WO2013172460A1 - Manufacturing method for optical film - Google Patents

Manufacturing method for optical film Download PDF

Info

Publication number
WO2013172460A1
WO2013172460A1 PCT/JP2013/063847 JP2013063847W WO2013172460A1 WO 2013172460 A1 WO2013172460 A1 WO 2013172460A1 JP 2013063847 W JP2013063847 W JP 2013063847W WO 2013172460 A1 WO2013172460 A1 WO 2013172460A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
film
refractive index
layer
coating solution
Prior art date
Application number
PCT/JP2013/063847
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 義朗
千葉 隆人
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014515692A priority Critical patent/JP6020558B2/en
Publication of WO2013172460A1 publication Critical patent/WO2013172460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to a method for producing an optical film.
  • An optical film is a film that can transmit or reflect and absorb light, and can exhibit optical functions such as refraction, birefringence, antireflection, wide viewing angle, light diffusion, and brightness improvement.
  • Optical films include liquid crystal displays (LCD) and plasma as infrared shielding films, antireflection films, alignment films, polarizing films, polarizing plate protective films, retardation films, viewing angle widening films, brightness enhancement films, and electromagnetic shielding films. It is used for flat panel displays (FPD) such as displays (PDP), window glass of buildings and vehicles, and the like.
  • LCD liquid crystal displays
  • plasma as infrared shielding films, antireflection films, alignment films, polarizing films, polarizing plate protective films, retardation films, viewing angle widening films, brightness enhancement films, and electromagnetic shielding films.
  • FPD flat panel displays
  • PDP displays
  • window glass of buildings and vehicles and the like.
  • Patent Document 1 discloses a substrate made of polyester as an optical film used for a liquid crystal display, a plasma display, an organic EL display, a surface electric field (SED) display, and a CRT display, and on at least one surface of the substrate. Formed on the easy-adhesion layer having a refractive index of more than 1.70 and not more than 1.85 and a thickness of 50 to 100 nm, and a refractive index of 1.40 or more. 1.
  • An optical laminated film characterized by comprising a protective layer having a thickness of 1.60 or less and a thickness of 3 nm to 10 nm.
  • the scratch resistance can be improved, and the occurrence of powder falling and scratches can be suppressed. It is described that unevenness can be eliminated.
  • an optical film used in particular, an optical functional layer constituting the optical film (for example, to a thickness of nano order).
  • Various effects can be obtained by thinning the optical film.
  • thinning the antireflection film of the antireflection film can increase the definition of the flat panel display.
  • infrared light can be efficiently shielded by thinning the refractive index layer of the infrared shielding film.
  • the easy adhesion layer and the protective layer have a nano-order thickness.
  • an optical functional layer having a nano-order thickness is manufactured by a so-called wet film forming method in which a coating liquid is applied to a substrate and then dried to form an optical functional layer.
  • the optical functional layer manufactured by the wet film forming method may have variations in film thickness within the optical functional layer, and as a result, color unevenness may occur in the optical film and the appearance may deteriorate. found.
  • an object of the present invention is to provide means capable of suppressing the occurrence of variations in film thickness in the optical functional layer even when the optical functional layer is thinned to the nano order.
  • the present inventors have found that when an optical functional layer is formed by a wet film-forming method, using a sheared coating liquid, even if the optical functional layer is thinned on the nano order.
  • the inventors have found that the occurrence of film thickness variation in the optical functional layer can be suppressed, and have completed the present invention.
  • a manufacturing method comprising: (1) applying a shearing process of (2); and (2) forming a coating film by applying the coating liquid obtained in the step (1) on a substrate; 2. 2. The manufacturing method according to 1, wherein the coating is performed at a speed of 1 m / min or more; 3. The production method according to 1 or 2, wherein the step (2) is performed within 3 hours after the step (1); 4). 4. The production method according to any one of 1 to 3, wherein the shearing treatment is performed by a dispersing device, a high-speed stirring device, a discharging device, or a combination thereof.
  • One embodiment of the present invention relates to a method for producing an optical film in which at least one optical functional layer having a film thickness of 1 to 1000 nm is formed on a substrate.
  • the coating solution containing a polymer is subjected to a step (1) of applying a shearing treatment at a shear rate of 1000 (1 / sec) or more, and the coating solution obtained in the step (1) is coated on a substrate.
  • a step (2) of forming a coating film is
  • the optical film manufactured by the manufacturing method according to this embodiment is formed by forming at least one optical functional layer having a film thickness of 1 to 1000 nm on a substrate.
  • the method for producing the optical film includes a step (1) of applying a shearing treatment having a shear rate of 1000 (1 / sec) or more to a coating solution containing a polymer, and a coating solution obtained in the step (1) as a base material. And a step (2) of forming a coating film by coating on the top.
  • the optical film has different functions depending on the composition and configuration of the optical functional layer. Therefore, the technical idea according to the present invention is various optical films, for example, an infrared shielding film, an antireflection film, an alignment film, a polarizing film, a polarizing plate protective film, a retardation film, by appropriately considering known matters. It can be used for a film, a viewing angle widening film, a brightness enhancement film, an electromagnetic wave shielding film, and the like.
  • an infrared shielding film in which refractive index layers having different refractive indexes are laminated will be described, but the present invention is not limited thereto.
  • the infrared shielding film corresponds to an optical film
  • the refractive index layer corresponds to an optical functional layer.
  • the refractive index differences between adjacent refractive index layers is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.4 or more.
  • it is preferable that all the refractive index differences between the laminated refractive index layers are within the preferable range.
  • the outermost layer and the lowermost layer among the refractive index layers constituting the reflective layer may have a configuration outside the above preferred range.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the refractive index difference is smaller than 0.1, it is necessary to stack 100 layers or more. In such cases, productivity loss, increased scattering at the stack interface, reduced transparency, and manufacturing failures can occur.
  • the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, preferably 75% or more, more preferably 85% or more.
  • the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the infrared shielding film has a configuration in which a refractive index layer is laminated, so that at least one infrared light is irradiated when infrared light is irradiated from the base material side or from the laminated refractive index layer side.
  • the part can be shielded to exhibit an infrared shielding effect.
  • the stacked refractive index layers are formed by alternately stacking high refractive index layers and low refractive index layers.
  • the laminated high refractive index layer and low refractive index layer may be the same or different.
  • Whether the refractive index layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer. On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer).
  • the layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the adjacent refractive index layer, but the refractive index (nH) of the high refractive index layer is 1. It is preferably .60 to 2.50, more preferably 1.70 to 2.50, further preferably 1.80 to 2.20, and 1.90 to 2.20. Is particularly preferred.
  • the refractive index (nL) of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and more preferably 1.30 to 1.50. More preferably.
  • a sample is prepared by cutting a coating film obtained by applying a refractive index layer to be measured as a single layer on a support to a size of 10 cm ⁇ 10 cm.
  • the surface opposite to the measurement surface (back surface) is roughened and light-absorbed with black spray.
  • the sample thus prepared was measured for 25 points of reflectance in the visible region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees. An average value is obtained, and an average refractive index is obtained from the measurement result.
  • the range of the total number of refractive index layers is preferably 200 or less, more preferably 100 or less, and even more preferably 50 or less from the viewpoint of productivity.
  • the thickness of the refractive index layer per layer is 1 to 1000 nm, preferably 20 to 800 nm, more preferably 50 to 350 nm.
  • Step (1) is a step of applying a shearing treatment with a shear rate of 1000 (1 / sec) or more to a coating solution containing a polymer.
  • a coating liquid for a high refractive index layer and a coating liquid for a low refractive index layer are prepared as coating liquids.
  • composition of coating solution contains a polymer. Furthermore, a solvent, a crosslinking agent, metal oxide particles, an emulsion resin, and other additives may be included as necessary.
  • the polymer that can be used is not particularly limited, and examples thereof include water-soluble polymers.
  • the water-soluble polymer is not particularly limited, and examples thereof include a polymer having a reactive functional group, modified polyvinyl alcohol, gelatin, and thickening polysaccharide.
  • water-soluble polymer means a G2 glass filter (maximum) when dissolved in water so that the concentration of 0.5% by mass is obtained at the temperature at which the water-soluble polymer is most dissolved. It means that the mass of the insoluble matter that is filtered off when filtering through pores of 40 to 50 ⁇ m is within 50 mass% of the added water-soluble polymer.
  • polymers having reactive functional groups used in the present invention include unmodified polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, potassium acrylate- Acrylic resins such as acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid -Styrene acrylic resins such as acrylate copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-styrenesulfonic acid Sodium copolymerization Styrene-2-
  • the form of the copolymer when the polymer having the reactive functional group is a copolymer may be any of a block copolymer, a random copolymer, a graft copolymer, and an alternating copolymer. Good.
  • the modified polyvinyl alcohol used in the present invention is one obtained by subjecting unmodified polyvinyl alcohol to one or more arbitrary modification treatments.
  • examples thereof include amine-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, carboxylic acid-modified polyvinyl alcohol, diacetone-modified polyvinyl alcohol, thiol-modified polyvinyl alcohol, and acetal-modified polyvinyl alcohol.
  • these modified polyvinyl alcohols commercially available products may be used, or those produced by methods known in the art may be used.
  • modified polyvinyl alcohols such as polyvinyl alcohol having a cation-modified terminal, anion-modified polyvinyl alcohol having an anionic group, and nonion-modified polyvinyl alcohol may also be used.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A-61-10383 in the main chain or side chain of the polyvinyl alcohol. It can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the ethylenically unsaturated monomer having a cationic group in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • anion-modified polyvinyl alcohol examples include polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group as described in JP-A-7-9758 is added to a part of vinyl alcohol, and JP-A-8-25795.
  • the block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned.
  • modified polyvinyl alcohols (1) one or more selected from the group consisting of unmodified polyvinyl alcohol having an average degree of polymerization of 200 or more and 2400 or less, and (2) unsaturated carboxylic acid and salts and esters thereof. It is preferable to use a copolymer (graft copolymer) obtained by copolymerizing with a polymerizable vinyl monomer.
  • the modified polyvinyl alcohol is the above graft copolymer
  • the above-mentioned various modified polyvinyl alcohols are used as the unmodified polyvinyl alcohol having an average degree of polymerization of 200 or more and 2400 or less constituting the graft copolymer (1). May be.
  • the unmodified polyvinyl alcohol used as the raw material for the modified polyvinyl alcohol has an average degree of polymerization of about 200 to 2400, preferably an average degree of polymerization of about 900 to 2400, and more preferably an average degree of polymerization of about 1300 to 1700.
  • the degree of saponification of unmodified polyvinyl alcohol is preferably about 60 to 100 mol%, more preferably 78 to 96 mol%.
  • Such a saponified polyvinyl alcohol can be produced by radical polymerization of vinyl acetate and appropriately saponifying the obtained polyvinyl acetate.
  • the polymerization degree and saponification degree are controlled by a method known per se.
  • a partially saponified polyvinyl alcohol it is possible to use a commercially available product.
  • examples of preferable commercially available unmodified polyvinyl alcohol include Gohsenol EG05, EG25 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), PVA203 ( Manufactured by Kuraray Co., Ltd.), PVA204 (manufactured by Kuraray Co., Ltd.), PVA205 (manufactured by Kuraray Co., Ltd.), JP-04 (manufactured by Nihon Vinegar & Poval Co., Ltd.), JP-05 (manufactured by Nihon Venture & Poval Co., Ltd.) Is mentioned.
  • unmodified polyvinyl alcohol not only one kind of unmodified polyvinyl alcohol is used alone as a raw material for the modified polyvinyl alcohol, but also two or more kinds of unmodified polyvinyl alcohols having different degrees of polymerization and saponification may be appropriately used in accordance with the purpose. Can do.
  • unmodified polyvinyl alcohol having an average polymerization degree of 300 and unmodified polyvinyl alcohol having an average polymerization degree of 1500 can be mixed and used.
  • Examples of the polymerizable vinyl monomer that is polymerized with the raw unmodified (modified) polyvinyl alcohol include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, or salts thereof (for example, Alkali metal salts, ammonium salts, alkylamine salts), esters thereof (eg, substituted or unsubstituted alkyl esters, cyclic alkyl esters, polyalkylene glycol esters), unsaturated nitriles, unsaturated amides, aromatic vinyls , Aliphatic vinyls, unsaturated bond-containing heterocycles, and the like.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, or salts thereof (for example, Alkali metal salts, ammonium salts, alkylamine salts), esters thereof (eg
  • acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, polyethylene glycol acrylate (polyethylene glycol and acrylic acid Ester) and polypropylene glycol acrylate (ester of polypropylene glycol and acrylic acid).
  • methacrylic acid esters examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, and 2-ethylhexyl.
  • Unsaturated nitriles such as acrylonitrile, methacrylonitrile, etc.
  • Unsaturated amides such as acrylamide, dimethylacrylamide, methacrylamide
  • aromatic vinyls such as styrene and ⁇ -methylstyrene
  • aliphatic vinyls such as vinyl acetate
  • unsaturated bond-containing heterocycles such as N -Vinylpyrrolidone, acryloylmorpholine and the like
  • the above-mentioned modified polyvinyl alcohol can be produced by modifying unmodified polyvinyl alcohol or a derivative thereof by a method known per se.
  • examples of the method for producing the graft copolymer as the modified polyvinyl alcohol include methods known per se such as radical polymerization, for example, solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization. It can be carried out under normal polymerization conditions.
  • This polymerization reaction is usually performed in the presence of a polymerization initiator, if necessary, as a reducing agent (for example, sodium erythorbate, sodium metabisulfite, ascorbic acid), a chain transfer agent (for example, 2-mercaptoethanol, ⁇ -methylstyrene).
  • a polymerization initiator for example, sodium erythorbate, sodium metabisulfite, ascorbic acid
  • a chain transfer agent for example, 2-mercaptoethanol, ⁇ -methylstyrene
  • Dimer, 2-ethylhexylthioglycolate, lauryl mercaptan) or a dispersant for example, a surfactant such as sorbitan ester or lauryl alcohol
  • water for example, an organic solvent (for example, methanol, ethanol, cellosolve, carbitol) or the like
  • a dispersant for example, a surfactant such as sorbitan ester or lauryl alcohol
  • water for example, an organic solvent (for example, methanol, ethanol, cellosolve, carbitol) or the like
  • pulverization method, etc. may be well-known methods, and there is no restriction
  • Gelatin As the gelatin used in the present invention, various gelatins which have been widely used in the field of silver halide photographic materials can be exemplified.
  • enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the gelatin production process that is, amino, imino, hydroxy, or carboxy groups as functional groups in the molecule It may be modified by treating with a reagent having a group obtained by reacting with it.
  • the general method for producing gelatin is well known and is described, for example, in T.W. H. James: The Theory of Photographic Process 4th. ed. Reference can be made to descriptions such as 1977 (Macmillan), p.
  • Thickening polysaccharide there is no restriction
  • the thickening polysaccharide is a polymer of saccharides and has a large number of hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature are different. It is a polysaccharide with the characteristic that the difference is large, and when metal oxide particles or polyvalent metal compounds are added, the metal oxide particles or polyvalent metals react with the metal oxide particles or polyvalent metal compounds at low temperatures. It forms a hydrogen bond or ionic bond with the compound, causing an increase in viscosity or gelation.
  • the increase in viscosity is preferably 1.0 mPa ⁇ s or more at 15 ° C.
  • the viscosity increase width is more preferably 5.0 mPa ⁇ s or more, and further preferably 10.0 mPa ⁇ s or more. In this specification, a value measured with a Brookfield viscometer is adopted as the viscosity.
  • thickening polysaccharides applicable to the present invention include, for example, pectin, galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xyloglucan, etc.
  • glucomannoglycan eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.
  • galactoglucomannoglycan eg, softwood-derived glycan
  • arabinogalactoglycan For example, soybean-derived glycan, microorganism-derived glycan, etc.
  • glucoraminoglycan eg, gellan gum
  • glycosaminoglycan eg, hyaluronic acid, keratan sulfate, etc.
  • alginic acid and alginate agar, ⁇ -carrageenan, ⁇ -Carrageenan
  • examples thereof include natural polymer polysaccharides derived from red algae such as ⁇ -carrageenan and furseleran, and celluloses such as carboxymethyl cellulose (cellulose carboxymethyl ether), carboxyethyl cellulose, methyl cellulose, hydroxy
  • polysaccharides include, for example, pentoses such as L-arabitose, D-ribose, 2-deoxyribose, and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose, and D-galactose only. It is preferable that it is a polysaccharide.
  • tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is glucose
  • guar gum known as galactomannan whose main chain is mannose and side chain is glucose
  • cationized guar gum Hydroxypropyl guar gum
  • locust bean gum locust bean gum
  • tara gum arabinogalactan whose main chain is galactose and whose side chain is arabinose
  • arabinogalactan whose main chain is galactose and whose side chain is arabinose
  • the above polymers may be used alone or in combination of two or more.
  • the mass average molecular weight of the polymer is preferably 1000 or more, more preferably 5000 to 1000000, and still more preferably 10,000 to 100,000.
  • the mass average molecular weight is a gel permeation chromatography (GPC) analyzer using a TSKgel GMHxL, TSKgel G4000HxL or TSKgel G2000HxL (Tosoh Corporation) column (solvent: tetrahydrofuran (THF)).
  • GPC gel permeation chromatography
  • the concentration of the polymer in the coating solution is preferably 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass. It is preferable for the concentration of the polymer to be in the above range since the coating solution has a certain viscosity and can be advantageous for film formation.
  • solvent The solvent that can be used in the present invention is not particularly limited, and examples thereof include water, an organic solvent, or a mixed solvent thereof.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol; esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate; diethyl ether; Examples include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether; amides such as dimethylformamide and N-methylpyrrolidone; ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in admixture of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the crosslinking agent has a function of curing the polymer. By curing, water resistance can be imparted to the refractive index layer.
  • the crosslinking agent that can be used is not particularly limited as long as it causes a curing reaction with a polymer.
  • boric acid and its salt oxygen acid and its salt centered on a boron atom
  • orthoboric acid and diboric acid specifically, orthoboric acid and diboric acid , Metaboric acid, tetraboric acid, pentaboric acid, and octaboric acid or salts thereof are preferably used.
  • Boric acid and its salt may be used alone or in admixture of two or more, and it is particularly preferable to use a mixed aqueous solution of boric acid and borax.
  • crosslinking agent examples include, for example, diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl-4- Epoxy crosslinking agents such as glycidyloxyaniline, sorbitol polyglycidyl ether, glyceryl polyglycidyl ether; aldehyde crosslinking agents such as formaldehyde and glycoxal; 2,4-dichloro-4-hydroxy-1,3,5- Examples include active halogen-based crosslinking agents such as S-triazine; 1.3.5-active vinyl compounds such as tris-acryloyl-hexahydro
  • the crosslinking agent for example, organic compounds such as vinylsulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds, etc.
  • Hardeners, inorganic polyvalent metal salts such as chromium, aluminum and zirconium may be used.
  • the concentration of the crosslinking agent in the coating solution is preferably 0.001 to 20% by mass, and more preferably 0.01 to 10% by mass.
  • the coating solution has a certain spinnability and viscosity, which is advantageous for film formation, and the formed refractive index layer can have suitable water resistance.
  • the metal oxide particles which can be used is not particularly limited, titanium oxide (TiO 2), zinc oxide (ZnO), zirconium oxide (ZrO 2), niobium oxide (Nb 2 O 5), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), indium tin oxide (ITO), antimony tin oxide (ATO), and the like.
  • titanium oxide (TiO 2 ) is preferably used for the high refractive index layer coating solution
  • silicon oxide (SiO 2 ) is preferably used for the low refractive index layer coating solution.
  • titanium oxide TiO 2
  • rutile type titanium oxide having a high refractive index and low catalytic activity. If the catalytic activity is low, side reactions (photocatalytic reactions) that occur in the refractive index layer and adjacent layers can be suppressed, and the weather resistance can be increased.
  • a water-based titanium oxide sol having a pH of 1.0 to 3.0 and having a positive zeta potential of titanium particles is hydrophobized so that it can be dispersed in an organic solvent.
  • examples of the method for preparing the aqueous titanium oxide sol include Japanese Patent Laid-Open Nos. 63-17221, 7-819, 9-165218, 11-43327, and 63. Reference can be made to the matters described in JP-A-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, and the like.
  • the production method according to the step (2) is a step of treating titanium dioxide hydrate with at least one basic compound selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides.
  • the titanium dioxide dispersion obtained in (1) is treated with a carboxylic acid group-containing compound and an inorganic acid.
  • an aqueous sol of titanium oxide having a pH adjusted to 1.0 to 3.0 with an inorganic acid in the step (2) can be used.
  • Examples of the silicon oxide (SiO 2 ) include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use an acidic colloidal silica sol, and it is more preferable to use a colloidal silica sol dispersed in water and / or an organic solvent.
  • the colloidal silica can be obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • Such colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61- No. 188183, No.
  • Colloidal silica may be a synthetic product or a commercially available product.
  • the metal oxide particles may be used alone or in combination of two or more.
  • the average particle diameter of the metal oxide particles is preferably 2 to 100 nm, more preferably 3 to 50 nm, and further preferably 4 to 30 nm.
  • the average particle size of the metal oxide particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1000 arbitrary particles, and calculating the simple average value ( (Number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the concentration of the metal oxide particles in the coating solution is preferably 20 to 70% by mass and more preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the refractive index layer. It is preferable that the content of the metal oxide particles is 20% by mass or more because a desired refractive index can be obtained. Further, it is preferable that the content of the metal oxide particles is 70% by mass or less because flexibility of the film can be obtained and film formation becomes easy.
  • both refractive index layers having different refractive indexes include metal oxide particles
  • anionization treatment or cationization treatment is performed, and the metal oxide particles It is preferable to have the same ionicity (charge).
  • anionization treatment or cationization treatment a repulsive force is generated between the two types of metal oxide particles.
  • a refractive index layer is formed by multilayer coating, aggregation at the layer interface, etc. Can be difficult to occur.
  • anionization treatment of metal oxide particles for example, anion treatment of titanium oxide is exemplified.
  • the titanium oxide particles can be anionized by coating with a silicon-containing hydrated oxide.
  • the coating amount of the silicon-containing hydrated compound is usually 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass. When the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
  • the cationization treatment of the metal oxide particles can be performed by using, for example, a cationic compound.
  • the cationic compound include a cationic polymer and a polyvalent metal salt, and a polyvalent metal salt is preferred from the viewpoint of adsorption power and transparency.
  • polyvalent metal salts include aluminum, calcium, magnesium, zinc, iron, strontium, barium, nickel, copper, scandium, gallium, indium, titanium, zirconium, tin, lead, and other metal hydrochlorides, sulfates, nitrates, Examples include acetate, formate, succinate, malonate, chloroacetate and the like.
  • water-soluble aluminum compounds water-soluble calcium compounds, water-soluble magnesium compounds, water-soluble zinc compounds, and water-soluble zirconium compounds are preferably used, and water-soluble aluminum compounds and water-soluble zirconium compounds are more preferably used.
  • the water-soluble aluminum compound include polyaluminum chloride (basic aluminum chloride), aluminum sulfate, basic aluminum sulfate, aluminum potassium sulfate (alum), ammonium aluminum sulfate (ammonium alum), sodium aluminum sulfate, aluminum nitrate, Examples thereof include aluminum phosphate, aluminum carbonate, polysulfuric acid aluminum silicate, aluminum acetate, and basic aluminum lactate.
  • the coating amount of the cationic compound varies depending on the shape and particle size of the metal oxide particles, but is preferably 1% by mass to 15% by mass with respect to the metal oxide particles.
  • the emulsion resin is usually a polymer dispersed in a coating solution.
  • the emulsion resins can be fused to each other at the time of application in the step (2) described later.
  • the emulsion resin is obtained by emulsion polymerization of an oil-soluble monomer using a polymer dispersant or the like.
  • Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Examples thereof include methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone and the like. Of these, acrylic acid, its esters, and vinyl acetate are preferably used from the viewpoint of transparency and particle size.
  • acrylic acid and / or its esters and vinyl acetate emulsion commercially available ones may be used.
  • commercially available ones may be used.
  • the dispersant that can be used is not particularly limited, but in addition to a low-molecular dispersant such as alkyl sulfonate, alkylbenzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt, polyoxyethylene nonylphenyl is used.
