WO2013174219A1 - 路径建立方法及装置 - Google Patents

路径建立方法及装置 Download PDF

Info

Publication number
WO2013174219A1
WO2013174219A1 PCT/CN2013/075619 CN2013075619W WO2013174219A1 WO 2013174219 A1 WO2013174219 A1 WO 2013174219A1 CN 2013075619 W CN2013075619 W CN 2013075619W WO 2013174219 A1 WO2013174219 A1 WO 2013174219A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
media
signal
spectrum
Prior art date
Application number
PCT/CN2013/075619
Other languages
English (en)
French (fr)
Inventor
付锡华
张新灵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13794302.3A priority Critical patent/EP2858270B1/en
Priority to US14/403,991 priority patent/US9479283B2/en
Publication of WO2013174219A1 publication Critical patent/WO2013174219A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms

Definitions

  • the present invention relates to the field of communications, and in particular to a path establishment method and apparatus.
  • BACKGROUND OF THE INVENTION With the increasing bandwidth requirements of bearer networks, the over 100G (Beyond 100G) technology has become a solution for bandwidth growth demand, whether it is 400G or 1T above 100G, the traditional 50GHz fixed grid (WDM) Wavelength Division Multiplexing (Wavelength Division Multiplexing) does not provide enough spectrum width to achieve super 100G technology. Due to the drawback of fixed grids, a wider flexible Grid is needed. In the related art, the multi-rate mixed transmission of the super 100G and the flexibility of the super 100G modulation pattern result in different channel bandwidth requirements.
  • WDM fixed grid
  • the multi-rate mixed transmission of the super 100G and the flexibility of the super 100G modulation pattern result in different channel bandwidth requirements.
  • the need for ultra-high-speed WDM systems continues to increase based on bandwidth requirements, introducing the need for Flexible Grid technology, but how to effectively perform spectrum planning and management, and compatibility with existing systems Need to be solved.
  • an effective solution has not been proposed yet.
  • the present invention provides a path establishment method and apparatus to at least solve the problem of how to efficiently perform spectrum planning and management on the introduced flexible grid technology in the related art.
  • a method for establishing a path including: establishing a media path between a first node and a second node, where the first node is a source node of the media path, a second node is a tail node of the media path, the media path passes through a frequency timing matrix of an intermediate node between the first node and the second node, and an optical fiber between any two nodes; available from the optical fiber In the spectrum, a spectrum is allocated for the media path, wherein the media path supports at least one single signal frequency timing.
  • the method further includes: establishing a signal path between the third node and the fourth node, where the third node is a source node of the signal path, and the fourth node is a tail node of the signal path, where Signal path a single signal frequency timing matrix passing through an intermediate node between the third node and the fourth node and a traffic engineering link between any two nodes; from the available spectrum of the traffic engineering link, the signal The path allocates the spectrum.
  • the traffic engineering link is formed as follows: after the media path is successfully established, in the upper layer signal network corresponding to the lower layer media network in which the media path is located, in the first node and the second A traffic engineering link capable of being passed by at least one signal path is formed between the nodes, and an available spectrum of the traffic engineering link is the same as a spectrum of the media path.
  • the traffic engineering link is formed in the following manner: when any two nodes are directly connected through the optical fiber, forming a traffic engineering link on the upper layer signal network corresponding to the lower layer media network in which the media path is located, and The available spectrum of the traffic engineering link is the same as the available spectrum of the fiber.
  • the method further includes: exchanging frequency timing on the node through which the media path passes.
  • the method further includes: exchanging a single signal frequency timing on a node through which the signal path passes.
  • the frequency timing is a fixed grid or a flexible grid.
  • the single signal frequency timing is a fixed grid or a flexible grid.
  • the available spectrum of the optical fiber is advertised to a control plane by using a routing protocol, where the optical fiber supports at least one frequency timing; and an upper layer corresponding to the lower layer media network
  • the available spectrum of the traffic engineering link is advertised to the control plane by using a routing protocol, where the traffic engineering link supports at least one single signal frequency timing.
  • the routing protocols include OSPF-TE and ISIS-TE.
  • a path establishing apparatus including: a first establishing module, configured to establish a media path between a first node and a second node, where the first node is the media a source node of the path, the second node is a tail node of the media path, the media path passes through a frequency sequence matrix of an intermediate node between the first node and the second node, and between any two nodes An optical fiber; a first allocation module configured to allocate a spectrum for the media path from an available spectrum of the optical fiber, wherein the media path supports at least one single signal frequency timing.
  • the device further includes: a second establishing module, configured to establish a signal path between the third node and the fourth node, where the third node is a source node of the signal path, and the fourth node is the Signal path a tail node, the signal path passes through a single signal frequency timing matrix of an intermediate node between the third node and the fourth node, and a traffic engineering link between any two nodes; a second allocation module, configured as a slave In the available spectrum of the traffic engineering link, a spectrum is allocated for the signal path.
  • a second establishing module configured to establish a signal path between the third node and the fourth node, where the third node is a source node of the signal path, and the fourth node is the Signal path a tail node, the signal path passes through a single signal frequency timing matrix of an intermediate node between the third node and the fourth node, and a traffic engineering link between any two nodes
  • a second allocation module configured as a slave In the available spectrum of the traffic engineering link, a spectrum is
  • the device further includes: a forming module, configured to: after the media path established by the first establishing module is successfully established, in the upper layer signal network corresponding to the lower layer media network where the media path is located, in the first A traffic engineering link capable of being passed by at least one signal path is formed between the node and the second node, and an available spectrum of the traffic engineering link is the same as a spectrum of the media path.
  • the apparatus further includes: a first configuration module configured to exchange frequency timings on nodes through which the media path established by the first setup module passes.
  • the apparatus further includes: a second configuration module configured to exchange a single signal frequency timing on a node through which the signal path established by the second setup module passes.
  • the first establishing module is further configured to: advertise the available spectrum of the optical fiber to a control plane by using a routing protocol, where the optical fiber supports at least one frequency sequence;
  • the second establishing module is further configured to: advertise the available spectrum of the traffic engineering link to the control plane by using a routing protocol in an upper layer signal network corresponding to the lower layer media network, where the traffic engineering The link supports at least one single signal frequency timing.
  • a media path is established between the first node and the second node, and the media path supports at least one single signal frequency timing, and the spectrum is allocated to the media path from the available spectrum of the optical fiber.
  • the media path can support at least one single-signal frequency timing, providing hierarchical management and planning from a spectrum management perspective.
  • FIG. 1a is a first processing flowchart of a path establishing method according to an embodiment of the present invention
  • FIG. 1b is a second processing flowchart of a path establishing method according to an embodiment of the present invention
  • 2a is a first processing flowchart of a path establishing method for establishing a signal path after media path creation is completed according to an embodiment of the present invention
  • FIG. 2b is a path establishing method for establishing a signal path after media path creation is completed according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of managing the spectrum of an optical network through a hierarchical concept according to an embodiment of the present invention, wherein the service layer is a frequency sequence (Frequency Slot), and the client layer is a single signal frequency.
  • FIG. 4 is a schematic structural diagram of hierarchical management of an optical network spectrum according to an embodiment of the present invention.
  • FIG. 5 is a first schematic structural diagram of a path establishing apparatus according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a path establishing apparatus according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a third structure of a path establishing apparatus according to an embodiment of the present invention
  • FIG. 8 is a root
  • FIG. 9 is a fifth structural diagram of a path establishing apparatus according to an embodiment of the present invention
  • FIG. 10 is a hierarchical management of an optical network spectrum according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of optical fiber spectrum resource management according to an embodiment of the present invention, wherein an optical fiber can support multiple frequency timings;
  • FIG. 12 is a structural diagram of spectrum resource management in frequency timing according to an embodiment of the present invention, wherein The frequency timing supports a plurality of single signal frequency timings;
  • FIG. 13 is a diagram of an embodiment of hierarchical management of an optical network spectrum according to an embodiment of the present invention.
  • FIG. 1A is a first processing flowchart of a path establishment method according to an embodiment of the present invention. The processing flow is as shown in FIG. S102. Establish a media path between the first node and the second node.
  • the first node is a source node of the media path
  • the second node is a tail node of the media path
  • the media path passes between the first node and the second node.
  • Step S104 Allocating a spectrum for the media path from the available spectrum of the optical fiber, wherein the media path supports a frequency sequence including at least one single signal frequency timing.
