WO2013172444A1 - Method for manufacturing crystal oscillator - Google Patents

Method for manufacturing crystal oscillator Download PDF

Info

Publication number
WO2013172444A1
WO2013172444A1 PCT/JP2013/063757 JP2013063757W WO2013172444A1 WO 2013172444 A1 WO2013172444 A1 WO 2013172444A1 JP 2013063757 W JP2013063757 W JP 2013063757W WO 2013172444 A1 WO2013172444 A1 WO 2013172444A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal resonator
bonding material
substrate
manufacturing
present
Prior art date
Application number
PCT/JP2013/063757
Other languages
French (fr)
Japanese (ja)
Inventor
開田 弘明
徹 木津
学 井林
齋藤 善史
雄一郎 長峰
勝馬 諸石
卓也 光野
三村 和弘
Original Assignee
株式会社村田製作所
東京電波株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 東京電波株式会社 filed Critical 株式会社村田製作所
Publication of WO2013172444A1 publication Critical patent/WO2013172444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a crystal resonator.
  • a crystal resonator using a crystal resonator element is known.
  • a crystal resonator element is disposed in a sealed space. Thereby, the influence of the disturbance applied to the crystal resonator element is reduced.
  • the sealed space is formed by joining the substrate and the cap via a bonding material.
  • a vibrator is housed in a container in which an opening is formed, and the peripheral edge of the opening of the container and a lid covering the opening are welded via a bonding material in a vacuum atmosphere.
  • a method of manufacturing a vibrator device in which a vibration device element is sealed is disclosed.
  • Patent Document 1 it is necessary to produce a portion for exhausting the gas generated from the bonding material when forming the sealed space by welding. Therefore, such a method has a problem that the manufacturing process becomes complicated.
  • the main object of the present invention is to provide a simple method for manufacturing a crystal resonator in which the vibration characteristics of the crystal resonator element are unlikely to deteriorate.
  • the substrate on which the crystal resonator element is mounted and the cap are bonded via the bonding material heated at a temperature equal to or higher than the melting point of the metal constituting the bonding material, A sealing space for sealing the crystal resonator element is formed.
  • a bonding material containing an AuSn alloy is used as the bonding material.
  • the method further includes a step of arranging a bonding material on the substrate by printing or plating.
  • the method further includes a step of preparing a substrate on which the heat-treated bonding material is mounted.
  • FIG. 1 is a schematic cross-sectional view of a crystal resonator manufactured by a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a crystal resonator manufactured by the manufacturing method according to the present embodiment.
  • 2 to 5 are schematic cross-sectional views for explaining a method for manufacturing a crystal resonator according to this embodiment.
  • a method for manufacturing the crystal resonator 1 according to this embodiment will be described with reference to FIGS. 1 and 2 to 5.
  • a substrate 10 is prepared.
  • the substrate 10 has a flat plate shape.
  • the material of the substrate 10 is not particularly limited.
  • the substrate 10 can be made of, for example, a metal such as iron or aluminum, an alloy such as stainless steel, or a ceramic such as alumina.
  • the support member 30 is disposed on the substrate 10.
  • the support member 30 can be made of, for example, an insulator such as ceramics or a conductive material such as a metal material. However, in the present invention, it is not always necessary to provide a support member for the crystal resonator.
  • the support member 30 can be disposed on the substrate 10 using a conductive adhesive, solder, or the like.
  • the bonding material 14 is disposed on the substrate 10.
  • the bonding material 14 can be made of a metal such as an AuSn alloy or an AuCu alloy. Preferably, an AuSn alloy is used. Moreover, it is desirable to arrange the bonding material on the substrate by printing or plating.
  • the bonding material 14 is formed by heat-treating the bonding material 14 at a temperature equal to or higher than the melting point of the metal constituting the bonding material 14.
