor 6, accumulating the number of revolutions of the angle sensor 29.
  • the value is limited to a certain range, such as plus or minus 8 turns (relative to the initial value of 0).
  • the microcontroller control module 8 issues an instruction to the stepper motor 6 to Rotating a certain number of revolutions (the number of revolutions is determined according to the gear ratio and the purpose of adjusting the number of revolutions), so that the barrel is rotated 2 rotations with respect to the main shaft 4, and the rotation interval of the main shaft 4 with respect to the barrel 25 is adjusted to -3 ⁇ 7 turns, so the working torque of the worm spring 5 will not exceed the set value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Toys (AREA)

Abstract

一种波浪动力系统的复位弹簧调节装置和方法,该装置,包括复位弹簧(5、9)、步进电机(6)、传感器(7、10、27、29)、单片机控制模块(8)及电源,复位弹簧(5、9)的两端、步进电机的机壳(12)、转子(11)、传感器(7、10、27、29)的两端均可以随意排列串接,连接主轴(4)与机架(22),当单片机检测到传感器(7、10、27、29)测到拉力过大或过小时,对步进电机(6)发出指令,进行调整,调整完毕后,步进电机(6)停转刹车,复位弹簧(5、9)得以在规定的范围内工作。

Description

波浪动力系统的复位弹簧调节装置和方法
技术领域
本发明涉及一种波浪动力系统的复位弹簧调节装置。
背景技术
海洋波浪能源是一种无穷无尽的可再生能量资源, 如何利用这样丰富的能量资源为人类 服务, 是前人和现代人一直在研究的重要课题, 利用波浪能发电就是其中一大课题。
要利用波浪能, 首先要有波浪能采集装置, 就目前而言, 波浪能采集装置主要有振荡水 柱、 摆板、 摇臂、 利用两个浮体角度的筏式、 利用竖直方向上两个浮体的相对运动的振荡浮 子等等, 属于往复都在吸收转换能量。
但另外还有一种波浪动力采集装置, 是采用单程做功方式, 即只利用波浪的浮力做功或 波浪将浮体抬高后, 只利用自身重力做功, 而回来的行程上, 却需要其他的力才能复位, 有 些是靠配重, 有些是利用弹簧来复位的。利用弹簧复位的, 比如专利申请 CN 101963125 A浮 体基绳轮海浪发电系统、专利申请 CN 2099205U波浪发电原动装置, 这两个都是浮体在上升 过程中, 利用向上的浮力和推力做功, 这个过程也收紧了弹簧, 而在下落过程中, 弹簧的弹 性势能释放将绳索收回。 而在专利申请 2012103827619振荡活塞式波浪发电系统, 这个是在 波高超过液压缸行程的时候, 启动下面的控绳装置, 从而在液压的作用下, 活塞杆拉动绳索, 使得控绳装置释放出部分绳索, 同时也收紧了弹簧, 在波浪下落过程中, 复位弹簧的弹性势 能释放, 将绳索收回。
上面只是两种, 其实还有很多类似的波浪发电装置, 需要复位弹簧, 而对于复位弹簧, 其工作受到变化无常的海洋的直接影响, 有时波浪十多米高, 还有潮汐导致复位弹簧的工作 区间发生改变,所以复位弹簧经常工作超出其合理范围 ,拉力过大,会导致疲劳或直接损坏, 而拉力太小, 则导致系统不能复位, 所以需要一种方法对弹簧进行调节, 使其能够工作在合 理范围区间内。
发明内容
本发明的目的是提供一种波浪动力系统的复位弹簧调节装置,它能自动调节弹簧的拉力, 使其不致于过大或过小, 保障复位动作的正常运行。
本发明的技术方案:
该波浪动力系统的复位弹簧调节装置, 包括弹簧、 带刹车功能的步进电机、 扭矩或拉力 传感器、 单片机控制模块、 电源;
弹簧、 步进电机、 扭矩或拉力传感器可随意排列, 串接成传动链后, 首末分别连接主轴 与机架, 传感器信号发送给单片机控制模块, 单片机控制模块对步进电机发出控制指令, 电 源为步进电机、 单片机控制电路、 传感器提供电力。
(一) 蜗簧 +扭矩传感器形式; 则大致结构是:
弹簧为蜗簧, 主轴与蜗簧内端连接, 蜗簧的外端固定在发条盒上, 发条盒可绕主轴上自 由旋转, 发条盒与步进电机的动子联动, 步进电机的机壳与扭矩传感器的一端轴连, 扭矩传 感器的另一端固定在机架上;
或步进电机与扭矩传感器位置互换, 即发条盒与扭矩传感器的一端联动, 扭矩传感器的 另一¾与歩迸电 L的动于釉连, 歩迸电 L的机壳回定在 L架上。
传感器也可插队到主轴与蜗簧之间。 发条盒也可通过机械传动机构联接步进电机的动子或扭矩传感器的一端;
