WO2013173223A1 - Cancer immunotherapy by disrupting pd-1/pd-l1 signaling - Google Patents
Cancer immunotherapy by disrupting pd-1/pd-l1 signaling Download PDFInfo
- Publication number
- WO2013173223A1 WO2013173223A1 PCT/US2013/040764 US2013040764W WO2013173223A1 WO 2013173223 A1 WO2013173223 A1 WO 2013173223A1 US 2013040764 W US2013040764 W US 2013040764W WO 2013173223 A1 WO2013173223 A1 WO 2013173223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- cancer
- ctla
- cells
- antigen
- Prior art date
Links
- 230000011664 signaling Effects 0.000 title abstract description 23
- 238000002619 cancer immunotherapy Methods 0.000 title description 11
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 384
- 210000004027 cell Anatomy 0.000 claims abstract description 235
- 238000000034 method Methods 0.000 claims abstract description 196
- 102000008096 B7-H1 Antigen Human genes 0.000 claims abstract description 180
- 108010074708 B7-H1 Antigen Proteins 0.000 claims abstract description 180
- 239000000427 antigen Substances 0.000 claims abstract description 173
- 108091007433 antigens Proteins 0.000 claims abstract description 171
- 102000036639 antigens Human genes 0.000 claims abstract description 171
- 201000011510 cancer Diseases 0.000 claims abstract description 153
- 238000012360 testing method Methods 0.000 claims abstract description 114
- 238000009169 immunotherapy Methods 0.000 claims abstract description 112
- 229940045513 CTLA4 antagonist Drugs 0.000 claims abstract description 90
- 230000027455 binding Effects 0.000 claims description 211
- 150000001413 amino acids Chemical class 0.000 claims description 206
- 210000001519 tissue Anatomy 0.000 claims description 187
- 238000011282 treatment Methods 0.000 claims description 146
- 101100519207 Mus musculus Pdcd1 gene Proteins 0.000 claims description 131
- 201000001441 melanoma Diseases 0.000 claims description 129
- 229960003301 nivolumab Drugs 0.000 claims description 109
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 95
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 91
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 75
- 229960005386 ipilimumab Drugs 0.000 claims description 58
- 210000004881 tumor cell Anatomy 0.000 claims description 53
- 210000004969 inflammatory cell Anatomy 0.000 claims description 39
- 238000003556 assay Methods 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 35
- 206010009944 Colon cancer Diseases 0.000 claims description 33
- 230000001225 therapeutic effect Effects 0.000 claims description 33
- 108010021064 CTLA-4 Antigen Proteins 0.000 claims description 31
- 102000008203 CTLA-4 Antigen Human genes 0.000 claims description 31
- 230000003993 interaction Effects 0.000 claims description 30
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 29
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 26
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 24
- 230000037396 body weight Effects 0.000 claims description 22
- 229920001184 polypeptide Polymers 0.000 claims description 17
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 15
- 206010017758 gastric cancer Diseases 0.000 claims description 14
- 238000012423 maintenance Methods 0.000 claims description 14
- 201000011549 stomach cancer Diseases 0.000 claims description 14
- 201000008443 lung non-squamous non-small cell carcinoma Diseases 0.000 claims description 13
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 13
- 208000002250 Hematologic Neoplasms Diseases 0.000 claims description 11
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 claims description 11
- 210000000481 breast Anatomy 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 10
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 9
- 231100000844 hepatocellular carcinoma Toxicity 0.000 claims description 9
- 206010033128 Ovarian cancer Diseases 0.000 claims description 8
- 206010060862 Prostate cancer Diseases 0.000 claims description 8
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 8
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 8
- 201000009030 Carcinoma Diseases 0.000 claims description 7
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 claims description 7
- 210000003238 esophagus Anatomy 0.000 claims description 7
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 claims description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 6
- 206010066476 Haematological malignancy Diseases 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 abstract description 81
- 241000283973 Oryctolagus cuniculus Species 0.000 abstract description 47
- 230000019491 signal transduction Effects 0.000 abstract description 14
- 241000282414 Homo sapiens Species 0.000 description 264
- 235000001014 amino acid Nutrition 0.000 description 204
- 229940024606 amino acid Drugs 0.000 description 202
- 230000004044 response Effects 0.000 description 143
- 239000000523 sample Substances 0.000 description 109
- 239000003795 chemical substances by application Substances 0.000 description 66
- 210000004602 germ cell Anatomy 0.000 description 66
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 63
- 201000010099 disease Diseases 0.000 description 62
- 230000002055 immunohistochemical effect Effects 0.000 description 61
- 238000002560 therapeutic procedure Methods 0.000 description 54
- 239000003814 drug Substances 0.000 description 53
- 230000002401 inhibitory effect Effects 0.000 description 52
- 230000000694 effects Effects 0.000 description 44
- 206010061289 metastatic neoplasm Diseases 0.000 description 40
- 230000004083 survival effect Effects 0.000 description 40
- 230000001394 metastastic effect Effects 0.000 description 39
- 230000028993 immune response Effects 0.000 description 35
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 34
- 125000003275 alpha amino acid group Chemical group 0.000 description 33
- 229940079593 drug Drugs 0.000 description 33
- 230000008901 benefit Effects 0.000 description 32
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 30
- 102000048362 human PDCD1 Human genes 0.000 description 30
- 238000004458 analytical method Methods 0.000 description 29
- 230000037361 pathway Effects 0.000 description 28
- 238000010186 staining Methods 0.000 description 28
- 230000003902 lesion Effects 0.000 description 26
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 25
- 210000001744 T-lymphocyte Anatomy 0.000 description 25
- 238000009097 single-agent therapy Methods 0.000 description 25
- 208000008839 Kidney Neoplasms Diseases 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 20
- 206010061818 Disease progression Diseases 0.000 description 19
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 19
- 230000002411 adverse Effects 0.000 description 19
- 230000005750 disease progression Effects 0.000 description 19
- 239000012634 fragment Substances 0.000 description 19
- 201000005202 lung cancer Diseases 0.000 description 19
- 208000020816 lung neoplasm Diseases 0.000 description 19
- 102100035361 Cerebellar degeneration-related protein 2 Human genes 0.000 description 18
- 101000737796 Homo sapiens Cerebellar degeneration-related protein 2 Proteins 0.000 description 18
- 108060003951 Immunoglobulin Proteins 0.000 description 18
- 238000002512 chemotherapy Methods 0.000 description 18
- 102000018358 immunoglobulin Human genes 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 102000039446 nucleic acids Human genes 0.000 description 17
- 108020004707 nucleic acids Proteins 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 206010038389 Renal cancer Diseases 0.000 description 16
- 201000010982 kidney cancer Diseases 0.000 description 16
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 230000001988 toxicity Effects 0.000 description 16
- 231100000419 toxicity Toxicity 0.000 description 16
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 15
- 239000000090 biomarker Substances 0.000 description 15
- 102000048776 human CD274 Human genes 0.000 description 15
- 230000001024 immunotherapeutic effect Effects 0.000 description 15
- 238000002965 ELISA Methods 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 101000737793 Homo sapiens Cerebellar degeneration-related antigen 1 Proteins 0.000 description 14
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 14
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 230000003389 potentiating effect Effects 0.000 description 14
- 238000012216 screening Methods 0.000 description 14
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 14
- 238000011161 development Methods 0.000 description 13
- 230000018109 developmental process Effects 0.000 description 13
- 210000000987 immune system Anatomy 0.000 description 13
- 239000003446 ligand Substances 0.000 description 13
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 13
- 206010006187 Breast cancer Diseases 0.000 description 12
- 208000026310 Breast neoplasm Diseases 0.000 description 12
- 108010002350 Interleukin-2 Proteins 0.000 description 12
- 102000000588 Interleukin-2 Human genes 0.000 description 12
- 230000034994 death Effects 0.000 description 12
- 231100000517 death Toxicity 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 230000002611 ovarian Effects 0.000 description 12
- 230000036961 partial effect Effects 0.000 description 12
- 238000001959 radiotherapy Methods 0.000 description 12
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 11
- 102000004127 Cytokines Human genes 0.000 description 11
- 108090000695 Cytokines Proteins 0.000 description 11
- 230000000259 anti-tumor effect Effects 0.000 description 11
- 229960003901 dacarbazine Drugs 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 230000002163 immunogen Effects 0.000 description 11
- 229960005486 vaccine Drugs 0.000 description 11
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 10
- 241001529936 Murinae Species 0.000 description 10
- 210000002540 macrophage Anatomy 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- 206010027476 Metastases Diseases 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- 231100000682 maximum tolerated dose Toxicity 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 229940124597 therapeutic agent Drugs 0.000 description 9
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 8
- -1 ICOS Proteins 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000001506 immunosuppresive effect Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 210000001672 ovary Anatomy 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 208000037821 progressive disease Diseases 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 229960003862 vemurafenib Drugs 0.000 description 8
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 7
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 7
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 7
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 7
- 206010035664 Pneumonia Diseases 0.000 description 7
- 206010035742 Pneumonitis Diseases 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000002648 combination therapy Methods 0.000 description 7
- 229960005167 everolimus Drugs 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 230000005746 immune checkpoint blockade Effects 0.000 description 7
- 239000002955 immunomodulating agent Substances 0.000 description 7
- 238000001802 infusion Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 229940124302 mTOR inhibitor Drugs 0.000 description 7
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 7
- 208000037819 metastatic cancer Diseases 0.000 description 7
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 7
- 238000013059 nephrectomy Methods 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 230000004936 stimulating effect Effects 0.000 description 7
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 7
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 206010035226 Plasma cell myeloma Diseases 0.000 description 6
- 208000000453 Skin Neoplasms Diseases 0.000 description 6
- 230000006052 T cell proliferation Effects 0.000 description 6
- 208000002495 Uterine Neoplasms Diseases 0.000 description 6
- 208000037844 advanced solid tumor Diseases 0.000 description 6
- 230000001772 anti-angiogenic effect Effects 0.000 description 6
- 230000005809 anti-tumor immunity Effects 0.000 description 6
- 230000001086 cytosolic effect Effects 0.000 description 6
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 208000014829 head and neck neoplasm Diseases 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000003285 pharmacodynamic effect Effects 0.000 description 6
- 230000002035 prolonged effect Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 6
- 206010046766 uterine cancer Diseases 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 241000239290 Araneae Species 0.000 description 5
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 5
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 5
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 5
- 206010012735 Diarrhoea Diseases 0.000 description 5
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 5
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 5
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 5
- 208000034578 Multiple myelomas Diseases 0.000 description 5
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 206010042971 T-cell lymphoma Diseases 0.000 description 5
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 5
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 5
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 5
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 5
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 238000001574 biopsy Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000000973 chemotherapeutic effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 201000005787 hematologic cancer Diseases 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000000306 recurrent effect Effects 0.000 description 5
- 229960003787 sorafenib Drugs 0.000 description 5
- 206010041823 squamous cell carcinoma Diseases 0.000 description 5
- 238000002626 targeted therapy Methods 0.000 description 5
- 229960000235 temsirolimus Drugs 0.000 description 5
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 5
- 239000011534 wash buffer Substances 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 4
- 101710168331 ALK tyrosine kinase receptor Proteins 0.000 description 4
- 101710144268 B- and T-lymphocyte attenuator Proteins 0.000 description 4
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 4
- 208000003950 B-cell lymphoma Diseases 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 4
- 238000009007 Diagnostic Kit Methods 0.000 description 4
- 208000010201 Exanthema Diseases 0.000 description 4
- 208000017604 Hodgkin disease Diseases 0.000 description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 4
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 4
- 206010062016 Immunosuppression Diseases 0.000 description 4
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 4
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 4
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 4
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 4
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 4
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 4
- 206010070308 Refractory cancer Diseases 0.000 description 4
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 4
- 206010047642 Vitiligo Diseases 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000004037 angiogenesis inhibitor Substances 0.000 description 4
- 238000011122 anti-angiogenic therapy Methods 0.000 description 4
- 230000005975 antitumor immune response Effects 0.000 description 4
- 229960000397 bevacizumab Drugs 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229960003668 docetaxel Drugs 0.000 description 4
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 4
- 201000005884 exanthem Diseases 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 4
- 210000004408 hybridoma Anatomy 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000014828 interferon-gamma production Effects 0.000 description 4
- 230000002045 lasting effect Effects 0.000 description 4
- 238000009092 lines of therapy Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 description 4
- 229960005079 pemetrexed Drugs 0.000 description 4
- 102000013415 peroxidase activity proteins Human genes 0.000 description 4
- 108040007629 peroxidase activity proteins Proteins 0.000 description 4
- 201000006037 primary mediastinal B-cell lymphoma Diseases 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 4
- 238000003127 radioimmunoassay Methods 0.000 description 4
- 206010037844 rash Diseases 0.000 description 4
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 4
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 4
- 201000000849 skin cancer Diseases 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 4
- 229960001796 sunitinib Drugs 0.000 description 4
- 230000002459 sustained effect Effects 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 3
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 3
- 206010005949 Bone cancer Diseases 0.000 description 3
- 208000018084 Bone neoplasm Diseases 0.000 description 3
- 206010006143 Brain stem glioma Diseases 0.000 description 3
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 3
- 102000001301 EGF receptor Human genes 0.000 description 3
- 108060006698 EGF receptor Proteins 0.000 description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 3
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 3
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 3
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 3
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 102000002698 KIR Receptors Human genes 0.000 description 3
- 108010043610 KIR Receptors Proteins 0.000 description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 description 3
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 3
- 206010052178 Lymphocytic lymphoma Diseases 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 206010028813 Nausea Diseases 0.000 description 3
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 3
- 208000002471 Penile Neoplasms Diseases 0.000 description 3
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 3
- 201000005746 Pituitary adenoma Diseases 0.000 description 3
- 206010061538 Pituitary tumour benign Diseases 0.000 description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 108010091528 Proto-Oncogene Proteins B-raf Proteins 0.000 description 3
- 102000018471 Proto-Oncogene Proteins B-raf Human genes 0.000 description 3
- 208000003251 Pruritus Diseases 0.000 description 3
- 238000010240 RT-PCR analysis Methods 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 208000015634 Rectal Neoplasms Diseases 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 3
- 230000006044 T cell activation Effects 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 3
- 208000024313 Testicular Neoplasms Diseases 0.000 description 3
- 206010057644 Testis cancer Diseases 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 3
- 206010046458 Urethral neoplasms Diseases 0.000 description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 3
- 201000003761 Vaginal carcinoma Diseases 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 3
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 208000019065 cervical carcinoma Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 210000000750 endocrine system Anatomy 0.000 description 3
- 201000003914 endometrial carcinoma Diseases 0.000 description 3
- 229960001433 erlotinib Drugs 0.000 description 3
- 201000001343 fallopian tube carcinoma Diseases 0.000 description 3
- 206010016256 fatigue Diseases 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 230000005745 host immune response Effects 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 208000026037 malignant tumor of neck Diseases 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 210000002752 melanocyte Anatomy 0.000 description 3
- 239000003147 molecular marker Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008693 nausea Effects 0.000 description 3
- 210000002990 parathyroid gland Anatomy 0.000 description 3
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 3
- 229960000639 pazopanib Drugs 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 208000021310 pituitary gland adenoma Diseases 0.000 description 3
- 239000000902 placebo Substances 0.000 description 3
- 229940068196 placebo Drugs 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 206010038038 rectal cancer Diseases 0.000 description 3
- 201000001275 rectum cancer Diseases 0.000 description 3
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- 208000017572 squamous cell neoplasm Diseases 0.000 description 3
- 238000012409 standard PCR amplification Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 201000003120 testicular cancer Diseases 0.000 description 3
- 210000001685 thyroid gland Anatomy 0.000 description 3
- 230000005747 tumor angiogenesis Effects 0.000 description 3
- 210000000626 ureter Anatomy 0.000 description 3
- 208000013013 vulvar carcinoma Diseases 0.000 description 3
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 2
- 206010069754 Acquired gene mutation Diseases 0.000 description 2
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 208000000059 Dyspnea Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 238000000729 Fisher's exact test Methods 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 2
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108091008028 Immune checkpoint receptors Proteins 0.000 description 2
- 102000037978 Immune checkpoint receptors Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 2
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 2
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 2
- 241000282567 Macaca fascicularis Species 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 102000007557 Melanoma-Specific Antigens Human genes 0.000 description 2
- 108010071463 Melanoma-Specific Antigens Proteins 0.000 description 2
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 2
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 2
- 206010059282 Metastases to central nervous system Diseases 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000013760 Microphthalmia-Associated Transcription Factor Human genes 0.000 description 2
- 108010050345 Microphthalmia-Associated Transcription Factor Proteins 0.000 description 2
- 102100038082 Natural killer cell receptor 2B4 Human genes 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 206010036524 Precursor B-lymphoblastic lymphomas Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000020982 T-lymphoblastic lymphoma Diseases 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 2
- 102000003425 Tyrosinase Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 210000005006 adaptive immune system Anatomy 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- 229960003005 axitinib Drugs 0.000 description 2
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 208000025997 central nervous system neoplasm Diseases 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 206010009887 colitis Diseases 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 229960005061 crizotinib Drugs 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 238000012303 cytoplasmic staining Methods 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 206010061428 decreased appetite Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 201000003444 follicular lymphoma Diseases 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002489 hematologic effect Effects 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 102000043321 human CTLA4 Human genes 0.000 description 2
- 102000054584 human Y acceptor Human genes 0.000 description 2
- 108700023876 human Y acceptor Proteins 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 2
- 230000008004 immune attack Effects 0.000 description 2
- 230000037451 immune surveillance Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000011532 immunohistochemical staining Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000011503 in vivo imaging Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 230000003908 liver function Effects 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- 238000012737 microarray-based gene expression Methods 0.000 description 2
- 230000004001 molecular interaction Effects 0.000 description 2
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 229940023041 peptide vaccine Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000092 prognostic biomarker Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 210000003289 regulatory T cell Anatomy 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 201000006845 reticulosarcoma Diseases 0.000 description 2
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000037439 somatic mutation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 229960004964 temozolomide Drugs 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- 231100000402 unacceptable toxicity Toxicity 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 229940049068 xalkori Drugs 0.000 description 2
- 229940055760 yervoy Drugs 0.000 description 2
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 1
- SPMVMDHWKHCIDT-UHFFFAOYSA-N 1-[2-chloro-4-[(6,7-dimethoxy-4-quinolinyl)oxy]phenyl]-3-(5-methyl-3-isoxazolyl)urea Chemical compound C=12C=C(OC)C(OC)=CC2=NC=CC=1OC(C=C1Cl)=CC=C1NC(=O)NC=1C=C(C)ON=1 SPMVMDHWKHCIDT-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 229940125431 BRAF inhibitor Drugs 0.000 description 1
- 101100510617 Caenorhabditis elegans sel-8 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 1
- 101100166600 Homo sapiens CD28 gene Proteins 0.000 description 1
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 1
- 101001042104 Homo sapiens Inducible T-cell costimulator Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 208000029966 Hutchinson Melanotic Freckle Diseases 0.000 description 1
- 208000029663 Hypophosphatemia Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 1
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 1
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102100030704 Interleukin-21 Human genes 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- UCEQXRCJXIVODC-PMACEKPBSA-N LSM-1131 Chemical compound C1CCC2=CC=CC3=C2N1C=C3[C@@H]1C(=O)NC(=O)[C@H]1C1=CNC2=CC=CC=C12 UCEQXRCJXIVODC-PMACEKPBSA-N 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 206010024218 Lentigo maligna Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 102100020862 Lymphocyte activation gene 3 protein Human genes 0.000 description 1
- 206010025327 Lymphopenia Diseases 0.000 description 1
- 229940125895 MET kinase inhibitor Drugs 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010050513 Metastatic renal cell carcinoma Diseases 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 1
- 241000282339 Mustela Species 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 101710141230 Natural killer cell receptor 2B4 Proteins 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- 101710094000 Programmed cell death 1 ligand 1 Proteins 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 208000029464 Pulmonary infiltrates Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 206010067868 Skin mass Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 101800001271 Surface protein Proteins 0.000 description 1
- 230000017274 T cell anergy Effects 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 229940110282 alimta Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000009464 antigen specific memory response Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 102000004441 bcr-abl Fusion Proteins Human genes 0.000 description 1
- 108010056708 bcr-abl Fusion Proteins Proteins 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000012410 cDNA cloning technique Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 230000007699 co-inhibitory pathway Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011254 conventional chemotherapy Methods 0.000 description 1
- 229940028617 conventional vaccine Drugs 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000002435 cytoreductive effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000004076 epigenetic alteration Effects 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000027950 fever generation Effects 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 210000003701 histiocyte Anatomy 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 229960003685 imatinib mesylate Drugs 0.000 description 1
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000008102 immune modulation Effects 0.000 description 1
- 230000007188 immune regulating pathway Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 1
- 238000013388 immunohistochemistry analysis Methods 0.000 description 1
- 230000003259 immunoinhibitory effect Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229950000038 interferon alfa Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000000503 lectinlike effect Effects 0.000 description 1
- 229950011263 lirilumab Drugs 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 231100001023 lymphopenia Toxicity 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 210000000713 mesentery Anatomy 0.000 description 1
- 208000037843 metastatic solid tumor Diseases 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 229950003968 motesanib Drugs 0.000 description 1
- RAHBGWKEPAQNFF-UHFFFAOYSA-N motesanib Chemical compound C=1C=C2C(C)(C)CNC2=CC=1NC(=O)C1=CC=CN=C1NCC1=CC=NC=C1 RAHBGWKEPAQNFF-UHFFFAOYSA-N 0.000 description 1
- 229940014456 mycophenolate Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004650 oncogenic pathway Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 101710135378 pH 6 antigen Proteins 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 238000009116 palliative therapy Methods 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- WBXPDJSOTKVWSJ-ZDUSSCGKSA-L pemetrexed(2-) Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 WBXPDJSOTKVWSJ-ZDUSSCGKSA-L 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- 210000004214 philadelphia chromosome Anatomy 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000011518 platinum-based chemotherapy Methods 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 238000013105 post hoc analysis Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 238000011470 radical surgery Methods 0.000 description 1
- 238000007409 radiographic assessment Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000011268 retreatment Methods 0.000 description 1
- 210000000574 retroperitoneal space Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 231100000279 safety data Toxicity 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009118 salvage therapy Methods 0.000 description 1
- 238000013077 scoring method Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000010911 splenectomy Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000002719 stereotactic radiosurgery Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000009121 systemic therapy Methods 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 206010043778 thyroiditis Diseases 0.000 description 1
- 229950005976 tivantinib Drugs 0.000 description 1
- 229960000940 tivozanib Drugs 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229940030325 tumor cell vaccine Drugs 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940034727 zelboraf Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70596—Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention relates to methods for immunotherapy of a cancer patient comprising administering to the patient antibodies that disrupt the PD-l/PD-Ll signaling pathway.
- a biomarker may be used as part of this treatment for identifying suitable patients for immunotherapy and for predicting the efficacy of anti-PD-1 treatment.
- the adaptive immune system comprised of T and B lymphocytes, has powerful anti-cancer potential, with a broad capacity and extraordinar specificity to respond to diverse tumor antigens. Further, the immune system demonstrates considerable plasticity and a memory component. The successful harnessing of all these attributes of the adaptive immune system would make immunotherapy unique among all cancer treatment modalities.
- tumors may exploit several distinct mechanisms to actively subvert anti-tumor immunity. These mechanisms include dysfunctional T-cell signaling (Mizoguchi et al, 1992), suppressive regulatory cells (Facciabene et al, 2012), and the co-opting of endogenous "immune checkpoints," which serve to down-modulate the intensity of adaptive immune responses and protect normal tissues from collateral damage, by tumors to evade immune destruction (Topalian et al., 20 ⁇ ⁇ ; Mellman et al., 2011).
- Lymphocyte Antigen-4 (CTLA-4) for the treatment of patients with advanced melanoma (Hodi et al., 2010) and, as described herein, the development of Abs that block the inhibitory PD- 1 pathway.
- PD-1 is a key immune checkpoint receptor expressed by activated T and B cells and mediates immunosuppression.
- PD-1 is a member of the CD28 family of receptors, which includes CD28, CTLA-4, ICOS, PD-1, and BTLA.
- Two cell surface glycoprotein ligands for PD-1 have been identified, Programmed Death Ligand-1 (PD-L1) and Programmed Death Ligand-2 (PD-L2), that are expressed on antigen- presenting cells as well as many human cancers and have been shown to downregulate T cell activation and cytokine secretion upon binding to PD-1 (Freeman et al., 2000;
- PD-1 primarily functions in peripheral tissues where activated T-cells may encounter the immunosuppressive PD-L1 (B7-H1) and PD- L2 (B7-DC) ligands expressed by tumor and/or stromal cells (Flies et al, 201 1; Topalian et al., 2012a). Inhibition of the PD-l/PD-Ll interaction mediates potent antitumor activity in preclinical models (U.S. Patent Nos.
- the present disclosure provides a method for immunotherapy of a subject afflicted with cancer, which method comprises administering to the subject a composition comprising a therapeutically effective amount of an agent that disrupts, reduces or suppresses signaling from an inhibitory immunoregulator.
- the agent is an Ab.
- the inhibitory immunoregulator is a component of the PD-1/PD-L1 signaling pathway.
- the Ab disrupts the interaction between PD-1 and PD-L1.
- the Ab is an anti-PD-1 Ab of the invention or an anti-PD-Ll Ab of the invention.
- the anti-PD-1 Ab of the invention is nivolumab (BMS-936558) and the anti-PD-Ll Ab of the invention is BMS-936559.
- the subject has been pre-treated for the cancer.
- the cancer is an advanced, metastatic and/or refractory cancer.
- the administration of the Ab or antigen-binding portion to the subject thereof induces a durable clinical response in the subject.
- This disclosure also provides a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) selecting a subject that is a suitable candidate for immunotherapy, the selecting comprising (i) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells, (ii) assessing the proportion of cells in the test tissue sample that express PD-L1 on the cell surface, and (iii) selecting the subject as a suitable candidate based on an assessment that the proportion of cells in the test tissue sample that express PD-L1 on the cell surface exceeds a predetermined threshold level; and (b) administering a composition comprising a therapeutically effective amount of an agent that disrupts signaling from the PD-1 /PD-Ll pathway, for example, an anti-PD-1 or an anti-PD-Ll Ab, to the selected subject.
- a composition comprising a therapeutically effective amount of an agent that disrupts signaling from the PD-1 /PD-
- the disclosure further provides a method for treatment of a subject afflicted with cancer, which method comprises: (a) selecting a subject that is not suitable for immunotherapy with an agent that disrupts signaling from the PD-1/PD-L1 pathway, for example, an anti-PD-1 or an anti-PD-Ll Ab, the selecting comprising (i) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (ii) assessing the proportion of cells in the test tissue sample that express PD-Ll on the cell surface; and (iii) selecting the subject as not suitable for said immunotherapy based on an assessment that the proportion of cells in the test tissue sample that express PD-Ll on the cell surface is less than a predetermined threshold level; and (b) administering a standard- of-care therapeutic other than an agent that disrupts signaling from the PD-1/PD-L1 pathway to the selected subject.
- the disclosure provides a method for selecting a cancer patient for immunotherapy with an agent that disrupts signaling from the PD-1/PD-L1 pathway, for example, an anti-PD-1 or an anti-PD-Ll Ab, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-Ll on the cell surface; (c) comparing the proportion of cells that express PD-Ll on the cell surface with a predetermined threshold proportion; and (d) selecting the patient for immunotherapy based on an assessment that PD-Ll is expressed in cells of the test tissue sample.
- This disclosure further provides a method for predicting the therapeutic effectiveness of an agent that disrupts signaling from the PD-1/PD-L1 pathway, for example, an anti-PD-1 or an anti-PD-Ll Ab, for treating a cancer patient, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-Ll on the cell surface; (c) comparing the proportion of cells that express PD-Ll on the cell surface with a predetermined threshold value; and (d) predicting the therapeutic effectiveness of the agent, wherein if the proportion of cells that express PD-L1 on the cell surface exceeds the threshold proportion the agent is predicted to be effective in treating the patient, and wherein if the proportion of cells that express PD-L1 on the cell surface is below the threshold proportion the agent is predicted to not be effective in treating the patient.
- the present disclosure also provides a method for determining an
- immunotherapeutic regimen comprising an agent that disrupts signaling from the PD- 1/PD-Ll pathway, for example, an anti-PD-1 or an anti-PD-Ll Ab, for treating a cancer patient, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-L1 on the cell surface; (c) comparing the proportion of cells that express PD-L1 on the cell surface with a predetermined threshold proportion; and (d) determining an immunotherapeutic regimen comprising the agent based on the determination that the proportion of cells that express PD-L1 on the cell surface exceeds the predetermined threshold proportion.
- the test tissue sample is a formalin-fixed and paraffin-embedded (FFPE) sample.
- FFPE formalin-fixed and paraffin-embedded
- assessing the proportion of cells in the test tissue sample that express PD-L1 on the cell surface is achieved by immunohistochemical (IHC) staining of the FFPE sample.
- IHC immunohistochemical
- the mAb 28-8 or 5H1 is used in an automated IHC assay to bind to PD-L1 on the surface of cells in the test tissue sample.
- the cancer is melanoma (MEL), renal cell carcinoma (RCC), squamous non-small cell lung cancer (NSCLC), non-squamous NSCLC, colorectal cancer (CRC), castration-resistant prostate cancer (CRPC), hepatocellular carcinoma (HCC), squamous cell carcinoma of the head and neck, carcinomas of the esophagus, ovary, gastrointestinal tract and breast, or a hematologic malignancy such as multiple myeloma, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma/primary mediastinal B-cell lymphoma, and chronic myelogenous leukemia.
- MEL melanoma
- RCC renal cell carcinoma
- NSCLC non-small cell lung cancer
- CRCC colorectal cancer
- CRPC castration-resistant prostate cancer
- HCC hepatocellular carcinoma
- squamous cell carcinoma of the head and neck carcinomas
- This invention additionally provides a mAb or antigen-binding portion thereof that binds specifically to a cell surface-expressed human PD-L1 antigen in a FFPE tissue sample.
- the mAb or antigen-binding portion thereof does not bind to a cytoplasmic PD-L1 antigen in the FFPE tissue sample.
- the monoclonal Ab (mAb) is the rabbit mAb designated 28-8, 28-1, 28-12, 29-8 or 20-12, or the mouse mAb designated 5H1.
- FIGS 1A-1C Cross-competition between 5C4 and other HuMab anti-PD-1 mAbs for binding to human PD-1 (hPD-1) expressed on CHO cells.
- A the 5C4 Fab fragment substantially blocked the binding of mAbs 5C4 itself, as well as the binding of 2D3 and 7D3;
- B the 5C4 Fab fragment substantially blocked the binding of mAb 4H1 ;
- C the 5C4 mAb substantially blocked the binding of mAb 17D8.
- Figures 2A-2F Cross-competition of FITC-conjugated human anti-hPD-Ll mAbs for binding to human PDF-LI (hPD-Ll) expressed on CHO cells.
- A Binding of labeled 10H10 was partially blocked by 10A5, 1 1E6 and 13G4 and was significantly blocked by itself;
- B Binding of labeled 3G10 was significantly blocked by each of the tested anti-PD-Ll Abs except 10H10;
- C Binding of labeled 10A5 was significantly blocked by each of the tested anti-PD-Ll Abs except 10H10;
- D Binding of labeled 1 1E6 was significantly blocked by each of the tested anti-PD-Ll Abs except 10H10; and E,
- Binding of labeled 12A4 was significantly blocked by each of the tested anti-PD-Ll Abs except 10H10; and F, Binding of labeled 13G4 was significantly blocked by each of the tested anti-PD-Ll Abs except 10H10.
- FIG. 1 Cross-competitive inhibition of binding of biotinylated mAb 12A4 to ES-2 cells by human anti-hPD-Ll mAbs. Fluorescence of bound biotin-12A4 is plotted against the concentration of unlabeled hPD-Ll HuMabs.
- FIG. 4 Spider plot showing activity of anti-PD-1 mAb in patients with treatment-refractory melanoma (MEL).
- MEL treatment-refractory melanoma
- a representative plot of changes in tumor burden over time demonstrates the time course of change in the sum of the longest diameters of target lesions, compared with baseline, in 27 MEL patients treated with 5C4 at a dose of 1.0 mg/kg.
- OR objective response
- responses were durable and evident by the end of cycle 3 (6 months) of treatment (vertical dashed line).
- Tumor regressions followed conventional as well as "immune- related" patterns of response, such as prolonged reduction in tumor burden in the presence of new lesions.
- FIG. 1 Activity of anti-PD-1 mAb in patient with metastatic RCC. Partial regression of metastatic RCC in a 57-year-old patient treated with 5C4 at 1 mg/kg is illustrated. This patient had previously undergone radical surgery and had developed progressive disease after receiving sunitinib, temsirolimus, sorafenib, and pazopanib. Arrows show regression of recurrent tumor in the operative field.
- FIG. 6 Activity of anti-PD- 1 mAb in patient with metastatic MEL.
- a complete response of metastatic MEL is illustrated in a 62-year-old patient treated with 5C4 at 3 mg/kg, associated with vitiligo, (i) Pretreatment CT scan, inguinal lymph node metastasis (arrow); (ii) after 13 months of treatment. Numerous metastases in the subcutaneous tissue and retroperitoneum also regressed completely (not shown). Vitiligo developed after 6 months of treatment; photos taken at 9 months under visible light (iii) and ultraviolet light (iv).
- Figure 7 Activity of anti-PD-1 mAb in patient with metastatic NSCLC. A partial response is illustrated in a patient with metastatic NSCLC (nonsquamous histology) treated with 5C4 at 10 mg/kg. Arrows show initial progression in pulmonary lesions followed by regression ("immune-related" pattern of response).
- FIGS 8A and 8B Correlation between tumor PD-Ll expression and anti-PD-1 clinical response.
- Pretreatment tumor cell surface expression of PD-Ll as determined by IHC on formalin-fixed paraffin-embedded specimens, correlates with OR to PD-1 blockade.
- A There was a significant correlation of tumor cell surface PD-Ll expression with objective clinical response. No patients with PD-Ll negative tumors experienced an OR.
- Examples of IHC analysis with the anti- PD-Ll mAb 5H1 are shown in a melanoma lymph node metastasis (top), a renal cell cancer nephrectomy specimen (middle), and a lung adenocarcinoma brain metastasis (bottom). All 400X original magnification. Arrows indicate one of many tumor cells in each specimen with surface membrane staining for PD-Ll . Asterisk indicates a normal glomerulus in the nephrectomy specimen, which is negative for PD-L1 staining.
- Figure 9 Graphical comparison of the binding of mAbs 28-8 and 5H1 to PD-L1 antigen in tumor tissues by histoscore analysis. The rabbit mAb 28-8 showed higher histoscores in 7 out of 10 samples tested.
- FIGS 10A-10D Spider plot showing activity of anti-PD-Ll mAb in patients with treatment-refractory MEL and NSCLC. Representative plots demonstrate the time course of target lesion tumor burden over time in patients with MEL treated with BMS- 936559 at doses of 1 (A), 3 (B), 10 mg/kg (C) and in patients with NSCLC treated at 10 mg/kg (D). In the majority of patients who achieved ORs, responses were durable and were evident by the end of cycle 2 (3 months) of treatment, irrespective of dose or tumor type. Tumor regressions followed conventional as well as "immune-related" patterns of response.
- Figure 1 Complete response in a patient with melanoma treated with BMS- 936559 at 3 mg/kg. Circles indicate an initial increase in the size of pulmonary nodules at 6 weeks and 3 months followed by complete regression at 10 months ("immune-related" pattern of response).
- FIG. 12 Complete response in a patient with melanoma treated with BMS- 936559 at 1 mg/kg. This patient developed an isolated brain metastasis 3 months after initiation of treatment that was successfully treated with stereotactic radiosurgery. A partial response in abdominal disease (circled) was noted at 8 months, with no evidence of disease at 15 months.
- Figures 14A and 14B Clinical activity of MEL patients who received a concurrent regimen of nivolumab and ipilimumab.
- A Representative spider plots show changes from baseline in the tumor burden, measured as the sum of products of perpendicular diameters of all target lesions, in patients who received the concurrent regimen of 1 mg/kg nivolumab + 3 mg/kg ipilimumab, the MTD.
- Triangles indicate the first occurrence of a new lesion.
- B A representative waterfall plot shows maximum percentage response in baseline target lesions in patients who received the concurrent regimen.
- FIG. 15 Tumor regressions of a 52-year old MEL patient who received a concurrent regimen of 1 mg/kg nivolumab + 3 mg/kg ipilimumab. This patient presented with extensive neck, mediastinal, axillary, abdominal and pelvic lymphadenopathy, bilateral pulmonary nodules, small bowel metastasis, peritoneal implants and diffuse subcutaneous nodules.
- Baseline lactate dehydrogenase (LDH) was 2.25 x upper limit of normal, hemoglobin was 9.7 g/dL, and symptoms included nausea and vomiting.
- Within 4 weeks of treatment the LDH normalized, symptoms improved (appetite increased, nausea decreased), and cutaneous lesions were regressing. At week- 12 scans, there was marked reduction in all areas of disease. Arrows denote location of metastatic disease.
- FIGS 16A-16C Clinical activity of MEL patients who received various concurrent regimens of nivolumab and ipilimumab.
- Representative spider plots show changes from baseline in the tumor burden, measured as the sum of products of perpendicular diameters of all target lesions, in patients who received a concurrent regimen of 0.3 mg/kg nivolumab + 3 mg/kg ipilimumab (A), 3 mg/kg nivolumab + 1 mg/kg ipilimumab (B), or 3 mg/kg nivolumab + 3 mg/kg ipilimumab (C).
- Triangles indicate the first occurrence of a new lesion.
- FIG. 17 Tumor regressions of a 61 -year old MEL patient who received a concurrent regimen of 0.3 mg/kg nivolumab + 3 mg/kg ipilimumab.
- FIGS 18A-18C Clinical activity of MEL patients who received a sequenced regimen of nivolumab and ipilimumab.
- Representative spider plots show changes from baseline in the tumor burden, measured as the sum of products of perpendicular diameters of all target lesions, in patients who received a sequenced regimen of 1 mg/kg nivolumab (A) or 3 mg/kg nivolumab (B) after prior ipilimumab therapy.
- Triangles indicate the first occurrence of a new lesion.
- C A representative waterfall plot shows maximum percentage response in baseline target lesions in patients who received a sequenced regimen; "*" denotes patients who had radiographic progression with prior ipilimumab treatment.
- the present invention relates to methods for immunotherapy of a subject afflicted with diseases such as cancer or an infectious disease, which methods comprise administering to the subject a composition comprising a therapeutically effective amount of a compound or agent that potentiates an endogenous immune response, either stimulating the activation of the endogenous response or inhibiting the suppression of the endogenous response. More specifically, this disclosure provides methods for potentiating an endogenous immune response in a subject afflicted with cancer so as to thereby treat the patient, which method comprises administering to the subject a therapeutically effective amount of an agent, such as an Ab or an antigen-binding portion thereof, that disrupts or inhibits signaling from an inhibitory immunoregulator.
- an agent such as an Ab or an antigen-binding portion thereof
- the inhibitory immunoregulator is a component of the PD-1/PD-L1 signaling pathway. Accordingly, certain embodiments of the invention provide methods for immunotherapy of a subject afflicted with cancer, which methods comprise administering to the subject a therapeutically effective amount of an Ab or an antigen- binding portion thereof that disrupts the interaction between the PD-1 receptor and its ligand, PD-L1. In certain preferred embodiments, the Ab or antigen-binding portion thereof binds specifically to PD-1. In other preferred embodiments, the Ab or antigen- binding portion thereof binds specifically to PD-L1. Certain embodiments comprise the use of an anti-PD- 1 Ab is in combination with another anti-cancer agent, preferably an anti-CTLA-4 Ab, to treat cancer.
- another anti-cancer agent preferably an anti-CTLA-4 Ab
- the subject is selected as suitable for immunotherapy in a method comprising measuring the surface expression of PD-L1 in a test tissue sample obtained from a patient with cancer of the tissue, for example, determining the proportion of cells in the test tissue sample that express PD-L1 on the cell surface, and selecting the patient for immunotherapy based on an assessment that PD-L1 is expressed on the surface of cells in the test tissue sample.
- administering refers to the physical introduction of a composition comprising a therapeutic agent to a subject, using any of the various methods and delivery systems known to those skilled in the art.
- Preferred routes of administration for Abs of the invention include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion.
- parenteral administration means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation.
- an Ab of the invention can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- an "adverse event” as used herein is any unfavorable and generally unintended or undesirable sign (including an abnormal laboratory finding), symptom, or disease associated with the use of a medical treatment.
- an adverse event may be associated with activation of the immune system or expansion of immune system cells (e.g., T cells) in response to a treatment.
- a medical treatment may have one or more associated AEs and each AE may have the same or different level of severity.
- Reference to methods capable of "altering adverse events” means a treatment regime that decreases the incidence and/or severity of one or more AEs associated with the use of a different treatment regime.
- an “antibody” shall include, without limitation, a glycoprotein
- immunoglobulin which binds specifically to an antigen and comprises at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, or an antigen- binding portion thereof.
- H chain comprises a heavy chain variable region
- VH heavy chain constant region
- the heavy chain constant region comprises three constant domains, Cm, Cm and Cm-
- Each light chain comprises a light chain variable region (abbreviated herein as Vz) and a light chain constant region.
- the light chain constant region is comprises one constant domain, CL.
- the YH and Vz regions can be further subdivided into regions of hypervariability, termed
- CDRs complementarity determining regions
- FR framework regions
- Each ⁇ H and Vz comprises three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
- the constant regions of the Abs may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
- Antibodies typically bind specifically to their cognate antigen with high affinity, reflected by a dissociation constant (K D ) of 10 ⁇ 5 to 10 ⁇ u M "1 or less. Any K D greater than about 10 ⁇ 4 M "1 is generally considered to indicate nonspecific binding.
- an Ab that "binds specifically" to an antigen refers to an Ab that binds to the antigen and substantially identical antigens with high affinity, which means having a 3 ⁇ 4 of 10 ⁇ 7 M or less, preferably 10 "8 M or less, even more preferably 5 x 10 "9 M or less, and most preferably between 10 ⁇ 8 M and 10 ⁇ 10 M or less, but does not bind with high affinity to unrelated antigens.
- an antigen is "substantially identical" to a given antigen if it exhibits a high degree of sequence identity to the given antigen, for example, if it exhibits at least 80%, at least 90%, preferably at least 95%, more preferably at least 97%, or even more preferably at least 99% sequence identity to the sequence of the given antigen.
- an Ab that binds specifically to human PD-1 may also have cross-reactivity with PD-1 antigens from certain primate species but may not cross-react with PD-1 antigens from certain rodent species or with an antigen other than PD-1, e.g., a human PD-L1 antigen.
- An immunoglobulin may derive from any of the commonly known isotypes, including but not limited to IgA, secretory IgA, IgG and IgM.
- IgG subclasses are also well known to those in the art and include but are not limited to human IgGl, IgG2, IgG3 and IgG4.
- “Isotype” refers to the Ab class or subclass (e.g., IgM or IgGl) that is encoded by the heavy chain constant region genes.
- antibody includes, by way of example, both naturally occurring and non-naturally occurring Abs; monoclonal and polyclonal Abs; chimeric and humanized Abs; human or nonhuman Abs; wholly synthetic Abs; and single chain Abs.
- a nonhuman Ab may be humanized by recombinant methods to reduce its immunogenicity in man.
- the term "antibody” also includes an antigen-binding fragment or an antigen-binding portion of any of the aforementioned immunoglobulins, and includes a monovalent and a divalent fragment or portion, and a single chain Ab.
- an “isolated antibody” refers to an Ab that is substantially free of other Abs having different antigenic specificities (e.g., an isolated Ab that binds specifically to PD-1 is substantially free of Abs that bind specifically to antigens other than PD-1).
- An isolated Ab that binds specifically to PD-1 may, however, have cross-reactivity to other antigens, such as PD-1 molecules from different species.
- an isolated Ab may be substantially free of other cellular material and/or chemicals.
- isolated nucleic acid refers to a nucleic acid composition of matter that is markedly different, i.e., has a distinctive chemical identity, nature and utility, from nucleic acids as they exist in nature.
- an isolated DNA unlike native DNA, is a free-standing portion of a native DNA and not an integral part of a larger structural complex, the chromosome, found in nature.
- an isolated DNA unlike native genomic DNA, can typically be used in applications or methods for which native genomic DNA is unsuited, e.g., as a PCR primer or a hybridization probe for, among other things, measuring gene expression and detecting biomarker genes or mutations for diagnosing disease or assessing the efficacy of a therapeutic.
- An isolated nucleic acid may be purified so as to be substantially free of other cellular components or other contaminants, e.g. , other cellular nucleic acids or proteins, using standard techniques well known in the art.
- isolated nucleic acids include fragments of genomic DNA, PCR-amplified DNA, cDNA and RNA.
- mAb monoclonal antibody
- MAbs refers to a preparation of Ab molecules of single molecular composition, i.e., Ab molecules whose primary sequences are essentially identical, and which exhibits a single binding specificity and affinity for a particular epitope.
- a mAb is an example of an isolated Ab.
- MAbs may be produced by hybridoma, recombinant, transgenic or other techniques known to those skilled in the art.
- Human antibody refers to an Ab having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the Ab contains a constant region, the constant region also is derived from human germline immunoglobulin sequences.
- the human Abs of the invention may include amino acid residues not encoded by human germline
- immunoglobulin sequences e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo.
- human antibody as used herein, is not intended to include Abs in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- a “humanized” antibody refers to an Ab in which some, most or all of the amino acids outside the CDR domains of a non-human Ab are replaced with corresponding amino acids derived from human immunoglobulins. In one embodiment of a humanized form of an Ab, some, most or all of the amino acids outside the CDR domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the Ab to bind to a particular antigen.
