WO2013172441A1 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
WO2013172441A1
WO2013172441A1 PCT/JP2013/063754 JP2013063754W WO2013172441A1 WO 2013172441 A1 WO2013172441 A1 WO 2013172441A1 JP 2013063754 W JP2013063754 W JP 2013063754W WO 2013172441 A1 WO2013172441 A1 WO 2013172441A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
substrate
side wall
crystal resonator
cap
Prior art date
Application number
PCT/JP2013/063754
Other languages
French (fr)
Japanese (ja)
Inventor
開田 弘明
学 井林
齋藤 善史
雄一郎 長峰
勝馬 諸石
卓也 光野
三村 和弘
Original Assignee
株式会社村田製作所
東京電波株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 東京電波株式会社 filed Critical 株式会社村田製作所
Publication of WO2013172441A1 publication Critical patent/WO2013172441A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device

Definitions

  • the present invention relates to a crystal resonator.
  • Patent Literature 1 discloses a piezoelectric vibration device including a substrate on which a piezoelectric vibrator is mounted and a metal cap that is bonded to the substrate and seals the piezoelectric vibrator together with the substrate.
  • the main object of the present invention is to provide a crystal resonator with high frequency accuracy.
  • the crystal resonator according to the present invention includes a substrate, a crystal resonator element, and a dome-shaped cap.
  • the crystal resonator element is mounted on the substrate.
  • the cap is bonded to the substrate.
  • the cap defines a sealing space for sealing the crystal resonator element together with the substrate.
  • the cap has a side wall portion and a ceiling portion.
  • the side wall portion surrounds the crystal resonator element.
  • the ceiling part is located above the crystal resonator element.
  • the ceiling part is connected to the side wall part.
  • the thickness of at least a part of the side wall is less than 0.95 times the thickness of the ceiling.
  • the thickness of at least a part of the side wall portion is 0.9 times or less the thickness of the ceiling portion.
  • the thickness of at least a part of the side wall portion is 0.5 times or more the thickness of the ceiling portion.
  • the total thickness of the side wall portion is less than 0.95 times the thickness of the ceiling portion.
  • the cap is made of metal.
  • the cap and the substrate are bonded by an inorganic bonding material.
  • FIG. 1 is a schematic perspective view of a crystal resonator according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a crystal resonator according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view of a crystal resonator according to a reference example.
  • FIG. 5 is a graph showing the relationship between the wall thickness ratio and the maximum principal stress.
  • FIG. 1 is a schematic perspective view of a crystal resonator 1 according to this embodiment.
  • FIG. 2 is a schematic plan view of the crystal unit 1 according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view of the crystal unit 1 according to the present embodiment.
  • the crystal resonator 1 has a substrate 10.
  • the substrate 10 can be made of ceramics such as alumina, for example.
  • a crystal resonator element 11 is mounted on the substrate 10.
  • the crystal resonator element 11 has a substantially rectangular plate shape.
  • the quartz resonator element 11 is supported on the substrate 10 in a cantilever manner by a support material 12 provided on one side in the longitudinal direction.
  • the support member 12 is provided at both corners in the lateral direction at one end portion in the longitudinal direction of the crystal resonator element 11.
  • the support material 12 can be composed of, for example, a cured product of a conductive adhesive.
  • a cap 20 is disposed on the substrate 10.
  • the cap 20 is a dome shape.
  • the cap 20 has a recess 20a.
  • the cap 20 is arranged so that the recess 20a opens toward the substrate 10 side.
  • the cap 20 and the substrate 10 define a sealed space 30 in which the crystal resonator element 11 is disposed.
  • the cap 20 is joined to the substrate 10 at the end face 20b.
  • the cap 20 and the substrate 10 are preferably bonded by an inorganic bonding material 40 such as metal or glass. In this case, intrusion of moisture and gas into the sealed space 30 can be suppressed.
  • the inorganic bonding material 40 that is preferably used include an AuSn alloy.