  • a media path is established between the first node and the second node, and the media path supports at least one single signal frequency timing, and the spectrum is allocated to the media path from the available spectrum of the optical fiber.
  • the media path can support at least one single-signal frequency timing, providing hierarchical management and planning from a spectrum management perspective.
  • the flexible grid technology can be introduced into the super 100G system, which can improve spectrum utilization, rationally plan spectrum resources, improve spectrum utilization of the entire operator network, and effectively reduce operator network management and investment costs.
  • the frequency timing is exchanged on the node through which the media path passes.
  • FIG. 1B is a second processing flowchart of the path establishing method according to the embodiment of the present invention.
  • Step S102 At the first step Establishing a media path between the node and the second node; wherein, the first node is a source node of the media path, the second node is a tail node of the media path, and the media path passes the frequency sequence of the intermediate node between the first node and the second node a matrix and an optical fiber between any two nodes;
  • Step S104 Allocating a spectrum for the media path from the available spectrum of the optical fiber, where the media path supports a frequency sequence including at least one single-signal frequency sequence;
  • Step S106 After the media path passes The frequency timing is exchanged on the nodes.
  • a signal path may be created on the basis of at least one single-signal frequency sequence supported by the media path, and FIG. 2a is based on
  • a first processing flowchart of the method for establishing a path of a signal path after the media path is created in the embodiment of the present invention is as follows. As shown in FIG.
  • Step S202 Between the third node and the fourth node Establishing a signal path; wherein, the third node is a source node of the signal path, the fourth node is a tail node of the signal path, and the signal path passes through a single signal frequency timing matrix of the intermediate node between the third node and the fourth node, and any two a traffic engineering link between the nodes;
  • Step S204 Allocating a spectrum for the signal path from the available spectrum of the traffic engineering link. To ensure the right to know of each node, after establishing a signal path between the third node and the fourth node, the frequency timing is exchanged on the node through which the signal path passes. At this time, based on the path establishment method shown in FIG.
  • FIG. 2b is a second processing flowchart of the path establishment method for establishing a signal path after the media path is created according to the embodiment of the present invention.
  • the process includes The following steps are as follows: Step S202: Establish a signal path between the third node and the fourth node; wherein, the third node is a source node of the signal path, the fourth node is a tail node of the signal path, and the signal path passes through the third node and the a single signal frequency timing matrix of the intermediate node between the four nodes and a traffic engineering link between any two nodes; Step S204, assigning a spectrum to the signal path from the available spectrum of the traffic engineering link; Step S206, after the signal path passes The single signal frequency timing is exchanged on the node.
  • the hierarchical spectrum management method corresponding to the path establishment process is obtained in combination with the path establishment process of FIG. 1 and FIG. 2, and the network system exceeding 100G can be managed.
  • operators want to establish some high-bandwidth media (Media) paths (for example, 500 GHz), which will support multiple low-bandwidth signal paths that directly support ODU (Optical Data Uni, optical data).
  • /OTU (Optical Channel Transport Unit) /OCh (Optical Channel) signal through this spectrum management method, allows operators to base on two nodes in the optical network based on prior spectrum planning.
  • a large-bandwidth media path pipe is established, which is shared by multiple signal paths. There is no need to manage the signal path inside the network where the media path is located.
  • the traffic engineering link is mentioned in step S202 and step S204.
  • the traffic engineering link is formed as follows: After the media path is successfully established, the media path is in the In the upper layer signal network corresponding to the lower layer media network, a traffic engineering link capable of being passed by at least one signal path is formed between the first node and the second node, and the available spectrum of the traffic engineering link is the same as the spectrum of the media path. If any two nodes can be directly connected through the optical fiber, the traffic engineering link can be formed as follows: A traffic engineering link is directly formed on the upper layer signal network corresponding to the lower media network where the media path is located, and the traffic is generated. The available spectrum of the engineering link is the same as the available spectrum of the fiber.
  • the frequency timing supported by the media path may be a fixed grid or a flexible grid.
  • the single-signal frequency timing supported by the signal path can be either a fixed grid or a flexible grid. The timing of the frequency timing and single-signal frequency timing is based on the specific situation.
  • FIG. 3 is a schematic diagram of managing the spectrum of an optical network through a hierarchical concept according to an embodiment of the present invention.
  • FIG. 3 depicts an idea of an embodiment of the present invention, wherein one fiber (Fiber) can support multiple
  • the frequency sequence (Frequency Slot) allows the operator to create multiple media paths. Each media path occupies a frequency sequence when passing through the fiber.
  • Each frequency sequence can be a flexible Grid or a fixed grid. Grid), each grid is described by the normal center frequency (the nominal center frequency) and the spectrum width.
  • the spectrum width consists of some spectrum segments of the same size.
  • Such a frequency timing supports multiple single signal frequency sequences (Single Signal Frequency Slot), each single signal frequency timing is described by a central frequency (Central Frequency) and a spectrum width, and the spectrum width is composed of some spectrum segments of the same size (Slice) ) Composition.
  • Each Single Signal Frequency Slot is used to support the optical channel (OCh-Optical Channel), and the optical channel can be implemented by single carrier (Multiple Carrier) and multiple carrier (Multiple Carrier) technologies.
  • the embodiment of the present invention manages, plans, and configures the spectrum of the optical network through the hierarchical spectrum management technology.
  • the available spectrum of the optical fiber is advertised to the control plane through a routing protocol, where the optical fiber supports at least one frequency sequence; correspondingly, the media path is established.
  • the available spectrum of the traffic engineering link is advertised to the control plane through a routing protocol, where the traffic engineering link supports at least one single signal frequency timing.
  • the routing protocols here include OSPF-TE (OSPF (Open Shortest Path First) with traffic engineering) and ISIS-TE (IS-IS, Intermediate system to intermediate system) , intermediate system to intermediate system)).
  • FIG. 4 is a schematic structural diagram of hierarchical management of an optical network spectrum according to an embodiment of the present invention, and FIG.
  • the management layer, the Media Layer Network is divided into two layers of network sub-layers, namely the Media Path and the Signal Path (that is, the Optical Channel - OCh).
  • the media path is connected to the terminal point (Connection Point) and the frequency timing (Frequency) by the AP-Access Point, the TCP-Termination Connection Point, and the Subnetwork Channel of the Frequency Slot.
  • the link channel of the Slot is connected in series.
  • the media path can pass through the intermediate node, the fiber between the nodes, and the frequency timing matrix of the node.
  • a layer is formed in the upper layer signal network.
  • the traffic engineering link, and the signal path (that is, the optical channel OCh) is composed of an AP-Access Point, a TT-Trail Termination, and a TCP-Termination Connection Point optical channel (OCh).
  • Subnet connection The connection point (Connection Point) and the optical channel (OCh) link connection (Link Connection) are concatenated.
  • the embodiment of the present invention further provides a path establishing apparatus.
  • FIG. 5 is a first structural diagram of a path establishing apparatus according to an embodiment of the present invention.
  • the structure includes The first establishing module 501 is configured to establish a media path between the first node and the second node, where the first node is a source node of the media path, the second node is a tail node of the media path, and the media path passes the first a frequency timing matrix of the intermediate node between the node and the second node and an optical fiber between any two nodes; a first allocation module 502, connected to the first establishing module 501, configured to allocate a spectrum for the media path from the available spectrum of the optical fiber Wherein the media path supports at least one single signal frequency timing.
  • FIG. 6 is a second schematic structural diagram of a path establishing apparatus according to an embodiment of the present invention. As shown in FIG.
  • the path establishing apparatus further includes: a second establishing module 601, configured to be in the first A signal path is established between the three nodes and the fourth node, wherein the third node is the source node of the signal path, the fourth node is the tail node of the signal path, and the signal path passes through the intermediate node between the third node and the fourth node.
  • a signal frequency timing matrix and a traffic engineering link between any two nodes a second allocation module 602, coupled to the second establishing module 601, configured to allocate a spectrum for the signal path from the available spectrum of the traffic engineering link.
  • the second establishing module 601 is connected to the first establishing module 501 after the media path is established.
  • the second establishing module 601 and the first establishing module 501 are Two parallel execution modules.
  • FIG. 7 is a third structural diagram of a path establishing apparatus according to an embodiment of the present invention.