机械传动机构可为带式传动, 即蜗簧的外端固定在带轮发条盒内壁上, 带轮发条盒通过带联 接另一个带轮, 该带轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端连接, 扭矩传感器的另一端固定在机架上;
机械传动机构可为齿轮式, 即蜗簧的外端固定在齿轮发条盒内壁上, 齿轮发条盒所对应 的另一个齿轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端轴连, 另一端固 定在机架上;
机械传动机构可为卷筒式, 即蜗簧的外端固定在卷筒发条盒内壁上, 卷筒发条盒通过细 绳联接另一个小卷筒, 该小卷筒与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一 端轴连, 另一端固定在机架上;
机械传动机构可为链条式, 即蜗簧的外端固定在链轮发条盒内壁上, 链轮发条盒通过链 条联接另一个小链轮, 该小链轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一 端轴连, 另一端固定在机架上;
上述步进电机与传感器位置可对换;
(二) 如果弹簧是拉簧 +拉力传感器形式, 则结构是:
步进电机的动子与主轴轴连, 机壳通过直线与旋转转换机构与拉簧联接, 拉簧的另一端 与拉力传感器连接, 拉力传感器的另一端固定在机架上;
步进电机的外壳上, 或机壳与直线与旋转转换机构的连接部分, 设有电刷、 滑环, 用以连接 步进电机与电源、 单片机控制模块。
拉力传感器也可替换为扭矩传感器插队到主轴与步进电机动子之间。
拉簧与拉力传感器的位置可互换。 直线与旋转转换机构可以是细绳轮与细绳机构或齿条齿轮结构。
直线与旋转转换机构为细绳轮与细绳机构, 即步进电机的机壳与细绳轮轴连, 细绳轮上 缠有细绳, 细绳另一端系在拉簧上;
对于直线与旋转转换机构为齿轮齿条式, 即步进电机的机壳与齿轮轴连, 齿轮所对应的 齿条与拉簧连接, 拉簧的另一端系在拉力传感器上, 该拉力传感器的另一端固定在机架上;
(三)另外, 还可以利用位移传感器 +拉簧, 具体结构是: 包括拉簧、 带刹车功能的步进 电机、 位移传感器、 单片机控制模块、 电源;
步进电机动子与主轴连接, 机壳先后通过直线与旋转转换机构、 位移传感器连接拉簧, 拉簧的另一端固定在机架上, 位移传感器以机架为参照物, 发出信号给单片机控制模块, 单 片机控制模块对步进电机发出控制指令; 电源为步进电机、 传感器、 单片机控制模块提供电 力。
(四)另外, 还可以利用角度传感器 +蜗簧, 具体结构是: 包括蜗簧、 带刹车功能的步进 电机、 角度传感器、 单片机控制模块、 电源;
蜗簧内端固定在主轴上, 外端固定在发条盒上, 发条盒与步进电机转子联动, 步进电机 机壳固定在机架上; 角度传感器监测主轴旋转角度, 发信号给单片机控制模块, 单片机控制 模块发出控制指令给步进电机;
角度传感器可以以机架为参照基础, 监测主轴相对于机架的旋转角度, 也可以以发条盒 作参照基础, 监测主轴相对于发条盒的旋转角度; 电源为早片机控制模块、 歩迸电机、 传感器提供电力。 对于使用蜗簧、 扭矩传感器的弹簧调节装置的原理是:
蜗簧的两端、 扭矩传感器的两端、 步进电机的机壳与动子彼此串接组成联动传动链, 也 可在其中串入机械传动机构, 该传动链的首端联接主轴, 末端联接机架; 单片机控制模块通 过扭矩传感器测量蜗簧的扭矩大小, 当扭矩超过或小于设定值, 单片机控制模块对步进电机 发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的蜗簧释放或收紧, 从而减小或 加大蜗簧的工作扭矩, 步进电机旋转完成后, 单片机控制模块控制其断电刹车;
对于使用拉簧、 拉力传感器的弹簧调节装置的原理是: 步进电机的机壳与动子、 直线与 旋转传动转换机构、 拉簧的两端、 拉力传感器的两端彼此联接组成传动链, 该传动链的首端 联接主轴, 末端联接机架; 单片机控制模块通过拉力传感器测量拉簧的拉力大小, 当拉力超 过或小于设定值, 单片机控制模块对步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的拉簧释放或收紧, 从而减小或加大拉簧的工作拉力, 步进电机旋转完成后, 单片机控制模块对其断电刹车。 对于使用蜗簧、 角度传感器的弹簧调节装置的原理是: 蜗簧的两端、 步进电机的机壳与 动子彼此串接组成联动传动链, 也可在其中串入机械传动机构; 该传动链的首端联接主轴, 末端联接机架; 角度传感器监测主轴的旋转角度, 发信号给单片机控制模块;
该旋转角度可以是相对于机架的, 也可以是相对于发条盒的, 如果是相对于机架的, 则单片 机控制模块对主轴转数、发条盒转数两个变量进行初始化, 对主轴旋转的转数进行累积计数, 当相对于初始差值超过设定转数时, 单片机控制模块根据要转动发条盒的转数, 换算成步进 电机的旋转转数, 再对步进电机发出控制指令, 使其旋转该转数; 单片机控制模块也将发条 盒的旋转转数也进行累积计数, 使发条盒的累计值与主轴的累计值的差距不超过一定范围; 步进电机的旋转引起传动链上的蜗簧释放或收紧, 从而减小或加大蜗簧的工作扭矩, 步进电 机旋转完成后, 单片机控制模块控制其断电刹车; 如果角度传感器监测的是主轴相对于发条 盒的角度, 则单片机控制模块不对步进电机的旋转转数进行累计, 而只通过对步进电机发出 控制指令, 将角度传感器的转数累计值限制在一定范围即可。 对于使用拉簧、 位移传感器的弹簧调节装置的原理是: 步进电机的机壳与动子、 直线与 旋转传动转换机构、 拉簧的两端彼此联接组成传动链, 该传动链的首端联接主轴, 末端联接 机架; 位移传感器固定在拉簧与直线与旋转传动转换机构的连接处, 参照物是机架, 单片机 控制模块通过位移传感器测量拉簧的拉力大小, 给当位移超过设定区间, 单片机控制模块对 步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的拉簧释放或收紧, 从 而减小或加大拉簧的工作拉力, 步进电机旋转完成后, 单片机控制模块对其断电刹车。