  • the cap 20 is preferably made of metal, for example.
  • the cap 20 can be made of nickel alloy such as nickel or iron-nickel alloy, kovar, stainless steel, or the like.
  • the cap 20 has a side wall part 21, a ceiling part 22, and a connection part 23.
  • the side wall portion 21 is provided in a frame shape so as to surround the crystal resonator element 11 in plan view.
  • the side wall portion 21 extends from the main surface of the substrate 10 in a direction perpendicular to the main surface of the substrate 10.
  • the ceiling portion 22 is located above the crystal resonator element 11.
  • the ceiling part 22 is parallel to the main surface of the substrate 10.
  • the side wall part 21 and the ceiling part 22 are connected by a connection part 23.
  • the connection part 23 has a curved structure.
  • the connecting portion 23 constitutes a ridge line portion and a corner portion of the cap 20.
  • the thermal expansion coefficient differs between the cap and the substrate. For this reason, when the temperature of the crystal resonator changes, the magnitude of the stress applied to the crystal resonator element mounted on the substrate changes. Therefore, the frequency accuracy of the crystal resonator may be lowered.
  • the thickness of at least a part of the side wall portion 21 is less than 0.95 times the thickness of the ceiling portion 22. Therefore, for example, as in the crystal resonator 100 according to the reference example illustrated in FIG. 4, the cap 20 is compared with the case where the connection portion 123, the side wall portion 121, and the ceiling portion 122 are all substantially the same thickness.
  • the cap 20 is easily deformed. Therefore, the stress applied to the substrate 10 is reduced. Accordingly, the stress applied to the crystal resonator element 11 is reduced. As a result, high frequency accuracy can be realized.
  • the total thickness of the side wall portion 21 is preferably less than 0.95 times the thickness of the ceiling portion 22.
  • FIG. 5 is a graph showing the relationship between the wall thickness ratio and the maximum principal stress.
  • the thickness ratio on the horizontal axis is the ratio of the thickness of the side wall portion 21 to the thickness of the ceiling portion 22 ((thickness of the side wall portion 21) / (thickness of the ceiling portion 22)).
  • Each of the side wall part 21 and the ceiling part 22 has a substantially uniform thickness.
  • the maximum principal stress on the vertical axis is the maximum value of the tensile stress applied to the point A shown in FIG. 3 when the temperature of the crystal unit 1 is cooled from 300 ° C. to ⁇ 40 ° C.
  • the data shown in FIG. 5 is data under the following conditions.
  • Substrate 10 Alumina ceramic substrate (thermal expansion coefficient: 5.4 ⁇ 10 ⁇ 6 / ° C., Young's modulus: 220 ⁇ 10 9 Pa)
  • Cap 20 42Ni alloy (thermal expansion coefficient: 5.0 ⁇ 10 ⁇ 6 / ° C., Young's modulus: 200 ⁇ 10 9 Pa)
  • Support material 12 Made of cured silicone-based conductive adhesive (thermal expansion coefficient: 100 ⁇ 10 ⁇ 6 / ° C., Young's modulus: 0.1 ⁇ 10 9 Pa) From the results shown in FIG. 5, it can be seen that the maximum principal stress can be reduced by setting the thickness of at least a part of the side wall portion 21 to be less than 0.95 times the thickness of the ceiling portion 22.
  • the maximum principal stress can be further reduced by setting the thickness of at least a part of the side wall portion 21 to 0.9 or less of the thickness of the ceiling portion 22. Therefore, it can be seen that the frequency accuracy can be further improved by setting the thickness of the side wall portion 21 to less than 0.95 times, preferably 0.9 times or less the thickness of the ceiling portion 22. However, if the side wall part 21 is too thin, the rigidity of the side wall part 21 may be too low. Therefore, the thickness of the side wall portion 21 is preferably 0.5 times or more the thickness of the ceiling portion 22.