  • a low-molecular dispersant such as alkyl sulfonate, alkylbenzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt
  • polyoxyethylene nonylphenyl examples thereof include polymer dispersants such as ether, polyethylene ethylene laurate, hydroxyethyl cellulose, and polyvinyl pyrrolidone.
  • the above-mentioned emulsion preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably ⁇ 30 to 10 ° C. from the viewpoint of enhancing flexibility.
  • Tg glass transition temperature
  • additives include ultraviolet absorbers, anionic, cationic or nonionic surfactants described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, sulfuric acid, PH adjusters such as phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide and potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, antioxidants And various known additives such as additives, flame retardants, infrared absorbers, dyes and pigments.
  • the method for preparing the coating solution is not particularly limited, and examples thereof include a method in which a polymer and, if necessary, an additive such as a crosslinking agent and metal oxide particles are added to a solvent and mixed by stirring.
  • an additive such as a crosslinking agent and metal oxide particles
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
  • the polymer may interact with each other between the molecules and within the molecule, such as bonds due to end groups, bonds in the cross-linking agent, and entanglement between the molecules.
  • the size is getting bigger. Since the increase in the apparent molecular size varies depending on the presence or absence of the interaction and the degree thereof, various polymers having different apparent molecular sizes are mixed in the coating solution.
  • the polymer interaction is such that when the mass average molecular weight of the polymer in the coating solution is 1000 or more, and when the coating solution contains 0.01% by mass or more of the polymer, the cross-linking agent is added to the coating solution in an amount of 0.1%. This may occur particularly when it is contained in an amount of 001% by mass or more, and when the coating liquid contains a solid substance (for example, particles) accompanied by a binding reaction with a polymer.
  • a shearing treatment is applied to the coating solution at a shear rate of 1000 (1 / sec) or more, preferably 5000 to 10000000 (1 / sec), more preferably 10,000 to 1000000 (1 / sec).
  • shear treatment means that the coating liquid is treated at a predetermined shear rate. More specifically, this means that the coating liquid is moved at a predetermined speed in a flow path or the like having a predetermined gap to apply a shearing force to the coating liquid. By the shearing treatment, at least a part of the interaction generated in the polymer can be eliminated.
  • shearing rate is calculated by the following formula (1).
  • Minimum gap means the smallest gap to which a shearing force is applied in the flow path through which the coating liquid moves.
  • the “speed” refers to the moving speed of the coating solution when the coating solution passes through the minimum gap. At this time, when the coating liquid is moved at a constant speed, the highest shearing force is applied when passing through the minimum gap.
  • the shearing treatment may be performed by any method as long as the shear rate to the coating solution is 1000 (1 / sec) or more.
  • the shearing process can be performed by, for example, a dispersion device, a discharge device, and a high-speed stirring device.
  • Dispersing device As the dispersing device, a milder, a pressure type homogenizer, a high-speed rotational shearing type homogenizer, or the like can be used. Hereinafter, the shearing process in the case of using a milder and a pressure type homogenizer will be described in detail.
  • FIG. 1 is a schematic diagram of a milder that is one form of a dispersing device.
  • the milder in FIG. 1 has a stator tooth 1 that is a fixed tooth and a rotor tooth 2 that is a rotating tooth.
  • the coating liquid 4 moving in the gap (shear gap) La between the stator teeth 1 and the rotor teeth 2 generates a velocity gradient (shear velocity) in the radial direction of the rotor teeth 2. Due to the velocity gradient, an internal frictional force (shearing force) is generated between the stator teeth 1 and the rotor teeth 2.
  • the shear gap La corresponds to the “minimum gap” in the equation (1)
  • the speed of the coating liquid 4 when moving through the shear gap La corresponds to the “speed” in the equation (1).
  • the introduction of the coating liquid 5 into the shear gap 3 is performed in the radial direction from the slit gap of the rotor tooth 2, the coating liquid 4 flowing into the shear gap La and the introduced coating liquid 5 are continuously provided. The collision is repeated. That is, according to the milder in FIG. 1, shearing and mixing are continuously performed on the coating solution.
  • the minimum gap between the stator teeth and the rotor teeth in the shear gap is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm.
  • the rotational speed of the rotor teeth is preferably 1 to 500 m / s, and more preferably 3 to 300 m / s.
  • the shear rate can be adjusted by appropriately setting the minimum gap between the stator teeth and the rotor teeth in the shear gap and the rotational speed of the rotor teeth.
  • Ebara Milder manufactured by Ebara Manufacturing Co., Ltd.
  • Milder manufactured by Taiheiyo Kiko Co., Ltd.
  • the like can be used.
  • FIG. 2 is a schematic diagram of a pressure homogenizer that is one form of a dispersing device.
  • the pressure homogenizer of FIG. 2 has a valve seat 11 and a valve 12.
  • the coating liquid 14 supplied by a pressurizing mechanism moves between the valve seats 11 at high pressure and at high speed.
  • the coating liquid passes through the narrow gap Lb between the valve seat 11 and the valve 12
  • the gap Lb is the minimum gap to which a shearing force is applied, and corresponds to the “minimum gap” in Equation (1). Further, the speed of the coating liquid 14 when moving through the gap Lb, which is the minimum gap, corresponds to the “speed” in Expression (1).
  • the distance between the valve seat and the valve is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm.
  • the speed when passing between the valve seat and the valve is preferably 1 to 500 m / s, more preferably 3 to 300 m / s.
  • the shear rate can be adjusted by appropriately setting the distance between the valve seat and the valve, the supply condition of the coating liquid in the pressurizing mechanism, and the like.
  • a pressure homogenizer as described above for example, a pressure homogenizer LAB1000 (manufactured by SMT Co., Ltd.) or the like can be used.
  • the high-speed rotation shearing homogenizer has a configuration similar to that of a milder, and is a processing device that performs a shearing process between a rotor that rotates at a high speed and a stator that is adjacent via a narrow gap.
  • a processing device that performs a shearing process between a rotor that rotates at a high speed and a stator that is adjacent via a narrow gap.
  • Examples of the high-speed rotational shearing type homogenizer include TK Robomix (Primics Co., Ltd.), Claremix CLM-0.8S (M Technique Co., Ltd.), and Homogenizer (Microtech Nichion Co., Ltd.). Can be used.
  • a rotary pump such as a Kia pump, a Mono pump, or a rotary pump can be used.
  • a rotary pump such as a Kia pump, a Mono pump, or a rotary pump.
  • the shearing process when the gear pump is used will be described in detail.
  • FIG. 3 is a schematic diagram of a circumscribed gear pump which is one form of the discharge device.
  • the circumscribed gear pump of FIG. 3 has a gear 22a and a gear 22b.
  • the gear 22a and the gear 22b rotate while the teeth are engaged at the center.
  • the coating liquid 24 is separated by the gears 22 a and 22 b and moves in the gap Lc between the gear 22 a or 22 b and the outer box 21.
  • a speed gradient (shear speed) is generated in the coating liquid 24 that moves between the moving gear 22a or 22b and the fixed outer box 21, thereby generating a shearing force.
  • the gap Lc corresponds to the “minimum gap” in the equation (1)
  • the speed of the coating liquid 24 when moving through the gap Lc which is the minimum gap, corresponds to the “speed” in the equation (1).
  • the distance between the gear and the outer box is preferably 1 to 10 mm, and more preferably 1 to 5 mm.
  • the speed at the time of passing through the gear and the outer box is preferably 1 to 10 m / s, and more preferably 2 to 10 m / s.
  • the shear rate can be adjusted by appropriately setting the distance between the gear and the outer box, the rotational speed of the gear, and the like.
  • an internal gear pump using an external gear and an internal gear may be used.
  • the inscribed gear pump can be used more suitably because the minimum gap becomes smaller.
  • gear pump for example, a chemical gear pump GX-25S (manufactured by Iwaki Co., Ltd.) or the like can be used.
  • High-speed stirrer As the high-speed stirrer, a high-speed rotating general-purpose stirrer, a closed-type high-speed stirrer that is also used in a dispersing device, and the like can be used. Hereinafter, the shearing process in the case of using a high-speed rotation type general-purpose stirring device will be described in detail.
  • FIG. 4 is a schematic diagram of a general-purpose stirring device which is one form of a high-speed stirring device.
  • the general-purpose stirring device in FIG. 4 has a stirring blade 32.
  • the stirring blade 32 rotates, the coating liquid 34 supplied into the processing chamber is stirred.
  • the coating liquid 34 collides with the inner wall 31 of the processing chamber by the stirring of the stirring blade 32, and then moves along the inner wall 31. This creates a shear force. Therefore, since the speed of the coating liquid when colliding with the inner wall 31 corresponds to the rotational speed of the stirring blade 32, the gap Ld between the tip of the stirring blade 32 and the inner wall 31 is the “minimum gap” in the equation (1).
  • the rotational speed of the stirring blade 32 corresponds to the “speed” in the equation (1).
  • the general-purpose agitator simultaneously applies the shearing force and simultaneously mixes the coating liquid 34, and the coating liquid 34 is continuously sheared and mixed.
  • the distance between the tip of the stirring blade and the inner wall of the processing chamber is preferably 1 to 10 mm, and more preferably 1 to 5 mm.
  • the rotation speed of the stirring blade is preferably 1 to 10 m / s, and more preferably 2 to 10 m / s.
  • the shear rate can be adjusted by appropriately setting the distance between the tip of the stirring blade and the inner wall of the processing chamber, the rotational speed of the stirring blade, and the like.
  • a three-one motor LB series (manufactured by Shinto Kagaku Co., Ltd.), a super mixer (manufactured by Satake Chemical Machinery Co., Ltd.), or the like can be used.
  • the temperature of the shearing treatment varies depending on the numerical value of the shear rate and the kind and content of the polymer in the coating solution, but is preferably 20 to 70 ° C., and is preferably 25 to 60 ° C. This is preferable from the viewpoint of load and work safety.
  • the shearing time varies depending on the value of the shear rate, the type and content of the polymer in the coating solution, and is not particularly limited. However, from the viewpoint of continuous processing and productivity, 0.01 to 10 minutes is preferable, and 0.01 to 2 minutes is more preferable.
  • the viscosity of the coating solution obtained by the shearing treatment varies depending on the temperature of the coating solution and the type of the coating solution, but is preferably 1 to 2000 mPa ⁇ s, and more preferably 1 to 1000 mPa ⁇ s. .
  • the viscosity of the coating liquid is in the above range, the coating liquid has high coating properties, and the occurrence of film thickness variation can be suppressed.
  • the viscosity of a coating liquid receives to the influence of the interaction which may arise in a polymer
  • step (2) The interaction of the polymer eliminated by the shearing process in the step (1) may return to the original with time due to the property of the polymer.
  • various polymers having different apparent molecular weights are mixed in the coating solution, and the film thickness may vary. Therefore, it is preferable to perform step (2) described later immediately after step (1). More specifically, the time until the step (2) after the step (1) varies depending on the type of the coating liquid and the conditions in which the coating liquid is stagnated, but is preferably within 3 hours. It is more preferably within 1 hour, and further preferably within 30 minutes.
  • Step (2) is a step of forming a coating film by applying the coating liquid obtained in step (1) on a substrate.
  • the substrate applied to the optical film of the present invention is not particularly limited as long as it is transparent, and a known resin film can be used.
  • a known resin film can be used.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PC polyethylene terephthalate
  • PET polybutylene terephthalate
  • PBT polyethylene naphthalate
  • PEN phthalate
  • polysulfone polyethersulfone
  • polyetheretherketone polyimide
  • aromatic polyamide and polyetherimide.
  • polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used from the viewpoints of cost and availability.
  • the substrate using the resin film may be an unstretched film or a stretched film, but in the case of a resin film having crystallinity such as PET or PEN, the strength is improved. From the viewpoint of suppressing thermal expansion, a film that is heat-set after stretching is preferred.
  • the base material using the resin film can be manufactured by a conventionally known general method.
  • an unstretched film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, and the resin film flow (vertical axis) direction, and / or
  • a stretched film can be produced by stretching in the direction perpendicular to the flow direction of the resin film (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the thickness of the substrate according to the present invention is preferably 5 to 300 ⁇ m, more preferably 15 to 150 ⁇ m.
  • the base material may be a laminate of two or more, and in this case, the type of the base material may be the same or different.
  • the base material may be subjected to relaxation treatment and off-line heat treatment from the viewpoint of dimensional stability.
  • the relaxation treatment is performed in the process from the heat setting in the stretching process of the resin film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably carried out at a treatment temperature of 80 to 200 ° C., more preferably 100 to 180 ° C.
  • the relaxation rate is preferably processed to 0.1 to 10%, more preferably 2 to 6%.
  • the relaxed base material is further subjected to off-line heat treatment to improve heat resistance and further improve dimensional stability.
  • the substrate is preferably provided with an undercoat layer on one side or both sides during the film forming process.
  • the undercoat layer can be formed in-line or after film formation.
  • Examples of the method for forming the undercoat layer include a method of applying an undercoat layer coating solution and drying the obtained coating film.
  • the undercoat layer coating solution usually contains a resin.
  • the resin include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polystyrene butadiene resins, polyethyleneimine resins, polyvinyl alcohol, and gelatin. .
  • a known additive may be further added to the undercoat layer coating solution.
  • the coating amount of the undercoat layer coating solution is preferably applied so as to be about 0.01 to 2 g / m 2 in a dry state.
  • the coating method of the undercoat layer coating solution is not particularly limited, and known methods such as a roll coating method, a gravure coating method, a knife coating method, a dip coating method, and a spray coating method can be used.
  • the obtained coating film may be stretched, and usually an undercoat layer can be formed by drying at 80 to 120 ° C. while performing lateral stretching in a tenter after coating the coating solution.
  • the undercoat layer may have a single layer structure or a laminated structure.
  • the substrate according to the present invention further includes a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, a hard coat layer, and wear resistance.
  • a conductive layer such as an adhesive layer, an adhesive layer, and an interlayer film layer.
  • the total film thickness of the base material and the intermediate layer is preferably 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m. preferable.
  • the coating liquid obtained in step (1) is applied to the substrate to form a coating film.
  • the coating method of the coating liquid is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, curtain coating method, or US Pat. No. 2,761,419, US
  • the slide bead coating method using the hopper described in Japanese Patent No. 2,761,791 and the extrusion coating method are preferably used.
  • the viscosity of a suitable coating solution varies depending on the coating method.
  • the viscosity of the coating solution may be 1 to 2000 mPa ⁇ s. It is preferably 1 to 1000 mPa ⁇ s.
  • the coating temperature is not particularly limited, but is preferably 20 to 60 ° C.
  • a coating temperature of 20 ° C. or lower is preferable because a facility for cooling the coating solution is not necessary and costs can be reduced.
  • the coating temperature is 60 ° C. or lower because a facility for heating the coating liquid becomes unnecessary, costs can be reduced, and work safety can be improved.
  • the coating speed is not particularly limited, but is preferably 1 m / min or more, more preferably 1 to 500 m / min. A coating speed of 1 m / min or more is preferable because high productivity can be obtained.
  • a refractive index layer can be formed by drying the coating film obtained in the step (2).
  • the drying method is not particularly limited, and may be performed by a known method.
  • Examples of the drying method include natural drying, heat drying, a method of applying hot air, a method of applying cold air, and the like. From the viewpoint of rapid drying, it is preferable to perform drying by heat drying.
  • the heating temperature is preferably 15 to 120 ° C., more preferably 20 to 90 ° C., although it varies depending on the composition of the formed coating film.
  • the production method according to the present invention may further include a step of cooling the coating film obtained in the step (2) once before drying (hereinafter also referred to as step (3)).
  • step (3) a step of cooling the coating film obtained in the step (2) once before drying.
  • the coating film immediately after coating has a low viscosity
  • the surface of the obtained refractive index layer may vary in thickness due to the hot air.
  • coating film components move between coating films, and the boundary between the obtained refractive index layers can be ambiguous.
  • the viscosity of the coating film increases rapidly, and the coating film can be stabilized.
  • the performance of the infrared shielding film may differ depending on the movement of the coating component between the coating films, whether or not to perform the step (3) is appropriately determined according to the desired performance of the infrared shielding film. Can be determined.
  • a polymer whose viscosity is easily increased by cooling the coating film As described above, the interaction of the polymer can be caused by bonding between end groups in the polymer and within the molecule, bonding in the cross-linking agent, entanglement between the molecules, and the like. Therefore, in order to more effectively demonstrate the effect of the step (3), it is preferable to use a polymer having a large number of functional groups or a polymer having a large molecular weight as a component of the coating solution and including a crosslinking agent. .
  • the cooling temperature in step (3) varies depending on the coating solution used, but is preferably ⁇ 20 to 20 ° C., more preferably ⁇ 5 to 10 ° C.
  • the infrared shielding film obtained above can be applied to a wide range of fields. For example, pasting to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, films for window pasting such as infrared shielding films that give an infrared shielding effect, films for agricultural greenhouses, etc. As, it is mainly used for the purpose of improving the weather resistance.
  • the infrared shielding film can be suitably applied to a member in which the infrared shielding film according to the present invention is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
  • an infrared shielding body in which the above infrared shielding film is provided on at least one surface of a substrate.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like.
  • the type of the resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer or adhesive layer that bonds the infrared shielding film and the substrate is preferably provided with the infrared shielding film on the sunlight (heat ray) incident surface side.
  • an adhesive mainly composed of a photocurable or thermosetting resin can be used.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.
  • ethylene-vinyl acetate copolymer manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin
  • modified ethylene-vinyl acetate copolymer (Mersen G, manufactured by Tosoh Corporation).
  • Insulation performance and solar heat shielding performance of infrared shielding films or infrared shields are generally JIS R 3209 (multi-layer glass), JIS R 3106 (obtain transmittance, reflectance, emissivity, and solar heat of plate glass) Rate test method), and a method based on JIS R 3107 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and modified emissivity are calculated according to JIS R 3106 by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107.
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106 and subtracting it from 1.
  • the infrared shielding film obtained above is thinned, it may be applied to the surface of the display panel.
  • an infrared shielding film can be bonded to a highly transparent PET film and introduced into a display screen. This shields infrared rays radiated from the plasma display panel, which can contribute to protection of the human body, prevention of malfunction between electronic devices, prevention of malfunction of the remote control, and the like.
  • Example 1 Process (1) Preparation of coating solution for low refractive index layer Colloidal silica (Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass) 2400 parts by mass, 5% by mass polyvinyl alcohol (PVA-103, degree of polymerization 300, degree of saponification) 98.5 mol%, manufactured by Kuraray Co., Ltd.) 400 parts by weight of an aqueous solution and 1500 parts by weight of an aqueous 3% by weight boric acid solution, respectively, and then heated to 45 ° C.
  • Colloidal silica Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass
  • PVA-103 polyvinyl alcohol
  • PVA-103 degree of polymerization 300, degree of saponification
  • 98.5 mol% manufactured by Kuraray Co., Ltd.
  • polyvinyl alcohol PVA-117, Polymerization degree 1700, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.
  • PVA-117 Polyvinyl alcohol
  • 1% by mass surfactant Liapisol A30, manufactured by NOF Corporation
  • aqueous solution 100 parts by mass, pure water 1600 parts by mass was added to prepare 10,000 parts by mass of a coating solution for a low refractive index layer.
  • the obtained coating solution for the low refractive index layer and the coating solution for the high refractive index layer were subjected to shearing treatment using CLEARMIX CLM-0.8S (manufactured by M Technique Co., Ltd.) which is a dispersing device. More specifically, in the shearing process, a rotary pump is used for a 350 cc vessel (processing chamber) having a screen slit (S2.0-24) having a minimum gap of 0.2 mm (2 ⁇ 10 ⁇ 4 m). The coating liquid was supplied at a flow rate of 1 L / min, and the rotor (R2) was rotated at a speed of 17 m / sec to perform a shearing process. The shear rate is 85000 (1 / sec).
  • Example 2 In the shearing process in the step (1), T.W. K. An infrared shielding film was produced in the same manner as in Example 1 except that Robomix (manufactured by PRIMIX Co., Ltd.) was used.
  • the said shearing process was performed as follows. That is, a coating liquid is supplied at a flow rate of 1 L / min to a 350 cc vessel (processing chamber) having a screen slit portion having a minimum gap of 0.3 mm (3 ⁇ 10 ⁇ 4 m) using a rotary pump, and 3 m / min. Shearing was performed by rotating the rotor at a speed of sec. The shear rate is 10,000 (1 / sec).
  • Example 3 An infrared shielding film was produced in the same manner as in Example 2 except that the rotational speed of the rotor in step (1) was changed to 15 m / sec. The shear rate is 52000 (1 / sec).
  • Example 4 An infrared shielding film was produced in the same manner as in Example 1 except that Milder MDN303V (manufactured by Taiheiyo Kiko Co., Ltd.), which is a dispersing device, was used for the shearing treatment in the step (1).
  • the said shearing process was performed as follows. That is, a coating liquid was supplied at a flow rate of 1 L / min using a rotary pump to a 350 cc vessel (processing chamber) provided with a screen slit portion having a minimum gap of 0.3 mm (3 ⁇ 10 ⁇ 4 m), and 26 m / min. Shearing was performed by rotating the rotor at a speed of sec. The shear rate is 90000 (1 / sec).
  • Example 5 The infrared shielding film was produced by the method similar to Example 1 except having used the pressure type homogenizer LAB1000 (product made from SMT Co., Ltd.) which is a dispersion device for the shearing process of a process (1).
  • the said shearing process was performed as follows. That is, the coating liquid was supplied at a pressure of 500 bar to a processing chamber having a valve and a valve seat adjusted so that the minimum gap was 0.2 mm (2 ⁇ 10 ⁇ 4 m). At this time, the speed of the coating solution when passing through the minimum gap was 300 m / sec. The shear rate is 1500,000 (1 / sec).
  • Example 1 An infrared shielding film was produced in the same manner as in Example 1 except that a chemical gear pump GX-25S (manufactured by Iwaki Co., Ltd.), which is an inscribed gear pump, was used for the shearing treatment in the step (1).
  • the said shearing process was performed as follows. That is, the coating liquid when passing through the meshing portion into the processing chamber where the minimum gap of the meshing portion between the drive gear (pinion) and the driven gear (internal gear) is 0.5 mm (5 ⁇ 10 ⁇ 4 m).
  • the drive gear was adjusted so that the speed of the motor was 0.3 m / sec.
  • the shear rate is 600 (1 / sec).
  • Example 6 An infrared shielding film was produced in the same manner as in Comparative Example 1 except that the passing speed of the meshing part in step (1) was changed to 1.5 m / sec. The shear rate is 3000 (1 / sec).
  • Example 7 The infrared shielding film was produced by the method similar to the comparative example 1 except having changed the passage speed of the meshing part of process (1) into 4.8 m / sec.
  • the shear rate is 9600 (1 / sec).
  • Example 2 An infrared shielding film was produced in the same manner as in Example 1 except that the three-one motor LB series (manufactured by Shinto Kagaku Co., Ltd.), which is a high-speed stirring device, was used for the shearing treatment in the step (1).
  • the said shearing process was performed as follows. That is, a stirring blade having an outer diameter of 50 nm is provided, and the coating liquid is supplied to a processing chamber in which the gap between the tip of the stirring blade and the inner wall is 10 mm (1 ⁇ 10 ⁇ 3 m), and stirring is performed at a speed of 0.8 m / sec. The coating solution was stirred by rotating the blade. The shear rate is 80 (1 / sec).
  • the infrared shielding film was produced by the method similar to the comparative example 2 except having changed the rotational speed of the stirring blade of a process (1) into 3 m / sec.
  • the shear rate is 300 (1 / sec).
  • the infrared shielding film was produced by the method similar to the comparative example 2 except having changed the rotational speed of the stirring blade of a process (1) into 8 m / sec.
  • the shear rate is 800 (1 / sec).
  • Example 8 The infrared shielding film was produced by the method similar to the comparative example 5 except having changed the rotational speed of the stirring blade of a process (1) into 5 m / sec.
  • the shear rate is 1000 (1 / sec).
  • Example 9 The gap between the tip of the processing chamber stirring blade and the inner wall of the apparatus used in the step () was changed to 3 mm (3 ⁇ 10 ⁇ 4 m), and the rotation speed of the stirring blade was changed to 7 m / sec. Except for this, an infrared shielding film was produced in the same manner as in Comparative Example 2. The shear rate is 2300 (1 / sec).
  • Table 1 below shows the relationship between the speed, the minimum gap, and the shear rate in Examples 1 to 9 and Comparative Examples 1 to 5.
  • the film thickness fluctuation rate of the infrared shielding film was evaluated from the obtained value: ⁇ : Less than 3% ⁇ : 3% or more and less than 5% ⁇ : 5% or more.
  • the color difference of the infrared shielding film was evaluated from the obtained value: ⁇ : Less than 10 ⁇ : 10 or more and less than 20 ⁇ : 20 or more.
  • the infrared shielding films of Examples 1 to 9 had good results with respect to the film thickness variation rate and the color difference. That is, when a shearing process having a shear rate of 1000 (1 / sec) or more is applied to the coating solution, even when the film is thinned at the nano-order (150 nm in the embodiment), the variation in film thickness is suppressed, and the color unevenness is reduced. It is understood that an infrared shielding film with suppressed generation can be obtained. It can also be seen that the higher the shear rate, the better the result.

Abstract

[Problem] An optical film manufacturing method is provided which is able to hold down variations in film thickness in an optical function layer, even when the optical function layer is nanometers thin. [Solution] The manufacturing method is for optical film in which at least one optical function layer with a thickness from 1 to 1,000 nm has been formed on a substrate. This manufacturing method includes a step (1) in which an application liquid containing a high polymer is shear-processed at a shearing velocity equal to or greater than 1,000 (1/s), and a step (2) in which the application liquid obtained in step (1) is applied to a substrate to form a coating film.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film.
 光学フィルムとは、光を透過または反射吸収しうるフィルムであり、屈折、複屈折、反射防止、視野角拡大、光拡散、および輝度向上等の光学機能を発揮しうる。 An optical film is a film that can transmit or reflect and absorb light, and can exhibit optical functions such as refraction, birefringence, antireflection, wide viewing angle, light diffusion, and brightness improvement.
 光学フィルムは、赤外遮蔽フィルム、反射防止フィルム、配向フィルム、偏光フィルム、偏光板保護フィルム、位相差フィルム、視野角拡大フィルム、輝度向上フィルム、および電磁波シールドフィルム等として液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)等のフラットパネルディスプレイ(FPD)、建物や車両の窓ガラス等に使用されている。 Optical films include liquid crystal displays (LCD) and plasma as infrared shielding films, antireflection films, alignment films, polarizing films, polarizing plate protective films, retardation films, viewing angle widening films, brightness enhancement films, and electromagnetic shielding films. It is used for flat panel displays (FPD) such as displays (PDP), window glass of buildings and vehicles, and the like.
 例えば、特許文献1には、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、表面電界(SED)ディスプレイ、CRTディスプレイに用いられる光学フィルムとして、ポリエステルからなる基材と、前記基材の少なくとも一方の面上に形成され、屈折率が1.70を超えて1.85以下であり、厚みが50nm以上100nm以下である易接着層と、前記易接着層の上に形成され、屈折率が1.40以上1.60以下であり、厚みが3nm以上10nmである保護層とを備えることを特徴とする光学用積層フィルムが記載されている。特許文献1の光学用積層フィルムによれば、所定の屈折率および厚さを有する易接着層並びに保護層を有することにより、耐傷性の向上が図れ、粉落ちや傷の発生を抑えつつ、虹ムラを無くすことができることが記載されている。 For example, Patent Document 1 discloses a substrate made of polyester as an optical film used for a liquid crystal display, a plasma display, an organic EL display, a surface electric field (SED) display, and a CRT display, and on at least one surface of the substrate. Formed on the easy-adhesion layer having a refractive index of more than 1.70 and not more than 1.85 and a thickness of 50 to 100 nm, and a refractive index of 1.40 or more. 1. An optical laminated film characterized by comprising a protective layer having a thickness of 1.60 or less and a thickness of 3 nm to 10 nm. According to the optical laminated film of Patent Document 1, by having an easy-adhesion layer and a protective layer having a predetermined refractive index and thickness, the scratch resistance can be improved, and the occurrence of powder falling and scratches can be suppressed. It is described that unevenness can be eliminated.
特開2008-183882号公報JP 2008-183882 A
 近年、使用される光学フィルム、特に光学フィルムを構成する光学機能層を薄膜化(例えば、ナノオーダーの厚さまで薄膜化)することが求められている。光学フィルムを薄膜化することで、種々の効果が得られうる。例えば、反射防止フィルムの反射防止膜を薄膜化することで、フラットパネルディスプレイが高精細化しうる。また、赤外遮蔽フィルムの屈折率層を薄膜化することで、効率的に赤外光を遮蔽しうる。 In recent years, it has been demanded to reduce the thickness of an optical film used, in particular, an optical functional layer constituting the optical film (for example, to a thickness of nano order). Various effects can be obtained by thinning the optical film. For example, thinning the antireflection film of the antireflection film can increase the definition of the flat panel display. Moreover, infrared light can be efficiently shielded by thinning the refractive index layer of the infrared shielding film.
 特許文献1に記載の光学フィルムでは、易接着層および保護層(光学機能層)がナノオーダーの厚さとなっている。特許文献1によれば、ナノオーダーの厚さを有する光学機能層は、塗布液を基材に塗布し、次いで乾燥させて光学機能層を形成させる、いわゆる湿式成膜法によって製造されている。しかしながら、当該湿式成膜法で製造された光学機能層は、光学機能層内で膜厚にバラツキが生じる場合があり、その結果として、光学フィルムに色ムラが生じ、外観が悪くなりうることが判明した。 In the optical film described in Patent Document 1, the easy adhesion layer and the protective layer (optical functional layer) have a nano-order thickness. According to Patent Document 1, an optical functional layer having a nano-order thickness is manufactured by a so-called wet film forming method in which a coating liquid is applied to a substrate and then dried to form an optical functional layer. However, the optical functional layer manufactured by the wet film forming method may have variations in film thickness within the optical functional layer, and as a result, color unevenness may occur in the optical film and the appearance may deteriorate. found.
 そこで本発明は、光学機能層をナノオーダーで薄膜化した場合であっても、当該光学機能層内の膜厚のバラツキの発生を抑制できる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide means capable of suppressing the occurrence of variations in film thickness in the optical functional layer even when the optical functional layer is thinned to the nano order.
 本発明者らは鋭意研究を行った結果、湿式成膜法で光学機能層を形成する場合において、せん断処理した塗布液を用いると、光学機能層をナノオーダーで薄膜化した場合であっても、当該光学機能層内の膜厚のバラツキの発生を抑制できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that when an optical functional layer is formed by a wet film-forming method, using a sheared coating liquid, even if the optical functional layer is thinned on the nano order. The inventors have found that the occurrence of film thickness variation in the optical functional layer can be suppressed, and have completed the present invention.
 すなわち、本発明の上記課題は以下の手段により達成される。 That is, the above-described problem of the present invention is achieved by the following means.
 1.基材上に、膜厚が1~1000nmである光学機能層が少なくとも1層形成されてなる光学フィルムの製造方法であって、高分子を含む塗布液に、せん断速度1000(1/s)以上のせん断処理を加える工程(1)と、前記工程(1)で得られた塗布液を基材上に塗布して塗膜を形成する工程(2)と、を含む、製造方法;
 2.前記塗布が、1m/min以上の速度で行われる、1に記載の製造方法;
 3.前記工程(2)が、前記工程(1)の後、3時間以内に行われる、1または2に記載の製造方法;
 4.前記せん断処理が、分散装置、高速撹拌装置、吐出装置、またはこれらの組み合わせにより行われる、1~3のいずれか1つに記載の製造方法。
1. A method for producing an optical film in which at least one optical functional layer having a film thickness of 1 to 1000 nm is formed on a substrate, wherein the coating liquid containing a polymer has a shear rate of 1000 (1 / s) or more. A manufacturing method comprising: (1) applying a shearing process of (2); and (2) forming a coating film by applying the coating liquid obtained in the step (1) on a substrate;
2. 2. The manufacturing method according to 1, wherein the coating is performed at a speed of 1 m / min or more;
3. The production method according to 1 or 2, wherein the step (2) is performed within 3 hours after the step (1);
4). 4. The production method according to any one of 1 to 3, wherein the shearing treatment is performed by a dispersing device, a high-speed stirring device, a discharging device, or a combination thereof.
分散装置の一形態であるマイルダーの模式図である。It is a schematic diagram of the milder which is one form of a dispersing device. 分散装置の一形態である圧力式ホモジナイザーの模式図である。It is a schematic diagram of the pressure type homogenizer which is one form of a dispersing device. 吐出装置の一形態である外接型ギアポンプの模式図である。It is a schematic diagram of the circumscribed gear pump which is one form of the discharge device. 高速撹拌装置の一形態である汎用撹拌装置の模式図である。It is a schematic diagram of the general purpose stirring apparatus which is one form of a high-speed stirring apparatus.
 本発明の一形態は、基材上に、膜厚が1~1000nmである光学機能層が少なくとも1層形成されてなる光学フィルムの製造方法に関する。前記製造方法は、高分子を含む塗布液に、せん断速度1000(1/sec)以上のせん断処理を加える工程(1)と、前記工程(1)で得られた塗布液を基材上に塗布して塗膜を形成する工程(2)と、を含む。 One embodiment of the present invention relates to a method for producing an optical film in which at least one optical functional layer having a film thickness of 1 to 1000 nm is formed on a substrate. In the production method, the coating solution containing a polymer is subjected to a step (1) of applying a shearing treatment at a shear rate of 1000 (1 / sec) or more, and the coating solution obtained in the step (1) is coated on a substrate. And a step (2) of forming a coating film.
 本発明によれば、光学機能層をナノオーダーで薄膜化した場合であっても、当該光学機能層内の膜厚のバラツキの発生を抑制できる手段が提供される。 According to the present invention, even when the optical functional layer is thinned to the nano order, a means that can suppress the occurrence of variations in the film thickness in the optical functional layer is provided.
 <光学フィルム>
 本形態に係る製造方法で製造される光学フィルムは、基材上に、膜厚が1~1000nmである光学機能層が少なくとも1層形成されてなる。当該光学フィルムの製造方法は、高分子を含む塗布液に、せん断速度1000(1/sec)以上のせん断処理を加える工程(1)と、前記工程(1)で得られた塗布液を基材上に塗布して塗膜を形成する工程(2)と、を含む。
<Optical film>
The optical film manufactured by the manufacturing method according to this embodiment is formed by forming at least one optical functional layer having a film thickness of 1 to 1000 nm on a substrate. The method for producing the optical film includes a step (1) of applying a shearing treatment having a shear rate of 1000 (1 / sec) or more to a coating solution containing a polymer, and a coating solution obtained in the step (1) as a base material. And a step (2) of forming a coating film by coating on the top.
 光学フィルムは、光学機能層の組成、構成等によって発揮する機能が異なる。したがって、本発明に係る技術的思想は、適宜公知の事項を参酌することによって、種々の光学フィルム、例えば、赤外遮蔽フィルム、反射防止フィルム、配向フィルム、偏光フィルム、偏光板保護フィルム、位相差フィルム、視野角拡大フィルム、輝度向上フィルム、および電磁波シールドフィルム等に用いることができる。以下の説明では、屈折率の異なる屈折率層が積層されてなる赤外遮蔽フィルムについて説明するが、本発明を限定するものではない。なお、赤外遮蔽フィルムは光学フィルムに該当し、屈折率層は光学機能層に該当する。 The optical film has different functions depending on the composition and configuration of the optical functional layer. Therefore, the technical idea according to the present invention is various optical films, for example, an infrared shielding film, an antireflection film, an alignment film, a polarizing film, a polarizing plate protective film, a retardation film, by appropriately considering known matters. It can be used for a film, a viewing angle widening film, a brightness enhancement film, an electromagnetic wave shielding film, and the like. In the following description, an infrared shielding film in which refractive index layers having different refractive indexes are laminated will be described, but the present invention is not limited thereto. The infrared shielding film corresponds to an optical film, and the refractive index layer corresponds to an optical functional layer.
 一般に、赤外遮蔽フィルムにおいては、隣接する屈折率層間の屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができるという観点から好ましい。本形態では、隣接する屈折率層間の屈折率差の少なくとも1つが0.1以上であることが好ましく、0.3以上であることがより好ましく、0.4以上であることが特に好ましい。また、前記積層された屈折率層間のすべての屈折率差が上記好適な範囲内にあることが好ましい。ただし、この場合でも、反射層を構成する屈折率層のうち、最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In general, in an infrared shielding film, it is preferable to design a large difference in refractive index between adjacent refractive index layers from the viewpoint that the infrared reflectance can be increased with a small number of layers. In this embodiment, at least one of the refractive index differences between adjacent refractive index layers is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.4 or more. Moreover, it is preferable that all the refractive index differences between the laminated refractive index layers are within the preferable range. However, even in this case, the outermost layer and the lowermost layer among the refractive index layers constituting the reflective layer may have a configuration outside the above preferred range.
 特定波長領域の反射率は、隣接する2層の屈折率差と積層数で決まり、屈折率の差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率90%以上を得るためには、屈折率差が0.1より小さいと、100層以上の積層が必要となる。このような場合、生産性の低下、積層界面における散乱の増大、透明性の低下、および製造時の故障が生じうる。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the refractive index difference is smaller than 0.1, it is necessary to stack 100 layers or more. In such cases, productivity loss, increased scattering at the stack interface, reduced transparency, and manufacturing failures can occur.
 さらには、本形態の赤外遮蔽フィルムの光学特性として、JIS R3106-1998で示される可視光領域の透過率が50%以上、好ましくは75%以上、より好ましくは85%以上であることが好ましく、また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 Furthermore, as an optical characteristic of the infrared shielding film of this embodiment, the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, preferably 75% or more, more preferably 85% or more. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 赤外遮蔽フィルムは、屈折率層が積層された構成を有することにより、基材の側から、または積層された屈折率層の側から赤外光を照射した場合に、少なくとも赤外光の一部を遮蔽して赤外遮蔽効果を発揮することができる。 The infrared shielding film has a configuration in which a refractive index layer is laminated, so that at least one infrared light is irradiated when infrared light is irradiated from the base material side or from the laminated refractive index layer side. The part can be shielded to exhibit an infrared shielding effect.
 一実施形態において、前記積層された屈折率層は、高屈折率層および低屈折率層が交互に積層されてなる。積層された高屈折率層および低屈折率層は、それぞれ同じものであってもよいし、異なるものであってもよい。屈折率層が高屈折率層であるか低屈折率層であるかは、隣接する屈折率層との屈折率の対比によって判断される。具体的には、ある屈折率層を基準層としたとき、当該基準層に隣接する屈折率層が基準層より屈折率が低ければ、基準層は高屈折率層である(隣接層は低屈折率層である)と判断される。一方、基準層より隣接層の屈折率が高ければ、基準層は低屈折率層である(隣接層は高屈折率層である)と判断される。 In one embodiment, the stacked refractive index layers are formed by alternately stacking high refractive index layers and low refractive index layers. The laminated high refractive index layer and low refractive index layer may be the same or different. Whether the refractive index layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer. On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer).
 上述のように、高屈折率層であるか低屈折率層であるかは隣接する屈折率層との関係で定まる相対的なものであるが、高屈折率層の屈折率(nH)は1.60~2.50であることが好ましく、1.70~2.50であることがより好ましく、1.80~2.20であることがさらに好ましく、1.90~2.20であることが特に好ましい。一方、低屈折率層の屈折率(nL)は、1.10~1.60であることが好ましく、1.30~1.55であることがより好ましく、1.30~1.50であることがさらに好ましい。なお、各屈折率層の屈折率の値は、以下のように測定した値を採用するものとする。具体的には、支持体上に測定対象となる屈折率層を単層で塗布して得られた塗膜を10cm×10cmに断裁してサンプルを作製する。当該サンプルは、裏面での光の反射を防止するため、測定面とは反対側の面(裏面)を粗面化処理し、黒色スプレーで光吸収処理を行う。このように作製したサンプルを、分光光度計U-4000型(株式会社日立製作所製)を用いて、5度正反射の条件にて可視領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 As described above, whether the layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the adjacent refractive index layer, but the refractive index (nH) of the high refractive index layer is 1. It is preferably .60 to 2.50, more preferably 1.70 to 2.50, further preferably 1.80 to 2.20, and 1.90 to 2.20. Is particularly preferred. On the other hand, the refractive index (nL) of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and more preferably 1.30 to 1.50. More preferably. In addition, the value measured as follows shall be employ | adopted for the value of the refractive index of each refractive index layer. Specifically, a sample is prepared by cutting a coating film obtained by applying a refractive index layer to be measured as a single layer on a support to a size of 10 cm × 10 cm. In order to prevent reflection of light on the back surface of the sample, the surface opposite to the measurement surface (back surface) is roughened and light-absorbed with black spray. Using the spectrophotometer U-4000 type (manufactured by Hitachi, Ltd.), the sample thus prepared was measured for 25 points of reflectance in the visible region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees. An average value is obtained, and an average refractive index is obtained from the measurement result.
 屈折率層の総層数の範囲としては、生産性の観点から、好ましくは200層以下であり、より好ましくは100層以下であり、さらに好ましくは50層以下である。 The range of the total number of refractive index layers is preferably 200 or less, more preferably 100 or less, and even more preferably 50 or less from the viewpoint of productivity.
 屈折率層の1層あたりの厚さは、1~1000nmであり、好ましくは20~800nmであり、より好ましくは50~350nmである。 The thickness of the refractive index layer per layer is 1 to 1000 nm, preferably 20 to 800 nm, more preferably 50 to 350 nm.
 <工程(1)>
 工程(1)は、高分子を含む塗布液に、せん断速度1000(1/sec)以上のせん断処理を加える工程である。
<Step (1)>
Step (1) is a step of applying a shearing treatment with a shear rate of 1000 (1 / sec) or more to a coating solution containing a polymer.
 赤外遮蔽フィルムの製造においては、通常、塗布液として、高屈折率層用塗布液および低屈折率層用塗布液の少なくとも2種の塗布液を調製する。 In the production of an infrared shielding film, usually, at least two kinds of coating liquids, ie, a coating liquid for a high refractive index layer and a coating liquid for a low refractive index layer are prepared as coating liquids.
 [塗布液の組成]
 塗布液は、高分子を含む。さらに、必要に応じて溶媒、架橋剤、金属酸化物粒子、エマルジョン樹脂、その他の添加剤を含んでいてもよい。
[Composition of coating solution]
The coating solution contains a polymer. Furthermore, a solvent, a crosslinking agent, metal oxide particles, an emulsion resin, and other additives may be included as necessary.
 (高分子)
 用いられうる高分子としては、特に制限されないが、水溶性高分子が挙げられる。水溶性高分子としては、特に制限されないが、反応性官能基を有するポリマー、変性ポリビニルアルコール、ゼラチン、および増粘多糖類等が挙げられる。なお、本明細書において、「水溶性高分子」とは、水溶性高分子が最も溶解する温度で0.5質量%の濃度となるように水に溶解させた場合において、G2グラスフィルタ(最大細孔40~50μm)でろ過した際にろ別される不溶物の質量が、加えた水溶性高分子の50質量%以内であるものを意味する。
(High molecular)
The polymer that can be used is not particularly limited, and examples thereof include water-soluble polymers. The water-soluble polymer is not particularly limited, and examples thereof include a polymer having a reactive functional group, modified polyvinyl alcohol, gelatin, and thickening polysaccharide. In this specification, “water-soluble polymer” means a G2 glass filter (maximum) when dissolved in water so that the concentration of 0.5% by mass is obtained at the temperature at which the water-soluble polymer is most dissolved. It means that the mass of the insoluble matter that is filtered off when filtering through pores of 40 to 50 μm is within 50 mass% of the added water-soluble polymer.
 反応性官能基を有するポリマー
 本発明で用いられる反応性官能基を有するポリマーとしては、例えば、未変性ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、もしくはアクリル酸-アクリル酸エステル共重合体などのアクリル樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、もしくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体およびそれらの塩が挙げられる。これらの中でも、未変性ポリビニルアルコール類、ポリビニルピロリドン類、およびこれらの共重合体を用いることが好ましい。
Polymers having reactive functional groups Examples of polymers having reactive functional groups used in the present invention include unmodified polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, potassium acrylate- Acrylic resins such as acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid -Styrene acrylic resins such as acrylate copolymer, styrene-α-methylstyrene-acrylic acid copolymer, or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-styrenesulfonic acid Sodium copolymerization Styrene-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinylnaphthalene-acrylic acid Copolymers, vinyl naphthalene-maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-based copolymers such as vinyl acetate-acrylic acid copolymers, and the like Of the salt. Among these, it is preferable to use unmodified polyvinyl alcohols, polyvinyl pyrrolidones, and copolymers thereof.
 なお、上記反応性官能基を有するポリマーが共重合体である場合の共重合体の形態は、ブロック共重合体、ランダム共重合体、グラフト共重合体、交互共重合体のいずれであってもよい。 The form of the copolymer when the polymer having the reactive functional group is a copolymer may be any of a block copolymer, a random copolymer, a graft copolymer, and an alternating copolymer. Good.
 変性ポリビニルアルコール
 本発明において用いられる変性ポリビニルアルコールは、未変性ポリビニルアルコールに任意の変性処理の1または2以上を施したものである。例えば、アミン変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、カルボン酸変性ポリビニルアルコール、ジアセトン変性ポリビニルアルコール、チオール変性ポリビニルアルコール、アセタール変性ポリビニルアルコール等が挙げられる。これらの変性ポリビニルアルコールは、市販品を使用してもよく、あるいは当該分野で公知の方法で製造したものを使用してもよい。
Modified Polyvinyl Alcohol The modified polyvinyl alcohol used in the present invention is one obtained by subjecting unmodified polyvinyl alcohol to one or more arbitrary modification treatments. Examples thereof include amine-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, carboxylic acid-modified polyvinyl alcohol, diacetone-modified polyvinyl alcohol, thiol-modified polyvinyl alcohol, and acetal-modified polyvinyl alcohol. As these modified polyvinyl alcohols, commercially available products may be used, or those produced by methods known in the art may be used.
 また、末端をカチオン変性したポリビニルアルコールやアニオン性基を有するアニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール等の変性ポリビニルアルコールも用いてもよい。 Further, modified polyvinyl alcohols such as polyvinyl alcohol having a cation-modified terminal, anion-modified polyvinyl alcohol having an anionic group, and nonion-modified polyvinyl alcohol may also be used.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールが挙げられ、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A-61-10383 in the main chain or side chain of the polyvinyl alcohol. It can be obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン性基を有するエチレン性不飽和単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxyethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the ethylenically unsaturated monomer having a cationic group in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールとしては、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているようなビニルアルコールと水溶性基を有するビニル化合物との共重合体、および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Examples of the anion-modified polyvinyl alcohol include polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 そして、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group as described in JP-A-7-9758 is added to a part of vinyl alcohol, and JP-A-8-25795. The block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned.
 上述の変性ポリビニルアルコールのうち、(1)平均重合度200以上2400以下の未変性ポリビニルアルコールと、(2)不飽和カルボン酸並びにその塩およびエステルからなる群から選択される1種または2種以上の重合性ビニル単量体とを共重合させて得られる共重合体(グラフト共重合体)を用いることが好ましい。 Among the above-mentioned modified polyvinyl alcohols, (1) one or more selected from the group consisting of unmodified polyvinyl alcohol having an average degree of polymerization of 200 or more and 2400 or less, and (2) unsaturated carboxylic acid and salts and esters thereof. It is preferable to use a copolymer (graft copolymer) obtained by copolymerizing with a polymerizable vinyl monomer.
 なお、変性ポリビニルアルコールが上記グラフト共重合体である場合において、当該グラフト共重合体を構成する(1)平均重合度200以上2400以下の未変性ポリビニルアルコールとして、上述した各種の変性ポリビニルアルコールを用いてもよい。 In the case where the modified polyvinyl alcohol is the above graft copolymer, the above-mentioned various modified polyvinyl alcohols are used as the unmodified polyvinyl alcohol having an average degree of polymerization of 200 or more and 2400 or less constituting the graft copolymer (1). May be.
 変性ポリビニルアルコールの原料となる未変性ポリビニルアルコールとしては、平均重合度が約200~2400、好ましくは平均重合度約900~2400、より好ましくは平均重合度約1300~1700である。また、未変性ポリビニルアルコールのケン化度は、好ましくは約60~100モル%、より好ましくは78~96モル%である。このようなケン化ポリビニルアルコールは、酢酸ビニルをラジカル重合し、得られたポリ酢酸ビニルを適宜、ケン化することによって製造することができ、所望の未変性ポリビニルアルコールを製造するためには、適宜、重合度、ケン化度をそれ自体公知の方法で制御することによって達成される。 The unmodified polyvinyl alcohol used as the raw material for the modified polyvinyl alcohol has an average degree of polymerization of about 200 to 2400, preferably an average degree of polymerization of about 900 to 2400, and more preferably an average degree of polymerization of about 1300 to 1700. The degree of saponification of unmodified polyvinyl alcohol is preferably about 60 to 100 mol%, more preferably 78 to 96 mol%. Such a saponified polyvinyl alcohol can be produced by radical polymerization of vinyl acetate and appropriately saponifying the obtained polyvinyl acetate. In order to produce a desired unmodified polyvinyl alcohol, The polymerization degree and saponification degree are controlled by a method known per se.
 なお、こうした部分ケン化ポリビニルアルコールとしては、市販品を使用することも可能であり、好ましい未変性ポリビニルアルコールの市販品としては、例えばゴーセノールEG05、EG25(日本合成化学工業株式会社製)、PVA203(株式会社クラレ製)、PVA204(株式会社クラレ製)、PVA205(株式会社クラレ製)、JP-04(日本酢ビ・ポバール株式会社製)、JP-05(日本酢ビ・ポバール株式会社製)等が挙げられる。なお、変性ポリビニルアルコールの原料として1種のみの未変性ポリビニルアルコールを単独で使用するのみならず、重合度、ケン化度の異なる2種以上の未変性ポリビニルアルコールを目的に応じて適宜併用することができる。例えば、平均重合度300の未変性ポリビニルアルコールと平均重合度1500の未変性ポリビニルアルコールとを混合して使用することが可能である。 In addition, as such a partially saponified polyvinyl alcohol, it is possible to use a commercially available product. Examples of preferable commercially available unmodified polyvinyl alcohol include Gohsenol EG05, EG25 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), PVA203 ( Manufactured by Kuraray Co., Ltd.), PVA204 (manufactured by Kuraray Co., Ltd.), PVA205 (manufactured by Kuraray Co., Ltd.), JP-04 (manufactured by Nihon Vinegar & Poval Co., Ltd.), JP-05 (manufactured by Nihon Venture & Poval Co., Ltd.) Is mentioned. In addition, not only one kind of unmodified polyvinyl alcohol is used alone as a raw material for the modified polyvinyl alcohol, but also two or more kinds of unmodified polyvinyl alcohols having different degrees of polymerization and saponification may be appropriately used in accordance with the purpose. Can do. For example, unmodified polyvinyl alcohol having an average polymerization degree of 300 and unmodified polyvinyl alcohol having an average polymerization degree of 1500 can be mixed and used.
 原料の未変性(変性)ポリビニルアルコールと重合させる重合性ビニル単量体としては、アクリル酸、メタクリル酸、クロトン酸、フマル酸、マレイン酸、イタコン酸等の不飽和カルボン酸類またはそれらの塩(例えばアルカリ金属塩、アンモニウム塩、アルキルアミン塩)、それらのエステル類(例えば置換または非置換のアルキルエステル、環状アルキルエステル、ポリアルキレングリコールエステル)、不飽和ニトリル類、不飽和アミド類、芳香族ビニル類、脂肪族ビニル類、不飽和結合含有複素環類等が挙げられる。具体的には、(a)アクリル酸エステル類としては、例えば、メチルアクリレート、エチルアクリレート、ブチルアクリレート、イソブチルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ヒドロキシエチルアクリレート、ポリエチレングリコールアクリレート(ポリエチレングリコールとアクリル酸とのエステル)、ポリプロピレングリコールアクリレート(ポリプロピレングリコールとアクリル酸とのエステル)などが、(b)メタクリル酸エステル類としては、例えばメチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ヒドロキシエチルメタクリレート、ポリエチレングリコールメタクリレート(ポリエチレングリコールとメタクリル酸とのエステル)などが、(c)不飽和ニトリル類としては、例えばアクリロニトリル、メタクリロニトリルなどが、(d)不飽和アミド類としては例えばアクリルアミド、ジメチルアクリルアミド、メタクリルアミドなどが、(e)芳香族ビニル類としてはスチレン、α-メチルスチレンなどが、(f)脂肪族ビニル類としては、酢酸ビニルなどが、(g)不飽和結合含有複素環類としては、N-ビニルピロリドン、アクリロイルモルホリンなどが例示される。 Examples of the polymerizable vinyl monomer that is polymerized with the raw unmodified (modified) polyvinyl alcohol include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, or salts thereof (for example, Alkali metal salts, ammonium salts, alkylamine salts), esters thereof (eg, substituted or unsubstituted alkyl esters, cyclic alkyl esters, polyalkylene glycol esters), unsaturated nitriles, unsaturated amides, aromatic vinyls , Aliphatic vinyls, unsaturated bond-containing heterocycles, and the like. Specifically, (a) acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, polyethylene glycol acrylate (polyethylene glycol and acrylic acid Ester) and polypropylene glycol acrylate (ester of polypropylene glycol and acrylic acid). (B) Examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, and 2-ethylhexyl. Methacrylate, hydroxyethyl methacrylate, polyethylene glycol Tacrylate (ester of polyethylene glycol and methacrylic acid), etc. (c) Unsaturated nitriles such as acrylonitrile, methacrylonitrile, etc. (d) Unsaturated amides such as acrylamide, dimethylacrylamide, methacrylamide (E) aromatic vinyls such as styrene and α-methylstyrene, (f) aliphatic vinyls such as vinyl acetate, and (g) unsaturated bond-containing heterocycles such as N -Vinylpyrrolidone, acryloylmorpholine and the like are exemplified.
 上述の変性ポリビニルアルコールは、未変性ポリビニルアルコールまたはその誘導体をそれ自体公知の方法で変性処理することにより製造することができる。 The above-mentioned modified polyvinyl alcohol can be produced by modifying unmodified polyvinyl alcohol or a derivative thereof by a method known per se.
 特に、変性ポリビニルアルコールとしての上記グラフト共重合体を製造する方法としては、ラジカル重合、例えば溶液重合、懸濁重合、乳化重合および塊状重合などのそれ自体公知の方法を挙げることができ、各々の通常の重合条件下で実施することができる。この重合反応は、通常、重合開始剤の存在下、必要に応じて還元剤(例えば、エリソルビン酸ナトリウム、メタ重亜硫酸ナトリウム、アスコルビン酸)、連鎖移動剤(例えば2-メルカプトエタノール、α-メチルスチレンダイマー、2-エチルヘキシルチオグリコレート、ラウリルメルカプタン)あるいは分散剤(例えばソルビタンエステル、ラウリルアルコールなどの界面活性剤)等の存在下、水、有機溶媒(例えばメタノール、エタノール、セロソルブ、カルビトール)あるいはそれらの混合物中で実施される。また、未反応の単量体の除去方法、乾燥、粉砕方法等も公知の方法でよく、特に制限はない。 In particular, examples of the method for producing the graft copolymer as the modified polyvinyl alcohol include methods known per se such as radical polymerization, for example, solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization. It can be carried out under normal polymerization conditions. This polymerization reaction is usually performed in the presence of a polymerization initiator, if necessary, as a reducing agent (for example, sodium erythorbate, sodium metabisulfite, ascorbic acid), a chain transfer agent (for example, 2-mercaptoethanol, α-methylstyrene). Dimer, 2-ethylhexylthioglycolate, lauryl mercaptan) or a dispersant (for example, a surfactant such as sorbitan ester or lauryl alcohol), water, an organic solvent (for example, methanol, ethanol, cellosolve, carbitol) or the like In a mixture of Moreover, the removal method of an unreacted monomer, drying, a grinding | pulverization method, etc. may be well-known methods, and there is no restriction | limiting in particular.
 ゼラチン
 本発明で用いられるゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを挙げることができる。例えば、酸処理ゼラチン、アルカリ処理ゼラチンの他に、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチンおよびゼラチン誘導体、すなわち分子中に官能基としてのアミノ基、イミノ基、ヒドロキシ基、またはカルボキシ基を有し、それと反応して得る基を持った試薬で処理し改質したものでもよい。ゼラチンの一般的製造法に関しては良く知られており、例えば、T.H.James:The Theory of Photographic Process 4th.ed.1977(Macmillan)55頁、科学写真便覧(上)72~75頁(丸善株式会社)、写真工学の基礎-銀塩写真編 119~124頁(コロナ社)等の記載を参考にすることができる。また、リサーチ・ディスクロージャー誌第176巻、No.17643(1978年12月)のIXページに記載されているゼラチンを挙げることができる。
Gelatin As the gelatin used in the present invention, various gelatins which have been widely used in the field of silver halide photographic materials can be exemplified. For example, in addition to acid-treated gelatin and alkali-treated gelatin, enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the gelatin production process, that is, amino, imino, hydroxy, or carboxy groups as functional groups in the molecule It may be modified by treating with a reagent having a group obtained by reacting with it. The general method for producing gelatin is well known and is described, for example, in T.W. H. James: The Theory of Photographic Process 4th. ed. Reference can be made to descriptions such as 1977 (Macmillan), p. 55, Science Photo Handbook (above), p. 72-75 (Maruzen Co., Ltd.), Photographic Engineering Basics-Silver Salt Photography, p. 119-124 (Corona). . Also, Research Disclosure Magazine Vol. 176, No. The gelatin described in IX page of 17643 (December, 1978) can be mentioned.
 増粘多糖類
 本発明で用いられる増粘多糖類としては、特に制限はなく、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類および合成複合多糖類などを挙げることができる。これら増粘多糖類の詳細については、「生化学辞典(第2版)」(東京化学同人)、「食品工業」第31巻(1988)21頁等を参照することができる。
Thickening polysaccharide There is no restriction | limiting in particular as thickening polysaccharide used by this invention, For example, generally known natural simple polysaccharide, natural complex polysaccharide, synthetic simple polysaccharide, synthetic complex polysaccharide, etc. are mentioned. be able to. For details of these thickening polysaccharides, reference can be made to “Biochemical Dictionary (2nd edition)” (Tokyo Kagaku Dojin), “Food Industry”, Vol. 31 (1988), p.
 前記増粘多糖類とは、糖類の重合体で、分子内に水素結合基を多数有するものであり、温度による分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度との差が大きいという特性を備えた多糖類であり、さらに金属酸化物粒子や多価金属化合物を添加すると、低温時に金属酸化物粒子または多価金属化合物との反応により金属酸化物粒子または多価金属化合物との水素結合またはイオン結合を形成して、粘度上昇またはゲル化を引き起こすものである。粘度の上昇幅は、金属酸化物粒子または多価金属化合物の添加前の15℃における粘度と比較して、15℃の粘度で、1.0mPa・s以上であることが好ましい。粘度上昇幅は、より好ましくは5.0mPa・s以上であり、さらに好ましくは10.0mPa・s以上である。なお、本明細書において、粘度は、ブルックフィールド粘度計により測定した値を採用するものとする。 The thickening polysaccharide is a polymer of saccharides and has a large number of hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature are different. It is a polysaccharide with the characteristic that the difference is large, and when metal oxide particles or polyvalent metal compounds are added, the metal oxide particles or polyvalent metals react with the metal oxide particles or polyvalent metal compounds at low temperatures. It forms a hydrogen bond or ionic bond with the compound, causing an increase in viscosity or gelation. The increase in viscosity is preferably 1.0 mPa · s or more at 15 ° C. compared to the viscosity at 15 ° C. before the addition of the metal oxide particles or the polyvalent metal compound. The viscosity increase width is more preferably 5.0 mPa · s or more, and further preferably 10.0 mPa · s or more. In this specification, a value measured with a Brookfield viscometer is adopted as the viscosity.
 本発明に適用可能な増粘多糖類のさらに具体的な例としては、例えば、ペクチン、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム、タマリンドシードガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ゲランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸およびアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース類が挙げられる。塗布液中に共存しうる金属酸化物粒子の分散安定性を低下させないという観点から、その構成単位がカルボン酸基やスルホン酸基を有しないものが好ましい。その様な多糖類としては、例えば、L-アラビトース、D-リボース、2-デオキシリボース、D-キシロースなどのペントース、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトースなどのヘキソースのみからなる多糖類であることが好ましい。具体的には、主鎖がグルコースであり、側鎖もグルコースであるキシログルカンとして知られるタマリンドシードガムや、主鎖がマンノースで側鎖がグルコースであるガラクトマンナンとして知られるグアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガム、ローカストビーンガム、タラガムや、主鎖がガラクトースで側鎖がアラビノースであるアラビノガラクタンを好ましく使用することができる。 More specific examples of thickening polysaccharides applicable to the present invention include, for example, pectin, galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xyloglucan, etc. (Eg, tamarind gum, tamarind seed gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan ( For example, soybean-derived glycan, microorganism-derived glycan, etc.), glucoraminoglycan (eg, gellan gum), glycosaminoglycan (eg, hyaluronic acid, keratan sulfate, etc.), alginic acid and alginate, agar, κ-carrageenan, λ -Carrageenan, Examples thereof include natural polymer polysaccharides derived from red algae such as ι-carrageenan and furseleran, and celluloses such as carboxymethyl cellulose (cellulose carboxymethyl ether), carboxyethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose. From the viewpoint of not reducing the dispersion stability of the metal oxide particles that can coexist in the coating solution, those in which the structural unit does not have a carboxylic acid group or a sulfonic acid group are preferable. Such polysaccharides include, for example, pentoses such as L-arabitose, D-ribose, 2-deoxyribose, and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose, and D-galactose only. It is preferable that it is a polysaccharide. Specifically, tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is glucose, guar gum known as galactomannan whose main chain is mannose and side chain is glucose, cationized guar gum, Hydroxypropyl guar gum, locust bean gum, tara gum, and arabinogalactan whose main chain is galactose and whose side chain is arabinose can be preferably used.
 上述の高分子は単独で用いてもよいし、2種類以上を混合して用いてもよい。 The above polymers may be used alone or in combination of two or more.
 また、高分子の質量平均分子量は1000以上であることが好ましく、5000~1000000であることがより好ましく、10000~100000であることがさらに好ましい。なお、本明細書において、質量平均分子量とは、TSKgel GMHxL、TSKgel G4000HxLまたはTSKgel G2000HxL(東ソー株式会社製)のカラムを使用したゲルパーミエーションクロマトフラフィ(GPC)分析装置(溶媒:テトラヒドロフラン(THF))により、示差屈折計検出によるポリスチレン換算で表した分子量を意味する。 In addition, the mass average molecular weight of the polymer is preferably 1000 or more, more preferably 5000 to 1000000, and still more preferably 10,000 to 100,000. In this specification, the mass average molecular weight is a gel permeation chromatography (GPC) analyzer using a TSKgel GMHxL, TSKgel G4000HxL or TSKgel G2000HxL (Tosoh Corporation) column (solvent: tetrahydrofuran (THF)). ) Means the molecular weight expressed in terms of polystyrene by differential refractometer detection.
 塗布液中の高分子の濃度は、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。高分子の濃度が上記範囲にあると、塗布液が一定の粘性を有し成膜に有利となりうることから好ましい。 The concentration of the polymer in the coating solution is preferably 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass. It is preferable for the concentration of the polymer to be in the above range since the coating solution has a certain viscosity and can be advantageous for film formation.
 (溶媒)
 本発明で用いられうる溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒等が挙げられる。
(solvent)
The solvent that can be used in the present invention is not particularly limited, and examples thereof include water, an organic solvent, or a mixed solvent thereof.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類;ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類;ジメチルホルムアミド、N-メチルピロリドンなどのアミド類;アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上を混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒を用いることが好ましく、水を用いることがより好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol; esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate; diethyl ether; Examples include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether; amides such as dimethylformamide and N-methylpyrrolidone; ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in admixture of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 (架橋剤)
 架橋剤は、高分子を硬化させる機能を有する。硬化によって、屈折率層に耐水性が付与されうる。
(Crosslinking agent)
The crosslinking agent has a function of curing the polymer. By curing, water resistance can be imparted to the refractive index layer.
 用いられうる架橋剤としては、高分子と硬化反応を起こすものであれば特に制限されない。例えば、高分子が未変性ポリビニルアルコールまたは変性ポリビニルアルコールである場合には、ホウ酸およびその塩(ホウ素原子を中心原子とする酸素酸およびその塩)、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸、および八ホウ酸またはそれらの塩を用いることが好ましい。ホウ酸およびその塩は、単独の水溶液でも、また、2種以上を混合して使用してもよく、ホウ酸およびホウ砂の混合水溶液を用いることが特に好ましい。他にも公知の化合物を使用することができ、一般的には高分子と反応しうる基を有する化合物、または樹脂が有する異なる基同士の反応を促進するような化合物であり、樹脂の種類に応じて適宜選択して用いられる。架橋剤の具体例としては、例えば、ジグリシジルエチルエ-テル、エチレングリコ-ルジグリシジルエーテル、1,4一ブタンジオ-ルジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロ-ルポリグリシジルエーテル等のエポキシ系架橋剤;ホルムアルデヒド、グリオキザ-ル等のアルデヒド系架橋剤;2,4-ジクロロ-4-ヒドロキシ-1,3,5-S-トリアジン等の活性ハロゲン系架橋剤;1.3.5-トリス-アクリロイル-ヘキサヒドロ-S-トリアジン、ビスビニルスルホニルメチルエーテル等の活性ビニル系化合物;アルミニウム明礬等が挙げられる。 The crosslinking agent that can be used is not particularly limited as long as it causes a curing reaction with a polymer. For example, when the polymer is unmodified polyvinyl alcohol or modified polyvinyl alcohol, boric acid and its salt (oxygen acid and its salt centered on a boron atom), specifically, orthoboric acid and diboric acid , Metaboric acid, tetraboric acid, pentaboric acid, and octaboric acid or salts thereof are preferably used. Boric acid and its salt may be used alone or in admixture of two or more, and it is particularly preferable to use a mixed aqueous solution of boric acid and borax. Other known compounds can also be used, and are generally compounds having a group capable of reacting with a polymer, or compounds that promote the reaction between different groups of a resin. It is appropriately selected and used accordingly. Specific examples of the crosslinking agent include, for example, diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl-4- Epoxy crosslinking agents such as glycidyloxyaniline, sorbitol polyglycidyl ether, glyceryl polyglycidyl ether; aldehyde crosslinking agents such as formaldehyde and glycoxal; 2,4-dichloro-4-hydroxy-1,3,5- Examples include active halogen-based crosslinking agents such as S-triazine; 1.3.5-active vinyl compounds such as tris-acryloyl-hexahydro-S-triazine and bisvinylsulfonylmethyl ether; and aluminum alum.
 また、樹脂としてゼラチンを用いる場合は、架橋剤として、例えば、ビニルスルホン化合物、尿素-ホルマリン縮合物、メラニン-ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物などの有機硬膜剤、クロム、アルミニウム、ジルコニウムなどの無機多価金属塩類などを用いるとよい。 When gelatin is used as the resin, as the crosslinking agent, for example, organic compounds such as vinylsulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds, etc. Hardeners, inorganic polyvalent metal salts such as chromium, aluminum and zirconium may be used.
 塗布液中の架橋剤の濃度は、0.001~20質量%であることが好ましく、0.01~10質量%であることがより好ましい。架橋剤が上記範囲にあると、塗布液が一定の曳糸性や粘性を有し成膜に有利となり、また、形成される屈折率層が好適な耐水性を有しうることから好ましい。 The concentration of the crosslinking agent in the coating solution is preferably 0.001 to 20% by mass, and more preferably 0.01 to 10% by mass. When the cross-linking agent is in the above range, the coating solution has a certain spinnability and viscosity, which is advantageous for film formation, and the formed refractive index layer can have suitable water resistance.
 (金属酸化物粒子)
 用いられうる金属酸化物粒子としては、特に制限されないが、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化ニオブ(Nb)、酸化アルミニウム(Al)、酸化ケイ素(SiO)、フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)等が挙げられる。これらのうち、高屈折率層用塗布液には酸化チタン(TiO)を、低屈折率層用塗布液には酸化ケイ素(SiO)を、それぞれ用いることが好ましい。
(Metal oxide particles)
The metal oxide particles which can be used is not particularly limited, titanium oxide (TiO 2), zinc oxide (ZnO), zirconium oxide (ZrO 2), niobium oxide (Nb 2 O 5), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), indium tin oxide (ITO), antimony tin oxide (ATO), and the like. Of these, titanium oxide (TiO 2 ) is preferably used for the high refractive index layer coating solution, and silicon oxide (SiO 2 ) is preferably used for the low refractive index layer coating solution.
 前記酸化チタン(TiO)としては、特に屈折率が高く、触媒活性が低いルチル型の酸化チタンを用いることが好ましい。なお、触媒活性が低いと、屈折率層や隣接する層で生じる副反応(光触媒反応)が抑制されて耐候性が高くなりうる。 As the titanium oxide (TiO 2 ), it is particularly preferable to use a rutile type titanium oxide having a high refractive index and low catalytic activity. If the catalytic activity is low, side reactions (photocatalytic reactions) that occur in the refractive index layer and adjacent layers can be suppressed, and the weather resistance can be increased.
 また、前記酸化チタンは、pHが1.0~3.0かつチタン粒子のゼータ電位が正である水系の酸化チタンゾルの表面を疎水化して有機溶剤に分散可能な状態にしたものを用いることが好ましい。前記水系の酸化チタンゾルの調製方法としては、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照することができる。 As the titanium oxide, a water-based titanium oxide sol having a pH of 1.0 to 3.0 and having a positive zeta potential of titanium particles is hydrophobized so that it can be dispersed in an organic solvent. preferable. Examples of the method for preparing the aqueous titanium oxide sol include Japanese Patent Laid-Open Nos. 63-17221, 7-819, 9-165218, 11-43327, and 63. Reference can be made to the matters described in JP-A-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, and the like.
 また、酸化チタン粒子のその他の製造方法については、たとえば、「酸化チタン-物性と応用技術」(清野学 p255~258(2000年)技報堂出版株式会社)に記載の方法、またはWO2007/039953号明細書の段落「0011」~「0023」に記載の工程(2)の方法を参考にすることができる。前記工程(2)による製造方法とは、二酸化チタン水和物をアルカリ金属の水酸化物およびアルカリ土類金属の水酸化物からなる群から選択される少なくとも1種の塩基性化合物で処理する工程(1)で得られた二酸化チタン分散物を、カルボン酸基含有化合物および無機酸で処理するものである。本発明では、工程(2)における無機酸によりpHが1.0~3.0に調整された酸化チタンの水系ゾルを用いることができる。 As for other methods for producing titanium oxide particles, for example, the method described in “Titanium oxide—physical properties and applied technology” (Kagino Kiyono, p. 255-258 (2000) Gihodo Publishing Co., Ltd.), or WO 2007/039953 The method of step (2) described in paragraphs “0011” to “0023” of the document can be referred to. The production method according to the step (2) is a step of treating titanium dioxide hydrate with at least one basic compound selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides. The titanium dioxide dispersion obtained in (1) is treated with a carboxylic acid group-containing compound and an inorganic acid. In the present invention, an aqueous sol of titanium oxide having a pH adjusted to 1.0 to 3.0 with an inorganic acid in the step (2) can be used.
 前記酸化ケイ素(SiO)としては、合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、水および/または有機溶媒に分散させたコロイダルシリカゾルを用いることがさらに好ましい。上記のコロイダルシリカは、ケイ酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られうる。かようなコロイダルシリカは、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号パンフレット等に記載されている。また、コロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。 Examples of the silicon oxide (SiO 2 ) include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use an acidic colloidal silica sol, and it is more preferable to use a colloidal silica sol dispersed in water and / or an organic solvent. The colloidal silica can be obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. Such colloidal silica is disclosed in, for example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61- No. 188183, No. 63-17807, No. 4-93284, No. 5-278324, No. 6-92011, No. 6-183134, No. 6-297830 No. 7-81214, No. 7-101142, No. 7-179029, No. 7-137431, pamphlet of International Publication No. 94/26530, etc. . Colloidal silica may be a synthetic product or a commercially available product.
 上記金属酸化物粒子は、単独で用いても、2種以上を混合して用いてもよい。 The metal oxide particles may be used alone or in combination of two or more.
 金属酸化物粒子の平均粒径は、2~100nmであることが好ましく、3~50nmであることがより好ましく、4~30nmであることがさらに好ましい。当該金属酸化物粒子の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The average particle diameter of the metal oxide particles is preferably 2 to 100 nm, more preferably 3 to 50 nm, and further preferably 4 to 30 nm. The average particle size of the metal oxide particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1000 arbitrary particles, and calculating the simple average value ( (Number average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 塗布液中の金属酸化物粒子の濃度は、屈折率層の固形分100質量%に対して、20~70質量%であることが好ましく、30~70質量%であることがより好ましい。金属酸化物粒子の含有量が20質量%以上であると、所望の屈折率が得られることから好ましい。また、金属酸化物粒子の含有量が70質量%以下であると、膜の柔軟性を得ることができ、製膜が容易となることから好ましい。 The concentration of the metal oxide particles in the coating solution is preferably 20 to 70% by mass and more preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the refractive index layer. It is preferable that the content of the metal oxide particles is 20% by mass or more because a desired refractive index can be obtained. Further, it is preferable that the content of the metal oxide particles is 70% by mass or less because flexibility of the film can be obtained and film formation becomes easy.
 また、屈折率の異なる屈折率層(例えば、高屈折率層と低屈折率層)がいずれも金属酸化物粒子を含む場合には、アニオン化処理またはカチオン化処理を行い、金属酸化物粒子が同一のイオン性(電荷)を有することが好ましい。アニオン化処理またはカチオン化処理を行うことによって、2種の金属酸化物粒子との間に斥力が生じ、これによって、例えば、重層塗布して屈折率層を形成する際に層界面での凝集等が起こりにくくなりうる。 In addition, when both refractive index layers having different refractive indexes (for example, a high refractive index layer and a low refractive index layer) include metal oxide particles, anionization treatment or cationization treatment is performed, and the metal oxide particles It is preferable to have the same ionicity (charge). By performing anionization treatment or cationization treatment, a repulsive force is generated between the two types of metal oxide particles. For example, when a refractive index layer is formed by multilayer coating, aggregation at the layer interface, etc. Can be difficult to occur.
 金属酸化物粒子のアニオン化処理として、例えば、酸化チタンのアニオン処理を例示すると、当該酸化チタン粒子は、含ケイ素の水和酸化物で被覆することによりアニオン化することができる。含ケイ素の水和化合物の被覆量は、通常、3~30質量%であり、好ましくは3~10質量%であり、より好ましくは3~8質量%である。被覆量が30質量%以下であると高屈折率層の所望の屈折率化が得られることから好ましく、被覆量が3%以上であると粒子を安定に形成することができることから好ましい。 As an anionization treatment of metal oxide particles, for example, anion treatment of titanium oxide is exemplified. The titanium oxide particles can be anionized by coating with a silicon-containing hydrated oxide. The coating amount of the silicon-containing hydrated compound is usually 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass. When the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
 金属酸化物粒子のカチオン化処理は、例えば、カチオン性化合物を用いることにより行うことができる。前記カチオン性化合物の例としては、カチオン性ポリマー、多価金属塩等が挙げられるが、吸着力・透明性の観点から多価金属塩が好ましい。多価金属塩としては、アルミニウム、カルシウム、マグネシウム、亜鉛、鉄、ストロンチウム、バリウム、ニッケル、銅、スカンジウム、ガリウム、インジウム、チタン、ジルコニウム、スズ、鉛等の金属の塩酸塩、硫酸塩、硝酸塩、酢酸塩、ギ酸塩、コハク酸塩、マロン酸塩、クロロ酢酸塩等が挙げられる。これらのうち、水溶性アルミニウム化合物、水溶性カルシウム化合物、水溶性マグネシウム化合物、水溶性亜鉛化合物、水溶性ジルコニウム化合物を用いることが好ましく、水溶性アルミニウム化合物、水溶性ジルコニウム化合物を用いることがより好ましい。前記水溶性アルミニウム化合物の具体例としては、ポリ塩化アルミニウム(塩基性塩化アルミニウム)、硫酸アルミニウム、塩基性硫酸アルミニウム、硫酸アルミニウムカリウム(ミョウバン)、硫酸アンモニウムアルミニウム(アンモニウムミョウバン)、硫酸ナトリウムアルミニウム、硝酸アルミニウム、リン酸アルミニウム、炭酸アルミニウム、ポリ硫酸ケイ酸アルミニウム、酢酸アルミニウム、塩基性乳酸アルミニウム等が挙げられる。当該カチオン性化合物の被覆量は、金属酸化物粒子の形状や粒径等によって異なるが、金属酸化物粒子に対しては1質量%~15質量%であることが好ましい。 The cationization treatment of the metal oxide particles can be performed by using, for example, a cationic compound. Examples of the cationic compound include a cationic polymer and a polyvalent metal salt, and a polyvalent metal salt is preferred from the viewpoint of adsorption power and transparency. Examples of polyvalent metal salts include aluminum, calcium, magnesium, zinc, iron, strontium, barium, nickel, copper, scandium, gallium, indium, titanium, zirconium, tin, lead, and other metal hydrochlorides, sulfates, nitrates, Examples include acetate, formate, succinate, malonate, chloroacetate and the like. Of these, water-soluble aluminum compounds, water-soluble calcium compounds, water-soluble magnesium compounds, water-soluble zinc compounds, and water-soluble zirconium compounds are preferably used, and water-soluble aluminum compounds and water-soluble zirconium compounds are more preferably used. Specific examples of the water-soluble aluminum compound include polyaluminum chloride (basic aluminum chloride), aluminum sulfate, basic aluminum sulfate, aluminum potassium sulfate (alum), ammonium aluminum sulfate (ammonium alum), sodium aluminum sulfate, aluminum nitrate, Examples thereof include aluminum phosphate, aluminum carbonate, polysulfuric acid aluminum silicate, aluminum acetate, and basic aluminum lactate. The coating amount of the cationic compound varies depending on the shape and particle size of the metal oxide particles, but is preferably 1% by mass to 15% by mass with respect to the metal oxide particles.
 (エマルジョン樹脂)
 エマルジョン樹脂は、通常、塗布液に分散されたポリマーである。当該エマルジョン樹脂は、後述する工程(2)における塗布時に互いに融着しうる。エマルジョン樹脂は、油溶性のモノマーを、高分子分散剤等を用いてエマルジョン重合して得られる。
(Emulsion resin)
The emulsion resin is usually a polymer dispersed in a coating solution. The emulsion resins can be fused to each other at the time of application in the step (2) described later. The emulsion resin is obtained by emulsion polymerization of an oil-soluble monomer using a polymer dispersant or the like.
 用いられうる油溶性のモノマーは、特に制限されないが、エチレン、プロピレン、ブタジエン、酢酸ビニルおよびその部分加水分解物、ビニルエーテル、アクリル酸およびそのエステル類、メタクリル酸およびそのエステル類、アクリルアミドおよびその誘導体、メタクリルアミドおよびその誘導体、スチレン、ジビニルベンゼン、塩化ビニル、塩化ビニリデン、マレイン酸、ビニルピロリドンなどが挙げられる。これらのうち、透明性と粒径の観点から、アクリル酸およびそのエステル類、酢酸ビニル系を用いることが好ましい。 Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Examples thereof include methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone and the like. Of these, acrylic acid, its esters, and vinyl acetate are preferably used from the viewpoint of transparency and particle size.
 アクリル酸および/またはそのエステル類、酢酸ビニル系エマルジョンとしては、市販されているものを用いてもよく、例えば、アクリットUW-309、UW-319SX、UW-520(大成ファインケミカル株式会社製)、およびモビニール(日本合成化学工業株式会社製)等が挙げられる。 As acrylic acid and / or its esters and vinyl acetate emulsion, commercially available ones may be used. For example, Acryt UW-309, UW-319SX, UW-520 (manufactured by Taisei Fine Chemical Co., Ltd.), and Mobile vinyl (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and the like.
 また、用いられうる分散剤は、特に制限されないが、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、第4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。 Further, the dispersant that can be used is not particularly limited, but in addition to a low-molecular dispersant such as alkyl sulfonate, alkylbenzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt, polyoxyethylene nonylphenyl is used. Examples thereof include polymer dispersants such as ether, polyethylene ethylene laurate, hydroxyethyl cellulose, and polyvinyl pyrrolidone.
 上述したエマルジョンは、柔軟性を高める観点から、ガラス転移温度(Tg)が20℃以下であることが好ましく、-30~10℃であることがより好ましい。 The above-mentioned emulsion preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably −30 to 10 ° C. from the viewpoint of enhancing flexibility.
 (その他の添加剤)
 本発明に係る屈折率層に適用可能なその他の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、および特開昭62-261476号公報に記載の紫外線吸収剤、アニオン、カチオン、またはノニオンの各種界面活性剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、酸化防止剤、難燃剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
(Other additives)
Other additives applicable to the refractive index layer according to the present invention are listed below. For example, ultraviolet absorbers, anionic, cationic or nonionic surfactants described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, sulfuric acid, PH adjusters such as phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide and potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, antioxidants And various known additives such as additives, flame retardants, infrared absorbers, dyes and pigments.
 [塗布液の調製工程]
 塗布液の調製方法は、特に制限されず、例えば、高分子、および必要に応じて架橋剤、金属酸化物粒子等の添加剤を溶媒に添加し、撹拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。
[Preparation process of coating solution]
The method for preparing the coating solution is not particularly limited, and examples thereof include a method in which a polymer and, if necessary, an additive such as a crosslinking agent and metal oxide particles are added to a solvent and mixed by stirring. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
 塗布液中において、前記高分子は分子間および分子内において、末端基による結合、架橋剤における結合、分子どうしの絡み合い等の相互作用が生じる場合があり、このような高分子は、見かけの分子サイズが大きくなっている。当該見かけの分子サイズの増大は、前記相互作用の有無およびその度合い等によって異なることから、塗布液中には、見かけの分子サイズが異なる種々の高分子が混在することになる。このような状態で基材上に塗布液を塗布すると、塗布液が基材に接する際に、塗布液が均一な厚さに引き伸ばされることなく塗膜が形成される。その結果、屈折率層の膜厚にバラツキが生じる。このような膜厚のバラツキは、ナノオーダーで屈折率層を形成する場合にはより顕著となる。 In the coating solution, the polymer may interact with each other between the molecules and within the molecule, such as bonds due to end groups, bonds in the cross-linking agent, and entanglement between the molecules. The size is getting bigger. Since the increase in the apparent molecular size varies depending on the presence or absence of the interaction and the degree thereof, various polymers having different apparent molecular sizes are mixed in the coating solution. When the coating liquid is applied onto the substrate in such a state, a coating film is formed without the coating liquid being stretched to a uniform thickness when the coating liquid contacts the substrate. As a result, the thickness of the refractive index layer varies. Such a variation in film thickness becomes more prominent when the refractive index layer is formed on the nano order.
 上記高分子の相互作用は、塗布液中の高分子の質量平均分子量が1000以上であるとき、塗布液中に高分子を0.01質量%以上含むとき、塗布液中に架橋剤を0.001質量%以上含むとき、および塗布液中に高分子との結合反応を伴う固形物(たとえば、粒子)を含むとき等において特に生じうる。 The polymer interaction is such that when the mass average molecular weight of the polymer in the coating solution is 1000 or more, and when the coating solution contains 0.01% by mass or more of the polymer, the cross-linking agent is added to the coating solution in an amount of 0.1%. This may occur particularly when it is contained in an amount of 001% by mass or more, and when the coating liquid contains a solid substance (for example, particles) accompanied by a binding reaction with a polymer.
 そこで、本形態では、塗布液に、せん断速度1000(1/sec)以上、好ましくは5000~10000000(1/sec)、より好ましくは10000~1,000000(1/sec)のせん断処理を加える。塗布液にせん断速度1000(1/sec)以上のせん断処理を加えることによって、高分子に生じた相互作用を解消できる。その結果、塗布液中に存在する高分子の見かけの分子サイズは近似した値をとると考えられる。このような塗布液を基材上に塗布することにより、均一な膜厚の塗膜が形成されうる。 Therefore, in this embodiment, a shearing treatment is applied to the coating solution at a shear rate of 1000 (1 / sec) or more, preferably 5000 to 10000000 (1 / sec), more preferably 10,000 to 1000000 (1 / sec). By applying a shearing treatment at a shear rate of 1000 (1 / sec) or more to the coating solution, the interaction generated in the polymer can be eliminated. As a result, it is considered that the apparent molecular size of the polymer present in the coating solution takes an approximate value. By coating such a coating solution on the substrate, a coating film having a uniform film thickness can be formed.
 本明細書において、「せん断処理」とは、所定のせん断速度で塗布液を処理することを意味する。より詳細には、所定の間隙を有する流路等において、所定の速度で塗布液を移動させて、塗布液にせん断力を付与することを意味する。せん断処理によって、高分子に生じた相互作用の少なくとも一部を解消させることができる。ここで、本明細書において、「せん断速度」とは、下記式(1)により算出される。 In this specification, “shear treatment” means that the coating liquid is treated at a predetermined shear rate. More specifically, this means that the coating liquid is moved at a predetermined speed in a flow path or the like having a predetermined gap to apply a shearing force to the coating liquid. By the shearing treatment, at least a part of the interaction generated in the polymer can be eliminated. Here, in this specification, the “shear rate” is calculated by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 「最小間隙」とは、塗布液が移動する流路のうち、せん断力が付与される最小の間隙をいう。また、「速度」とは、前記最小間隙を塗布液が通過する際の塗布液の移動速度をいう。この際、一定の速度で塗布液を移動させた場合には、最小間隙を通過するときに最も高いせん断力が付与される。 “Minimum gap” means the smallest gap to which a shearing force is applied in the flow path through which the coating liquid moves. The “speed” refers to the moving speed of the coating solution when the coating solution passes through the minimum gap. At this time, when the coating liquid is moved at a constant speed, the highest shearing force is applied when passing through the minimum gap.
 本形態において、せん断処理は、塗布液へのせん断速度が1000(1/sec)以上となるものであればどのような方法によって行ってもよい。せん断処理は、例えば、分散装置、吐出装置、および高速撹拌装置によって行われうる。 In this embodiment, the shearing treatment may be performed by any method as long as the shear rate to the coating solution is 1000 (1 / sec) or more. The shearing process can be performed by, for example, a dispersion device, a discharge device, and a high-speed stirring device.
 分散装置
 分散装置としては、マイルダー、圧力式ホモジナイザー、高速回転せん断型ホモジナイザー等が用いられうる。以下、マイルダーおよび圧力式ホモジナイザーを用いた場合におけるせん断処理について詳細に説明する。
Dispersing device As the dispersing device, a milder, a pressure type homogenizer, a high-speed rotational shearing type homogenizer, or the like can be used. Hereinafter, the shearing process in the case of using a milder and a pressure type homogenizer will be described in detail.
 図1は、分散装置の一形態であるマイルダーの模式図である。図1のマイルダーは、固定歯であるステーター歯1と、回転歯であるローター歯2とを有する。前記ステーター歯1と前記ローター歯2との間隙(せん断間隙)Laを移動する塗布液4は、ローター歯2の半径方向に速度勾配(ずり速度)が生じる。当該速度勾配によって、前記ステーター歯1および前記ローター歯2間に内部摩擦力(せん断力)が発生する。塗布液4中の高分子は、せん断力を受けながらせん断間隙Laを通過するため、高分子の分子構造が壊されて流れ方向に分子が配向し、結果として高分子に生じる相互作用が解消しうる。図1において、せん断間隙Laが式(1)における「最小間隙」に該当し、最小間隙であるせん断間隙Laを移動する際の塗布液4の速度が式(1)における「速度」に該当する。なお、せん断間隙3への塗布液5の導入は、ローター歯2のスリット間隙から前記半径方向に行っているため、せん断間隙Laに流れる塗布液4と導入した塗布液5とは、連続的に衝突を繰り返していることとなる。すなわち、図1のマイルダーによれば、塗布液に対してせん断および混合が連続的に行われていることとなる。 FIG. 1 is a schematic diagram of a milder that is one form of a dispersing device. The milder in FIG. 1 has a stator tooth 1 that is a fixed tooth and a rotor tooth 2 that is a rotating tooth. The coating liquid 4 moving in the gap (shear gap) La between the stator teeth 1 and the rotor teeth 2 generates a velocity gradient (shear velocity) in the radial direction of the rotor teeth 2. Due to the velocity gradient, an internal frictional force (shearing force) is generated between the stator teeth 1 and the rotor teeth 2. Since the polymer in the coating solution 4 passes through the shear gap La while receiving a shearing force, the molecular structure of the polymer is broken and the molecules are oriented in the flow direction, resulting in elimination of the interaction that occurs in the polymer. sell. In FIG. 1, the shear gap La corresponds to the “minimum gap” in the equation (1), and the speed of the coating liquid 4 when moving through the shear gap La, which is the minimum gap, corresponds to the “speed” in the equation (1). . In addition, since the introduction of the coating liquid 5 into the shear gap 3 is performed in the radial direction from the slit gap of the rotor tooth 2, the coating liquid 4 flowing into the shear gap La and the introduced coating liquid 5 are continuously provided. The collision is repeated. That is, according to the milder in FIG. 1, shearing and mixing are continuously performed on the coating solution.
 前記マイルダーにおいて、せん断間隙におけるステーター歯とローター歯との最小間隙は0.05~0.5mmであることが好ましく、0.1~0.3mmであることがより好ましい。また、ローター歯の回転速度としては、1~500m/sであることが好ましく、3~300m/sであることがより好ましい。せん断間隙におけるステーター歯とローター歯との最小間隙やローター歯の回転速度等を適宜設定することで、せん断速度を調節することができる。 In the milder, the minimum gap between the stator teeth and the rotor teeth in the shear gap is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm. Further, the rotational speed of the rotor teeth is preferably 1 to 500 m / s, and more preferably 3 to 300 m / s. The shear rate can be adjusted by appropriately setting the minimum gap between the stator teeth and the rotor teeth in the shear gap and the rotational speed of the rotor teeth.
 上記のようなマイルダーとしては、例えば、エバラマイルダー(株式会社荏原製作所製)、マイルダー(大平洋機工株式会社製)等を用いることができる。 As the above-mentioned milder, for example, Ebara Milder (manufactured by Ebara Manufacturing Co., Ltd.), Milder (manufactured by Taiheiyo Kiko Co., Ltd.) or the like can be used.
 図2は、分散装置の一形態である圧力式ホモジナイザーの模式図である。図2の圧力式ホモジナイザーは、バルブシート11と、バルブ12とを有する。加圧機構(図示せず)により供給された塗布液14は、バルブシート11間を高圧かつ高速で移動する。当該塗布液が、バルブシート11およびバルブ12の狭い間隙Lbを通過する際、バリブ12に衝突して流れの方向が変わった塗布液と、間隙Lbを通過しようとする塗布液との間で液同士の摩擦が発生し、その結果として、塗布液に大きなせん断力が生じると考えられる。このせん断力は、最小間隙Lbに比例する。図2において、間隙Lbは、せん断力が付与される最小の間隙であり、式(1)における「最小間隙」に該当する。また、最小間隙である間隙Lbを移動する際の塗布液14の速度が式(1)における「速度」に該当する。 FIG. 2 is a schematic diagram of a pressure homogenizer that is one form of a dispersing device. The pressure homogenizer of FIG. 2 has a valve seat 11 and a valve 12. The coating liquid 14 supplied by a pressurizing mechanism (not shown) moves between the valve seats 11 at high pressure and at high speed. When the coating liquid passes through the narrow gap Lb between the valve seat 11 and the valve 12, the liquid between the coating liquid that has collided with the varibe 12 and changed the flow direction and the coating liquid that is about to pass through the gap Lb. It is considered that friction between the two occurs, and as a result, a large shearing force is generated in the coating solution. This shear force is proportional to the minimum gap Lb. In FIG. 2, the gap Lb is the minimum gap to which a shearing force is applied, and corresponds to the “minimum gap” in Equation (1). Further, the speed of the coating liquid 14 when moving through the gap Lb, which is the minimum gap, corresponds to the “speed” in Expression (1).
 前記圧力式ホモジナイザーにおいて、バルブシートとバルブとの距離は0.05~0.5mmであることが好ましく、0.1~0.3mmであることがより好ましい。また、バルブシートおよびバルブ間を通過する際の速度としては、1~500m/sであることが好ましく、3~300m/sであることがより好ましい。バルブシートとバルブとの距離や加圧機構における塗布液の供給条件等を適宜設定することで、せん断速度を調節することができる。 In the pressure homogenizer, the distance between the valve seat and the valve is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm. The speed when passing between the valve seat and the valve is preferably 1 to 500 m / s, more preferably 3 to 300 m / s. The shear rate can be adjusted by appropriately setting the distance between the valve seat and the valve, the supply condition of the coating liquid in the pressurizing mechanism, and the like.
 上記のような圧力式ホモジナイザーとしては、例えば、圧力式ホモジナイザーLAB1000(株式会社エスエムテー製)等を用いることができる。 As the pressure homogenizer as described above, for example, a pressure homogenizer LAB1000 (manufactured by SMT Co., Ltd.) or the like can be used.
 なお、高速回転せん断型ホモジナイザーは、マイルダーと類似した構成を有しており、高速回転するローターと狭い間隙を経て近接するステーターとの間でせん断処理を行う処理装置である。高速で回転するローターにより塗布液が流動し、ステーターとの間で生じる速度勾配で発生したせん断と、塗布液同士の衝突によるせん断で上記と同様にして高分子間の相互作用が解消しうると考えられる。 The high-speed rotation shearing homogenizer has a configuration similar to that of a milder, and is a processing device that performs a shearing process between a rotor that rotates at a high speed and a stator that is adjacent via a narrow gap. When the coating liquid flows by the rotor rotating at high speed, the interaction between the polymers can be eliminated in the same manner as described above by the shear generated by the velocity gradient generated between the stator and the collision between the coating liquids. Conceivable.
 高速回転せん断型ホモジナイザーとしては、例えば、T.K.ロボミックス(プライミクス株式会社製)、クレアミックスCLM-0.8S(エム・テクニック株式会社製)、ホモジナイザー(マイクロテック・ニチオン社製)等を用いることができる。 Examples of the high-speed rotational shearing type homogenizer include TK Robomix (Primics Co., Ltd.), Claremix CLM-0.8S (M Technique Co., Ltd.), and Homogenizer (Microtech Nichion Co., Ltd.). Can be used.
 吐出装置
 吐出装置としては、キアポンプ、モーノポンプ、ロータリーポンプ等の回転ポンプが用いられうる。以下、ギアポンプを用いた場合におけるせん断処理について詳細に説明する。
Discharge device As the discharge device, a rotary pump such as a Kia pump, a Mono pump, or a rotary pump can be used. Hereinafter, the shearing process when the gear pump is used will be described in detail.
 図3は、吐出装置の一形態である外接型ギアポンプの模式図である。図3の外接型ギアポンプは、歯車22aと、歯車22bとを有する。歯車22aおよび歯車22bは、中央で歯が噛みあいながら回転する。塗布液24は、歯車22aおよび22bにより分離され、歯車22aまたは22bと、外箱21との間隙Lcを移動する。この際、移動する歯車22aまたは22bと、固定された外箱21との間を移動する塗布液24には速度勾配(ずり速度)が生じ、これによってせん断力が生じる。図3において、間隙Lcが式(1)における「最小間隙」に該当し、最小間隙である間隙Lcを移動する際の塗布液24の速度が式(1)における「速度」に該当する。 FIG. 3 is a schematic diagram of a circumscribed gear pump which is one form of the discharge device. The circumscribed gear pump of FIG. 3 has a gear 22a and a gear 22b. The gear 22a and the gear 22b rotate while the teeth are engaged at the center. The coating liquid 24 is separated by the gears 22 a and 22 b and moves in the gap Lc between the gear 22 a or 22 b and the outer box 21. At this time, a speed gradient (shear speed) is generated in the coating liquid 24 that moves between the moving gear 22a or 22b and the fixed outer box 21, thereby generating a shearing force. In FIG. 3, the gap Lc corresponds to the “minimum gap” in the equation (1), and the speed of the coating liquid 24 when moving through the gap Lc, which is the minimum gap, corresponds to the “speed” in the equation (1).
 前記外接型ギアポンプおいて、歯車と外箱との距離は1~10mmであることが好ましく、1~5mmであることがより好ましい。また、歯車および外箱を通過する際の速度としては、1~10m/sであることが好ましく、2~10m/sであることがより好ましい。歯車と外箱との距離や歯車の回転速度等を適宜設定することで、せん断速度を調節することができる。 In the circumscribed gear pump, the distance between the gear and the outer box is preferably 1 to 10 mm, and more preferably 1 to 5 mm. Further, the speed at the time of passing through the gear and the outer box is preferably 1 to 10 m / s, and more preferably 2 to 10 m / s. The shear rate can be adjusted by appropriately setting the distance between the gear and the outer box, the rotational speed of the gear, and the like.
 また、図3の外接型ギアポンプの他、外歯歯車および内歯歯車を使用する内接型ギアポンプを用いてもよい。前記内接型ギアポンプは、最小間隙が小さくなることから、より好適に用いられうる。 In addition to the external gear pump shown in FIG. 3, an internal gear pump using an external gear and an internal gear may be used. The inscribed gear pump can be used more suitably because the minimum gap becomes smaller.
 上記のようなギアポンプとしては、例えば、ケミカルギヤポンプGX-25S(株式会社イワキ製)等を用いることができる。 As the gear pump as described above, for example, a chemical gear pump GX-25S (manufactured by Iwaki Co., Ltd.) or the like can be used.
 高速撹拌装置
 高速撹拌装置としては、高速回転型の汎用撹拌装置、分散装置にも用いられる密閉タイプの高速撹拌装置等が用いられうる。以下、高速回転型の汎用撹拌装置を用いた場合におけるせん断処理について詳細に説明する。
High-speed stirrer As the high-speed stirrer, a high-speed rotating general-purpose stirrer, a closed-type high-speed stirrer that is also used in a dispersing device, and the like can be used. Hereinafter, the shearing process in the case of using a high-speed rotation type general-purpose stirring device will be described in detail.
 図4は、高速撹拌装置の一形態である汎用撹拌装置の模式図である。図4の汎用撹拌装置は、撹拌羽根32を有する。撹拌羽根32が回転することにより、処理室内に供給された塗布液34は撹拌される。この際、撹拌羽根32の撹拌により、塗布液34は処理室の内壁31に衝突し、その後、内壁31に沿って移動する。これによってせん断力が生じる。よって、内壁31に衝突する際の塗布液の速度は、撹拌羽根32の回転速度に対応することから、撹拌羽根32の先端部と内壁31との間隙Ldが式(1)における「最小間隙」に該当し、撹拌羽根32の回転速度が式(1)における「速度」に該当する。なお、汎用撹拌装置はせん断力の付与と同時に塗布液34の混合も同時に行っており、塗布液34にはせん断および混合が連続的に行われていることとなる。 FIG. 4 is a schematic diagram of a general-purpose stirring device which is one form of a high-speed stirring device. The general-purpose stirring device in FIG. 4 has a stirring blade 32. As the stirring blade 32 rotates, the coating liquid 34 supplied into the processing chamber is stirred. At this time, the coating liquid 34 collides with the inner wall 31 of the processing chamber by the stirring of the stirring blade 32, and then moves along the inner wall 31. This creates a shear force. Therefore, since the speed of the coating liquid when colliding with the inner wall 31 corresponds to the rotational speed of the stirring blade 32, the gap Ld between the tip of the stirring blade 32 and the inner wall 31 is the “minimum gap” in the equation (1). The rotational speed of the stirring blade 32 corresponds to the “speed” in the equation (1). Note that the general-purpose agitator simultaneously applies the shearing force and simultaneously mixes the coating liquid 34, and the coating liquid 34 is continuously sheared and mixed.
 前記汎用撹拌装置おいて、撹拌羽根の先端部と処理室の内壁との距離は1~10mmであることが好ましく、1~5mmであることがより好ましい。また、撹拌羽根の回転速度としては、1~10m/sであることが好ましく、2~10m/sであることがより好ましい。撹拌羽根の先端部と処理室の内壁との距離や撹拌羽根の回転速度等を適宜設定することで、せん断速度を調節することができる。 In the general-purpose stirring device, the distance between the tip of the stirring blade and the inner wall of the processing chamber is preferably 1 to 10 mm, and more preferably 1 to 5 mm. The rotation speed of the stirring blade is preferably 1 to 10 m / s, and more preferably 2 to 10 m / s. The shear rate can be adjusted by appropriately setting the distance between the tip of the stirring blade and the inner wall of the processing chamber, the rotational speed of the stirring blade, and the like.
 上記のような汎用撹拌装置としては、例えば、スリーワンモーターLBシリーズ(新東科学株式会社製)、スーパーミキサー(佐竹化学機械工業製)等を用いることができる。 As the above-mentioned general-purpose stirring device, for example, a three-one motor LB series (manufactured by Shinto Kagaku Co., Ltd.), a super mixer (manufactured by Satake Chemical Machinery Co., Ltd.), or the like can be used.
 せん断処理の温度は、せん断速度の数値、塗布液中の高分子の種類および含有量によっても異なるが、20~70℃であることが好ましく、25~60℃であることが装置への熱的負荷や作業安全性の観点より好ましい。 The temperature of the shearing treatment varies depending on the numerical value of the shear rate and the kind and content of the polymer in the coating solution, but is preferably 20 to 70 ° C., and is preferably 25 to 60 ° C. This is preferable from the viewpoint of load and work safety.
 また、せん断処理の時間は、せん断速度の数値、塗布液中の高分子の種類および含有量によっても異なり、特に制限されるものではないが、連続処理や生産性の観点からは0.01~10分であることが好ましく、0.01~2分であることがより好ましい。 The shearing time varies depending on the value of the shear rate, the type and content of the polymer in the coating solution, and is not particularly limited. However, from the viewpoint of continuous processing and productivity, 0.01 to 10 minutes is preferable, and 0.01 to 2 minutes is more preferable.
 せん断処理を行って得られた塗布液の粘度は、塗布液の温度や塗布液の種類によっても異なるが、1~2000mPa・sであることが好ましく、1~1000mPa・sであることがより好ましい。塗布液の粘度が上記範囲にあると、塗布液が高い塗布性を有し、膜厚のバラツキの発生を抑制しうる。なお、塗布液の粘度は、高分子に生じうる相互作用の影響を受けることから、せん断処理により塗布液の粘度を調節することができる。 The viscosity of the coating solution obtained by the shearing treatment varies depending on the temperature of the coating solution and the type of the coating solution, but is preferably 1 to 2000 mPa · s, and more preferably 1 to 1000 mPa · s. . When the viscosity of the coating liquid is in the above range, the coating liquid has high coating properties, and the occurrence of film thickness variation can be suppressed. In addition, since the viscosity of a coating liquid receives to the influence of the interaction which may arise in a polymer | macromolecule, the viscosity of a coating liquid can be adjusted with a shearing process.
 工程(1)のせん断処理により解消された高分子の相互作用は、高分子の性質上、時間とともに元に戻る場合がある。相互作用が再度生じてしまうと、塗布液中に見かけの分子量が異なる種々の高分子が混在することとなり、膜厚のバラツキが生じうる。そこで、工程(1)の後は、速やかに後述する工程(2)を行うことが好ましい。より詳細には、工程(1)の後、工程(2)を行うまでの時間は、塗布液の種類や塗布液が停滞されている条件によっても異なるが、3時間以内であることが好ましく、1時間以内であることがより好ましく、30分以内であることがさらに好ましい。 The interaction of the polymer eliminated by the shearing process in the step (1) may return to the original with time due to the property of the polymer. When the interaction occurs again, various polymers having different apparent molecular weights are mixed in the coating solution, and the film thickness may vary. Therefore, it is preferable to perform step (2) described later immediately after step (1). More specifically, the time until the step (2) after the step (1) varies depending on the type of the coating liquid and the conditions in which the coating liquid is stagnated, but is preferably within 3 hours. It is more preferably within 1 hour, and further preferably within 30 minutes.
 <工程(2)>
 工程(2)は、工程(1)で得られた塗布液を基材上に塗布して塗膜を形成する工程である。
<Step (2)>
Step (2) is a step of forming a coating film by applying the coating liquid obtained in step (1) on a substrate.
 [基材]
 本発明の光学フィルムに適用する基材としては、透明であれば特に制限されることはなく、公知の樹脂フィルムを用いることができる。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアリレート、ポリメタクリル酸メチル、ポリアミド、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、芳香族ポリアミド、ポリエーテルイミド等が挙げられる。これらのうち、コストや入手の容易性の観点から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等を用いることが好ましい。
[Base material]
The substrate applied to the optical film of the present invention is not particularly limited as long as it is transparent, and a known resin film can be used. Specifically, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyarylate, polymethyl methacrylate, polyamide, polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate. Examples include phthalate (PEN), polysulfone, polyethersulfone, polyetheretherketone, polyimide, aromatic polyamide, and polyetherimide. Of these, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used from the viewpoints of cost and availability.
 また、上記樹脂フィルムを用いた基材は、未延伸フィルムであっても、延伸フィルムであってもよいが、PETやPENのような結晶性を有する樹脂フィルムの場合には、強度の向上、熱膨張抑制の観点から延伸後、熱固定化されるフィルムであることが好ましい。 The substrate using the resin film may be an unstretched film or a stretched film, but in the case of a resin film having crystallinity such as PET or PEN, the strength is improved. From the viewpoint of suppressing thermal expansion, a film that is heat-set after stretching is preferred.
 上記樹脂フィルムを用いた基材は、従来公知の一般的な方法により製造することができる。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸フィルムを製造することができる。また、前記未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、樹脂フィルムの流れ(縦軸)方向、および/または樹脂フィルムの流れ方向と直角(横軸)方向に延伸することにより延伸フィルムを製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍であることが好ましい。 The base material using the resin film can be manufactured by a conventionally known general method. For example, an unstretched film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched film is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, and the resin film flow (vertical axis) direction, and / or Alternatively, a stretched film can be produced by stretching in the direction perpendicular to the flow direction of the resin film (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 本発明に係る基材の厚さは、5~300μmであることが好ましく、15~150μmであることがより好ましい。また、基材は、2枚以上を重ねたものであってもよく、この際、基材の種類は同じであっても、異なっていてもよい。 The thickness of the substrate according to the present invention is preferably 5 to 300 μm, more preferably 15 to 150 μm. Moreover, the base material may be a laminate of two or more, and in this case, the type of the base material may be the same or different.
 また、基材は、寸法安定性の観点から、弛緩処理およびオフライン熱処理を行ってもよい。弛緩処理は前記樹脂フィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われることが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、100~180℃で行われることがより好ましい。また長手方向、幅手方向ともに、弛緩率が0.1~10%に処理されることが好ましく、2~6%に処理されることがより好ましい。弛緩処理された基材は、さらにオフライン熱処理を施すことにより耐熱性が向上し、より寸法安定性が向上しうる。 In addition, the base material may be subjected to relaxation treatment and off-line heat treatment from the viewpoint of dimensional stability. It is preferable that the relaxation treatment is performed in the process from the heat setting in the stretching process of the resin film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably carried out at a treatment temperature of 80 to 200 ° C., more preferably 100 to 180 ° C. Further, in both the longitudinal direction and the width direction, the relaxation rate is preferably processed to 0.1 to 10%, more preferably 2 to 6%. The relaxed base material is further subjected to off-line heat treatment to improve heat resistance and further improve dimensional stability.
 前記基材は、製膜過程で片面または両面に、下引層を設けることが好ましい。当該下引層は、インラインでまたは製膜後に形成されうる。下引層の形成方法としては、例えば、下引層塗布液を塗布し、得られた塗膜を乾燥する方法が挙げられる。下引層塗布液は、通常、樹脂を含む。当該樹脂としては、例えば、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリスチレンブタジエン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール、およびゼラチン等が挙げられる。前記下引層塗布液には、さらに公知の添加剤を加えてもよい。下引層塗布液の塗布量は、乾燥状態で約0.01~2g/mとなるように塗布することが好ましい。下引層塗布液の塗布方法としては、特に制限されないが、ロールコート法、グラビアコート法、ナイフコート法、ディップコート法、スプレーコート法等の公知の方法が用いられうる。得られた塗膜は延伸させてもよく、通常、塗布液を塗布した後にテンター内で横延伸を行いながら80~120℃で乾燥させることで、下引層が形成されうる。なお、下引層は、単層構造であっても、積層構造であってもよい。 The substrate is preferably provided with an undercoat layer on one side or both sides during the film forming process. The undercoat layer can be formed in-line or after film formation. Examples of the method for forming the undercoat layer include a method of applying an undercoat layer coating solution and drying the obtained coating film. The undercoat layer coating solution usually contains a resin. Examples of the resin include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polystyrene butadiene resins, polyethyleneimine resins, polyvinyl alcohol, and gelatin. . A known additive may be further added to the undercoat layer coating solution. The coating amount of the undercoat layer coating solution is preferably applied so as to be about 0.01 to 2 g / m 2 in a dry state. The coating method of the undercoat layer coating solution is not particularly limited, and known methods such as a roll coating method, a gravure coating method, a knife coating method, a dip coating method, and a spray coating method can be used. The obtained coating film may be stretched, and usually an undercoat layer can be formed by drying at 80 to 120 ° C. while performing lateral stretching in a tenter after coating the coating solution. The undercoat layer may have a single layer structure or a laminated structure.
 本発明に係る基材は、さらに導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、粘着層、中間膜層等の公知の機能層を有していてもよい。 The substrate according to the present invention further includes a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer), an antifouling layer, a deodorant layer, a droplet layer, an easy slip layer, a hard coat layer, and wear resistance. May have a known functional layer such as an adhesive layer, an adhesive layer, and an interlayer film layer.
 基材が、上述の下引層や機能層等の中間層を有する場合には、基材および中間層の総膜厚は、5~500μmであることが好ましく、25~250μmであることがより好ましい。 When the base material has an intermediate layer such as the undercoat layer or the functional layer described above, the total film thickness of the base material and the intermediate layer is preferably 5 to 500 μm, more preferably 25 to 250 μm. preferable.
 [塗布工程]
 塗布工程では、工程(1)で得られた塗布液を、上記基材に塗布して塗膜を形成する。
[Coating process]
In the coating step, the coating liquid obtained in step (1) is applied to the substrate to form a coating film.
 塗布液の塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号明細書、米国特許第2,761,791号明細書に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 The coating method of the coating liquid is not particularly limited, and for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, curtain coating method, or US Pat. No. 2,761,419, US The slide bead coating method using the hopper described in Japanese Patent No. 2,761,791 and the extrusion coating method are preferably used.
 塗布方式により好適な塗布液の粘度は異なるが、例えば、前記塗布方式がスライドビード塗布方式を用いた同時重層塗布である場合には、上記塗布液の粘度は1~2000mPa・sであることが好ましく、1~1000mPa・sであることがより好ましい。 The viscosity of a suitable coating solution varies depending on the coating method. For example, when the coating method is simultaneous multi-layer coating using a slide bead coating method, the viscosity of the coating solution may be 1 to 2000 mPa · s. It is preferably 1 to 1000 mPa · s.
 塗布温度は、特に制限されないが、20~60℃であることが好ましい。塗布温度が20℃以下であると、塗布液を冷却するための設備が不要となり、コストを抑えることができることから好ましい。一方、塗布温度が60℃以下であると、塗布液を加熱するための設備が不要となり、コストを抑えることができ、また、作業の安全性が向上しうることから好ましい。 The coating temperature is not particularly limited, but is preferably 20 to 60 ° C. A coating temperature of 20 ° C. or lower is preferable because a facility for cooling the coating solution is not necessary and costs can be reduced. On the other hand, it is preferable that the coating temperature is 60 ° C. or lower because a facility for heating the coating liquid becomes unnecessary, costs can be reduced, and work safety can be improved.
 塗布速度は、特に制限されないが、1m/min以上であることが好ましく、1~500m/minであることがより好ましい。塗布速度が1m/min以上であると、高い生産性が得られることから好ましい。 The coating speed is not particularly limited, but is preferably 1 m / min or more, more preferably 1 to 500 m / min. A coating speed of 1 m / min or more is preferable because high productivity can be obtained.
 塗布温度および塗布速度を考慮して塗布を行うことにより、膜厚のバラツキが抑制された屈折率層が得られうる。 Application of the coating temperature in consideration of the coating temperature and the coating speed makes it possible to obtain a refractive index layer in which variations in film thickness are suppressed.
 [乾燥工程]
 工程(2)で得られた塗膜を乾燥させることにより、屈折率層が形成されうる。
[Drying process]
A refractive index layer can be formed by drying the coating film obtained in the step (2).
 乾燥の方法としては、特に制限されず、公知の方法で行われうる。乾燥方法の例としては、自然乾燥、加熱乾燥、熱風を当てる方法、冷風を当てる方法等が挙げられる。迅速に乾燥を行う観点から、加熱乾燥により乾燥を行うことが好ましい。この際、加熱温度としては、形成された塗膜の組成等によっても異なるが、15~120℃であることが好ましく、20~90℃であることがより好ましい。 The drying method is not particularly limited, and may be performed by a known method. Examples of the drying method include natural drying, heat drying, a method of applying hot air, a method of applying cold air, and the like. From the viewpoint of rapid drying, it is preferable to perform drying by heat drying. In this case, the heating temperature is preferably 15 to 120 ° C., more preferably 20 to 90 ° C., although it varies depending on the composition of the formed coating film.
 <工程(3)>
 本発明に係る製造方法には、前記工程(2)で得られた塗膜を、乾燥前に一度冷却する工程(以下、工程(3)とも称する)をさらに含んでいてもよい。工程(3)を行うことにより、屈折率層の表面(積層されている場合には界面)がより均一となりうる。
<Step (3)>
The production method according to the present invention may further include a step of cooling the coating film obtained in the step (2) once before drying (hereinafter also referred to as step (3)). By performing the step (3), the surface of the refractive index layer (the interface in the case of being laminated) can be made more uniform.
 塗布直後の塗膜は粘度が低いため、例えば、塗布直後の塗膜に熱風を当てて乾燥させる場合には、得られる屈折率層の表面は熱風によって膜厚のバラツキが生じうる。また、重層塗布を行った場合には、塗膜間において塗膜成分が移動し、得られる屈折率層間の境界が曖昧となりうる。しかし、得られた塗膜を一度冷却すると、塗膜の粘度が急激に上昇して塗膜が安定化しうる。その結果、熱風等の乾燥による膜厚のバラツキの発生、塗膜間の塗膜成分の移動を抑制しうる。ただし、塗膜間の塗布成分の移動によって、赤外遮蔽フィルムの性能が異なる場合もありうることから、工程(3)を行うか否かは、赤外遮蔽フィルムの所望の性能に応じて適宜決定されうる。 Since the coating film immediately after coating has a low viscosity, for example, when the coating film immediately after coating is dried by applying hot air, the surface of the obtained refractive index layer may vary in thickness due to the hot air. In addition, when multilayer coating is performed, coating film components move between coating films, and the boundary between the obtained refractive index layers can be ambiguous. However, once the obtained coating film is cooled, the viscosity of the coating film increases rapidly, and the coating film can be stabilized. As a result, it is possible to suppress the occurrence of film thickness variation due to drying of hot air or the like and the movement of coating film components between coating films. However, since the performance of the infrared shielding film may differ depending on the movement of the coating component between the coating films, whether or not to perform the step (3) is appropriately determined according to the desired performance of the infrared shielding film. Can be determined.
 工程(3)を行う場合には、塗膜の冷却によって粘度が上昇しやすい高分子を塗布液の成分とすることが好ましい。上述のように、高分子の相互作用は、高分子の分子間および分子内の末端基による結合、架橋剤における結合、分子どうしの絡み合い等によって生じうる。よって、工程(3)の効果をより有効に発揮するために、塗布液の成分として、官能基を多数有している高分子、分子量が大きい高分子を使用し、架橋剤を含むことが好ましい。 When performing the step (3), it is preferable to use a polymer whose viscosity is easily increased by cooling the coating film as a component of the coating solution. As described above, the interaction of the polymer can be caused by bonding between end groups in the polymer and within the molecule, bonding in the cross-linking agent, entanglement between the molecules, and the like. Therefore, in order to more effectively demonstrate the effect of the step (3), it is preferable to use a polymer having a large number of functional groups or a polymer having a large molecular weight as a component of the coating solution and including a crosslinking agent. .
 工程(3)における冷却温度は、用いる塗布液によっても異なるが、-20~20℃であえることが好ましく、-5~10℃であることがより好ましい。 The cooling temperature in step (3) varies depending on the coating solution used, but is preferably −20 to 20 ° C., more preferably −5 to 10 ° C.
 <用途>
 上記で得られた赤外遮蔽フィルムは、幅広い分野に応用することができる。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備に貼り合せ、赤外遮蔽効果を付与する赤外遮蔽フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。
<Application>
The infrared shielding film obtained above can be applied to a wide range of fields. For example, pasting to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, films for window pasting such as infrared shielding films that give an infrared shielding effect, films for agricultural greenhouses, etc. As, it is mainly used for the purpose of improving the weather resistance.
 特に、本発明に係る赤外遮蔽フィルムが直接または接着剤を介してガラスまたはガラス代替の樹脂などの基体に貼合されている部材には、赤外遮蔽フィルムは好適に適用されうる。 In particular, the infrared shielding film can be suitably applied to a member in which the infrared shielding film according to the present invention is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
 すなわち、本発明のさらに他の形態によれば、上記赤外遮蔽フィルムを、基体の少なくとも一方の面に設けた、赤外遮蔽体をも提供する。 That is, according to still another embodiment of the present invention, there is also provided an infrared shielding body in which the above infrared shielding film is provided on at least one surface of a substrate.
 前記基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでもよく、これらを2種以上組み合わせて用いてもよい。本発明で使用されうる基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚さは特に制限されないが、通常0.1mm~5cmである。 Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like. The type of the resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
 赤外遮蔽フィルムと基体とを貼り合わせる接着層または粘着層は、赤外遮蔽フィルムを日光(熱線)入射面側に設置することが好ましい。また、本発明に係る赤外遮蔽フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。本発明に係る赤外遮蔽フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。 The adhesive layer or adhesive layer that bonds the infrared shielding film and the substrate is preferably provided with the infrared shielding film on the sunlight (heat ray) incident surface side. In addition, it is preferable to sandwich the infrared shielding film according to the present invention between a window glass and a substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the infrared shielding film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
 本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。 As the adhesive applicable to the present invention, an adhesive mainly composed of a photocurable or thermosetting resin can be used.
 接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。 The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
 また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール(積水化学工業社製、三菱モンサント社製等)、エチレン-酢酸ビニル共重合体(デュポン社製、武田薬品工業社製、デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー社製、メルセンG)等である。なお、接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。 Further, a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.), ethylene-vinyl acetate copolymer (manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin), modified ethylene-vinyl acetate copolymer (Mersen G, manufactured by Tosoh Corporation). In addition, you may add and mix | blend an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, coloring, an adhesion regulator etc. suitably in an adhesion layer.
 赤外遮蔽フィルムまたは赤外遮蔽体の断熱性能、日射熱遮蔽性能は、一般的にJIS R 3209(複層ガラス)、JIS R 3106(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。 Insulation performance and solar heat shielding performance of infrared shielding films or infrared shields are generally JIS R 3209 (multi-layer glass), JIS R 3106 (obtain transmittance, reflectance, emissivity, and solar heat of plate glass) Rate test method), and a method based on JIS R 3107 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮蔽性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106により日射熱取得率を求め、1から差し引いて算出する。 Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance. (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 μm. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and modified emissivity are calculated according to JIS R 3106 by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity. The corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107. The heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106 and subtracting it from 1.
 また、上記で得られた赤外遮蔽フィルムは薄膜化されたものであることから、ディスプレイパネルの表面に適用してもよい。例えば、プラズマディスプレイパネルでは、赤外遮蔽フィルムを高透明PETフィルムに貼り合わせて、ディスプレイ画面に導入することができる。これによって、プラズマディスプレイパネルから放射される赤外線を遮蔽し、人体の保護、電子機器相互の誤動作防止、およびリモコンの誤動作防止等に寄与しうる。 Further, since the infrared shielding film obtained above is thinned, it may be applied to the surface of the display panel. For example, in a plasma display panel, an infrared shielding film can be bonded to a highly transparent PET film and introduced into a display screen. This shields infrared rays radiated from the plasma display panel, which can contribute to protection of the human body, prevention of malfunction between electronic devices, prevention of malfunction of the remote control, and the like.
 [赤外遮蔽フィルムの製造]
 (実施例1)
 工程(1)
 低屈折率層用塗布液の調製
 コロイダルシリカ(スノーテックスOXS、日産化学工業株式会社製、固形分10質量%)2400質量部に、5質量%ポリビニルアルコール(PVA-103、重合度300、鹸化度98.5mol%、株式会社クラレ製)水溶液400質量部、3質量%ホウ酸水溶液1500質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、5質量%ポリビニルアルコール(PVA-117、重合度1700、鹸化度98.5mol%、株式会社クラレ製)水溶液4000質量部、1質量%界面活性剤(ラピゾールA30、日油株式会社製)水溶液100質量部を添加し、純水1600質量部を加えて低屈折率層用塗布液を10000質量部調製した。
[Production of infrared shielding film]
Example 1
Process (1)
Preparation of coating solution for low refractive index layer Colloidal silica (Snowtex OXS, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass) 2400 parts by mass, 5% by mass polyvinyl alcohol (PVA-103, degree of polymerization 300, degree of saponification) 98.5 mol%, manufactured by Kuraray Co., Ltd.) 400 parts by weight of an aqueous solution and 1500 parts by weight of an aqueous 3% by weight boric acid solution, respectively, and then heated to 45 ° C. and stirred, 5% by weight polyvinyl alcohol (PVA-117, Polymerization degree 1700, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) 4000 parts by mass aqueous solution, 1% by mass surfactant (Lapisol A30, manufactured by NOF Corporation) aqueous solution 100 parts by mass, pure water 1600 parts by mass Was added to prepare 10,000 parts by mass of a coating solution for a low refractive index layer.
 高屈折率層用塗布液の調製
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)5000質量部に純水20000質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が2.0質量%となるように純水で希釈したもの)13000質量部を徐々に添加し、オートクレーブ中、175℃で18時間加熱処理を行った。冷却後、限外濾過膜にて濃縮することにより、固形分濃度が20質量%であるSiOが表面に付着した二酸化チタンゾル(以下、アニオン処理された二酸化チタンゾル)を得た。
Preparation of coating solution for high refractive index layer 15.0 mass% titanium oxide sol (SRD-W, volume average particle diameter 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.) 5000 mass parts pure water 20000 mass parts After the addition, it was heated to 90 ° C. Subsequently, 13000 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Kagaku Kogyo Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) was gradually added, and the autoclave Medium, heat treatment was performed at 175 ° C. for 18 hours. After cooling, the mixture was concentrated with an ultrafiltration membrane to obtain a titanium dioxide sol (hereinafter, anion-treated titanium dioxide sol) on which SiO 2 having a solid content concentration of 20% by mass was adhered.
 前記アニオン処理された二酸化チタンゾル(固形分20.0質量%)3000質量部に、5質量%ポリビニルアルコール(PVA-103、重合度300、鹸化度98.5mol%、株式会社クラレ製)水溶液200質量部、3質量%ホウ酸水溶液1000質量部、2質量%クエン酸水溶液1000質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、5質量%ポリビニルアルコール(PVA-617、重合度1700、鹸化度95.0mol%、株式会社クラレ製)水溶液2000質量部、1質量%界面活性剤(ラピゾールA30、日油株式会社製)水溶液100質量部を添加し、純水2700質量部を加えて高屈折率層用塗布液を10000質量部調製した。 200 parts by mass of 5 mass% polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) in 3000 parts by mass of the anion-treated titanium dioxide sol (solid content 20.0 mass%) 1 part by weight, 1000 parts by weight of a 3% by weight boric acid aqueous solution and 1000 parts by weight of a 2% by weight citric acid aqueous solution, respectively, followed by heating to 45 ° C. and stirring, 5% by weight polyvinyl alcohol (PVA-617, polymerization degree 1700) , Saponification degree 95.0 mol%, manufactured by Kuraray Co., Ltd.) 2000 parts by mass of aqueous solution, 1 part by mass of surfactant (Lapisol A30, manufactured by NOF Corporation) 100 parts by mass of aqueous solution, and 2700 parts by mass of pure water were added. 10000 parts by mass of a coating solution for a high refractive index layer was prepared.
 得られた低屈折率層用塗布液および高屈折率層用塗布液について、分散装置であるクレアミックスCLM-0.8S(エム・テクニック株式会社製)を用いてせん断処理を加えた。前記せん断処理は、より詳細には、最小間隙0.2mm(2×10-4m)のスクリーンスリット部(S2.0-24)を備えた350ccのベッセル(処理室)に、ロータリーポンプを用いて1L/minの流量で塗布液を供給し、17m/secの速度でローター(R2)を回転させてせん断処理を行った。なお、せん断速度は、85000(1/sec)である。 The obtained coating solution for the low refractive index layer and the coating solution for the high refractive index layer were subjected to shearing treatment using CLEARMIX CLM-0.8S (manufactured by M Technique Co., Ltd.) which is a dispersing device. More specifically, in the shearing process, a rotary pump is used for a 350 cc vessel (processing chamber) having a screen slit (S2.0-24) having a minimum gap of 0.2 mm (2 × 10 −4 m). The coating liquid was supplied at a flow rate of 1 L / min, and the rotor (R2) was rotated at a speed of 17 m / sec to perform a shearing process. The shear rate is 85000 (1 / sec).
 工程(2)
 工程(1)で得られた低屈折率層用塗布液および高屈折率層用塗布液を45℃に保温しながら、厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡績株式会社製A4300:両面易接着層)上に、低屈折率層と高屈折率層とがそれぞれ交互に9層積層されるように、スライドホッパー塗布装置を用いて速度6m/minで9層同時塗布を行い、得られた塗膜を乾燥させて赤外遮蔽フィルムを作製した。この際、工程(1)を行った後、工程(2)を行うまでの時間は、30分であった。乾燥後の平均膜厚が低屈折率層は各層150nmであり、高屈折率層は各層150nmであった。
Process (2)
While keeping the coating solution for the low refractive index layer and the coating solution for the high refractive index layer obtained in step (1) at 45 ° C., a polyethylene terephthalate film having a thickness of 50 μm (A4300 manufactured by Toyobo Co., Ltd .: double-sided easy adhesion layer) ) Nine layers were simultaneously coated at a speed of 6 m / min using a slide hopper coating apparatus so that nine layers of low refractive index layers and high refractive index layers were alternately laminated on each other. Was dried to prepare an infrared shielding film. Under the present circumstances, after performing a process (1), the time until performing a process (2) was 30 minutes. The average film thickness after drying was 150 nm for each low refractive index layer and 150 nm for each high refractive index layer.
 (実施例2)
 工程(1)のせん断処理に分散装置であるT.K.ロボミックス(プライミクス株式会社製)を用いたことを除いては、実施例1と同様の方法で赤外遮蔽フィルムを作製した。なお、前記せん断処理は、以下のように行った。すなわち、最小間隙0.3mm(3×10-4m)のスクリーンスリット部を備えた350ccのベッセル(処理室)に、ロータリーポンプを用いて1L/minの流量で塗布液を供給し、3m/secの速度でローターを回転させてせん断処理を行った。せん断速度は、10000(1/sec)である。
(Example 2)
In the shearing process in the step (1), T.W. K. An infrared shielding film was produced in the same manner as in Example 1 except that Robomix (manufactured by PRIMIX Co., Ltd.) was used. In addition, the said shearing process was performed as follows. That is, a coating liquid is supplied at a flow rate of 1 L / min to a 350 cc vessel (processing chamber) having a screen slit portion having a minimum gap of 0.3 mm (3 × 10 −4 m) using a rotary pump, and 3 m / min. Shearing was performed by rotating the rotor at a speed of sec. The shear rate is 10,000 (1 / sec).
 (実施例3)
 工程(1)のローターの回転速度を15m/secに変更したことを除いては、実施例2と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、52000(1/sec)である。
(Example 3)
An infrared shielding film was produced in the same manner as in Example 2 except that the rotational speed of the rotor in step (1) was changed to 15 m / sec. The shear rate is 52000 (1 / sec).
 (実施例4)
 工程(1)のせん断処理に分散装置であるマイルダーMDN303V(太平洋機工株式会社製)を用いたことを除いては、実施例1と同様の方法で赤外遮蔽フィルムを作製した。なお、前記せん断処理は、以下のように行った。すなわち、最小間隙0.3mm(3×10-4m)のスクリーンスリット部を備えた350ccのベッセル(処理室)に、ロータリーポンプを用いて1L/minの流量で塗布液を供給し、26m/secの速度でローターを回転させてせん断処理を行った。せん断速度は、90000(1/sec)である。
(Example 4)
An infrared shielding film was produced in the same manner as in Example 1 except that Milder MDN303V (manufactured by Taiheiyo Kiko Co., Ltd.), which is a dispersing device, was used for the shearing treatment in the step (1). In addition, the said shearing process was performed as follows. That is, a coating liquid was supplied at a flow rate of 1 L / min using a rotary pump to a 350 cc vessel (processing chamber) provided with a screen slit portion having a minimum gap of 0.3 mm (3 × 10 −4 m), and 26 m / min. Shearing was performed by rotating the rotor at a speed of sec. The shear rate is 90000 (1 / sec).
 (実施例5)
 工程(1)のせん断処理に分散装置である圧力式ホモジナイザーLAB1000(株式会社エスエムテー製)を用いたことを除いては、実施例1と同様の方法で赤外遮蔽フィルムを作製した。なお、前記せん断処理は、以下のように行った。すなわち、最小間隙が0.2mm(2×10-4m)となるように調節されたバルブとバルブシートとを有する処理室に、圧力500barで塗布液を供給した。この際、最小間隙を通過する際の塗布液の速度は、300m/secであった。せん断速度は1500000(1/sec)である。
(Example 5)
The infrared shielding film was produced by the method similar to Example 1 except having used the pressure type homogenizer LAB1000 (product made from SMT Co., Ltd.) which is a dispersion device for the shearing process of a process (1). In addition, the said shearing process was performed as follows. That is, the coating liquid was supplied at a pressure of 500 bar to a processing chamber having a valve and a valve seat adjusted so that the minimum gap was 0.2 mm (2 × 10 −4 m). At this time, the speed of the coating solution when passing through the minimum gap was 300 m / sec. The shear rate is 1500,000 (1 / sec).
 (比較例1)
 工程(1)のせん断処理に内接型ギアポンプであるケミカルギヤポンプGX-25S(株式会社イワキ製)を用いたことを除いては、実施例1と同様の方法で赤外遮蔽フィルムを作製した。なお、前記せん断処理は、以下のように行った。すなわち、駆動ギヤ(ピニオン)と従動ギヤ(インターナルギヤ)との噛み合い部の最小間隙が0.5mm(5×10-4m)である処理室に、当該噛み合い部を通過する際の塗布液の速度が0.3m/secとなるように駆動ギヤを調節した。せん断速度は600(1/sec)である。
(Comparative Example 1)
An infrared shielding film was produced in the same manner as in Example 1 except that a chemical gear pump GX-25S (manufactured by Iwaki Co., Ltd.), which is an inscribed gear pump, was used for the shearing treatment in the step (1). In addition, the said shearing process was performed as follows. That is, the coating liquid when passing through the meshing portion into the processing chamber where the minimum gap of the meshing portion between the drive gear (pinion) and the driven gear (internal gear) is 0.5 mm (5 × 10 −4 m). The drive gear was adjusted so that the speed of the motor was 0.3 m / sec. The shear rate is 600 (1 / sec).
 (実施例6)
 工程(1)の噛み合い部の通過速度を1.5m/secに変更したことを除いては、比較例1と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、3000(1/sec)である。
(Example 6)
An infrared shielding film was produced in the same manner as in Comparative Example 1 except that the passing speed of the meshing part in step (1) was changed to 1.5 m / sec. The shear rate is 3000 (1 / sec).
 (実施例7)
 工程(1)の噛み合い部の通過速度を4.8m/secに変更したことを除いては、比較例1と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、9600(1/sec)である。
(Example 7)
The infrared shielding film was produced by the method similar to the comparative example 1 except having changed the passage speed of the meshing part of process (1) into 4.8 m / sec. The shear rate is 9600 (1 / sec).
 (比較例2)
 工程(1)のせん断処理に高速撹拌装置であるスリーワンモーターLBシリーズ(新東科学株式会社製)を用いたことを除いては、実施例1と同様の方法で赤外遮蔽フィルムを作製した。なお、前記せん断処理は、以下のように行った。すなわち、外径50nmの撹拌羽根を備え、撹拌羽根の先端部と内壁の間隙が10mm(1×10-3m)となる処理室に塗布液を供給し、0.8m/secの速度で撹拌羽根を回転させて塗布液を撹拌した。せん断速度は80(1/sec)である。
(Comparative Example 2)
An infrared shielding film was produced in the same manner as in Example 1 except that the three-one motor LB series (manufactured by Shinto Kagaku Co., Ltd.), which is a high-speed stirring device, was used for the shearing treatment in the step (1). In addition, the said shearing process was performed as follows. That is, a stirring blade having an outer diameter of 50 nm is provided, and the coating liquid is supplied to a processing chamber in which the gap between the tip of the stirring blade and the inner wall is 10 mm (1 × 10 −3 m), and stirring is performed at a speed of 0.8 m / sec. The coating solution was stirred by rotating the blade. The shear rate is 80 (1 / sec).
 (比較例3)
 工程(1)の撹拌羽根の回転速度を3m/secに変更したことを除いては、比較例2と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、300(1/sec)である。
(Comparative Example 3)
The infrared shielding film was produced by the method similar to the comparative example 2 except having changed the rotational speed of the stirring blade of a process (1) into 3 m / sec. The shear rate is 300 (1 / sec).
 (比較例4)
 工程(1)の撹拌羽根の回転速度を8m/secに変更したことを除いては、比較例2と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、800(1/sec)である。
(Comparative Example 4)
The infrared shielding film was produced by the method similar to the comparative example 2 except having changed the rotational speed of the stirring blade of a process (1) into 8 m / sec. The shear rate is 800 (1 / sec).
 (比較例5)
 工程(1)に用いた装置が有する処理室の撹拌羽根と内壁との間隙を5mm(5×10-4m)に変更し、撹拌羽根の回転速度を3m/secに変更したことを除いては、比較例2と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、600(1/sec)である。
(Comparative Example 5)
Except that the gap between the stirring blade and the inner wall of the processing chamber of the apparatus used in step (1) was changed to 5 mm (5 × 10 −4 m), and the rotation speed of the stirring blade was changed to 3 m / sec. Produced an infrared shielding film in the same manner as in Comparative Example 2. The shear rate is 600 (1 / sec).
 (実施例8)
 工程(1)の撹拌羽根の回転速度を5m/secに変更したことを除いては、比較例5と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、1000(1/sec)である。
(Example 8)
The infrared shielding film was produced by the method similar to the comparative example 5 except having changed the rotational speed of the stirring blade of a process (1) into 5 m / sec. The shear rate is 1000 (1 / sec).
 (実施例9)
 工程()に用いた装置が有する処理室の撹拌羽根の先端部と内壁との間隙を3mm(3×10-4m)に変更し、撹拌羽根の回転速度を7m/secに変更したことを除いては、比較例2と同様の方法で赤外遮蔽フィルムを作製した。なお、せん断速度は、2300(1/sec)である。
Example 9
The gap between the tip of the processing chamber stirring blade and the inner wall of the apparatus used in the step () was changed to 3 mm (3 × 10 −4 m), and the rotation speed of the stirring blade was changed to 7 m / sec. Except for this, an infrared shielding film was produced in the same manner as in Comparative Example 2. The shear rate is 2300 (1 / sec).
 実施例1~9および比較例1~5における速度、最小間隙、およびせん断速度の関係を下記表1に示す。 Table 1 below shows the relationship between the speed, the minimum gap, and the shear rate in Examples 1 to 9 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [赤外遮蔽フィルムの評価]
 実施例1~9および比較例1~5で製造した赤外遮蔽フィルムについて、下記の性能評価を行った。
[Evaluation of infrared shielding film]
The following performance evaluation was performed on the infrared shielding films manufactured in Examples 1 to 9 and Comparative Examples 1 to 5.
 (膜厚変動率の測定)
 赤外遮蔽フィルムの断面を電子顕微鏡(FE-SEM、S-5000H型、株式会社日立製作所製)を用いて観察した。この際、加速電圧2.0kVの条件で1cm長さが観察できるように視野数を選択した。画像は、デジタル化し、接続されたファイリング装置(VIDEOBANK)に転送しMOディスク中に保存した。続いて、画像処理装置にてコントラストを調整し、各層の膜厚を1000点測定して膜厚の平均値(μ)と膜厚の標準偏差(σ)を算出した。膜厚の標準偏差(σ)を膜厚変動幅として、膜厚の平均値に対する膜厚変動率(V)を下記の式(2)により求めた。
(Measurement of film thickness fluctuation rate)
The cross section of the infrared shielding film was observed using an electron microscope (FE-SEM, S-5000H type, manufactured by Hitachi, Ltd.). At this time, the number of fields was selected so that a length of 1 cm could be observed under the condition of an acceleration voltage of 2.0 kV. The images were digitized, transferred to a connected filing device (VIDEOBANK) and stored on the MO disk. Subsequently, the contrast was adjusted with an image processing apparatus, the film thickness of each layer was measured at 1000 points, and the average value (μ) of the film thickness and the standard deviation (σ) of the film thickness were calculated. Using the standard deviation (σ) of the film thickness as the film thickness fluctuation range, the film thickness fluctuation rate (V) with respect to the average value of the film thickness was obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 下記基準に従い、得られた値から赤外遮蔽フィルムの膜厚変動率を評価した:
 ○:3%未満
 △:3%以上5%未満
 ×:5%以上。
According to the following criteria, the film thickness fluctuation rate of the infrared shielding film was evaluated from the obtained value:
○: Less than 3% Δ: 3% or more and less than 5% ×: 5% or more.
 得られた結果を下記表2に示す。 The results obtained are shown in Table 2 below.
 (色差の測定)
 分光光度計(積分球使用、U-4000型、株式会社日立製作所社製)を用いて、製造した赤外遮蔽フィルムの測定側の裏面を粗面化処理を行い、黒色のスプレーで光吸収処理することで裏面での光の反射を防止した。次いで、5度正反射の条件と45度正反射の条件で可視光領域(360nm~740nm)の反射率を測定し、得られた結果から、L値を算出し、5度正反射の条件と45度正反射の条件の色差ΔEを下記式(3)により求めた。
(Measurement of color difference)
Using a spectrophotometer (using an integrating sphere, U-4000 type, manufactured by Hitachi, Ltd.), the back side on the measurement side of the manufactured infrared shielding film is roughened and light-absorbed with a black spray. By doing so, reflection of light on the back surface was prevented. Next, the reflectance in the visible light region (360 nm to 740 nm) is measured under the conditions of 5 degree regular reflection and 45 degree regular reflection, and the L * a * b * value is calculated from the obtained result. The color difference ΔE between the regular reflection condition and the 45 ° regular reflection condition was determined by the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 下記基準に従い、得られた値から赤外遮蔽フィルムの色差を評価した:
 ○:10未満
 △:10以上20未満
 ×:20以上。
According to the following criteria, the color difference of the infrared shielding film was evaluated from the obtained value:
○: Less than 10 Δ: 10 or more and less than 20 ×: 20 or more.
 得られた結果を下記表2に示す。 The results obtained are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2の結果から明らかなように、実施例1~9の赤外遮蔽フィルムは、膜厚変動率および色差について良好な結果が得られた。すなわち、塗布液に、せん断速度1000(1/sec)以上のせん断処理を加えると、ナノオーダー(実施例では150nm)で薄膜化した場合であっても膜厚のバラツキが抑制され、色ムラの発生が抑制された赤外遮蔽フィルムを得ることができることが理解される。また、せん断速度が高いほど、良好な結果が得られていることが分かる。 As is clear from the results in Table 2, the infrared shielding films of Examples 1 to 9 had good results with respect to the film thickness variation rate and the color difference. That is, when a shearing process having a shear rate of 1000 (1 / sec) or more is applied to the coating solution, even when the film is thinned at the nano-order (150 nm in the embodiment), the variation in film thickness is suppressed, and the color unevenness is reduced. It is understood that an infrared shielding film with suppressed generation can be obtained. It can also be seen that the higher the shear rate, the better the result.
 1 ステーター歯、
 2 ローター歯、
 3 せん断間隙、
 4、5、14、24、34 塗布液、
 11 バルブシート、
 12 バルブ、
 La、Lb、Lc、Ld 間隙、
 21 外箱、
 22a、22b 歯車、
 31 内壁、
 32 撹拌羽根。
1 stator teeth,
2 rotor teeth,
3 shear gap,
4, 5, 14, 24, 34 coating solution,
11 Valve seat,
12 valves,
La, Lb, Lc, Ld gap,
21 Outer box,
22a, 22b gears,
31 inner wall,
32 Stirring blade.

Claims (4)

  1.  基材上に、膜厚が1~1000nmである光学機能層が少なくとも1層形成されてなる光学フィルムの製造方法であって、
     高分子を含む塗布液に、せん断速度1000(1/s)以上のせん断処理を加える工程(1)と、
     前記工程(1)で得られた塗布液を基材上に塗布して塗膜を形成する工程(2)と、
    を含む、製造方法。
    A method for producing an optical film in which at least one optical functional layer having a film thickness of 1 to 1000 nm is formed on a substrate,
    A step (1) of applying a shearing treatment at a shear rate of 1000 (1 / s) or more to the coating solution containing a polymer;
    A step (2) of forming a coating film by applying the coating liquid obtained in the step (1) on a substrate;
    Manufacturing method.
  2.  前記塗布が、1m/min以上の速度で行われる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the coating is performed at a speed of 1 m / min or more.
  3.  前記工程(2)が、前記工程(1)の後、3時間以内に行われる、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the step (2) is performed within 3 hours after the step (1).
  4.  前記せん断処理が、分散装置、高速撹拌装置、吐出装置、またはこれらの組み合わせにより行われる、請求項1~3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the shearing treatment is performed by a dispersing device, a high-speed stirring device, a discharging device, or a combination thereof.
PCT/JP2013/063847 2012-05-18 2013-05-17 Manufacturing method for optical film WO2013172460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515692A JP6020558B2 (en) 2012-05-18 2013-05-17 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-114822 2012-05-18
JP2012114822 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172460A1 true WO2013172460A1 (en) 2013-11-21

Family

ID=49583858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063847 WO2013172460A1 (en) 2012-05-18 2013-05-17 Manufacturing method for optical film

Country Status (2)

Country Link
JP (1) JP6020558B2 (en)
WO (1) WO2013172460A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071712A (en) * 2013-10-03 2015-04-16 コニカミノルタ株式会社 Coating liquid production method
JP2015132780A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Coating liquid feed system
JP2017056432A (en) * 2015-09-18 2017-03-23 コニカミノルタ株式会社 Manufacturing method of optical film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010773A (en) * 2001-07-04 2003-01-14 Mitsubishi Chemicals Corp Coating application method and method of manufacturing color filter
JP2006122889A (en) * 2004-06-17 2006-05-18 Fuji Photo Film Co Ltd Production method of coating film, anti-reflecting film and its production method, polarizing plate using the anti-reflecting film, and image displaying device using these
JP2009025691A (en) * 2007-07-23 2009-02-05 Toppan Printing Co Ltd Apparatus and method for manufacturing optical film
JP2009086061A (en) * 2007-09-28 2009-04-23 Toyo Ink Mfg Co Ltd Method of manufacturing color composition for color filter, color composition for color filter manufactured by the method, and color filter using the same
JP2012078742A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Coating device and manufacturing method of optical film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135845B2 (en) * 2007-03-28 2013-02-06 凸版印刷株式会社 LAMINATE MANUFACTURING METHOD AND OPTICAL FILM MANUFACTURING METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010773A (en) * 2001-07-04 2003-01-14 Mitsubishi Chemicals Corp Coating application method and method of manufacturing color filter
JP2006122889A (en) * 2004-06-17 2006-05-18 Fuji Photo Film Co Ltd Production method of coating film, anti-reflecting film and its production method, polarizing plate using the anti-reflecting film, and image displaying device using these
JP2009025691A (en) * 2007-07-23 2009-02-05 Toppan Printing Co Ltd Apparatus and method for manufacturing optical film
JP2009086061A (en) * 2007-09-28 2009-04-23 Toyo Ink Mfg Co Ltd Method of manufacturing color composition for color filter, color composition for color filter manufactured by the method, and color filter using the same
JP2012078742A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Coating device and manufacturing method of optical film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071712A (en) * 2013-10-03 2015-04-16 コニカミノルタ株式会社 Coating liquid production method
JP2015132780A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Coating liquid feed system
JP2017056432A (en) * 2015-09-18 2017-03-23 コニカミノルタ株式会社 Manufacturing method of optical film

Also Published As

Publication number Publication date
JPWO2013172460A1 (en) 2016-01-12
JP6020558B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
US20170131445A1 (en) Optical film and method for manufacturing optical film
JP5939257B2 (en) Near-infrared shielding film and near-infrared shielding body
WO2012161096A1 (en) Infrared shielding film
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
JP2015043046A (en) Optical reflection film and optical reflector using the same
WO2012014644A1 (en) Method for manufacturing near infrared reflective film and near infrared reflective body provided with same
JPWO2014171494A1 (en) Optical reflective film, method for producing the same, and optical reflector using the same
JP5853431B2 (en) Infrared shielding film manufacturing method
JP6020558B2 (en) Manufacturing method of optical film
JP6256022B2 (en) Coating liquid delivery system
JP6146410B2 (en) Infrared shielding film and infrared shielding body
JP2013242396A (en) Production method of optical film
JP6743806B2 (en) Optical film and method of manufacturing optical film
JP5664418B2 (en) Infrared shielding film and infrared shielding body
WO2015040896A1 (en) Laminated reflective film and production method therefor, and infrared blocking body including such film
JP5703855B2 (en) Near-infrared reflective film, method for producing near-infrared reflective film, and near-infrared reflector
JP6278041B2 (en) Coating liquid circulation system and optical film manufacturing method
JP2013125076A (en) Near-infrared shielding film and near-infrared shielding body
WO2014181620A1 (en) Process for producing optical film
JP5729144B2 (en) Infrared shielding film and infrared shielding body
WO2016084718A1 (en) Method for manufacturing optical film
JP5817553B2 (en) Infrared shielding film and infrared shielding body
JPWO2017086048A1 (en) Optical reflective film and optical reflector
JP2012155052A (en) Near-infrared reflection film, production method of the same and near-infrared reflector
JP2014168765A (en) Optical film manufacturing system and distribution device control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790390

Country of ref document: EP

Kind code of ref document: A1