本发明具有以下优点:
1 ) 使得复位弹簧的拉力不致于过大或过小,从而使得波浪动力装置能够在面对潮汐和巨 浪这种情况, 依然能够正常工作。
2) 避免复位弹簧拉力过大导致的金属疲劳, 提高复位弹簧寿命。
附图说明
图 1 : 主轴 +弹簧 +步进电机 +传感器 +机架串接关系总表
图 2: 蜗簧 +卷筒 +电机 +扭矩传感器式调节装置结构图
图 3: 电机 +卷筒 +拉簧 +位移传感器式调节装置平面示意图
图 4: 电机 +卷筒 +拉簧 +拉力传感器结构示意图
图 5: 蜗簧 +同步带 +扭矩传感器 +电机式调节装置结构图
图 6: 蜗簧 +齿轮 +电机 +扭矩传感器式调节装置结构图 m 7: 蜗黄 +齿轮 +电机 +芏釉角 s传感器 ¾调节装置结构图
图 8: 蜗簧 +齿轮 +电机 +发条盒角度传感器式调节装置结构图
1、 浮体
2、 采能绳
3、 采能卷筒
4、 主轴
5、 蜗簧
6、 步进电机 (带刹车功能)
7、 扭矩传感器
8、 单片机控制模块
9、 拉簧
10、 拉力传感器
11、 步进电机转子
12、 步进电机壳
13、 滑环
14、 电刷
15、 小卷筒
16、 细绳
17、 同步带
18、 轴承
19、 卷筒发条盒
20、 锚基
21、 导向轮
22、 机架
23、 带轮发条盒
24、 小带轮
25、 齿轮发条盒
26、 小齿轮
27、 位移传感器
28、 光栅
29、 角度传感器
30、 棘轮机构
具体实施方式
很多波浪发电装置, 需要复位弹簧, 例如单程做功方式的波浪动力采集装置, 只利用波 浪的浮力做功或波浪将浮体抬高后, 只利用自身重力做功, 而回来的行程上, 却需要其他的 力才能复位, 有些是靠配重, 有些是利用弹簧来复位的。利用弹簧复位的, 比如专利申请 CN 101963125 A浮体基绳轮海浪发电系统、 专利申请 CN 2099205U波浪发电原动装置, 这两个 都是浮体在上升过程中, 利用向上的浮力和推力做功, 这个过程也收紧了弹簧, 而在下落过 程中, 弹簧的弹性势能释放将绳索收回。 而在专利申请 2012103827619振荡活塞式波浪发电 系统, 这个是在波高超过液压缸行程的时候, 启动下面的控绳装置, 从而在液压的作用下, 活塞杆拉动绳索, 使得控绳装置释放出部分绳索, 同时也收紧了弹簧, 在波浪下落过程中, 复位弹簧的弹性势能释放, 将绳索收回。
而对于复位弹簧, 其工作受到变化无常的海洋的直接影响, 有时波浪十多米高, 还有潮 汐导致复位弹簧的工作区间发生改变, 所以复位弹簧经常工作超出其合理范围 , 拉力过大, 会导致疲劳或直接损坏, 而拉力太小, 则导致系统不能复位, 所以需要一种方法对弹簧进行 调节, 使其能够工作在合理范围区间内。 本发明的目的是提供一种波浪动力系统的复位弹簧 调节装置, 它能自动调节弹簧的拉力, 使其不致于过大或过小, 保障复位动作的正常运行。
该波浪动力系统的复位弹簧调节装置, 包括弹簧、 带刹车功能的步进电机、 扭矩或拉力 传感器、 单片机控制模块、 电源;
弹簧、 步进电机、 扭矩或拉力传感器可随意排列, 串接成传动链后, 首末分别连接主轴 与机架, 传感器信号发送给单片机控制模块, 单片机控制模块对步进电机发出控制指令, 电 源为步进电机、 单片机控制电路、 传感器提供电力。
(一) 蜗簧 +扭矩传感器形式; 则大致结构是:
弹簧为蜗簧, 主轴与蜗簧内端连接, 蜗簧的外端固定在发条盒上, 发条盒可绕主轴上自 由旋转, 发条盒与步进电机的动子联动, 步进电机的机壳与扭矩传感器的一端轴连, 扭矩传 感器的另一端固定在机架上;
或步进电机与扭矩传感器位置互换, 即发条盒与扭矩传感器的一端联动, 扭矩传感器的 另一端与步进电机的动子轴连, 步进电机的机壳固定在机架上。
传感器也可插队到主轴与蜗簧之间。 发条盒也可通过机械传动机构联接步进电机的动子或扭矩传感器的一端;
机械传动机构可为带式传动, 即蜗簧的外端固定在带轮发条盒内壁上, 带轮发条盒通过带联 接另一个带轮, 该带轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端连接, 扭矩传感器的另一端固定在机架上;
机械传动机构可为齿轮式, 即蜗簧的外端固定在齿轮发条盒内壁上, 齿轮发条盒所对应 的另一个齿轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端轴连, 另一端固 定在机架上;
机械传动机构可为卷筒式, 即蜗簧的外端固定在卷筒发条盒内壁上, 卷筒发条盒通过细 绳联接另一个小卷筒, 该小卷筒与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一 端轴连, 另一端固定在机架上;