  • the bonding material 40 that bonds the cap 20 and the substrate 10 is an inorganic bonding material
  • the bonding strength between the cap 20 and the substrate 10 is increased. Accordingly, stress is likely to occur between the cap 20 and the substrate 10. Therefore, it is more preferable that the connecting portion 23 be thinner than the side wall portion 21 and the ceiling portion 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A crystal oscillator with high frequency accuracy is provided. The crystal oscillator (1) comprises: a substrate (10); a crystalline oscillating element (11); and a dome-shaped cap (20). The crystalline oscillating element (11) is mounted upon the substrate (10). The cap (20) is joined to the substrate (10). The cap (20) and the substrate layer (10) partition off and form a sealing space (30) that seals the crystalline oscillating element (11). The cap (20) has: a side wall part (21); a ceiling part (22); and a connection part (23). The side wall part (21) encircles the crystalline oscillating element (11). The ceiling part (22) is located above the crystalline oscillating element (11). The connection part (23) connects the side wall part (21) and the ceiling part (22). The thickness of at least one part of the side wall part (21) is less than 0.95 times the thickness of the ceiling part (22).

Description

水晶振動子Crystal oscillator
 本発明は、水晶振動子に関する。 The present invention relates to a crystal resonator.
 従来、発振子などとして、水晶振動子などの圧電振動装置が用いられている。特許文献1には、圧電振動装置の一例として、圧電振動子が搭載された基板と、基板に接合されており、基板と共に圧電振動子を封止している金属キャップとを備える圧電振動装置が記載されている。 Conventionally, a piezoelectric vibration device such as a crystal resonator has been used as an oscillator. As an example of the piezoelectric vibration device, Patent Literature 1 discloses a piezoelectric vibration device including a substrate on which a piezoelectric vibrator is mounted and a metal cap that is bonded to the substrate and seals the piezoelectric vibrator together with the substrate. Are listed.
特開2010-245933号公報JP 2010-245933 A
 水晶振動素子では、例えば応力などの外乱によって周波数特性が大きく変化する。このため、水晶振動素子を用いた水晶振動子では、水晶振動素子に外乱が加わり難くして、周波数精度を向上することが重要である。 In the quartz resonator element, the frequency characteristics change greatly due to disturbance such as stress. For this reason, in a crystal resonator using a crystal resonator element, it is important that disturbance is not easily applied to the crystal resonator element and frequency accuracy is improved.
 本発明は、周波数精度が高い水晶振動子を提供することを主な目的とする。 The main object of the present invention is to provide a crystal resonator with high frequency accuracy.
 本発明に係る水晶振動子は、基板と、水晶振動素子と、ドーム型のキャップとを備える。水晶振動素子は、基板の上に搭載されている。キャップは、基板に接合されている。キャップは、基板と共に水晶振動素子を封止する封止空間を区画形成している。キャップは、側壁部と、天井部とを有する。側壁部は、水晶振動素子を包囲している。天井部は、水晶振動素子の上方に位置する。天井部は、側壁部に接続されている。側壁部の少なくとも一部の厚みが、天井部の厚みの0.95倍未満である。 The crystal resonator according to the present invention includes a substrate, a crystal resonator element, and a dome-shaped cap. The crystal resonator element is mounted on the substrate. The cap is bonded to the substrate. The cap defines a sealing space for sealing the crystal resonator element together with the substrate. The cap has a side wall portion and a ceiling portion. The side wall portion surrounds the crystal resonator element. The ceiling part is located above the crystal resonator element. The ceiling part is connected to the side wall part. The thickness of at least a part of the side wall is less than 0.95 times the thickness of the ceiling.
 本発明に係る水晶振動子のある特定の局面では、側壁部の少なくとも一部の厚みが、天井部の厚みの0.9倍以下である。 In a specific aspect of the crystal resonator according to the present invention, the thickness of at least a part of the side wall portion is 0.9 times or less the thickness of the ceiling portion.