  • the path establishing apparatus further includes: a forming module 701, configured to be established in the first manner. After the media path established by the module 501 is successfully established, a traffic engineering link capable of being passed by at least one signal path is formed between the first node and the second node in an upper layer signal network corresponding to the lower layer media network in which the media path is located. And the available spectrum of the traffic engineering link is the same as the spectrum of the media path.
  • FIG. 8 is a fourth structural diagram of a path establishing apparatus according to an embodiment of the present invention. As shown in FIG.
  • the path establishing apparatus further includes: a first configuration module 801, configured to be in the first A frequency sequence is exchanged on an intermediate node through which the media path established by the setup module 501 passes.
  • FIG. 9 is a fifth structural diagram of a path establishing apparatus according to an embodiment of the present invention. As shown in FIG. 9, the path establishing apparatus further includes: a second configuration module 901, configured to be in the first The second signal frequency sequence is exchanged on the intermediate node through which the signal path established by the module 601 is established.
  • the first establishing module 501 is further configured to issue the available spectrum of the optical fiber to the control plane through a routing protocol in a lower layer media network in which the media path is located, where the optical fiber supports at least one frequency timing
  • the second establishing module 601 is further configured to: advertise the available spectrum of the traffic engineering link to the control plane by using a routing protocol in the upper layer signal network corresponding to the lower layer media network, where the traffic engineering link supports at least one single signal Frequency timing.
  • Embodiment 1 provides an end-to-end path establishment method, and the specific processing steps are as follows: Create a frequency slot matrix (Matrix) between the two nodes and a media (Media) path between the nodes, the available spectrum of the fiber is assigned to the media path, and the media path The frequency slot is exchanged on the intermediate nodes that pass through.
  • the media path can support more than one single signal frequency slot.
  • a traffic engineering link is formed on the upper signal network.
  • the traffic engineering link formed by the media path in the upper layer can be passed by multiple signal paths.
  • the frequency slot can be a fixed grid (Flexed Grid) or a flexible grid (Flexi Grid).
  • the single signal frequency slot can be a fixed grid or a flexible grid (Flexi Grid).
  • a traffic engineering link can be directly formed in the upper layer signal network, and the maximum available spectrum of the traffic engineering link is equal to the maximum available spectrum of the lower layer media network fiber.
  • the available spectrum supported by the fiber is published to the control plane through a routing protocol.
  • the fiber can support multiple frequency slots.
  • the available spectrum that the traffic engineering link can support is advertised to the control plane through a routing protocol.
  • the traffic engineering link can support multiple single-signal frequency slots.
  • the above routing protocols include 0SPF-TE and ISIS-TE.
  • Embodiment 2 This embodiment provides an end-to-end path establishment method in combination with a specific node in a network.
  • FIG. 10 is a topological view of hierarchical management of an optical network spectrum according to an embodiment of the present invention.
  • an optical fiber can support a frequency spectrum (frequency slot) of available spectrum (for example, as shown in FIG. 10).
  • the 1000 GHz available spectrum is shown, published to the control plane via a routing protocol.
  • Figure 11 is an implementation in accordance with the present invention
  • the fiber spectrum resource management structure diagram is shown in Figure 11, where the fiber can support multiple frequency slots. Create a frequency slot matrix (Matrix) that can pass through multiple intermediate nodes (such as N3) and a media (Media) path between the two nodes (such as N2 and N4).
  • the available spectrum of the fiber can be a frequency slot matrix (Matrix) that can pass through multiple intermediate nodes (such as N3) and a media (Media) path between the two nodes (such as N2 and N4).
  • Matrix frequency slot matrix
  • Media media path between the two nodes
  • the frequency slot can be a fixed grid (Fixed Grid) or a flexible grid (Flexi Grid).
  • 12 is a structural diagram of spectrum resource management in a frequency sequence according to an embodiment of the present invention. As shown in FIG. 12, the media path can support more than one single signal frequency slot, single signal frequency timing (single signal frequency timing).
  • the frequency slot can be a fixed Grid or a Flexi Grid.
  • TE traffic engineering link
  • the available spectrum is 500 GHz.
  • the virtual link between N2 and N4 is shown in Figure 10. Link).
  • the traffic engineering link formed by the media path in the upper layer network can be passed by multiple signal paths.
  • the available spectrum of the traffic engineering link is the same as the spectrum of the media path.
  • the traffic engineering link can support the available spectrum of a single signal frequency slot (ie, 500 GHz) and is published to the control plane through a routing protocol.
  • the traffic engineering link can support multiple single-signal frequency slots.
  • a traffic engineering link can be directly formed in the upper layer signal network, and the available spectrum of the traffic engineering link is equal to the available spectrum of the lower layer media network fiber, and is available.
  • the spectrum is 1000 GHz.
  • the fibers between N1 and N2, N4 and N5 can form two traffic engineering links directly in the signal layer network.
  • the path computation entity can see related topology information, including single signal frequency timing matrix, traffic engineering link, and the like.
  • a single signal frequency slot matrix (Matrix) that can pass through multiple intermediate nodes is created between the two nodes, and a traffic engineering link between the plurality of nodes is The signal path allocates the available spectrum of the above-mentioned inter-node traffic engineering link to the signal path, and exchanges a single signal frequency timing on the intermediate node through which the signal path passes.
  • Embodiment 3 provides a method for establishing an end-to-end spectrum path through a management plane or a control plane.
  • the processing flow is as follows, including steps S1 to S7: Step S1: Management plane or control plane Obtain the topology of the optical network (including the nodes in the network and the fibers between the nodes), and the detailed information of each fiber (link), including the available spectrum supported by the link (including the available center frequency and the width of the spectrum) ).
  • Step S2 A path calculation entity of the management plane or the control plane (such as PCE: Path Computation)
  • FIG. 13 is a diagram showing an embodiment of hierarchical management of an optical network spectrum according to an embodiment of the present invention.
  • the path computation entity calculates a media path route of a 500 GHz spectrum between N2 and N4.
  • the path passes through the fiber between N2-N3 and N3-N4, and the frequency timing matrix of the N3 node.
  • Step S3 After the route calculation is completed, the node, the link, and the spectrum required for the link are determined by the media (Media) path, and the end-to-end media path is established through the management plane or the control plane signaling.
  • the intermediate node through which the end-to-end media path passes exchanges frequency slots, and the available spectrum of the fiber is allocated to the media path.
  • the media path is established through the management plane or control plane signaling, the 500 GHz spectrum of the fiber is allocated to the media path, and the frequency sequence is exchanged at the N3 node.
  • Step S4 The media path can support more than one single signal frequency slot, for example, supporting multiple ODU4/OTU4/OCh signals with a spectrum width of 50 GHz.
  • a Traffic Engineering Link is formed on the upper signal network.
  • the traffic engineering link formed by the media path in the upper layer network may be passed by multiple signal paths, and the available spectrum of the traffic engineering link is the same as the spectrum of the media path.
  • a traffic engineering link is created on the upper signal (Signal) network N2 and N4 nodes, and the maximum available spectrum is 500 GHz.
  • the link can be routed through multiple signal paths, such as multiple 100G signal paths in the 50 GHz spectrum.
  • Step S5 In the media network layer, when two nodes are directly connected through the optical fiber, a traffic engineering link can be directly formed in the upper layer signal network, and the available spectrum of the traffic engineering link and the available spectrum of the lower layer media network fiber equal. As shown in Figure 13, N1 and N2, N4 and N5 are directly connected through optical fibers. Two traffic engineering links are formed between N1 and N2, N4 and N5 of the upper layer signal network. Available spectrum and fiber. The available spectrum is equal, the same as 1000GHz.
  • Step S6 The path calculation entity (such as PCE: Path Computation Element) of the management plane or the control plane uses the topology information obtained in step S4 and step S5 for the end-to-end signal path route calculation to obtain an end-to-end signal path. Routing.
  • PCE Path Computation Element
  • the path computation entity calculates a signal path of a 100G rate of a 50 GHz spectrum between N1 and N5, which passes through the traffic between N1 and N2, N4 and N5, and N2-N4.
  • Engineering link and single signal frequency timing matrix for N2 and N4 nodes are determined.
  • the node, the link, and the spectrum required for the link are determined, and the end-to-end signal path is established through the management plane or the control plane signaling.
  • the intermediate node through which the end signal path passes exchanges a single signal frequency sequence (Single Signal Frequency Slot), and the available spectrum of the traffic engineering link is allocated to the signal path, such as 50 GHz.