机械传动机构可为链条式, 即蜗簧的外端固定在链轮发条盒内壁上, 链轮发条盒通过链 条联接另一个小链轮, 该小链轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一 端轴连, 另一端固定在机架上;
上述步进电机与传感器位置可对换;
(二) 如果弹簧是拉簧 +拉力传感器形式, 则结构是:
步进电机的动子与主轴轴连, 机壳通过直线与旋转转换机构与拉簧联接, 拉簧的另一端 与拉力传感器连接, 拉力传感器的另一端固定在机架上;
步进电机的外壳上, 或机壳与直线与旋转转换机构的连接部分, 设有电刷、 滑环, 用以连接 步进电机与电源、 单片机控制模块。
拉力传感器也可替换为扭矩传感器插队到主轴与步进电机动子之间。
拉簧与拉力传感器的位置可互换。 直线与旋转转换机构可以是细绳轮与细绳机构或齿条齿轮结构。
直线与旋转转换机构为细绳轮与细绳机构, 即步进电机的机壳与细绳轮轴连, 细绳轮上 缠有细绳, 细绳另一端系在拉簧上;
对于直线与旋转转换机构为齿轮齿条式, 即步进电机的机壳与齿轮轴连, 齿轮所对应的 齿条与拉簧连接, 拉簧的另一端系在拉力传感器上, 该拉力传感器的另一端固定在机架上。 (三)另外, 还可以利用位移传感器 +拉簧, 具体结构是: 包括拉簧、 带刹车功能的步进 电机、 位移传感器、 单片机控制模块、 电源;
步进电机动子与主轴连接, 机壳先后通过直线与旋转转换机构、 位移传感器连接拉簧, 拉簧的另一端固定在机架上, 位移传感器以机架为参照物, 发出信号给单片机控制模块, 单 片机控制模块对步进电机发出控制指令; 电源为步进电机、 传感器、 单片机控制模块提供电 力。
(四)另外, 还可以利用角度传感器 +蜗簧, 具体结构是: 包括蜗簧、 带刹车功能的步进 电机、 角度传感器、 单片机控制模块、 电源;
蜗簧内端固定在主轴上, 外端固定在发条盒上, 发条盒与步进电机转子联动, 步进电机 机壳固定在机架上; 角度传感器监测主轴旋转角度, 发信号给单片机控制模块, 单片机控制 模块发出控制指令给步进电机;
角度传感器可以以机架为参照基础, 监测主轴相对于机架的旋转角度, 也可以以发条盒 作参照基础, 监测主轴相对于发条盒的旋转角度;
电源为单片机控制模块、 步进电机、 传感器提供电力。 对于使用蜗簧、 扭矩传感器的弹簧调节装置的原理是:
蜗簧的两端、 扭矩传感器的两端、 步进电机的机壳与动子彼此串接组成联动传动链, 也 可在其中串入机械传动机构, 该传动链的首端联接主轴, 末端联接机架; 单片机控制模块通 过扭矩传感器测量蜗簧的扭矩大小, 当扭矩超过或小于设定值, 单片机控制模块对步进电机 发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的蜗簧释放或收紧, 从而减小或 加大蜗簧的工作扭矩, 步进电机旋转完成后, 单片机控制模块控制其断电刹车;
对于使用拉簧、 拉力传感器的弹簧调节装置的原理是: 步进电机的机壳与动子、 直线与 旋转传动转换机构、 拉簧的两端、 拉力传感器的两端彼此联接组成传动链, 该传动链的首端 联接主轴, 末端联接机架; 单片机控制模块通过拉力传感器测量拉簧的拉力大小, 当拉力超 过或小于设定值, 单片机控制模块对步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的拉簧释放或收紧, 从而减小或加大拉簧的工作拉力, 步进电机旋转完成后, 单片机控制模块对其断电刹车。 对于使用蜗簧、 角度传感器的弹簧调节装置的原理是: 蜗簧的两端、 步进电机的机壳与 动子彼此串接组成联动传动链, 也可在其中串入机械传动机构; 该传动链的首端联接主轴, 末端联接机架; 角度传感器监测主轴的旋转角度, 发信号给单片机控制模块;
该旋转角度可以是相对于机架的, 也可以是相对于发条盒的, 如果是相对于机架的, 则单片 机控制模块对主轴转数、发条盒转数两个变量进行初始化, 对主轴旋转的转数进行累积计数, 当相对于初始差值超过设定转数时, 单片机控制模块根据要转动发条盒的转数, 换算成步进 电机的旋转转数, 再对步进电机发出控制指令, 使其旋转该转数; 单片机控制模块也将发条 盒的旋转转数也进行累积计数, 使发条盒的累计值与主轴的累计值的差距不超过一定范围; 步进电机的旋转引起传动链上的蜗簧释放或收紧, 从而减小或加大蜗簧的工作扭矩, 步进电 机旋转完成后, 单片机控制模块控制其断电刹车; 如果角度传感器监测的是主轴相对于发条 盒的角度, 则单片机控制模块不对步进电机的旋转转数进行累计, 而只通过对步进电机发出 控制指令, 将角度传感器的转数累计值限制在一定范围即可。 对于使用拉簧、 位移传感器的弹簧调节装置的原理是: 步进电机的机壳与动子、 直线与 旋转传动转换机构、 拉簧的两端彼此联接组成传动链, 该传动链的首端联接主轴, 末端联接 机架; 位移传感器固定在拉簧与直线与旋转传动转换机构的连接处, 参照物是机架, 单片机 控制模块通过位移传感器测量拉黄的拉力大小, 给当位移超过或小十设定值, 早片机控制模 块对步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的拉簧释放或收紧, 从而减小或加大拉簧的工作拉力, 步进电机旋转完成后, 单片机控制模块对其断电刹车。
下面结合附图来进一步说明。
图 1为主轴 +弹簧 +步进电机 +传感器 +机架串接关系总表, 可以看到有 6中排列方式, A 与 B分别代表弹簧的内端或外端、 或步进电机的转子和机壳、 或传感器的两个端。