 本発明に係る水晶振動子の別の特定の局面では、側壁部の少なくとも一部の厚みが、天井部の厚みの0.5倍以上である。 In another specific aspect of the crystal resonator according to the present invention, the thickness of at least a part of the side wall portion is 0.5 times or more the thickness of the ceiling portion.
 本発明に係る水晶振動子の他の特定の局面では、側壁部の全体の厚みが、天井部の厚みの0.95倍未満である。 In another specific aspect of the crystal resonator according to the present invention, the total thickness of the side wall portion is less than 0.95 times the thickness of the ceiling portion.
 本発明に係る水晶振動子のさらに他の特定の局面では、キャップが金属製である。 In yet another specific aspect of the crystal resonator according to the present invention, the cap is made of metal.
 本発明に係る水晶振動子のさらに別の特定の局面では、キャップと基板とが、無機接合材によって接合されている。 In yet another specific aspect of the crystal resonator according to the present invention, the cap and the substrate are bonded by an inorganic bonding material.
 本発明によれば、周波数精度が高い水晶振動子を提供することができる。 According to the present invention, it is possible to provide a crystal resonator with high frequency accuracy.
図1は、本発明の一実施形態に係る水晶振動子の略図的斜視図である。FIG. 1 is a schematic perspective view of a crystal resonator according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る水晶振動子の略図的平面図である。FIG. 2 is a schematic plan view of a crystal resonator according to an embodiment of the present invention. 図3は、図2の線III-IIIにおける略図的断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 図4は、参考例に係る水晶振動子の略図的断面図である。FIG. 4 is a schematic cross-sectional view of a crystal resonator according to a reference example. 図5は、肉厚比と、最大主応力との関係を表すグラフである。FIG. 5 is a graph showing the relationship between the wall thickness ratio and the maximum principal stress.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1は、本実施形態に係る水晶振動子1の略図的斜視図である。図2は、本実施形態に係る水晶振動子1の略図的平面図である。図3は、本実施形態に係る水晶振動子1の略図的断面図である。 FIG. 1 is a schematic perspective view of a crystal resonator 1 according to this embodiment. FIG. 2 is a schematic plan view of the crystal unit 1 according to the present embodiment. FIG. 3 is a schematic cross-sectional view of the crystal unit 1 according to the present embodiment.
 図1~図3に示されるように、水晶振動子1は、基板10を有する。基板10は、例えば、アルミナなどのセラミックスなどにより構成することができる。 1 to 3, the crystal resonator 1 has a substrate 10. The substrate 10 can be made of ceramics such as alumina, for example.
 基板10の上には、水晶振動素子11が搭載されている。水晶振動素子11は、略矩形板状である。水晶振動素子11は、長手方向の一方側に設けられた支持材12により基板10に片持ち梁態様で支持されている。支持材12は、水晶振動素子11の長手方向の一方側端部において、短手方向における両角部に設けられている。支持材12は、例えば、導電性接着剤の硬化物等により構成することができる。 A crystal resonator element 11 is mounted on the substrate 10. The crystal resonator element 11 has a substantially rectangular plate shape. The quartz resonator element 11 is supported on the substrate 10 in a cantilever manner by a support material 12 provided on one side in the longitudinal direction. The support member 12 is provided at both corners in the lateral direction at one end portion in the longitudinal direction of the crystal resonator element 11. The support material 12 can be composed of, for example, a cured product of a conductive adhesive.