  • the bonding material 14 may contain a component that is more easily gasified than the metal, such as flux. By heat treatment, such components are gasified and removed from the bonding material 14. If the temperature of the heat treatment is too high, the bonding may be adversely affected. Therefore, the temperature of the heat treatment is preferably the melting point of the metal constituting the bonding material 14 + 50 ° C. or lower.
  • the crystal resonator element 20 is mounted on the substrate 10. Specifically, a conductive adhesive is applied on the support member 30, and the crystal resonator element 20 is disposed on the conductive adhesive. In the present invention, the crystal resonator element may be supported on the substrate via a conductive adhesive.
  • the quartz resonator element 20 includes a piezoelectric substrate 22 made of quartz and a pair of electrodes 21 and 23.
  • the electrode 21 is formed on one main surface of the piezoelectric substrate 22, and the electrode 23 is formed on the other main surface of the piezoelectric substrate 22.
  • a voltage is applied to the piezoelectric substrate 22 by these electrodes 21 and 23.
  • the electrodes 21 and 23 can be formed of, for example, a metal such as aluminum, silver, copper, or gold, or an alloy containing one or more of these metals.
  • the cap 11 is disposed on the substrate 10.
  • the cap 11 is a dome shape.
  • the material of the cap 11 is not particularly limited.
  • the cap 11 can be made of the same material as the substrate 10.
  • the substrate 10 and the cap 11 may be made of different materials or may be made of the same material.
  • the substrate 10 and the cap 11 are bonded to each other through the bonding material 14 to form a sealed space 15, and the crystal resonator element 20 is sealed in the sealed space 15.
  • the joining can be performed by welding or the like.
  • the atmosphere in which the bonding is performed may be an air atmosphere or an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.
  • An electronic component chip (not shown) may be disposed in the sealing space 15.
  • the thermistor etc. are mentioned as an electronic component chip
  • the crystal unit 1 can be completed.
  • the substrate 10 on which the crystal resonator element 20 is mounted and the cap 11 are bonded via the bonding material 14 heated at a temperature equal to or higher than the melting point of the metal constituting the bonding material 14.
  • the sealing space 15 is formed by bonding.
  • components that are easily gasified such as flux contained in the bonding material 14 can be easily removed from the bonding material 14. Therefore, it is possible to prevent such a component that is easily gasified from being confined in the sealed space 15. Therefore, according to the manufacturing method according to the present embodiment, it is possible to easily manufacture the crystal resonator 1 in which the vibration characteristics of the crystal resonator element 20 are unlikely to deteriorate.
  • the present invention is not limited to this configuration.
  • the support member 30 may be disposed after the bonding material 14 is disposed on the substrate 10.
  • the support member 30 may be disposed after the bonding material 14 is disposed on the substrate 10 and the bonding material 14 is formed by heat treatment.
  • a substrate 10 on which the heat-treated bonding material 14 is mounted may be prepared, and the crystal resonator element 20 may be mounted on the substrate 10.
  • the bonding material 14 is formed by heating the bonding material 14 and then the crystal resonator element 20 is mounted on the substrate 10 has been described.
  • the present invention is not limited to this configuration. After the crystal resonator element 20 is mounted on the substrate 10, the bonding material 14 may be formed by heat-treating the bonding material 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Provided is a simple manufacturing method for a crystal oscillator in which the oscillation characteristics of the crystalline oscillating element are less susceptible to deterioration. A sealed space (15) for sealing a crystalline oscillating element (20) is formed by joining a cap (11) to a substrate (10) on which the crystalline oscillating element (20) has been mounted, via a joining material (14) that has been heat processed at a temperature at or above the melting point of the metal that constitutes the joining material (14).