图 2为蜗簧 +卷筒 +电机 +传感器式调节装置结构图, 图 3为电机 +卷筒 +拉簧 +位移传感器 式调节装置原理图, 图 4 为电机 +卷筒 +拉簧 +传感器结构示意图, 这三个图均适用于浮体绳 轮波浪发电装置 (见专利 CN 101963125 A
先看图 4, 主轴 4与步进电机动子 11轴连, 步进电机机壳 12与小卷筒 15轴连, 小卷筒 15上缠有细绳, 通过导向轮 21, 系在拉簧 9的一端, 拉簧 9的另一端与拉力传感器 10连接, 拉力传感器另一端固定机架 22上。 单片机控制模块 8接收来自拉力传感器 10的拉力信号, 对步进电机发出控制指令。
由于拉簧 9在工作时, 步进电机在主轴 4上是不断旋转的, 步进电机的电力、 控制信号 就得依靠滑环 13和电刷 14导进来, 同样如果传感器处与主轴 4连接而不断旋转, 而需要将 信号引出, 也可采用这种方法, 当然也可采用无线的方式, 在传感器上设无线发射端, 在单 片机控制模块的输入端设无线接收端。
拉力波浪上升时, 浮体 1随之上升, 与锚基 20距离增大, 此时拉动采能卷筒 3旋转, 采 能卷筒 3对发电机输出动力, 同时通过主轴 4带动步进电机的动子 11旋转, 由于步进电机平 常处于断电刹车状态, 动子 11不能相对机壳 12自由转动, 所以也带着机壳 12、 小卷筒 15, 此时拉动拉簧 9, 拉簧 9蓄能。当波浪下降浮体 1下落时,浮体 1相对于锚基 20的距离縮短, 采能绳 2变松, 由于浮体绳轮发电系统中的止退棘爪的作用, 电机的电磁力不会沿着传动链 逆向传动, 所以采能卷筒 3只受到拉簧 9在小卷筒 15上产生的收绳力矩, 拉簧 9的弹性势能 释放, 驱动卷筒 3倒转将采能绳 2收回, 完成复位。 拉簧 9的作用就是作为复位收绳用的。
上面的过程是在拉簧 9工作在设定的范围之内的情况。 如果在波浪太大的波峰时刻 (或 潮差) 导致浮体 1上升幅度太大, 拉簧 9被过度拉伸, 这时单片机控制模块 8通过拉力传感 器 10监测到, 于是立即向步进电机 7发出控制指令, 步进电机 7的开关打开, 根据单片机发 出的指令旋转一定的转数, 小卷筒 15顺着拉簧 9的拉力方向转一定转数, 于是拉簧 9得以收 縮, 从而拉力减小, 拉簧 9不致于被过度拉长, 导致损坏。 当步进电机 7完成任务后, 立即 断电刹车, 于是步进电机的动子 11与机壳 12又不能自由转动, 相当于固结一样, 这时就不 会因为拉簧 9的拉力造成步进电机继续转动从而拉簧 9拉力过小, 而又启动回调程序。
当在巨浪的波谷时刻, 导致拉簧 9的弹性势能释放太多, 从而对采能卷筒 3不能产生足 够的力矩, 造成采能绳 2无法正常回收复位时, 此时, 单片机控制模块 8通过拉力传感器 10 监测到, 于是立即向步进电机 7发出控制指令, 步进电机 7的开关打开, 根据单片机发出的 指令旋转一定的转数, 小卷筒 15逆着拉簧 9的拉力方向转一定转数, 于是拉簧 9得以拉伸, 从而拉力增大, 从而将卷筒 3的复位扭矩恢复正常。 当步进电机 7完成任务后, 立即断电刹 车, 于是步进电机的动子 11与机壳 12又不能自由转动, 相当于固结一样, 这样就不会因为 拉簧 9的拉力就不会去拉动步进电机自己旋转了。
假设设定拉簧的工作拉力允许范围为 200N〜400N之间, 如果拉簧工作在 200〜300N, 不 会触发, 而在实际工作中拉簧变化区间为 300〜400N, 400N触发单片机控制模块 8对步进电 机 6的控制动作, 步进电机 6旋转一定转数 (该转数的求得的算法是单片机根据要调小的幅 值结合拉簧的拉力值、 传动比, 换算成步进电机要旋转的步数), 将拉簧力度调小 50N, 变成 了 250〜350N左右, 这样拉簧还能处于一个良好的工作状态, 既保持足够的拉力, 又降低拉 簧的应力, 减少疲劳。 当拉簧的实际工作拉力再超范围, 再次碰到 400N红线, 则再次触发 单片机控制模块的控制动作, 再次调小 50N, 以此类推。
图 2是将拉簧换成蜗簧 5, 具体结构是: 主轴 4与蜗簧 5内端固结, 蜗簧 5的外端固定 在巷苘发条盆 19内壁上, 巷苘发条盆 19的结构是中 2的巷苘, 内表面是枉面。 巷苘发条盆 19通过细绳 16联接另一个小卷筒 15, 该小卷筒 15与步进电机 6的动子轴连, 步进电机 6的 机壳与扭矩传感器 7的一端轴连, 另一端固定在机架 22上;
工作原理是类似的, 假设设定的蜗簧扭矩允许范围为 20〜50Nm之间, 而实际情况蜗簧 5 的扭矩在 40〜50Nm, 还可能继续增大, 但在 50Nm瞬间, 被单片机控制模块 8通过扭矩传感 器 7监测到, 单片机控制模块 8对步进电机 6发出指令, 步进电机 6执行指令旋转一定的转 数 (该转数是单片机控制模块根据要调小的幅值 5Nm, 结合两卷筒的传动比, 计算出来的), 带动小卷筒 15旋转, 从而释放一部分细绳 16, 卷筒发条盒 19得以在蜗簧 5的作用下, 旋转 一定的角度, 蜗簧 5 的扭矩得以降低 5Nm, 变成 35〜45Nm, 如果蜗簧的工作扭矩再次碰到 50Nm的红线, 则再次触发, 同样如果蜗簧的工作扭矩小于 20Nm, 也触发单片机控制模块发 出控制指令, 驱动步进电机 6收紧蜗簧将扭矩提高 5Nm。
这里蜗簧的外端通过卷筒细绳传动机构与步进电机 6联动, 利用这种传动机构来縮小驱 动扭矩, 使得步进电机 6的工作扭矩可以很小, 而不需要买大扭矩的步进电机, 有利于降低 成本, 同时步进电机 6相对于蜗簧 5的转速也高, 这又有利于提高调节精度。