 基板10の上には、キャップ20が配されている。キャップ20は、ドーム型である。キャップ20は、凹部20aを有する。キャップ20は、凹部20aが基板10側に向かって開口するように配されている。このキャップ20と基板10とによって、水晶振動素子11が配された封止空間30が区画形成されている。キャップ20は、端面20bにおいて、基板10と接合されている。キャップ20と基板10とは、金属やガラスなどの無機接合材40により接合されていることが好ましい。この場合は、封止空間30内への水分や気体の侵入を抑制することができる。好ましく用いられる無機接合材40としては、例えば、AuSn合金等が挙げられる。 A cap 20 is disposed on the substrate 10. The cap 20 is a dome shape. The cap 20 has a recess 20a. The cap 20 is arranged so that the recess 20a opens toward the substrate 10 side. The cap 20 and the substrate 10 define a sealed space 30 in which the crystal resonator element 11 is disposed. The cap 20 is joined to the substrate 10 at the end face 20b. The cap 20 and the substrate 10 are preferably bonded by an inorganic bonding material 40 such as metal or glass. In this case, intrusion of moisture and gas into the sealed space 30 can be suppressed. Examples of the inorganic bonding material 40 that is preferably used include an AuSn alloy.
 キャップ20は、例えば金属製であることが好ましい。具体的には、キャップ20は、例えば、ニッケル、鉄ニッケル合金などのニッケル合金、コバール、ステンレス鋼などにより構成することができる。 The cap 20 is preferably made of metal, for example. Specifically, the cap 20 can be made of nickel alloy such as nickel or iron-nickel alloy, kovar, stainless steel, or the like.
 キャップ20は、側壁部21と、天井部22と、接続部23とを有する。側壁部21は、平面視において水晶振動素子11を包囲するように額縁状に設けられている。側壁部21は、基板10の主面から、基板10の主面に対して垂直な方向に延びている。天井部22は、水晶振動素子11の上方に位置している。天井部22は、基板10の主面と平行である。側壁部21と天井部22とは接続部23によって接続されている。接続部23は、湾曲構造を有する。接続部23は、キャップ20の稜線部及びコーナー部を構成している。 The cap 20 has a side wall part 21, a ceiling part 22, and a connection part 23. The side wall portion 21 is provided in a frame shape so as to surround the crystal resonator element 11 in plan view. The side wall portion 21 extends from the main surface of the substrate 10 in a direction perpendicular to the main surface of the substrate 10. The ceiling portion 22 is located above the crystal resonator element 11. The ceiling part 22 is parallel to the main surface of the substrate 10. The side wall part 21 and the ceiling part 22 are connected by a connection part 23. The connection part 23 has a curved structure. The connecting portion 23 constitutes a ridge line portion and a corner portion of the cap 20.
 ところで、一般的に、キャップと基板とでは、熱膨張係数が異なる。このため、水晶振動子の温度が変化すると、基板の上に搭載された水晶振動素子に加わる応力の大きさが変化する。従って、水晶振動子の周波数精度が低くなる場合がある。 By the way, generally, the thermal expansion coefficient differs between the cap and the substrate. For this reason, when the temperature of the crystal resonator changes, the magnitude of the stress applied to the crystal resonator element mounted on the substrate changes. Therefore, the frequency accuracy of the crystal resonator may be lowered.
 ここで、水晶振動子1では、側壁部21の少なくとも一部の厚みが、天井部22の厚みの0.95倍未満である。このため、例えば、図4に示す参考例に係る水晶振動子100のように、接続部123、側壁部121及び天井部122がすべて略同一の厚さとされている場合と比較して、キャップ20に応力が加わった際にキャップ20が変形しやすい。よって、基板10に加わる応力が小さくなる。従って、水晶振動素子11に加わる応力が小さくなる。その結果、高い周波数精度を実現することができる。 Here, in the crystal unit 1, the thickness of at least a part of the side wall portion 21 is less than 0.95 times the thickness of the ceiling portion 22. Therefore, for example, as in the crystal resonator 100 according to the reference example illustrated in FIG. 4, the cap 20 is compared with the case where the connection portion 123, the side wall portion 121, and the ceiling portion 122 are all substantially the same thickness. When stress is applied to the cap 20, the cap 20 is easily deformed. Therefore, the stress applied to the substrate 10 is reduced. Accordingly, the stress applied to the crystal resonator element 11 is reduced. As a result, high frequency accuracy can be realized.