Description

水晶振動子の製造方法Manufacturing method of crystal unit
 本発明は、水晶振動子の製造方法に関する。 The present invention relates to a method for manufacturing a crystal resonator.
 従来、水晶振動素子を用いた水晶振動子が知られている。水晶振動子では、一般に、水晶振動素子が封止空間内に配置されている。これにより、水晶振動素子に加わる外乱の影響が小さくされている。 Conventionally, a crystal resonator using a crystal resonator element is known. In a crystal resonator, generally, a crystal resonator element is disposed in a sealed space. Thereby, the influence of the disturbance applied to the crystal resonator element is reduced.
 封止空間は、基板とキャップとを接合材を介して接合することなどにより形成される。例えば、特許文献1には、開口部が形成された容器内に振動子を収容し、真空雰囲気中でこの容器の開口部周縁部とこの開口部を覆う蓋とを接合材を介して溶接することにより、振動デバイス素子を封止してなる振動子デバイスを製造する方法が開示されている。 The sealed space is formed by joining the substrate and the cap via a bonding material. For example, in Patent Document 1, a vibrator is housed in a container in which an opening is formed, and the peripheral edge of the opening of the container and a lid covering the opening are welded via a bonding material in a vacuum atmosphere. Thus, a method of manufacturing a vibrator device in which a vibration device element is sealed is disclosed.
 ところが、封止空間を形成する際などに、接合材などからガスが発生することがある。このようなガスが封止空間内に閉じ込められると、水晶振動素子の振動特性などが劣化する場合がある。例えば、特許文献1では、溶接の工程において、容器の開口部周縁部と蓋とを、開口部周縁部の一部を除いて溶接した後、容器内のガスを排気し、その後、溶接されていない開口部周縁部の一部と蓋とを溶接することが提案されている。 However, when forming a sealed space, gas may be generated from the bonding material. When such a gas is confined in the sealed space, the vibration characteristics of the crystal resonator element may deteriorate. For example, in Patent Document 1, in the welding process, the opening periphery of the container and the lid are welded except for a part of the periphery of the opening, the gas in the container is exhausted, and then welded. It has been proposed to weld a part of the peripheral edge of the opening and the lid.
特開2000-223604号公報JP 2000-223604 A
 特許文献1に開示されたような方法では、溶接によって封止空間を形成する際に、接合材から発生するガスを排気する部分を作製する必要がある。よって、このような方法では、製造工程が煩雑になるという問題がある。 In the method as disclosed in Patent Document 1, it is necessary to produce a portion for exhausting the gas generated from the bonding material when forming the sealed space by welding. Therefore, such a method has a problem that the manufacturing process becomes complicated.
 本発明の主な目的は、水晶振動素子の振動特性が劣化し難い水晶振動子の簡便な製造方法を提供することにある。 The main object of the present invention is to provide a simple method for manufacturing a crystal resonator in which the vibration characteristics of the crystal resonator element are unlikely to deteriorate.
 本発明に係る水晶振動子の製造方法では、接合材を構成する金属の融点以上の温度で加熱処理された接合材を介して、水晶振動素子が搭載された基板とキャップとを接合し、前記水晶振動素子を封止する封止空間を形成する。 In the method for manufacturing a crystal resonator according to the present invention, the substrate on which the crystal resonator element is mounted and the cap are bonded via the bonding material heated at a temperature equal to or higher than the melting point of the metal constituting the bonding material, A sealing space for sealing the crystal resonator element is formed.
 本発明に係る水晶振動子の製造方法のある特定の局面では、接合材として、AuSn系合金を含む接合材を用いる。 In a specific aspect of the method for manufacturing a crystal resonator according to the present invention, a bonding material containing an AuSn alloy is used as the bonding material.
 本発明に係る水晶振動子の製造方法の他の特定の局面では、基板の上に、接合材を印刷またはめっきにより配置する工程をさらに備える。 In another specific aspect of the method for manufacturing a crystal resonator according to the present invention, the method further includes a step of arranging a bonding material on the substrate by printing or plating.
 本発明に係る水晶振動子の製造方法の別の特定の局面では、加熱処理された接合材が搭載された基板を用意する工程をさらに備える。 In another specific aspect of the method for manufacturing a crystal resonator according to the present invention, the method further includes a step of preparing a substrate on which the heat-treated bonding material is mounted.
 本発明によれば、水晶振動素子の振動特性が劣化し難い水晶振動子の簡便な製造方法を提供することができる。 According to the present invention, it is possible to provide a simple method for manufacturing a crystal resonator in which the vibration characteristics of the crystal resonator element are unlikely to deteriorate.
図1は、本発明の一実施形態に係る水晶振動子の製造方法によって製造される水晶振動子の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a crystal resonator manufactured by a method for manufacturing a crystal resonator according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る水晶振動子の製造方法を説明するための略図的断面図である。FIG. 2 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る水晶振動子の製造方法を説明するための略図的断面図である。FIG. 3 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る水晶振動子の製造方法を説明するための略図的断面図である。FIG. 4 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る水晶振動子の製造方法を説明するための略図的断面図である。FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a crystal resonator according to an embodiment of the present invention.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態などにおいて参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率などが異なる場合がある。具体的な物体の寸法比率などは、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1は、本実施形態に係る製造方法によって製造される水晶振動子の略図的断面図である。図2~図5は、本実施形態に係る水晶振動子の製造方法を説明するための略図的断面図である。図1及び図2~図5を参照しながら、本実施形態に係る水晶振動子1の製造方法について説明する。 FIG. 1 is a schematic cross-sectional view of a crystal resonator manufactured by the manufacturing method according to the present embodiment. 2 to 5 are schematic cross-sectional views for explaining a method for manufacturing a crystal resonator according to this embodiment. A method for manufacturing the crystal resonator 1 according to this embodiment will be described with reference to FIGS. 1 and 2 to 5.
 まず、図2に示されるように、基板10を用意する。基板10は、平板状である。基板10の材質は、特に限定されない。基板10は、例えば、鉄、アルミニウムなどの金属、ステンレスなどの合金、アルミナ等のセラミックスなどにより構成することができる。 First, as shown in FIG. 2, a substrate 10 is prepared. The substrate 10 has a flat plate shape. The material of the substrate 10 is not particularly limited. The substrate 10 can be made of, for example, a metal such as iron or aluminum, an alloy such as stainless steel, or a ceramic such as alumina.
 次に、基板10の上に支持部材30を配置する。支持部材30は、例えば、セラミックスなどの絶縁体、金属材などの導電材などにより構成することができる。但し、本発明において、水晶振動子には、支持部材を設ける必要は必ずしもない。支持部材30は、導電性接着剤や半田などを用いて基板10上に配置することができる。 Next, the support member 30 is disposed on the substrate 10. The support member 30 can be made of, for example, an insulator such as ceramics or a conductive material such as a metal material. However, in the present invention, it is not always necessary to provide a support member for the crystal resonator. The support member 30 can be disposed on the substrate 10 using a conductive adhesive, solder, or the like.
 次に、図3に示されるように、基板10の上に接合材14を配置する。接合材14は、AuSn系合金、AuCu系合金などの金属により構成することができる。好ましくは、AuSn系合金を用いるのがよい。また、接合材は、基板の上に、印刷またはめっきにより、配置することが望ましい。 Next, as shown in FIG. 3, the bonding material 14 is disposed on the substrate 10. The bonding material 14 can be made of a metal such as an AuSn alloy or an AuCu alloy. Preferably, an AuSn alloy is used. Moreover, it is desirable to arrange the bonding material on the substrate by printing or plating.
 次に、図4に示されるように、接合材14を構成する金属の融点以上の温度で接合材14を加熱処理することにより、接合材14を形成する。接合材14には、金属に加えて、フラックスなどの金属よりもガス化しやすい成分が含まれていることがある。加熱処理により、このような成分がガス化し、接合材14から除かれる。加熱処理の温度が高すぎると、接合に悪影響を与える場合があるため、加熱処理の温度は、接合材14を構成する金属の融点+50℃以下であることが好ましい。 Next, as shown in FIG. 4, the bonding material 14 is formed by heat-treating the bonding material 14 at a temperature equal to or higher than the melting point of the metal constituting the bonding material 14. In addition to the metal, the bonding material 14 may contain a component that is more easily gasified than the metal, such as flux. By heat treatment, such components are gasified and removed from the bonding material 14. If the temperature of the heat treatment is too high, the bonding may be adversely affected. Therefore, the temperature of the heat treatment is preferably the melting point of the metal constituting the bonding material 14 + 50 ° C. or lower.
 次に、基板10に水晶振動素子20を搭載する。具体的には、支持部材30の上に、導電性接着剤を塗布し、導電性接着剤の上から水晶振動素子20を配置する。なお、本発明において、水晶振動素子は、導電性接着剤を介して基板の上に支持されていてもよい。 Next, the crystal resonator element 20 is mounted on the substrate 10. Specifically, a conductive adhesive is applied on the support member 30, and the crystal resonator element 20 is disposed on the conductive adhesive. In the present invention, the crystal resonator element may be supported on the substrate via a conductive adhesive.
 水晶振動素子20は、水晶からなる圧電基板22と、一対の電極21,23とを備えている。電極21は、圧電基板22の一主面の上に形成されており、電極23は、圧電基板22の他主面の上に形成されている。これら電極21,23により圧電基板22に電圧が印加される。なお、電極21,23は、例えば、アルミニウム、銀、銅、金などの金属や、これらの金属のうちの一種以上を含む合金などにより形成することができる。 The quartz resonator element 20 includes a piezoelectric substrate 22 made of quartz and a pair of electrodes 21 and 23. The electrode 21 is formed on one main surface of the piezoelectric substrate 22, and the electrode 23 is formed on the other main surface of the piezoelectric substrate 22. A voltage is applied to the piezoelectric substrate 22 by these electrodes 21 and 23. The electrodes 21 and 23 can be formed of, for example, a metal such as aluminum, silver, copper, or gold, or an alloy containing one or more of these metals.
 次に、図5に示されるように、キャップ11を基板10の上に配置する。キャップ11は、ドーム型である。キャップ11の材質は、特に限定されない。キャップ11は、基板10と同様の材質により構成することができる。基板10と、キャップ11とは、異なる材質により構成されてもよいし、同じ材質により構成されてもよい。 Next, as shown in FIG. 5, the cap 11 is disposed on the substrate 10. The cap 11 is a dome shape. The material of the cap 11 is not particularly limited. The cap 11 can be made of the same material as the substrate 10. The substrate 10 and the cap 11 may be made of different materials or may be made of the same material.
 次に、基板10と、キャップ11とを接合材14を介して接合して、封止空間15を形成し、水晶振動素子20を封止空間15に封止する。接合は、溶接などにより行うことができる。接合を行う雰囲気は、空気雰囲気であってもよいし、窒素ガス雰囲気やアルゴンガス雰囲気などの不活性ガス雰囲気であってもよい。 Next, the substrate 10 and the cap 11 are bonded to each other through the bonding material 14 to form a sealed space 15, and the crystal resonator element 20 is sealed in the sealed space 15. The joining can be performed by welding or the like. The atmosphere in which the bonding is performed may be an air atmosphere or an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.
 封止空間15内には、図示しない電子部品チップを配してもよい。電子部品チップとしては、サーミスタなどが挙げられる。 An electronic component chip (not shown) may be disposed in the sealing space 15. The thermistor etc. are mentioned as an electronic component chip | tip.
 以上のようにして、水晶振動子1を完成させることができる。本実施形態に係る製造方法によれば、接合材14を構成する金属の融点以上の温度で加熱処理された接合材14を介して、水晶振動素子20が搭載された基板10とキャップ11とを接合し、封止空間15を形成する。このため、接合材14に含まれるフラックスなどのガス化しやすい成分を接合材14から容易に除去することができる。よって、封止空間15内に、このようなガス化しやすい成分が閉じ込められることを抑制することができる。従って、本実施形態に係る製造方法によれば、水晶振動素子20の振動特性が劣化し難い水晶振動子1を簡便に製造することができる。 As described above, the crystal unit 1 can be completed. According to the manufacturing method according to the present embodiment, the substrate 10 on which the crystal resonator element 20 is mounted and the cap 11 are bonded via the bonding material 14 heated at a temperature equal to or higher than the melting point of the metal constituting the bonding material 14. The sealing space 15 is formed by bonding. For this reason, components that are easily gasified such as flux contained in the bonding material 14 can be easily removed from the bonding material 14. Therefore, it is possible to prevent such a component that is easily gasified from being confined in the sealed space 15. Therefore, according to the manufacturing method according to the present embodiment, it is possible to easily manufacture the crystal resonator 1 in which the vibration characteristics of the crystal resonator element 20 are unlikely to deteriorate.
 (変形例)
 上記の実施形態においては、支持部材30を基板10の上に配置した後、接合材14を基板10の上に配置する例について説明した。但し、本発明は、この構成に限定されない。本発明の変形例においては、基板10の上に接合材14を配置してから、支持部材30を配置してもよい。また、基板10の上に接合材14を配置し、加熱処理により接合材14を形成してから、支持部材30を配置してもよい。加熱処理された接合材14が搭載された基板10を用意し、この基板10に水晶振動素子20を搭載してもよい。
(Modification)
In the above embodiment, the example in which the bonding member 14 is disposed on the substrate 10 after the support member 30 is disposed on the substrate 10 has been described. However, the present invention is not limited to this configuration. In the modification of the present invention, the support member 30 may be disposed after the bonding material 14 is disposed on the substrate 10. Alternatively, the support member 30 may be disposed after the bonding material 14 is disposed on the substrate 10 and the bonding material 14 is formed by heat treatment. A substrate 10 on which the heat-treated bonding material 14 is mounted may be prepared, and the crystal resonator element 20 may be mounted on the substrate 10.
 また、上記の実施形態においては、接合材14を加熱処理することにより接合材14を形成した後、水晶振動素子20を基板10に搭載する例について説明した。但し、本発明は、この構成に限定されない。水晶振動素子20を基板10に搭載した後に、接合材14を加熱処理することにより接合材14を形成してもよい。 In the above-described embodiment, the example in which the bonding material 14 is formed by heating the bonding material 14 and then the crystal resonator element 20 is mounted on the substrate 10 has been described. However, the present invention is not limited to this configuration. After the crystal resonator element 20 is mounted on the substrate 10, the bonding material 14 may be formed by heat-treating the bonding material 14.
1…水晶振動子
10…基板
11…キャップ
14…接合材
15…封止空間
20…水晶振動素子
21,23…電極
22…圧電基板
30…支持部材
DESCRIPTION OF SYMBOLS 1 ... Quartz | crystal oscillator 10 ... Board | substrate 11 ... Cap 14 ... Bonding material 15 ... Sealing space 20 ... Crystal oscillation element 21, 23 ... Electrode 22 ... Piezoelectric substrate 30 ... Support member

Claims (4)

  1.  接合材を構成する金属の融点以上の温度で加熱処理された接合材を介して、水晶振動素子が搭載された基板とキャップとを接合し、前記水晶振動素子を封止する封止空間を形成する、水晶振動子の製造方法。 The substrate on which the crystal resonator element is mounted and the cap are bonded to each other through a bonding material heated at a temperature equal to or higher than the melting point of the metal constituting the bonding material, thereby forming a sealing space for sealing the crystal resonator element. A method for manufacturing a crystal resonator.
  2.  前記接合材として、AuSn系合金を含む接合材を用いる、請求項1に記載の水晶振動子の製造方法。 The method for manufacturing a crystal resonator according to claim 1, wherein a bonding material containing an AuSn alloy is used as the bonding material.
  3.  前記基板の上に、前記接合材を印刷またはめっきにより配置する工程をさらに備える、請求項1または2に記載の水晶振動子の製造方法。 3. The method for manufacturing a crystal resonator according to claim 1, further comprising a step of arranging the bonding material on the substrate by printing or plating.
  4.  前記加熱処理された接合材が搭載された基板を用意する工程をさらに備える、請求項1~3のいずれか1項に記載の水晶振動子の製造方法。 4. The method for manufacturing a crystal resonator according to claim 1, further comprising a step of preparing a substrate on which the heat-treated bonding material is mounted.
PCT/JP2013/063757 2012-05-18 2013-05-17 Method for manufacturing crystal oscillator WO2013172444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-114009 2012-05-18
JP2012114009 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172444A1 true WO2013172444A1 (en) 2013-11-21

Family

ID=49583843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063757 WO2013172444A1 (en) 2012-05-18 2013-05-17 Method for manufacturing crystal oscillator

Country Status (1)

Country Link
WO (1) WO2013172444A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108314A (en) * 1988-10-17 1990-04-20 Seiko Electronic Components Ltd Airtight sealing method for small piezoelectric vibrator
JPH03243007A (en) * 1990-02-21 1991-10-30 Seiko Electronic Components Ltd Method for sealing small case for crystal resonator
JPH11266134A (en) * 1998-03-16 1999-09-28 Miyota Kk Method and device for sealing surface-mounted piezoelectric vibrator
JP2006156513A (en) * 2004-11-26 2006-06-15 Sohki:Kk Lid for package and its manufacturing method
JP2008271491A (en) * 2007-03-22 2008-11-06 Epson Toyocom Corp Quartz crystal device and method for sealing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108314A (en) * 1988-10-17 1990-04-20 Seiko Electronic Components Ltd Airtight sealing method for small piezoelectric vibrator
JPH03243007A (en) * 1990-02-21 1991-10-30 Seiko Electronic Components Ltd Method for sealing small case for crystal resonator
JPH11266134A (en) * 1998-03-16 1999-09-28 Miyota Kk Method and device for sealing surface-mounted piezoelectric vibrator
JP2006156513A (en) * 2004-11-26 2006-06-15 Sohki:Kk Lid for package and its manufacturing method
JP2008271491A (en) * 2007-03-22 2008-11-06 Epson Toyocom Corp Quartz crystal device and method for sealing the same

Similar Documents

Publication Publication Date Title
JP6167494B2 (en) Electronic device container manufacturing method, electronic device manufacturing method, electronic device, electronic apparatus, and mobile device
JP5275155B2 (en) Manufacturing method of electronic device
JP2012044105A (en) Electronic device, electronic apparatus, and method of manufacturing electronic device
JP2007251239A (en) Piezoelectric device and manufacturing method thereof
JP2007059736A (en) Piezoelectric vibrator package, its manufacturing method, and physical value sensor
JP2008166510A (en) Piezoelectric vibration piece and piezoelectric vibration device
JP2011155506A (en) Electronic device, electronic apparatus, and method of manufacturing electronic device
JP2007251238A (en) Piezoelectric device and manufacturing method thereof
JP2013038727A (en) Airtight package and method of manufacturing the same
JP2006086585A (en) Surface-mounted piezoelectric resonating device
JP2006211089A (en) Piezoelectric vibration device
WO2013172444A1 (en) Method for manufacturing crystal oscillator
JP2008205761A (en) Piezoelectric vibration device
JP2006196932A (en) Tuning fork type piezoelectric device and method of manufacturing same
JP2007318209A (en) Surface mounted piezoelectric vibrating device, and manufacturing method thereof
WO2013172443A1 (en) Electronic component, and method for producing same
JP2007173973A (en) Manufacturing method of crystal device
JP2010011267A (en) Piezoelectric oscillator
JP2010178113A (en) Piezoelectric device
JP2015220624A (en) Method for manufacturing piezoelectric device and package welding device
JP5642436B2 (en) Electronic device, electronic apparatus, and electronic device manufacturing method
JP2010165904A (en) Electronic component package, and manufacturing method therefor
JP2016054195A (en) Manufacturing method of package and package
JP2006129185A (en) Sealing device
JP2004281545A (en) Sealing method for piezoelectric device package, package lid, and piezoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791303

Country of ref document: EP

Kind code of ref document: A1