对于图 5、 图 6, 是另一种波浪发电系统——振荡活塞式波浪发电系统的控绳装置(专利 申请 2012103827619), 其中也含有复位弹簧。 振荡活塞式的原理是, 平时工作时, 完全靠液 压复位, 只有在波高超过液压缸行程的时候, 解锁下面的控绳装置, 从而在液压的作用下, 活塞杆拉动绳索, 使得控绳装置释放出部分绳索, 同时也收紧了蜗簧 5 ; 在波浪下落过程中, 蜗簧 5的弹性势能释放, 将绳索收回。 蜗簧 5的工作也无非是被拉紧蓄能、 外力消失后释放 复位。
对于图 5, 其结构是: 主轴 4与蜗簧 5的内端固结, 蜗簧 5的外端固定在带轮发条盒 23 的内壁上, 带轮发条盒 23的结构好比是将一发条盒外套一带轮。 带轮发条盒 23通过同步带 17与小带轮 24联动, 小带轮与扭矩传感器 7的一端轴连, 扭矩传感器 7的另一端与步进电 机 6的动子轴连, 步进电机 6固定在机架 22上。单片机控制模块 8通过扭矩传感器 7监测蜗 簧 5的扭矩, 对步进电机 6发出控制指令。 右边部分是带轮发条盒的剖面结构, 带轮发条盒 23两侧嵌有轴承 18, 主轴 4从中穿过, 带轮发条盒 23可绕主轴 4自由旋转。
对于图 6, 其结构是将带轮发条盒替代为齿轮发条盒 23, 小齿轮 26与步进电机 6的机壳 轴连, 步进电机 6的动子与扭矩传感器 7轴连, 扭矩传感器 7固定在机架上。 关于调节的机 理, 跟图 2是一样的, 就不再重复。
注意: 各图中的发条盒, 两侧都应该是有侧面的, 且嵌有轴承, 图中没有侧面是为了显 示蜗簧的连接关系。
以上都是基于拉力或扭矩来监测弹簧工作负荷的, 还有依靠位移、 角度来监测弹簧工作 负荷的。 如图 3, 是基于位移传感器的弹簧调节装置。
步进电机 6通过主轴与小卷筒 15轴连, 小卷筒上缠有细绳 16, 细绳 16另一端连接拉簧 9, 在连接处安装有位移传感器 27, 位移传感器的参照物为光栅 28, 固定在机架 22上。 拉簧 9的另一端固定在机架 22上。 单片机控制模块 8接收来自于位移传感器 27的位移信号, 对 步进电机 6进行控制。
单片机控制模块 8通过位移传感器 27判断拉簧的拉力大小, 给当位移超过设定区间, 单 片机控制模块 8对步进电机 6发出控制指令, 使其旋转, 步进电机 6的旋转, 引起传动链上 的拉簧 9释放或收紧, 从而减小或加大拉簧 9的工作拉力, 步进电机旋转完成后, 单片机控 制模块对其断电刹车。
图 7是基于角度传感器、 蜗簧的弹簧调节装置。
蜗簧 5内端固定在主轴 4上, 蜗簧 5外端固定在齿轮发条盒 25内壁上, 齿轮发条盒 25 两侧面嵌有轴承 28, 套在主轴上, 使其可以绕主轴 4 自由旋转, 齿轮发条盒 25所对应的小 齿轮 26与步进电机 6的动子轴连, 步进电机安装在机架上。角度传感器 29以机架为参照物, 监测主轴的转动角度, 安装方式是角度传感器的转轴与主轴 4轴连, 角度传感器的机壳固定 在机架 22上。
在最开始时, 单片机控制模块要对主轴 4的累计转数、 发条盒的转数两个变量进行初始 归 0, 然后通过接收来自角度传感器 29的角度变化信号, 单片机控制模块 8对主轴 4旋转的 转数进行累积计数, 当相对于初始值超过设定转数时, 就对步进电机 6发出控制指令, 使其 旋转, 步进电机的旋转, 单片机控制模块也将步进电机 6的旋转转数也进行累积计数, 使步 进电机 6的累计值与主轴 4的累计值的正负差距不超过一定范围; 步进电机 6的旋转引起传 动链上的蜗簧 5释放或收紧, 从而减小或加大蜗簧 5的工作扭矩, 步进电机 6旋转完成后, 单片机控制模块 8控制其断电刹车;
举例说明, 假设设定的主轴 4相对于发条盒 25的累计转数允许范围为 -8转〜 8转之间。 实际工作中主轴 4旋转转数的累计转数在 3〜5转时,不触发动作。当主轴 4的旋转转数为 4〜8 转时触发, 于是单片机要对发条盒旋转 2转, 先将发条盒旋转 2转结合传动比, 换算成步进 电机 6的旋转转数, 然后发出控制指令, 使步进电机 6旋转成要求的转数。 这样发条盒就在 正方向上也旋转了 2转, 主轴 4的 4〜8转, 减去发条盒的 2转, 就得出主轴相对于发条盒的 相对转数为 2〜6转, 满足设定的 -8转〜 8转之间的要求。
图 8也是基于角度传感器、蜗簧的弹簧调节装置, 所不同的是角度传感器 29以发条盒为 参照物监测主轴的转动角度, 这种方式的安装是: 角度传感器的转轴与主轴 4轴连, 角度传 感器的机壳与发条盒轴连。 这样在工作期间角度传感器的机壳就不断旋转, 可通过无线方式 或滑环、 碳刷方式, 将信号导进单片机控制模块 8里, 单片机控制模块 8对步进电机 6进行 控制。
通过角度传感器 29监测的是主轴 4相对于发条盒 25的旋转角度, 单片机控制模块对主 轴 4的旋转转数进行累计, 通过对步进电机 6发出控制指令, 将角度传感器 29的转数累计值 限制在一定范围, 比如正负 8转 (相对于初始值为 0), 一旦大于 8转, 比如实际为 -1〜9转徘 徊, 则单片机控制模块 8对步进电机 6发出指令, 让其转动一定转数 (该转数根据齿轮传动 比以及目的调节转数确定), 使得发条盒相对于主轴 4旋转 2转, 将主轴 4相对于发条盒 25 的旋转徘徊区间调整为 -3〜7转, 这样蜗簧 5的工作扭矩就不会超出设定值了。