- a "humanized” Ab retains an antigenic specificity similar to that of the original Ab.
- a “chimeric antibody” refers to an Ab in which the variable regions are derived from one species and the constant regions are derived from another species, such as an Ab in which the variable regions are derived from a mouse Ab and the constant regions are derived from a human Ab.
- an “antigen-binding portion" of an Ab refers to one or more fragments of an Ab that retain the ability to bind specifically to the antigen bound by the whole Ab.
- a “cancer” refers a broad group of various diseases characterized by the uncontrolled growth of abnormal cells in the body. Unregulated cell division and growth divide and grow results in the formation of malignant tumors that invade neighboring tissues and may also metastasize to distant parts of the body through the lymphatic system or bloodstream.
- an “immune response” refers to the action of a cell of the immune system (for example, T lymphocytes, B lymphocytes, natural killer (NK) cells, macrophages, eosinophils, mast cells, dendritic cells and neutrophils) and soluble macromolecules produced by any of these cells or the liver (including Abs, cytokines, and complement) that results in selective targeting, binding to, damage to, destruction of, and/or elimination from a vertebrate's body of invading pathogens, cells or tissues infected with pathogens, cancerous or other abnormal cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues.
- a cell of the immune system for example, T lymphocytes, B lymphocytes, natural killer (NK) cells, macrophages, eosinophils, mast cells, dendritic cells and neutrophils
- soluble macromolecules produced by any of these cells or the liver (including Abs, cytokines, and complement) that results
- an “immunoregulator” refers to a substance, an agent, a signaling pathway or a component thereof that regulates an immune response. "Regulating,” “modifying” or
- modulating an immune response refers to any alteration in a cell of the immune system or in the activity of such cell. Such regulation includes stimulation or suppression of the immune system which may be manifested by an increase or decrease in the number of various cell types, an increase or decrease in the activity of these cells, or any other changes which can occur within the immune system. Both inhibitory and stimulatory immunoregulators have been identified, some of which may have enhanced function in the cancer microenvironment.
- immunotherapy refers to the treatment of a subject afflicted with, or at risk of contracting or suffering a recurrence of, a disease by a method comprising inducing, enhancing, suppressing or otherwise modifying an immune response.
- Treatment or “therapy” of a subject refers to any type of intervention or process performed on, or the administration of an active agent to, the subject with the objective of reversing, alleviating, ameliorating, inhibiting, slowing down or preventing the onset, progression, development, severity or recurrence of a symptom, complication, condition or biochemical indicia associated with a disease.
- effectiveness or potency of an existing immune response in a subject may be achieved, for example, by overcoming mechanisms that suppress the endogenous host immune response or by stimulating mechanisms that enhance the endogenous host immune response.
- a “predetermined threshold value,” relating to cell surface PD-Ll expression, refers to the proportion of cells in a test tissue sample comprising tumor cells and tumor- infiltrating inflammatory cells above which the sample is scored as being positive for cell surface PD-Ll expression.
- the predetermined threshold value for cells expressing PD-Ll on the cell surface ranges from at least about 0.01% to at least about 20% of the total number of cells.
- the predetermined threshold value for cells expressing PD-Ll on the cell surface ranges from at least about 0.1% to at least about 10% of the total number of cells. More preferably, the predetermined threshold value is at least about 5%. Even more preferably, the predetermined threshold value is at least about 1%, or in the range of 1- 5%.
- the "Programmed Death- 1 (PD-1)" receptor refers to an immuno inhibitory receptor belonging to the CD28 family. PD-1 is expressed predominantly on previously activated T cells in vivo, and binds to two ligands, PD-Ll and PD-L2.
- the term "PD-1” as used herein includes human PD-1 (hPD-1), variants, isoforms, and species homologs of hPD-1, and analogs having at least one common epitope with hPD-1. The complete hPD-1 sequence can be found under GenBank Accession No. U64863.
- P-L1 Programmed Death Ligand-1
- PD-L1 is one of two cell surface glycoprotein ligands for PD- 1 (the other being PD-L2) that downregulate T cell activation and cytokine secretion upon binding to PD-1.
- the term "PD-L1” as used herein includes human PD-L1 (hPD-Ll), variants, isoforms, and species homologs of hPD-Ll, and analogs having at least one common epitope with hPD-Ll .
- the complete hPD-Ll sequence can be found under GenBank Accession No. Q9NZQ7.
- a “signal transduction pathway” or “signaling pathway” refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of the cell.
- a “cell surface receptor” includes, for example, molecules and complexes of molecules that are located on the surface of a cell and are capable of receiving a signal and transmitting such a signal across the plasma membrane of a cell.
- An example of a cell surface receptor of the present invention is the PD- 1 receptor, which is located on the surface of activated T cells, activated B cells and myeloid cells, and transmits a signal that results in a decrease in tumor-infiltrating lymphocytes and a decrease in T cell proliferation.
- an “inhibitor” of signaling refers to a compound or agent that antagonizes or reduces the initiation, reception or transmission of a signal, be that signal stimulatory or inhibitory, by any component of a signaling pathway such as a receptor or its ligand.
- a “subject” includes any human or nonhuman animal.
- nonhuman animal includes, but is not limited to, vertebrates such as nonhuman primates, sheep, dogs, cats, rabbits and ferrets, rodents such as mice, rats and guinea pigs, avian species such as chickens, amphibians, and reptiles.
- the subject is a mammal such as a nonhuman primate, sheep, dog, cat, rabbit, ferret or rodent.
- the subject is a human.
- the terms, "subject,” “patient” and “individual” are used interchangeably herein.
- a “therapeutically effective amount” or “therapeutically effective dosage” of a drug or therapeutic agent, such as an Ab of the invention is any amount of the drug that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom- free periods, or a prevention of impairment or disability due to the disease affliction.
- the ability of a therapeutic agent to promote disease regression can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.
- an anti-cancer agent promotes cancer regression in a subject.
- a therapeutically effective amount of the drug promotes cancer regression to the point of eliminating the cancer.
- “Promoting cancer regression” means that administering an effective amount of the drug, alone or in combination with an anti-neoplastic agent, results in a reduction in tumor growth or size, necrosis of the tumor, a decrease in severity of at least one disease symptom, an increase in frequency and duration of disease symptom- free periods, or a prevention of impairment or disability due to the disease affliction.
- the terms "effective” and “effectiveness” with regard to a treatment includes both pharmacological effectiveness and physiological safety.
- Pharmacological effectiveness refers to the ability of the drug to promote cancer regression in the patient.
- Physiological safety refers to the level of toxicity, or other adverse physiological effects at the cellular, organ and/or organism level (adverse effects) resulting from administration of the drug.
- a therapeutically effective amount of the drug preferably inhibits cell growth or tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
- tumor regression may be observed and continue for a period of at least about 20 days, more preferably at least about 40 days, or even more preferably at least about 60 days.
- immunotherapeutic response pattern refers to a clinical response pattern often observed in cancer patients treated with immunotherapeutic agents that produce antitumor effects by inducing cancer-specific immune responses or by modifying native immune processes.
- This response pattern is characterized by a beneficial therapeutic effect that follows an initial increase in tumor burden or the appearance of new lesions, which in the evaluation of traditional chemotherapeutic agents would be classified as disease progression and would be synonymous with drug failure. Accordingly, proper evaluation of immunotherapeutic agents may require long-term monitoring of the effects of these agents on the target disease.
- a therapeutically effective amount of a drug includes a "prophylactically effective amount," which is any amount of the drug that, when administered alone or in combination with an anti-neoplastic agent to a subject at risk of developing a cancer (e.g., a subject having a pre-malignant condition) or of suffering a recurrence of cancer, inhibits the development or recurrence of the cancer.
- the prophylactically effective amount prevents the development or recurrence of the cancer entirely. “Inhibiting" the development or recurrence of a cancer means either lessening the likelihood of the cancer's development or recurrence, or preventing the development or recurrence of the cancer entirely.
- a "tumor- infiltrating inflammatory cell” is any type of cell that typically participates in an inflammatory response in a subject and which infiltrates tumor tissue. Such cells include tumor-infiltrating lymphocytes (TILs), macrophages, monocytes, eosinophils, histiocytes and dendritic cells.
- TILs tumor-infiltrating lymphocytes
- macrophages macrophages
- monocytes eosinophils
- histiocytes histiocytes and dendritic cells.
- any concentration range, percentage range, ratio range or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated.
- Abs of the present invention include a variety of Abs having structural and functional properties described herein, including high-affinity binding to PD-1 or PD-Ll, respectively. These Abs may be used, for example, as therapeutic Abs to treat subjects afflicted with disease or as reagents in diagnostic assays to detect their cognate antigens.
- Human mAbs Human mAbs (HuMAbs) that bind specifically to PD-1 (e.g., bind to human PD-1 and may cross-react with PD-1 from other species, such as cynomolgus monkey) with high affinity have been disclosed in U.S. Patent No. 8,008,449, and HuMAbs that bind specifically to PD-Ll with high affinity have been disclosed in U.S. Patent No.
- the Abs of the invention include, but are not limited to, all of the anti-PD-1 and anti-PD-Ll Abs disclosed in U.S. Patent Nos. 8,008,449 and 7,943,743, respectively.
- Other anti-PD-1 mAbs have been described in, for example, U.S. Patent Nos. 6,808,710, 7,488,802 and 8,168,757, and PCT Publication No. WO 2012/145493, and anti-PD-Ll mAbs have been described in, for example, U.S. Patent Nos. 7,635,757 and 8,217, 149, U.S. Publication No. 2009/0317368, and PCT Publication Nos. WO 201 1/066389 and WO 2012/145493.
- these anti-PD-1 and anti-PD-Ll mAbs exhibit the structural and functional properties disclosed herein for antibodies of the invention, they too are included as antibodies of the invention.
- Each of the anti-PD-1 HuMAbs disclosed in U.S. Patent No. 8,008,449 has been demonstrated to exhibit one or more of the following characteristics: (a) binds to human PD-1 with a KD of 1 x 10 "7 M or less, as determined by surface plasmon resonance using a Biacore biosensor system; (b) does not substantially bind to human CD28, CTLA-4 or ICOS; (c) increases T-cell proliferation in a Mixed Lymphocyte Reaction (MLR) assay; (d) increases interferon- ⁇ production in an MLR assay; (e) increases IL-2 secretion in an MLR assay; (f) binds to human PD-1 and cynomolgus monkey PD-1 ; (g) inhibits the binding of PD-Ll and/or PD-L2 to PD-1 ; (h) stimulates antigen-specific memory responses; (i) stimulates Ab responses; and (j) inhibits tumor cell growth in vivo. Anti- PD-1
- U.S. Patent No. 8,008,449 exemplifies seven anti-PD-1 HuMAbs: 17D8, 2D3, 4H1, 5C4 (also referred to herein as nivolumab or BMS-936558), 4A1 1, 7D3 and 5F4.
- Isolated DNA molecules encoding the heavy and light chain variable regions of these Abs have been sequenced, from which the amino acid sequences of the variable regions were deduced.
- the ⁇ H amino acid sequences of 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 and 5F4 are provided herein as SEQ ID NOs. 1, 2, 3, 4, 5, 6 and 7, respectively.
- the Vz amino acid sequences of 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 and 5F4 are provided herein as SEQ ID NOs. 8, 9, 10, 11, 12, 13 and 14, respectively.
- Preferred anti-PD-1 Abs of the present invention include the anti-PD-1 HuMAbs
- These preferred Abs bind specifically to human PD-1 and comprise: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 1 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 8; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 2 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 9; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 3 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 10; (d) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 4 and a human light chain variable region comprising consecutively linked amino acids having the sequence
- the YH and YL sequences can be "mixed and matched" to create other anti-PD- 1 Abs of the invention.
- PD- 1 binding of such "mixed and matched" Abs can be tested using binding assays, e.g., enzyme-linked immunosorbent assays (ELISAs), western blots, radioimmunoassays and Biacore analysis that are well known in the art (see, e.g., U.S. Patent No. 8,008,449).
- binding assays e.g., enzyme-linked immunosorbent assays (ELISAs), western blots, radioimmunoassays and Biacore analysis that are well known in the art (see, e.g., U.S. Patent No. 8,008,449).
- ELISAs enzyme-linked immunosorbent assays
- western blots e.g., radioimmunoassays and Biacore analysis that are well known in the art (
- anti-PD-1 Abs of the invention include an isolated mAb or antigen-binding portion thereof comprising: (a) a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 1, 2, 3, 4, 5, 6 and 7, and (b) a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 8, 9, 10, 11, 12, 13 and 14, wherein the Ab specifically binds PD-1, preferably human PD-1.
- the CDR domains of the above Abs have been delineated using the Kabat system, and these Abs may also be defined by combinations of their 3 heavy chain and 3 light chain CDRs (see U.S. Patent No. 8,008,449). Since each of these Abs can bind to PD-1 and antigen-binding specificity is provided primarily by the CDR1, CDR2, and CDR3 regions, the Y H CDR1, CDR2, and CDR3 sequences and Y K CDR1, CDR2, and CDR3 sequences can be "mixed and matched" (i.e., CDRs from different Abs can be mixed and match, although each Ab must contain a Y H CDR1, CDR2, and CDR3 and a Y K CDR1, CDR2, and CDR3) to create other anti-PD-1 Abs that also constitute Abs of the invention. PD-1 binding of such "mixed and matched" Abs can be tested using the binding assays described above (e.g., ELISAs, western blots, radioimmuno
- Abs of the invention also include isolated Abs that bind specifically to PD-1 and comprise a heavy chain variable region derived from a particular germline heavy chain immunoglobulin and/or a light chain variable region derived from a particular germline light chain immunoglobulin.
- Abs of the invention include isolated Abs comprising: (a) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 3-33 or 4- 39 germline sequence, and/or a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6, or L15 germline sequence.
- the amino acid sequences of the YH and Y K regions encoded by the YH 3-33, V H 4-39, V K L6 and V K L15 germline genes are provided in U.S. Patent No. 8,008,449.
- an Ab can be identified as comprising a heavy or a light chain variable region that is "derived from” a particular human germline immunoglobulin by comparing the amino acid sequence of the human Ab to the amino acid sequences encoded by human germline immunoglobulin genes, and selecting the human germline immunoglobulin sequence that is closest in sequence (i.e., greatest percentage of sequence identity) to the sequence of the human Ab.
- a human Ab that is "derived from” a particular human germline immunoglobulin may contain amino acid differences as compared to the germline sequence, due to, for example, naturally-occurring somatic mutations or intentional introduction of site-directed mutation.
- a selected human Ab is generally at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the human Ab as being human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences).
- a human Ab may be at least 95%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene.
- sequence of a human Ab derived from a particular human germline sequence will display no more than 10 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene.
- the human Ab may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid differences from the amino acid sequence encoded by the germline immunoglobulin gene.
- Preferred Abs of the invention also include isolated Abs or antigen-binding portions thereof comprising: (a) a heavy chain variable region that comprises
- anti-PD-1 Abs of the invention comprise heavy and light chain variable regions having amino acid sequences that are highly similar or homologous to the amino acid sequences of the preferred anti-PD-1 Abs described herein, wherein the Ab retains the functional properties of the preferred anti-PD-1 Abs of the invention.
- Abs of the invention include mAbs comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises consecutively linked amino acids having a sequence that is at least 80% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs. 1, 2, 3, 4, 5, 6 and 7, and the light chain variable region comprises consecutively linked amino acids having a sequence that is at least 80% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs. 8, 9, 10, 11, 12, 13 and 14.
- the YH and/or V L amino acid sequences may exhibit at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the sequences set forth above.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using mathematical algorithms that are well know to those of ordinary skill in the art (see, e.g., U.S. Patent No. 8,008,449).
- Antibodies having very similar amino acid sequences are likely to have essentially the same functional properties where the sequence differences are conservative modifications.
- conservative sequence modifications refer to amino acid modifications that do not significantly affect the binding characteristics of the Ab containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions.
- Conservative amino acid substitutions are substitutions in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- one or more amino acid residues within the CDR regions of an Ab of the invention can be replaced with other amino acid residues from the same side chain family and the altered Ab can be tested for retained function using functional assays that are well known in the art.
- certain embodiments of the anti-PD-1 Abs of the invention comprise heavy and light chain variable regions each comprising CDR1, CDR2 and CDR3 domains, wherein one or more of these CDR domains comprise consecutively linked amino acids having sequences that are the same as the CDR sequences of the preferred anti-PD-1 Abs described herein (e.g., 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 or 5F4), or conservative modifications thereof, and wherein the Abs retain the desired functional properties of the preferred anti-PD-1 Abs of the invention.
- the heavy chain CDR3 is the primary determinant of binding specificity and affinity of an Ab, and that multiple Abs can predictably be generated having the same binding characteristics based on a common CDR3 sequence (see, e.g., Klimka et al., 2000; Beiboer et al., 2000; Rader et al., 1998; Barbas et al., 1994; Barbas et al., 1995; Ditzel et al., 1996; Berezov et al., 2001 ; Igarashi et al., 1995; Bourgeois et al., 1998; Levi et al., 1993; Polymenis and Stoller, 1994; and Xu and Davis, 2000).
- Abs of the invention comprising 6 CDRs can be defined by specifying the sequence of the heavy chain CDR3 domain.
- Anti-PD-1 Abs of the invention also include isolated Abs that bind specifically to human PD-1 and cross-compete for binding to human PD-1 with any of HuMAbs 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 and 5F4.
- anti-PD-1 Abs of the invention include isolated Abs or antigen-binding portions thereof that cross-compete for binding to PD-1 with a reference Ab or a reference antigen-binding portion thereof comprising: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 1 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 8; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 2 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 9; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO:
- Abs bind to the same epitope region (i.e., the same or an overlapping or adjacent epitope) of the antigen and sterically hinder the binding of other cross-competing Abs to that particular epitope region.
- the ability of a test Ab to competitively inhibit the binding of, for example, 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 or 5F4, to human PD-1 demonstrates that the test Ab binds to the same epitope region of human PD-1 as 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 or 5F4, respectively.
- cross-competing Abs can be readily identified based on their ability to cross-compete with 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 or 5F4 in standard PD-1 binding assays.
- Biacore analysis, ELISA assays or flow cytometry may be used to demonstrate cross-competition with the Abs of the invention (see, e.g., Examples 1 and 2).
- the Abs that cross-compete for binding to human PD-1 with, or bind to the same epitope region of human PD-1 as, 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 or 5F4 are mAbs.
- these cross-competing Abs are preferably chimeric Abs, or more preferably humanized or human Abs.
- Such human mAbs can be prepared and isolated as described in U.S. Patent No. 8,008,449.
- Example 1 Data provided in Example 1 show that 5C4 or a Fab fragment thereof cross-competes with each of 2D3, 7D3, 4H1 or 17D8 for binding to hPD-1 expressed on the surface of a cell, indicating that all five anti-PD-1 mAbs bind to the same epitope region of hPD-1 ( Figures 1A-1C).
- An anti-PD-1 Ab of the invention further can be prepared using an Ab having one or more of the YH and/or Y L sequences disclosed herein as starting material to engineer a modified Ab, which modified Ab may have altered properties from the starting Ab.
- An Ab can be engineered by modifying one or more residues within one or both variable regions (i.e., YH and/or Y L ), for example within one or more CDR regions and/or within one or more framework regions. Additionally or alternatively, an Ab can be engineered by modifying residues within the constant region(s), for example, to alter the effector function(s) of the Ab.
- Specific modifications to Abs include CDR grafting, site-specific mutation of amino acid residues within the YH and/or Y K CDR1, CDR2 and/or CDR3 regions to thereby improve one or more binding properties (e.g., affinity) of the Ab, site- specific mutation of amino acid residues within the YH and/or Y K framework regions to decrease the immunogenicity of the Ab, modifications within the Fc region, typically to alter one or more functional properties of the Ab, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity, and chemical modification such as pegylation or alteration in glycosylation patterns to increase or decrease the biological (e.g., serum) half life of the Ab.
- binding properties e.g., affinity
- modifications within the Fc region typically to alter one or more functional properties of the Ab, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity
- chemical modification such as pegylation or alter
- Anti-PD-1 Abs of the invention include all such engineered Abs that bind specifically to human PD- 1 and are obtained by modification of any of the above- described anti-PD-1 Abs.
- Anti-PD-1 Abs of the invention also include antigen-binding portions of the above Abs. It has been amply demonstrated that the antigen-binding function of an Ab can be performed by fragments of a full-length Ab. Examples of binding fragments
- an Ab encompassed within the term "antigen-binding portion" of an Ab include (i) a Fab fragment, a monovalent fragment consisting of the YL, YH, CL and Cm domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the YH and CM domains; and (iv) a Fv fragment consisting of the YL and YH domains of a single arm of an Ab.
- Divalent or bivalent scFvs can be engineered by linking two scFvs in within a single peptide chain known as a tandem scFv which contains two YH and two VL regions.
- ScFv dimers and higher multimers can also be created using linker peptides of fewer than 10 amino acids that are too short for the two variable regions to fold together, which forces the scFvs to dimerize and produce diabodies or form other multimers.
- Diabodies have been shown to bind to their cognate antigen with much higher affinity than the corresponding scFvs, having dissociation constants up to 40-fold lower than the 3 ⁇ 4 values for the scFvs.
- Very short linkers ⁇ 3 amino acids
- Other variants include minibodies, which are scFv-C . ro dimers, and larger scFv-Fc fragments (scFv-C ff i-Cro dimers), and even an isolated CDR may exhibit antigen-binding function.
- Ab fragments are engineered using conventional recombinant techniques known to those of skill in the art, and the fragments are screened for utility in the same manner as are intact Abs. All of the above proteolytic and engineered fragments of Abs and related variants (see Hollinger and Hudson, 2005; Olafsen and Wu, 2010, for further details) are intended to be encompassed within the term "antigen-binding portion" of an Ab.
- Each of the anti-PD-Ll HuMAbs disclosed in U.S. Patent No. 7,943,743 has been demonstrated to exhibit one or more of the following characteristics (a) binds to human PD-L1 with a 3 ⁇ 4 of 1 x 10 "7 M or less; (b) increases T-cell proliferation in a Mixed Lymphocyte Reaction (MLR) assay; (c) increase interferon- ⁇ production in an MLR assay; (d) increase IL-2 secretion in an MLR assay; (e) stimulates Ab responses; (f) inhibits the binding of PD-L1 to PD-1 ; and (g) reverses the suppressive effect of T regulatory cells on T cell effector cells and/or dendritic cells.
- Anti-PD-Ll Abs of the present invention include mAbs that bind specifically to human PD-L1 and exhibit at least one, preferably at least four, of the preceding characteristics.
- U.S. Patent No. 7,943,743 exemplifies ten anti-PD-1 HuMAbs: 3G10, 12A4 (also referred to herein as BMS-936559), 10A5, 5F8, 10H10, 1B12, 7H1, 1 1E6, 12B7, and 13G4. Isolated DNA molecules encoding the heavy and light chain variable regions of these Abs have been sequenced, from which the amino acid sequences of the variable regions were deduced.
- the YH amino acid sequences of 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 11E6, 12B7, and 13G4 are shown in SEQ ID Os. 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24, respectively, whereas their V L amino acid sequences are shown in SEQ ID NOs. 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34, respectively.
- Preferred anti-PD-Ll Abs of the present invention include the anti-PD-Ll HuMAbs 3G10, 12A4, 10A5, 5F8, 10H10, IB 12, 7H1, 11E6, 12B7, and 13G4. These preferred Abs bind specifically to human PD-L1 and comprise: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 15 and a human light chain variable region comprising
- consecutively linked amino acids having the sequence set forth in SEQ ID NO: 32 (i) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 23 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEO ID NO: 33; or (j) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 24 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 34.
- the YH and YL sequences can be "mixed and matched" to create other anti-PD-Ll Abs of the invention.
- PD-L1 binding of such "mixed and matched" Abs can be tested using binding assays e.g., ELISAs, western blots, radioimmunoassays and Biacore analysis that are well known in the art (see, e.g., U.S. Patent No. 7,943,743).
- binding assays e.g., ELISAs, western blots, radioimmunoassays and Biacore analysis that are well known in the art (see, e.g., U.S. Patent No. 7,943,743).
- a YH sequence from a particular V#/V L pairing is replaced with a structurally similar YH sequence.
- Abs of the invention also include a mAb, or antigen binding portion thereof, comprising a heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in any of SEQ ID NOs. 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24, and a light chain variable region comprising consecutively linked amino acids having the sequence set forth in any of SEQ ID NOs. 25, 26, 27, 28, 29, 30, 31, 32, 33 or 34, wherein the Ab binds specifically to PD- Ll, preferably human PD-L1.
- the CDR domains of the above anti-PD-Ll HuMAbs have been delineated using the Kabat system, and these Abs may also be defined by combinations of their 3 heavy chain and 3 light chain CDRs (see U.S. Patent No. 7,943,743).
- the Y H CDR1, CDR2, and CDR3 sequences and Y K CDR1, CDR2, and CDR3 sequences can be "mixed and matched" (i.e., CDRs from different Abs can be mixed and match, although each Ab must contain a YH CDRl, CDR2, and CDR3 and a Y K CDRl, CDR2, and CDR3) to create other anti-PD-1 Abs that also constitute Abs of the invention.
- PD-L1 binding of such "mixed and matched" Abs can be tested using, for example, ELISAs, western blots, radioimmunoassays and Biacore analysis.
- Antibodies of the invention also include Abs that bind specifically to PD-L1 and comprise a heavy chain variable region derived from a particular germline heavy chain immunoglobulin and/or a light chain variable region derived from a particular germline light chain immunoglobulin.
- Abs of the invention include Abs comprising: (a) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 1-18, 1-69, 1-3 or 3-9 germline sequence, and/or a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6, LI 5, A27 or LI 8 germline sequence.
- amino acid sequences of the YH and Y K regions encoded by the Y H 1-18, Y H 1-3, V H 1-69, Y H 3-9, Y K L6, Y K L15 and ⁇ ⁇ A27 germline genes are provided in U.S. Patent No. 7,943,743.
- Preferred Abs of the invention include isolated Abs or antigen-binding portions thereof comprising: (a) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 1-18 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6 germline sequence; (b) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human YH 1-69 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6 germline sequence; (c) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 1-3 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L15 germline sequence; (d) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human YH 1-
- An example of an Ab having a YH and a Y K derived from YH 1-18 and Y K L6 germline sequences, respectively, is 3G10.
- Examples of Abs having Y H and Y K regions derived from Y H 1-69 and Y K L6 germline sequences, respectively, include 12A4, 1B12, 7H1 and 12B7.
- An example of an Ab having a YH and a Y K derived from YH 1-3 and Y K L15 germline sequences, respectively, is 10A5.
- Examples of Abs having Y H and Y K regions derived from YH 1-69 and Y K All germline sequences, respectively, include 5F8, 11E6 and 1 lE6a.
- An example of an Ab having a YH and a V derived from YH 3-9 and Y K L15 germline sequences, respectively, is 10H10.
- An example of an Ab having a Y H and a Y K derived from Y H 1-3 and Y K L15 germline sequences, respectively, is 10A5.
- An example of an Ab having a YH and a Y K derived from YH 3 -9 and Y K L 18 germline sequences, respectively, is 13G4.
- anti-PD-Ll Abs of the invention comprise heavy and light chain variable regions having amino acid sequences that are highly similar or homologous to the amino acid sequences of the preferred anti-PD-Ll Abs described herein, wherein the Ab retains the functional properties of the aforementioned anti-PD-Ll Abs of the invention.
- Abs of the invention include mAbs comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises consecutively linked amino acids having a sequence that is at least 80% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs.
- the light chain variable region comprises consecutively linked amino acids having a sequence that is at least 80% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs. 25, 26, 27, 28, 29, 30, 31, 32, 33, and 34.
- the VH and/or VL amino acid sequences may exhibit at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the sequences set forth above.
- Certain embodiments of the anti-PD-Ll Abs of the invention comprise heavy and light chain variable regions each comprising CDR1, CDR2 and CDR3 domains, wherein one or more of these CDR domains comprise consecutively linked amino acids having sequences that are the same as the CDR sequences of the preferred anti-PD-Ll Abs described herein (e.g., 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 1 1E6, 12B7 and 13G4), or conservative modifications thereof, and wherein the Abs retain the desired functional properties of the preferred anti-PD-Ll Abs of the invention.
- anti- PD-Ll Abs of the invention include isolated Abs comprising 6 CDRs, wherein the Abs are defined by specifying the sequence of the heavy chain CDR3 domain.
- Anti-PD-Ll Abs of the invention also include isolated Abs that bind specifically to human PD-Ll and cross-compete for binding to human PD-Ll with any of HuMAbs 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 1 1E6, 12B7 and 13G4.
- anti-PD-Ll Abs of the invention include isolated Abs or antigen-binding portions thereof that cross- compete for binding to PD-Ll with a reference Ab or a reference antigen-binding portion thereof comprising: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 15 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 25; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 16 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 26; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 17 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 27; (d) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 18 and
- 10H10, 1B12, 7H1, 1 1E6, 12B7 and 13G4 for binding to human PD-Ll demonstrates that such Ab binds to the same epitope region of each of 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 11E6, 12B7 and 13G4, respectively.
- All isolated Abs that bind to the same epitope region of human PD-Ll as does HuMAb 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 1 1E6, 12B7 or 13G4 are included among the Abs of the invention.
- These cross- competing Abs are expected to have very similar functional properties by virtue of their binding to the same epitope region of PD-Ll.
- cross-competing anti -PD-Ll mAbs 3G10, 1B 12, 13G4, 12A4 have been shown to have similar functional properties (see U.S. Patent No. 7,943,743 at Examples 3-11), whereas mAb 10H10, which binds to a different epitope region, behaves differently (U.S. Patent No. 7,943,743 at Example 11).
- cross-competing Abs can be identified in standard PD-Ll binding assays, e.g., Biacore analysis, ELISA assays or flow cytometry, that are well known to persons skilled in the art.
- the Abs that cross-compete for binding to human PD-1 with, or bind to the same epitope region of human PD-Ll as, 3G10, 12A4, 10A5, 5F8, 10H10, 1B 12, 7H1, 11E6, 12B7 or 13G4 are mAbs, preferably chimeric Abs, or more preferably humanized or human Abs.
- Such human mAbs can be prepared and isolated as described in U.S. Patent No. 7,943,743.
- Anti-PD-Ll Abs of the invention also include Abs engineered starting from Abs having one or more of the YH and/or V L sequences disclosed herein, which engineered Abs may have altered properties from the starting Abs.
- An anti-PD-Ll Ab can be engineered by a variety of modifications as described above for the engineering of modified anti-PD-1 Abs of the invention.
- Anti-PD-Ll Abs of the invention also include isolated Abs selected for their ability to bind to PD-Ll in formalin-fixed, paraffin-embedded (FFPE) tissue specimens.
- FFPE formalin-fixed, paraffin-embedded
- the use of FFPE samples is essential for the long-term follow-up analysis of the correlation between PD-Ll expression in tumors and disease prognosis or progression.
- studies on measuring PD-Ll expression have often been conducted on frozen specimens because of the difficulty in isolating anti-human PD-Ll Abs that can be used to stain PD-Ll in FFPE specimens by IHC in general (Hamanishi et ah, 2007) and, in particular, Abs that bind specifically to membranous PD-Ll in these tissues.
- Rabbit and mouse anti-hPD-Ll mAbs were produced as described in Example 9. Out of almost 200 Ab multiclones screened, only ten rabbit multiclone Abs were found to specifically detect the membranous form of PD-Ll, and the top five multiclones
- Anti-PD-Ll Abs of the invention also include antigen-binding portions of the above Abs, including Fab, F(ab') 2 Fd, Fv, and scFv, di-scFv or bi-scFv, and scFv-Fc fragments, diabodies, triabodies, tetrabodies, and isolated CDRs (see Hollinger and Hudson, 2005; Olafsen and Wu, 2010, for further details).
- nucleic acid molecules that encode any of the Abs of the invention. These nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
- a nucleic acid of the invention can be, for example, DNA or RNA, and may or may not contain intronic sequences.
- the nucleic acid is a cDNA.
- Nucleic acids of the invention can be obtained using standard molecular biology techniques.
- Abs expressed by hybridomas e.g., hybridomas prepared from transgenic mice carrying human immunoglobulin genes as described further below
- cDNAs encoding the light and heavy chains of the Ab made by the hybridoma can be obtained by standard PCR amplification or cDNA cloning techniques.
- Nucleic acids encoding Abs obtained from an immunoglobulin gene library (e.g., using phage display techniques) can be recovered from the library.
- Preferred nucleic acids molecules of the invention are those encoding the YH and V K sequences of the anti-PD-1 HuMAbs, 17D8, 2D3, 4H1, 5C4, 4A1 1, 7D3 and 5F4 (disclosed in U.S. Patent No. 8,008,449), and those encoding the YH and V K sequences of the anti-PD-Ll HuMAbs, 3G10, 12A4, 10A5, 5F8, 10H10, 1B12, 7H1, 11E6, 12B7, and 13G4 (disclosed in U.S. Patent No. 7,943,743).
- An isolated DNA encoding the V H region can be converted to a full-length heavy chain gene by operatively linking the V # - encoding DNA to another DNA molecule encoding heavy chain constant regions (Cm, Cm and Cm), the sequences of which are known in the art and can be obtained by standard PCR amplification.
- the heavy chain constant region can be an IgGl, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but is preferably an IgGl or IgG4 constant region.
- an isolated DNA encoding the Vz region can be converted to a full-length light chain gene by operatively linking the Vz-encoding DNA to another DNA molecule encoding the light chain constant region ((3 ⁇ 4, the sequence of which is known in the art and can be obtained by standard PCR amplification.
- the light chain constant region can be a kappa or lambda constant region, but most preferably is a kappa constant region.
- Antibodies of the present invention may be constituted in a composition, e.g., a pharmaceutical composition, containing one Ab or a combination of Abs, or an antigen- binding portion(s) thereof, and a pharmaceutically acceptable carrier.
- a pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
- the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
- a pharmaceutical composition of the invention may include one or more pharmaceutically acceptable salts, anti-oxidant, aqueous and nonaqueous carriers, and/or adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- Dosage regimens are adjusted to provide the optimum desired response, e.g., a therapeutic response or minimal adverse effects.
- the dosage ranges from about 0.0001 to about 100 mg/kg, usually from about 0.001 to about 20 mg/kg, and more usually from about 0.01 to about 10 mg/kg, of the subject's body weight.
- the dosage is within the range of 0.1-10 mg/kg body weight.
- dosages can be 0.1, 0.3, 1, 3, 5 or 10 mg/kg body weight, and more preferably, 0.3, 1, 3, or 10 mg/kg body weight.
- the dosing schedule is typically designed to achieve exposures that result in sustained receptor occupancy ( O) based on typical pharmacokinetic properties of an Ab.
- An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months.
- the dosage and scheduling may change during a course of treatment.
- dosing schedule may comprise administering the Ab: (i) every two weeks in 6-week cycles; (ii) every four weeks for six dosages, then every three months; (iii) every three weeks; (iv) 3- 10 mg/kg body weight once followed by 1 mg/kg body weight every 2-3 weeks.
- a preferred dosage regimen for an anti-PD-1 or anti-PD-Ll Ab of the invention comprises 0.3-10 mg/kg body weight, preferably 3-10 mg/kg body weight, more preferably 3 mg/kg body weight via intravenous administration, with the Ab being given every 14 days in up to 6-week or 12-week cycles until complete response or confirmed progressive disease.
- two or more mAbs with different binding specificities are administered simultaneously, in which case the dosage of each Ab administered falls within the ranges indicated.
- Antibody is usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, every 2 weeks, every 3 weeks, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of Ab to the target antigen in the patient. In some methods, dosage is adjusted to achieve a plasma Ab concentration of about 1-1000 ⁇ g/ml and in some methods about 25-300 ⁇ g/ml.
- the Ab can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the Ab in the patient. In general, human Abs show the longest half-life, followed by humanized Abs, chimeric Abs, and nonhuman Abs. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is typically administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.
- compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being unduly toxic to the patient.
- the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- a composition of the present invention can be administered via one or more routes of administration using one or more of a variety of methods well known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.
- the Abs, Ab compositions, nucleic acids and methods of the present invention have numerous in vitro and in vivo utilities including, for example, methods to determine and quantify the expression of PD-1 or PD-Ll comprising binding of the Abs to the target polypeptides or measuring the amount of nucleic acid encoding these polypeptides, and a method for immunotherapy of a subject afflicted with a disease comprising administering to the subject a composition comprising a therapeutically effective amount of a therapeutic agent that inhibits signaling from an inhibitory immunoregulator.
- the inhibitory immunoregulator is a component of the PD-1/PD-L1 signaling pathway, and the therapeutic agent disrupts signaling of this pathway.
- the therapeutic agent is an Ab that interferes with the interaction between PD-1 and PD-Ll.
- the Ab binds specifically to PD-1 and blocks the interaction of PD-1 with PD-Ll and/or PD-L2.
- the therapeutic agent is an Ab that binds specifically to PD-Ll and blocks the interaction of PD-Ll with PD-1 and/or B7-1
- this disclosure provides methods for potentiating an immune response in a subject comprising administering an anti- PD-1 and/or an anti-PD-Ll Ab in order to disrupt the interaction between PD-1 and PD-Ll, and methods of treating diseases mediated by such a potentiation of the immune response.
- Abs to PD-1 and PD-L1 are administered together, the two can be administered sequentially in either order or simultaneously.
- this disclosure provides methods of modifying an immune response in a subject comprising administering to the subject an anti-PD-1 and/or an anti-PD-Ll Ab of the invention, or antigen-binding portion thereof, such that the immune response in the subject is modified.
- the immune response is potentiated, enhanced, stimulated or up-regulated.
- the Abs of the present invention are human Abs.
- Preferred subjects include human patients in need of enhancement of an immune response.
- the immunotherapeutic methods disclosed herein are particularly suitable for treating human patients having a disorder that can be treated by potentiating a T-cell mediated immune response.
- the methods are employed for treatment of subjects afflicted with a disease caused by an infectious agent.
- the methods are employed for treatment of subjects afflicted with, or at risk of being afflicted with, a cancer.
- Blockade of PD-1/PD-L1 interaction has been shown to potentiate immune responses in vitro (U.S. Patent Nos. 8,008,449 and 7,943,743; Fife et al, 2009) and mediate preclinical antitumor activity (Dong et al, 2002; Iwai et al, 2002).
- anti-PD-1 Abs of the invention disrupt PD-1/PD-L1 and potentially PD-1/PD-L2 interactions; in contrast, whereas anti-PD-Ll Abs of the invention also disrupt PD-1 /PD-L1 interactions, they do not block PD-1/PD-L2 interactions but instead may disrupt the PD-1 -independent PD-L1/CD80 interaction, which has also been shown to down-modulate T-cell responses in vitro and in vivo (Park et al, 2010; Paterson et al, 2011 ; Yang et al, 201 1; Butte et al, 2007; Butte et al, 2008).
- different interactions may dominate in different cancer types, contributing to dissimilar activity profiles for the two Abs.
- PD-L1 Disruption of the PD-1/PD-L1 interaction by antagonistic Abs can enhance the immune response to cancerous cells in a patient.
- PD-L1 is not expressed in normal human cells, but is abundant in a variety of human cancers (Dong et al, 2002).
- TILs tumor-infiltrating lymphocytes
- T-cell receptor-mediated proliferation resulting in T cell anergy, exhaustion or apoptosis, and immune evasion by the cancerous cells
- Immune suppression can be reversed by inhibiting the local interaction between PD-L1 and PD-1 using an anti-PD-1 and/or an anti-PD-Ll Ab.
- Abs may be used alone or in combination to inhibit the growth of cancerous tumors.
- either or both of these Abs may be used in conjunction with other immunogenic and/or anti-cancer agents including cytokines, standard cancer chemotherapies, vaccines, radiation, surgery, or other Abs.
- This disclosure provides a method for immunotherapy of a subject afflicted with cancer, which method comprises administering to the subject a composition comprising a therapeutically effective amount of an Ab or an antigen-binding portion thereof that disrupts the interaction of PD-1 with PD-L1 and/or PD-L2.
- This disclosure also provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject an Ab or an antigen-binding portion thereof that disrupts the interaction of PD-1 with PD-L1 and/or PD-L2 in an amount effective to inhibit growth of the tumor cells.
- the subject is a human.
- the Ab or antigen-binding portion thereof is an anti-PD-1 Ab of the invention or an antigen- binding portion thereof.
- the Ab or antigen-binding portion thereof is of an IgGl or IgG4 isotype.
- the Ab or antigen-binding portion thereof is a mAb or an antigen-binding portion thereof.
- the Ab or antigen-binding portion thereof is a chimeric, humanized or human Ab or an antigen-binding portion thereof.
- the Ab or antigen-binding portion thereof is a human Ab or an antigen-binding portion thereof.
- the clinical trials described in the Examples employed the anti-PD- 1 HuMAb, nivolumab (designated 5C4 in U.S. Patent No. 8,008,449), to treat cancer. While 5C4 was selected as the lead Ab for entering the clinic, it is notable that several anti-PD-1 Abs of the invention share with 5C4 functional properties that are important to the therapeutic activity of 5C4, including high affinity binding specifically to human PD-1, increasing T- cell proliferation, IL-2 secretion and interferon- ⁇ production in an MLR assay, inhibiting the binding of PD-L1 and/or PD-L2 to PD-1, and inhibiting tumor cell growth in vivo.
- anti-PD-1 Abs of the invention 17D8, 2D3, 4H1 and 7D3 are structurally related to 5C4 in comprising V H and V K regions that have sequences derived from Y H 3-33 and V K L6 germline sequences, respectively.
- 5C4, 2D3, 7D3, 4H1 and 17D8 all cross-compete for binding to the same epitope region of hPD-1 (Example 1).
- the preclinical characterization of nivolumab and other anti-PD-1 HuMabs indicate that the methods of treating cancer provided herein may be performed using different Abs selected from the broad genus of anti-PD-1 Abs of the invention.
- certain embodiments of the immunotherapy methods disclosed herein comprise administering to a patient an anti-PD- 1 Ab or antigen-binding portion thereof comprising: (a) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human ⁇ H 3-33 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human V K L6 germline sequence, or (b) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y 4-39 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human V K L15 germline sequence.
- the Ab or antigen-binding portion thereof that is administered to the patient cross-competes for binding to PD-1 with a reference Ab or a reference antigen-binding portion thereof comprising: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 1 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 8; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 2 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 9; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 3 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 10; (d) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 4 and a human
- PD-1 Ab or antigen-binding portion thereof administered to the patient comprises: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 1 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 8; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 2 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 9; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 3 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 10; (d) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 4 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 11 ; (e) a human heavy
- the anti-PD- 1 Ab or antigen-binding portion comprises a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 4 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 11.
- the anti-PD- 1 Ab is nivolumab.
- the anti-PD- 1 Ab is formulated for intravenous administration.
- the Ab is administered intravenously at a dose of 3 mg/kg over 60 minutes every 2 weeks. Typically, treatment is continued as long as clinical benefit is observed or until unmanageable toxicity or disease progression occurs.
- MEL and RCC are considered to be immunogenic neoplasms, having previously been demonstrated to be responsive to cancer immunotherapy, e.g., interferon- alfa and interleukin-2 in both MEL and RCC (Eton et al.., 2002; Coppin et ah, 2005; McDermott and Atkins, 2006) and anti-CTLA-4 Ab in MEL (Hodi et al, 2010).
- tumor cell vaccines e.g., belagenpumatucel-L, a whole-cell-based vaccine that blocks the action of TGF- 2
- antigen-based vaccines e.g., a humoral EGF vaccine and vaccines incorporating a MAGE-A3 fusion protein or portions of the tumor- associated MUC1 antigen
- Holt et ah, 2011 Shepherd et ah, 2011 ; Dasanu et ah, 2012; Brahmer et al, 2012.
- the anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic squamous or nonsquamous NSCLC after platinum based therapy (regardless of maintenance) and one other treatment.
- the anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic squamous or non-squamous NSCLC after failure of platinum-based therapy and one other prior chemotherapy regimen.
- the anti-PD- 1 Ab is indicated as monotherapy for locally advanced or metastatic squamous or non-squamous NSCLC after failure of two lines of therapy one of which must include platinum based regimen.
- the anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic squamous or non- squamous NSCLC after at least one prior chemotherapy, after failure of at least one prior platinum based therapy, or after progression on at least one platinum doublet therapy.
- treatment may be continued as long as clinical benefit is observed or until unmanageable toxicity or disease progression occurs.
- 2L chemotherapeutics for lung cancer i.e., docetaxel and pemetrexed
- docetaxel and pemetrexed have achieved a median OS of 7.5-8.3 months, and one-year survival rates of approximately 30% (Shepherd et al., 2000; Hanna et al., 2004).
- erlotinib-treated patients had a median survival of 6.7 months, versus 4.7 months in placebo-treated patients (Shepherd et al., 2005).
- nivolumab-treated MEL patients median OS of 16.8 months was achieved, with landmark survival rates of 62% (1-year) and 43% (2 -year) (see Example 7). Survival outcomes in pretreated melanoma patients supported the recent FDA approvals of ipilimumab and vemurafenib. In a recent phase 3 trial enrolling melanoma patients with at least one prior treatment for metastatic disease, ipilimumab increased median OS from 6.4 to 10.1 months, compared to a gplOO peptide vaccine (Hodi et al., 2010).
- immunotherapy with anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic MEL after therapy with dacarbazine (regardless of maintenance) and one other treatment.
- the anti-PD- 1 Ab is indicated as monotherapy for locally advanced or metastatic MEL after failure of dacarbazine-based therapy.
- the anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic MEL after failure of two lines of therapy one of which must include a dacarbazine-based regimen.
- the anti-PD- 1 Ab is indicated as monotherapy for locally advanced or metastatic MEL after at least one prior chemotherapy, after failure of at least one prior dacarbazine-based therapy, or after progression on at least dacarbazine therapy. In all of the immunotherapy methods disclosed herein, treatment may be continued as long as clinical benefit is observed or until unmanageable toxicity or disease progression occurs.
- immunotherapy with anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic RCC after therapy with an anti- angiogenic TKI or a mTOR inhibitor (regardless of maintenance) and one other treatment.
- the anti-PD- 1 Ab is indicated as monotherapy for locally advanced or metastatic RCC after failure of therapy with an anti-angiogenic TKI or a mTOR inhibitor.
- the anti-PD-1 Ab is indicated as monotherapy for locally advanced or metastatic RCC after failure of two lines of therapy one of which must include an anti-angiogenic TKI or a mTOR inhibitor.
- the anti-PD- 1 Ab is indicated as monotherapy for locally advanced or metastatic RCC after at least one prior chemotherapy, after failure of at least one prior anti-angiogenic TKI- or mTOR inhibitor-based therapy, or after progression on at least an anti-angiogenic TKI or a mTOR inhibitor therapy.
- Anti-PD- 1 immunotherapy may be continued as long as clinical benefit is observed or until unmanageable toxicity or disease progression occurs.
- nivolumab is tested for additional types of cancer.
- a trial to confirm the ability of nivolumab to mediate antitumor activity in patients with hematologic malignancies multiple myeloma, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma/primary mediastinal B-cell lymphoma, and chronic myelogenous leukemia
- NCT01592370 multiple myeloma, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma/primary mediastinal B-cell lymphoma, and chronic myelogenous leukemia
- the results of anti-PD- 1 immunotherapy disclosed herein are remarkable in at least the following three respects.
- the efficacy of anti-PD-1 has been shown to surpass historical efficacy data for patients on standard-of-care treatments for cancer.
- this efficacy has been demonstrated in patient in heavily pretreated populations in which about half of the patients had progressive disease following 3 or more prior systemic regimens.
- Such patients, afflicted with advanced, metastatic and/or refractory cancers, are notoriously difficult to treat.
- this disclosure provides methods for immunotherapy of a patient afflicted with an advanced, metastatic and/or refractory cancer, which method comprises administering to the patient a therapeutically effective amount of an Ab or an antigen-binding portion thereof that disrupts the interaction of PD-1 with PD-L1 and/or PD-L2.
- the subject has been pre-treated for the cancer; for example, the subject had undergone at least one, two, or three prior lines of therapy for cancer.
- the present therapeutic methods have been shown to be applicable to a broad genus of different cancers.
- a "non- immunogenic" cancer such as NSCLC (Holt et ah, 201 1) and hard-to-treat cancers such as ovarian and gastric cancers (as well as other cancers tested, including MEL, RCC, and CRC) are amendable to treatment with anti-PD-1 and/or anti-PD-Ll (see Examples 7 and 14)
- this disclosure generally provides methods for immunotherapy of a patient afflicted with practically any of a very wide range of cancers.
- this disclosure provides immunotherapeutic methods of inducing a durable clinical response in a cancer patient comprising administering to the patient a therapeutically effective amount of an Ab or an antigen-binding portion thereof that disrupts the interaction of PD-1 with PD-L1 and/or PD-L2.
- the clinical response is a durable response.
- a "durable" response is a therapeutic or clinical response that exceeds the anticipated median OS rate in a patient population.
- the anticipated median OS rate varies with different cancers and different patient populations.
- a durable response exceeds the anticipated median OS rate in the relevant patient population by at least 10%, preferably by at least 20%, more preferably by at least 30%, and even more preferably by at least 50%.
- a major benefit of immunotherapeutic approaches based on PD- 1 pathway blockade may be the functional restoration of exhausted T cells with long-term generation of memory T cells that may maintain antitumor immune surveillance and inhibit tumor growth for prolonged periods extending to many years, even in the absence of continued therapy (Kim and Ahmed, 2010).
- anti-PD-1 immunotherapy is also favorable, with a low incidence of more severe drug-related adverse events (AEs; > grade 3), the specific events observed to date being consistent with other immunotherapeutic agents. This suggests that anti-PD-1 immunotherapy can be delivered in an outpatient setting with minimal supportive care.
- AEs drug-related adverse events
- immunotherapy based on PD-1 blockade is not limited to only "immunogenic" tumor types, such as MEL and RCC, but extends to tumor types not generally considered to be immune-responsive, including NSCLC.
- the unexpected successes with treatment-refractory metastatic NSCLC underscore the possibility that any neoplasm can be "immunogenic" in the context of proper immune modulation, and suggest that PD- 1 blockade as an immunotherapeutic approach is broadly applicable across a very diverse range of tumor types.
- cancers that may be treated using the anti-PD-1 Abs of the invention also include cancers typically responsive to immunotherapy as well as cancers that have traditionally been regarded as non-immunogenic.
- Non-limiting examples of preferred cancers for treatment include NSCLC, MEL, RCC, CRC, CRPC, HCC, squamous cell carcinoma of the head and neck, carcinomas of the esophagus, ovary, gastrointestinal tract and breast, and a hematologic malignancy.
- NSCLC is not generally considered responsive to immunotherapy, data disclosed herein unexpectedly demonstrate that both squamous and non-squamous NSCLC are responsive to treatment with an anti-PD- 1 Ab.
- the disclosure provides for the treatment of refractory or recurrent malignancies whose growth may be inhibited using an anti-PD-1 Ab of the invention.
- cancers that may be treated using an anti-PD-1 Ab in the methods of the present invention, based on the indications of very broad applicability of anti-PD-1 immunotherapy provided herein, include liver cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, breast cancer, lung cancer, cutaneous or intraocular malignant melanoma, renal cancer, uterine cancer, ovarian cancer, colorectal cancer, colon cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis,
- lymphoma/primary mediastinal B-cell lymphoma non-Hodgkin's lymphomas, acute myeloid lymphoma, chronic myelogenous leukemia, chronic lymphoid leukemia, follicular lymphoma, diffuse large B-cell lymphoma, Burkitt's lymphoma, immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, mantle cell lymphoma, acute lymphoblastic leukemia, mycosis fungoides, anaplastic large cell lymphoma, T-cell lymphoma, and precursor T-lymphoblastic lymphoma, and any combinations of said cancers.
- the present invention is also applicable to treatment of metastatic cancers.
- One aspect of this invention is the use of any anti-PD-1 Ab or antigen-binding portion thereof of the invention for the preparation of a medicament for inhibiting signaling from the PD-1/PD-L1 pathway so as to thereby potentiate an endogenous immune response in a subject afflicted with cancer.
- Another aspect is the use of any anti- PD-1 Ab or an antigen-binding portion thereof of the invention for the preparation of a medicament for immunotherapy of a subject afflicted with cancer comprising disrupting the interaction between PD-1 and PD-L1.
- the cancers include squamous NSCLC, non-squamous
- NSCLC NSCLC, MEL, RCC, CRC, CRPC, HCC, squamous cell carcinoma of the head and neck, and carcinomas of the esophagus, ovary, gastrointestinal tract and breast, and a hematologic malignancy.
- This disclosure also provides medical uses of any anti-PD-1 Ab or antigen-binding portion thereof of the invention corresponding to all the embodiments of the methods of treatment employing an anti-PD-1 Ab described herein.
- the disclosure also provides an anti-PD- 1 Ab or an antigen-binding portion thereof of the invention for use in treating a subject afflicted with cancer comprising potentiating an endogenous immune response in the subject by inhibiting signaling from the PD-1/PD-L1 pathway.
- the disclosure further provides an anti-PD-1 Ab or an antigen- binding portion thereof of the invention for use in immunotherapy of a subject afflicted with cancer comprising disrupting the interaction between PD-1 and PD-L1.
- These Abs may be used in potentiating an endogenous immune response against, or in
- the cancers include squamous NSCLC, non-squamous NSCLC, MEL (e.g., metastatic malignant MEL), RCC, CRC, CRPC, HCC, squamous cell carcinoma of the head and neck, and carcinomas of the esophagus, ovary, gastrointestinal tract and breast, and a hematologic malignancy.
- MEL e.g., metastatic malignant MEL
- RCC e.g., metastatic malignant MEL
- CRC CRC
- CRPC CRPC
- HCC squamous cell carcinoma of the head and neck
- carcinomas of the esophagus ovary, gastrointestinal tract and breast
- hematologic malignancy e.g., hematologic malignancy
- nivolumab combined with ipilimumab (anti-CTLA-4), whose mechanism of action is similar yet distinct from nivolumab's (Parry et ah, 2005; Mellman et ah, 201 1; Topalian et ah, 2012c), is ongoing and results from a Phase 1 trial are provided herein (see, also, NCT01024231 ; NCT01844505; NCT01783938; Wolchok et ah, 2013a; Wolchok et ah, 2013b; Hodi et ah, 2013).
- CT01714739; Sanborn et ah, 2013 with cytokines, for example, IL-21, in patients with advanced or metastatic solid tumors (NCT01629758; Chow et ah, 2013), with chemotherapeutic drugs, for example, with platinum-based doublet chemotherapy in chemotherapy-naive NSCLC patients ( CT01454102; Rizvi et ah, 2013), and small- molecule targeted therapies in patients with metastatic RCC (NCT01472081 ; Amin et ah, 2013).
- this disclosure relates to the combination of an anti-PD-1 Ab with different cancer treatments, including chemotherapeutic regimes, radiation, surgery, hormone deprivation and angiogenesis inhibitors, for the treatment of various cancers.
- PD-1 blockade may also be effectively combined with an immunogenic agent, for example, a preparation of cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), antigen-presenting cells such as dendritic cells bearing tumor-associated antigens, cells transfected with genes encoding immune stimulating cytokines (He et ah, 2004), and/or another immunotherapeutic Ab (e.g., an anti-CTLA-4, anti-PD-Ll and/or anti-LAG-3 Ab).
- an immunotherapeutic Ab e.g., an anti-CTLA-4, anti-PD-Ll and/or anti-LAG-3 Ab.
- Non-limiting examples of tumor vaccines that can be used include peptides of melanoma antigens, such as peptides of gplOO, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
- Combination of anti-PD-1 and anti-CTLA-4 Abs to treat advanced melanoma Given that immunologic checkpoints are non-redundant and can inhibit T-cell activation, proliferation and effector function within lymph nodes and/or the tumor microenvironment, and based on preclinical data that the combination of anti-CTLA-4 and anti-PD-1 had a stronger anti-tumor effect in mouse tumor models than either Ab alone (see U.S. Patent No. 8,008,449), the hypothesis that combined blockade of CTLA-4 and PD-1 could produce greater anti-tumor activity than single agents was tested in a clinical trial in MEL patients (Example 15).
- nivolumab/ipilimumab regimen which comprised achieved ORRs that exceed the rates achieved with either nivolumab (Example 7) or ipilimumab alone (Hodi et al., 2010).
- ORRs that exceed the rates achieved with either nivolumab (Example 7) or ipilimumab alone (Hodi et al., 2010).
- rapid and deep responses were achieved in a substantial portion of treated patients, a "deep" tumor response referring to a response in target lesions characterized by a reduction of 80% or more from baseline measurements by radiographic assessment.
- the majority of responding patients, including some with extensive and bulky tumor burden achieved > 80% tumor regression at the time of the initial tumor assessment.
- response- evaluable patients treated with concurrent-regimens which comprise (i) an induction dosing schedule with combined administration of the anti-PD- 1 and anti-CTLA-4 Abs followed by administration of the anti-PD-1 Ab alone, and (ii) a maintenance dosing schedule comprising less frequent combined administration of the anti-PD-1 and anti- CTLA-4 Abs
- concurrent-regimens which comprise (i) an induction dosing schedule with combined administration of the anti-PD- 1 and anti-CTLA-4 Abs followed by administration of the anti-PD-1 Ab alone, and (ii) a maintenance dosing schedule comprising less frequent combined administration of the anti-PD-1 and anti- CTLA-4 Abs
- nivolumab and ipilimumab can be administered concurrently with a manageable safety profile and leading to durable clinical responses. More rapid and deeper clinical tumor responses were observed in patients treated with the combination compared with the responses obtained with either single agent.
- the invention disclosed herein includes a method for treating a subject afflicted with a cancer comprising administering to the subject: (a) an Ab or an antigen-binding portion thereof that specifically binds to and inhibits PD- 1 ; and (b) an Ab or an antigen-binding portion thereof that specifically binds to and inhibits CTLA-4; each Ab being administered at a dosage ranging from 0.1 to 20.0 mg/kg body weight in a concurrent regimen comprising: (i) an induction dosing schedule comprising combined administration of the anti-PD-1 and anti-CTLA-4 Abs at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 10 doses, followed by administration of the anti-PD-1 Ab alone at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 12 doses; followed by (ii) a maintenance dosing schedule comprising combined administration of the anti
- the maintenance dosing schedule comprises combined administration of up to 4, 6, 8, 10, 12 or 16 doses of the anti-PD-1 and anti-CTLA-4 Abs.
- the concurrent regimen comprises: (i) an induction dosing schedule comprising combined administration of the anti-PD-1 and anti- CTLA-4 Abs at a dosing frequency of once every 2, 3 or 4 weeks, or once a month, for 2, 4, 6 or 8 doses, followed by administration of the anti-PD-1 Ab alone at a dosing frequency of once every 2, 3 or 4 weeks, or once a month, for 2, 4, 6, 8 or 12 doses; followed by (ii) a maintenance dosing schedule comprising combined administration of the anti-PD-1 and anti-CTLA-4 Abs at a dosing frequency of once every 8, 12 or 16 weeks, or once a quarter, for 4, 6, 8, 10, 12 or 16 doses, or for as long as clinical benefit is observed, or until unmanageable toxicity or disease progression occurs.
- each of the anti-PD-1 and anti-CTLA-4 Abs is individually administered at a dosage of 0.1, 0.3, 0.5, 1, 3, 5, 10 or 20 mg/kg.
- the dosage of each of the anti-PD-1 and anti-CTLA-4 Abs is kept constant during the induction dosing schedule and the maintenance dosing schedule.
- the anti-PD-1 and anti-CTLA-4 Abs are administered at the following dosages: (a) 0.1 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; (b) 0.3 mg/kg anti-PD-1 Ab and 3 mg/kg of anti- CTLA-4 Ab; (c) 1 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; (d) 3 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; (e) 5 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; (f) 10 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; (g) 0.1 mg/kg anti-PD-1 Ab and 1 mg/kg of anti-CTLA-4 Ab; (h) 0.3 mg/kg anti-PD-1 Ab and 1 mg/kg of anti-CTLA-4 Ab; (i) 1 mg/kg anti-PD-1 Ab and 1 mg/kg of anti-CTLA-4 Ab;
- EMA European Medicines Agency
- nivolumab at 3 mg/kg may be administered every 2 to at least 12 weeks until progression.
- the anti-PD-1 and anti-CTLA-4 Abs are administered at dosages of: (a) 1 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab; or (b) 3 mg/kg anti-PD-1 Ab and 1 mg/kg of anti-CTLA-4 Ab
- the concurrent regimen further comprises: (i) an induction dosing schedule comprising combined administration of the anti-PD-1 and anti-CTLA-4 Abs at a dosing frequency of once every 3 weeks for 4 doses, followed by administration of the anti-PD-1 alone at a dosing frequency of once every 3 weeks for 4 doses; followed by (ii) a maintenance dosing schedule comprising combined administration of the anti-PD- 1 and anti-CTLA-4 antibodies at a dosing frequency of once every 2 to 12 or more weeks for up to 8 doses, or for as long as clinical benefit is observed, or until unmanageable toxicity or disease progression occurs.
- Exposure-response analysis of nivolumab monotherapy across dose ranges of 1 mg/kg to 10 mg/kg reveals similar clinical activity (Example 7) while exposure-response analysis of 0.3 mg/kg, 3 mg/kg, and 10 mg/kg of ipilimumab monotherapy has demonstrated increasing activity with increase in dose in a phase 2 trial (Wolchok et ah, 2010). Therefore, a dose of 3 mg/kg of ipilimumab (Cohort 2) may be more clinically impactful than selection of 3 mg/kg of nivolumab (Cohort 2a).
- the anti-PD-1 and anti-CTLA-4 Abs are administered at dosages of 1 mg/kg anti-PD-1 Ab and 3 mg/kg of anti-CTLA-4 Ab.
- the anti-PD-1 and anti-CTLA-4 Abs are formulated for intravenous administration. In certain other embodiments, when the anti-PD- 1 and anti-CTLA-4 Abs are administered in combination, they are administered within 30 minutes of each other. Either Ab may be administered first, that is, in certain embodiments, the anti-PD-1 Ab is administered before the anti-CTLA-4 Ab, whereas in other embodiments, the anti-CTLA-4 Ab is administered before the anti-PD- 1 Ab. Typically, each Ab is administered intravenously over a period of 60 minutes. In further embodiments, the anti-PD- 1 and anti-CTLA-4 Abs are administered concurrently, either admixed as a single composition in a pharmaceutically acceptable formulation for concurrent administration, or concurrently as separate compositions with each Ab in a pharmaceutically acceptable formulation.
- this disclosure provides a sequenced regimen method for treating a subject afflicted with a cancer, the subject having previously been treated with an anti-CTLA-4 Ab, which method comprises administering to the subject an Ab or an antigen-binding portion thereof that specifically binds to and inhibits PD-1 at a dosage ranging from 0.1 to 20.0 mg/kg body weight and at a dosing frequency of at least once every week, at least once every 2, 3 or 4 weeks, or at least once a month, for up to 6 to up to 72 doses, or for as long as clinical benefit is observed, or until unmanageable toxicity or disease progression occurs.
- administration of the anti-PD-1 Ab to the subject is initiated within 1-24 weeks after last treatment with the anti-CTLA-4 Ab. In other embodiments, administration of the anti-PD-1 Ab to the subject is initiated within 1, 2, 4, 8, 12, 16, 20 or 24 weeks after last treatment with the anti- CTLA-4 Ab. In preferred embodiments, administration of the anti-PD-1 Ab is initiated within 4, 8 or 12 weeks after last treatment of the subject with the anti-CTLA-4 Ab. Certain embodiments of the method comprise administering the anti-PD-1 Ab at a dosage of 0.1-20 mg/kg, e.g., 0.1, 0.3, 0.5, 1, 3, 5, 10 or 20 mg/kg. In preferred embodiments, the anti-PD-1 Ab is administered at a dosage of 1 or 3 mg/kg.
- the sequenced regimen comprises administering the anti-PD-1 Ab to the subject at a dosing frequency of once every week, once every 2, 3 or 4 weeks, or once a month for 6 to 72 doses, or for as long as clinical benefit is observed, or until unmanageable toxicity or disease progression occurs.
- the anti-PD-1 is administered at a dosage of 1 or 3 mg/kg at a dosing frequency of once every 2 weeks for up to 48 doses.
- the anti-PD-1 Ab is formulated for intravenous
- the treatment produces at least one therapeutic effect chosen from a reduction in size and/or growth of a tumor, elimination of the tumor, reduction in number of metastatic lesions over time, complete response, partial response, and stable disease.
- the present combination therapy methods are also applicable to diverse cancers.
- cancers that may be treated by these methods include liver cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, breast cancer, lung cancer, cutaneous or intraocular malignant melanoma, renal cancer, uterine cancer, ovarian cancer, colorectal cancer, colon cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, solid tumors of childhood, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the C
- the present invention is also applicable to treatment of metastatic, refractory or recurring cancers.
- the cancer to be treated is chosen from MEL, RCC, squamous NSCLC, non-squamous NSCLC, CRC, CRPC, OV, GC, HCC, PC, squamous cell carcinoma of the head and neck, carcinomas of the esophagus, gastrointestinal tract and breast, and a hematological malignancy.
- the cancer is MEL.
- the subject has been pre-treated for the cancer.
- the patient may have been treated with 1 or 2 or more prior systemic regimens of the type described herein as standard-of-care therapeutics.
- the patient may have been treated with 1 or 2 or more prior systemic regimens of the type described herein as standard-of-care therapeutics.
- the cancer is an advanced, recurring, metastatic and/or refractory cancer.
- the concurrent or sequenced regimen treatment induces a durable clinical response in the subject.
- the subject is a human, the anti-PD-1 Ab inhibits human PD-1, and the anti-CTLA-4 Ab inhibits human CTLA-4.
- the anti-PD-1 Ab used in the present methods may be any therapeutic anti-PD-1
- the anti-PD-1 Ab is a mAb, which may be a chimeric, humanized or human Ab.
- the anti-PD-1 Ab comprises the CDR1, CDR2 and CDR3 domains in the heavy chain variable region and the CDR1, CDR2 and CDR3 domains in the light chain variable region of 17D8, 2D3, 4H1, 5C4 (nivolumab), 4A1 1, 7D3 or 5F4, respectively, as described and characterized in U.S. Patent No. 8,008,449.
- the anti-PD-1 Ab comprises the heavy and light chain variable regions of 17D8, 2D3, 4H1, 5C4 (nivolumab), 4A1 1, 7D3 or 5F4, respectively.
- the anti-PD-1 Ab is 17D8, 2D3, 4H1, 5C4 (nivolumab), 4A1 1, 7D3 or 5F4.
- the anti-PD-1 Ab is nivolumab.
- Anti-CTLA-4 antibodies of the instant invention bind to human CTLA-4 so as to disrupt the interaction of CTLA-4 with a human B7 receptor. Because the interaction of CTLA-4 with B7 transduces a signal leading to inactivation of T-cells bearing the CTLA- 4 receptor, disruption of the interaction effectively induces, enhances or prolongs the activation of such T cells, thereby inducing, enhancing or prolonging an immune response.
- Anti-CTLA-4 Abs are described in, for example, U.S. Patent Nos. 6,051,227, 7,034,121 in PCT Application Publication Nos. WO 00/37504 and WO 01/14424.
- an exemplary clinical anti-CTLA-4 Ab is the human mAb 10D1 (now known as ipilimumab and marketed as YERVOY®) as disclosed in U.S. Patent No. 6,984,720.
- the anti-CTLA-4 Ab is a mAb.
- the anti-CTLA-4 antibody is a chimeric, humanized or human antibody.
- the anti-CTLA-4 antibody is ipilimumab.
- This disclosure also provides the use of an anti-PD-1 Ab or an antigen-binding portion thereof in combination with an anti-CTLA-4 Ab or an antigen-binding portion thereof for the preparation of a co-administered medicament for treating a subject afflicted with a cancer in a concurrent regimen, wherein the anti-PD- 1 and anti-CTLA-4 Abs are each administered at a dosage ranging from 0.1 to 20.0 mg/kg body weight, and further wherein the concurrent regimen comprises: (i) an induction dosing schedule comprising combined administration of the anti-PD-1 and anti-CTLA-4 Abs at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 12 doses, followed by administration of the anti-PD-1 Ab alone at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 10 doses; followed by (ii) a maintenance dosing schedule comprising combined administration of the anti-
- the disclosure provides uses of the combination of anti-PD-1 and anti-CTLA-4 Abs for the preparation of co-administered medicaments corresponding to all the embodiments of the methods of treatment employing these Abs described herein, and are broadly applicable to the full range of cancers disclosed herein.
- the disclosure also provides an anti-PD- 1 Ab or an antigen-binding portion thereof for use in combination with an anti-CTLA-4 Ab or an antigen-binding portion thereof for treating a subject afflicted with a cancer in a concurrent regimen, wherein the anti-PD-1 and anti-CTLA-4 Abs are each administered at a dosage ranging from 0.1 to 20.0 mg/kg body weight, and further wherein the concurrent regimen comprises: (i) an induction dosing schedule comprising combined administration of the anti-PD-1 and anti- CTLA-4 antibodies at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 12 doses, followed by administration of the anti- PD-1 alone at a dosing frequency of at least once every 2, 3 or 4 weeks, or at least once a month, for at least 2, 4, 6, 8 or 10 doses; followed by (ii) a maintenance dosing schedule comprising combined administration of the anti-PD-1 and anti-CTLA-4 antibodies at a dosing
- Methods for screening a patient population and selecting a patient as suitable for immunotherapy with the combination of anti-PD-1 and anti-CTLA-4 using the concurrent or sequenced regimens, and methods of predicting efficacy of the Ab combination, based on a PD-L1 biomarker assay are performed as described for anti-PD-1 monotherapy, to the extent this biomarker is applicable to combination therapy with anti-PD-1 and anti- CTLA-4 Abs.
- the disclosure additionally provides a kit for treating a subject afflicted with a cancer, the kit comprising: (a) a dosage ranging from 0.1 to 20.0 mg/kg body weight of an Ab or an antigen-binding portion thereof that specifically binds to and inhibits PD-1; (b) a dosage ranging from 0.1 to 20.0 mg/kg of an Ab or an antigen-binding portion thereof that specifically binds to and inhibits CTLA-4; and (c) instructions for using the combination of the anti-PD-1 and anti-CTLA-4 antibodies in any of the concurrent regimen methods.
- some of the dosages of the anti-PD-1 and anti- CTLA-4 Abs are admixed within a single pharmaceutical formulation for concurrent administration.
- the dosages of the anti-PD- 1 and anti-CTLA-4 Abs are formulated as separate compositions with each Ab in a pharmaceutically acceptable formulation.
- the disclosure further provides a kit for treating a subject afflicted with a cancer, the kit comprising: (a) a dosage ranging from 0.1 to 20.0 mg/kg body weight of an Ab or an antigen-binding portion thereof that specifically binds to and inhibits PD-1; and (b) instructions for using the anti-PD-1 Ab in any of the sequenced regimen methods.
- a combined PD-1 and CTLA-4 blockade may also be further combined with standard cancer treatments.
- a combined PD-1 and CTLA-4 blockade may be effectively combined with chemotherapeutic regimes, for example, further combination with dacarbazine or IL-2, for the treatment of MEL. In these instances, it may be possible to reduce the dose of the chemotherapeutic reagent.
- the scientific rationale behind the combined use of PD-1 and CTLA-4 blockade with chemotherapy is that cell death, which is a consequence of the cytotoxic action of most chemotherapeutic compounds, should result in increased levels of tumor antigen in the antigen presentation pathway.
- combination therapies that may result in synergy with a combined PD- 1 and CTLA-4 blockade through cell death include radiation, surgery, or hormone deprivation. Each of these protocols creates a source of tumor antigen in the host.
- Angiogenesis inhibitors may also be combined with a combined PD-1 and CTLA-4 blockade. Inhibition of angiogenesis leads to tumor cell death, which may also be a source of tumor antigen to be fed into host antigen presentation pathways.
- PD-L1 is the primary PD-1 ligand up-regulated within solid tumors, where it can inhibit cytokine production and the cytolytic activity of PD-1 -positive, tumor- infiltrating CD4 + and CD8 + T-cells, respectively (Dong et al, 2002; Hino et al, 2010; Taube et al, 2012). These properties make PD-L1 a promising target for cancer immunotherapy.
- the clinical trials of anti-PD-Ll immunotherapy described in the Examples demonstrate for the first time that mAb blockade of the immune inhibitory ligand, PD-L1, produces both durable tumor regression and prolonged (> 24 weeks) disease stabilization in patients with metastatic NSCLC, MEL, RCC and OV, including those with extensive prior therapy.
- the human anti-PD-Ll HuMAb, BMS-936559 had a favorable safety profile overall at doses up to and including 10 mg/kg, as is evident from the low (9%) incidence of grade 3-4 drug-related AEs.
- anti-PD- 1 immunotherapy another important feature of anti- PD-Ll therapy is the durability of responses across multiple tumor types. This is particularly notable considering the advanced disease and prior treatment of patients on the current study. Although not compared directly, this durability appears greater than that observed with most chemotherapies and kinase inhibitors used to treat these cancers.
- peripheral blood T-cells express PD-L1
- BMS-963559 As a pharmacodynamic measure. Median RO was 65.8%, 66.2%, and 72.4% for the doses tested. Whereas these studies provide a direct assessment and evidence of target engagement in patients treated with BMS-936559, relationships between RO in peripheral blood and the tumor microenvironment remain poorly understood.
- this disclosure provides a method for immunotherapy of a subject afflicted with cancer, which method comprises administering to the subject a composition comprising a therapeutically effective amount of an anti-PD- Ll Ab of the invention or an antigen-binding portion thereof.
- the disclosure also provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject an anti-PD-Ll Ab of the invention or an antigen-binding portion thereof.
- the subject is a human.
- the Ab or antigen-binding portion thereof is of an IgGl or IgG4 isotype. In other embodiments, the Ab or antigen-binding portion thereof is a mAb or an antigen- binding portion thereof. In further embodiments, the Ab or antigen-binding portion thereof is a chimeric, humanized or human Ab or an antigen-binding portion thereof. In preferred embodiments for treating a human patient, the Ab or antigen-binding portion thereof is a human Ab or an antigen-binding portion thereof.
- certain of the anti-PD-Ll Abs of the invention namely 1B12, 7H1 and 12B7 are structurally related to 12A4 in comprising ⁇ H and V K regions that have sequences derived from ⁇ H 1-69 and V K L6 germline sequences, respectively.
- at least 12B7, 3G10, 1B 12 and 13G4 cross-compete with 12A4 for binding to the same epitope region of hPD-Ll, whereas 5F8 and 10A5 may bind to the same or an
- this disclosure provides immunotherapy methods comprising administering to a patient an anti-PD-Ll Ab or antigen-binding portion thereof comprising (a) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 1-18 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6 germline sequence; (b) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y H 1-69 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human Y K L6 germline sequence; (c) a heavy chain variable region that comprises consecutively linked amino acids having a sequence derived from a human YH 1 -3 germline sequence, and a light chain variable region that comprises consecutively linked amino acids having a sequence derived from a human V K L15 germline sequence; (d) a heavy chain variable region that comprises consecutively linked amino acids
- the anti-PD-Ll Ab or antigen-binding portion thereof administered to the patient cross-competes for binding to PD-L1 with a reference Ab or a reference antigen-binding portion thereof comprising: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 15 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 25; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 16 and a human light chain variable region comprising
- the Ab or antigen-binding portion thereof cross- competes for binding to PD-1 with a reference Ab or reference antigen-binding portion thereof comprising a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 16 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 26.
- the anti-PD-Ll Ab or antigen-binding portion thereof administered to the subject comprises: (a) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 15 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 25; (b) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 16 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 26; (c) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 17 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 27; (d) a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 18 and a human light chain variable region comprising consecutively linked amino acids having the sequence set
- the anti-PD-Ll Ab or antigen-binding portion comprises a human heavy chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 16 and a human light chain variable region comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 26.
- immunological tumor types such as MEL and RCC
- MEL metastatic malignant melanoma
- RCC squamous NSCLC
- non-squamous NSCLC CRC
- OV gastric cancer
- BC breast cancer
- PC pancreatic carcinoma
- carcinoma of the esophagus e.g., carcinoma of the esophagus.
- the invention includes refractory or recurrent malignancies whose growth may be inhibited using the anti-PD-Ll Abs of the invention.
- examples of cancers that may be treated using an anti-PD-Ll Ab in the methods of the invention, based on the indications of very broad applicability of anti- PD-Ll immunotherapy provided herein, include bone cancer, skin cancer, cancer of the head or neck, breast cancer, lung cancer, cutaneous or intraocular malignant melanoma, renal cancer, uterine cancer, castration-resistant prostate cancer, colon cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, carcinomas of the ovary, gastrointestinal tract and breast, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft
- Abs to PD-L1 can be combined with an immunogenic agent, for example a preparation of cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), antigen-presenting cells such as dendritic cells bearing tumor-associated antigens, and cells transfected with genes encoding immune stimulating cytokines (He et ah, 2004).
- tumor vaccines include peptides of melanoma antigens, such as peptides of gplOO, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
- PD-L1 blockade may also be effectively combined with standard cancer treatments, including chemotherapeutic regimes, radiation, surgery, hormone deprivation and angiogenesis inhibitors, as well as another immunotherapeutic Ab (e.g., an anti-PD-1, anti-CTLA-4 or anti-LAG-3 Ab).
- chemotherapeutic regimes including radiation, surgery, hormone deprivation and angiogenesis inhibitors, as well as another immunotherapeutic Ab (e.g., an anti-PD-1, anti-CTLA-4 or anti-LAG-3 Ab).
- This disclosure provides the use of any anti-PD-Ll Ab or antigen-binding portion thereof of the invention for the preparation of a medicament for inhibiting signaling from the PD-1/PD-L1 pathway so as to thereby potentiate an endogenous immune response in a subject afflicted with cancer.
- This disclosure also provides the use of any anti-PD-Ll Ab or antigen-binding portion thereof of the invention for the preparation of a medicament for immunotherapy of a subject afflicted with cancer comprising disrupting the interaction between PD-1 and PD-L1.
- the disclosure provides medical uses of any anti-PD-Ll Ab or antigen-binding portion thereof of the invention corresponding to all the embodiments of the methods of treatment employing an anti-PD-Ll Ab described herein.
- This disclosure also provides an anti-PD-Ll Ab or an antigen-binding portion thereof of the invention for use in treating a subject afflicted with cancer comprising potentiating an endogenous immune response in a subject afflicted with cancer by inhibiting signaling from the PD-1/PD-L1 pathway.
- the disclosure further provides an anti-PD-Ll Ab or an antigen-binding portion thereof of the invention for use in immunotherapy of a subject afflicted with cancer comprising disrupting the interaction between PD-1 and PD-Ll.
- These Abs may be used in potentiating an endogenous immune response against, or in immunotherapy of, the full range of cancers disclosed herein.
- the cancers include MEL (e.g., metastatic malignant MEL), RCC, squamous NSCLC, non-squamous NSCLC, CRC, ovarian cancer (OV), gastric cancer (GC), breast cancer (BC), pancreatic carcinoma (PC) and carcinoma of the esophagus.
- MEL e.g., metastatic malignant MEL
- RCC squamous NSCLC
- non-squamous NSCLC non-squamous NSCLC
- CRC ovarian cancer
- OV gastric cancer
- BC breast cancer
- PC pancreatic carcinoma
- a major implication of the clinical activity of immune checkpoint blockade is that significant endogenous immune responses to tumor antigens are generated and these responses may be harnessed therapeutically to mediate clinical tumor regression upon checkpoint inhibition.
- inhibitory ligands such as PD-Ll are induced in response to immune attack, a mechanism termed adaptive resistance (Gajewski et ah, 2010; Taube et ah, 2012).
- This potential mechanism of immune resistance by tumors suggests that PD-1 /PD-Ll -directed therapy might synergize with other treatments that enhance endogenous antitumor immunity.
- Another aspect of this disclosure provides a method of treating an infectious disease in a subject comprising administering to the subject an anti-PDl or an anti-PD-Ll Ab, or antigen-binding portion thereof, of the invention such that the subject is treated for the infectious disease.
- the Ab is a human anti-human PD-1 or PD-L1 Ab (such as any of the human Abs described herein).
- the Ab is a chimeric or humanized Ab.
- Ab-mediated PD-1 or PD- LI blockade can be used alone, or as an adjuvant, in combination with vaccines, to potentiate an immune response to pathogens, toxins, and/or self-antigens.
- pathogens for which this therapeutic approach may be particularly useful include pathogens for which there is currently no effective vaccine, or pathogens for which conventional vaccines are less than completely effective. These include, but are not limited to HIV, Hepatitis (A, B, and C), Influenza, Herpes, Giardia, Malaria, Leishmania, Staphylococcus aureus, Pseudomonas aeruginosa.
- PD-1 and/or PD-L1 blockade is particularly useful against established infections by agents such as HIV that present altered antigens over the course of an infection. Novel epitopes on these antigens are recognized as foreign at the time of anti-human PD-1 or PD-L1 administration, thus provoking a strong T cell response that is not dampened by negative signals through the PD-1/PD-L1 pathway.
- PD-1 or PD-L1 blockade can be combined with other forms of immunotherapy such as cytokine treatment (e.g., administration of interferons, GM- CSF, G-CSF or IL-2).
- cytokine treatment e.g., administration of interferons, GM- CSF, G-CSF or IL-2).
- kits including pharmaceutical kits, comprising an anti-PD-1 and/or an anti-PD-Ll Ab of the invention, or a combination of an anti-PD-1 and an anti-CTLA-4 Ab, for therapeutic uses, and diagnostic kits comprising an anti-PD-Ll Ab of the invention for assaying membranous PD-L1 expression as a biomarker for screening patients for immunotherapy or for predicting the efficacy of an immunotherapeutic agent.
- Kits typically include a label indicating the intended use of the contents of the kit and instructions for use. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
- the anti-PD-1 and/or anti-PD-Ll Abs may be co-packaged with other therapeutic agents in unit dosage form.
- the anti-PD-Ll Ab may be co-packaged with other reagents for performing an assay to detect and/or quantify PD-L1 expression.
- the pharmaceutical kit comprises the anti- human PD-1 HuMAb, nivolumab. In other preferred embodiments, the pharmaceutical kit comprises the anti-human PD-L1 HuMAb, BMS-936559. In yet other preferred embodiments, the pharmaceutical kit comprises the anti-human CTLA-4 HuMAb, ipilimumab. In certain preferred embodiments, the diagnostic kit comprises the rabbit anti-human PD-L1 mAb, 28-8, comprising the YH and V K regions whose amino acid sequences are set forth in SEQ ID NOs. 35 and 36, respectively. In other preferred embodiments, the diagnostic kit comprises the murine anti-human PD-L1 mAb, 5H1 (Dong et al., 2002).
- a particular challenge in cancer immunotherapy has been the identification of mechanism-based predictive biomarkers to enable patient selection and guide on- treatment management.
- Data disclosed in the Examples below indicate that cell surface PD-L1 expression in tumors is a useful molecular marker for predicting the efficacy of, and selecting patients for, immunotherapy with anti-PD- 1 and potentially other immune checkpoint inhibitors.
- PD-Ll is a type I transmembrane molecule, and hypothesize that while the cytoplasmic presence of PD-Ll may represent intracellular stores of this polypeptide that may be deployed to the cell surface upon appropriate stimulation, it is cell surface PD-Ll expression of that is biologically relevant as a potential biomarker for predicting clinical response to PD-1 blockade. See, also, Brahmer et al. (2010), which describes preliminary evidence, obtained on a small sample size of only 9 patients, of a correlation between membranous PD-Ll expression and anti-PD-1 efficacy.
- PD-Ll expression may be used as a biomarker for predicting anti-PD- 1 clinical response and for screening patients to identify suitable candidates for immunotherapy with an anti-PD-1 Ab.
- PD-Ll expression may also potentially be applicable more broadly as a companion biomarker for other types of inhibitors of inhibitory immunoregulators.
- membranous PD-Ll expression was assayed using an automated IHC protocol and a rabbit anti-hPD-Ll Ab. Strikingly, in the initial set of data analyzed (see Example 8), no patients with cell surface PD-Ll -negative tumors (MEL, NSCLC, CRC, RCC and CRPC) experienced an OR following treatment with the anti-PD- 1 Ab, nivolumab. In contrast, cell surface expression of PD-Ll on tumor cells in pretreatment biopsies may be associated with an increased rate of OR among patients treated with nivolumab.
- tumor cell expression of PD-Ll may be driven by constitutive oncogenic pathways, it may also reflect "adaptive immune resistance" in response to an endogenous antitumor immune response, part of a host inflammatory response, which may remain in check unless unleashed by blockade of the PD-l/PD-Ll pathway (Taube et al., 2012).
- This emerging concept of adaptive immune resistance in cancer immunology suggests that inhibitory ligands such as PD-Ll are induced in response to immune attack (Gajewski et al., 2010; Taube et al., 2012).
- immune checkpoint blockade A major implication of the clinical activity of immune checkpoint blockade as described herein is that significant endogenous immune responses to tumor antigens are generated and these responses may be harnessed therapeutically to mediate clinical tumor regression upon checkpoint inhibition. This potential mechanism of immune resistance by tumors suggests that PD-1/PD-L1 -directed therapy might synergize with other treatments that enhance endogenous antitumor immunity.
- an automated IHC method was developed for assaying the expression of PD-L1 on the surface of cells in FFPE tissue specimens.
- This disclosure provides methods for detecting the presence of human PD-L1 antigen in a test tissue sample, or quantifying the level of human PD-L1 antigen or the proportion of cells in the sample that express the antigen, which methods comprise contacting the test sample, and a negative control sample, with a mAb that specifically binds to human PD- Ll, under conditions that allow for formation of a complex between the Ab or portion thereof and human PD-L1.
- the test and control tissue samples are FFPE samples. The formation of a complex is then detected, wherein a difference in complex formation between the test sample and the negative control sample is indicative of the presence of human PD-L1 antigen in the sample.
- Various methods are used to quantify PD-L1 expression.
- the automated IHC method comprises: (a) deparaffinizing and rehydrating mounted tissue sections in an autostainer; (b) retrieving antigen using a decloaking chamber and pH 6 buffer, heated to 110°C for 10 min; (c) setting up reagents on an autostainer; and (d) running the autostainer to include steps of neutralizing endogenous peroxidase in the tissue specimen; blocking non-specific protein- binding sites on the slides; incubating the slides with primary Ab; incubating with a postprimary blocking agent; incubating with NovoLink Polymer; adding a chromogen substrate and developing; and counterstaining with hematoxylin.
- a pathologist examines the number of membrane PD-L1 + tumor cells in each field under a microscope and mentally estimates the percentage of cells that are positive, then averages them to come to the final percentage.
- the different staining intensities are defined as 0/negative, l+/weak, 2+/moderate, and 3+/strong. Typically, percentage values are first assigned to the 0 and 3+ buckets, and then the intermediate 1+ and 2+ intensities are considered.
- the specimen is divided into zones, and each zone is scored separately and then combined into a single set of percentage values. The percentages of negative and positive cells for the different staining intensities are determined from each area and a median value is given to each zone. A final percentage value is given to the tissue for each staining intensity category: negative, 1+, 2+, and 3+. The sum of all staining intensities needs to be 100%.
- Staining is also assessed in tumor-infiltrating inflammatory cells such as macrophages and lymphocytes.
- macrophages serve as an internal positive control since staining is observed in a large proportion of macrophages. While not required to stain with 3+ intensity, an absence of staining of macrophages should be taken into account to rule out any technical failure.
- Macrophages and lymphocytes are assessed for plasma membrane staining and only recorded for all samples as being positive or negative for each cell category. Staining is also characterized according to an
- outside/inside tumor immune cell designation means the immune cell is within the tumor tissue and/or on the boundaries of the tumor region without being physically intercalated among the tumor cells.
- Outside means that there is no physical association with the tumor, the immune cells being found in the periphery associated with connective or any associated adjacent tissue.
- the samples are scored by two pathologists operating independently and the scores are subsequently consolidated.
- the identification of positive and negative cells is scored using appropriate software.
- a histoscore is used as a more quantitative measure of the IHC data.
- the histoscore is calculated as follows:
- Histoscore [(% tumor x 1 (low intensity)) + (% tumor x 2 (medium intensity))
- the pathologist estimates the percentage of stained cells in each intensity category within a specimen. Because expression of most biomarkers is heterogeneous the histoscore is a truer representation of the overall expression. The final histoscore range is 0 (no expression) to 300 (maximum expression).
- An alternative means of quantifying PD-L1 expression in a test tissue sample IHC is to determine the adjusted inflammation score (AIS) score defined as the density of inflammation multiplied by the percent PD-Ll expression by tumor- infiltrating inflammatory cells (Taube et al., 2012).
- AIS adjusted inflammation score
- This disclosure also provides a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) selecting a subject that is a suitable candidate for immunotherapy, e.g., administration of an anti-PD-1 Ab, the selecting comprising (i) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells, (ii) assessing the proportion of cells in the test tissue sample that express PD-Ll on the cell surface, and (iii) selecting the subject as a suitable candidate based on an assessment that the proportion of cells in the test tissue sample that express PD-Ll on the cell surface exceeds a predetermined threshold level; and (b) administering to the selected subject a composition comprising a therapeutically effective amount of an agent that inhibits signaling from an inhibitory immunoregulator e.g., an anti-PD-1 Ab.
- a suitable candidate for immunotherapy e.g., administration of an anti-PD-1 Ab
- PD-Ll expression is a surrogate for an endogenous antitumor immune response that is part of a host inflammatory response (Gajewski et al., 2010; Taube et al., 2012).
- cell surface expression of PD- Ll in tumors and/or inflammatory cells in the tumor microenvironment may be a marker not just for selecting cancer patients who would benefit from treatment with an anti-PD-1 Ab, but also for treatment with an anti-PD-Ll Ab as well as treatments targeting inhibitory immunoregulatory pathways other than the PD-1/PD-L1 pathway.
- cell surface expression of PD-Ll in tumors and/or tumor-infiltrating inflammatory cells may be used as a marker for identifying or selecting suitable cancer patients who would benefit from immunotherapy with agents, including Abs, that target, and disrupt or inhibit signaling from, immune checkpoints such as PD-Ll, Cytotoxic T- Lymphocyte Antigen-4 (CTLA-4), B and T Lymphocyte Attenuator (BTLA), T cell Immunoglobulin and Mucin domain-3 (TIM-3), Lymphocyte Activation Gene-3 (LAG- 3), Killer Immunoglobulin-like Receptor (KIR), Killer cell Lectin-like Receptor Gl (KLRG-1), Natural Killer Cell Receptor 2B4 (CD244), and CD160 (Pardoll, 2012;
- CTLA-4 Cytotoxic T- Lymphocyte Antigen-4
- BTLA B and T Lymphocyte Attenuator
- TIM-3 T cell Immunoglobulin and Mucin domain-3
- LAG- 3 Lymph
- the inhibitory immunoregulator is a component of the PD-1 /PD-Ll signaling pathway. In other preferred embodiments, the inhibitory immunoregulator is an anti-PD-1 Ab of the invention. In yet other preferred embodiments, the inhibitory immunoregulator is an anti-PD-Ll Ab of the invention.
- any immunotherapy methods comprising assaying PD-L1 expression, i.e., employing a PD-L1 expression biomarker, are described below as comprising the selection of a patient who is, or is not, suitable for anti-PD-1 immunotherapy, or as comprising the administration of an anti-PD-1 Ab for immunotherapeutic purposes, it should be understood that these methods apply more broadly to the selection of a patient who is, or is not, suitable for immunotherapy with, or to the administration of an inhibitor of, an inhibitory immunoregulator (e.g., CTLA-4, BTLA, TIM3, LAG3 or KIR) or a component or ligand thereof.
- an inhibitory immunoregulator e.g., CTLA-4, BTLA, TIM3, LAG3 or KIR
- the step comprising the provision of a test tissue sample obtained from a patient is an optional step. That is, in certain embodiments the method includes this step, and in other embodiments, this step is not included in the method. It should also be understood that in certain preferred embodiments the "assessing" step to identify, or determine the number or proportion of, cells in the test tissue sample that express PD-L1 on the cell surface is performed by a transformative method of assaying for PD-L1 expression, for example by performing a reverse transcriptase-polymerase chain reaction (RT-PCR) assay or an IHC assay.
- RT-PCR reverse transcriptase-polymerase chain reaction
- no transformative step is involved and PD-L1 expression is assessed by, for example, reviewing a report of test results from a laboratory.
- the steps of the methods up to, and including, assessing PD-L1 expression provides an intermediate result that may be provided to a physician or other medical practitioner for use in selecting a suitable candidate for immunotherapy and/or administering an immunotherapeutic agent to the patient.
- the steps that provide the intermediate result may be performed by a medical practitioner or someone acting under the direction of a medical practitioner. In other embodiments, these steps are performed by an independent laboratory or by an independent person such as a laboratory technician.
- the disclosure also provides a method for treatment of a subject afflicted with cancer, which method comprises: (a) selecting a subject that is not suitable for treatment with an agent that inhibits an inhibitory immunoregulator, e.g., anti-PD-1 Ab
- the selecting comprising (i) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (ii) assessing the proportion of cells in the test tissue sample that express PD-L1 on the surface of the cells; and (iii) selecting the subject as not suitable for immunotherapy with an inhibitor of an inhibitory
- an immunoregulator e.g., an anti-PD-1 Ab
- a standard-of-care therapeutic other than an inhibitor of an inhibitory immunoregulator, e.g., an anti-PD-1 Ab
- the proportion of cells that express PD-Ll is assessed by performing an assay to determine the presence of PD-Ll RNA.
- the presence of PD-Ll RNA is determined by RT-PCR, in situ hybridization or R ase protection.
- the proportion of cells that express PD-Ll is assessed by performing an assay to determine the presence of PD-Ll polypeptide.
- the presence of PD-Ll polypeptide is determined by immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), in vivo imaging, or flow cytometry.
- IHC immunohistochemistry
- ELISA enzyme-linked immunosorbent assay
- PD-Ll expression is assayed by IHC.
- Flow cytometry may be particularly suitable for assaying PD-Ll expression in cells of hematologic tumors.
- cell surface expression of PD-Ll is assayed using, e.g., IHC or in vivo imaging.
- Imaging techniques have provided important tools in cancer research and treatment. Recent developments in molecular imaging systems, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), fluorescence reflectance imaging (FRI), fluorescence-mediated tomography (FMT), bioluminescence imaging (BLI), laser-scanning confocal microscopy (LSCM) and multiphoton microscopy (MPM), will likely herald even greater use of these techniques in cancer research.
- PET positron emission tomography
- SPECT single-photon emission computed tomography
- FMT fluorescence reflectance imaging
- FMT fluorescence-mediated tomography
- BLI laser-scanning confocal microscopy
- MCM multiphoton microscopy
- PD-Ll expression is assayed by immunoPET imaging.
- the proportion of cells in a test tissue sample that express PD-Ll is assessed by performing an assay to determine the presence of PD-Ll polypeptide on the surface of cells in the test tissue sample.
- the test tissue sample is a FFPE tissue sample.
- the presence of PD-Ll polypeptide is determined by IHC assay.
- the IHC assay is performed using an automated process.
- the IHC assay is performed using an anti-PD-Ll mAb to bind to the PD-Ll polypeptide.
- Abs that bind specifically to cell-surface-expressed PD-Ll in FFPE tissues An Ab may bind to an antigen in fresh tissues but completely fail to recognize the antigen in an FFPE tissue sample. This phenomenon, well known in the art, is thought to be due primarily to intra- and inter-molecular cross-linking of polypeptides induced by formalin fixation, which alters the epitope recognized by the Ab (Sompuram et a , 2006).
- This disclosure provides a mAb or an antigen-binding portion thereof that binds specifically to a cell surface-expressed PD-Ll antigen in a FFPE tissue sample.
- the mAb or antigen-binding portion thereof does not bind to a cytoplasmic PD-Ll polypeptide in the FFPE tissue sample or exhibits a very low level of background binding.
- the presence or absence of binding specifically to a cell surface-expressed or a cytoplasmic PD-Ll polypeptide is detected by immunohistochemical staining.
- the mAb or antigen-binding portion is a rabbit Ab or a portion thereof. In other preferred
- the mAb is the rabbit mAb designated 28-8, 28-1, 28-12, 29-8 or 20-12. In more preferred embodiments, the mAb is the rabbit mAb designated 28-8 or an antigen- binding portion thereof. In further embodiments, the mAb is an Ab comprising a heavy chain variable region (YH) comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 35 and a light chain variable region (V K ) comprising consecutively linked amino acids having the sequence set forth in SEQ ID NO: 36.
- YH heavy chain variable region
- V K light chain variable region
- the mAb comprises the CDR1, CDR2 and CDR3 domains in a YH having the sequence set forth in SEQ ID NO: 35, and the CDR1, CDR2 and CDR3 domains in a Y K having the sequence set forth in SEQ ID NO: 36.
- rabbit Abs generally exhibit more diverse epitope recognition, improved immune response to small-size epitopes, and higher specificity and affinity compared to murine Abs (see, e.g., Fischer et ah, 2008; Cheang et ah, 2006; Rossi et ah, 2005).
- the rabbit's lower immune dominance and larger B-cell repertoire results in greater epitope recognition compared to murine Abs.
- the high specificity and novel epitope recognition of rabbit antibodies translates to success with recognition of post-translational modifications (Epitomics, 2013).
- rabbit anti-hPD-Ll mAbs e.g., 28-8
- IHC assays for detecting surface-expressed PD-Ll in FFPE tissue samples and potentially have distinct advantages over murine Abs, such as 5H1.
- mAb 28-8 was selected as the Ab with the best combination of binding to membranous PDF-LI with high affinity and specificity, and low background staining.
- the mAb or antigen-binding portion cross- competes with mouse mAb 5H1 for binding to PD-L1, which indicates that these antibodies bind to the same epitope region of PD-L1. In certain other aspects, the mAb or antigen-binding portion thereof does not cross-compete with mouse mAb 5H1 for binding to PD-L1, indicating that they do not bind to the same epitope region of PD-L1.
- the disclosure also provides nucleic acids encoding all of the rabbit anti-hPD-Ll Abs or portions thereof disclosed herein.
- Immunotherapeutic methods comprising measurement of cell surface PD-L1 expression
- this disclosure also provides a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) selecting a subject that is a suitable candidate for immunotherapy, the selecting comprising: (i) optionally providing a FFPE test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (ii) assessing the proportion of cells in the test tissue sample that express PD-L1 on the cell surface by IHC using a rabbit anti- human PD-L1 Ab, e.g., mAb 28-8, to bind to the PD-L1 ; and (iii) selecting the subject as a suitable candidate based on an assessment that the proportion of cells in the test tissue sample that express PD-
- an automated IHC assay is used.
- the automated IHC process is performed on an autostainer and comprises: (a) de-paraffinizing the FFPE sample with xylene and rehydrating the sample; (b) retrieving the antigen using a decloaking chamber; (c) blocking nonspecifc protein binding sites by incubation with a Protein Block; (d) incubating the sample with a primary anti-PD-Ll Ab; (e) adding a polymeric horseradish peroxidase (HRP)-conjugated secondary Ab; (f) detecting the bound secondary Ab comprising staining with a 3,3'-diaminobenzidine (DAB) chromogen; and/or (g) counterstaining with hematoxylin.
- HRP horseradish peroxidase
- this automated IHC process has been optimized by minimization of the number of steps, optimization of incubation times, and selection of primary Abs, blocking and detection reagents that produce strong specific staining with a low level of background staining.
- the primary anti-PD-Ll Ab is rabbit mAb 28-8 or murine mAb 5H1.
- this IHC assay, and any other IHC assay described herein to measure PD-L1 expression may be used as part of a method of immunotherapy.
- any of the IHC methods described herein is used independently of any therapeutic process requiring the administration of a therapeutic, i.e., solely as a diagnostic method to assay PD-L1 expression.
- the Ab administered to the selected subject is any anti-PD-1 or anti-PD-Ll Ab or antigen- binding portion thereof of the invention.
- the subject is a human.
- the Ab is a human Ab or antigen-binding portion thereof.
- the anti-PD-1 Ab is nivolumab and the anti-PD-Ll Ab is BMS-936559.
- the anti-PD-1 Ab is an Ab or antigen-binding portion thereof that cross-competes with nivolumab for binding to PD- 1
- the anti-PD-Ll Ab is an Ab or antigen-binding portion thereof that cross-competes with BMS-936559 for binding to PD-L1.
- the cancer to be treated is selected from the group consisting MEL, RCC, squamous NSCLC, non- squamous NSCLC, CRC, castration-resistant prostate cancer CRPC, HCC, squamous cell carcinoma of the head and neck, carcinomas of the esophagus, ovary, gastrointestinal tract and breast, and a hematological malignancy.
- the predetermined threshold is based on a proportion of (a) tumor cells, (b) tumor-infiltrating inflammatory cells, (c) particular tumor-infiltrating inflammatory cells, e.g., TILs or macrophages, or (d) a combination of tumor cells and tumor-infiltrating inflammatory cells, in a test tissue sample that expresses PD-L1 on the cell surface.
- the tumor-infiltrating inflammatory cells e.g., TILs or macrophages
- a combination of tumor cells and tumor-infiltrating inflammatory cells e.g., TILs or macrophages
- predetermined threshold is at least 0.001% of tumor cells expressing membranous PD-L1 as determined by IHC. In other embodiments, the predetermined threshold is at least 0.01%, preferably at least 0.1%, more preferably at least 1% of tumor cells expressing membranous PD-L1, as determined by IHC. In certain embodiments, the predetermined threshold is at least 5% of tumor cells expressing membranous PD-L1 as determined by IHC.
- the predetermined threshold is at least 0.01%, at least 0.1%, at least 1%, or at least 5% of tumor cells expressing membranous PD-L1 as determined by IHC, and/or a single tumor-infiltrating inflammatory cell expressing membranous PD- Ll as determined by IHC. In certain other embodiments, the predetermined threshold is at least 0.01%, at least 0.1%, at least 1%, or at least 5% of a tumor-infiltrating inflammatory cell expressing membranous PD-L1 as determined by IHC.
- the predetermined threshold is at least 0.01%, at least 0.1%, at least 1%, or at least 5% of a tumor- infiltrating lymphocyte expressing membranous PD-L1 as determined by IHC. In certain other embodiments, the predetermined threshold is at least 0.01%, at least 0.1%, at least 1%, or at least 5% of a tumor-infiltrating macrophage expressing membranous PD- Ll as determined by IHC. In yet other embodiments, the predetermined threshold is at least a single tumor cell or a single tumor-infiltrating inflammatory cell expressing membranous PD-L1 as determined by IHC. Preferably, PD-L1 expression is assayed by automated IHC using mAb 28-8 or 5H1 as the primary Ab.
- This disclosure also provides a method for treatment of a subject afflicted with cancer, which method comprises: (a) screening a plurality of subjects to identify a subject that is not a suitable candidate for immunotherapy comprising the administration of an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, to the subject, the screening comprising: (i) optionally providing test tissue samples from the plurality of subjects, the test tissue samples comprising tumor cells and tumor- infiltrating
- an agent that inhibits an inhibitory immunoregulator e.g., an anti-PD-1 Ab
- inflammatory cells comprising: (ii) assessing the proportion of cells in the test tissue samples that express PD-L1 on the surface of the cells; and (iii) selecting the subject as a candidate that is not suitable for immunotherapy based on an assessment that the proportion of cells that express PD-L1 on the surface of cells in the subject's test tissue sample is below a predetermined threshold level; and (b) administering a standard-of-care therapeutic other than an agent that inhibits an inhibitory immunoregulator, e.g. , an anti-PD- 1 Ab, to the selected subject.
- an inhibitory immunoregulator e.g., an anti-PD- 1 Ab
- This disclosure further provides a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) screening a plurality of subjects to identify a subject that is a suitable candidate for immunotherapy, the screening comprising: (i) optionally providing test tissue samples from the plurality of subjects, the test tissue samples comprising tumor cells and tumor-infiltrating inflammatory cells; (ii) assessing the proportion of cells in the test tissue samples that express PD-L1 on the surface of the cells; and (iii) selecting the subject as a candidate that is suitable for immunotherapy with an agent that inhibits an inhibitory immunoregulator, e.g., an anti- PD- 1 Ab, based on an assessment that the proportion of cells in the test tissue sample that express PD-L1 on the cell surface exceeds a predetermined threshold level; and (b) administering a composition comprising a therapeutically effective amount of said agent to the selected subject.
- an inhibitory immunoregulator e.g., an anti- PD- 1 Ab
- This disclosure additionally provides a method for treatment of a subject afflicted with cancer, which method comprises: (a) screening a plurality of subjects to identify a subject that is a suitable candidate for the treatment, the screening comprising: (i) optionally providing test tissue samples from the plurality of subjects, the test tissue samples comprising tumor cells and tumor-infiltrating inflammatory cells; (ii) assessing the proportion of cells in the test tissue samples that express PD-L1 on the surface of the cells, wherein the subject is identified as a suitable candidate for anti-PD- 1 Ab immunotherapy if the proportion of cells in the tissue sample that express PD-L1 on the cell surface exceeds a predetermined threshold level, and the subject is identified as a candidate that is not a suitable candidate for anti-PD- 1 Ab immunotherapy if the proportion of cells in the test tissue sample that express PD-L1 on the cell surface is below a predetermined threshold level; and (b) administering a composition comprising a therapeutically effective amount of an agent that inhibits an inhibitory immunoregulator
- One aspect of this invention is a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) determining that the proportion of cells in the test tissue sample that express PD-L1 on the cell surface is above a predetermined threshold level; and (c) based on that determination administering a composition comprising a therapeutically effective amount of an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, to the subject.
- an inhibitory immunoregulator e.g., an anti-PD-1 Ab
- Another aspect of the invention is a method for treatment of a subject afflicted with cancer, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) determining that the proportion of cells in the test tissue sample that express PD-L1 on the cell surface is below a predetermined threshold level; and (c) based on that determination administering a standard-of-care therapeutic other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, to the subject.
- a standard-of-care therapeutic other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab
- Yet another aspect of the invention is a method for immunotherapy of a subject afflicted with cancer, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) determining the proportion of cells in the test tissue sample that express PD-L1 on the cell surface; (c) selecting an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, as a treatment for the subject based on the recognition that an anti-PD-1 Ab is effective in patients whose test tissue sample contains a proportion of cells above a predetermined threshold level that express PD-L1 on the cell surface; and (d) administering a composition comprising a therapeutically effective amount of said agent to the subject.
- an inhibitory immunoregulator e.g., an anti-PD-1 Ab
- this disclosure provides a method for treatment of a subject afflicted with cancer, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) determining the proportion of cells in the test tissue sample that express PD-L1 on the cell surface; (c) selecting a standard-of-care therapeutic other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti- PD-1 Ab, as a treatment for the subject based on the recognition that said agent is ineffective in patients in whom the proportion of cells that express PD-L1 on the cell surface in the test tissue sample is below a predetermined threshold level; and (d) administering the standard-of-care therapeutic to the subject.
- an inhibitory immunoregulator e.g., an anti- PD-1 Ab
- This disclosure also provides a method of selecting an immunotherapy for a subject afflicted with cancer, which method comprises: (a) assaying cells of a test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells to assess the proportion of cells in the test tissue sample that express PD-L1; and (b) based on an assessment that the proportion of cells that express membranous PD-L1 is above a predetermined threshold level, selecting an immunotherapy comprising a therapeutically effective amount of an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD- 1 Ab, for the subject.
- an inhibitory immunoregulator e.g., an anti-PD- 1 Ab
- the disclosure further provides a method of selecting a treatment for a subject afflicted with cancer, which method comprises: (a) assaying cells of a test tissue sample comprising tumor cells and tumor- infiltrating inflammatory cells to assess the proportion of cells in the test tissue sample that express PD-L1 ; and (b) based on an assessment that the proportion of cells that express membranous PD-L1 is below a predetermined threshold level, selecting a standard-of-care treatment other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, for the subject.
- an inhibitory immunoregulator e.g., an anti-PD-1 Ab
- this disclosure provides a method for treatment of a subject afflicted with cancer, which method comprises administering to the subject a composition comprising a therapeutically effective amount of an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, the subject having been selected on the basis that the proportion of cells in a test tissue sample from the subject that express PD-L1 is determined to exceed a predetermined threshold level, wherein the test tissue sample comprises tumor cells and tumor-infiltrating inflammatory cells.
- an inhibitory immunoregulator e.g., an anti-PD-1 Ab
- This disclosure also provides a method for treatment of a subject afflicted with cancer, which method comprises administering to the subject a standard-of-care treatment other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, the subject having been selected on the basis that the proportion of cells in a test tissue sample from the subject that express PD-L1 is determined to be below a predetermined threshold level, wherein the test tissue sample comprises tumor cells and tumor-infiltrating inflammatory cells.
- a standard-of-care treatment other than an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab
- This disclosure further provides a method for selecting a cancer patient for immunotherapy with an agent that inhibits an inhibitory immunoregulator, e.g., an anti- PD-1 Ab, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-Ll on the cell surface; (c) comparing the proportion of cells that express PD-Ll on the cell surface with a predetermined threshold proportion; and (d) selecting the patient for immunotherapy based on an assessment that the proportion of cells in the test tissue sample that express surface PD-Ll is above the predetermined threshold level.
- an inhibitory immunoregulator e.g., an anti- PD-1 Ab
- the test tissue sample may be a FFPE tissue sample and PD-Ll polypeptide on the cell surface is detected by IHC using an anti-PD-Ll Ab, e.g., mAb 28-8 or 5H1.
- an anti-PD-Ll Ab e.g., mAb 28-8 or 5H1.
- any method where an immunotherapy is selected or administered based on an assessment that the proportion of cells in a test tissue sample from the subject expresses PD-Ll at a level above a predetermined threshold level it follows that a complementary method of treatment may be performed wherein a standard-of-care treatment other than the immunotherapy is selected or administered based on an assessment that the proportion of cells in a test tissue sample from the subject expresses PD-Ll at a level below the predetermined threshold level.
- This disclosure further provides a method for predicting the therapeutic effectiveness of an agent that inhibits an inhibitory immunoregulator, e.g., an anti-PD-1 Ab, for treating a cancer patient, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-Ll on the cell surface; (c) comparing the proportion of cells that express PD-Ll on the cell surface with a predetermined threshold value; and (d) predicting the therapeutic effectiveness of said agent, wherein if the proportion of cells that express PD-Ll on the cell surface exceeds the threshold proportion the agent is predicted to be effective in treating the patient, and wherein if the proportion of cells that express PD-Ll on the cell surface is below the threshold proportion the agent is predicted to not be effective in treating the patient.
- an inhibitory immunoregulator e.g., an anti
- This disclosure also provides a method for determining an immunotherapeutic regimen comprising an agent that inhibits an inhibitory immunoregulator, e.g., an anti- PD-1 Ab, for treating a cancer patient, which method comprises: (a) optionally providing a test tissue sample obtained from a patient with cancer of the tissue, the test tissue sample comprising tumor cells and tumor-infiltrating inflammatory cells; (b) assaying the test tissue sample to determine the proportion of cells therein that express PD-Ll on the cell surface; (c) comparing the proportion of cells that express PD-Ll on the cell surface with a predetermined threshold proportion; and (d) determining an immunotherapeutic regimen comprising said agent based on the determination that the proportion of cells that express PD-Ll on the cell surface exceeds the predetermined threshold proportion.
- an inhibitory immunoregulator e.g., an anti- PD-1 Ab
- Standard-of-care therapeutic is a treatment process, including a drug or combination of drugs, radiation therapy (RT), surgery or other medical intervention that is recognized by medical practitioners as appropriate, accepted, and/or widely used for a certain type of patient, disease or clinical circumstance.
- Standard-of-care therapies for different types of cancer are well known by persons of skill in the art.
- NCCN National Comprehensive Cancer Network
- NCCN GUIDELINES® NCCN Clinical Practice Guidelines in Oncology
- standard-of- care treatments for MEL, RCC and NSCLC are summarized below.
- MEL is a malignant tumor of melanocytes, the melanin-producing cells found predominantly in skin. Though less common than other skin cancers, it is the most dangerous of skin cancers if not diagnosed early and causes the majority (75%) of skin cancer deaths.
- the incidence of MEL is increasing worldwide in Caucasian populations, especially where peoples with low amounts of skin pigmentation receive excessive ultraviolet light exposure from the sun. In Europe, the incidence rate is ⁇ 10-20 per 100,000 population; in the USA 20-30 per 100,000; and in Australia, where the highest incidence is observed, 50-60 per 100,000 (Garbe et ah, 2012). MEL accounts for about 5% of all new cases of cancer in the United States (U.S.), and the incidence continues to rise by almost 3% per year. This translates to an estimated 76,690 new cases in the U.S. in 2013 with 9,480 associated deaths (Siegel et al. (2013).
- stage 0 For in situ (stage 0) or early-stage MEL (Stages I-II), surgical excision is the primary treatment.
- the prognosis is excellent for patients with localized disease and tumors 1.0 mm or less in thickness, with 5-year survival rates of more than 90% (NCCN GUIDELINES®, 2013 - Melanoma).
- NCN GUIDELINES® 2013 - Melanoma
- topical imiquimod and radiotherapy are emerging as treatments, especially for lentigo maligna.
- Chemotherapeutic agents for treating MEL include dacarbazine, temozolomide and imatinib for melanoma with a c-KIT mutation, high-dose interleukin-2, and paclitaxel with or without carboplatin.
- these treatments have modest success, with response rates below 20% in first-line (1L) and second-line (2L) settings.
- metastatic MEL metastatic MEL
- treatments including excision to clear margins, intralesional injections, laser ablation, radiation and biochemotherapy (combination of chemotherapy and biological agents such as interferon-alpha and IL-2) are being investigated.
- the therapeutic landscape for metastatic MEL has recently seen dramatic improvements with the development of novel drugs such as vemurafenib and ipilimumab.
- Vemurafenib specifically inhibits signaling by a mutated intracellular kinase, BRAF, that is present in about 50% of patients with metastatic MEL.
- vemurafenib delivered an estimated progression-free survival (PFS) of 5.3 months in BRAF mutation-positive patients versus merely 1.6 months for dacarbazine, and a median OS of 15.9 months for vemurafenib versus 5.6-7.8 months for dacarbazine (Chapman et al, 201 1; Sosman et al, 2012).
- Ipilimumab is a HuMAb that inhibits the immune checkpoint receptor, CTLA-4, and thereby stimulates a T cell immune response.
- Ipilimumab with or without a glycoprotein 100 (gplOO) peptide vaccine, improved median OS in patients with previously treated metastatic MEL to 10.0- 10.1 months as compared with 6.4 months among patients receiving gplOO alone (Hodi et al, 2010). Besides these two agents, no other agent has demonstrated an OS benefit in a Phase 3 randomized study.
- dacarbazine is approved by the FDA and the EMA for treatment of metastatic MEL with a reported objective response rate of 5-20% and a median OS of about 6.4 months, but these responses are short-lived.
- Other drugs such as temozolomide and fotemustine have not resulted in significant improvement in survival when compared to dacarbazine.
- IL-2 has also been approved by the FDA for the treatment of metastatic MEL as it is associated with a 15-20% response rate including 4- 6% complete responses which can be durable, but it is associated with significant toxicities including hypotension, cardiac arrhythmias, and pulmonary edema. Further details on standard-of-care treatments for melanoma are provided by Garbe et al. (2012) and the NCCN GUIDELINES®, 2013 - Melanoma.
- RCC is the most common type of kidney cancer in adults, responsible for approximately 90% of renal tumors, and 80-90% of these are clear cell tumors (NCCN GUIDELINES®, 2013 - Kidney Cancer). It is also the most lethal of all the genitourinary tumors. An estimated 65, 150 patients will be diagnosed with renal cancer and 13,680 will die of the disease in the United States in 2013 (Siegel et al. (2013).
- Stage IA and IB surgical resection, including radical nephrectomy and nephron-sparing surgery, is an effective therapy.
- Partial nephrectomy is generally not suitable for patients with locally advanced tumors (Stage II and III), in which case radical nephrectomy is preferred.
- Stage II and III the 5-year survival rate is 60-70%, but this is lowered considerably in Stage IV disease where metastases have spread.
- Stage IV RCC is relatively resistant to RT and chemotherapy, although patients may benefit from surgery, and cytoreductive nephrectomy before systemic therapy is recommended for patients with a potentially surgically resectable primary and multiple resectable metastases.
- cytokines IL-2 and IFNa were the only active systemic treatments for advanced or metastatic RCC, both providing reported ORRs of 5-27%.
- newer targeted agents have largely replaced cytokines in the treatment of advanced or metastatic renal cell carcinoma.
- hypoxia inducible factor alpha (HIFa) signaling in the pathogenesis of clear-cell RCC has led to widespread study of two classes of targeted therapies, anti-angiogenic tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors, in 1L and 2L treatments (Mulders, 2009).
- TKIs anti-angiogenic tyrosine kinase inhibitors
- mTOR mammalian target of rapamycin
- Targeting of angiogenesis is rational because constitutive HIFa activation leads to the upregulation or activation of several proteins including vascular endothelial growth factor (VEGF), which can subsequently lead to tumor proliferation and neovasculature formation.
- VEGF vascular endothelial growth factor
- Targeting of the mTOR pathway is important because activation of the upstream PI3K/Akt/mTOR signaling pathway is one method by which constitutive HIFa activation or upregulation occurs (Mulders, 2009).
- VEGF-receptor TKIs e.g., sorafenib, sunitinib, pazopanib, axitinib, and tivozanib
- VEGF-binding mAbs e.g., VEGF-binding mAbs
- mTOR inhibitors e.g., everolimus and temsirolimus
- temsirolimus showed a statistically significant benefit for OS in patients with advanced RCC compared to IFNa (10.9 months versus 7.3 months) (Hudes et al, 2007).
- Everolimus has also demonstrated a 2.1 -month improvement in median PFS versus placebo, but with no OS improvement (Motzer et al, 2008).
- everolimus is approved specifically for use after the failure of treatment with anti-angiogenic therapy.
- everolimus is indicated for the treatment of advanced RCC after failure of treatment with sunitinib or sorafenib
- everolimus is more broadly indicated for patients with advanced RCC, whose disease has progressed on or after treatment with VEGF-targeted therapy.
- NSCLC is the leading cause of cancer death in the U.S. and worldwide, exceeding breast, colon and prostate cancer combined.
- an estimated 228, 190 new cases of lung and bronchial will be diagnosed in the U.S., and some 159,480 deaths will occur because of the disease (Siegel et al., 2013).
- the majority of patients (approximately 78%) are diagnosed with advanced/recurrent or metastatic disease.
- Metastases to the adrenal gland from lung cancer are a common occurrence, with about 33% of patients having such metastases.
- NSCLC therapies have incrementally improved OS, but benefit has reached a plateau (median OS for late stage patients is just 1 year).
- NSCLCs are relatively insensitive to chemotherapy and RT, compared to small cell carcinoma.
- surgical resection provides the best chance for cure, with chemotherapy increasingly being used both pre-operatively and post-operatively.
- RT can also be used as adjuvant therapy for patients with resectable NSCLC, the primary local treatment, or as palliative therapy for patients with incurable NSCLC.
- AVASTIN® vascular endothelial growth factor A
- TARCEVA® is a small-molecule TKI of epidermal growth factor receptor (EGFR).
- Crizotinib is a small-molecule TKI that targets ALK and MET, and is used to treat NSCLC in patients carrying the mutated ALK fusion gene.
- Cetuximab is a mAb that targets EGFR.
- Pemetrexed and bevacizumab are not approved in squamous NSCLC, and molecularly targeted therapies have limited application.
- the unmet need in advanced lung cancer has been compounded by the recent failure of Oncothyreon and Merck KgaA's STIMUVAX® to improve OS in a phase 3 trial, inability of ArQule's and Daiichi Sankyo's c-Met kinase inhibitor, tivantinib, to meet survival endpoints, failure of Eli Lilly's ALIMTA® in combination with Roche's AVASTI ® to improve OS in a late- stage study, and Amgen's and Takeda Pharmaceutical's failure to meet clinical endpoints with the small-molecule VEGF-R antagonist, motesanib, in late-stage trials.
- Fab fragment of the anti-PD-1 HuMAb 5C4 or human IgGl (hlgGl) isotype control Ab for 30 minutes at 4°C before addition of anti-PD-1 HuMAbs 2D3, 7D3 or 4H1 at a concentration of 0.2
- FITC isothiocyanate
- CHO/PD-1 cells were incubated with the whole molecule of 5C4 before addition of FITC-labeled 17D8. Binding of 2D3, 7D3, 4H1 or 17D8 to the CHO/PD-1 cells was measured by flow cytometric analysis using a FACScalibur flow cytometer (Becton Dickinson, San Jose, CA).
- CHO cells transfected to express hPD-Ll (CHO/PD-L1 cells) were incubated with
- FITC- conjugated HuMAbs Different quantities of the various FITC- conjugated HuMAbs were used due to differences in binding efficiency following labeling, and the optimal amounts of these FITC-conjugated HuMAbs were previously determined by dose-titration analysis of binding to CHO/PD-L1 cells. Binding of FITC- conjugated 10H10, 3G10, 10A5, 11E6, 12A4 or 13G4 to the CHO/PD-L1 cells was measured by flow cytometry.
- Each of anti-PD-Ll HuMAbs 5F8, 7H1, 1B12, 3G10, 10A5, 11E6, 12A4, 12B7 and 13G4 substantially blocked binding of labeled mAbs 3G10 ( Figure 2B), 10A5 ( Figure 2C), 11E6 ( Figure 2D), 12A4 ( Figure 2E) and 13G4 ( Figure 2F) to CHO/PD-L1 cells as measured by MFI, though mAbs 5F8 and 13G4 generally blocked binding of the labeled mAbs to a slightly lesser extent.
- Anti-PD-Ll HuMAbs 5F8, 12B7, 3G10, 1B 12, 13G4, 10H10, 10A5 and 12A4, and a human IgGl (hulgGI) isotype control Ab were serially diluted from 10 ⁇ g/ml and incubated with hPD-Ll -expressing ES-2 ovarian carcinoma cells for 20 minutes at 4°C. Without washing, biotinylated-12A4 Ab was added to a final concentration of 0.4 ⁇ g/ml for an additional 20 minutes at 4°C. After washing, bound biotin-12A4 was detected using fluorescent streptavidin-PE secondary reagent and measured by flow cytometry.
- Figure 3 shows the fluorescence of bound biotin-12A4 plotted against the concentration of unlabeled hPD-Ll HuMAbs. Binding of biotin-12A4 to ES-2 cells was substantially blocked by 12A4 itself and by IB 12 and 12B7, and was moderately to significantly blocked by mAbs 5F8, 10A5, 13G4 and 3G10, but was not blocked by mAb 10H10. EXAMPLE 4
- the human anti-PD-1 mAb, BMS-936558 (also referred to herein as nivolumab, and in U.S. Patent No. 8,008,449 as 5C4), was administered as an intravenous infusion every 2 weeks of each 8-week treatment cycle. Tumor status was re-assessed following each cycle. Patients continued treatment for up to 2 years (12 cycles), until they experienced complete remission, unacceptable toxicity, disease progression, or withdrew consent.
- MEL advanced melanoma
- NSCLC non-small cell lung cancer
- RCC renal cell carcinoma
- CRPC castration-resistant prostate cancer
- CRC colorectal cancer
- MTD maximum tolerated dose
- Eligible patients had documented advanced solid tumors; age > 18 years; life expectancy > ⁇ 2 weeks; Eastern Cooperative Oncology Group performance status of ⁇ 2; measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST), vl .O with modification (see Topalian et a , 2012b); adequate hematologic, hepatic, and renal function; and received 1-5 prior systemic treatment regimens.
- Patients with stable treated brain metastases were enrolled.
- Exclusion criteria included a history of chronic autoimmune disease, prior therapy with T-cell modulating Abs (e.g., anti-CTLA-4, anti- PD-1, anti-PD-Ll), conditions requiring immunosuppressive medications, and chronic infections (e.g., HIV, hepatitis B or C).
- Time-to-event endpoints including PFS, OS, survival rates, and duration of response were estimated using the Kaplan-Meier method.
- AEs were coded using Medical Dictionary for Regulatory Activities (MedDRA), version 15.1.
- a MTD was not defined across the doses of BMS-936558 tested on this study, up to the highest planned dose of 10 mg/kg.
- a relative BMS-936558 dose intensity of 90% or higher was achieved in 87% of patients (see Topalian et ah, 2012b; Topalian et ah, 2013, for details). AEs were coded using Medical Dictionary for Regulatory Activities
- AEOSIs were identified using a pre-defined list of MeDRA terms. Fifteen of 296 (5%) patients discontinued treatment due to BMS-936558-related AEs. As of the February 2012 date of preliminary analysis, 62 (21%) patients had died, and by March 2013, 195 patients (64%) had died, with disease progression being the most common cause of death (Topalian et ah, 2012b; Topalian et ah, 2013).
- Drug-related AEOSIs with potential immune-related etiologies, were categorized by organ involvement to provide a more accurate estimate of frequency and included pneumonitis, vitiligo, colitis, hepatitis, hypophysitis, and thyroiditis among others.
- Drug-related pneumonitis occurred in 12 of 306 (4%) patients (Topalian et ah, 2013). Clinical presentations ranged from radiographic abnormalities in asymptomatic patients, to progressive, diffuse pulmonary infiltrates associated with symptoms (cough, fever, dyspnea). Grade 3-4 pneumonitis developed in 4 patients (1%), of which 3 cases were fatal (2 NSCLC patients, 1 CRC). No clear relationship between the occurrence of pneumonitis and tumor type, dose level, or the number of doses received was noted. In 9 of 12 patients, pneumonitis was reversible with treatment discontinuation and/or immunosuppression (glucocorticoids, infliximab, mycophenolate). Following the most recent pneumonitis-associated death in November 201 1, 79 patients continued to receive nivolumab (median 29 weeks, range 2-69 weeks) with no further mortalities from this or other treatment-related causes. EXAMPLE 6
- PK pharmacokinetic
- PD-1 receptor occupancy RO
- BMS-936558 The maximum concentration of BMS-936558 was observed at a median T max of 1- 4 hours after the start of infusion.
- BMS-936558 PD was assessed by PD-1 RO on circulating T-cells.
- the efficacy population consists of response-evaluable patients whose treatment was initiated at least 8 months before data analysis in February 2012, and had measurable disease at baseline and one of the following: at least 1 on-treatment scan or clinical evidence of disease progression or death.
- CR denotes complete response, MEL melanoma, NSCLC non-small cell lung cancer, ORR objective response rate, PFSR progression-free survival rate, PR partial response, RCC renal cell cancer, SD stable disease, n number of patients.
- ⁇ Progression-free survival rate was the proportion of patients who did not progress and were alive at 24 weeks calculated by the Kaplan-Meier methodology with confidence intervals using the Greenwood method.
- MEL denotes melanoma, NA not applicable, NSCLC non-small cell lung cancer, RCC renal cell cancer.
- Time from first response to time of documented progression, death, or for censored data (denoted by "+"), time to last tumor assessment.
- Time from first response to time of documented progression, death, or for censored data (denoted by "+"), time to last tumor assessment.
- IHC staining of PD-L1 was performed on pretreatment formalin-fixed paraffin- embedded (FFPE) tumor specimens using the murine anti-human PD-L1 mAb 5H1 (Dong et ah, 2002) in a standard IHC protocol (Taube et ah, 2012; Supp. Materials). Briefly, 5 ⁇ - ⁇ sections mounted on glass slides were deparaffinized in xylene and antigen retrieval was performed using a Tris-EDTA buffer, pH 9.0 at 120°C for 10 min in a Decloaking Chamber (Biocare Medical).
- the percentage of tumor cells exhibiting cell surface staining for PD-L1 was scored by two independent pathologists who were blinded to treatment outcomes. PD-L1 positivity was defined per specimen by a 5% expression threshold (Taube et ah, 2012; Thompson et ah, 2006), and in cases with multiple specimens, if any specimen met this criterion. A Fisher's exact test was applied to assess the association between PD-L1 expression and OR, noting, however, that this analysis was based in part on optional biopsies from a non-random subset of the population and testing of a statistical hypothesis was not pre-specified.
- Rabbit Abs against human PD-Ll polypeptide were prepared by Epitomics, Inc. (Burlingame, CA) by immunization of rabbits using a recombinant human PD-Ll fusion protein. Antiserum titers were evaluated using standard direct ELISA with the hPD-Ll antigen, and cell ELISA using transfected cells overexpressing hPD-Ll . These Abs were also screened for their ability to bind to PD-Ll by IHC assay of FFPE tissue sections. The rabbit with the highest Ab titer was selected for splenectomy.
- Lymphocytes isolated from the spleen were fused to myeloma cells in 40 x 96-well plates, and screened by ELISA against the immunizing PD-Ll antigen and by cell ELISA against cells overexpressing hPD-Ll. Positive clones were expanded into 24-well plates, and confirmatory screens were conducted by direct ELISA and cell ELISA. The supernatants (sups) of clones that were specific to the screening antigen were re-screened by IHC.
- a set of mouse anti-hPD-Ll mAbs were also produced by immunization of mice using a protocol similar to that described above for the rabbit mAbs.
- ⁇ PD-L1 positive tissues included placenta and one non-small cell lung cancer; Detection up to "very high” expression suggests better sensitivity at detecting membranous PD- Ll .
- clones 28-x and 49-x displayed low to moderate levels of background staining in tissues, while clones 13-x exhibited no background staining, which suggests that the 13-x clones have a wider dynamic range.
- the 20-x clones displayed various degree of background staining which was primarily cytoplasmic and diffuse.
- MAbs 28-1, 28-12, 20-12 and 29-8 had K D values of 130 pM, 94 pM, 160 pM and 1200 pM, respectively.
- V # heavy chain variable
- V K light chain variable
- mAbs 5H1 and 28-8 The binding of mAbs 5H1 and 28-8 to membranous PD-Ll in FFPE test tissue samples comprising tumor cells and tumor-infiltrating inflammatory cells from different types of tumors was compared.
- Membranous PD-Ll expression was evaluated using the histoscore method performed by 2 independent pathologists.
- Four NSCLC, 2 MEL, and 2 RCC tumors were stained with 28-8 at 2 mg/ml and 5H1 at 5 mg/ml.
- the data are tabulated in Table 6, and shown graphically in Figure 9.
- the rabbit mAb 28-8 showed better detection (higher histoscores) for 7 out of 10 samples using 2.5-fold less Ab, and in only one sample was the histoscore for 5H1 slightly higher than for mAb 28-8.
- Gadiot et al. (2011) reported that mAb 5H1 produced a high level background staining in FFPE tissue samples, whereas they found that pAb 4059 produced satisfactory specific staining of PD-Ll in FFPE samples.
- ⁇ PD-L1 positive tissues included tonsil and/or thymus
- mAb mouse monoclonal Ab
- pAb rabbit polyclonal Ab
- the IHC assay run using the autostainer in research mode, comprised the following steps: neutralizing endogenous peroxidase using the Peroxidase Block (Leica) for 10 min, followed by rinsing 3 times with IHC wash buffer (Dako); applying Protein Block (Leica) to the slides, and incubating for 10 min at RT, followed by washing 3 times with wash buffer; applying the primary Ab to the slides (2 ⁇ g/ml) and incubating for 1 h at RT, followed by washing 6 times with wash buffer; adding Post Primary Block (NovoLink Kit) to the slides and incubating for 30 min, followed by washing 6 times with wash buffer; adding NovoLink Polymer (NovoLink Kit) to the slides and incubating for 30 min, followed by washing 6 times with wash buffer; adding the DAB chromogen substrates (NovoLink Kit) and developing for 3 min, followed by r
- the primary Ab was selected from the rabbit anti-PD-Ll Abs shown in Table 4; mAb 28-8 was the preferred Ab.
- rabbit IgG rabbit IgG (Dako) was used.
- the tissue sections were dehydrated using a Leica autostainer by washing once for 2 min in 70% EtOH, twice for 2 min in 95% EtOH, and three times for 2 min in 70% EtOH, then cleared by washing three times for 5 min in xylene.
- the sections were permanently mounted with permount to the slide, covered with a coverslip, and transferred to a chemical hood to dry.
- BMS- 936559 also referred to herein and in U.S. Patent No. 7,943,743 as 12A4
- CT computed tomography
- a MTD was not reached up to the highest tested dose of 10 mg/kg of BMS- 936559.
- the median duration of therapy was 12 weeks (range 2.0-1 1 1.1 weeks).
- a relative dose intensity of > 90% was achieved in 86% of patients. Twelve of 207 patients (6%) discontinued treatment due to a BMS-936559-related AE (see Brahmer et al, 2012, for details).
- AEs regardless of causality (any grade) were reported in 188 of 207 patients.
- Investigator-assessed BMS-936559-related AEs were noted in 126 of 207 (61%) patients.
- the most common drug-related AEs were fatigue, infusion reactions, diarrhea, arthralgia, rash, nausea, pruritus, and headache.
- Most events were low grade with BMS-936559- related grade 3-4 events noted in 19 of 207 (9%) patients (Brahmer et al, 2012).
- the spectrum, frequency, and severity of BMS-936559-related AEs were similar across the dose levels, with the exception of infusion reactions.
- AEOSIs Drug-related AEOSIs, with potential immune-related etiologies, were observed in 81 of 207 (39%) of the patients and included rash, hypothyroidism, hepatitis, and single cases each of sarcoidosis, endophthalmitis, diabetes mellitus, and myasthenia gravis (Brahmer et ah, 2012). These AEs were predominantly grade 1 -2 and generally reversible with treatment interruption or discontinuation. Notably, 9 patients were treated with corticosteroids for the management of AEs. AEs improved or resolved in all patients. Furthermore, 4 of these 9 patients maintained disease control despite treatment with corticosteroids.
- Endocrine AEs were managed with replacement therapy and patients reinitiated treatment with BMS-936559 at the discretion of the treating physician. Infusion reactions were observed in 21 of 207 (10%) patients, predominantly at 10 mg/kg. They were grade 1-2 with the exception of one grade 3 event at 10 mg/kg. Infusion reactions were generally rapidly reversible with antihistamines and antipyretics and, in some cases, corticosteroids. A prophylactic regimen with antihistamines and antipyretics was implemented during the study. Patients with grade 1-2 infusion reactions were able to continue treatment with BMS-936559 with prophylactic antihistamines and antipyretics and at a reduced infusion rate. BMS-936559- related serious AEs occurred in 11 of 207 (5%) patients. As of the data analysis date, 45 patients (22%) had died (Brahmer et ah, 2012); no drug-related deaths were observed.
- BMS-936559 were quantified by ELISA. Peripheral blood mononuclear cells were isolated from patients at baseline and following one treatment cycle to assay PD-L1 RO by BMS-936559 on circulating CD3-positive T-cells via flow cytometry (Brahmer et ah, 2010).
- the half-life of BMS-936559 was estimated from population pharmacokinetic data as approximately 15 days.
- PD-L1 RO on CD3 -positive peripheral blood lymphocytes was assessed in 29 MEL patients at the end of 1 cycle of treatment, at BMS-936559 doses from 1-10 mg/kg. Median RO exceeded 65% for all groups (Brahmer et ah, 2012).
- CI denotes Confidence intervals, MEL melanoma, RCC renal cell carcinoma, NSCLC non-small cell lung cancer, OV ovarian cancer, RCC renal cell carcinoma, N/A not applicable, ORR objective response rate (complete response + partial response), SD stable disease, and PFSR progression-free survival rate.
- Efficacy population consists of response-evaluable patients who initiated treatment at least 7 months prior to the date of analysis and had measurable disease at a baseline tumor assessment and at least one of the following: an on-study tumor assessment, clinical progression, or death.
- MEL denotes melanoma, NSCLC non-small cell lung cancer, RCC renal cell cancer, OV ovarian cancer.
- nivolumab and ipilimumab received during the induction period nivolumab and ipilimumab every 3 weeks for 4 doses, followed by nivolumab alone every 3 weeks for 4 doses.
- Combined treatment was subsequently continued during the maintenance period every 12 weeks for up to 8 doses.
- nivolumab was administered first.
- nivolumab and ipilimumab doses were kept constant during the induction and maintenance periods.
- the dose-limiting-toxicity evaluation period was through week 9.
- Tumor assessments were at weeks 12, 18, 24, and 36, and then every 12 weeks thereafter.
- nivolumab therapy was initiated within 4-12 weeks after ipilimumab monotherapy. Tumor assessments were at week 8 and then every 8 weeks thereafter. Tumor responses were adjudicated using mWHO and immune-related mWHO criteria for both regimens.
- the study was initially planned to evaluate the concurrent regimen using a standard 3 + 3 design for the dose escalation phase, followed by cohort expansion to a total of up to 16 patients at the maximum tolerated dose or the maximum administered dose.
- the dose-limiting toxicity (DLT) evaluation period for dose escalation was 9 weeks. No intra-patient dose escalation was allowed and patients who experienced DLT were discontinued from therapy. Patients who withdrew from study during the DLT evaluation period for reasons other than drug-related toxicity could be replaced.
- Eligible patients were 18 years of age and had a diagnosis of measurable, unresectable stage III or IV melanoma; Eastern Cooperative Oncology Group performance status of 0-1, where 0 is asymptomatic and 1 is mildly symptomatic;
- LDH dehydrogenase
- Pre-treatment PD-Ll expression was measured by IHC in FFPE tumor specimens using the rabbit anti-PD-Ll mAb, 28-8, and an automated assay developed by Dako (Carpinteria, CA). Ab specificity was assessed by western blotting against recombinant PD-Ll protein and lysates from PD-Ll expressing and non-expressing cell lines. An IHC assay with and without antigen competition and an assessment of staining patterns in normal human tissues was performed. Analytical sensitivity, specificity, repeatability, reproducibility, and robustness of the immunohistochemistry assay were tested and met all pre-specified acceptance criteria. Two pathologists, blinded to outcome, independently read and adjudicated scores for all clinical specimens. A sample was defined as PD-Ll - positive if 5% of tumor cells exhibited membrane PD-Ll staining of any intensity in a section with 100 evaluable cells. Statistical analysis
- AEs were coded using MedDRA, version 15.1. Select AEs with potential immunologic etiologies were identified using a pre-defined list of MedDRA terms.
- Best overall responses were derived programmatically from tumor- measurements provided by the study-site radiologist and investigators per modified WHO (mWHO) or immune-related response criteria (Wolchok et al. 2009). Complete and partial responses were confirmed by at least one subsequent tumor assessment. An analysis also was performed to assess the magnitude of reduction in target lesions by radiographic assessment. A response was characterized as deep if a reduction of 80% from baseline measurements was noted. Unconfirmed responses as of the date of this analysis were also included in an estimate of aggregate clinical activity.
- AEs of any grade were observed in 98% of patients.
- Treatment-related AEs were observed in 93% of patients with the most common being rash (55%), pruritus (47%), fatigue (38%), and diarrhea (34%).
- Grade 3-4 AEs irrespective of attribution, were observed in 72% of patients, while grade 3-4 treatment-related events were noted in 53%, with the most common being elevations of lipase (13%), aspartate aminotransferase (13%) and alanine aminotransferase (1 1%).
- Treatment-related serious AEs were reported in 49% of patients.
- Common grade 3-4 treatment-related select AEs included hepatic (15%), gastrointestinal (9%), and renal (6%) events. Isolated cases of pneumonitis and uveitis were seen, consistent with historical monotherapy experiences. Eleven (21%) patients discontinued due to treatment- related AEs.
- Cohort 3 (3 mg/kg nivolumab + 3 mg/kg ipilimumab) exceeded the MTD (3 of 6 patients experienced asymptomatic grade 3-4 elevated lipase that persisted for 3 weeks).
- Cohort 2 (1 mg/kg nivolumab + 3 mg/kg ipilimumab) was identified as the MTD (grade 3 uveitis, grade 3 elevated AST/ALT in 1 patient each).
- AEs of any grade were observed in 29 (88%) patients.
- Treatment-related AEs were observed in 24 (73%) patients, with the most common including pruritus (18%) and lipase elevation (12%).
- Grade 3-4 AEs irrespective of attribution, were observed in 1 1 (33%) patients, while grade 3-4 treatment-related AEs were observed in 6 (18%) patients, with lipase elevation as the most common event (6%).
- Treatment-related serious AEs were reported in 7 (21%) patients.
- Grade 3-4 endocrine events were noted as treatment-related select AEs in 2 patients. One patient had grade-2 pneumonitis. Three (9%) patients discontinued due to treatment-related AEs.
- CR denotes complete response, PR partial response, uPR unconfirmed partial response, irPR immune-related partial response, SD stable disease, irSD immune-related stable disease.
- ⁇ Response-evaluable patients were those who received at least one dose of study therapy, had measurable disease at baseline, and one of the following: 1) at least one on-treatment tumor evaluation, 2) clinical progression, or 3) death prior to the first on-treatment tumor evaluation.
- CR denotes complete response, PR partial response, uPR unconfirmed partial response, irPR immune-related partial response, SD stable disease, irSD immune-related stable disease.
- Tumor PD-Ll expression and alterations in the peripheral blood ALC have been explored as biomarkers for nivolumab and ipilimumab monotherapy, respectively (Topalian et al, 2012b; Berman et al, 2009; Ku et al, 2010; Postow et al, 2012; Delyon et al, 2013).
- Tumor PD-Ll expression was characterized via IHC staining and pharmacodynamic changes in peripheral blood ALC was analyzed. Using a > 5% cut off to define PD-Ll positivity, tumor specimens from 21 of 56 (38%) patients were PD-Ll - positive.
- ORs were seen in patients with either PD-Ll -positive (6/13) or PD-Ll -negative (9/22) tumors amongst patients treated with the concurrent regimen (post-hoc P-value > 0.99; Fisher's exact test).
- sequenced-regimen cohorts a numerically higher number of overall responses were seen in patients with PD-Ll -positive tumor samples (4/8) compared with patients with PD-Ll -negative tumors (1/13), but the numbers are small.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Oncology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Hospice & Palliative Care (AREA)
- Endocrinology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (25)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201407190TA SG11201407190TA (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
CN201380037764.1A CN104470949A (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
EA201492105A EA037351B8 (en) | 2012-05-15 | 2013-05-13 | Method of treating cancer using an anti-pd-1 and anti-ctla-4 antibody combination |
EP13727687.9A EP2850102A1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
JP2015512717A JP6448533B2 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting PD-1 / PD-L1 signaling |
US14/400,667 US9856320B2 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting PD-1/PD-L1 signaling |
CA2873402A CA2873402C (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
KR1020247029150A KR20240135058A (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
KR1020147034644A KR102193343B1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
MX2014013565A MX368507B (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling. |
KR1020227023029A KR102702287B1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
EP22196038.8A EP4166567A1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
BR112014028826-7A BR112014028826B1 (en) | 2012-05-15 | 2013-05-13 | USE OF NIVOLUMAB OR PEMBROLIZUMAB |
KR1020207036047A KR102418979B1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
BR122022015975-3A BR122022015975B1 (en) | 2012-05-15 | 2013-05-13 | MONOCLONAL ANTIBODIES, KIT FOR THE TREATMENT OF AN INDIVIDUAL AFFLICTED WITH A CANCER, PROCESS FOR MEASURING MEMBRANOUS PD-L1 ON ISOLATED TUMOR CELLS AND USE OF THE ANTIBODY OR A PORTION THAT BIDS TO THE ANTIGEN THEREOF |
AU2013263076A AU2013263076B2 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting PD-1/PD-L1 signaling |
CN201810966897.1A CN108969763B (en) | 2012-05-15 | 2013-05-13 | Immunotherapy by disrupting PD-1/PD-L1 signaling |
IL235591A IL235591A0 (en) | 2012-05-15 | 2014-11-09 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
HK15104349.3A HK1203971A1 (en) | 2012-05-15 | 2015-05-07 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling pd-1 / pd-l1 |
AU2017213489A AU2017213489A1 (en) | 2012-05-15 | 2017-08-09 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
IL258051A IL258051B (en) | 2012-05-15 | 2018-03-12 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
AU2019202416A AU2019202416B2 (en) | 2012-05-15 | 2019-04-08 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
AU2020289725A AU2020289725A1 (en) | 2012-05-15 | 2020-12-14 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
IL289750A IL289750A (en) | 2012-05-15 | 2022-01-10 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
AU2024203938A AU2024203938A1 (en) | 2012-05-15 | 2024-06-11 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261647442P | 2012-05-15 | 2012-05-15 | |
US61/647,442 | 2012-05-15 | ||
US201361790747P | 2013-03-15 | 2013-03-15 | |
US61/790,747 | 2013-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013173223A1 true WO2013173223A1 (en) | 2013-11-21 |
Family
ID=48577861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/040764 WO2013173223A1 (en) | 2012-05-15 | 2013-05-13 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
Country Status (14)
Country | Link |
---|---|
US (18) | US9856320B2 (en) |
EP (3) | EP2850102A1 (en) |
JP (4) | JP6448533B2 (en) |
KR (4) | KR20240135058A (en) |
CN (3) | CN113967253A (en) |
AU (5) | AU2013263076B2 (en) |
BR (2) | BR112014028826B1 (en) |
CA (2) | CA2873402C (en) |
EA (1) | EA037351B8 (en) |
HK (1) | HK1203971A1 (en) |
IL (3) | IL235591A0 (en) |
MX (1) | MX368507B (en) |
SG (2) | SG11201407190TA (en) |
WO (1) | WO2013173223A1 (en) |
Cited By (364)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014100079A1 (en) * | 2012-12-21 | 2014-06-26 | Merck Sharp & Dohme Corp. | Antibodies that bind to human programmed death ligand 1 (pd-l1) |
US9067999B1 (en) | 2002-07-03 | 2015-06-30 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US9084776B2 (en) | 2005-05-09 | 2015-07-21 | E.R. Squibb & Sons, L.L.C. | Methods for treating cancer using anti-PD-1 antibodies |
WO2015126903A1 (en) * | 2014-02-18 | 2015-08-27 | Health Research, Inc. | Combination therapy for hepatocellular carcinoma |
WO2015143221A1 (en) * | 2014-03-19 | 2015-09-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2015143223A1 (en) * | 2014-03-19 | 2015-09-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2015187835A2 (en) | 2014-06-06 | 2015-12-10 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
WO2016006241A1 (en) * | 2014-07-09 | 2016-01-14 | 日本全薬工業株式会社 | Anti-canine pd-1 antibody or anti-canine pd-l1 antibody |
WO2016021720A1 (en) * | 2014-08-07 | 2016-02-11 | 学校法人兵庫医科大学 | Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody |
WO2016049256A1 (en) | 2014-09-25 | 2016-03-31 | Bristol-Myers Squibb Company | Treatment of lung cancer using an anti-fucosyl-gm1 antibody |
GB2531094A (en) * | 2014-05-13 | 2016-04-13 | Medimmune Ltd | Anti-B7-H1 and Anti-CTLA-4 antibodies for treating non-small cell lung cancer |
WO2016069727A1 (en) | 2014-10-29 | 2016-05-06 | Five Prime Therapeutics, Inc. | Combination therapy for cancer |
WO2016081748A2 (en) | 2014-11-21 | 2016-05-26 | Bristol-Myers Squibb Company | Antibodies against cd73 and uses thereof |
WO2016090070A1 (en) | 2014-12-04 | 2016-06-09 | Bristol-Myers Squibb Company | Combination of anti-cs1 and anti-pd1 antibodies to treat cancer (myeloma) |
JP2016520800A (en) * | 2013-03-15 | 2016-07-14 | ジェネンテック, インコーポレイテッド | Biomarkers and methods for treating conditions associated with PD-1 and PD-L1 |
WO2016127052A1 (en) | 2015-02-05 | 2016-08-11 | Bristol-Myers Squibb Company | Cxcl11 and smica as predictive biomarkers for efficacy of anti-ctla4 immunotherapy |
WO2016142532A1 (en) | 2015-03-11 | 2016-09-15 | Cellectis | Methods for engineering allogeneic t cell to increase their persistence and/or engraftment into patients |
WO2016145427A1 (en) | 2015-03-12 | 2016-09-15 | Health Research, Inc. | COMBINATION OF β-ADRENERGIC RECEPTOR ANTAGONISTS AND CHECK POINT INHIBITORS FOR IMPROVED EFFICACY AGAINST CANCER |
WO2016149201A2 (en) | 2015-03-13 | 2016-09-22 | Cytomx Therapeutics, Inc. | Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof |
WO2016168716A1 (en) * | 2015-04-17 | 2016-10-20 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-pd-1 antibody and another antibody |
WO2016176504A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
WO2016176503A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
WO2016168150A3 (en) * | 2015-04-13 | 2016-11-24 | The Board Of Regents Of The University Of Texas System | Treatment for cancer metastasis |
WO2016191751A1 (en) | 2015-05-28 | 2016-12-01 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
WO2016196935A1 (en) * | 2015-06-03 | 2016-12-08 | Boston Biomedical, Inc. | Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer |
WO2016196228A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Antibodies against ox40 and uses thereof |
WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
US9517258B2 (en) | 2012-03-15 | 2016-12-13 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2016201425A1 (en) | 2015-06-12 | 2016-12-15 | Bristol-Myers Squibb Company | Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways |
CN106243225A (en) * | 2015-06-11 | 2016-12-21 | 智翔(上海)医药科技有限公司 | Novel anti-PD-L1 antibody |
WO2016210241A1 (en) | 2015-06-26 | 2016-12-29 | Beth Israel Deaconess Medical Center, Inc. | Cancer therapy targeting tetraspanin 33 (tspan33) in myeloid derived suppressor cells |
JP2017500341A (en) * | 2013-12-20 | 2017-01-05 | イモデュロン セラピューティクス リミテッド | Immunomodulators for use in the treatment, reduction, inhibition or control of neoplastic diseases |
WO2017004016A1 (en) | 2015-06-29 | 2017-01-05 | The Rockefeller University | Antibodies to cd40 with enhanced agonist activity |
WO2017011666A1 (en) | 2015-07-14 | 2017-01-19 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
WO2017049199A1 (en) * | 2015-09-16 | 2017-03-23 | Board Of Regents, University Of Texas System | Combination of topoisomerase-i inhibitors with immunotherapy in the treatment of cancer |
KR20170040260A (en) * | 2014-08-01 | 2017-04-12 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Methods and therapeutic combinations for treating tumors |
WO2017079117A1 (en) | 2015-11-02 | 2017-05-11 | Five Prime Therapeutics, Inc. | Cd80 extracellular domain polypeptides and their use in cancer treatment |
WO2017085307A1 (en) * | 2015-11-22 | 2017-05-26 | Ventana Medical Systems, Inc. | Methods of identifying immune cells in pd-l1 positive tumor tissue |
WO2017087870A1 (en) | 2015-11-18 | 2017-05-26 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
WO2017087678A2 (en) | 2015-11-19 | 2017-05-26 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
WO2017084495A1 (en) * | 2015-11-17 | 2017-05-26 | 江苏恒瑞医药股份有限公司 | Pd-l1 antibody, antigen fragment binding thereof and pharmaceutical use thereof |
WO2017091580A1 (en) | 2015-11-23 | 2017-06-01 | Five Prime Therapeutics, Inc. | Predicting response to cancer treatment with fgfr2 inhibitors |
JP2017514143A (en) * | 2014-02-21 | 2017-06-01 | アッヴィ・ステムセントルクス・エル・エル・シー | Anti-DLL3 antibodies and drug conjugates for use in melanoma |
US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
WO2017106061A1 (en) * | 2015-12-14 | 2017-06-22 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017152085A1 (en) | 2016-03-04 | 2017-09-08 | Bristol-Myers Squibb Company | Combination therapy with anti-cd73 antibodies |
WO2017176565A1 (en) | 2016-04-07 | 2017-10-12 | Eli Lilly And Company | Combinations of an anti-b7-h1 antibody and a cxcr4 peptide antagonist for treating a solid tumor |
US20170290808A1 (en) * | 2016-04-07 | 2017-10-12 | Chemocentryx, Inc. | Reducing tumor burden by administering ccr1 antagonists in combination with pd-1 inhibitors or pd-l1 inhibitors |
WO2017176925A1 (en) | 2016-04-05 | 2017-10-12 | Bristol-Myers Squibb Company | Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment |
US9789183B1 (en) | 2015-01-09 | 2017-10-17 | Agency For Science, Technology And Research | Anti-PD-L1 antibodies |
WO2017181034A1 (en) | 2016-04-14 | 2017-10-19 | Bristol-Myers Squibb Company | Combination therapy using an anti-fucosyl-gm1 antibody and an anti-cd137 antibody |
JP2017530691A (en) * | 2014-07-11 | 2017-10-19 | ジェネンテック, インコーポレイテッド | Anti-PD-L1 antibody and its diagnostic use |
WO2017184619A2 (en) | 2016-04-18 | 2017-10-26 | Celldex Therapeutics, Inc. | Agonistic antibodies that bind human cd40 and uses thereof |
WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
WO2017201502A1 (en) | 2016-05-20 | 2017-11-23 | Biohaven Pharmaceutical Holding Company Ltd. | Use of glutamate modulating agents with immunotherapies to treat cancer |
WO2017201325A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
WO2017205801A1 (en) * | 2016-05-27 | 2017-11-30 | Takeda Pharmaceutical Company Limited | Combination of immunotherapy agents and spleen tyrosine kinase inhibitors |
WO2017210453A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
WO2017210637A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
WO2017210335A1 (en) | 2016-06-01 | 2017-12-07 | Bristol-Myers Squibb Company | Imaging methods using 18f-radiolabeled biologics |
WO2017210631A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
WO2017210624A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treating a tumor |
WO2017210473A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment |
WO2017214182A1 (en) * | 2016-06-07 | 2017-12-14 | The United States Of America. As Represented By The Secretary, Department Of Health & Human Services | Fully human antibody targeting pdi for cancer immunotherapy |
WO2017220989A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 and il-2 cytokines |
WO2018013818A2 (en) | 2016-07-14 | 2018-01-18 | Bristol-Myers Squibb Company | Antibodies against tim3 and uses thereof |
EP3160505A4 (en) * | 2014-07-03 | 2018-01-24 | BeiGene, Ltd. | Anti-pd-l1 antibodies and their use as therapeutics and diagnostics |
CN107645957A (en) * | 2015-02-09 | 2018-01-30 | 辛塔制药公司 | The HSP90 inhibitor for the treatment of cancer and the combination treatment of the inhibitor of PD 1 |
US9885721B2 (en) | 2014-05-29 | 2018-02-06 | Spring Bioscience Corporation | PD-L1 antibodies and uses thereof |
WO2018029474A2 (en) | 2016-08-09 | 2018-02-15 | Kymab Limited | Anti-icos antibodies |
WO2018048975A1 (en) | 2016-09-09 | 2018-03-15 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment |
WO2018049263A1 (en) | 2016-09-09 | 2018-03-15 | Tg Therapeutics, Inc. | Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers |
US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
JP2018508213A (en) * | 2014-11-25 | 2018-03-29 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Novel PD-L1 binding polypeptides for imaging |
US9938345B2 (en) | 2014-01-23 | 2018-04-10 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-L1 |
WO2018068336A1 (en) * | 2016-10-15 | 2018-04-19 | Innovent Biologics (Suzhou) Co., Ltd | Pd-1 antibodies |
EP3177649A4 (en) * | 2014-08-05 | 2018-04-25 | CB Therapeutics, Inc. | Anti-pd-l1 antibodies |
CN107973854A (en) * | 2017-12-11 | 2018-05-01 | 苏州银河生物医药有限公司 | PDL1 monoclonal antibodies and its application |
US9957323B2 (en) | 2016-06-20 | 2018-05-01 | Kymab Limited | Anti-ICOS antibodies |
WO2018081621A1 (en) | 2016-10-28 | 2018-05-03 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
WO2018081817A2 (en) | 2016-10-31 | 2018-05-03 | University Of Massachusetts | Targeting microrna-101-3p in cancer therapy |
WO2018085555A1 (en) | 2016-11-03 | 2018-05-11 | Bristol-Myers Squibb Company | Activatable anti-ctla-4 antibodies and uses thereof |
WO2018083204A1 (en) | 2016-11-02 | 2018-05-11 | Engmab Sàrl | Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma |
US9987500B2 (en) | 2014-01-23 | 2018-06-05 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-1 |
US9988452B2 (en) | 2014-10-14 | 2018-06-05 | Novartis Ag | Antibody molecules to PD-L1 and uses thereof |
WO2018101448A1 (en) | 2016-11-30 | 2018-06-07 | Kyowa Hakko Kirin Co., Ltd. | Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody |
JP2018518539A (en) * | 2015-06-24 | 2018-07-12 | イモデュロン セラピューティクス リミテッド | Checkpoint inhibitors and whole cell mycobacteria for use in cancer treatment |
US10022431B2 (en) | 2010-02-10 | 2018-07-17 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
JP2018519324A (en) * | 2015-06-29 | 2018-07-19 | バイオメッド バレー ディスカバリーズ,インコーポレイティド | Combinations of LPT-723 and immune checkpoint inhibitors and methods of treatment |
JP2018519331A (en) * | 2015-06-30 | 2018-07-19 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Topical and injectable compositions comprising resiquimod for the treatment of skin conditions, primary and metastatic neoplasms, and methods of use thereof |
WO2018150224A1 (en) | 2017-02-16 | 2018-08-23 | Shenzhen Runshin Bioscience | Anti-programmed death-ligand 1 (pd-l1) antibodies and therapeutic uses thereof |
WO2018152396A1 (en) | 2017-02-17 | 2018-08-23 | Innate Tumor Immunity, Inc. | Substituted imidazo-quinolines as nlrp3 modulators |
EP3366703A1 (en) | 2017-02-28 | 2018-08-29 | Ralf Kleef | Immune checkpoint therapy with hyperthermia |
WO2018162749A1 (en) | 2017-03-09 | 2018-09-13 | Genmab A/S | Antibodies against pd-l1 |
US10081681B2 (en) | 2013-09-20 | 2018-09-25 | Bristol-Myers Squibb Company | Combination of anti-LAG-3 antibodies and anti-PD-1 antibodies to treat tumors |
WO2018183608A1 (en) | 2017-03-31 | 2018-10-04 | Five Prime Therapeutics, Inc. | Combination therapy for cancer using anti-gitr antibodies |
WO2018183928A1 (en) | 2017-03-31 | 2018-10-04 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2018187613A2 (en) | 2017-04-07 | 2018-10-11 | Bristol-Myers Squibb Company | Anti-icos agonist antibodies and uses thereof |
WO2018200430A1 (en) | 2017-04-26 | 2018-11-01 | Bristol-Myers Squibb Company | Methods of antibody production that minimize disulfide bond reduction |
WO2018213297A1 (en) | 2017-05-16 | 2018-11-22 | Bristol-Myers Squibb Company | Treatment of cancer with anti-gitr agonist antibodies |
WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
WO2018218056A1 (en) | 2017-05-25 | 2018-11-29 | Birstol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
US10144779B2 (en) | 2015-05-29 | 2018-12-04 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
WO2018222711A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
WO2018223040A1 (en) | 2017-06-01 | 2018-12-06 | Bristol-Myers Squibb Company | Methods of treating a tumor using an anti-pd-1 antibody |
WO2018222718A1 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Treatment of lag-3 positive tumors |
WO2018222722A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody |
DE102017125780B3 (en) * | 2017-11-05 | 2018-12-13 | Dimo Dietrich | Method for determining the response of a malignant disease to immunotherapy |
EP2981821B1 (en) | 2013-04-02 | 2018-12-19 | Merck Sharp & Dohme Corp. | Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue |
US10160806B2 (en) | 2014-06-26 | 2018-12-25 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
EP3149481B1 (en) | 2014-05-30 | 2019-01-09 | Ventana Medical Systems, Inc. | Multiplex assay for improved scoring of tumor tissues stained for pd-l1 |
WO2019014402A1 (en) | 2017-07-14 | 2019-01-17 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2019023624A1 (en) | 2017-07-28 | 2019-01-31 | Bristol-Myers Squibb Company | Predictive peripheral blood biomarker for checkpoint inhibitors |
WO2019025545A1 (en) | 2017-08-04 | 2019-02-07 | Genmab A/S | Binding agents binding to pd-l1 and cd137 and use thereof |
WO2019046321A1 (en) | 2017-08-28 | 2019-03-07 | Bristol-Myers Squibb Company | Tim-3 antagonists for the treatment and diagnosis of cancers |
WO2019075090A1 (en) | 2017-10-10 | 2019-04-18 | Tilos Therapeutics, Inc. | Anti-lap antibodies and uses thereof |
WO2019075468A1 (en) | 2017-10-15 | 2019-04-18 | Bristol-Myers Squibb Company | Methods of treating tumor |
US10266591B2 (en) | 2012-07-02 | 2019-04-23 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
WO2019089753A2 (en) | 2017-10-31 | 2019-05-09 | Compass Therapeutics Llc | Cd137 antibodies and pd-1 antagonists and uses thereof |
WO2019089921A1 (en) | 2017-11-01 | 2019-05-09 | Bristol-Myers Squibb Company | Immunostimulatory agonistic antibodies for use in treating cancer |
WO2019090330A1 (en) | 2017-11-06 | 2019-05-09 | Bristol-Myers Squibb Company | Methods of treating a tumor |
WO2019122884A1 (en) | 2017-12-19 | 2019-06-27 | Kymab Limited | Antibodies to icos |
WO2019133747A1 (en) | 2017-12-27 | 2019-07-04 | Bristol-Myers Squibb Company | Anti-cd40 antibodies and uses thereof |
US10344090B2 (en) | 2013-12-12 | 2019-07-09 | Shanghai Hangrui Pharmaceutical Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
US10344089B2 (en) | 2008-08-11 | 2019-07-09 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
WO2019140150A1 (en) | 2018-01-12 | 2019-07-18 | Bristol-Myers Squibb Company | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer |
WO2019137397A1 (en) | 2018-01-10 | 2019-07-18 | 江苏恒瑞医药股份有限公司 | Pd-l1 antibody, antigen-binding fragment thereof, and pharmaceutical use thereof |
WO2019140229A1 (en) | 2018-01-12 | 2019-07-18 | Bristol-Myers Squibb Company | Antibodies against tim3 and uses thereof |
WO2019144126A1 (en) | 2018-01-22 | 2019-07-25 | Pascal Biosciences Inc. | Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells |
WO2019144098A1 (en) | 2018-01-22 | 2019-07-25 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
RU2695653C2 (en) * | 2013-10-04 | 2019-07-25 | Пин Фарма, Инк. | Immunostimulating polypeptide derivatives of tat hiv for use in treating cancer |
WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
WO2019157124A1 (en) | 2018-02-08 | 2019-08-15 | Bristol-Myers Squibb Company | Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors |
US10392442B2 (en) | 2015-12-17 | 2019-08-27 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
WO2019178269A2 (en) | 2018-03-14 | 2019-09-19 | Surface Oncology, Inc. | Antibodies that bind cd39 and uses thereof |
WO2019183040A1 (en) | 2018-03-21 | 2019-09-26 | Five Prime Therapeutics, Inc. | ANTIBODIES BINDING TO VISTA AT ACIDIC pH |
US10428146B2 (en) | 2014-07-22 | 2019-10-01 | Cb Therapeutics, Inc. | Anti PD-1 antibodies |
US10426824B1 (en) | 2010-05-14 | 2019-10-01 | The General Hospital Corporation | Compositions and methods of identifying tumor specific neoantigens |
WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2019190327A2 (en) | 2018-03-30 | 2019-10-03 | Merus N.V. | Multivalent antibody |
GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
WO2019195452A1 (en) | 2018-04-04 | 2019-10-10 | Bristol-Myers Squibb Company | Anti-cd27 antibodies and uses thereof |
WO2019200256A1 (en) | 2018-04-12 | 2019-10-17 | Bristol-Myers Squibb Company | Anticancer combination therapy with cd73 antagonist antibody and pd-1/pd-l1 axis antagonist antibody |
WO2019200100A1 (en) | 2018-04-12 | 2019-10-17 | Andrew Cook | Pladienolide derivatives as spliceosome targeting agents for treating cancer |
WO2019199667A2 (en) | 2018-04-09 | 2019-10-17 | Keaney Gregg F | Certain pladienolide compounds and methods of use |
US10449251B2 (en) | 2014-08-01 | 2019-10-22 | Akeso Biopharma, Inc. | Anti-CTLA4 monoclonal antibody or its antigen binding fragments, pharmaceutical compositions and uses |
WO2019204743A1 (en) | 2018-04-19 | 2019-10-24 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
US10457725B2 (en) | 2016-05-13 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods of treating skin cancer by administering a PD-1 inhibitor |
WO2019209896A1 (en) | 2018-04-25 | 2019-10-31 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
US10465014B2 (en) | 2016-03-04 | 2019-11-05 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | PDL-1 antibody, pharmaceutical composition thereof, and uses thereof |
US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
WO2019217455A1 (en) | 2018-05-07 | 2019-11-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
WO2019217457A1 (en) | 2018-05-07 | 2019-11-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
EP3572430A2 (en) | 2014-03-05 | 2019-11-27 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
WO2019232433A2 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Methods of using splicing modulators |
WO2019232449A1 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Splicing modulator antibody-drug conjugates and methods of use |
WO2019234576A1 (en) | 2018-06-03 | 2019-12-12 | Lamkap Bio Beta Ltd. | Bispecific antibodies against ceacam5 and cd47 |
WO2020014583A1 (en) | 2018-07-13 | 2020-01-16 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor |
WO2020014327A2 (en) | 2018-07-11 | 2020-01-16 | Five Prime Therapeutics, Inc. | Antibodies binding to vista at acidic ph |
WO2020014132A2 (en) | 2018-07-09 | 2020-01-16 | Five Prime Therapeutics, Inc. | Antibodies binding to ilt4 |
US10543189B2 (en) | 2013-04-09 | 2020-01-28 | Boston Biomedical, Inc. | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
WO2020023707A1 (en) | 2018-07-26 | 2020-01-30 | Bristol-Myers Squibb Company | Lag-3 combination therapy for the treatment of cancer |
WO2020037094A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Substitued 4-amino-1h-imidazo[4,5-c]quinoline compounds and improved methods for their preparation |
WO2020037092A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Imidazo[4,5-c]quinoline derived nlrp3-modulators |
WO2020037091A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Imidazo[4,5-c]quinoline derived nlrp3-modulators |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
US10577422B2 (en) | 2015-07-30 | 2020-03-03 | Macrogenics, Inc. | PD-1-binding molecules and methods of use thereof |
EP3303632B1 (en) | 2015-05-29 | 2020-03-04 | H. Hoffnabb-La Roche Ag | Therapeutic and diagnostic methods for cancer |
US10583183B2 (en) | 2014-04-11 | 2020-03-10 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Immune gene signatures in urothelial carcinoma (UC) |
US10620211B2 (en) | 2015-02-03 | 2020-04-14 | Ventana Medical Systems, Inc. | Histochemical assay for evaluating expression of programmed death ligand 1 (PD-L1) |
WO2020076799A1 (en) | 2018-10-09 | 2020-04-16 | Bristol-Myers Squibb Company | Anti-mertk antibodies for treating cancer |
WO2020076969A2 (en) | 2018-10-10 | 2020-04-16 | Tilos Therapeutics, Inc. | Anti-lap antibody variants and uses thereof |
WO2020081928A1 (en) | 2018-10-19 | 2020-04-23 | Bristol-Myers Squibb Company | Combination therapy for melanoma |
US10632151B2 (en) | 2015-01-22 | 2020-04-28 | University Of Massachusetts | Cancer immunotherapy |
WO2020086724A1 (en) | 2018-10-23 | 2020-04-30 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2020092210A1 (en) | 2018-10-30 | 2020-05-07 | Genmab A/S | Methods of treating cancer with a combination of an anti-vegf antibody and an anti-tissue factor antibody-drug conjugate |
US10646464B2 (en) | 2017-05-17 | 2020-05-12 | Boston Biomedical, Inc. | Methods for treating cancer |
WO2020094744A1 (en) | 2018-11-06 | 2020-05-14 | Genmab A/S | Antibody formulation |
WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
WO2020099230A1 (en) | 2018-11-14 | 2020-05-22 | Bayer Aktiengesellschaft | Pharmaceutical combination of anti-ceacam6 and either anti-pd-1 or anti-pd-l1 antibodies for the treatment of cancer |
WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
WO2020102501A1 (en) | 2018-11-16 | 2020-05-22 | Bristol-Myers Squibb Company | Anti-nkg2a antibodies and uses thereof |
US10662416B2 (en) | 2016-10-14 | 2020-05-26 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome |
WO2020112781A1 (en) | 2018-11-28 | 2020-06-04 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
WO2020117849A1 (en) | 2018-12-04 | 2020-06-11 | Bristol-Myers Squibb Company | Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring |
WO2020123836A2 (en) | 2018-12-13 | 2020-06-18 | Eisai R&D Management Co., Ltd. | Herboxidiene splicing modulator antibody-drug conjugates and methods of use |
WO2020136235A1 (en) | 2018-12-28 | 2020-07-02 | Transgene Sa | M2-defective poxvirus |
CN111363041A (en) * | 2016-03-23 | 2020-07-03 | 迈博斯生物医药(苏州)有限公司 | Novel anti-PD-L1 antibodies |
EP3234193B1 (en) * | 2014-12-19 | 2020-07-15 | Massachusetts Institute of Technology | Molecular biomarkers for cancer immunotherapy |
WO2020150115A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2020150116A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2020150114A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Heterocyclic nlrp3 modulators, for use in the treatment of cancer |
WO2020150113A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer |
WO2020156509A1 (en) | 2019-02-03 | 2020-08-06 | 江苏恒瑞医药股份有限公司 | Anti-pd-1 antibody, antigen-binding fragment thereof and pharmaceutical use thereof |
US10736940B2 (en) | 2013-12-19 | 2020-08-11 | Immutep S.A.S. | Combined preparations for the treatment of cancer |
US10744118B2 (en) | 2012-12-07 | 2020-08-18 | Chemocentryx, Inc. | Diazole lactams |
WO2020198676A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2020198672A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
WO2020208612A1 (en) | 2019-04-12 | 2020-10-15 | Vascular Biogenics Ltd. | Methods of anti-tumor therapy |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
WO2020243568A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy |
WO2020243563A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Multi-tumor gene signatures for suitability to immuno-oncology therapy |
WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
US10864203B2 (en) | 2016-07-05 | 2020-12-15 | Beigene, Ltd. | Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer |
US10874713B2 (en) | 2015-01-09 | 2020-12-29 | Immutep S.A.S. | Combined preparations for the treatment of cancer or infection |
EP3760229A2 (en) | 2014-05-15 | 2021-01-06 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
US10912831B1 (en) | 2016-12-07 | 2021-02-09 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
WO2021025177A1 (en) | 2019-08-06 | 2021-02-11 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer |
EP3779998A1 (en) * | 2015-07-13 | 2021-02-17 | Biodesix, Inc. | Predictive test for melanoma patient benefit from pd-1 antibody drug and classifier development methods |
EP3789399A1 (en) | 2014-11-21 | 2021-03-10 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
WO2021055994A1 (en) | 2019-09-22 | 2021-03-25 | Bristol-Myers Squibb Company | Quantitative spatial profiling for lag-3 antagonist therapy |
WO2021055698A1 (en) | 2019-09-19 | 2021-03-25 | Bristol-Myers Squibb Company | Antibodies binding to vista at acidic ph |
WO2021053587A1 (en) | 2019-09-18 | 2021-03-25 | Klaus Strein | Bispecific antibodies against ceacam5 and cd3 |
EP3798235A1 (en) | 2019-09-24 | 2021-03-31 | Industrial Technology Research Institute | Anti-tigit antibodies and methods of use |
WO2021062244A1 (en) | 2019-09-25 | 2021-04-01 | Surface Oncology, Inc. | Anti-il-27 antibodies and uses thereof |
WO2021062018A1 (en) | 2019-09-25 | 2021-04-01 | Bristol-Myers Squibb Company | Composite biomarker for cancer therapy |
US10966999B2 (en) | 2017-12-20 | 2021-04-06 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
WO2021081353A1 (en) | 2019-10-23 | 2021-04-29 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
WO2021091815A1 (en) | 2019-11-04 | 2021-05-14 | Seagen Inc. | Anti-cd30 antibody-drug conjugates and their use for the treatment of hiv infection |
WO2021092380A1 (en) | 2019-11-08 | 2021-05-14 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for melanoma |
WO2021090272A1 (en) | 2019-11-07 | 2021-05-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
US11008391B2 (en) | 2015-08-11 | 2021-05-18 | WuXi Biologics Ireland Limited | Anti-PD-1 antibodies |
WO2021097256A1 (en) | 2019-11-14 | 2021-05-20 | Cohbar, Inc. | Cxcr4 antagonist peptides |
EP3831849A1 (en) | 2019-12-02 | 2021-06-09 | LamKap Bio beta AG | Bispecific antibodies against ceacam5 and cd47 |
WO2021127554A1 (en) | 2019-12-19 | 2021-06-24 | Bristol-Myers Squibb Company | Combinations of dgk inhibitors and checkpoint antagonists |
CN113087801A (en) * | 2021-04-07 | 2021-07-09 | 北京欣颂生物科技有限公司 | Kit for jointly detecting lung cancer by using nucleic acid and antibody |
WO2021142203A1 (en) | 2020-01-10 | 2021-07-15 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
US11072653B2 (en) | 2015-06-08 | 2021-07-27 | Macrogenics, Inc. | LAG-3-binding molecules and methods of use thereof |
WO2021154073A1 (en) | 2020-01-29 | 2021-08-05 | Merus N.V. | Means and method for modulating immune cell engaging effects. |
WO2021152548A1 (en) | 2020-01-30 | 2021-08-05 | Benitah Salvador Aznar | Combination therapy for treatment of cancer and cancer metastasis |
WO2021158938A1 (en) | 2020-02-06 | 2021-08-12 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
US11090367B2 (en) | 2016-11-09 | 2021-08-17 | The Brigham And Women's Hospital, Inc. | Restoration of tumor suppression using mRNA-based delivery system |
WO2021174045A1 (en) | 2020-02-28 | 2021-09-02 | Bristol-Myers Squibb Company | Radiolabeled fibronectin based scaffolds and antibodies and theranostic uses thereof |
WO2021178807A1 (en) | 2020-03-06 | 2021-09-10 | Celgene Quanticel Research, Inc. | Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc |
WO2021176424A1 (en) | 2020-03-06 | 2021-09-10 | Ona Therapeutics, S.L. | Anti-cd36 antibodies and their use to treat cancer |
WO2021183428A1 (en) | 2020-03-09 | 2021-09-16 | Bristol-Myers Squibb Company | Antibodies to cd40 with enhanced agonist activity |
WO2021194942A1 (en) | 2020-03-23 | 2021-09-30 | Bristol-Myers Squibb Company | Anti-ccr8 antibodies for treating cancer |
US11137404B2 (en) | 2015-12-18 | 2021-10-05 | Institut Gustave Roussy | Method for assessing the response to PD-1/PDL-1 targeting drugs |
US11142750B2 (en) | 2018-04-12 | 2021-10-12 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
US11142800B2 (en) | 2010-10-07 | 2021-10-12 | The General Hospital Corporation | Biomarkers of cancer |
WO2021207449A1 (en) | 2020-04-09 | 2021-10-14 | Merck Sharp & Dohme Corp. | Affinity matured anti-lap antibodies and uses thereof |
US11149052B2 (en) | 2018-04-06 | 2021-10-19 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′-cyclic dinucleotides |
US20210322475A1 (en) * | 2018-11-08 | 2021-10-21 | IN8bio, Inc. | Compositions and methods for treating cancer |
US11161905B2 (en) | 2017-03-04 | 2021-11-02 | Xiangtan Tenghua Bioscience | Recombinant antibodies to programmed death 1 (PD-1) and uses thereof |
US11166944B2 (en) | 2014-11-07 | 2021-11-09 | AI Therapeutics, Inc. | Apilimod compositions and methods for using same in the treatment of renal cancer |
US11168144B2 (en) | 2017-06-01 | 2021-11-09 | Cytomx Therapeutics, Inc. | Activatable anti-PDL1 antibodies, and methods of use thereof |
WO2021231732A1 (en) | 2020-05-15 | 2021-11-18 | Bristol-Myers Squibb Company | Antibodies to garp |
US11180813B2 (en) | 2012-10-01 | 2021-11-23 | Adaptive Biotechnologies Corporation | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
US11186637B2 (en) | 2013-09-13 | 2021-11-30 | Beigene Switzerland Gmbh | Anti-PD1 antibodies and their use as therapeutics and diagnostics |
WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
US11203610B2 (en) | 2017-12-20 | 2021-12-21 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
US11214619B2 (en) | 2018-07-20 | 2022-01-04 | Surface Oncology, Inc. | Anti-CD112R compositions and methods |
WO2022008519A1 (en) | 2020-07-07 | 2022-01-13 | BioNTech SE | Therapeutic rna for hpv-positive cancer |
US11229713B2 (en) | 2014-11-25 | 2022-01-25 | Bristol-Myers Squibb Company | Methods and compositions for 18F-radiolabeling of biologics |
US11242393B2 (en) | 2018-03-23 | 2022-02-08 | Bristol-Myers Squibb Company | Antibodies against MICA and/or MICB and uses thereof |
WO2022036079A1 (en) | 2020-08-13 | 2022-02-17 | Bristol-Myers Squibb Company | Methods of redirecting of il-2 to target cells of interest |
WO2022047412A1 (en) | 2020-08-31 | 2022-03-03 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
WO2022047189A1 (en) | 2020-08-28 | 2022-03-03 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hepatocellular carcinoma |
US11266654B2 (en) | 2014-01-24 | 2022-03-08 | AI Therapeutics, Inc. | Apilimod compositions and methods for using same |
US11292812B2 (en) | 2018-04-06 | 2022-04-05 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′-cyclic dinucleotides |
US11299469B2 (en) | 2016-11-29 | 2022-04-12 | Sumitomo Dainippon Pharma Oncology, Inc. | Naphthofuran derivatives, preparation, and methods of use thereof |
WO2022076318A1 (en) | 2020-10-05 | 2022-04-14 | Bristol-Myers Squibb Company | Methods for concentrating proteins |
WO2022076596A1 (en) | 2020-10-06 | 2022-04-14 | Codiak Biosciences, Inc. | Extracellular vesicle-aso constructs targeting stat6 |
WO2022087402A1 (en) | 2020-10-23 | 2022-04-28 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for lung cancer |
WO2022094567A1 (en) | 2020-10-28 | 2022-05-05 | Ikena Oncology, Inc. | Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine |
US11332524B2 (en) | 2018-03-22 | 2022-05-17 | Surface Oncology, Inc. | Anti-IL-27 antibodies and uses thereof |
WO2022108931A2 (en) | 2020-11-17 | 2022-05-27 | Seagen Inc. | Methods of treating cancer with a combination of tucatinib and an anti-pd-1/anti-pd-l1 antibody |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
US11344639B2 (en) | 2016-06-01 | 2022-05-31 | Bristol-Myers Squibb Company | PET imaging with PD-L1 binding polypeptides |
WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
WO2022130348A1 (en) | 2020-12-18 | 2022-06-23 | Lamkap Bio Beta Ag | Bispecific antibodies against ceacam5 and cd47 |
WO2022136257A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
WO2022136266A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
WO2022135666A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Treatment schedule for cytokine proteins |
WO2022146947A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
WO2022146948A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Subcutaneous administration of pd1/pd-l1 antibodies |
WO2022150557A1 (en) | 2021-01-08 | 2022-07-14 | Bristol-Myers Squibb Company | Combination therapy using an anti-fucosyl-gm1 antibody |
WO2022148736A1 (en) | 2021-01-05 | 2022-07-14 | Transgene | Vectorization of muc1 t cell engager |
WO2022156727A1 (en) | 2021-01-21 | 2022-07-28 | 浙江养生堂天然药物研究所有限公司 | Composition and method for treating tumors |
US11421034B2 (en) | 2017-09-13 | 2022-08-23 | Five Prime Therapeutics, Inc. | Combination anti-CSF1R and anti-PD-1 antibody combination therapy for pancreatic cancer |
US11440960B2 (en) | 2017-06-20 | 2022-09-13 | Kymab Limited | TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
WO2022203090A1 (en) | 2021-03-25 | 2022-09-29 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 for treatment of cancer |
WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
WO2022212400A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy |
US11479608B2 (en) | 2016-08-23 | 2022-10-25 | Akeso Biopharma, Inc. | Anti-CTLA4 antibodies |
WO2022236134A1 (en) | 2021-05-07 | 2022-11-10 | Surface Oncology, Inc. | Anti-il-27 antibodies and uses thereof |
WO2022243378A1 (en) | 2021-05-18 | 2022-11-24 | Kymab Limited | Uses of anti-icos antibodies |
WO2022254227A1 (en) | 2021-06-04 | 2022-12-08 | Kymab Limited | Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies |
WO2022262959A1 (en) | 2021-06-15 | 2022-12-22 | Astellas Pharma Europe Bv | Bispecific binding agents binding to cldn18.2 and cd3 |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
US11548946B2 (en) | 2016-09-01 | 2023-01-10 | Mayo Foundation For Medical Education And Research | Carrier-PD-L1 binding agent compositions for treating cancers |
US11555038B2 (en) | 2017-01-25 | 2023-01-17 | Beigene, Ltd. | Crystalline forms of (S)-7-(1-(but-2-ynoyl)piperidin-4-yl)-2-(4-phenoxyphenyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide, preparation, and uses thereof |
WO2023285552A1 (en) | 2021-07-13 | 2023-01-19 | BioNTech SE | Multispecific binding agents against cd40 and cd137 in combination therapy for cancer |
US11560425B2 (en) | 2017-06-27 | 2023-01-24 | Neuracle Science Co., Ltd. | Use of anti-FAM19A5 antibodies for treating cancers |
WO2023007472A1 (en) | 2021-07-30 | 2023-02-02 | ONA Therapeutics S.L. | Anti-cd36 antibodies and their use to treat cancer |
US11597768B2 (en) | 2017-06-26 | 2023-03-07 | Beigene, Ltd. | Immunotherapy for hepatocellular carcinoma |
WO2023031366A1 (en) | 2021-09-02 | 2023-03-09 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-cecam6 antibodies with reduced side-effects |
US11603407B2 (en) | 2017-04-06 | 2023-03-14 | Regeneron Pharmaceuticals, Inc. | Stable antibody formulation |
US11607453B2 (en) | 2017-05-12 | 2023-03-21 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
WO2023052531A1 (en) | 2021-09-30 | 2023-04-06 | BioNTech SE | Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
WO2023057534A1 (en) | 2021-10-06 | 2023-04-13 | Genmab A/S | Multispecific binding agents against pd-l1 and cd137 in combination |
US11629189B2 (en) | 2017-12-19 | 2023-04-18 | Kymab Limited | Bispecific antibody for ICOS and PD-L1 |
WO2023061930A1 (en) | 2021-10-11 | 2023-04-20 | BioNTech SE | Therapeutic rna for lung cancer |
WO2023077034A1 (en) | 2021-10-28 | 2023-05-04 | Lyell Immunopharma, Inc. | Methods for culturing immune cells |
WO2023077090A1 (en) | 2021-10-29 | 2023-05-04 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hematological cancer |
WO2023076989A1 (en) | 2021-10-29 | 2023-05-04 | Seagen Inc. | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-cd30 antibody-drug conjugate |
WO2023083868A1 (en) | 2021-11-09 | 2023-05-19 | BioNTech SE | Tlr7 agonist and combinations for cancer treatment |
US11655303B2 (en) | 2019-09-16 | 2023-05-23 | Surface Oncology, Inc. | Anti-CD39 antibody compositions and methods |
US11672771B2 (en) * | 2016-11-04 | 2023-06-13 | Aximmune, Inc. | Beta-alethine, immune modulators, and uses thereof |
US11701357B2 (en) | 2016-08-19 | 2023-07-18 | Beigene Switzerland Gmbh | Treatment of B cell cancers using a combination comprising Btk inhibitors |
WO2023147371A1 (en) | 2022-01-26 | 2023-08-03 | Bristol-Myers Squibb Company | Combination therapy for hepatocellular carcinoma |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
WO2023161453A1 (en) | 2022-02-24 | 2023-08-31 | Amazentis Sa | Uses of urolithins |
WO2023164638A1 (en) | 2022-02-25 | 2023-08-31 | Bristol-Myers Squibb Company | Combination therapy for colorectal carcinoma |
WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
WO2023170606A1 (en) | 2022-03-08 | 2023-09-14 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
WO2023178192A1 (en) | 2022-03-15 | 2023-09-21 | Compugen Ltd. | Il-18bp antagonist antibodies and their use in monotherapy and combination therapy in the treatment of cancer |
WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
EP4249066A2 (en) | 2014-12-23 | 2023-09-27 | Bristol-Myers Squibb Company | Antibodies to tigit |
US11773164B2 (en) | 2015-03-23 | 2023-10-03 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-CEACAM6 antibodies and uses thereof |
WO2023192478A1 (en) | 2022-04-01 | 2023-10-05 | Bristol-Myers Squibb Company | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2023196964A1 (en) | 2022-04-08 | 2023-10-12 | Bristol-Myers Squibb Company | Machine learning identification, classification, and quantification of tertiary lymphoid structures |
US11786529B2 (en) | 2017-11-29 | 2023-10-17 | Beigene Switzerland Gmbh | Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors |
US11793867B2 (en) | 2017-12-18 | 2023-10-24 | Biontech Us Inc. | Neoantigens and uses thereof |
US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
US11814623B2 (en) | 2018-01-30 | 2023-11-14 | University Of Massachusetts | Methods of treating a wound using epigenetic regulation |
WO2023218046A1 (en) | 2022-05-12 | 2023-11-16 | Genmab A/S | Binding agents capable of binding to cd27 in combination therapy |
WO2023222854A1 (en) | 2022-05-18 | 2023-11-23 | Kymab Limited | Uses of anti-icos antibodies |
WO2023230473A1 (en) | 2022-05-24 | 2023-11-30 | Bristol-Myers Squibb Company | Antibodies that bind to human ccr8 |
WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
WO2023242351A1 (en) | 2022-06-16 | 2023-12-21 | Lamkap Bio Beta Ag | Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3 |
US11851490B2 (en) | 2019-08-15 | 2023-12-26 | Northwestern University | Methods and compositions for treating, inhibiting, and/or preventing heterotopic ossification |
US11858996B2 (en) | 2016-08-09 | 2024-01-02 | Kymab Limited | Anti-ICOS antibodies |
WO2024023740A1 (en) | 2022-07-27 | 2024-02-01 | Astrazeneca Ab | Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors |
EP4317972A2 (en) | 2018-02-06 | 2024-02-07 | The General Hospital Corporation | Repeat rna as biomarkers of tumor immune response |
WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
WO2024049949A1 (en) | 2022-09-01 | 2024-03-07 | Genentech, Inc. | Therapeutic and diagnostic methods for bladder cancer |
WO2024069009A1 (en) | 2022-09-30 | 2024-04-04 | Alentis Therapeutics Ag | Treatment of drug-resistant hepatocellular carcinoma |
US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
WO2024115725A1 (en) | 2022-12-01 | 2024-06-06 | BioNTech SE | Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy |
WO2024116140A1 (en) | 2022-12-01 | 2024-06-06 | Medimmune Limited | Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies |
WO2024126457A1 (en) | 2022-12-14 | 2024-06-20 | Astellas Pharma Europe Bv | Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors |
WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
WO2024150177A1 (en) | 2023-01-11 | 2024-07-18 | Advesya | Treatment methods for solid tumors |
US12054557B2 (en) | 2015-12-22 | 2024-08-06 | Regeneron Pharmaceuticals, Inc. | Combination of anti-PD-1 antibodies and bispecific anti-CD20/anti-CD3 antibodies to treat cancer |
WO2024160721A1 (en) | 2023-01-30 | 2024-08-08 | Kymab Limited | Antibodies |
WO2024163477A1 (en) | 2023-01-31 | 2024-08-08 | University Of Rochester | Immune checkpoint blockade therapy for treating staphylococcus aureus infections |
US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
US12103974B2 (en) | 2018-05-23 | 2024-10-01 | Beigene, Ltd. | Anti-OX40 antibodies and methods of use |
WO2024209072A1 (en) | 2023-04-06 | 2024-10-10 | Genmab A/S | Multispecific binding agents against pd-l1 and cd137 for treating cancer |
US12122834B2 (en) | 2018-02-01 | 2024-10-22 | Merck Sharp & Dohme Llc | Anti-PD-1 antibodies |
Families Citing this family (242)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ568016A (en) * | 2005-12-07 | 2011-12-22 | Medarex Inc | CTLA-4 antibody dosage escalation regimens |
EP2044949A1 (en) | 2007-10-05 | 2009-04-08 | Immutep | Use of recombinant lag-3 or the derivatives thereof for eliciting monocyte immune response |
DK2488204T3 (en) | 2009-10-16 | 2016-06-06 | Oncomed Pharm Inc | Therapeutic combination and use of DLL4 antagonist antibodies and blood pressure lowering agents |
JP6240063B2 (en) | 2011-04-28 | 2017-11-29 | ザ ブロード インスティテュート, インコーポレイテッド | Histone deacetylase inhibitor |
EP2714937B1 (en) | 2011-06-03 | 2018-11-14 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
US8858941B2 (en) | 2011-09-23 | 2014-10-14 | Oncomed Pharmaceuticals, Inc. | VEGF/DLL4 binding agents and uses thereof |
US9550830B2 (en) | 2012-02-15 | 2017-01-24 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
SG11201407190TA (en) * | 2012-05-15 | 2014-12-30 | Bristol Myers Squibb Co | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
US9790184B2 (en) | 2012-07-27 | 2017-10-17 | The Broad Institute, Inc. | Inhibitors of histone deacetylase |
EP2914961A4 (en) | 2012-10-31 | 2016-04-20 | Oncomed Pharm Inc | Methods and monitoring of treatment with a dll4 antagonist |
US20150071910A1 (en) * | 2013-03-15 | 2015-03-12 | Genentech, Inc. | Biomarkers and methods of treating pd-1 and pd-l1 related conditions |
SG11201508528TA (en) | 2013-05-02 | 2015-11-27 | Anaptysbio Inc | Antibodies directed against programmed death-1 (pd-1) |
RU2015154275A (en) | 2013-06-03 | 2017-07-17 | Новартис Аг | COMBINATIONS OF ANTIBODY AGAINST PD-L1 AND MEK INHIBITOR AND / OR BRAF INHIBITOR |
GB2515032A (en) | 2013-06-11 | 2014-12-17 | Cilag Gmbh Int | Guide for an injection device |
GB2515038A (en) | 2013-06-11 | 2014-12-17 | Cilag Gmbh Int | Injection device |
GB2515039B (en) | 2013-06-11 | 2015-05-27 | Cilag Gmbh Int | Injection Device |
GB2517896B (en) | 2013-06-11 | 2015-07-08 | Cilag Gmbh Int | Injection device |
PL3027651T3 (en) | 2013-08-01 | 2019-08-30 | Five Prime Therapeutics, Inc. | Afucosylated anti-fgfr2iiib antibodies |
RU2701327C2 (en) * | 2013-09-11 | 2019-09-25 | Медиммьюн Лимитед | Antibodies to b7-h1 for treating tumours |
US10202454B2 (en) * | 2013-10-25 | 2019-02-12 | Dana-Farber Cancer Institute, Inc. | Anti-PD-L1 monoclonal antibodies and fragments thereof |
BR112016010224A2 (en) * | 2013-11-05 | 2018-05-02 | Cognate Bioservices, Inc. | checkpoint inhibitor combinations and therapeutic products to treat cancer. |
JP6535337B2 (en) * | 2013-11-05 | 2019-06-26 | バヴァリアン・ノルディック・アクティーゼルスカブ | Combination therapy for treating cancer with poxvirus expressing a tumor antigen and an antagonist and / or agonist of an immune checkpoint inhibitor |
US20150164047A1 (en) * | 2013-11-07 | 2015-06-18 | Urban Pet Haus, LLC | Edible cat toy |
EP3079772B1 (en) * | 2013-12-10 | 2020-02-05 | Merck Sharp & Dohme Corp. | Immunohistochemical proximity assay for pd-1 positive cells and pd-ligand positive cells in tumor tissue |
EP3079699A4 (en) * | 2013-12-11 | 2017-07-19 | Glaxosmithkline LLC | Treating cancer with a combination of a pd-1 antagonist and a vegfr inhibitor |
KR20160089531A (en) * | 2013-12-17 | 2016-07-27 | 제넨테크, 인크. | Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies |
US20160312295A1 (en) * | 2013-12-17 | 2016-10-27 | Merck Sharp & Dohme Corp. | Gene signature biomarkers of tumor response to pd-1 antagonists |
WO2015094996A2 (en) * | 2013-12-17 | 2015-06-25 | Merck Sharp & Dohme Corp. | Pd-l1 gene signature biomarkers of tumor response to pd-1 antagonists |
CA2935375C (en) * | 2014-01-06 | 2023-08-08 | The Trustees Of The University Of Pennsylvania | Pd1 and pdl1 antibodies and vaccine combinations and use of same for immunotherapy |
CN105899539B (en) | 2014-01-10 | 2021-11-09 | 博笛生物科技有限公司 | Compounds and compositions for immunotherapy |
AU2015210886A1 (en) * | 2014-01-29 | 2016-09-01 | Caris Mpi, Inc. | Molecular profiling of immune modulators |
US9732154B2 (en) | 2014-02-28 | 2017-08-15 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
US9603927B2 (en) | 2014-02-28 | 2017-03-28 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
CN103897036B (en) * | 2014-03-24 | 2016-02-24 | 郑州大学 | A kind of PD-1 albumen extracellular fragment affinity peptide L8 and application thereof |
WO2015192068A1 (en) * | 2014-06-12 | 2015-12-17 | The Johns Hopkins University | Combinatorial immunotherapy for pancreatic cancer treatment |
ES2903029T3 (en) | 2014-07-03 | 2022-03-30 | Univ Yale | DICKKOPF2 (DKK2) inhibition suppresses tumor formation |
EP4001311A1 (en) | 2014-07-09 | 2022-05-25 | Birdie Biopharmaceuticals Inc. | Anti-pd-l1 combinations for treating tumors |
CN106536559B (en) | 2014-07-17 | 2021-04-27 | 诺和诺德股份有限公司 | Site-directed mutagenesis of TREM-1 antibodies to reduce viscosity |
ES2926687T3 (en) | 2014-08-28 | 2022-10-27 | Eisai R&D Man Co Ltd | Highly pure quinoline derivative and method for its production |
WO2016040294A2 (en) | 2014-09-09 | 2016-03-17 | Janssen Biotech, Inc. | Combination therapies with anti-cd38 antibodies |
US20160176962A1 (en) * | 2014-10-31 | 2016-06-23 | Oncomed Pharmaceuticals, Inc. | Combination Therapy For Treatment Of Disease |
AU2015346295A1 (en) | 2014-11-13 | 2017-05-25 | The Johns Hopkins University | Checkpoint blockade and microsatellite instability |
NZ732753A (en) | 2014-12-04 | 2024-08-30 | Janssen Biotech Inc | Anti-cd38 antibodies for treatment of acute myeloid leukemia |
US20180133313A1 (en) * | 2014-12-16 | 2018-05-17 | Bristol-Myers Squibb Company | Use of immune checkpoint inhibitors in central nervous systems neoplasms |
AU2015364559B2 (en) * | 2014-12-19 | 2020-03-26 | Susavion Biosciences, Inc. | Immunotherapy treatments and compositions |
WO2016106160A1 (en) * | 2014-12-22 | 2016-06-30 | Enumeral Biomedical Holdings, Inc. | Methods for screening therapeutic compounds |
KR20230144092A (en) * | 2014-12-24 | 2023-10-13 | 넥스이뮨, 인크. | Nanoparticle compositions and methods for immunotherapy |
CN107208138A (en) * | 2014-12-30 | 2017-09-26 | 豪夫迈·罗氏有限公司 | For cancer prognosis and the method and composition for the treatment of |
MA41460A (en) | 2015-02-03 | 2017-12-12 | Oncomed Pharm Inc | TNFRSF LIAISON AGENTS AND THEIR USES |
WO2016138182A1 (en) * | 2015-02-24 | 2016-09-01 | Nodality, Inc. | Methods and compositions for immunomodulation |
US20180028662A1 (en) | 2015-02-25 | 2018-02-01 | Eisai R&D Management Co., Ltd. | Method for Suppressing Bitterness of Quinoline Derivative |
AU2016222928B2 (en) * | 2015-02-26 | 2021-05-13 | Merck Patent Gmbh | PD-1 / PD-L1 inhibitors for the treatment of cancer |
CA2978226A1 (en) * | 2015-03-04 | 2016-09-09 | Merck Sharpe & Dohme Corp. | Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer |
WO2016149387A1 (en) * | 2015-03-18 | 2016-09-22 | The Johns Hopkins University | Androgen deprivation with immune checkpoint blockade delays the development of castration resistant prostate cancer |
EP3280439A1 (en) * | 2015-04-07 | 2018-02-14 | INSERM - Institut National de la Santé et de la Recherche Médicale | Anti-pd-l1 immunotoxin for use in therapy |
US20180071413A1 (en) * | 2015-04-07 | 2018-03-15 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Non-invasive imaging of tumor pd-l1 expression |
US20190099475A1 (en) | 2015-04-08 | 2019-04-04 | Nantomics, Llc | Cancer neoepitopes |
CN107709365A (en) | 2015-04-13 | 2018-02-16 | 戊瑞治疗有限公司 | Cancer combination treatment |
CA3172682A1 (en) | 2015-04-23 | 2016-10-27 | Nantomics, Llc | Cancer neoepitopes |
SG11201708706YA (en) | 2015-05-06 | 2017-11-29 | Snipr Tech Ltd | Altering microbial populations & modifying microbiota |
LT3294770T (en) * | 2015-05-12 | 2020-12-28 | F. Hoffmann-La Roche Ag | Therapeutic and diagnostic methods for cancer |
KR102602754B1 (en) | 2015-05-20 | 2023-11-14 | 얀센 바이오테크 인코포레이티드 | Anti-CD38 antibodies for treating light chain amyloidosis and other CD38-positive hematological malignancies |
CN108135168B (en) | 2015-05-21 | 2021-07-20 | 凯莫森特里克斯股份有限公司 | CCR2 modulators |
CN104931690A (en) * | 2015-05-22 | 2015-09-23 | 华中科技大学同济医学院附属协和医院 | PD-1 antibody detection kit and application thereof |
WO2016196560A1 (en) | 2015-06-01 | 2016-12-08 | Maine Medical Center Research Institute | Enhancing the therapeutic activity of an immune checkpoint inhibitor |
CN106714836A (en) * | 2015-06-05 | 2017-05-24 | H·李·莫菲特癌症中心研究有限公司 | Gm-csf/cd40l vaccine and checkpoint inhibitor combination therapy |
CA2988707C (en) | 2015-06-16 | 2023-10-10 | Eisai R&D Management Co., Ltd. | Combination of cbp/catenin inhibitor and immune checkpoint inhibitor for treating cancer |
MY193229A (en) | 2015-06-16 | 2022-09-26 | Merck Patent Gmbh | Pd-l1 antagonist combination treatments |
CA2986263A1 (en) | 2015-06-17 | 2016-12-22 | Genentech, Inc. | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
ES2890783T3 (en) | 2015-06-22 | 2022-01-24 | Janssen Biotech Inc | Combination therapies for hematologic malignancies with anti-CD38 antibodies and survivin inhibitors |
US20170044265A1 (en) * | 2015-06-24 | 2017-02-16 | Janssen Biotech, Inc. | Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38 |
FI3313441T3 (en) * | 2015-06-24 | 2024-03-28 | Janssen Biotech Inc | Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38 |
NZ738929A (en) * | 2015-06-29 | 2024-01-26 | Abraxis Bioscience Llc | Methods of treating solid tumors using nanoparticle mtor inhibitor combination therapy |
KR102606071B1 (en) | 2015-06-29 | 2023-11-27 | 아브락시스 바이오사이언스, 엘엘씨 | How to Treat Epithelioid Cell Tumors |
SG10201913303XA (en) * | 2015-07-13 | 2020-03-30 | Cytomx Therapeutics Inc | Anti-pd-1 antibodies, activatable anti-pd-1 antibodies, and methods of use thereof |
CN108136025B (en) | 2015-07-16 | 2022-09-06 | 比奥克斯塞尔医疗股份有限公司 | A novel method of treating cancer using immunomodulation |
EP3328896A4 (en) | 2015-07-31 | 2019-08-07 | University of Florida Research Foundation, Inc. | Hematopoietic stem cells in combinatorial therapy with immune checkpoint inhibitors against cancer |
CN106397592A (en) * | 2015-07-31 | 2017-02-15 | 苏州康宁杰瑞生物科技有限公司 | Single-domain antibody directed at programmed death ligand (PD-L1) and derived protein thereof |
CN114605548A (en) | 2015-09-01 | 2022-06-10 | 艾吉纳斯公司 | anti-PD-1 antibodies and methods of use thereof |
US20180231554A1 (en) * | 2015-09-04 | 2018-08-16 | The Brigham And Women's Hospital, Inc. | Programmed cell death (pd-1) inhibitor therapy for patients with pd-1-expressing cancers |
US11339213B2 (en) | 2015-09-23 | 2022-05-24 | Mereo Biopharma 5, Inc. | Methods and compositions for treatment of cancer |
US12030942B2 (en) * | 2015-10-02 | 2024-07-09 | Les Laboratoires Servier | Anti-PD-1 antibodies and compositions |
JP2018532736A (en) * | 2015-10-12 | 2018-11-08 | ナントミクス,エルエルシー | Systems, compositions, and methods for MSI and neoepitope search to predict susceptibility to checkpoint inhibitors |
SG11201803520PA (en) | 2015-11-03 | 2018-05-30 | Janssen Biotech Inc | Antibodies specifically binding pd-1 and their uses |
CN108472369A (en) | 2015-11-03 | 2018-08-31 | 詹森生物科技公司 | The subcutaneous preparations and application thereof of 8 antibody of AntiCD3 McAb |
US10781261B2 (en) | 2015-11-03 | 2020-09-22 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
CN108699128A (en) * | 2015-11-04 | 2018-10-23 | 蓝耿立 | The combined therapy of malignant change |
WO2017077382A1 (en) | 2015-11-06 | 2017-05-11 | Orionis Biosciences Nv | Bi-functional chimeric proteins and uses thereof |
WO2017087235A1 (en) | 2015-11-20 | 2017-05-26 | Senhwa Biosciences, Inc. | Combination therapy of tetracyclic quinolone analogs for treating cancer |
KR20180091024A (en) * | 2015-12-02 | 2018-08-14 | 클리어라이트 다이어그노스틱스 엘엘씨 | Methods for preparing and analyzing tumor tissue samples for detection and monitoring of cancer |
EP3366691A1 (en) | 2015-12-03 | 2018-08-29 | GlaxoSmithKline Intellectual Property Development Limited | Cyclic purine dinucleotides as modulators of sting |
WO2017098421A1 (en) | 2015-12-08 | 2017-06-15 | Glaxosmithkline Intellectual Property Development Limited | Benzothiadiazine compounds |
CN106943596A (en) | 2016-01-07 | 2017-07-14 | 博笛生物科技(北京)有限公司 | Anti-CD 20 for treating tumour is combined |
CN106943597A (en) | 2016-01-07 | 2017-07-14 | 博笛生物科技(北京)有限公司 | Anti-EGFR for treating tumour is combined |
US11382886B2 (en) | 2016-01-15 | 2022-07-12 | The Wistar Institute Of Anatomy And Biology | Methods and compositions for treating cancer |
CN110275025A (en) * | 2016-01-29 | 2019-09-24 | 浙江数问生物技术有限公司 | PD-L1 immunohistochemical kit |
WO2017136139A1 (en) | 2016-02-01 | 2017-08-10 | Biodesix, Inc. | Predictive test for melanoma patient benefit from interleukin-2 (il2) therapy |
DK3411398T3 (en) | 2016-02-05 | 2024-06-24 | Orionis Biosciences BV | TARGETED THERAPEUTICS AND THEIR USE |
WO2017139755A1 (en) * | 2016-02-12 | 2017-08-17 | Rekoske Brian T | Cancer therapy |
US10906977B2 (en) * | 2016-02-18 | 2021-02-02 | Maine Medical Center Research Institute | Enhancing the therapeutic activity of immune checkpoint inhibitor |
WO2017156152A1 (en) * | 2016-03-08 | 2017-09-14 | Bioxcel Corporation | Immunomodulation therapies for cancer |
WO2017153952A1 (en) | 2016-03-10 | 2017-09-14 | Glaxosmithkline Intellectual Property Development Limited | 5-sulfamoyl-2-hydroxybenzamide derivatives |
EP4029518A1 (en) * | 2016-03-31 | 2022-07-20 | Jiangsu Yahong Meditech Co., Ltd. | Combinational uses of nitroxoline and its analogues with chemotherapies and immunotherapies in the treatment of cancers |
CA3019628A1 (en) | 2016-04-07 | 2017-10-12 | Glaxosmithkline Intellectual Property Development Limited | Heterocyclic amides useful as protein modulators |
KR102527786B1 (en) | 2016-04-07 | 2023-04-28 | 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 | Heterocyclic amides useful as protein modulators |
WO2017181073A1 (en) * | 2016-04-14 | 2017-10-19 | Creatv Microtech, Inc. | Methods of using pd-l1 expression in treatment decisions for cancer therapy |
WO2017189526A1 (en) * | 2016-04-25 | 2017-11-02 | Musc Foundation For Research Development | Activated cd26-high immune cells and cd26-negative immune cells and uses thereof |
JP2019516685A (en) | 2016-05-05 | 2019-06-20 | グラクソスミスクライン、インテレクチュアル、プロパティー、(ナンバー2)、リミテッドGlaxosmithkline Intellectual Property (No.2) Limited | Enhancer of ZESTE Homolog 2 Inhibitor |
CN109563141A (en) | 2016-05-13 | 2019-04-02 | 奥里尼斯生物科学公司 | To the therapeutic targeting of cellular structures |
CA3023883A1 (en) | 2016-05-13 | 2017-11-16 | Orionis Biosciences Nv | Targeted mutant interferon-beta and uses thereof |
CA3025933A1 (en) | 2016-06-01 | 2017-12-07 | Epizyme, Inc. | Use of ezh2 inhibitors for treating cancer |
GB201609811D0 (en) * | 2016-06-05 | 2016-07-20 | Snipr Technologies Ltd | Methods, cells, systems, arrays, RNA and kits |
WO2017212423A1 (en) | 2016-06-08 | 2017-12-14 | Glaxosmithkline Intellectual Property Development Limited | Chemcical compounds |
EP3468960B1 (en) | 2016-06-08 | 2022-03-23 | GlaxoSmithKline Intellectual Property Development Limited | Chemical compounds as atf4 pathway inhibitors |
CN107488229B (en) * | 2016-06-13 | 2020-11-17 | 天境生物科技(上海)有限公司 | PD-L1 antibodies and uses thereof |
AU2017290803A1 (en) | 2016-06-30 | 2019-01-24 | Nant Holdings Ip, Llc | Nant cancer vaccine |
US20190241573A1 (en) | 2016-07-20 | 2019-08-08 | Glaxosmithkline Intellectual Property Development Limited | Isoquinoline derivatives as perk inhibitors |
US11649289B2 (en) * | 2016-08-04 | 2023-05-16 | Glaxosmithkline Intellectual Property Development Limited | Anti-ICOS and anti-PD-1 antibody combination therapy |
KR101966496B1 (en) | 2016-08-18 | 2019-04-08 | 울산대학교 산학협력단 | USB security locking apparatus using mechanical locking type |
US10350280B2 (en) | 2016-08-31 | 2019-07-16 | Medgenome Inc. | Methods to analyze genetic alterations in cancer to identify therapeutic peptide vaccines and kits therefore |
US11726089B2 (en) | 2016-09-06 | 2023-08-15 | Incelldx, Inc. | Methods of assaying neoplastic and neoplasia-related cells and uses thereof |
EP3510378A4 (en) * | 2016-09-06 | 2020-07-08 | IncellDx, Inc. | Methods of detecting per cell pd-l1 expression and uses thereof |
KR20230109771A (en) * | 2016-09-13 | 2023-07-20 | 노쓰 캐롤라이나 스테이트 유니버시티 | Platelet compositions and methods for the delivery of therapeutic agents |
WO2018054940A1 (en) * | 2016-09-20 | 2018-03-29 | Merck Patent Gmbh | Diagnostic anti-pd-l1 antibody and use thereof |
CA3039451A1 (en) | 2016-10-06 | 2018-04-12 | Pfizer Inc. | Dosing regimen of avelumab for the treatment of cancer |
US11084859B2 (en) | 2016-10-24 | 2021-08-10 | Orionis Biosciences BV | Targeted mutant interferon-gamma and uses thereof |
US11155624B2 (en) | 2016-11-01 | 2021-10-26 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
CA3039992A1 (en) | 2016-11-02 | 2018-05-11 | Jounce Therapeutics, Inc. | Antibodies to pd-1 and uses thereof |
CA3043691C (en) * | 2016-11-14 | 2022-11-29 | Dinona | Antibody binding specifically to cd66c and use thereof |
WO2018098352A2 (en) | 2016-11-22 | 2018-05-31 | Jun Oishi | Targeting kras induced immune checkpoint expression |
KR20190090822A (en) | 2016-12-01 | 2019-08-02 | 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 | Combination therapy |
AU2017369994A1 (en) | 2016-12-01 | 2019-06-13 | Glaxosmithkline Intellectual Property Development Limited | Combination therapy |
MA50948A (en) | 2016-12-07 | 2020-10-14 | Agenus Inc | ANTIBODIES AND METHODS OF USING THE SAME |
CA3046963A1 (en) | 2016-12-14 | 2018-06-21 | Janssen Biotech, Inc. | Cd8a-binding fibronectin type iii domains |
US10597438B2 (en) | 2016-12-14 | 2020-03-24 | Janssen Biotech, Inc. | PD-L1 binding fibronectin type III domains |
WO2018111978A1 (en) | 2016-12-14 | 2018-06-21 | Janssen Biotech, Inc. | Cd137 binding fibronectin type iii domains |
CN106519034B (en) | 2016-12-22 | 2020-09-18 | 鲁南制药集团股份有限公司 | anti-PD-1 antibodies and uses thereof |
US11150238B2 (en) | 2017-01-05 | 2021-10-19 | Biodesix, Inc. | Method for identification of cancer patients with durable benefit from immunotherapy in overall poor prognosis subgroups |
KR102606252B1 (en) | 2017-01-09 | 2023-11-23 | 테사로, 인코포레이티드 | How to Treat Cancer with Anti-PD-1 Antibodies |
CN110573172A (en) | 2017-02-06 | 2019-12-13 | 奥里尼斯生物科学有限公司 | Targeted engineered interferons and uses thereof |
KR102642385B1 (en) | 2017-02-06 | 2024-03-04 | 오리오니스 바이오사이언시스 엔브이 | Targeted chimeric proteins and uses thereof |
CN110573504A (en) | 2017-02-27 | 2019-12-13 | 葛兰素史克知识产权开发有限公司 | heterocyclic amides as kinase inhibitors |
CN118515666A (en) | 2017-04-27 | 2024-08-20 | 博笛生物科技有限公司 | 2-Amino-quinoline derivatives |
CN110809582B (en) * | 2017-05-01 | 2023-12-22 | 儿童医疗中心有限公司 | Methods and compositions relating to anti-PD 1 antibody agents |
EP3619229A4 (en) * | 2017-05-02 | 2021-05-26 | Dana-Farber Cancer Institute, Inc. | Il-23r antagonists to reprogram intratumoral t regulatory cells into effector cells |
SG10202112636SA (en) | 2017-05-16 | 2021-12-30 | Five Prime Therapeutics Inc | Anti-fgfr2 antibodies in combination with chemotherapy agents in cancer treatment |
JP2020522687A (en) | 2017-06-02 | 2020-07-30 | エピザイム,インコーポレイティド | Use of EZH2 inhibitors for treating cancer |
WO2018225093A1 (en) | 2017-06-07 | 2018-12-13 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as atf4 pathway inhibitors |
JP2020522555A (en) | 2017-06-09 | 2020-07-30 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited | Combination therapy |
JP7080501B2 (en) | 2017-06-23 | 2022-06-06 | バーディー バイオファーマシューティカルズ インコーポレイテッド | Pharmaceutical composition |
US20210145771A1 (en) | 2017-07-03 | 2021-05-20 | Glaxosmithkline Intellectual Property Development Limited | N-(3-(2-(4-chlorophenoxy)acetamido)bicyclo[1.1.1] pentan-1-yl)-2-cyclobutane-1- carboxamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases |
US20200140383A1 (en) | 2017-07-03 | 2020-05-07 | Glaxosmithkline Intellectual Property Development Limited | 2-(4-chlorophenoxy)-n-((1 -(2-(4-chlorophenoxy)ethynazetidin-3-yl)methyl)acetamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases |
CN111094977B (en) * | 2017-07-13 | 2024-02-13 | 古斯塔夫·鲁西研究所 | Imaging tools based on image histology for monitoring tumor lymphocyte infiltration and prognosis in anti-PD-1/PD-L1 treated tumor patients |
WO2019021208A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | Indazole derivatives useful as perk inhibitors |
WO2019036043A2 (en) * | 2017-08-16 | 2019-02-21 | Medgenome Inc. | A method to generate a cocktail of personalized cancer vaccines from tumor-derived genetic alterations for the treatment of cancer |
CN111372934B (en) | 2017-08-18 | 2024-04-26 | 科瑞华生物技术有限公司 | Polymorphic forms of TG02 |
WO2019051164A1 (en) | 2017-09-07 | 2019-03-14 | Augusta University Research Institute, Inc. | Antibodies to programmed cell death protein 1 |
TW201922721A (en) | 2017-09-07 | 2019-06-16 | 英商葛蘭素史克智慧財產發展有限公司 | Chemical compounds |
WO2019053617A1 (en) | 2017-09-12 | 2019-03-21 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
IL273188B2 (en) | 2017-09-25 | 2023-03-01 | Chemocentryx Inc | Combination therapy using a chemokine receptor 2 (ccr2) antagonist and a pd-1/pd-l1 inhibitor |
WO2019069270A1 (en) | 2017-10-05 | 2019-04-11 | Glaxosmithkline Intellectual Property Development Limited | Modulators of stimulator of interferon genes (sting) |
TW201927771A (en) | 2017-10-05 | 2019-07-16 | 英商葛蘭素史密斯克藍智慧財產發展有限公司 | Heterocyclic amides useful as protein modulators and methods of using the same |
MA50514A (en) | 2017-10-31 | 2020-09-09 | Janssen Biotech Inc | HIGH-RISK MULTIPLE MYELOMA TREATMENT METHODS |
JP7517983B2 (en) * | 2017-11-20 | 2024-07-17 | ユリウス-マクシミリアン-ウニヴェルシテート・ヴュルツブルク | CD19CAR T Cells Eliminate Myeloma Cells Expressing Very Low Levels of CD19 |
CN109970857B (en) * | 2017-12-27 | 2022-09-30 | 信达生物制药(苏州)有限公司 | anti-PD-L1 antibodies and uses thereof |
TWI742336B (en) | 2017-12-29 | 2021-10-11 | 圓祥生命科技股份有限公司 | Monospecific and bispecific proteins with immune checkpoint regulation for cancer therapy, pharmaceutical composition, nucleic acid, and use thereof |
EP3735272A4 (en) * | 2018-01-05 | 2021-09-22 | Biograph 55, Inc. | Compositions and methods for cancer immunotherapy |
US20190269664A1 (en) | 2018-01-08 | 2019-09-05 | Chemocentryx, Inc. | Methods of treating solid tumors with ccr2 antagonists |
EP3737367B1 (en) | 2018-01-08 | 2024-10-02 | ChemoCentryx, Inc. | Ccr2 antagonists for the treatment of cutaneous t-cell lymphoma |
US20210177781A9 (en) | 2018-01-12 | 2021-06-17 | KDAc Therapeutics, Inc. | Combination of a selective histone deacetylase 3 (hdac3) inhibitor and an immunotherapy agent for the treatment of cancer |
WO2019152743A1 (en) | 2018-01-31 | 2019-08-08 | Celgene Corporation | Combination therapy using adoptive cell therapy and checkpoint inhibitor |
EP3749295A4 (en) | 2018-02-05 | 2022-04-27 | Orionis Biosciences, Inc. | Fibroblast binding agents and use thereof |
WO2019168688A2 (en) | 2018-02-15 | 2019-09-06 | Senhwa Biosciences, Inc. | Quinolone analogs and their salts, compositions, and method for their use |
WO2019169162A1 (en) * | 2018-03-01 | 2019-09-06 | Beth Israel Deaconess Medical Center, Inc. | Compositions and methods for treating cancer |
KR102043468B1 (en) | 2018-03-14 | 2019-11-11 | 경북대학교 산학협력단 | An Information Providing Method for Predicting Recurrence of Epstein-Barr virus-associated Gastric Cancer |
WO2019175328A1 (en) | 2018-03-14 | 2019-09-19 | Imba - Institut Für Molekulare Biotechnologie Gmbh | Bh4pathwayactivationandusethereoffortreatingcancer |
US10760075B2 (en) | 2018-04-30 | 2020-09-01 | Snipr Biome Aps | Treating and preventing microbial infections |
EP3773691A4 (en) | 2018-03-29 | 2022-06-15 | Biodesix, Inc. | Apparatus and method for identification of primary immune resistance in cancer patients |
WO2019195658A1 (en) | 2018-04-05 | 2019-10-10 | Dana-Farber Cancer Institute, Inc. | Sting levels as a biomarker for cancer immunotherapy |
WO2019193541A1 (en) | 2018-04-06 | 2019-10-10 | Glaxosmithkline Intellectual Property Development Limited | Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors |
WO2019193540A1 (en) | 2018-04-06 | 2019-10-10 | Glaxosmithkline Intellectual Property Development Limited | Heteroaryl derivatives of formula (i) as atf4 inhibitors |
GB201807924D0 (en) | 2018-05-16 | 2018-06-27 | Ctxt Pty Ltd | Compounds |
CN112424167A (en) | 2018-07-09 | 2021-02-26 | 葛兰素史密斯克莱知识产权发展有限公司 | Chemical compound |
US20220017617A1 (en) * | 2018-07-09 | 2022-01-20 | Shanghai Epimab Biotherapeutics Co., Ltd. | Efficiently expressed egfr and pd-l1 bispecific binding proteins |
WO2020021119A1 (en) * | 2018-07-27 | 2020-01-30 | F. Hoffmann-La Roche Ag | Method of monitoring effectiveness of immunotherapy of cancer patients |
WO2020031107A1 (en) | 2018-08-08 | 2020-02-13 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
WO2020044206A1 (en) | 2018-08-29 | 2020-03-05 | Glaxosmithkline Intellectual Property Development Limited | Heterocyclic amides as kinase inhibitors for use in the treatment cancer |
JP2022501332A (en) * | 2018-09-19 | 2022-01-06 | ジェネンテック, インコーポレイテッド | How to treat and diagnose bladder cancer |
US11851663B2 (en) | 2018-10-14 | 2023-12-26 | Snipr Biome Aps | Single-vector type I vectors |
BR112021007517A2 (en) | 2018-10-22 | 2021-10-26 | Glaxosmithkline Intellectual Property Development Limited | DOSAGE |
WO2020089432A1 (en) * | 2018-11-02 | 2020-05-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New prognostic method of pancreatic cancer |
SG11202104923YA (en) | 2018-11-16 | 2021-06-29 | Arqule Inc | Pharmaceutical combination for treatment of cancer |
AR117206A1 (en) | 2018-11-30 | 2021-07-21 | Glaxosmithkline Ip Dev Ltd | OCTAHYDROPIRROLO [2,1-B] [1,3] THIAZEPIN-7-CARBOXAMIDE DERIVATIVES USEFUL IN HIV THERAPY AND FOR THE TREATMENT OF CANCER |
CN113614109A (en) * | 2018-12-21 | 2021-11-05 | Ose免疫疗法公司 | Bifunctional anti-PD-1/IL-7 molecules |
CN113795511B (en) * | 2019-01-23 | 2024-07-23 | 大有华夏生物医药集团有限公司 | Anti-PD-L1 diabodies and uses thereof |
CN113396230A (en) * | 2019-02-08 | 2021-09-14 | 豪夫迈·罗氏有限公司 | Methods of diagnosis and treatment of cancer |
EP3924521A4 (en) | 2019-02-15 | 2023-03-29 | IncellDx, Inc. | Assaying bladder-associated samples, identifying and treating bladder-associated neoplasia, and kits for use therein |
MX2021011753A (en) | 2019-03-26 | 2022-01-31 | Univ Michigan Regents | Small molecule degraders of stat3. |
WO2020205467A1 (en) | 2019-03-29 | 2020-10-08 | The Regents Of The University Of Michigan | Stat3 protein degraders |
US20220227761A1 (en) | 2019-05-16 | 2022-07-21 | Stingthera, Inc. | Oxoacridinyl acetic acid derivatives and methods of use |
EP3969452A1 (en) | 2019-05-16 | 2022-03-23 | Stingthera, Inc. | Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use |
WO2020236850A1 (en) * | 2019-05-20 | 2020-11-26 | Immunovalent Therapeutics Inc. | Solid phase devices and methods of use for purifying and quantifying tissue-specific leukocytes |
WO2020236253A1 (en) | 2019-05-20 | 2020-11-26 | Massachusetts Institute Of Technology | Boronic ester prodrugs and uses thereof |
JP2022534889A (en) | 2019-05-24 | 2022-08-04 | ファイザー・インコーポレイテッド | Combination therapy using CDK inhibitors |
WO2020247725A1 (en) * | 2019-06-07 | 2020-12-10 | The Trustees Of Princeton University | Proximity-based labeling systems and applications thereof |
CN114269715A (en) | 2019-06-12 | 2022-04-01 | 范德比尔特大学 | Dibenzylamines as amino acid transport inhibitors |
CA3141405A1 (en) | 2019-06-12 | 2020-12-17 | H. Charles Manning | Amino acid transport inhibitors and the uses thereof |
CN110684844B (en) * | 2019-06-27 | 2023-01-24 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | Application of p.P476S mutation of RBPJL gene as PD-1 antibody medication guide marker |
US20220356255A1 (en) | 2019-07-15 | 2022-11-10 | Capella Bioscience Ltd | Anti-pd-l1 antibodies |
CA3138560A1 (en) | 2019-07-16 | 2021-01-21 | Shaomeng Wang | Imidazopyrimidines as eed inhibitors and the use thereof |
GB201910304D0 (en) | 2019-07-18 | 2019-09-04 | Ctxt Pty Ltd | Compounds |
GB201910305D0 (en) | 2019-07-18 | 2019-09-04 | Ctxt Pty Ltd | Compounds |
US20220305048A1 (en) | 2019-08-26 | 2022-09-29 | Dana-Farber Cancer Institute, Inc. | Use of heparin to promote type 1 interferon signaling |
CN114641337A (en) | 2019-08-27 | 2022-06-17 | 密歇根大学董事会 | CEREBLON E3 ligase inhibitors |
CA3114467C (en) * | 2019-08-29 | 2024-06-11 | Remegen Co., Ltd. | Anti pd-l1 antibody and use thereof |
JP2022548775A (en) | 2019-09-19 | 2022-11-21 | ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン | Spirocyclic Androgen Receptor Proteolytic Agent |
US20230002493A1 (en) * | 2019-09-26 | 2023-01-05 | Orionis Biosciences, Inc. | Pd-l1 targeted chimeric proteins and uses thereof |
EP4034562A2 (en) | 2019-09-27 | 2022-08-03 | GlaxoSmithKline Intellectual Property Development Limited | Antigen binding proteins |
WO2021076546A1 (en) | 2019-10-14 | 2021-04-22 | Aro Biotherapeutics Company | Cd71 binding fibronectin type iii domains |
US11781138B2 (en) | 2019-10-14 | 2023-10-10 | Aro Biotherapeutics Company | FN3 domain-siRNA conjugates and uses thereof |
WO2021074683A1 (en) | 2019-10-16 | 2021-04-22 | Avacta Life Sciences Limited | Bispecific anti-pd-l1 and anti-fcrn polypeptides |
KR102325962B1 (en) * | 2019-10-28 | 2021-11-12 | 경북대학교 산학협력단 | Use for inhibiting exosome secretion or PD-L1 expression by calcium channel blockers |
US20230159573A1 (en) | 2020-03-26 | 2023-05-25 | The Regents Of The University Of Michigan | Small molecule stat protein degraders |
CN115461362A (en) | 2020-04-14 | 2022-12-09 | 葛兰素史密斯克莱知识产权发展有限公司 | Cancer combination therapy based on ICOS antibody and PD-L1 antibody TGF-beta receptor fusion protein |
AU2021265801A1 (en) | 2020-05-01 | 2022-11-17 | Ngm Biopharmaceuticals, Inc. | ILt-binding agents and methods of use thereof |
WO2022011205A1 (en) | 2020-07-10 | 2022-01-13 | The Regents Of The University Of Michigan | Androgen receptor protein degraders |
WO2022011204A1 (en) | 2020-07-10 | 2022-01-13 | The Regents Of The University Of Michigan | Small molecule androgen receptor protein degraders |
TW202221031A (en) | 2020-07-30 | 2022-06-01 | 英商阿法克塔生命科學有限公司 | Serum half-life extended pd-l1 inhibitory polypeptides |
US20240301069A1 (en) * | 2020-12-23 | 2024-09-12 | Guangdong Fapon Biopharma Inc. | Anti-PD-L1 Antibody and Usethereof |
BR112023017296A2 (en) | 2021-03-02 | 2023-11-14 | Glaxosmithkline Ip Dev Ltd | SUBSTITUTED PYRIDIINES AS DNMT1 INHIBITORS |
US20240166647A1 (en) | 2021-03-03 | 2024-05-23 | The Regents Of The University Of Michigan | Cereblon Ligands |
US20240190874A1 (en) | 2021-03-03 | 2024-06-13 | The Regents Of The University Of Michigan | Small molecule degraders of androgen receptor |
EP4314060A1 (en) | 2021-03-31 | 2024-02-07 | GlaxoSmithKline Intellectual Property Development Limited | Antigen binding proteins and combinations thereof |
BR112023021325A2 (en) | 2021-04-14 | 2023-12-19 | Aro Biotherapeutics Company | CD71-BINDING TYPE III FIBRONECTIN DOMAINS |
US20230034659A1 (en) * | 2021-06-17 | 2023-02-02 | Sparx Bioscience Limited | Anti-pdl1 antibodies and uses thereof |
WO2023057882A1 (en) | 2021-10-05 | 2023-04-13 | Pfizer Inc. | Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer |
WO2023079428A1 (en) | 2021-11-03 | 2023-05-11 | Pfizer Inc. | Combination therapies using tlr7/8 agonist |
WO2023091951A1 (en) * | 2021-11-16 | 2023-05-25 | The Regents Of The University Of California | Methods to enhance therapeutic efficacy in melanoma via modulation of tumor cell surface pd-l1/l2 |
WO2023192946A1 (en) * | 2022-03-31 | 2023-10-05 | Ventana Medical Systems, Inc. | Methods and systems for predicting response to pd-1 axis directed therapeutics in colorectal tumors with deficient mismatch repair |
AR129423A1 (en) | 2022-05-27 | 2024-08-21 | Viiv Healthcare Co | USEFUL COMPOUNDS IN HIV THERAPY |
GB202209518D0 (en) | 2022-06-29 | 2022-08-10 | Snipr Biome Aps | Treating & preventing E coli infections |
WO2024015803A2 (en) | 2022-07-11 | 2024-01-18 | Autonomous Therapeutics, Inc. | Encrypted rna and methods of its use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004056875A1 (en) * | 2002-12-23 | 2004-07-08 | Wyeth | Antibodies against pd-1 and uses therefor |
WO2006121168A1 (en) * | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
WO2007005874A2 (en) * | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051227A (en) | 1995-07-25 | 2000-04-18 | The Regents Of The University Of California, Office Of Technology Transfer | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
CZ303703B6 (en) | 1998-12-23 | 2013-03-20 | Pfizer Inc. | Monoclonal antibody or fragment-binding antigen thereof, pharmaceutical composition in which the antibody or fragment is comprised, a cell line producing the antibody or fragment, process for preparing the antibody, isolated nucleic acid encoding hea |
IL147972A0 (en) | 1999-08-23 | 2002-09-12 | Dana Farber Cancer Inst Inc Ge | Pd-1, a receptor for b7-4 and uses therefor |
HUP0202882A2 (en) | 1999-08-23 | 2002-12-28 | Dana Farber Cancer Inst Inc | Novel b7-4 molecules and uses therefor |
EP3214175A1 (en) | 1999-08-24 | 2017-09-06 | E. R. Squibb & Sons, L.L.C. | Human ctla-4 antibodies and their uses |
WO2001021631A2 (en) | 1999-09-20 | 2001-03-29 | Millennium Pharmaceuticals, Inc. | Secreted proteins and uses thereof |
DK1234031T3 (en) | 1999-11-30 | 2017-07-03 | Mayo Foundation | B7-H1, AN UNKNOWN IMMUNE REGULATORY MOLECULE |
US6803192B1 (en) | 1999-11-30 | 2004-10-12 | Mayo Foundation For Medical Education And Research | B7-H1, a novel immunoregulatory molecule |
JP2003520828A (en) | 2000-01-27 | 2003-07-08 | ジェネティクス インスティテュート,エルエルシー | Antibodies to CTLA4 (CD152), conjugates containing the same, and uses thereof |
AR036993A1 (en) | 2001-04-02 | 2004-10-20 | Wyeth Corp | USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS |
CA2442066C (en) | 2001-04-02 | 2005-11-01 | Wyeth | Pd-1, a receptor for b7-4, and uses therefor |
WO2002086083A2 (en) | 2001-04-20 | 2002-10-31 | Mayo Foundation For Medical Education And Research | Methods of enhancing cell responsiveness |
EP1456652A4 (en) | 2001-11-13 | 2005-11-02 | Dana Farber Cancer Inst Inc | Agents that modulate immune cell activation and methods of use thereof |
CN102174108B (en) * | 2002-03-01 | 2016-06-29 | 免疫医疗公司 | The anti-CD74 antibody of internalization and using method |
DE10161767T1 (en) * | 2002-07-03 | 2018-06-07 | Honjo Tasuku | Immunopotentiating compositions containing an anti-PD-L1 antibody |
US7563869B2 (en) | 2003-01-23 | 2009-07-21 | Ono Pharmaceutical Co., Ltd. | Substance specific to human PD-1 |
PT1810026T (en) | 2004-10-06 | 2018-06-11 | Mayo Found Medical Education & Res | B7-h1 and pd-1 in treatment of renal cell carcinoma |
NZ561138A (en) | 2005-03-23 | 2009-06-26 | Pfizer Prod Inc | Anti-CTLA4 antibody and indolinone combination therapy for treatment of cancer |
RU2434946C2 (en) | 2005-04-13 | 2011-11-27 | Консехо Супериор Де Инвестигасионес Сьентификас | Method of in vitro determination of prognosis of disease development in patient with cancer and method of in vitro monitoring effect of therapy administered to patient with cancer |
GB0509748D0 (en) | 2005-05-13 | 2005-06-22 | Univ Glasgow | Materials and methods relating to cell based therapies |
PT2397156T (en) | 2005-06-08 | 2016-12-23 | The President And Fellows Of Harvard College | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
US20100015642A1 (en) | 2006-01-05 | 2010-01-21 | Kwon Eugene D | B7-h1 and survivin in cancer |
EP2061504A4 (en) | 2006-09-20 | 2010-01-27 | Univ Johns Hopkins | Combinatorieal therapy of cancer and infectious diseases with anti-b7-h1 antibodies |
CN101215329B (en) | 2008-01-04 | 2011-02-02 | 中国人民解放军第四军医大学 | Soluble human program death protein-1-lgV and preparation method thereof |
US8168757B2 (en) | 2008-03-12 | 2012-05-01 | Merck Sharp & Dohme Corp. | PD-1 binding proteins |
CA2998281C (en) * | 2008-09-26 | 2022-08-16 | Dana-Farber Cancer Institute, Inc. | Human anti-pd-1 antobodies and uses therefor |
BRPI0921433A2 (en) | 2008-10-31 | 2017-06-06 | Abbott Biotherapeutics Corp | use of anti-cs1 antibodies to treat rare lymphomas |
US8420089B2 (en) | 2008-11-25 | 2013-04-16 | Alderbio Holdings Llc | Antagonists of IL-6 to raise albumin and/or lower CRP |
CN108997498A (en) | 2008-12-09 | 2018-12-14 | 霍夫曼-拉罗奇有限公司 | Anti- PD-L1 antibody and they be used to enhance the purposes of T cell function |
US10928398B2 (en) | 2008-12-17 | 2021-02-23 | Cornell University | Method for double staining colocalized nuclear-markers in histological lymphoid or bone marrow tissue sample |
DK3279215T3 (en) | 2009-11-24 | 2020-04-27 | Medimmune Ltd | TARGETED BINDING AGENTS B7-H1 |
WO2011082400A2 (en) * | 2010-01-04 | 2011-07-07 | President And Fellows Of Harvard College | Modulators of immunoinhibitory receptor pd-1, and methods of use thereof |
US20120010230A1 (en) * | 2010-07-08 | 2012-01-12 | Macdougall John R | Methods and compositions for identification, assessment and treatment of cancers associated with hedgehog signaling |
CN103608040B (en) | 2011-04-20 | 2017-03-01 | 米迪缪尼有限公司 | Antibody in conjunction with B7 H1 and PD 1 and other molecules |
JP5447877B2 (en) | 2011-06-16 | 2014-03-19 | コニカミノルタ株式会社 | Image forming apparatus |
US8609625B2 (en) | 2011-06-24 | 2013-12-17 | Taipei Veterans General Hospital | Method for enhancing immune response in the treatment of infectious and malignant diseases |
SG11201407190TA (en) | 2012-05-15 | 2014-12-30 | Bristol Myers Squibb Co | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
KR102130865B1 (en) * | 2012-10-02 | 2020-08-05 | 브리스톨-마이어스 스큅 컴퍼니 | Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer |
ES2644022T3 (en) * | 2013-03-14 | 2017-11-27 | Bristol-Myers Squibb Company | Combination of a DR5 agonist and an anti-PD-1 antagonist and methods of use |
US20170088626A1 (en) * | 2014-03-05 | 2017-03-30 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
KR20230144099A (en) * | 2014-05-15 | 2023-10-13 | 브리스톨-마이어스 스큅 컴퍼니 | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
US9907849B2 (en) | 2014-07-18 | 2018-03-06 | Advaxis, Inc. | Combination of a PD-1 antagonist and a listeria-based vaccine for treating prostate cancer |
US20170247455A1 (en) * | 2014-08-22 | 2017-08-31 | Bristol-Myers Squibb Company | Treatment of cancer using a combination of an anti-pd-1 antibody and an anti-cd137 antibody |
WO2016069727A1 (en) * | 2014-10-29 | 2016-05-06 | Five Prime Therapeutics, Inc. | Combination therapy for cancer |
JP2018514550A (en) * | 2015-04-28 | 2018-06-07 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Treatment of PD-L1 negative melanoma using anti-PD-1 antibody and anti-CTLA-4 antibody |
US20160362489A1 (en) * | 2015-04-28 | 2016-12-15 | Bristol-Myers Squibb Company | Treatment of PD-L1-Positive Melanoma Using an Anti-PD-1 Antibody |
US20180155429A1 (en) * | 2015-05-28 | 2018-06-07 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
US11078278B2 (en) * | 2015-05-29 | 2021-08-03 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
TW201709929A (en) * | 2015-06-12 | 2017-03-16 | 宏觀基因股份有限公司 | Combination therapy for the treatment of cancer |
MX2017015811A (en) * | 2015-06-12 | 2018-04-10 | Squibb Bristol Myers Co | Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways. |
RU2731202C2 (en) * | 2015-10-08 | 2020-08-31 | Макродженикс, Инк. | Combined therapy for cancer treatment |
TWI795347B (en) * | 2015-11-18 | 2023-03-11 | 美商必治妥施貴寶公司 | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
US10392442B2 (en) * | 2015-12-17 | 2019-08-27 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
WO2017210631A1 (en) * | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
TWI788340B (en) * | 2017-04-07 | 2023-01-01 | 美商必治妥美雅史谷比公司 | Anti-icos agonist antibodies and uses thereof |
EP3630840A1 (en) * | 2017-06-01 | 2020-04-08 | Bristol-Myers Squibb Company | Methods of treating a tumor using an anti-pd-1 antibody |
-
2013
- 2013-05-13 SG SG11201407190TA patent/SG11201407190TA/en unknown
- 2013-05-13 CN CN202111096209.9A patent/CN113967253A/en active Pending
- 2013-05-13 KR KR1020247029150A patent/KR20240135058A/en unknown
- 2013-05-13 JP JP2015512717A patent/JP6448533B2/en active Active
- 2013-05-13 EP EP13727687.9A patent/EP2850102A1/en not_active Withdrawn
- 2013-05-13 KR KR1020207036047A patent/KR102418979B1/en active IP Right Grant
- 2013-05-13 CA CA2873402A patent/CA2873402C/en active Active
- 2013-05-13 BR BR112014028826-7A patent/BR112014028826B1/en active IP Right Grant
- 2013-05-13 CA CA3213528A patent/CA3213528A1/en active Pending
- 2013-05-13 CN CN201810966897.1A patent/CN108969763B/en active Active
- 2013-05-13 BR BR122022015975-3A patent/BR122022015975B1/en active IP Right Grant
- 2013-05-13 EP EP22196038.8A patent/EP4166567A1/en active Pending
- 2013-05-13 US US14/400,667 patent/US9856320B2/en active Active
- 2013-05-13 KR KR1020147034644A patent/KR102193343B1/en active IP Right Grant
- 2013-05-13 EA EA201492105A patent/EA037351B8/en not_active IP Right Cessation
- 2013-05-13 WO PCT/US2013/040764 patent/WO2013173223A1/en active Application Filing
- 2013-05-13 AU AU2013263076A patent/AU2013263076B2/en active Active
- 2013-05-13 SG SG10201700698WA patent/SG10201700698WA/en unknown
- 2013-05-13 CN CN201380037764.1A patent/CN104470949A/en active Pending
- 2013-05-13 US US13/892,671 patent/US9212224B2/en active Active
- 2013-05-13 EP EP17189595.6A patent/EP3309175A1/en not_active Withdrawn
- 2013-05-13 MX MX2014013565A patent/MX368507B/en active IP Right Grant
- 2013-05-13 KR KR1020227023029A patent/KR102702287B1/en active IP Right Grant
-
2014
- 2014-11-09 IL IL235591A patent/IL235591A0/en unknown
-
2015
- 2015-05-07 HK HK15104349.3A patent/HK1203971A1/en unknown
- 2015-11-24 US US14/950,748 patent/US10072082B2/en active Active
-
2017
- 2017-08-09 AU AU2017213489A patent/AU2017213489A1/en not_active Abandoned
-
2018
- 2018-01-10 JP JP2018001844A patent/JP6672343B2/en active Active
- 2018-03-12 IL IL258051A patent/IL258051B/en unknown
- 2018-06-12 US US16/006,473 patent/US10138299B2/en active Active
- 2018-06-12 US US16/006,365 patent/US10316090B2/en active Active
- 2018-06-12 US US16/006,493 patent/US10323092B2/en active Active
- 2018-06-29 US US16/024,333 patent/US10316091B2/en active Active
- 2018-06-29 US US16/024,340 patent/US10308714B2/en active Active
- 2018-12-07 US US16/213,965 patent/US10266596B1/en active Active
- 2018-12-07 US US16/213,960 patent/US10266595B2/en active Active
- 2018-12-07 US US16/213,954 patent/US10266594B1/en active Active
- 2018-12-21 US US16/230,657 patent/US10323093B2/en active Active
- 2018-12-21 US US16/231,211 patent/US10604575B2/en active Active
-
2019
- 2019-01-15 US US16/248,215 patent/US10584170B2/en active Active
- 2019-01-15 US US16/248,222 patent/US10577423B2/en active Active
- 2019-04-08 AU AU2019202416A patent/AU2019202416B2/en active Active
-
2020
- 2020-03-04 JP JP2020036907A patent/JP2020105204A/en not_active Withdrawn
- 2020-03-23 US US16/827,580 patent/US20200308282A1/en not_active Abandoned
- 2020-12-14 AU AU2020289725A patent/AU2020289725A1/en not_active Abandoned
-
2022
- 2022-01-10 IL IL289750A patent/IL289750A/en unknown
- 2022-02-25 JP JP2022027917A patent/JP2022071038A/en active Pending
- 2022-11-02 US US18/052,076 patent/US20240002512A1/en not_active Abandoned
- 2022-11-02 US US18/052,099 patent/US20240034793A1/en not_active Abandoned
-
2024
- 2024-06-11 AU AU2024203938A patent/AU2024203938A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004056875A1 (en) * | 2002-12-23 | 2004-07-08 | Wyeth | Antibodies against pd-1 and uses therefor |
WO2006121168A1 (en) * | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
WO2007005874A2 (en) * | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
Non-Patent Citations (5)
Title |
---|
CLINICAL CANCER RESEARCH, vol. 17, no. 13, July 2011 (2011-07-01), pages 4232 - 4244, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-10-2660 * |
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; April 2011 (2011-04-01), DODSON LINDZY F ET AL: "Potential targets for pancreatic cancer immunotherapeutics", XP002703660, Database accession no. PREV201100567322 * |
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; July 2011 (2011-07-01), ANDORSKY DAVID J ET AL: "Programmed Death Ligand 1 Is Expressed by Non-Hodgkin Lymphomas and Inhibits the Activity of Tumor-Associated T Cells", XP002703661, Database accession no. PREV201100493026 * |
HIRANO FUMIYA ET AL: "Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 65, no. 3, 1 February 2005 (2005-02-01), pages 1089 - 1096, XP002419626, ISSN: 0008-5472 * |
IMMUNOTHERAPY, vol. 3, no. 4, April 2011 (2011-04-01), pages 517 - 537, ISSN: 1750-743X, DOI: 10.2217/IMT.11.10 * |
Cited By (593)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9393301B2 (en) | 2002-07-03 | 2016-07-19 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US9067999B1 (en) | 2002-07-03 | 2015-06-30 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US9073994B2 (en) | 2002-07-03 | 2015-07-07 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US9439962B2 (en) | 2002-07-03 | 2016-09-13 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US9402899B2 (en) | 2002-07-03 | 2016-08-02 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US10441655B2 (en) | 2005-05-09 | 2019-10-15 | Ono Pharmaceutical Co., Ltd. | Monoclonal antibodies to programmed death 1 (PD-1) |
US9492540B2 (en) | 2005-05-09 | 2016-11-15 | Ono Pharmaceutical Co., Ltd. | Methods for treating cancer using anti-PD-1 antibodies |
US9387247B2 (en) | 2005-05-09 | 2016-07-12 | Ono Pharmaceutical Co., Ltd. | Monoclonal antibodies to programmed death 1 (PD-1) |
US9358289B2 (en) | 2005-05-09 | 2016-06-07 | Ono Pharmaceutical Co., Ltd. | Methods for treating cancer using anti-PD-1 antibodies in combination with anti-CTLA-4 antibodies |
US9084776B2 (en) | 2005-05-09 | 2015-07-21 | E.R. Squibb & Sons, L.L.C. | Methods for treating cancer using anti-PD-1 antibodies |
US9492539B2 (en) | 2005-05-09 | 2016-11-15 | Ono Pharmaceutical Co., Ltd. | Monoclonal antibodies to Programmed Death 1 (PD-1) |
US11236165B2 (en) | 2008-08-11 | 2022-02-01 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind Lymphocyte Activation Gene-3 (LAG-3), and uses thereof |
US10988535B2 (en) | 2008-08-11 | 2021-04-27 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11236164B2 (en) | 2008-08-11 | 2022-02-01 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11001630B2 (en) | 2008-08-11 | 2021-05-11 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation Gene-3 (LAG-3), and uses thereof |
US10988536B2 (en) | 2008-08-11 | 2021-04-27 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US10344089B2 (en) | 2008-08-11 | 2019-07-09 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11236163B2 (en) | 2008-08-11 | 2022-02-01 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11530267B2 (en) | 2008-08-11 | 2022-12-20 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11512130B2 (en) | 2008-08-11 | 2022-11-29 | E.R. Squibb & Sons, L.L.C. | Human antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
US10022431B2 (en) | 2010-02-10 | 2018-07-17 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10849964B2 (en) | 2010-02-10 | 2020-12-01 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10426824B1 (en) | 2010-05-14 | 2019-10-01 | The General Hospital Corporation | Compositions and methods of identifying tumor specific neoantigens |
US11142800B2 (en) | 2010-10-07 | 2021-10-12 | The General Hospital Corporation | Biomarkers of cancer |
US10029003B2 (en) | 2012-03-15 | 2018-07-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US9517258B2 (en) | 2012-03-15 | 2016-12-13 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10377824B2 (en) | 2012-07-02 | 2019-08-13 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US10266591B2 (en) | 2012-07-02 | 2019-04-23 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11345752B2 (en) | 2012-07-02 | 2022-05-31 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof |
US11180813B2 (en) | 2012-10-01 | 2021-11-23 | Adaptive Biotechnologies Corporation | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
US11759454B2 (en) | 2012-12-07 | 2023-09-19 | Chemocentryx, Inc. | Diazole lactams |
US10744118B2 (en) | 2012-12-07 | 2020-08-18 | Chemocentryx, Inc. | Diazole lactams |
US9709568B2 (en) | 2012-12-21 | 2017-07-18 | Merck Sharp & Dohme Corp. | Antibodies that bind to human programmed death ligand 1 (PD-L1) |
EP3783030A1 (en) * | 2012-12-21 | 2021-02-24 | Merck Sharp & Dohme Corp. | Antibodies that bind to human programmed death ligand 1 (pd-l1) |
EP2935329B1 (en) | 2012-12-21 | 2020-09-16 | Merck Sharp & Dohme Corp. | Antibodies that bind to human programmed death ligand 1 (pd-l1) |
WO2014100079A1 (en) * | 2012-12-21 | 2014-06-26 | Merck Sharp & Dohme Corp. | Antibodies that bind to human programmed death ligand 1 (pd-l1) |
EP2972373B1 (en) * | 2013-03-15 | 2019-10-09 | F.Hoffmann-La Roche Ag | Biomarkers and methods of treating pd-1 and pd-l1 related conditions |
AU2017225061B2 (en) * | 2013-03-15 | 2019-11-21 | Genentech, Inc. | Biomarkers and methods of treating PD-1 and PD-L1 related conditions |
JP2019060883A (en) * | 2013-03-15 | 2019-04-18 | ジェネンテック, インコーポレイテッド | Biomarkers and methods for treating pd-1 and pd-l1 related conditions |
JP2016520800A (en) * | 2013-03-15 | 2016-07-14 | ジェネンテック, インコーポレイテッド | Biomarkers and methods for treating conditions associated with PD-1 and PD-L1 |
US11299544B2 (en) | 2013-03-15 | 2022-04-12 | Genentech, Inc. | Biomarkers and methods of treating PD-1 and PD-L1 related conditions |
US11193937B2 (en) | 2013-04-02 | 2021-12-07 | Merck Sharp & Dohme Corp. | Immunohistochemical assay for detecting expression of programmed death ligand 1 (PD-L1) in tumor tissue |
EP2981821B1 (en) | 2013-04-02 | 2018-12-19 | Merck Sharp & Dohme Corp. | Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue |
US10543189B2 (en) | 2013-04-09 | 2020-01-28 | Boston Biomedical, Inc. | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
US11673951B2 (en) | 2013-09-13 | 2023-06-13 | Beigene Switzerland Gmbh | Anti-PD1 antibodies and their use as therapeutics and diagnostics |
US11186637B2 (en) | 2013-09-13 | 2021-11-30 | Beigene Switzerland Gmbh | Anti-PD1 antibodies and their use as therapeutics and diagnostics |
US10081681B2 (en) | 2013-09-20 | 2018-09-25 | Bristol-Myers Squibb Company | Combination of anti-LAG-3 antibodies and anti-PD-1 antibodies to treat tumors |
US11274152B2 (en) | 2013-09-20 | 2022-03-15 | Bristol-Myers Squibb Company | Combination of anti-LAG-3 antibodies and anti-PD-1 antibodies to treat tumors |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
US11708412B2 (en) | 2013-09-26 | 2023-07-25 | Novartis Ag | Methods for treating hematologic cancers |
RU2695653C2 (en) * | 2013-10-04 | 2019-07-25 | Пин Фарма, Инк. | Immunostimulating polypeptide derivatives of tat hiv for use in treating cancer |
US11834718B2 (en) | 2013-11-25 | 2023-12-05 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
US10344090B2 (en) | 2013-12-12 | 2019-07-09 | Shanghai Hangrui Pharmaceutical Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
US11365255B2 (en) | 2013-12-12 | 2022-06-21 | Suzhou Suncadia Biopharmaceuticals Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
US10736940B2 (en) | 2013-12-19 | 2020-08-11 | Immutep S.A.S. | Combined preparations for the treatment of cancer |
JP2017500341A (en) * | 2013-12-20 | 2017-01-05 | イモデュロン セラピューティクス リミテッド | Immunomodulators for use in the treatment, reduction, inhibition or control of neoplastic diseases |
JP2019196394A (en) * | 2013-12-20 | 2019-11-14 | イモデュロン セラピューティクス リミテッド | Checkpoint inhibitor and whole cell mycobacterium for use in cancer therapy |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
US11117970B2 (en) | 2014-01-23 | 2021-09-14 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-L1 |
US9938345B2 (en) | 2014-01-23 | 2018-04-10 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-L1 |
US10737113B2 (en) | 2014-01-23 | 2020-08-11 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-1 |
US9987500B2 (en) | 2014-01-23 | 2018-06-05 | Regeneron Pharmaceuticals, Inc. | Human antibodies to PD-1 |
US10752687B2 (en) | 2014-01-24 | 2020-08-25 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US11827704B2 (en) | 2014-01-24 | 2023-11-28 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US11266654B2 (en) | 2014-01-24 | 2022-03-08 | AI Therapeutics, Inc. | Apilimod compositions and methods for using same |
US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US9815898B2 (en) | 2014-01-24 | 2017-11-14 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US11155620B2 (en) | 2014-01-31 | 2021-10-26 | Novartis Ag | Method of detecting TIM-3 using antibody molecules to TIM-3 |
US10981990B2 (en) | 2014-01-31 | 2021-04-20 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US10738119B2 (en) | 2014-02-18 | 2020-08-11 | Health Research, Inc. | Combination therapy for hepatocellular carcinoma |
WO2015126903A1 (en) * | 2014-02-18 | 2015-08-27 | Health Research, Inc. | Combination therapy for hepatocellular carcinoma |
JP2017514143A (en) * | 2014-02-21 | 2017-06-01 | アッヴィ・ステムセントルクス・エル・エル・シー | Anti-DLL3 antibodies and drug conjugates for use in melanoma |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
US11773175B2 (en) | 2014-03-04 | 2023-10-03 | Kymab Limited | Antibodies, uses and methods |
EP3572430A2 (en) | 2014-03-05 | 2019-11-27 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
US10441643B2 (en) | 2014-03-19 | 2019-10-15 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2015143221A1 (en) * | 2014-03-19 | 2015-09-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10391159B2 (en) | 2014-03-19 | 2019-08-27 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10188713B2 (en) | 2014-03-19 | 2019-01-29 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2015143223A1 (en) * | 2014-03-19 | 2015-09-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10583183B2 (en) | 2014-04-11 | 2020-03-10 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Immune gene signatures in urothelial carcinoma (UC) |
JP7519477B2 (en) | 2014-05-13 | 2024-07-19 | メディミューン リミテッド | Anti-B7-H1 and Anti-CTLA-4 Antibodies for Treating Non-Small Cell Lung Cancer - Patent application |
US11446377B2 (en) | 2014-05-13 | 2022-09-20 | Medimmune, Llc | Anti-B7-H1 and anti-CTLA-4 antibodies for treating non-small cell lung cancer |
JP2021098734A (en) * | 2014-05-13 | 2021-07-01 | メディミューン リミテッド | Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small cell lung cancer |
GB2531094A (en) * | 2014-05-13 | 2016-04-13 | Medimmune Ltd | Anti-B7-H1 and Anti-CTLA-4 antibodies for treating non-small cell lung cancer |
US10232040B2 (en) | 2014-05-13 | 2019-03-19 | Medimmune, Llc | Anti-B7 H1 and anti-CTLA-4 antibodies for treating non-small cell lung cancer |
JP2017520520A (en) * | 2014-05-13 | 2017-07-27 | メディミューン リミテッド | Anti-B7-H1 and anti-CTLA-4 antibodies for treating non-small cell lung cancer |
EP3760229A2 (en) | 2014-05-15 | 2021-01-06 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
US9885721B2 (en) | 2014-05-29 | 2018-02-06 | Spring Bioscience Corporation | PD-L1 antibodies and uses thereof |
US10775383B2 (en) | 2014-05-29 | 2020-09-15 | Ventana Medical Systems, Inc. | PD-L1 antibodies and uses thereof |
EP3149481B1 (en) | 2014-05-30 | 2019-01-09 | Ventana Medical Systems, Inc. | Multiplex assay for improved scoring of tumor tissues stained for pd-l1 |
EP3610924A1 (en) | 2014-06-06 | 2020-02-19 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
EP3998079A1 (en) | 2014-06-06 | 2022-05-18 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
WO2015187835A2 (en) | 2014-06-06 | 2015-12-10 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
US10160806B2 (en) | 2014-06-26 | 2018-12-25 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
US11098119B2 (en) | 2014-06-26 | 2021-08-24 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
TWI726608B (en) * | 2014-07-03 | 2021-05-01 | 英屬開曼群島商百濟神州有限公司 | Anti-pd-l1 antibodies and their use as therapeutics and diagnostics |
TWI687438B (en) * | 2014-07-03 | 2020-03-11 | 英屬開曼群島商百濟神州生物科技有限公司 | Anti-pd-l1 antibodies and their use as therapeutics and diagnostics |
US10544225B2 (en) | 2014-07-03 | 2020-01-28 | Beigene, Ltd. | Anti-PD-L1 antibodies and their use as therapeutics and diagnostics |
US11512132B2 (en) | 2014-07-03 | 2022-11-29 | Beigene, Ltd. | Anti-PD-L1 antibodies and their use as therapeutics and diagnostics |
EP3160505A4 (en) * | 2014-07-03 | 2018-01-24 | BeiGene, Ltd. | Anti-pd-l1 antibodies and their use as therapeutics and diagnostics |
US10280223B2 (en) | 2014-07-09 | 2019-05-07 | Nippon Zenyaku Kogyo Co., Ltd. | Anti-canine PD-1 antibody or anti-canine PD-L1 antibody |
WO2016006241A1 (en) * | 2014-07-09 | 2016-01-14 | 日本全薬工業株式会社 | Anti-canine pd-1 antibody or anti-canine pd-l1 antibody |
JPWO2016006241A1 (en) * | 2014-07-09 | 2017-04-27 | 日本全薬工業株式会社 | Anti-canine PD-1 antibody or anti-canine PD-L1 antibody |
US11530269B2 (en) | 2014-07-11 | 2022-12-20 | Ventana Medical Systems, Inc. | Anti-PD-L1 antibodies and diagnostic uses thereof |
US10689445B2 (en) | 2014-07-11 | 2020-06-23 | Ventana Medical Systems, Inc. | Anti-PD-L1 antibodies and diagnostic uses thereof |
JP2017530691A (en) * | 2014-07-11 | 2017-10-19 | ジェネンテック, インコーポレイテッド | Anti-PD-L1 antibody and its diagnostic use |
JP7032929B2 (en) | 2014-07-11 | 2022-03-09 | ヴェンタナ メディカル システムズ, インク. | Anti-PD-L1 antibody and its diagnostic use |
US10981994B2 (en) | 2014-07-22 | 2021-04-20 | Apollomics Inc. | Anti PD-1 antibodies |
US11560429B2 (en) | 2014-07-22 | 2023-01-24 | Apollomics Inc. | Anti PD-1 antibodies |
US10428146B2 (en) | 2014-07-22 | 2019-10-01 | Cb Therapeutics, Inc. | Anti PD-1 antibodies |
KR20170040260A (en) * | 2014-08-01 | 2017-04-12 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Methods and therapeutic combinations for treating tumors |
US11291720B2 (en) | 2014-08-01 | 2022-04-05 | Akeso Biopharma, Inc. | Anti-CTLA4 monoclonal antibody or its antigen binding fragments, pharmaceutical compositions and uses |
JP2017523244A (en) * | 2014-08-01 | 2017-08-17 | スリーエム イノベイティブ プロパティズ カンパニー | Methods and combination therapeutics for treating tumors |
KR102540008B1 (en) * | 2014-08-01 | 2023-06-02 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Methods and therapeutic combinations for treating tumors |
US10583134B2 (en) | 2014-08-01 | 2020-03-10 | 3M Innovative Properties Company | Methods and therapeutic combinations for treating tumors |
US10449251B2 (en) | 2014-08-01 | 2019-10-22 | Akeso Biopharma, Inc. | Anti-CTLA4 monoclonal antibody or its antigen binding fragments, pharmaceutical compositions and uses |
US11111300B2 (en) | 2014-08-05 | 2021-09-07 | Apollomics Inc. | Anti PD-L1 antibodies |
US11827707B2 (en) | 2014-08-05 | 2023-11-28 | Apollomics Inc. | Anti PD-L1 antibodies |
US10435470B2 (en) | 2014-08-05 | 2019-10-08 | Cb Therapeutics, Inc. | Anti-PD-L1 antibodies |
EP3177649A4 (en) * | 2014-08-05 | 2018-04-25 | CB Therapeutics, Inc. | Anti-pd-l1 antibodies |
AU2015300006B2 (en) * | 2014-08-07 | 2018-08-30 | Haruki Okamura | Therapeutic agent for cancer which comprises combination of IL-18 and molecule-targeting antibody |
WO2016021720A1 (en) * | 2014-08-07 | 2016-02-11 | 学校法人兵庫医科大学 | Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody |
JPWO2016021720A1 (en) * | 2014-08-07 | 2017-05-25 | 学校法人兵庫医科大学 | Cancer therapeutic agent using IL-18 and molecular target antibody in combination |
US11219672B2 (en) | 2014-08-07 | 2022-01-11 | Haruki Okamura | Therapeutic agent for cancer which comprises combination of IL-18 and molecule-targeting antibody |
EP3178484A4 (en) * | 2014-08-07 | 2017-08-30 | Hyogo College Of Medicine | Therapeutic agent for cancer which comprises combination of il-18 and molecule-targeting antibody |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
WO2016049256A1 (en) | 2014-09-25 | 2016-03-31 | Bristol-Myers Squibb Company | Treatment of lung cancer using an anti-fucosyl-gm1 antibody |
US10851165B2 (en) | 2014-10-14 | 2020-12-01 | Novartis Ag | Antibody molecules to PD-L1 and methods of treating cancer |
US9988452B2 (en) | 2014-10-14 | 2018-06-05 | Novartis Ag | Antibody molecules to PD-L1 and uses thereof |
US10618967B2 (en) | 2014-10-29 | 2020-04-14 | Five Prime Therapeutics, Inc. | Anti-CSF1R antibody and anti PD-1 antibody combination therapy for cancer |
WO2016069727A1 (en) | 2014-10-29 | 2016-05-06 | Five Prime Therapeutics, Inc. | Combination therapy for cancer |
JP2020186243A (en) * | 2014-10-29 | 2020-11-19 | ファイヴ プライム セラピューティクス インク | Combination therapy for cancer |
JP2017533912A (en) * | 2014-10-29 | 2017-11-16 | ファイヴ プライム セラピューティクス インク | Combination therapy for cancer |
EP3835323A1 (en) | 2014-10-29 | 2021-06-16 | Five Prime Therapeutics, Inc. | Combination therapy for cancer |
US11566076B2 (en) | 2014-10-29 | 2023-01-31 | Five Prime Therapeutics, Inc. | Anti-CSF1R antibody and anti-PD-1 antibody combination therapy for selected cancers |
US11166944B2 (en) | 2014-11-07 | 2021-11-09 | AI Therapeutics, Inc. | Apilimod compositions and methods for using same in the treatment of renal cancer |
WO2016081748A2 (en) | 2014-11-21 | 2016-05-26 | Bristol-Myers Squibb Company | Antibodies against cd73 and uses thereof |
EP3725808A1 (en) | 2014-11-21 | 2020-10-21 | Bristol-Myers Squibb Company | Antibodies against cd73 and uses thereof |
EP3789399A1 (en) | 2014-11-21 | 2021-03-10 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
JP2018508213A (en) * | 2014-11-25 | 2018-03-29 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Novel PD-L1 binding polypeptides for imaging |
JP7127008B2 (en) | 2014-11-25 | 2022-08-29 | ブリストル-マイヤーズ スクイブ カンパニー | Novel PD-L1 binding polypeptides for imaging |
JP7127008B6 (en) | 2014-11-25 | 2023-12-22 | ブリストル-マイヤーズ スクイブ カンパニー | Novel PD-L1 binding polypeptides for imaging |
JP2020048567A (en) * | 2014-11-25 | 2020-04-02 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Novel pd-l1 binding polypeptides for imaging |
US10406251B2 (en) | 2014-11-25 | 2019-09-10 | Bristol-Myers Squibb Company | PD-L1 binding polypeptides for imaging |
US11173219B2 (en) | 2014-11-25 | 2021-11-16 | Bristol-Myers Squibb Company | PD-L1 binding polypeptides for imaging |
US11229713B2 (en) | 2014-11-25 | 2022-01-25 | Bristol-Myers Squibb Company | Methods and compositions for 18F-radiolabeling of biologics |
EP3702367A1 (en) | 2014-11-25 | 2020-09-02 | Bristol-Myers Squibb Company | Novel pd-l1 binding polypeptides for imaging |
WO2016090070A1 (en) | 2014-12-04 | 2016-06-09 | Bristol-Myers Squibb Company | Combination of anti-cs1 and anti-pd1 antibodies to treat cancer (myeloma) |
CN107249632A (en) * | 2014-12-04 | 2017-10-13 | 百时美施贵宝公司 | Combination for the anti-CS1 and the anti-antibody of PD 1 for the treatment of cancer (myeloma) |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
EP3234193B1 (en) * | 2014-12-19 | 2020-07-15 | Massachusetts Institute of Technology | Molecular biomarkers for cancer immunotherapy |
US11939637B2 (en) | 2014-12-19 | 2024-03-26 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
EP4249066A2 (en) | 2014-12-23 | 2023-09-27 | Bristol-Myers Squibb Company | Antibodies to tigit |
US10940181B2 (en) | 2015-01-09 | 2021-03-09 | Immutep S.A.S. | Combined preparations for the treatment of cancer or infection |
US10517949B2 (en) | 2015-01-09 | 2019-12-31 | Agency For Science, Technology And Research | Anti-PD-L1 antibodies |
US11684654B2 (en) | 2015-01-09 | 2023-06-27 | Immutep S.A.S. | Combined preparations for the treatment of cancer or infection |
US11534489B2 (en) | 2015-01-09 | 2022-12-27 | Agency For Science, Technology And Research | Anti-PD-L1 antibodies |
US10874713B2 (en) | 2015-01-09 | 2020-12-29 | Immutep S.A.S. | Combined preparations for the treatment of cancer or infection |
US9789183B1 (en) | 2015-01-09 | 2017-10-17 | Agency For Science, Technology And Research | Anti-PD-L1 antibodies |
US10632151B2 (en) | 2015-01-22 | 2020-04-28 | University Of Massachusetts | Cancer immunotherapy |
US10620211B2 (en) | 2015-02-03 | 2020-04-14 | Ventana Medical Systems, Inc. | Histochemical assay for evaluating expression of programmed death ligand 1 (PD-L1) |
WO2016127052A1 (en) | 2015-02-05 | 2016-08-11 | Bristol-Myers Squibb Company | Cxcl11 and smica as predictive biomarkers for efficacy of anti-ctla4 immunotherapy |
CN107645957A (en) * | 2015-02-09 | 2018-01-30 | 辛塔制药公司 | The HSP90 inhibitor for the treatment of cancer and the combination treatment of the inhibitor of PD 1 |
JP2018504446A (en) * | 2015-02-09 | 2018-02-15 | シンタ ファーマシューティカルズ コーポレーション | Combination therapy of HSP90 inhibitor and PD-1 inhibitor for treating cancer |
US11497733B2 (en) | 2015-02-09 | 2022-11-15 | Synta Pharmaceuticals Corp. | Combination therapy of HSP90 inhibitors and PD-1 inhibitors for treating cancer |
WO2016142532A1 (en) | 2015-03-11 | 2016-09-15 | Cellectis | Methods for engineering allogeneic t cell to increase their persistence and/or engraftment into patients |
EP3268026A4 (en) * | 2015-03-12 | 2018-09-19 | Health Research, Inc. | Combination of -adrenergic receptor antagonists and check point inhibitors for improved efficacy against cancer |
WO2016145427A1 (en) | 2015-03-12 | 2016-09-15 | Health Research, Inc. | COMBINATION OF β-ADRENERGIC RECEPTOR ANTAGONISTS AND CHECK POINT INHIBITORS FOR IMPROVED EFFICACY AGAINST CANCER |
WO2016149201A2 (en) | 2015-03-13 | 2016-09-22 | Cytomx Therapeutics, Inc. | Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof |
US11174316B2 (en) | 2015-03-13 | 2021-11-16 | Cytomx Therapeutics, Inc. | Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof |
US10336824B2 (en) | 2015-03-13 | 2019-07-02 | Cytomx Therapeutics, Inc. | Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof |
US10669339B2 (en) | 2015-03-13 | 2020-06-02 | Cytomx Therapeutics, Inc. | Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof |
US11773164B2 (en) | 2015-03-23 | 2023-10-03 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-CEACAM6 antibodies and uses thereof |
US11866495B2 (en) | 2015-03-23 | 2024-01-09 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-CEACAM6 antibodies and uses thereof |
WO2016168150A3 (en) * | 2015-04-13 | 2016-11-24 | The Board Of Regents Of The University Of Texas System | Treatment for cancer metastasis |
US11612654B2 (en) | 2015-04-17 | 2023-03-28 | Bristol-Myers Squibb Company | Combination therapy comprising nivolumab and ipilimumab |
US10512689B2 (en) | 2015-04-17 | 2019-12-24 | Bristol-Myers Squibb Company | Compositions comprising a combination of nivolumab and ipilimumab |
CN107743401A (en) * | 2015-04-17 | 2018-02-27 | 百时美施贵宝公司 | The composition of combination comprising the anti-antibody of PD 1 and other antibody |
TWI733664B (en) * | 2015-04-17 | 2021-07-21 | 美商必治妥美雅史谷比公司 | Compositions comprising a combination of an anti-pd-1 antibody and another antibody |
AU2016249395B2 (en) * | 2015-04-17 | 2022-04-07 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-PD-1 antibody and another antibody |
WO2016168716A1 (en) * | 2015-04-17 | 2016-10-20 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-pd-1 antibody and another antibody |
JP2018513159A (en) * | 2015-04-17 | 2018-05-24 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Composition comprising a combination of an anti-PD-1 antibody and another antibody |
EP3738610A1 (en) | 2015-04-17 | 2020-11-18 | Bristol-Myers Squibb Company | Compositions comprising a combination of ipilimumab and nivolumab |
TWI787880B (en) * | 2015-04-17 | 2022-12-21 | 美商必治妥美雅史谷比公司 | Compositions comprising a combination of an anti-pd-1 antibody and another antibody |
EP3288980B1 (en) | 2015-04-28 | 2021-03-10 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
US20220281974A1 (en) * | 2015-04-28 | 2022-09-08 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
JP2021105001A (en) * | 2015-04-28 | 2021-07-26 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Treatment of pd-l1-positive melanoma using anti-pd-1 antibody |
JP2021105000A (en) * | 2015-04-28 | 2021-07-26 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Treatment of pd-l1-negative melanoma using anti-pd-1 antibody and anti-ctla-4 antibody |
WO2016176504A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
US10174113B2 (en) | 2015-04-28 | 2019-01-08 | Bristol-Myers Squibb Company | Treatment of PD-L1-negative melanoma using an anti-PD-1 antibody and an anti-CTLA-4 antibody |
US20160362489A1 (en) * | 2015-04-28 | 2016-12-15 | Bristol-Myers Squibb Company | Treatment of PD-L1-Positive Melanoma Using an Anti-PD-1 Antibody |
JP2018515474A (en) * | 2015-04-28 | 2018-06-14 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Treatment of PD-L1 positive melanoma using anti-PD-1 antibody |
JP2018514550A (en) * | 2015-04-28 | 2018-06-07 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Treatment of PD-L1 negative melanoma using anti-PD-1 antibody and anti-CTLA-4 antibody |
WO2016176503A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
EP3988571A1 (en) | 2015-04-28 | 2022-04-27 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
WO2016191751A1 (en) | 2015-05-28 | 2016-12-01 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
US10479833B2 (en) | 2015-05-29 | 2019-11-19 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US11267889B2 (en) | 2015-05-29 | 2022-03-08 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US10144779B2 (en) | 2015-05-29 | 2018-12-04 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US11535671B2 (en) | 2015-05-29 | 2022-12-27 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
EP3303632B1 (en) | 2015-05-29 | 2020-03-04 | H. Hoffnabb-La Roche Ag | Therapeutic and diagnostic methods for cancer |
WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
US11078278B2 (en) | 2015-05-29 | 2021-08-03 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
WO2016196228A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Antibodies against ox40 and uses thereof |
WO2016196935A1 (en) * | 2015-06-03 | 2016-12-08 | Boston Biomedical, Inc. | Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer |
US11072653B2 (en) | 2015-06-08 | 2021-07-27 | Macrogenics, Inc. | LAG-3-binding molecules and methods of use thereof |
US11858991B2 (en) | 2015-06-08 | 2024-01-02 | Macrogenics, Inc. | LAG-3-binding molecules and methods of use thereof |
CN106243225A (en) * | 2015-06-11 | 2016-12-21 | 智翔(上海)医药科技有限公司 | Novel anti-PD-L1 antibody |
WO2016201425A1 (en) | 2015-06-12 | 2016-12-15 | Bristol-Myers Squibb Company | Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways |
JP7393384B2 (en) | 2015-06-24 | 2023-12-06 | イモデュロン セラピューティクス リミテッド | Checkpoint inhibitors and whole cell mycobacteria for use in cancer therapy |
CN114344462A (en) * | 2015-06-24 | 2022-04-15 | 英摩杜伦治疗学公司 | Checkpoint inhibitors and whole cell mycobacteria for cancer therapy |
JP2018518539A (en) * | 2015-06-24 | 2018-07-12 | イモデュロン セラピューティクス リミテッド | Checkpoint inhibitors and whole cell mycobacteria for use in cancer treatment |
JP2021120418A (en) * | 2015-06-24 | 2021-08-19 | イモデュロン セラピューティクス リミテッド | Checkpoint inhibitor and whole cell mycobacterium for use in cancer therapy |
WO2016210241A1 (en) | 2015-06-26 | 2016-12-29 | Beth Israel Deaconess Medical Center, Inc. | Cancer therapy targeting tetraspanin 33 (tspan33) in myeloid derived suppressor cells |
JP2022058714A (en) * | 2015-06-29 | 2022-04-12 | バイオメッド バレー ディスカバリーズ,インコーポレイティド | Lpt-723 and immune checkpoint inhibitor combinations and methods of treatment |
JP2018519324A (en) * | 2015-06-29 | 2018-07-19 | バイオメッド バレー ディスカバリーズ,インコーポレイティド | Combinations of LPT-723 and immune checkpoint inhibitors and methods of treatment |
JP7054547B2 (en) | 2015-06-29 | 2022-04-14 | バイオメッド バレー ディスカバリーズ,インコーポレイティド | Methods of Combination and Treatment of LPT-723 with Immune Checkpoint Inhibitors |
JP2021004245A (en) * | 2015-06-29 | 2021-01-14 | バイオメッド バレー ディスカバリーズ,インコーポレイティド | Lpt-723 and immune checkpoint inhibitor combinations and methods of treatment |
WO2017004016A1 (en) | 2015-06-29 | 2017-01-05 | The Rockefeller University | Antibodies to cd40 with enhanced agonist activity |
JP2018519331A (en) * | 2015-06-30 | 2018-07-19 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Topical and injectable compositions comprising resiquimod for the treatment of skin conditions, primary and metastatic neoplasms, and methods of use thereof |
EP3779998A1 (en) * | 2015-07-13 | 2021-02-17 | Biodesix, Inc. | Predictive test for melanoma patient benefit from pd-1 antibody drug and classifier development methods |
EP3858859A1 (en) | 2015-07-14 | 2021-08-04 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor; antibody that binds to programmed death-1 receptor (pd-1) or programmed death ligand 1 (pd-l1) |
US10544224B2 (en) | 2015-07-14 | 2020-01-28 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
WO2017011666A1 (en) | 2015-07-14 | 2017-01-19 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
US11623959B2 (en) | 2015-07-30 | 2023-04-11 | Macrogenics, Inc. | PD-1-binding molecules and methods of use thereof |
US10577422B2 (en) | 2015-07-30 | 2020-03-03 | Macrogenics, Inc. | PD-1-binding molecules and methods of use thereof |
US11008391B2 (en) | 2015-08-11 | 2021-05-18 | WuXi Biologics Ireland Limited | Anti-PD-1 antibodies |
US11643465B2 (en) | 2015-08-11 | 2023-05-09 | WuXi Biologics Ireland Limited | Anti-PD-1 antibodies |
US10894044B2 (en) | 2015-09-16 | 2021-01-19 | Board Of Regents, The University Of Texas System | Combination of topoisomerase-I inhibitors with immunotherapy in the treatment of cancer |
WO2017049199A1 (en) * | 2015-09-16 | 2017-03-23 | Board Of Regents, University Of Texas System | Combination of topoisomerase-i inhibitors with immunotherapy in the treatment of cancer |
WO2017079117A1 (en) | 2015-11-02 | 2017-05-11 | Five Prime Therapeutics, Inc. | Cd80 extracellular domain polypeptides and their use in cancer treatment |
WO2017084495A1 (en) * | 2015-11-17 | 2017-05-26 | 江苏恒瑞医药股份有限公司 | Pd-l1 antibody, antigen fragment binding thereof and pharmaceutical use thereof |
US10815304B2 (en) | 2015-11-17 | 2020-10-27 | Suzhou Suncadia Biopharmaceuticals Co., Ltd. | PD-L1 antibody, antigen-binding fragment thereof and medical application thereof |
US11780923B2 (en) | 2015-11-17 | 2023-10-10 | Suzhou Suncadia Biopharmaceuticals Co., Ltd. | PD-L1 antibody, antigen-binding fragment thereof and medical application thereof |
US11072657B2 (en) | 2015-11-18 | 2021-07-27 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-PD-1 antibody and an anti-CTLA-4 antibody |
WO2017087870A1 (en) | 2015-11-18 | 2017-05-26 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
WO2017087678A2 (en) | 2015-11-19 | 2017-05-26 | Bristol-Myers Squibb Company | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
US11899016B2 (en) | 2015-11-22 | 2024-02-13 | Ventana Medical Systems, Inc. | Methods of identifying immune cells in PD-L1 positive tumor tissue |
WO2017085307A1 (en) * | 2015-11-22 | 2017-05-26 | Ventana Medical Systems, Inc. | Methods of identifying immune cells in pd-l1 positive tumor tissue |
WO2017091577A1 (en) | 2015-11-23 | 2017-06-01 | Five Prime Therapeutics, Inc. | Fgfr2 inhibitors alone or in combination with immune stimulating agents in cancer treatment |
WO2017091580A1 (en) | 2015-11-23 | 2017-06-01 | Five Prime Therapeutics, Inc. | Predicting response to cancer treatment with fgfr2 inhibitors |
US11840571B2 (en) | 2015-12-14 | 2023-12-12 | Macrogenics, Inc. | Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4 |
US10954301B2 (en) | 2015-12-14 | 2021-03-23 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof |
WO2017106061A1 (en) * | 2015-12-14 | 2017-06-22 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof |
US10668152B2 (en) | 2015-12-17 | 2020-06-02 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
US11965031B2 (en) | 2015-12-17 | 2024-04-23 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
US10392442B2 (en) | 2015-12-17 | 2019-08-27 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
US11137404B2 (en) | 2015-12-18 | 2021-10-05 | Institut Gustave Roussy | Method for assessing the response to PD-1/PDL-1 targeting drugs |
US12054557B2 (en) | 2015-12-22 | 2024-08-06 | Regeneron Pharmaceuticals, Inc. | Combination of anti-PD-1 antibodies and bispecific anti-CD20/anti-CD3 antibodies to treat cancer |
EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
US11136413B2 (en) | 2016-03-04 | 2021-10-05 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | PDL-1 antibody, pharmaceutical composition thereof, and uses thereof |
US10465014B2 (en) | 2016-03-04 | 2019-11-05 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | PDL-1 antibody, pharmaceutical composition thereof, and uses thereof |
WO2017152085A1 (en) | 2016-03-04 | 2017-09-08 | Bristol-Myers Squibb Company | Combination therapy with anti-cd73 antibodies |
US11753473B2 (en) | 2016-03-23 | 2023-09-12 | Suzhou Transcenta Therapeutics Co., Ltd. | Anti-PD-L1 antibodies |
CN111363041B (en) * | 2016-03-23 | 2022-02-22 | 苏州创胜医药集团有限公司 | Novel anti-PD-L1 antibodies |
CN111363041A (en) * | 2016-03-23 | 2020-07-03 | 迈博斯生物医药(苏州)有限公司 | Novel anti-PD-L1 antibodies |
US11209441B2 (en) | 2016-04-05 | 2021-12-28 | Bristol-Myers Squibb Company | Cytokine profiling analysis |
WO2017176925A1 (en) | 2016-04-05 | 2017-10-12 | Bristol-Myers Squibb Company | Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment |
US20170290808A1 (en) * | 2016-04-07 | 2017-10-12 | Chemocentryx, Inc. | Reducing tumor burden by administering ccr1 antagonists in combination with pd-1 inhibitors or pd-l1 inhibitors |
US10568870B2 (en) * | 2016-04-07 | 2020-02-25 | Chemocentryx, Inc. | Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors |
WO2017176565A1 (en) | 2016-04-07 | 2017-10-12 | Eli Lilly And Company | Combinations of an anti-b7-h1 antibody and a cxcr4 peptide antagonist for treating a solid tumor |
US11744822B2 (en) | 2016-04-07 | 2023-09-05 | Chemocentryx, Inc. | Reducing tumor burden by administering CCR1 antagonists in combination with PD-1 inhibitors or PD-L1 inhibitors |
WO2017181034A1 (en) | 2016-04-14 | 2017-10-19 | Bristol-Myers Squibb Company | Combination therapy using an anti-fucosyl-gm1 antibody and an anti-cd137 antibody |
WO2017184619A2 (en) | 2016-04-18 | 2017-10-26 | Celldex Therapeutics, Inc. | Agonistic antibodies that bind human cd40 and uses thereof |
US11505600B2 (en) | 2016-05-13 | 2022-11-22 | Regeneron Pharmaceuticals, Inc. | Methods of treating skin cancer by administering a PD-1 inhibitor |
US10457725B2 (en) | 2016-05-13 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods of treating skin cancer by administering a PD-1 inhibitor |
WO2017201325A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
EP4186518A1 (en) | 2016-05-18 | 2023-05-31 | ModernaTX, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
EP4137509A1 (en) | 2016-05-18 | 2023-02-22 | ModernaTX, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
WO2017201502A1 (en) | 2016-05-20 | 2017-11-23 | Biohaven Pharmaceutical Holding Company Ltd. | Use of glutamate modulating agents with immunotherapies to treat cancer |
WO2017205801A1 (en) * | 2016-05-27 | 2017-11-30 | Takeda Pharmaceutical Company Limited | Combination of immunotherapy agents and spleen tyrosine kinase inhibitors |
WO2017210335A1 (en) | 2016-06-01 | 2017-12-07 | Bristol-Myers Squibb Company | Imaging methods using 18f-radiolabeled biologics |
US11511000B2 (en) | 2016-06-01 | 2022-11-29 | Bristol-Myers Squibb Company | Imaging methods using 18F-radiolabeled biologics |
US11806409B2 (en) | 2016-06-01 | 2023-11-07 | Bristol-Myers Squibb Company | Imaging methods using 18F-radiolabeled biologics |
US10994033B2 (en) | 2016-06-01 | 2021-05-04 | Bristol-Myers Squibb Company | Imaging methods using 18F-radiolabeled biologics |
US11344639B2 (en) | 2016-06-01 | 2022-05-31 | Bristol-Myers Squibb Company | PET imaging with PD-L1 binding polypeptides |
WO2017210453A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
EP4248990A2 (en) | 2016-06-02 | 2023-09-27 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
EP4248989A2 (en) | 2016-06-02 | 2023-09-27 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment |
US11083790B2 (en) | 2016-06-02 | 2021-08-10 | Bristol-Myers Squibb Company | Treatment of Hodgkin lymphoma using an anti-PD-1 antibody |
EP4248990A3 (en) * | 2016-06-02 | 2024-01-03 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
WO2017210473A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment |
US11299543B2 (en) | 2016-06-02 | 2022-04-12 | Bristol-Myers Squibb Company | Use of an anti-PD-1 antibody in combination with an anti-CD30 antibody in cancer treatment |
WO2017210624A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treating a tumor |
WO2017210637A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
EP3988570A1 (en) | 2016-06-03 | 2022-04-27 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
US11332529B2 (en) | 2016-06-03 | 2022-05-17 | Bristol-Myers Squibb Company | Methods of treating colorectal cancer |
WO2017210631A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
US11767361B2 (en) | 2016-06-03 | 2023-09-26 | Bristol-Myers Squibb Company | Method of treating lung cancer |
EP4386005A2 (en) | 2016-06-03 | 2024-06-19 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
WO2017214182A1 (en) * | 2016-06-07 | 2017-12-14 | The United States Of America. As Represented By The Secretary, Department Of Health & Human Services | Fully human antibody targeting pdi for cancer immunotherapy |
US10604576B2 (en) | 2016-06-20 | 2020-03-31 | Kymab Limited | Antibodies and immunocytokines |
WO2017220990A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 antibodies |
WO2017220988A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Multispecific antibodies for immuno-oncology |
WO2017220989A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 and il-2 cytokines |
US11965026B2 (en) | 2016-06-20 | 2024-04-23 | Kymab Limited | Anti-PD-L1 and IL-2 cytokines |
US9957323B2 (en) | 2016-06-20 | 2018-05-01 | Kymab Limited | Anti-ICOS antibodies |
US10864203B2 (en) | 2016-07-05 | 2020-12-15 | Beigene, Ltd. | Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer |
US11534431B2 (en) | 2016-07-05 | 2022-12-27 | Beigene Switzerland Gmbh | Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer |
US10533052B2 (en) | 2016-07-14 | 2020-01-14 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
US10077306B2 (en) | 2016-07-14 | 2018-09-18 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
US11591392B2 (en) | 2016-07-14 | 2023-02-28 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
WO2018013818A2 (en) | 2016-07-14 | 2018-01-18 | Bristol-Myers Squibb Company | Antibodies against tim3 and uses thereof |
US11858996B2 (en) | 2016-08-09 | 2024-01-02 | Kymab Limited | Anti-ICOS antibodies |
WO2018029474A2 (en) | 2016-08-09 | 2018-02-15 | Kymab Limited | Anti-icos antibodies |
US11701357B2 (en) | 2016-08-19 | 2023-07-18 | Beigene Switzerland Gmbh | Treatment of B cell cancers using a combination comprising Btk inhibitors |
US11479608B2 (en) | 2016-08-23 | 2022-10-25 | Akeso Biopharma, Inc. | Anti-CTLA4 antibodies |
US11548946B2 (en) | 2016-09-01 | 2023-01-10 | Mayo Foundation For Medical Education And Research | Carrier-PD-L1 binding agent compositions for treating cancers |
WO2018049263A1 (en) | 2016-09-09 | 2018-03-15 | Tg Therapeutics, Inc. | Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers |
WO2018048975A1 (en) | 2016-09-09 | 2018-03-15 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment |
US10662416B2 (en) | 2016-10-14 | 2020-05-26 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome |
US11274285B2 (en) | 2016-10-14 | 2022-03-15 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the Hepatitis B virus genome |
CN107955072B (en) * | 2016-10-15 | 2022-10-18 | 信达生物制药(苏州)有限公司 | PD-1 antibodies |
WO2018068336A1 (en) * | 2016-10-15 | 2018-04-19 | Innovent Biologics (Suzhou) Co., Ltd | Pd-1 antibodies |
US10597454B2 (en) | 2016-10-15 | 2020-03-24 | Innovent Biologics (Suzhou) Co., Ltd | PD-1 antibodies |
CN107955072A (en) * | 2016-10-15 | 2018-04-24 | 信达生物制药(苏州)有限公司 | Pd-1 antibody |
WO2018081621A1 (en) | 2016-10-28 | 2018-05-03 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
US11459568B2 (en) | 2016-10-31 | 2022-10-04 | University Of Massachusetts | Targeting microRNA-101-3p in cancer therapy |
WO2018081817A2 (en) | 2016-10-31 | 2018-05-03 | University Of Massachusetts | Targeting microrna-101-3p in cancer therapy |
US11124577B2 (en) | 2016-11-02 | 2021-09-21 | Engmab Sàrl | Bispecific antibody against BCMA and CD3 and an immunological drug for combined use in treating multiple myeloma |
WO2018083204A1 (en) | 2016-11-02 | 2018-05-11 | Engmab Sàrl | Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma |
EP4295918A2 (en) | 2016-11-02 | 2023-12-27 | Bristol-Myers Squibb Company | Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma |
WO2018085555A1 (en) | 2016-11-03 | 2018-05-11 | Bristol-Myers Squibb Company | Activatable anti-ctla-4 antibodies and uses thereof |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
US11117968B2 (en) | 2016-11-03 | 2021-09-14 | Bristol-Myers Squibb Company | Activatable anti-CTLA-4 antibodies and uses thereof |
US11672771B2 (en) * | 2016-11-04 | 2023-06-13 | Aximmune, Inc. | Beta-alethine, immune modulators, and uses thereof |
US11090367B2 (en) | 2016-11-09 | 2021-08-17 | The Brigham And Women's Hospital, Inc. | Restoration of tumor suppression using mRNA-based delivery system |
US11471515B2 (en) | 2016-11-09 | 2022-10-18 | The Brigham And Women's Hospital, Inc. | Restoration of tumor suppression using MRNA-based delivery system |
US11299469B2 (en) | 2016-11-29 | 2022-04-12 | Sumitomo Dainippon Pharma Oncology, Inc. | Naphthofuran derivatives, preparation, and methods of use thereof |
WO2018101448A1 (en) | 2016-11-30 | 2018-06-07 | Kyowa Hakko Kirin Co., Ltd. | Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody |
US11638755B2 (en) | 2016-12-07 | 2023-05-02 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US10912831B1 (en) | 2016-12-07 | 2021-02-09 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US11013802B2 (en) | 2016-12-07 | 2021-05-25 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
US11555038B2 (en) | 2017-01-25 | 2023-01-17 | Beigene, Ltd. | Crystalline forms of (S)-7-(1-(but-2-ynoyl)piperidin-4-yl)-2-(4-phenoxyphenyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide, preparation, and uses thereof |
US11325976B2 (en) | 2017-02-16 | 2022-05-10 | Ying Zhang | Anti-programmed death-ligand 1 (PD-L1) antibodies and therapeutic uses thereof |
WO2018150224A1 (en) | 2017-02-16 | 2018-08-23 | Shenzhen Runshin Bioscience | Anti-programmed death-ligand 1 (pd-l1) antibodies and therapeutic uses thereof |
WO2018152396A1 (en) | 2017-02-17 | 2018-08-23 | Innate Tumor Immunity, Inc. | Substituted imidazo-quinolines as nlrp3 modulators |
EP3753938A1 (en) | 2017-02-17 | 2020-12-23 | Innate Tumor Immunity, Inc. | Substituted imidazo-quinolines as nlrp3 modulators |
EP3366703A1 (en) | 2017-02-28 | 2018-08-29 | Ralf Kleef | Immune checkpoint therapy with hyperthermia |
WO2018158314A1 (en) | 2017-02-28 | 2018-09-07 | Ralf Kleef | Immune checkpoint therapy |
US11161905B2 (en) | 2017-03-04 | 2021-11-02 | Xiangtan Tenghua Bioscience | Recombinant antibodies to programmed death 1 (PD-1) and uses thereof |
WO2018162749A1 (en) | 2017-03-09 | 2018-09-13 | Genmab A/S | Antibodies against pd-l1 |
WO2018183928A1 (en) | 2017-03-31 | 2018-10-04 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2018183608A1 (en) | 2017-03-31 | 2018-10-04 | Five Prime Therapeutics, Inc. | Combination therapy for cancer using anti-gitr antibodies |
US11603407B2 (en) | 2017-04-06 | 2023-03-14 | Regeneron Pharmaceuticals, Inc. | Stable antibody formulation |
WO2018187613A2 (en) | 2017-04-07 | 2018-10-11 | Bristol-Myers Squibb Company | Anti-icos agonist antibodies and uses thereof |
WO2018200430A1 (en) | 2017-04-26 | 2018-11-01 | Bristol-Myers Squibb Company | Methods of antibody production that minimize disulfide bond reduction |
US11607453B2 (en) | 2017-05-12 | 2023-03-21 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
WO2018213297A1 (en) | 2017-05-16 | 2018-11-22 | Bristol-Myers Squibb Company | Treatment of cancer with anti-gitr agonist antibodies |
US10646464B2 (en) | 2017-05-17 | 2020-05-12 | Boston Biomedical, Inc. | Methods for treating cancer |
WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
EP4098662A1 (en) | 2017-05-25 | 2022-12-07 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
WO2018218056A1 (en) | 2017-05-25 | 2018-11-29 | Birstol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
US11723975B2 (en) | 2017-05-30 | 2023-08-15 | Bristol-Myers Squibb Company | Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody |
WO2018222718A1 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Treatment of lag-3 positive tumors |
EP4245375A2 (en) | 2017-05-30 | 2023-09-20 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
WO2018222711A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
US12049503B2 (en) | 2017-05-30 | 2024-07-30 | Bristol-Myers Squibb Company | Treatment of LAG-3 positive tumors |
WO2018222722A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody |
US11807686B2 (en) | 2017-05-30 | 2023-11-07 | Bristol-Myers Squibb Company | Treatment of LAG-3 positive tumors |
EP4306542A2 (en) | 2017-05-30 | 2024-01-17 | Bristol-Myers Squibb Company | Treatment of lag-3 positive tumors |
US11566073B2 (en) | 2017-06-01 | 2023-01-31 | Bristol-Myers Squibb Company | Methods of treating a tumor using an anti-PD-1 antibody |
WO2018223040A1 (en) | 2017-06-01 | 2018-12-06 | Bristol-Myers Squibb Company | Methods of treating a tumor using an anti-pd-1 antibody |
US11168144B2 (en) | 2017-06-01 | 2021-11-09 | Cytomx Therapeutics, Inc. | Activatable anti-PDL1 antibodies, and methods of use thereof |
US11440960B2 (en) | 2017-06-20 | 2022-09-13 | Kymab Limited | TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo |
US11597768B2 (en) | 2017-06-26 | 2023-03-07 | Beigene, Ltd. | Immunotherapy for hepatocellular carcinoma |
US11560425B2 (en) | 2017-06-27 | 2023-01-24 | Neuracle Science Co., Ltd. | Use of anti-FAM19A5 antibodies for treating cancers |
WO2019014402A1 (en) | 2017-07-14 | 2019-01-17 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2019023624A1 (en) | 2017-07-28 | 2019-01-31 | Bristol-Myers Squibb Company | Predictive peripheral blood biomarker for checkpoint inhibitors |
WO2019025545A1 (en) | 2017-08-04 | 2019-02-07 | Genmab A/S | Binding agents binding to pd-l1 and cd137 and use thereof |
US11787859B2 (en) | 2017-08-28 | 2023-10-17 | Bristol-Myers Squibb Company | TIM-3 antagonists for the treatment and diagnosis of cancers |
WO2019046321A1 (en) | 2017-08-28 | 2019-03-07 | Bristol-Myers Squibb Company | Tim-3 antagonists for the treatment and diagnosis of cancers |
US11421034B2 (en) | 2017-09-13 | 2022-08-23 | Five Prime Therapeutics, Inc. | Combination anti-CSF1R and anti-PD-1 antibody combination therapy for pancreatic cancer |
US11230601B2 (en) | 2017-10-10 | 2022-01-25 | Tilos Therapeutics, Inc. | Methods of using anti-lap antibodies |
WO2019075090A1 (en) | 2017-10-10 | 2019-04-18 | Tilos Therapeutics, Inc. | Anti-lap antibodies and uses thereof |
US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
WO2019075468A1 (en) | 2017-10-15 | 2019-04-18 | Bristol-Myers Squibb Company | Methods of treating tumor |
US11919957B2 (en) | 2017-10-15 | 2024-03-05 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2019089753A2 (en) | 2017-10-31 | 2019-05-09 | Compass Therapeutics Llc | Cd137 antibodies and pd-1 antagonists and uses thereof |
WO2019089921A1 (en) | 2017-11-01 | 2019-05-09 | Bristol-Myers Squibb Company | Immunostimulatory agonistic antibodies for use in treating cancer |
DE102017125780B3 (en) * | 2017-11-05 | 2018-12-13 | Dimo Dietrich | Method for determining the response of a malignant disease to immunotherapy |
WO2019090330A1 (en) | 2017-11-06 | 2019-05-09 | Bristol-Myers Squibb Company | Methods of treating a tumor |
US11786529B2 (en) | 2017-11-29 | 2023-10-17 | Beigene Switzerland Gmbh | Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors |
CN107973854A (en) * | 2017-12-11 | 2018-05-01 | 苏州银河生物医药有限公司 | PDL1 monoclonal antibodies and its application |
CN107973854B (en) * | 2017-12-11 | 2021-05-04 | 苏州银河生物医药有限公司 | PDL1 monoclonal antibody and application thereof |
US11793867B2 (en) | 2017-12-18 | 2023-10-24 | Biontech Us Inc. | Neoantigens and uses thereof |
US11629189B2 (en) | 2017-12-19 | 2023-04-18 | Kymab Limited | Bispecific antibody for ICOS and PD-L1 |
WO2019122884A1 (en) | 2017-12-19 | 2019-06-27 | Kymab Limited | Antibodies to icos |
US11203610B2 (en) | 2017-12-20 | 2021-12-21 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
US10966999B2 (en) | 2017-12-20 | 2021-04-06 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
US11306149B2 (en) | 2017-12-27 | 2022-04-19 | Bristol-Myers Squibb Company | Anti-CD40 antibodies and uses thereof |
US11952427B2 (en) | 2017-12-27 | 2024-04-09 | Bristol-Myers Squibb Company | Anti-CD40 antibodies and uses thereof |
WO2019133747A1 (en) | 2017-12-27 | 2019-07-04 | Bristol-Myers Squibb Company | Anti-cd40 antibodies and uses thereof |
WO2019137397A1 (en) | 2018-01-10 | 2019-07-18 | 江苏恒瑞医药股份有限公司 | Pd-l1 antibody, antigen-binding fragment thereof, and pharmaceutical use thereof |
US11359021B2 (en) | 2018-01-10 | 2022-06-14 | Jiangsu Hengrui Medicine Co., Ltd. | PD-L1 antibody, antigen-binding fragment thereof, and pharmaceutical use thereof |
WO2019140229A1 (en) | 2018-01-12 | 2019-07-18 | Bristol-Myers Squibb Company | Antibodies against tim3 and uses thereof |
WO2019140150A1 (en) | 2018-01-12 | 2019-07-18 | Bristol-Myers Squibb Company | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer |
WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
WO2019144126A1 (en) | 2018-01-22 | 2019-07-25 | Pascal Biosciences Inc. | Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells |
WO2019144098A1 (en) | 2018-01-22 | 2019-07-25 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
US11814623B2 (en) | 2018-01-30 | 2023-11-14 | University Of Massachusetts | Methods of treating a wound using epigenetic regulation |
US12122834B2 (en) | 2018-02-01 | 2024-10-22 | Merck Sharp & Dohme Llc | Anti-PD-1 antibodies |
EP4317972A2 (en) | 2018-02-06 | 2024-02-07 | The General Hospital Corporation | Repeat rna as biomarkers of tumor immune response |
WO2019157124A1 (en) | 2018-02-08 | 2019-08-15 | Bristol-Myers Squibb Company | Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors |
WO2019178269A2 (en) | 2018-03-14 | 2019-09-19 | Surface Oncology, Inc. | Antibodies that bind cd39 and uses thereof |
US10793637B2 (en) | 2018-03-14 | 2020-10-06 | Surface Oncology, Inc. | Antibodies that bind CD39 and uses thereof |
US10738128B2 (en) | 2018-03-14 | 2020-08-11 | Surface Oncology, Inc. | Antibodies that bind CD39 and uses thereof |
EP4043496A1 (en) | 2018-03-14 | 2022-08-17 | Surface Oncology, Inc. | Antibodies that bind cd39 and uses thereof |
WO2019183040A1 (en) | 2018-03-21 | 2019-09-26 | Five Prime Therapeutics, Inc. | ANTIBODIES BINDING TO VISTA AT ACIDIC pH |
US11332524B2 (en) | 2018-03-22 | 2022-05-17 | Surface Oncology, Inc. | Anti-IL-27 antibodies and uses thereof |
US11242393B2 (en) | 2018-03-23 | 2022-02-08 | Bristol-Myers Squibb Company | Antibodies against MICA and/or MICB and uses thereof |
WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2019190327A2 (en) | 2018-03-30 | 2019-10-03 | Merus N.V. | Multivalent antibody |
US11952424B2 (en) | 2018-03-30 | 2024-04-09 | Merus N.V. | Multivalent antibody |
WO2019195452A1 (en) | 2018-04-04 | 2019-10-10 | Bristol-Myers Squibb Company | Anti-cd27 antibodies and uses thereof |
US12110337B2 (en) | 2018-04-04 | 2024-10-08 | Bristol-Myers Squibb Company | Anti-CD27 antibodies and uses thereof |
US11292812B2 (en) | 2018-04-06 | 2022-04-05 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′-cyclic dinucleotides |
US11149052B2 (en) | 2018-04-06 | 2021-10-19 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′-cyclic dinucleotides |
WO2019199667A2 (en) | 2018-04-09 | 2019-10-17 | Keaney Gregg F | Certain pladienolide compounds and methods of use |
US11142750B2 (en) | 2018-04-12 | 2021-10-12 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
WO2019200256A1 (en) | 2018-04-12 | 2019-10-17 | Bristol-Myers Squibb Company | Anticancer combination therapy with cd73 antagonist antibody and pd-1/pd-l1 axis antagonist antibody |
WO2019200100A1 (en) | 2018-04-12 | 2019-10-17 | Andrew Cook | Pladienolide derivatives as spliceosome targeting agents for treating cancer |
US11788077B2 (en) | 2018-04-12 | 2023-10-17 | Precision Biosciences, Inc. | Polynucleotides encoding optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
WO2019204743A1 (en) | 2018-04-19 | 2019-10-24 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
EP4353235A2 (en) | 2018-04-25 | 2024-04-17 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2019209896A1 (en) | 2018-04-25 | 2019-10-31 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2019217455A1 (en) | 2018-05-07 | 2019-11-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
WO2019217457A1 (en) | 2018-05-07 | 2019-11-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
US12103974B2 (en) | 2018-05-23 | 2024-10-01 | Beigene, Ltd. | Anti-OX40 antibodies and methods of use |
WO2019232433A2 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Methods of using splicing modulators |
WO2019232449A1 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Splicing modulator antibody-drug conjugates and methods of use |
WO2019234576A1 (en) | 2018-06-03 | 2019-12-12 | Lamkap Bio Beta Ltd. | Bispecific antibodies against ceacam5 and cd47 |
US11555071B2 (en) | 2018-06-03 | 2023-01-17 | Lamkap Bio Beta Ltd. | Bispecific antibodies against CEACAM5 and CD47 |
WO2020014132A2 (en) | 2018-07-09 | 2020-01-16 | Five Prime Therapeutics, Inc. | Antibodies binding to ilt4 |
WO2020014327A2 (en) | 2018-07-11 | 2020-01-16 | Five Prime Therapeutics, Inc. | Antibodies binding to vista at acidic ph |
WO2020014583A1 (en) | 2018-07-13 | 2020-01-16 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor |
US11279758B2 (en) | 2018-07-20 | 2022-03-22 | Surface Oncology, Inc. | Anti-CD112R compositions and methods |
US11214619B2 (en) | 2018-07-20 | 2022-01-04 | Surface Oncology, Inc. | Anti-CD112R compositions and methods |
WO2020023707A1 (en) | 2018-07-26 | 2020-01-30 | Bristol-Myers Squibb Company | Lag-3 combination therapy for the treatment of cancer |
WO2020037091A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Imidazo[4,5-c]quinoline derived nlrp3-modulators |
WO2020037094A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Substitued 4-amino-1h-imidazo[4,5-c]quinoline compounds and improved methods for their preparation |
WO2020037092A1 (en) | 2018-08-16 | 2020-02-20 | Innate Tumor Immunity, Inc. | Imidazo[4,5-c]quinoline derived nlrp3-modulators |
US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
WO2020076799A1 (en) | 2018-10-09 | 2020-04-16 | Bristol-Myers Squibb Company | Anti-mertk antibodies for treating cancer |
WO2020076969A2 (en) | 2018-10-10 | 2020-04-16 | Tilos Therapeutics, Inc. | Anti-lap antibody variants and uses thereof |
US11130802B2 (en) | 2018-10-10 | 2021-09-28 | Tilos Therapeutics, Inc. | Anti-lap antibody variants |
WO2020081928A1 (en) | 2018-10-19 | 2020-04-23 | Bristol-Myers Squibb Company | Combination therapy for melanoma |
EP4445958A2 (en) | 2018-10-19 | 2024-10-16 | Bristol-Myers Squibb Company | Combination therapy for melanoma |
WO2020086724A1 (en) | 2018-10-23 | 2020-04-30 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2020092210A1 (en) | 2018-10-30 | 2020-05-07 | Genmab A/S | Methods of treating cancer with a combination of an anti-vegf antibody and an anti-tissue factor antibody-drug conjugate |
WO2020094744A1 (en) | 2018-11-06 | 2020-05-14 | Genmab A/S | Antibody formulation |
WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
US20210322475A1 (en) * | 2018-11-08 | 2021-10-21 | IN8bio, Inc. | Compositions and methods for treating cancer |
WO2020099230A1 (en) | 2018-11-14 | 2020-05-22 | Bayer Aktiengesellschaft | Pharmaceutical combination of anti-ceacam6 and either anti-pd-1 or anti-pd-l1 antibodies for the treatment of cancer |
WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
WO2020102501A1 (en) | 2018-11-16 | 2020-05-22 | Bristol-Myers Squibb Company | Anti-nkg2a antibodies and uses thereof |
WO2020112781A1 (en) | 2018-11-28 | 2020-06-04 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
WO2020117849A1 (en) | 2018-12-04 | 2020-06-11 | Bristol-Myers Squibb Company | Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring |
WO2020123836A2 (en) | 2018-12-13 | 2020-06-18 | Eisai R&D Management Co., Ltd. | Herboxidiene splicing modulator antibody-drug conjugates and methods of use |
KR20210110838A (en) | 2018-12-28 | 2021-09-09 | 트랜스진 에스.에이. | M2 defective poxvirus |
WO2020136235A1 (en) | 2018-12-28 | 2020-07-02 | Transgene Sa | M2-defective poxvirus |
WO2020150115A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2020150114A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Heterocyclic nlrp3 modulators, for use in the treatment of cancer |
WO2020150113A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer |
WO2020150116A1 (en) | 2019-01-14 | 2020-07-23 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2020156509A1 (en) | 2019-02-03 | 2020-08-06 | 江苏恒瑞医药股份有限公司 | Anti-pd-1 antibody, antigen-binding fragment thereof and pharmaceutical use thereof |
WO2020198676A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2020198672A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2020208612A1 (en) | 2019-04-12 | 2020-10-15 | Vascular Biogenics Ltd. | Methods of anti-tumor therapy |
WO2020243563A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Multi-tumor gene signatures for suitability to immuno-oncology therapy |
WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
WO2020243568A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy |
WO2021025177A1 (en) | 2019-08-06 | 2021-02-11 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer |
WO2021024020A1 (en) | 2019-08-06 | 2021-02-11 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer |
US11851490B2 (en) | 2019-08-15 | 2023-12-26 | Northwestern University | Methods and compositions for treating, inhibiting, and/or preventing heterotopic ossification |
GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
WO2021032861A1 (en) | 2019-08-22 | 2021-02-25 | Amazentis Sa | Combination of an urolithin with an immunotherapy treatment |
US11655303B2 (en) | 2019-09-16 | 2023-05-23 | Surface Oncology, Inc. | Anti-CD39 antibody compositions and methods |
WO2021053587A1 (en) | 2019-09-18 | 2021-03-25 | Klaus Strein | Bispecific antibodies against ceacam5 and cd3 |
WO2021055698A1 (en) | 2019-09-19 | 2021-03-25 | Bristol-Myers Squibb Company | Antibodies binding to vista at acidic ph |
WO2021055994A1 (en) | 2019-09-22 | 2021-03-25 | Bristol-Myers Squibb Company | Quantitative spatial profiling for lag-3 antagonist therapy |
EP3798235A1 (en) | 2019-09-24 | 2021-03-31 | Industrial Technology Research Institute | Anti-tigit antibodies and methods of use |
WO2021062244A1 (en) | 2019-09-25 | 2021-04-01 | Surface Oncology, Inc. | Anti-il-27 antibodies and uses thereof |
WO2021062018A1 (en) | 2019-09-25 | 2021-04-01 | Bristol-Myers Squibb Company | Composite biomarker for cancer therapy |
WO2021081353A1 (en) | 2019-10-23 | 2021-04-29 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
WO2021091815A1 (en) | 2019-11-04 | 2021-05-14 | Seagen Inc. | Anti-cd30 antibody-drug conjugates and their use for the treatment of hiv infection |
WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
WO2021090272A1 (en) | 2019-11-07 | 2021-05-14 | Genmab A/S | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate |
WO2021092380A1 (en) | 2019-11-08 | 2021-05-14 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for melanoma |
WO2021097256A1 (en) | 2019-11-14 | 2021-05-20 | Cohbar, Inc. | Cxcr4 antagonist peptides |
WO2021110647A1 (en) | 2019-12-02 | 2021-06-10 | Lamkap Bio Beta Ag | Bispecific antibodies against ceacam5 and cd47 |
EP3831849A1 (en) | 2019-12-02 | 2021-06-09 | LamKap Bio beta AG | Bispecific antibodies against ceacam5 and cd47 |
WO2021127554A1 (en) | 2019-12-19 | 2021-06-24 | Bristol-Myers Squibb Company | Combinations of dgk inhibitors and checkpoint antagonists |
WO2021142203A1 (en) | 2020-01-10 | 2021-07-15 | Innate Tumor Immunity, Inc. | Nlrp3 modulators |
WO2021154073A1 (en) | 2020-01-29 | 2021-08-05 | Merus N.V. | Means and method for modulating immune cell engaging effects. |
WO2021152548A1 (en) | 2020-01-30 | 2021-08-05 | Benitah Salvador Aznar | Combination therapy for treatment of cancer and cancer metastasis |
WO2021158938A1 (en) | 2020-02-06 | 2021-08-12 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
WO2021174045A1 (en) | 2020-02-28 | 2021-09-02 | Bristol-Myers Squibb Company | Radiolabeled fibronectin based scaffolds and antibodies and theranostic uses thereof |
WO2021178807A1 (en) | 2020-03-06 | 2021-09-10 | Celgene Quanticel Research, Inc. | Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc |
WO2021176424A1 (en) | 2020-03-06 | 2021-09-10 | Ona Therapeutics, S.L. | Anti-cd36 antibodies and their use to treat cancer |
WO2021183428A1 (en) | 2020-03-09 | 2021-09-16 | Bristol-Myers Squibb Company | Antibodies to cd40 with enhanced agonist activity |
WO2021194942A1 (en) | 2020-03-23 | 2021-09-30 | Bristol-Myers Squibb Company | Anti-ccr8 antibodies for treating cancer |
WO2021207449A1 (en) | 2020-04-09 | 2021-10-14 | Merck Sharp & Dohme Corp. | Affinity matured anti-lap antibodies and uses thereof |
WO2021231732A1 (en) | 2020-05-15 | 2021-11-18 | Bristol-Myers Squibb Company | Antibodies to garp |
WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
WO2022008519A1 (en) | 2020-07-07 | 2022-01-13 | BioNTech SE | Therapeutic rna for hpv-positive cancer |
WO2022036079A1 (en) | 2020-08-13 | 2022-02-17 | Bristol-Myers Squibb Company | Methods of redirecting of il-2 to target cells of interest |
WO2022047189A1 (en) | 2020-08-28 | 2022-03-03 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hepatocellular carcinoma |
WO2022047412A1 (en) | 2020-08-31 | 2022-03-03 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
WO2022076318A1 (en) | 2020-10-05 | 2022-04-14 | Bristol-Myers Squibb Company | Methods for concentrating proteins |
WO2022076596A1 (en) | 2020-10-06 | 2022-04-14 | Codiak Biosciences, Inc. | Extracellular vesicle-aso constructs targeting stat6 |
WO2022087402A1 (en) | 2020-10-23 | 2022-04-28 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for lung cancer |
WO2022094567A1 (en) | 2020-10-28 | 2022-05-05 | Ikena Oncology, Inc. | Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine |
WO2022108931A2 (en) | 2020-11-17 | 2022-05-27 | Seagen Inc. | Methods of treating cancer with a combination of tucatinib and an anti-pd-1/anti-pd-l1 antibody |
WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
WO2022130348A1 (en) | 2020-12-18 | 2022-06-23 | Lamkap Bio Beta Ag | Bispecific antibodies against ceacam5 and cd47 |
US11753481B2 (en) | 2020-12-18 | 2023-09-12 | Lamkap Bio Beta Ltd | Bispecific antibodies against CEACAM5 and CD47 |
WO2022135666A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Treatment schedule for cytokine proteins |
WO2022136255A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Treatment schedule for cytokine proteins |
WO2022136257A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
WO2022136266A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
WO2022135667A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
US12123003B2 (en) | 2020-12-23 | 2024-10-22 | Checkmate Pharmaceuticals, Inc. | Synthetic RIG-I-like receptor agonists |
WO2022146947A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
WO2022146948A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Subcutaneous administration of pd1/pd-l1 antibodies |
WO2022148736A1 (en) | 2021-01-05 | 2022-07-14 | Transgene | Vectorization of muc1 t cell engager |
WO2022150557A1 (en) | 2021-01-08 | 2022-07-14 | Bristol-Myers Squibb Company | Combination therapy using an anti-fucosyl-gm1 antibody |
WO2022156727A1 (en) | 2021-01-21 | 2022-07-28 | 浙江养生堂天然药物研究所有限公司 | Composition and method for treating tumors |
WO2022203090A1 (en) | 2021-03-25 | 2022-09-29 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 for treatment of cancer |
WO2022212400A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy |
WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
CN113087801A (en) * | 2021-04-07 | 2021-07-09 | 北京欣颂生物科技有限公司 | Kit for jointly detecting lung cancer by using nucleic acid and antibody |
CN113087801B (en) * | 2021-04-07 | 2022-07-05 | 深圳市核子基因科技有限公司 | Kit for jointly detecting lung cancer by using nucleic acid and antibody |
WO2022236134A1 (en) | 2021-05-07 | 2022-11-10 | Surface Oncology, Inc. | Anti-il-27 antibodies and uses thereof |
WO2022243378A1 (en) | 2021-05-18 | 2022-11-24 | Kymab Limited | Uses of anti-icos antibodies |
WO2022254227A1 (en) | 2021-06-04 | 2022-12-08 | Kymab Limited | Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies |
WO2022263508A1 (en) | 2021-06-15 | 2022-12-22 | Astellas Pharma Europe Bv | Bispecific binding agents binding to cldn18.2 and cd3 |
WO2022262959A1 (en) | 2021-06-15 | 2022-12-22 | Astellas Pharma Europe Bv | Bispecific binding agents binding to cldn18.2 and cd3 |
WO2023285552A1 (en) | 2021-07-13 | 2023-01-19 | BioNTech SE | Multispecific binding agents against cd40 and cd137 in combination therapy for cancer |
WO2023007472A1 (en) | 2021-07-30 | 2023-02-02 | ONA Therapeutics S.L. | Anti-cd36 antibodies and their use to treat cancer |
WO2023031366A1 (en) | 2021-09-02 | 2023-03-09 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-cecam6 antibodies with reduced side-effects |
WO2023051926A1 (en) | 2021-09-30 | 2023-04-06 | BioNTech SE | Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists |
WO2023052531A1 (en) | 2021-09-30 | 2023-04-06 | BioNTech SE | Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists |
WO2023057534A1 (en) | 2021-10-06 | 2023-04-13 | Genmab A/S | Multispecific binding agents against pd-l1 and cd137 in combination |
WO2023061930A1 (en) | 2021-10-11 | 2023-04-20 | BioNTech SE | Therapeutic rna for lung cancer |
WO2023077034A1 (en) | 2021-10-28 | 2023-05-04 | Lyell Immunopharma, Inc. | Methods for culturing immune cells |
WO2023077090A1 (en) | 2021-10-29 | 2023-05-04 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hematological cancer |
WO2023076989A1 (en) | 2021-10-29 | 2023-05-04 | Seagen Inc. | Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-cd30 antibody-drug conjugate |
WO2023083868A1 (en) | 2021-11-09 | 2023-05-19 | BioNTech SE | Tlr7 agonist and combinations for cancer treatment |
WO2023083439A1 (en) | 2021-11-09 | 2023-05-19 | BioNTech SE | Tlr7 agonist and combinations for cancer treatment |
WO2023147371A1 (en) | 2022-01-26 | 2023-08-03 | Bristol-Myers Squibb Company | Combination therapy for hepatocellular carcinoma |
WO2023161453A1 (en) | 2022-02-24 | 2023-08-31 | Amazentis Sa | Uses of urolithins |
WO2023164638A1 (en) | 2022-02-25 | 2023-08-31 | Bristol-Myers Squibb Company | Combination therapy for colorectal carcinoma |
WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
WO2023170606A1 (en) | 2022-03-08 | 2023-09-14 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
WO2023178192A1 (en) | 2022-03-15 | 2023-09-21 | Compugen Ltd. | Il-18bp antagonist antibodies and their use in monotherapy and combination therapy in the treatment of cancer |
WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
WO2023192478A1 (en) | 2022-04-01 | 2023-10-05 | Bristol-Myers Squibb Company | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer |
WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
WO2023196964A1 (en) | 2022-04-08 | 2023-10-12 | Bristol-Myers Squibb Company | Machine learning identification, classification, and quantification of tertiary lymphoid structures |
WO2023218046A1 (en) | 2022-05-12 | 2023-11-16 | Genmab A/S | Binding agents capable of binding to cd27 in combination therapy |
WO2023222854A1 (en) | 2022-05-18 | 2023-11-23 | Kymab Limited | Uses of anti-icos antibodies |
WO2023230473A1 (en) | 2022-05-24 | 2023-11-30 | Bristol-Myers Squibb Company | Antibodies that bind to human ccr8 |
WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
WO2023242351A1 (en) | 2022-06-16 | 2023-12-21 | Lamkap Bio Beta Ag | Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3 |
WO2024023740A1 (en) | 2022-07-27 | 2024-02-01 | Astrazeneca Ab | Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors |
WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
WO2024049949A1 (en) | 2022-09-01 | 2024-03-07 | Genentech, Inc. | Therapeutic and diagnostic methods for bladder cancer |
WO2024069009A1 (en) | 2022-09-30 | 2024-04-04 | Alentis Therapeutics Ag | Treatment of drug-resistant hepatocellular carcinoma |
WO2024116140A1 (en) | 2022-12-01 | 2024-06-06 | Medimmune Limited | Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies |
WO2024115725A1 (en) | 2022-12-01 | 2024-06-06 | BioNTech SE | Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy |
WO2024126457A1 (en) | 2022-12-14 | 2024-06-20 | Astellas Pharma Europe Bv | Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors |
WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
WO2024150177A1 (en) | 2023-01-11 | 2024-07-18 | Advesya | Treatment methods for solid tumors |
WO2024160721A1 (en) | 2023-01-30 | 2024-08-08 | Kymab Limited | Antibodies |
WO2024163477A1 (en) | 2023-01-31 | 2024-08-08 | University Of Rochester | Immune checkpoint blockade therapy for treating staphylococcus aureus infections |
WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
WO2024209072A1 (en) | 2023-04-06 | 2024-10-10 | Genmab A/S | Multispecific binding agents against pd-l1 and cd137 for treating cancer |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240034793A1 (en) | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling | |
EA045764B1 (en) | IMMUNOTHERAPY OF MALIGNANT TUMORS BY DISRUPTING PD-1/PD-L1 SIGNAL TRANSMISSION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13727687 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/013565 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 235591 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2873402 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14400667 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015512717 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 122023005565 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147034644 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013727687 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201492105 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2013263076 Country of ref document: AU Date of ref document: 20130513 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014028826 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014028826 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141114 |