  • Single Signal Frequency Slot Single Signal Frequency Slot
  • the signal path is established through the management plane or control plane signaling, and the 50 GHz spectrum of the traffic engineering link between N1 and N2, N2 and N4, N4 and N5 is allocated to the signal. Path, and when the signal frequency is exchanged between the N2 and N4 nodes.
  • INDUSTRIAL APPLICABILITY Embodiments of the present invention focus on introducing a flexible grid technology into a super 100G system, and providing a spectrum resource management method and system, thereby improving spectrum utilization, rationally planning spectrum resources, and improving spectrum utilization of the entire operator network. Rate, effectively reducing operator network management and investment costs.
  • a media path is established between the first node and the second node, and the media path supports at least one single signal frequency timing
  • the spectrum is allocated to the media path from the available spectrum of the fiber.
  • the media path can support at least one single-signal frequency timing, providing hierarchical management and planning from a spectrum management perspective.
  • the flexible grid technology can be introduced into the super 100G system, which can improve spectrum utilization, rationally plan spectrum resources, improve spectrum utilization of the entire operator network, and effectively reduce operator network management and investment costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种路径建立方法及装置,该方法包括:在第一节点和第二节点之间建立媒体路径,其中,第一节点为媒体路径的源节点,第二节点为媒体路径的尾节点,媒体路径经过第一节点和第二节点间的中间节点的频率时序矩阵和任意两个节点间的光纤;从光纤的可用频谱中,为媒体路径分配频谱,其中,媒体路径支持至少一个单信号频率时序。采用本发明能够解决如何有效地对引入的灵活栅格技术进行的频谱规划和管理的问题。

Description

路径建立方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种路径建立方法及装置。 背景技术 随着承载网带宽需求越来越大, 超 100G (Beyond 100G) 技术成为带宽增长需求 的解决方案, 100G之上无论是 400G还是 1T, 传统的 50GHz固定栅格 (Fixed Grid) 的 WDM (Wavelength Division Multiplexing, 波分复用) 都无法提供足够的频谱宽度 实现超 100G技术。 由于固定栅格的缺陷, 因此提出需要更宽的灵活栅格 (Flexible Grid)。 相关技术 中, 超 100G的多速率混传和超 100G调制码型灵活性导致通道带宽需求不同, 若每个 通道定制合适的带宽, 可实现系统带宽的充分利用, 从而产生了灵活栅格系统。 基于带宽需求持续增加对超高速 WDM系统的需求,从而引入对灵活栅格 (Flexible Grid) 技术的需求, 但如何有效地进行的频谱规划和管理, 以及与现有系统的兼容性 等很多问题都需要解决。 针对相关技术中如何有效地对引入的灵活栅格技术进行的频谱规划和管理的问 题, 目前尚未提出有效的解决方案。 发明内容 本发明提供了一种路径建立方法及装置, 以至少解决相关技术中如何有效地对引 入的灵活栅格技术进行的频谱规划和管理的问题。 根据本发明的一个方面, 提供了一种路径建立方法, 包括: 在第一节点和第二节 点之间建立媒体路径, 其中, 所述第一节点为所述媒体路径的源节点, 所述第二节点 为所述媒体路径的尾节点, 所述媒体路径经过所述第一节点和所述第二节点间的中间 节点的频率时序矩阵和任意两个节点间的光纤; 从所述光纤的可用频谱中, 为所述媒 体路径分配频谱, 其中, 所述媒体路径支持至少一个单信号频率时序。 上述方法还包括: 在第三节点和第四节点之间建立信号路径, 其中, 所述第三节 点为所述信号路径的源节点, 所述第四节点为所述信号路径的尾节点, 所述信号路径 经过所述第三节点和所述第四节点间的中间节点的单信号频率时序矩阵和任意两个节 点间的流量工程链路; 从所述流量工程链路的可用频谱中, 为所述信号路径分配频谱。 所述流量工程链路按照如下方式形成: 在所述媒体路径建立成功后, 在与所述媒 体路径所处于的下层媒体网络对应的上层信号网络中, 在所述第一节点和所述第二节 点之间形成能够被至少一条信号路径经过的流量工程链路, 且所述流量工程链路的可 用频谱与所述媒体路径的频谱相同。 所述流量工程链路按照如下方式形成:当任意两个节点间仅通过光纤直接连接时, 在与所述媒体路径所处于的下层媒体网络对应的上层信号网络形成一条流量工程链 路, 且所述流量工程链路的可用频谱与所述光纤的可用频谱相同。 所述在第一节点和第二节点之间建立媒体路径之后, 还包括: 在所述媒体路径经 过的节点上交换频率时序。 所述在第三节点和第四节点之间建立信号路径之后, 还包括: 在所述信号路径经 过的节点上交换单信号频率时序。 所述频率时序为固定栅格或者灵活栅格。 所述单信号频率时序为固定栅格或者灵活栅格。 在与所述媒体路径所处于的下层媒体网络中, 将所述光纤的可用频谱通过路由协 议发布到控制平面, 其中, 所述光纤支持至少一个频率时序; 在与所述下层媒体网络 对应的上层信号网络中, 将所述流量工程链路的可用频谱通过路由协议发布到控制平 面, 其中, 所述流量工程链路支持至少一个单信号频率时序。 所述路由协议包括 OSPF-TE和 ISIS-TE。 根据本发明的另一方面, 提供了一种路径建立装置, 包括: 第一建立模块, 设置 为在第一节点和第二节点之间建立媒体路径, 其中, 所述第一节点为所述媒体路径的 源节点, 所述第二节点为所述媒体路径的尾节点, 所述媒体路径经过所述第一节点和 所述第二节点间的中间节点的频率时序矩阵和任意两个节点间的光纤;第一分配模块, 设置为从所述光纤的可用频谱中, 为所述媒体路径分配频谱, 其中, 所述媒体路径支 持至少一个单信号频率时序。 上述装置还包括: 第二建立模块, 设置为在第三节点和第四节点之间建立信号路 径, 其中, 所述第三节点为所述信号路径的源节点, 所述第四节点为所述信号路径的 尾节点, 所述信号路径经过所述第三节点和所述第四节点间的中间节点的单信号频率 时序矩阵和任意两个节点间的流量工程链路; 第二分配模块, 设置为从所述流量工程 链路的可用频谱中, 为所述信号路径分配频谱。 所述装置还包括: 形成模块, 设置为在所述第一建立模块建立的媒体路径建立成 功后, 在与所述媒体路径所处于的下层媒体网络对应的上层信号网络中, 在所述第一 节点和所述第二节点之间形成能够被至少一条信号路径经过的流量工程链路, 且所述 流量工程链路的可用频谱与所述媒体路径的频谱相同。 上述装置还包括: 第一配置模块, 设置为在所述第一建立模块建立的媒体路径经 过的节点上交换频率时序。 上述装置还包括: 第二配置模块, 设置为在所述第二建立模块建立的信号路径经 过的节点上交换单信号频率时序。 所述第一建立模块, 还设置为在与所述媒体路径所处于的下层媒体网络中, 将所 述光纤的可用频谱通过路由协议发布到控制平面, 其中, 所述光纤支持至少一个频率 时序; 所述第二建立模块, 还设置为在与所述下层媒体网络对应的上层信号网络中, 将所述流量工程链路的可用频谱通过路由协议发布到所述控制平面, 其中, 所述流量 工程链路支持至少一个单信号频率时序。 在本发明实施例中, 在第一节点和第二节点间建立媒体路径, 且该媒体路径支持 至少一个单信号频率时序, 从光纤的可用频谱中为媒体路径分配频谱。 由此可见, 媒 体路径能够支持至少一个单信号频率时序, 从频谱管理角度而言提供了层次管理及规 划。 通过这样的频谱管理方式, 将灵活栅格技术引入到超 100G系统后, 能够提高频 谱利用率、 合理规划频谱资源, 提高整个运营商网络频谱利用率, 有效地减低运营商 网络管理和投资成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 la是根据本发明实施例的路径建立方法的第一种处理流程图; 图 lb是根据本发明实施例的路径建立方法的第二种处理流程图; 图 2a是根据本发明实施例的媒体路径创建结束后建立信号路径的路径建立方法 的第一种处理流程图; 图 2b 是根据本发明实施例的媒体路径创建结束后建立信号路径的路径建立方法 的第二种处理流程图; 图 3 是根据本发明实施例的通过层次化的概念对光网络的频谱进行管理的示意 图,其中,服务层为频率时序(Frequency Slot),客户层为单信号频率时序( Single Signal Frequency Slot); 图 4是根据本发明实施例的光网络频谱的层次化管理的架构示意图, 其中, 媒体 层网络 (Media Layer Network) 分为两个层网络子层, 分别是媒体路径 (Media Path) 和信号路径 (也就是光通道 -OCh); 图 5是根据本发明实施例的路径建立装置的第一种结构示意图; 图 6是根据本发明实施例的路径建立装置的第二种结构示意图; 图 7是根据本发明实施例的路径建立装置的第三种结构示意图; 图 8是根据本发明实施例的路径建立装置的第四种结构示意图; 图 9是根据本发明实施例的路径建立装置的第五种结构示意图; 图 10是根据本发明实施例的光网络频谱的层次化管理的拓扑视图; 图 11是根据本发明实施例的光纤频谱资源管理结构图, 其中, 光纤可支持多个频 率时序; 图 12是根据本发明实施例的频率时序里的频谱资源管理结构图,其中, 频率时序 支持多个单信号频率时序; 图 13是根据本发明实施例的光网络频谱的层次化管理的实施例图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中提及, 对于超 100G的带宽, 基于带宽需求持续增加对超高速 WDM 系统的需求, 从而引入对灵活栅格(Flexible Grid)技术的需求, 但如何有效地进行的 频谱规划和管理, 以及与现有系统的兼容性等很多问题都需要解决。 为解决上述技术问题, 本发明实施例提供了一种路径建立方法, 图 la是根据本发 明实施例的路径建立方法的第一种处理流程图, 其处理流程如图 la所示, 包括: 步骤 S102、 在第一节点和第二节点之间建立媒体路径; 其中, 第一节点为媒体路径的源节点, 第二节点为媒体路径的尾节点, 媒体路径 经过第一节点和第二节点间的中间节点的频率时序矩阵和任意两个节点间的光纤; 步骤 S104、 从上述光纤的可用频谱中, 为媒体路径分配频谱, 其中, 媒体路径支 持包括至少一个单信号频率时序的频率时序。 在本发明实施例中, 在第一节点和第二节点间建立媒体路径, 且该媒体路径支持 至少一个单信号频率时序, 从光纤的可用频谱中为媒体路径分配频谱。 由此可见, 媒 体路径能够支持至少一个单信号频率时序, 从频谱管理角度而言提供了层次管理及规 划。 通过这样的频谱管理方式, 将灵活栅格技术引入到超 100G系统后, 能够提高频 谱利用率、 合理规划频谱资源, 提高整个运营商网络频谱利用率, 有效地减低运营商 网络管理和投资成本。 为保证各节点的知情权, 在第一节点和第二节点之间建立媒体路径之后, 在媒体 路径经过的节点上交换频率时序, 此时, 在图 la所示的路径建立方法的基础上, 还能 够得到图 lb所示的路径建立方法, 图 lb是根据本发明实施例的路径建立方法的第二 种处理流程图, 如图 lb所示, 该流程包括如下步骤: 步骤 S102、 在第一节点和第二节点之间建立媒体路径; 其中, 第一节点为媒体路径的源节点, 第二节点为媒体路径的尾节点, 媒体路径 经过第一节点和第二节点间的中间节点的频率时序矩阵和任意两个节点间的光纤; 步骤 S104、 从上述光纤的可用频谱中, 为媒体路径分配频谱, 其中, 媒体路径支 持包括至少一个单信号频率时序的频率时序; 步骤 S106、 在媒体路径经过的节点上交换频率时序。 在本发明实施例中, 为更详细地提供层次性的频谱管理,在媒体路径创建结束后, 可以在媒体路径支持的至少一个单信号频率时序的基础上创建信号路径,图 2a是根据 本发明实施例的媒体路径创建结束后建立信号路径的路径建立方法的第一种处理流程 图, 如图 2a所示, 该流程包括如下步骤: 步骤 S202、 在第三节点和第四节点之间建立信号路径; 其中, 第三节点为信号路径的源节点, 第四节点为信号路径的尾节点, 信号路径 经过第三节点和第四节点间的中间节点的单信号频率时序矩阵和任意两个节点间的流 量工程链路; 步骤 S204、 从流量工程链路的可用频谱中, 为信号路径分配频谱。 为保证各节点的知情权, 在第三节点和第四节点之间建立信号路径之后, 在信号 路径经过的节点上交换频率时序, 此时, 在图 2a所示的路径建立方法的基础上, 还能 够得到图 2b所示的路径建立方法, 图 2b是根据本发明实施例的媒体路径创建结束后 建立信号路径的路径建立方法的第二种处理流程图, 如图 2b所示, 该流程包括如下步 骤: 步骤 S202、 在第三节点和第四节点之间建立信号路径; 其中, 第三节点为信号路径的源节点, 第四节点为信号路径的尾节点, 信号路径 经过第三节点和第四节点间的中间节点的单信号频率时序矩阵和任意两个节点间的流 量工程链路; 步骤 S204、 从流量工程链路的可用频谱中, 为信号路径分配频谱; 步骤 S206、 在信号路径经过的节点上交换单信号频率时序。 结合图 1以及图 2的路径建立流程, 得到与该路径建立流程相应的层次性频谱管 理方式, 可以对超过 100G的网络系统进行管理。 例如, 运营商希望建立一些高带宽 的媒体 (Media) 路径 (例如 500GHz) , 该媒体路径后续将支持多条低带宽的信号 ( Signal) 路径, 这些信号路径直接支持 ODU (Optical Data Uni, 光数据单元) /OTU (Optical Channel Transport Unit, 光通道传送单元) /OCh (Optical channel, 光通道) 信号, 通过这样的频谱管理方式, 可以让运营商基于事先的频谱规划, 在光网络两个 节点之间建立一段大带宽的媒体路径管道, 该管道将被多个信号路径共享, 在媒体路 径所在的网络内部, 就无需管理信号路径。 如图 2a及图 2b所示流程, 步骤 S202及步骤 S204中均提及流量工程链路, 此处 的流量工程链路按照如下方式形成: 在媒体路径建立成功后, 在与媒体路径所处于的 下层媒体网络对应的上层信号网络中, 在第一节点和第二节点之间形成能够被至少一 条信号路径经过的流量工程链路,且流量工程链路的可用频谱与媒体路径的频谱相同。 若任意两个节点间能够仅通过光纤直接连接时, 流量工程链路还可以按照如下方 式形成: 在与媒体路径所处于的下层媒体网络对应的上层信号网络直接形成一条流量 工程链路, 且流量工程链路的可用频谱与光纤的可用频谱相同。 为保证各节点的知情权, 在第一节点和第二节点之间建立媒体路径之后, 在媒体 路径经过的节点上交换频率时序。 同理, 在第三节点和第四节点之间建立信号路径之 后, 在信号路径经过的节点上交换单信号频率时序。 在上述任意一个优选实施例中, 为保证对于超 100G的带宽进行管理, 引入了灵 活栅格, 因此, 媒体路径支持的频率时序可以是固定栅格, 也可以是灵活栅格。 同理, 信号路径支持的单信号频率时序可以是固定栅格, 也可以是灵活栅格。 频率时序和单 信号频率时序选用的栅格的类型根据具体情况而定。 上述说明从理论角度阐述了本发明实施例的思路, 现以图示对其进行说明。 图 3 是根据本发明实施例的通过层次化的概念对光网络的频谱进行管理的示意图, 如图 3 所示, 图 3描述了本发明实施例的思想, 其中一条光纤 (Fiber) 可支持多个频率时序 (Frequency Slot), 运营商可以创建多条媒体路径, 每条媒体路径经过该光纤时, 占用 一个频率时序, 每个频率时序可以是灵活栅格 (Flexible Grid) 或者固定栅格 (Fixed Grid), 每个栅格通过正常的中心频率 (Normal Central Frequency) (即标称中心频率) 和频谱宽度描述, 频谱宽度里由一些大小相同的频谱片段 (Slice) 组成。 而这样的一 个频率时序支持多个单信号频率时序(Single Signal Frequency Slot), 每个单信号频率 时序由中心频率(Central Frequency)和频谱宽度描述, 频谱宽度里由一些大小相同的 频谱片段 (Slice) 组成。 每个单信号频率时序 (Single Signal Frequency Slot) 用来支 持光通道 (OCh-Optical Channel), 而光通道可采用单载波 (Single Carrier) 和多载波 (Multiple Carrier)技术来实现。本发明实施例在频谱管理角度, 通过层次频谱管理技 术, 将光网络的频谱进行管理、 规划和配置。 实施时, 媒体路径建立后, 在与媒体路径所处于的下层媒体网络中, 将光纤的可 用频谱通过路由协议发布到控制平面, 其中, 光纤支持至少一个频率时序; 相对应在, 在媒体路径建立后, 在与下层媒体网络对应的上层信号网络中, 将流量工程链路的可 用频谱通过路由协议发布到控制平面, 其中, 流量工程链路支持至少一个单信号频率 时序。 其中, 此处的路由协议包括 OSPF-TE (带流量工程的 OSPF (Open Shortest Path First,开放式最短路径优先))和 ISIS-TE (带流量工程的 ISIS (IS-IS, Intermediate system to intermediate system, 中间系统到中间系统))。 采用了本发明实施例提供的路径建立方法以及其对应的频谱管理方式后, 图 4是 根据本发明实施例的光网络频谱的层次化管理的架构示意图, 通过图 4描述了光网络 频谱的层次化管理架构, 媒体层网络 (Media Layer Network) 分为两个层网络子层, 分别是媒体路径(Media Path)和信号路径(也就是光通道 -OCh)。 媒体路径由接入点 ( AP- Access Point )、 终端连接点 (TCP-Termination Connection Point )、 频率时序 (Frequency Slot)的子网通道 ( Subnetwork Channel ) 连接终端点(Connection Point )、 频率时序(Frequency Slot) 的链路通道(Link Channel) 串接而成, 媒体路径可经过中 间节点、 节点间的光纤以及节点的频率时序矩阵 (Matrix); 但媒体路径创建完毕, 在 上层信号网络里, 形成一条流量工程链路, 而信号路径 (也就是光通道 OCh) 由接入 点( AP- Access Point )、路径终端点( TT-Trail Termination )、终端连接点( TCP-Termination Connection Point ) 光通道(OCh)的子网连接(Subnetwork) 连接终端点(Connection Point ) 和光通道 (OCh) 的链路连接 (Link Connection) 串接而成。 为支持上述任意一个优选实施例, 本发明实施例还提供了一种路径建立装置, 图 5是根据本发明实施例的路径建立装置的第一种结构示意图, 如图 5所示, 该结构包 括: 第一建立模块 501, 设置为在第一节点和第二节点之间建立媒体路径, 其中, 第 一节点为媒体路径的源节点, 第二节点为媒体路径的尾节点, 媒体路径经过第一节点 和第二节点间的中间节点的频率时序矩阵和任意两个节点间的光纤; 第一分配模块 502, 与第一建立模块 501连接, 设置为从光纤的可用频谱中, 为 媒体路径分配频谱, 其中, 媒体路径支持至少一个单信号频率时序。 在一个优选的实施例中, 图 6是根据本发明实施例的路径建立装置的第二种结构 示意图, 如图 6所示, 上述路径建立装置还包括: 第二建立模块 601, 设置为在第三节点和第四节点之间建立信号路径, 其中, 第 三节点为信号路径的源节点, 第四节点为信号路径的尾节点, 信号路径经过第三节点 和第四节点间的中间节点的单信号频率时序矩阵和任意两个节点间的流量工程链路; 第二分配模块 602, 与第二建立模块 601连接, 设置为从流量工程链路的可用频 谱中, 为信号路径分配频谱。 其中, 在媒体路径建立结束后再建立信号路径, 则第二建立模块 601与第一建立 模块 501连接; 考虑到信号路径可以自行建立, 此时, 第二建立模块 601与第一建立 模块 501是两个并列的执行模块。 在一个优选的实施例中, 图 7是根据本发明实施例的路径建立装置的第三种结构 示意图, 如图 7所示, 上述路径建立装置还包括: 形成模块 701, 设置为在第一建立模块 501建立的媒体路径建立成功后, 在与媒 体路径所处于的下层媒体网络对应的上层信号网络中, 在第一节点和第二节点之间形 成能够被至少一条信号路径经过的流量工程链路, 且流量工程链路的可用频谱与媒体 路径的频谱相同。 在一个优选的实施例中, 图 8是根据本发明实施例的路径建立装置的第四种结构 示意图, 如图 8所示, 上述路径建立装置还包括: 第一配置模块 801, 设置为在第一建立模块 501建立的媒体路径经过的中间节点 上交换频率时序。 在一个优选的实施例中, 图 9是根据本发明实施例的路径建立装置的第五种结构 示意图, 如图 9所示, 上述路径建立装置还包括: 第二配置模块 901, 设置为在第二建立模块 601建立的信号路径经过的中间节点 上交换单信号频率时序。 在一个优选的实施例中, 第一建立模块 501还可以设置为在与媒体路径所处于的 下层媒体网络中, 将光纤的可用频谱通过路由协议发布到控制平面, 其中, 光纤支持 至少一个频率时序; 第二建立模块 601, 还可以设置为在与下层媒体网络对应的上层 信号网络中, 将流量工程链路的可用频谱通过路由协议发布到控制平面, 其中, 流量 工程链路支持至少一个单信号频率时序。 为将本发明实施例提供的路径建立方法阐述地更清楚更明白, 现以具体实施例对 其进行说明。 实施例一 本实施例提供了一种端到端路径建立方法, 其具体的处理步骤如下: 在两个节点之间创建一条可经过多个中间节点的频率时序 (frequency slot) 矩阵 (Matrix)和节点间光纤的媒体 (Media)路径, 光纤的可用频谱分配给媒体路径, 以 及在媒体路径所经过的中间节点上交换频率时序 ( frequency slot)。 媒体路径可支持一个以上的单信号频率时序(single signal frequency slot)。媒体路 径创建完毕, 在上层信号 (Signal) 网络形成一条流量工程链路 (Traffic Engineering Link). 媒体路径在上层网络形成的流量工程链路, 可被多条信号路径经过。 在两个节点之间创建一条可经过多个中间节点的单信号频率时序 (single signal frequency slot) 矩阵 (Matrix), 以及多条节点间的流量工程链路的信号路径, 节点间 流量工程链路的可用频谱分配给信号路径, 以及在信号路径所经过的中间节点上交换 单信号频率时序。 其中,频率时序(frequency slot)可以是固定栅格(Fixed Grid)或者灵活栅格(Flexi Grid)。 单信号频率时序 (single signal frequency slot) 可以是固定栅格 (Fixed Grid) 或者灵活栅格 (Flexi Grid )。 当媒体路径创建完毕, 在上层信号 (Signal) 网络形成一条流量工程链路 (Traffic Engineering Link) 时, 上述流量工程链路的可用频谱与媒体路径的频谱相同。 在媒体网络层中, 当两个节点直接通过光纤连接在一起时, 可直接在上层信号网 络形成一条流量工程链路, 该流量工程链路的最大可用频谱与下层媒体网络光纤的最 大可用频谱相等。 在媒体网络层, 将光纤可支持的可用频谱, 通过路由协议发布到控制平面。 其中 光纤可以支持多个频率时序 (frequency slot)。 在信号网络层, 将流量工程链路可支持的可用频谱, 通过路由协议发布到控制平 面。 其中流量工程链路可以支持多个单信号频率时序 (frequency slot)。 上述的路由协 议包括 0SPF-TE和 ISIS-TE。 实施例二 本实施例结合网络中具体节点提供了一种端到端路径建立方法。 图 10是根据本发明实施例的光网络频谱的层次化管理的拓扑视图,如图 10所示, 在媒体网络层, 将光纤可支持频率时序 (frequency slot) 的可用频谱 (比如, 如图 10 所示的 1000GHz可用频谱), 通过路由协议发布到控制平面。 图 11是根据本发明实施 例的光纤频谱资源管理结构图, 如图 11 所示, 其中光纤可以支持多个频率时序 ( frequency slot)。 在两个节点之间 (比如 N2与 N4) 创建一条可经过多个中间节点 (比如 N3 ) 的 频率时序 (frequency slot) 矩阵 (Matrix) 和节点间光纤的媒体 (Media) 路径, 光纤 的可用频谱分配给媒体路径(比如给媒体路径分配 500GHz频谱), 以及在媒体路径所 经过的中间节点上交换频率时序 (frequency slot)。 频率时序 (frequency slot) 可以是 固定栅格 (Fixed Grid) 或者灵活栅格 (Flexi Grid)。 图 12是根据本发明实施例的频率时序里的频谱资源管理结构图, 如图 12所示, 媒体路径可支持一个以上的单信号频率时序(single signal frequency slot), 单信号频率 时序(single signal frequency slot)可以是固定栅格(Fixed Grid)或者灵活栅格 (Flexi Grid)。 媒体路径创建完毕, 在上层信号 (Signal) 网络形成一条流量工程链路 (Traffic Engineering Link-TE Link), 可用频谱为 500GHz, 如图 10所示的 N2与 N4之间的虚 拟链路 (Virtual TE Link)。 媒体路径在上层网络形成的流量工程链路, 可被多条信号 路径经过。 流量工程链路的可用频谱与媒体路径的频谱相同。 在信号网络层, 将流量工程链路可支持单信号频率时序 (single signal frequency slot)的可用频谱(即 500GHz), 通过路由协议发布到控制平面。其中流量工程链路可 以支持多个单信号频率时序 (frequency slot)。 在媒体网络层中, 当两个节点直接通过光纤连接在一起时, 可直接在上层信号网 络形成一条流量工程链路, 该流量工程链路的可用频谱与下层媒体网络光纤的可用频 谱相等, 可用频谱都是 1000GHz, 如图 10所示, N1与 N2, N4与 N5之间的光纤可 直接在信号层网络形成两条流量工程链路。 这样, 在信号层网络, 路径计算实体就能够看到相关的拓扑信息, 包括单信号频 率时序矩阵、 流量工程链路等。 在流量工程链路形成之后, 在两个节点之间创建一条可经过多个中间节点的单信 号频率时序 (single signal frequency slot) 矩阵 (Matrix), 以及多条上述节点间的流量 工程链路的信号路径, 将上述节点间流量工程链路的可用频谱分配给信号路径, 以及 在信号路径所经过的中间节点上交换单信号频率时序。 实施例三 本实施例从流程以及具体实例出发, 提供了一种通过管理平面或者控制平面建立 一条端到端频谱路径的方法, 其处理流程如下, 包括步骤 S1至步骤 S7: 步骤 S1 : 管理平面或控制平面获得光网络的拓扑结构(包括网络中的节点以及节 点间的光纤), 以及每条光纤(链路)的详细信息,该信息包括链路支持的可用频谱(包 括可用的中心频率以及频谱的宽度)。 步骤 S2: 管理平面或控制平面的路径计算实体 (比如 PCE: Path Computation
Element) 将步骤 SI得到的拓扑信息, 用于媒体路径端到端的路由计算, 从而得到端 到端媒体 (Media) 路径的路由。 比如, 图 13 是根据本发明实施例的光网络频谱的层次化管理的实施例图, 如图 13所示,路径计算实体计算出 N2与 N4之间的一条 500GHz频谱的媒体路径路由,该 媒体路径经过了 N2-N3之间和 N3-N4之间的光纤, 以及 N3节点的频率时序矩阵。 步骤 S3 : 路由计算完毕后, 确定了媒体 (Media) 路径所经过的节点、 链路以及 在链路所需要的频谱, 通过管理平面或者控制平面信令建立所述端到端媒体路径, 在 所述端到端媒体路径经过的中间节点交换频率时序(frequency slot), 光纤的可用频谱 分配给媒体路径。 如图 13所示, 路由计算完毕后, 通过管理平面或者控制平面信令建立媒体路径, 将光纤的 500GHz的频谱分配给该媒体路径, 并在 N3节点交换频率时序。 步骤 S4: 媒体路径可支持一个以上的单信号频率时序 (single signal frequency slot),比如支持多个频谱宽度为 50GHz的 ODU4/OTU4/OCh信号。媒体路径创建完毕, 在上层信号 (Signal) 网络形成一条流量工程链路 (Traffic Engineering Link)。 媒体路 径在上层网络形成的流量工程链路, 可被多条信号路径经过, 所述流量工程链路的可 用频谱与媒体路径的频谱相同。 如图 13所示, 当在 N2和 N4之间创建了一条 500GHz的媒体路径后, 在上层信 号 (Signal) 网络 N2和 N4节点创建一条流量工程链路, 最大的可用频谱为 500GHz, 该流量工程链路可被多条信号路径经过, 比如多条 50GHz频谱的 100G信号路径。 步骤 S5: 在媒体网络层中, 当两个节点直接通过光纤连接在一起时, 可直接在上 层信号网络形成一条流量工程链路, 该流量工程链路的可用频谱与下层媒体网络光纤 的可用频谱相等。 如图 13所示, Nl与 N2, N4与 N5两个节点直接通过光纤连接在一起, 在上层 信号网络的 N1与 N2, N4与 N5之间直接形成两条流量工程链路, 可用频谱与光纤的 可用频谱相等, 同为 1000GHz。 步骤 S6: 管理平面或控制平面的路径计算实体 (比如 PCE: Path Computation Element)将步骤 S4和步骤 S5得到的拓扑信息, 用于端到端的信号路径路由计算, 得 到端到端信号 (Signal) 路径的路由。 如图 13所示, 路径计算实体将计算出 N1与 N5之间的一条 50GHz频谱的 100G 速率大小的信号路径路由, 该信号路径经过了 N1与 N2、 N4与 N5和 N2-N4之间的 流量工程链路以及 N2和 N4节点的单信号频率时序矩阵。 步骤 S7: 路由计算完毕后, 确定了信号 (Signal) 路径所经过的节点、 链路以及 在链路所需要的频谱, 通过管理平面或者控制平面信令建立上述端到端信号路径, 在 上述端到端信号路径经过的中间节点交换单信号频率时序 (Single Signal Frequency Slot), 流量工程链路的可用频谱分配给信号路径, 比如 50GHz。 如图 13所示, 路由计算完毕后, 通过管理平面或者控制平面信令建立信号路径, 将 N1与 N2, N2与 N4, N4与 N5之间的流量工程链路的 50GHz的频谱分配给该信 号路径, 并在 N2和 N4节点交换信号频率时。 工业实用性 本发明实施例重点对将灵活栅格技术引入到超 100G系统后, 提供一种频谱资源 的管理方法和系统, 从而提高频谱利用率、 合理规划频谱资源, 提高整个运营商网络 频谱利用率, 有效地减低运营商网络管理和投资成本。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 在本发明实施例中, 在第一节点和第二节点间建立媒体路径, 且该媒体路径支持 至少一个单信号频率时序, 从光纤的可用频谱中为媒体路径分配频谱。 由此可见, 媒 体路径能够支持至少一个单信号频率时序, 从频谱管理角度而言提供了层次管理及规 划。 通过这样的频谱管理方式, 将灵活栅格技术引入到超 100G系统后, 能够提高频 谱利用率、 合理规划频谱资源, 提高整个运营商网络频谱利用率, 有效地减低运营商 网络管理和投资成本。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种路径建立方法, 包括:
在第一节点和第二节点之间建立媒体路径, 其中, 所述第一节点为所述媒 体路径的源节点, 所述第二节点为所述媒体路径的尾节点, 所述媒体路径经过 所述第一节点和所述第二节点间的中间节点的频率时序矩阵和任意两个节点间 的光纤;
从所述光纤的可用频谱中, 为所述媒体路径分配频谱, 其中, 所述媒体路 径支持至少一个单信号频率时序。
2. 根据权利要求 1所述的方法, 其中, 包括:
在第三节点和第四节点之间建立信号路径, 其中, 所述第三节点为所述信 号路径的源节点, 所述第四节点为所述信号路径的尾节点, 所述信号路径经过 所述第三节点和所述第四节点间的中间节点的单信号频率时序矩阵和任意两个 节点间的流量工程链路;
从所述流量工程链路的可用频谱中, 为所述信号路径分配频谱。
3. 根据权利要求 2所述的方法, 其中, 所述流量工程链路按照如下方式形成: 在所述媒体路径建立成功后, 在与所述媒体路径所处于的下层媒体网络对 应的上层信号网络中, 在所述第一节点和所述第二节点之间形成能够被至少一 条信号路径经过的流量工程链路, 且所述流量工程链路的可用频谱与所述媒体 路径的频谱相同。
4. 根据权利要求 2所述的方法, 其中, 所述流量工程链路按照如下方式形成: 当任意两个节点间仅通过光纤直接连接时, 在与所述媒体路径所处于的下 层媒体网络对应的上层信号网络形成一条流量工程链路, 且所述流量工程链路 的可用频谱与所述光纤的可用频谱相同。
5. 根据权利要求 1所述的方法, 其中, 所述在第一节点和第二节点之间建立媒体 路径之后, 还包括: 在所述媒体路径经过的节点上交换频率时序。
6. 根据权利要求 2所述的方法, 其中, 所述在第三节点和第四节点之间建立信号 路径之后, 还包括: 在所述信号路径经过的节点上交换单信号频率时序。 根据权利要求 1所述的方法, 其中, 所述频率时序为固定栅格或者灵活栅格。
8. 根据权利要求 2所述的方法, 其中, 所述单信号频率时序为固定栅格或者灵活 栅格。
9. 根据权利要求 1至 8任一项所述的方法, 其中, 在与所述媒体路径所处于的下层媒体网络中, 将所述光纤的可用频谱通过 路由协议发布到控制平面, 其中, 所述光纤支持至少一个频率时序;
在与所述下层媒体网络对应的上层信号网络中, 将所述流量工程链路的可 用频谱通过路由协议发布到控制平面, 其中, 所述流量工程链路支持至少一个 单信号频率时序。
10. 根据权利要求 9所述的方法, 其中, 所述路由协议包括 OSPF-TE和 ISIS-TE。
11. 一种路径建立装置, 包括:
第一建立模块, 设置为在第一节点和第二节点之间建立媒体路径, 其中, 所述第一节点为所述媒体路径的源节点, 所述第二节点为所述媒体路径的尾节 点, 所述媒体路径经过所述第一节点和所述第二节点间的中间节点的频率时序 矩阵和任意两个节点间的光纤;
第一分配模块, 设置为从所述光纤的可用频谱中, 为所述媒体路径分配频 谱, 其中, 所述媒体路径支持至少一个单信号频率时序。
12. 根据权利要求 11所述的装置, 其中, 还包括:
第二建立模块, 设置为在第三节点和第四节点之间建立信号路径, 其中, 所述第三节点为所述信号路径的源节点, 所述第四节点为所述信号路径的尾节 点, 所述信号路径经过所述第三节点和所述第四节点间的中间节点的单信号频 率时序矩阵和任意两个节点间的流量工程链路;
第二分配模块, 设置为从所述流量工程链路的可用频谱中, 为所述信号路 径分配频谱。
13. 根据权利要求 12所述的装置, 其中, 所述装置还包括: 形成模块, 设置为在所述第一建立模块建立的媒体路径建立成功后, 在与 所述媒体路径所处于的下层媒体网络对应的上层信号网络中, 在所述第一节点 和所述第二节点之间形成能够被至少一条信号路径经过的流量工程链路, 且所 述流量工程链路的可用频谱与所述媒体路径的频谱相同。
14. 根据权利要求 11所述的装置, 其中, 还包括:
第一配置模块, 设置为在所述第一建立模块建立的媒体路径经过的节点上 交换频率时序。
15. 根据权利要求 12所述的装置, 其中, 还包括: 第二配置模块, 设置为在所述第二建立模块建立的信号路径经过的节点上 交换单信号频率时序。
16. 根据权利要求 11至 15任一项所述的装置, 其中, 所述第一建立模块,还设置为在与所述媒体路径所处于的下层媒体网络中, 将所述光纤的可用频谱通过路由协议发布到控制平面, 其中, 所述光纤支持至 少一个频率时序; 所述第二建立模块, 还设置为在与所述下层媒体网络对应的上层信号网络 中,将所述流量工程链路的可用频谱通过路由协议发布到所述控制平面,其中, 所述流量工程链路支持至少一个单信号频率时序。
PCT/CN2013/075619 2012-05-25 2013-05-14 路径建立方法及装置 WO2013174219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13794302.3A EP2858270B1 (en) 2012-05-25 2013-05-14 Method and apparatus for path establishment
US14/403,991 US9479283B2 (en) 2012-05-25 2013-05-14 Channel establishment method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210166707.0A CN103427929B (zh) 2012-05-25 2012-05-25 路径建立方法及装置
CN201210166707.0 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013174219A1 true WO2013174219A1 (zh) 2013-11-28

Family

ID=49623100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075619 WO2013174219A1 (zh) 2012-05-25 2013-05-14 路径建立方法及装置

Country Status (4)

Country Link
US (1) US9479283B2 (zh)
EP (1) EP2858270B1 (zh)
CN (1) CN103427929B (zh)
WO (1) WO2013174219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022146643A (ja) * 2021-03-22 2022-10-05 日本電気株式会社 光ネットワーク管理装置、光ネットワークシステム、光ネットワーク管理方法および光ネットワーク管理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330463A (zh) * 2000-06-30 2002-01-09 朗迅科技公司 利用双信道波段的双向光传输
CN101076961A (zh) * 2004-10-25 2007-11-21 意大利电信股份公司 通信方法,尤其是用于移动无线电网络的通信方法
US20080279101A1 (en) * 2007-05-07 2008-11-13 Microsoft Corporation Context-Based Routing in Multi-hop Networks
CN102439886A (zh) * 2011-10-20 2012-05-02 华为技术有限公司 路径计算的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437332B2 (en) * 2009-06-22 2013-05-07 Qualcomm Incorporated Low complexity unified control channel processing
US8964581B2 (en) * 2009-09-14 2015-02-24 Nippon Telegraph And Telephone Corporation Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
JP5299315B2 (ja) * 2010-02-23 2013-09-25 富士通株式会社 通信管理装置、通信管理方法及び通信管理プログラム
US9768904B2 (en) * 2011-09-16 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating slots for transmission of data
US8693873B2 (en) * 2011-12-02 2014-04-08 At&T Intellectual Property I, L.P. Apparatus and method for improved distributed compensation of filtering effects mitigation in an optical network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330463A (zh) * 2000-06-30 2002-01-09 朗迅科技公司 利用双信道波段的双向光传输
CN101076961A (zh) * 2004-10-25 2007-11-21 意大利电信股份公司 通信方法,尤其是用于移动无线电网络的通信方法
US20080279101A1 (en) * 2007-05-07 2008-11-13 Microsoft Corporation Context-Based Routing in Multi-hop Networks
CN102439886A (zh) * 2011-10-20 2012-05-02 华为技术有限公司 路径计算的方法及装置

Also Published As

Publication number Publication date
US20150104175A1 (en) 2015-04-16
EP2858270A1 (en) 2015-04-08
EP2858270B1 (en) 2018-09-05
US9479283B2 (en) 2016-10-25
CN103427929A (zh) 2013-12-04
CN103427929B (zh) 2017-11-10
EP2858270A4 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US10505655B2 (en) FlexE GMPLS signaling extensions
CN107615721B (zh) 传输软件定义网络-逻辑链路聚合成员信令的系统和方法
US20150382088A1 (en) Efficient transport network architecture for content delivery network
EP3504813B1 (en) Method and apparatus for efficient network utilization using superchannels
Fujii et al. Dynamic spectrum and core allocation with spectrum region reducing costs of building modules in AoD nodes
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
Chen et al. Intelligence on optical transport SDN
WO2014005522A1 (zh) 路由计算方法及装置
US9698930B2 (en) Bandwidth map update method and device
WO2013178005A1 (zh) 路径建立方法及装置
WO2013178006A1 (zh) 路径建立方法及装置
WO2012163015A1 (zh) 路径计算的方法及装置
WO2013174219A1 (zh) 路径建立方法及装置
KR101607473B1 (ko) 광 네트워크에서 대역폭을 할당하는 방법
JP7307388B2 (ja) 光コア部を有する光ネットワーク、タイムスロット化した受信を使用するノード
Zhang et al. Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network
WO2015033545A1 (ja) 光ネットワーク制御装置および光ネットワーク制御方法
Xu et al. Multicarrier-collaboration-based emergency packet transport network construction in disaster recovery
Halder et al. Energy-Efficient Virtual Optical Network Embedding Over Mixed-Grid Optical Networks
WO2013120437A1 (zh) 一种路由洪泛方法及装置及路径计算方法及路径计算单元
Zhao et al. Experimental demonstration of DREAMSCAPE with more than 1000 GMPLS-based control nodes
Wang Traffic grooming under scheduled service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14403991

Country of ref document: US