Claims

权 利 要 求 书
1. 一柙汲很动力糸统的复位弹黄调节装置, 其特祉在十: 包拈弹黄、 带刹罕功能的歩迸电 机、 扭矩或拉力传感器、 单片机控制模块、 电源;
弹簧、 步进电机、 扭矩或拉力传感器可随意排列, 串接成传动链后, 首末分别连接主轴 与机架, 传感器信号发送给单片机控制模块, 单片机控制模块对步进电机发出控制指令, 电源为步进电机、 单片机控制电路、 传感器提供电力。
2. 根据权利要求 1 所述的波浪动力系统的复位弹簧调节装置, 其特征在于: 弹簧为蜗簧, 主轴与蜗簧内端连接, 蜗簧的外端固定在发条盒上, 可绕主轴上自由旋转, 发条盒与步 进电机的动子联动, 步进电机的机壳与扭矩传感器的一端轴连, 扭矩传感器的另一端固 定在机架上;
或步进电机与扭矩传感器位置互换, 即发条盒与扭矩传感器的一端联动, 扭矩传感器的 另一端与步进电机的动子轴连, 步进电机的机壳固定在机架上, 传感器也可插队到主轴 与蜗簧之间。
3. 根据权利要求 1、 2所述的波浪动力系统的复位弹簧调节装置, 其特征在于: 发条盒通过 机械传动机构联接步进电机的动子或扭矩传感器的一端;
机械传动机构可为带式, 即蜗簧的外端固定在带轮发条盒内壁上, 带轮发条盒通过带联 接另一个带轮, 该带轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端连 接, 扭矩传感器的另一端固定在机架上;
机械传动机构可为齿轮式, 即蜗簧的外端固定在齿轮发条盒内壁上, 齿轮发条盒所对应 的另一个齿轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器的一端轴连, 另一 端固定在机架上;
机械传动机构可为卷筒式, 即蜗簧的外端固定在卷筒发条盒内壁上, 卷筒发条盒通过细 绳联接另一个小卷筒, 该小卷筒与步进电机的动子轴连, 步进电机的机壳与扭矩传感器 的一端轴连, 另一端固定在机架上;
机械传动机构可为链条式, 即蜗簧的外端固定在链轮发条盒内壁上, 链轮发条盒通过链 条联接另一个小链轮, 该小链轮与步进电机的动子轴连, 步进电机的机壳与扭矩传感器 的一端轴连, 另一端固定在机架上;
上述步进电机与传感器位置可对换;
4. 根据权利要求 1 所述的波浪动力系统的复位弹簧调节装置, 其特征在于: 步进电机的动 子与主轴轴连, 机壳通过直线与旋转转换机构与拉簧联接, 拉簧的另一端与拉力传感器 连接, 拉力传感器的另一端固定在机架上;
步进电机的外壳上, 或机壳与直线与旋转转换机构的连接部分, 设有电刷、 滑环, 用以 连接步进电机与电源、 单片机控制模块, 拉力传感器也可替换为扭矩传感器插队到主轴 与步进电机动子之间;
拉簧与拉力传感器的位置可互换。
5. 根据权利要求 1、 4所述的波浪动力系统的复位弹簧调节装置, 其特征在于: 直线与旋转 转换机构为细绳轮与细绳机构, 即步进电机的机壳与细绳轮轴连, 细绳轮上缠有细绳, 细绳另一端系在拉簧上;
直线与旋转转换机构也可为齿轮齿条式, 即步进电机的机壳与齿轮轴连, 齿轮所对应的 齿条与拉簧连接, 拉簧的另一端系在拉力传感器上, 该拉力传感器的另一端固定在机架 上。
6. 一种波浪动力系统的复位弹簧调节装置, 其特征在于: 包括拉簧、 带刹车功能的步进电 机、 位移传感器、 单片机控制模块、 电源;
步进电机动子与主轴连接, 机壳先后通过直线与旋转转换机构、 位移传感器连接拉簧, 拉簧的另一端固定在机架上, 位移传感器以机架为参照物, 发出信号给单片机控制模块, 单片机控制模块对步进电机发出控制指令; 电源为步进电机、 传感器、 单片机控制模块 提供电力。
7. 一种被浪动力系统的复份弹箸调节奘置, 特征亦干: 包栝蜗箸、 带剎车功能的步讲电 机、 角 S传感器、 早片机控制模块、 电源;
蜗簧内端固定在主轴上, 外端固定在发条盒上, 发条盒与步进电机转子联动, 步进电机 机壳固定在机架上; 角度传感器监测主轴旋转角度, 发信号给单片机控制模块, 单片机 控制模块发出控制指令给步进电机;
角度传感器可以以机架为参照基础, 监测主轴相对于机架的旋转角度, 也可以以发条盒 作参照基础, 监测主轴相对于发条盒的旋转角度;
电源为单片机控制模块、 步进电机、 传感器提供电力。
一种波浪动力系统的复位弹簧调节方法, 其特征在于: 蜗簧的两端、 扭矩传感器的两端、 步进电机的机壳与动子彼此串接组成联动传动链, 也可在其中串入机械传动机构; 该传 动链的首端联接主轴, 末端联接机架; 单片机控制模块通过扭矩传感器测量蜗簧的扭矩 大小, 当扭矩超过或小于设定值, 单片机控制模块对步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的蜗簧释放或收紧, 从而减小或加大蜗簧的工作扭矩, 步进电机旋转完成后, 单片机控制模块控制其断电刹车;
也可以是拉簧复位, 即: 步进电机的机壳与动子、 直线与旋转传动转换机构、 拉簧的两 端、 拉力传感器的两端彼此联接组成传动链, 该传动链的首端联接主轴, 末端联接机架; 单片机控制模块通过拉力传感器测量拉簧的拉力大小, 给当拉力超过或小于设定值, 单 片机控制模块对步进电机发出控制指令, 使其旋转, 步进电机的旋转, 引起传动链上的 拉簧释放或收紧, 从而减小或加大拉簧的工作拉力, 步进电机旋转完成后, 单片机控制 模块对其断电刹车。
一种波浪动力系统的复位弹簧调节方法, 其特征在于: 蜗簧的两端、 步进电机的机壳与 动子彼此串接组成联动传动链, 也可在其中串入机械传动机构; 该传动链的首端联接主 轴, 末端联接机架; 角度传感器监测主轴的旋转角度, 发信号给单片机控制模块; 该旋转角度可以是相对于机架的, 也可以是相对于发条盒的, 如果是相对于机架的, 则 单片机控制模块对主轴转数、 发条盒转数两个变量进行初始化, 对主轴旋转的转数进行 累积计数, 当相对于初始差值超过设定转数时, 单片机控制模块根据要转动发条盒的转 数, 换算成步进电机的旋转转数, 再对步进电机发出控制指令, 使其旋转该转数; 单片 机控制模块也将发条盒的旋转转数也进行累积计数, 使发条盒的累计值与主轴的累计值 的差距不超过一定范围; 步进电机的旋转引起传动链上的蜗簧释放或收紧, 从而减小或 加大蜗簧的工作扭矩, 步进电机旋转完成后, 单片机控制模块控制其断电刹车; 如果角 度传感器监测的是主轴相对于发条盒的角度, 则单片机控制模块不对步进电机的旋转转 数进行累计, 而只通过对步进电机发出控制指令, 将角度传感器的转数累计值限制在一 定范围即可。
一种波浪动力系统的复位弹簧调节方法, 其特征在于: 也可以是拉簧复位, 即: 步进电 机的机壳与动子、 直线与旋转传动转换机构、 拉簧的两端彼此联接组成传动链, 该传动 链的首端联接主轴, 末端联接机架; 位移传感器固定在拉簧与直线与旋转传动转换机构 的连接处, 参照物是机架, 单片机控制模块通过位移传感器测量拉簧的拉力大小, 给当 位移超过设定区间, 单片机控制模块对步进电机发出控制指令, 使其旋转, 步进电机的 旋转, 引起传动链上的拉簧释放或收紧, 从而减小或加大拉簧的工作拉力, 步进电机旋 转完成后, 单片机控制模块对其断电刹车。
PCT/CN2013/075626 2012-05-20 2013-05-15 波浪动力系统的复位弹簧调节装置和方法 WO2013174221A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210156071.1 2012-05-20
CN201210156071 2012-05-20
CN201210235045.8 2012-07-08
CN201210235045 2012-07-08

Publications (1)

Publication Number Publication Date
WO2013174221A1 true WO2013174221A1 (zh) 2013-11-28

Family

ID=49623101

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/075623 WO2013174220A1 (zh) 2012-05-20 2013-05-15 浮体绳轮波浪动力采集装置
PCT/CN2013/075626 WO2013174221A1 (zh) 2012-05-20 2013-05-15 波浪动力系统的复位弹簧调节装置和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075623 WO2013174220A1 (zh) 2012-05-20 2013-05-15 浮体绳轮波浪动力采集装置

Country Status (2)