 より高い周波数精度を実現する観点からは、側壁部21の全体の厚みが天井部22の厚みの0.95倍未満であることが好ましい。 From the viewpoint of realizing higher frequency accuracy, the total thickness of the side wall portion 21 is preferably less than 0.95 times the thickness of the ceiling portion 22.
 図5は、肉厚比と、最大主応力との関係を表すグラフである。図5において、詳細には、横軸の肉厚比は、天井部22の厚みに対する側壁部21の厚みの比((側壁部21の厚み)/(天井部22の厚み))である。側壁部21及び天井部22は、それぞれ略均一厚みを有する。縦軸の最大主応力は、水晶振動子1の温度を300℃から-40℃にまで冷却したときに、図3に示すポイントAに加わった引張応力の最大値である。 FIG. 5 is a graph showing the relationship between the wall thickness ratio and the maximum principal stress. In FIG. 5, in detail, the thickness ratio on the horizontal axis is the ratio of the thickness of the side wall portion 21 to the thickness of the ceiling portion 22 ((thickness of the side wall portion 21) / (thickness of the ceiling portion 22)). Each of the side wall part 21 and the ceiling part 22 has a substantially uniform thickness. The maximum principal stress on the vertical axis is the maximum value of the tensile stress applied to the point A shown in FIG. 3 when the temperature of the crystal unit 1 is cooled from 300 ° C. to −40 ° C.
 なお、図5に示すデータは、下記の条件のときのデータである。 The data shown in FIG. 5 is data under the following conditions.
 基板10:アルミナセラミック基板(熱膨張係数:5.4×10-6/℃、ヤング率:220×10Pa)
 キャップ20:42Ni合金製(熱膨張係数:5.0×10-6/℃、ヤング率:200×10Pa)
 支持材12:シリコーン系導電性接着剤の硬化物製(熱膨張係数:100×10-6/℃、ヤング率:0.1×10Pa)
 図5に示す結果から、側壁部21の少なくとも一部の厚みを、天井部22の厚みの0.95倍未満とすることにより、最大主応力を小さくできることが分かる。側壁部21の少なくとも一部の厚みを、天井部22の厚みの0.9以下とすることにより、最大主応力をより小さくできることが分かる。従って、側壁部21の厚みを、天井部22の厚みの0.95倍未満、好ましくは、0.9倍以下とすることにより、周波数精度をさらに改善できることが分かる。但し、側壁部21が薄すぎると、側壁部21の剛性が低くなりすぎる場合がある。従って、側壁部21の厚みを、天井部22の厚みの0.5倍以上とすることが好ましい。
Substrate 10: Alumina ceramic substrate (thermal expansion coefficient: 5.4 × 10 −6 / ° C., Young's modulus: 220 × 10 9 Pa)
Cap 20: 42Ni alloy (thermal expansion coefficient: 5.0 × 10 −6 / ° C., Young's modulus: 200 × 10 9 Pa)
Support material 12: Made of cured silicone-based conductive adhesive (thermal expansion coefficient: 100 × 10 −6 / ° C., Young's modulus: 0.1 × 10 9 Pa)
From the results shown in FIG. 5, it can be seen that the maximum principal stress can be reduced by setting the thickness of at least a part of the side wall portion 21 to be less than 0.95 times the thickness of the ceiling portion 22. It can be seen that the maximum principal stress can be further reduced by setting the thickness of at least a part of the side wall portion 21 to 0.9 or less of the thickness of the ceiling portion 22. Therefore, it can be seen that the frequency accuracy can be further improved by setting the thickness of the side wall portion 21 to less than 0.95 times, preferably 0.9 times or less the thickness of the ceiling portion 22. However, if the side wall part 21 is too thin, the rigidity of the side wall part 21 may be too low. Therefore, the thickness of the side wall portion 21 is preferably 0.5 times or more the thickness of the ceiling portion 22.
 キャップ20と基板10とを接合している接合材40が無機接合材である場合は、キャップ20と基板10との接合強度が高くなる。従って、キャップ20と基板10との間に応力が生じやすい。従って、接続部23を、側壁部21及び天井部22よりも薄くしておくことがより好ましい。 When the bonding material 40 that bonds the cap 20 and the substrate 10 is an inorganic bonding material, the bonding strength between the cap 20 and the substrate 10 is increased. Accordingly, stress is likely to occur between the cap 20 and the substrate 10. Therefore, it is more preferable that the connecting portion 23 be thinner than the side wall portion 21 and the ceiling portion 22.
1…水晶振動子
10…基板
11…水晶振動素子
12…支持材
20…キャップ
20a…凹部
20b…端面
21…側壁部
22…天井部
23…接続部
30…封止空間
40…無機接合材
DESCRIPTION OF SYMBOLS 1 ... Crystal oscillator 10 ... Board | substrate 11 ... Crystal oscillation element 12 ... Support material 20 ... Cap 20a ... Concave part 20b ... End surface 21 ... Side wall part 22 ... Ceiling part 23 ... Connection part 30 ... Sealing space 40 ... Inorganic bonding material

Claims (6)

  1.  基板と、
     前記基板の上に搭載された水晶振動素子と、
     前記基板に接合されており、前記基板と共に前記水晶振動素子を封止する封止空間を区画形成しているドーム型のキャップと、
    を備え、
     前記キャップは、前記水晶振動素子を包囲する側壁部と、前記水晶振動素子の上方に位置し、前記側壁部に接続された天井部とを有し、
     前記側壁部の少なくとも一部の厚みが、前記天井部の厚みの0.95倍未満である、水晶振動子。
    A substrate,
    A crystal resonator element mounted on the substrate;
    A dome-shaped cap that is bonded to the substrate and defines a sealing space that seals the crystal resonator element together with the substrate;
    With
    The cap has a side wall that surrounds the crystal resonator element, and a ceiling portion that is located above the crystal resonator element and connected to the side wall portion,
    A quartz resonator in which the thickness of at least a part of the side wall is less than 0.95 times the thickness of the ceiling.
  2.  前記側壁部の少なくとも一部の厚みが、前記天井部の厚みの0.9倍以下である、請求項1に記載の水晶振動子。 The crystal resonator according to claim 1, wherein a thickness of at least a part of the side wall portion is 0.9 times or less of a thickness of the ceiling portion.
  3.  前記側壁部の少なくとも一部の厚みが、前記天井部の厚みの0.5倍以上である、請求項1または2に記載の水晶振動子。 3. The crystal resonator according to claim 1, wherein a thickness of at least a part of the side wall portion is 0.5 times or more of a thickness of the ceiling portion.
  4.  前記側壁部の全体の厚みが、前記天井部の厚みの0.95倍未満である、請求項1~3のいずれか一項に記載の水晶振動子。 The crystal resonator according to any one of claims 1 to 3, wherein an overall thickness of the side wall portion is less than 0.95 times a thickness of the ceiling portion.
  5.  前記キャップが金属製である、請求項1~4のいずれか一項に記載の水晶振動子。 The crystal resonator according to any one of claims 1 to 4, wherein the cap is made of metal.
  6.  前記キャップと前記基板とが、無機接合材によって接合されている、請求項1~5のいずれか一項に記載の水晶振動子。 The crystal resonator according to any one of claims 1 to 5, wherein the cap and the substrate are bonded by an inorganic bonding material.
PCT/JP2013/063754 2012-05-18 2013-05-17 Crystal oscillator WO2013172441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-113936 2012-05-18
JP2012113936 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172441A1 true WO2013172441A1 (en) 2013-11-21

Family

ID=49583840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063754 WO2013172441A1 (en) 2012-05-18 2013-05-17 Crystal oscillator

Country Status (1)

Country Link
WO (1) WO2013172441A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010101A (en) * 2019-03-12 2020-04-14 天津大学 Film-packaged MEMS device component with arc-shaped structure and electronic equipment
JPWO2021095294A1 (en) * 2019-11-14 2021-05-20
WO2024191639A1 (en) * 2023-03-07 2024-09-19 Ruiz Dava Gold colloid hemp juice and methods of producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110925A (en) * 1999-10-07 2001-04-20 Murata Mfg Co Ltd Conductive cap, electronic component, and method of forming insulating film on conductive cap
JP2002217324A (en) * 2001-01-19 2002-08-02 Seiko Epson Corp Metal package for mounting and its manufacturing method
JP2006041296A (en) * 2004-07-29 2006-02-09 Nec Schott Components Corp Thin metal package and its manufacturing method
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2010245933A (en) * 2009-04-08 2010-10-28 Panasonic Corp Piezoelectric resonance component and method for manufacturing the same
JP2011139223A (en) * 2009-12-28 2011-07-14 Kyocera Kinseki Corp Cover member, method for manufacturing cover member wafer and method for manufacturing cover member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110925A (en) * 1999-10-07 2001-04-20 Murata Mfg Co Ltd Conductive cap, electronic component, and method of forming insulating film on conductive cap
JP2002217324A (en) * 2001-01-19 2002-08-02 Seiko Epson Corp Metal package for mounting and its manufacturing method
JP2006041296A (en) * 2004-07-29 2006-02-09 Nec Schott Components Corp Thin metal package and its manufacturing method
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2010245933A (en) * 2009-04-08 2010-10-28 Panasonic Corp Piezoelectric resonance component and method for manufacturing the same
JP2011139223A (en) * 2009-12-28 2011-07-14 Kyocera Kinseki Corp Cover member, method for manufacturing cover member wafer and method for manufacturing cover member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010101A (en) * 2019-03-12 2020-04-14 天津大学 Film-packaged MEMS device component with arc-shaped structure and electronic equipment
JPWO2021095294A1 (en) * 2019-11-14 2021-05-20
WO2021095294A1 (en) * 2019-11-14 2021-05-20 株式会社村田製作所 Piezoelectric vibrator and method for manufacturing same
JP7389410B2 (en) 2019-11-14 2023-11-30 株式会社村田製作所 Piezoelectric vibrator and its manufacturing method
WO2024191639A1 (en) * 2023-03-07 2024-09-19 Ruiz Dava Gold colloid hemp juice and methods of producing the same

Similar Documents

Publication Publication Date Title
JP5678741B2 (en) Acceleration detector, acceleration detection device, and electronic apparatus
JP5369741B2 (en) Vibrating piece and vibrator
WO2013172442A1 (en) Crystal oscillator
US20160027424A1 (en) Ultrasonic wave generation apparatus
WO2013172441A1 (en) Crystal oscillator
JP2006262100A (en) Piezoelectric vibrator
JP5712755B2 (en) Acceleration detector, acceleration detection device, and electronic apparatus
JP5585240B2 (en) Vibrating piece and vibrating device
JP2013201638A (en) Vibration device
JP2010136243A (en) Vibrator
JP5299645B2 (en) Bending vibrator element and method for manufacturing bending vibrator
CN103227618A (en) Vibration device and oscillator
JP5867631B2 (en) Acceleration detector, acceleration detection device, and electronic apparatus
JP7508936B2 (en) Oscillator
JP5494175B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP7543772B2 (en) Oscillator
JP2011102772A (en) Pressure sensor
JP2015226070A (en) Piezoelectric vibration piece and piezoelectric device
JP4499410B2 (en) Crystal oscillator
JP2013168863A (en) Electronic component
TW202007078A (en) Pedestal for vibration element, resonator, and oscillator
JP2013217719A (en) Pressure sensor and electronic apparatus
JP2013181799A (en) Physical quantity detection device, electronic apparatus
JP2020014044A (en) Pedestal for vibration element, vibrator, and oscillator
JP2020123816A (en) Vibration element pedestal, vibrator, and oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791110

Country of ref document: EP

Kind code of ref document: A1