Country Link
CN (2) CN103423070B (zh)
WO (2) WO2013174220A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153937B (zh) * 2014-07-25 2016-10-05 浙江大学 一种适应潮位变化的波浪能收集装置
CN105888930B (zh) * 2014-09-24 2019-04-19 江苏中工高端装备研究院有限公司 一种移动底座的升降架式海浪发电机
WO2017012464A1 (zh) * 2015-07-18 2017-01-26 曲言明 浮体绳轮波浪能采集系统
CN109356778B (zh) * 2015-08-08 2023-07-04 曲言明 绳控液压缸波浪发电机
CN105275726A (zh) * 2015-11-11 2016-01-27 山东大学(威海) 一种基于气密封的浮体绳轮波浪发电系统
CN105386929A (zh) * 2015-12-08 2016-03-09 重庆光煦科技有限公司 一种新型波浪能浮子振荡发电装置
CN105736223B (zh) * 2016-03-21 2019-05-21 浙江海洋学院 一种波浪能转换器
WO2018028584A1 (zh) * 2016-08-08 2018-02-15 曲言明 绳控液压缸波浪发电机
CN106949001A (zh) * 2017-03-17 2017-07-14 大连理工大学 一种沉锚浮子式波浪发电装置
CN107524556A (zh) * 2017-09-14 2017-12-29 上海交通大学 一种新型高效浮子及拉线式发电装置及发电方法
CN107792298B (zh) * 2017-10-10 2019-02-22 浙江大学 一种用于漂浮式水上光伏系泊的自动收放链装置
CN109664119A (zh) * 2017-10-13 2019-04-23 陈李果 磁力工作台和具有其的机床
CN110985276B (zh) * 2019-11-25 2024-05-28 浙江海洋大学 一种伸缩式波浪能发电装置
CN111535976B (zh) * 2020-05-10 2021-12-21 侯冰铃 一种自动行走定位的水利发电机
CN114754841B (zh) * 2022-06-15 2022-09-16 自然资源部第二海洋研究所 一种风暴潮潮位观测站
CN115182841A (zh) * 2022-07-15 2022-10-14 山东建筑大学 一种振荡运动的浮子式海洋观测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228360A (en) * 1979-06-08 1980-10-14 Pablo Navarro Wave motion apparatus
CN1424502A (zh) * 2003-01-08 2003-06-18 中国科学院广州能源研究所 一种海洋波浪能自动调配能量吸收方法
US6617705B1 (en) * 1998-10-28 2003-09-09 Ocean Power Technologies, Inc. Protection arrangement for natural energy power generation systems
CN101963125A (zh) * 2009-07-21 2011-02-02 曲言明 浮体基绳轮海浪发电系统
CN102187088A (zh) * 2008-10-17 2011-09-14 斯切米克拉夫特股份有限公司 用于绞盘操作式波浪发电站的装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604911B1 (fr) * 1986-10-13 1989-06-02 Merobel Appareil d'entrainement, d'investigation et de reeducation, notamment de la fonction neuro-musculaire
CN2099205U (zh) * 1991-08-03 1992-03-18 青岛银达(集团)光电计时设备公司 波浪发电原动装置
CN2617674Y (zh) * 2003-04-10 2004-05-26 瑞奕科技股份有限公司 电动自行车的踏力感测装置
JP2008522084A (ja) * 2004-12-02 2008-06-26 ウェイブ エネルギー テクノロジーズ インコーポレイテッド. 波動エネルギー装置
CN2858991Y (zh) * 2005-09-29 2007-01-17 苏闪 大功率免维护潮汐及波浪发电设备
CN101526062A (zh) * 2008-03-08 2009-09-09 曲言明 浮体绳轮波浪能发电系统
CN101749169A (zh) * 2008-12-14 2010-06-23 曲言明 双绳式浮体绳轮海浪发电系统
NZ596019A (en) * 2009-04-07 2014-08-29 Ceto Ip Pty Ltd Energy release buoyant actuator
KR20090068311A (ko) * 2009-06-01 2009-06-26 이상락 파력발전장치
CN101767752B (zh) * 2010-01-22 2012-05-23 北京龙灵科技有限公司 电能驱动型快速绳索牵引装置
CN201606185U (zh) * 2010-01-29 2010-10-13 文辉安 矩阵式海浪发电装置
CN201606184U (zh) * 2010-01-29 2010-10-13 文辉安 利用海浪发电的发电单元
GB2479348A (en) * 2010-04-06 2011-10-12 Richard Ainsley Page Wave power converter with one way clutch
EP2630365A1 (en) * 2010-10-21 2013-08-28 Arthur Robert Williams Full-water-column surge-type wave-energy converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228360A (en) * 1979-06-08 1980-10-14 Pablo Navarro Wave motion apparatus
US6617705B1 (en) * 1998-10-28 2003-09-09 Ocean Power Technologies, Inc. Protection arrangement for natural energy power generation systems
CN1424502A (zh) * 2003-01-08 2003-06-18 中国科学院广州能源研究所 一种海洋波浪能自动调配能量吸收方法
CN102187088A (zh) * 2008-10-17 2011-09-14 斯切米克拉夫特股份有限公司 用于绞盘操作式波浪发电站的装置
CN101963125A (zh) * 2009-07-21 2011-02-02 曲言明 浮体基绳轮海浪发电系统

Also Published As

Publication number Publication date
WO2013174220A1 (zh) 2013-11-28
CN103423074B (zh) 2017-05-10
CN103423070B (zh) 2018-01-05
CN103423070A (zh) 2013-12-04
CN103423074A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2013174221A1 (zh) 波浪动力系统的复位弹簧调节装置和方法
CN104385293B (zh) 一种旋转型柔性关节
WO2017012464A1 (zh) 浮体绳轮波浪能采集系统
WO2013053321A1 (zh) 振荡活塞式波浪发电方法及系统
CN102979661B (zh) 一种采能单元和棘轮以及波力发动机
WO2010025616A1 (zh) 车辆重力驱动的发电装置
CN201049150Y (zh) 擒纵调速绳索通用型往复式缓降器
US10473090B2 (en) Drive assembly
CN105840402B (zh) 一种新型机械式波浪能发电装置
CN202914234U (zh) 海浪发电机
CN111207029A (zh) 一种波浪发电装置
CN202181881U (zh) 抽油机
CN104847576B (zh) 漂浮式海浪能量转换装置
CN107630781A (zh) 一种应用于浅海的水下波浪能发电装置
WO2009120058A1 (en) Gravity machine
CN103344865A (zh) 浮体绳轮波浪发电陆地模拟试验平台
RU2320894C1 (ru) Безбалансирный привод штангового глубинного насоса
CN211900861U (zh) 一种波浪发电装置
CN104564509B (zh) 一种立式水轮发电机刹车装置
CN101162647A (zh) 变压器线圈立式绕线机
CN111219285B (zh) 波浪能发电装置
CN203175501U (zh) 柔性摩擦换向轮
CN208263982U (zh) 受电弓、升降弓装置及电动推杆
CN201771998U (zh) 一种大棚卷帘机用制动器
CN111306019A (zh) 一种利用动物运动动能的发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201210156071.1

Country of ref document: CN

Date of ref document: 20140917

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201210235045.8

Country of ref document: CN

Date of ref document: 20140917

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED