WO2013172303A1 - Thermoplastic resin composition, and reflective film produced using same - Google Patents

Thermoplastic resin composition, and reflective film produced using same Download PDF

Info

Publication number
WO2013172303A1
WO2013172303A1 PCT/JP2013/063292 JP2013063292W WO2013172303A1 WO 2013172303 A1 WO2013172303 A1 WO 2013172303A1 JP 2013063292 W JP2013063292 W JP 2013063292W WO 2013172303 A1 WO2013172303 A1 WO 2013172303A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
mass
parts
zinc oxide
Prior art date
Application number
PCT/JP2013/063292
Other languages
French (fr)
Japanese (ja)
Inventor
伸昭 神門
木村 敏樹
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201380025523.5A priority Critical patent/CN104302700A/en
Priority to JP2014506666A priority patent/JP5599534B2/en
Priority to KR1020147027852A priority patent/KR20150012240A/en
Publication of WO2013172303A1 publication Critical patent/WO2013172303A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present invention relates to a thermoplastic resin having whiteness that can be used for a reflection film of a backlight unit of a liquid crystal display device, and capable of preventing corrosion or discoloration of a metal terminal in the liquid crystal display device, and the use thereof.
  • a thermoplastic resin having whiteness that can be used for a reflection film of a backlight unit of a liquid crystal display device, and capable of preventing corrosion or discoloration of a metal terminal in the liquid crystal display device, and the use thereof.
  • Related to the reflective film is related to the reflective film.
  • a reflective film is installed on the back surface.
  • this reflective film for example, fine bubbles are generated inside the film by stretching when forming a resin composition based on polyethylene terephthalate containing barium sulfate as a base resin.
  • a reflective film is known (for example, refer to Patent Document 1).
  • barium sulfate contains free sulfur, which causes a problem that the metal terminal in the liquid crystal display device is corroded or discolored, and the electronic circuit does not operate normally.
  • a problem to be solved by the present invention is a thermoplastic resin that can be used for a reflective film of a backlight unit of a liquid crystal display device, and that can prevent corrosion or discoloration of a metal terminal in the liquid crystal display device, and the use thereof. It is to provide a reflective film.
  • thermoplastic resin composition containing a compound containing free sulfur such as barium sulfate has a specific ratio to the compound containing free sulfur.
  • zinc oxide having a surface area it is possible to prevent corrosion and discoloration of metals in contact with or near the resin composition, and to have high whiteness, so that the reflective film of the backlight unit of the liquid crystal display device As a result, the present invention was completed.
  • the present invention relates to a thermoplastic resin composition containing polyester (A), compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and reflection using the same.
  • a thermoplastic resin composition containing polyester (A), compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and reflection using the same.
  • thermoplastic resin composition of the present invention is a thermoplastic resin composition containing a compound containing free sulfur such as barium sulfate, a metal electrode corrosive due to free sulfur present in or near the contact, Corrosion and discoloration of electric wires and vapor-deposited films can be suppressed and high whiteness is achieved. Therefore, the thermoplastic resin composition of the present invention can be used for a reflective film of a backlight unit of a liquid crystal display device provided with a metal electrode, an electric wire, and a vapor deposition film.
  • thermoplastic resin composition of the present invention contains polyester (A), a compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more.
  • the polyester (A) will be described.
  • the polyester (A) include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like, and modified products of these resins, copolymers of a plurality of resin types, polymer alloys, blend resins, and the like. .
  • polyethylene terephthalate is preferable because it is inexpensive and has excellent mechanical properties as a film when used as a reflective film.
  • the compound (B) is a compound containing free sulfur and contains a small amount of free sulfur in the raw material or the production process.
  • examples of the compound (B) include various additives such as a white pigment such as barium sulfate and a surface treatment agent.
  • the compound (B) preferably has a small particle diameter in order to reflect light efficiently, and the average particle diameter is preferably 0.001 to 20 ⁇ m or less, more preferably 0.05 to 10 ⁇ m. The range of is preferable.
  • the average particle diameter of the said compound (B) is measured by the laser diffraction scattering method.
  • the zinc oxide (C) has a specific surface area of 15 m 2 / g or more.
  • the specific surface area is not particularly limited but is preferably in the range of 15 to 150 m 2 / g and more preferably in the range of 30 to 100 m 2 / g in view of ease of production and particle aggregation. Is more preferable.
  • the specific surface area of the zinc oxide (C) is measured by the BET method using nitrogen gas as an adsorption gas.
  • the particle diameter of the zinc oxide (C) is not particularly limited.
  • particles having an average particle diameter of 10 [nm] to 10 [ ⁇ m] can be used, and particularly excellent in the effect of preventing metal corrosion or discoloration. Therefore, it is preferable to use one having an average particle size of 20 [nm] to 100 [nm], or 1 [ ⁇ m] to 10 [ ⁇ m] and having a porous surface. Those having an average particle diameter of 20 nm to 100 nm are particularly preferable.
  • what processed the surface of zinc oxide using surface treating agents, such as silicone and Si can also be used, However, It is preferable to use an untreated thing.
  • the average particle size of the zinc oxide (C) was determined by dispersing the powder to primary particles and then photographing with a transmission electron microscope (captured number of 1,000 or more), and analyzing the individual particles photographed. An image processing is performed by an equation particle size distribution measuring apparatus, and an equivalent circle diameter is measured.
  • the zinc oxide (C) is used in an amount of 0.05 to 100 parts by mass of the compound (B) because a sufficient effect of preventing corrosion or discoloration of metal is obtained and excellent moldability is obtained.
  • the range of ⁇ 15 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.2 to 9 parts by mass is more preferable.
  • the zinc oxide (C) may be added to the thermoplastic resin composition of the present invention in any manner. Besides the method of adding the zinc oxide (C) powder as it is, zinc carbonate, water After adding a zinc compound such as zinc oxide or zinc chloride to the thermoplastic resin composition of the present invention, it may be transformed into zinc oxide depending on the temperature condition or the like.
  • thermoplastic resin composition of the present invention can be carried out by a melt kneading method using an ordinary twin screw extruder.
  • the thermoplastic resin composition of the present invention can be used in the form of a compound that can be used as it is for a molded product, or in the form of a masterbatch that is a high-concentration product.
  • the reflective film of the present invention is obtained by molding the thermoplastic resin composition of the present invention.
  • the molding method include a melt extrusion molding method using a T die and the like. Further, after forming into a film or a sheet by a melt extrusion molding method or the like, it may be uniaxially or biaxially stretched. In particular, a biaxially stretched material is preferable because high reflectance can be imparted.
  • a known additive such as a compound (B) containing free sulfur, zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other hydrolysis inhibitors is added to the polyester (A) as necessary.
  • a blended thermoplastic resin composition Specifically, the compound (B) containing free sulfur in the polyester (A), zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other known additives such as hydrolysis inhibitors are required.
  • thermoplastic resin composition can be obtained.
  • compound (B) containing free sulfur, zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other known additives such as other hydrolysis inhibitors are blended in high concentration in polyester (A).
  • a so-called master batch can be prepared, and the master batch and polyester (A) can be mixed to obtain a thermoplastic resin composition having a desired concentration.
  • thermoplastic resin composition thus obtained is melted and formed into a film.
  • a thermoplastic resin composition After drying a thermoplastic resin composition, it is supplied to an extruder and heated to a temperature equal to or higher than the melting point of the resin to melt. Or you may supply a thermoplastic resin composition to an extruder, without drying, but when not drying, it is preferable to use a vacuum vent at the time of melt-extrusion.
  • Conditions such as the extrusion temperature need to be set in consideration of a decrease in molecular weight due to decomposition.
  • the extrusion temperature is preferably in the range of 170 ° C to 230 ° C.
  • the molten thermoplastic resin composition is extruded from the slit-shaped discharge port of the T die, and is solidified on a cooling roll to form a cast sheet.
  • the reflective film using the thermoplastic resin composition of the present invention is preferably stretched in at least a uniaxial direction so that the area magnification is in a range of 1.1 to 10 times, and is stretched in a biaxial direction. More preferably.
  • the stretching temperature for stretching the cast sheet may be within a known range, and is preferably 50 ° C. or higher and 90 ° C. or lower, for example.
  • the stretching order is not particularly limited, and for example, simultaneous biaxial stretching or sequential stretching may be used. After melt film formation using a stretching facility, the film may be stretched in the MD direction by roll stretching, and then stretched in the TD direction by tenter stretching, or biaxial stretching may be performed by tubular stretching or the like.
  • thermoplastic resin composition in order to impart heat resistance and dimensional stability to the reflective film using the thermoplastic resin composition, it is preferable to perform heat setting at 90 to 160 ° C. after stretching. Although there is no limitation in particular about extending
  • the thickness of the reflective film using the thermoplastic resin composition of the present invention is not particularly limited, but is usually 30 ⁇ m to 500 ⁇ m, and is preferably in the range of about 50 ⁇ m to 500 ⁇ m in view of practical handling. .
  • the thickness is preferably 30 ⁇ m to 100 ⁇ m. If a reflective film having such a thickness is used, it can also be used for small and thin liquid crystal displays and the like such as notebook computers and mobile phones.
  • the reflective film of the present invention may have a single layer configuration, but may also have a multilayer configuration in which two or more layers are laminated.
  • a reflective plate used for a liquid crystal display or the like can be formed using a reflective film using the thermoplastic resin composition of the present invention.
  • a reflective film using a thermoplastic resin composition can be coated on a metal plate or a resin plate to form a reflective plate.
  • This reflecting plate is useful as a reflecting plate used for liquid crystal display devices, lighting fixtures, lighting signs, and the like. Below, an example is given and demonstrated about the manufacturing method of such a reflecting plate, but it is not restricted to these.
  • a method of coating the reflective film on a metal plate or a resin plate a method using an adhesive, a method of heat fusion without using an adhesive, a method of bonding via an adhesive sheet, a method of extrusion coating, etc.
  • a reflective film can be bonded by applying an adhesive such as polyester, polyurethane, or epoxy to the surface of the metal plate or resin plate on the side where the reflective film is bonded.
  • an adhesive such as polyester, polyurethane, or epoxy
  • a commonly used coating facility such as a reverse roll coater or a kiss roll coater is used, and the adhesive film thickness after drying on the surface of a metal plate or the like to which a reflective film is bonded is about 2 to 4 ⁇ m.
  • the coated surface is dried and heated by an infrared heater and a hot-air heating furnace, and while maintaining the surface of the plate at a predetermined temperature, the reflective film is directly coated and cooled using a roll laminator, thereby reflecting the reflective plate Can get.
  • the boundary between the definition of a sheet and a film is not clear and it is difficult to clearly distinguish the film.
  • the film and the sheet are collectively referred to as a film.
  • Example 1 Polyethylene terephthalate (“RAMAPET” manufactured by Indrama Co., Ltd .; hereinafter abbreviated as “PET”) 64.95 parts by mass, barium sulfate (“Variace B-55” manufactured by Sakai Chemical Industry Co., Ltd.), average particle size: 0.3 ⁇ m ) 35 parts by mass, and 0.05 part by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle size 25 nm) were premixed, and then the mixture was twin-screw extruder (Toshiba Machine Co., Ltd. “TEM-37BS”) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (1).
  • the obtained resin composition (1) was subjected to the following silver corrosion acceleration test, moldability test, and lightness measurement to evaluate silver corrosion, moldability and whiteness.
  • the pellet of the resin composition (1) obtained above was melt-kneaded with a twin-screw extruder, and then an extruder set at 280 ° C. (“Toyo Seiki Seisakusho Co., Ltd.,“ Lab Plast Mill Model: 50M ”) and 120 mm
  • the film was formed with a width T die (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to produce a film having a thickness of 100 ⁇ m.
  • the appearance of the produced film was visually observed, and the moldability was evaluated according to the following criteria.
  • The appearance of the film is good.
  • Bubbles or tears on the film surface.
  • X There are many bubbles and tears on the film surface, and molding is difficult.
  • Example 2 64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (2). The obtained resin composition (2) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • MZ-500 manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm
  • Example 3 60 parts by mass of PET, 35 parts by mass of barium sulfate, and 3 parts by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, and then the mixture was mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (3). The obtained resin composition (3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • MZ-500 manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm
  • Example 4 64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-150” manufactured by Teika Co., Ltd., specific surface area 15 m 2 / g, average particle diameter 70 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (4). The obtained resin composition (3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • MZ-150 manufactured by Teika Co., Ltd., specific surface area 15 m 2 / g, average particle diameter 70 nm
  • Example 5 64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-300” manufactured by Teika Co., Ltd., specific surface area 30 m 2 / g, average particle diameter 35 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (5). The obtained resin composition (5) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • MZ-300 manufactured by Teika Co., Ltd., specific surface area 30 m 2 / g, average particle diameter 35 nm
  • Example 6 Reserve 64.9 parts by weight of PET, 35 parts by weight of barium sulfate, and 0.1 parts by weight of active zinc white (“active zinc white” manufactured by Honjo Chemical Co., Ltd., specific surface area 60 m 2 / g, porous, average particle diameter 4000 nm)
  • active zinc white manufactured by Honjo Chemical Co., Ltd., specific surface area 60 m 2 / g, porous, average particle diameter 4000 nm
  • the mixture is put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (6). It was.
  • the obtained resin composition (6) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • Comparative Example 1 65 parts by mass of PET and 35 parts by mass of barium sulfate are premixed, and then the mixture is put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. A pellet-shaped resin composition (R1) was obtained. The obtained resin composition (R1) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • Comparative Example 3 55 parts by mass of PET, 35 parts by mass of barium sulfate, and 10 parts by mass of zinc oxide (“Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 3.5 m 2 / g, average particle diameter 200 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R3). The obtained resin composition (R3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • TEM-37BS twin screw extruder
  • Comparative Example 5 55 parts by mass of PET, 35 parts by mass of barium sulfate, and 10 parts by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, and then the mixture was mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R5). The obtained resin composition (R5) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • MZ-500 manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm
  • Comparative Example 6 64 parts by mass of PET, 35 parts by mass of barium sulfate, and 1 part by mass of basic zinc carbonate (“Transparent Zinc White” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 25 m 2 / g) are premixed, and then the mixture is mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R6). The obtained resin composition (R6) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
  • TEM-37BS manufactured by Toshiba Machine Co., Ltd.
  • Tables 1 and 2 show the compositions of the resin compositions (1) to (6) and (R1) to (R6) prepared in Examples 1 to 6 and Comparative Examples 1 to 6 and their evaluation results.
  • the resin compositions (1) to (6) of Examples 1 to 6, which are the resin compositions of the present invention do not corrode (discolor) silver and have good moldability. It was found to be good.
  • Comparative Example 1 is an example in which no zinc oxide was used. Although the thing of this comparative example 1 had favorable moldability, it turned out that there exists a problem which corrodes silver large.
  • Comparative Examples 2 and 3 has a specific surface area of an example in which a zinc oxide is 3.5 m 2 / g of less than 15 m 2 / g. Although the comparative examples 2 and 3 had good moldability, it was found that there was a problem of greatly corroding silver.
  • Comparative Example 4 has a specific surface area of an example in which a zinc oxide is 10 m 2 / g of less than 15 m 2 / g. Although the thing of this comparative example 4 had favorable moldability, it turned out that there exists a problem which corrodes silver large.
  • Comparative Example 5 is an example in which 15 parts by mass or more of zinc oxide having a specific surface area of 15 m 2 / g or more is used with respect to 100 parts by mass of (B). Although the thing of this comparative example 5 did not corrode silver, it turned out that a moldability is somewhat inadequate.
  • Comparative Example 6 is an example in which 1 part by mass of basic zinc carbonate having a specific surface area of 25 m 2 / g is used with respect to 100 parts by mass of (B). Although the thing of this comparative example 6 was able to prevent silver corrosion, it turned out that a moldability is inadequate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided are: a thermoplastic resin composition characterized by comprising (A) a polyester, (B) a compound containing free sulfur and (C) zinc oxide having a specific surface area of 15 m2/g or more; and a reflective film produced using the thermoplastic resin composition. The thermoplastic resin composition can be used for a reflective film for a back light unit for a liquid crystal display device and can prevent the corrosion or discoloration of a metal terminal in the liquid crystal display device. Particularly when the above-mentioned thermoplastic resin composition containing barium sulfate as the compound (B) is used, the thermoplastic resin composition has a high effect of preventing the corrosion or discoloration of the metal terminal. When the content of the zinc oxide (C) is 0.05 to 15 parts by mass relative to 100 parts by mass of the component (B), the thermoplastic resin composition is further improved in the effect of preventing the corrosion or discoloration of the metal terminal.

Description

熱可塑性樹脂組成物及びそれを用いた反射フィルムThermoplastic resin composition and reflective film using the same
 本発明は、液晶表示装置のバックライトユニットの反射フィルムに用いることのできる白色度を有し、液晶表示装置内の金属端子の腐食又は変色を防止することが可能な熱可塑性樹脂及びそれを用いた反射フィルムに関する。 The present invention relates to a thermoplastic resin having whiteness that can be used for a reflection film of a backlight unit of a liquid crystal display device, and capable of preventing corrosion or discoloration of a metal terminal in the liquid crystal display device, and the use thereof. Related to the reflective film.
 液晶表示装置のバックライトユニットには、光源の光を効率よく、表示前面へ導くために、その背面に反射フィルムが設置されている。この反射フィルムとしては、例えば、硫酸バリウムを含有するポリエチレンテレフタレートをベース樹脂とした樹脂組成物をフィルム化する際に延伸することでフィルムの内部に微細な気泡を発生させた、より反射率の高い反射フィルムが知られている(例えば、特許文献1参照。)。 In the backlight unit of the liquid crystal display device, in order to efficiently guide the light of the light source to the front surface of the display, a reflective film is installed on the back surface. As this reflective film, for example, fine bubbles are generated inside the film by stretching when forming a resin composition based on polyethylene terephthalate containing barium sulfate as a base resin. A reflective film is known (for example, refer to Patent Document 1).
 しかしながら、硫酸バリウムには、遊離硫黄が含まれており、これが原因となって、液晶表示装置内の金属端子を腐食又は変色させ、電子回路が正常に動作しなくなるという問題があった。 However, barium sulfate contains free sulfur, which causes a problem that the metal terminal in the liquid crystal display device is corroded or discolored, and the electronic circuit does not operate normally.
 この問題を解決する方法として、硫酸バリウムのような遊離硫黄を含む化合物を熱可塑性樹脂に配合しないことが考えられるが、所望とする反射率が得られなくなる問題があった。また、硫酸バリウムから遊離硫黄を除去する方法も考えられるが、困難であったり、コスト高につながったりする問題があった。 As a method for solving this problem, it is considered that a compound containing free sulfur such as barium sulfate is not blended in the thermoplastic resin, but there is a problem that a desired reflectance cannot be obtained. Moreover, although the method of removing free sulfur from barium sulfate is also considered, there existed a problem which became difficult or led to high cost.
 また、金属腐食を防止するために、硬化性オルガノポリシロキサン組成物の保護層を金属の表面に設ける方法が提案されている(例えば、特許文献2参照。)。しかしながら、この方法では、別途、金属の表面に保護層を設けなければならず、製造が煩雑化したり、コストが高くなったりする問題があった。 In order to prevent metal corrosion, a method of providing a protective layer of a curable organopolysiloxane composition on the surface of a metal has been proposed (for example, see Patent Document 2). However, this method has a problem in that a protective layer must be separately provided on the surface of the metal, which complicates the production and increases the cost.
 そこで、遊離硫黄を含む化合物を配合した熱可塑性樹脂からなる成形品を、金属と接触したり、金属の近傍に存在したりする状態で用いても、金属を腐食、変色させない材料が求められていた。 Therefore, there is a demand for a material that does not corrode or discolor a metal even if a molded article made of a thermoplastic resin containing a compound containing free sulfur is used in a state where it is in contact with or near the metal. It was.
特開2000-37835号公報JP 2000-37835 A 特開2007-314587号公報JP 2007-314587 A
 本発明が解決しようとする課題は、液晶表示装置のバックライトユニットの反射フィルムに用いることでき、液晶表示装置内の金属端子の腐食又は変色を防止することが可能な熱可塑性樹脂及びそれを用いた反射フィルムを提供することである。 A problem to be solved by the present invention is a thermoplastic resin that can be used for a reflective film of a backlight unit of a liquid crystal display device, and that can prevent corrosion or discoloration of a metal terminal in the liquid crystal display device, and the use thereof. It is to provide a reflective film.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、硫酸バリウム等の遊離硫黄を含む化合物を含有する熱可塑性樹脂組成物に、遊離硫黄を含む化合物に対して、特定の比表面積を有する酸化亜鉛を配合することで、当該樹脂組成物に接触又は近傍に存在する金属の腐食、変色を防止でき、かつ高い白色度を有することから、液晶表示装置のバックライトユニットの反射フィルムに用いることのできることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have determined that the thermoplastic resin composition containing a compound containing free sulfur such as barium sulfate has a specific ratio to the compound containing free sulfur. By blending zinc oxide having a surface area, it is possible to prevent corrosion and discoloration of metals in contact with or near the resin composition, and to have high whiteness, so that the reflective film of the backlight unit of the liquid crystal display device As a result, the present invention was completed.
 すなわち、本発明は、ポリエステル(A)、遊離硫黄を含有する化合物(B)、及び比表面積が15m/g以上の酸化亜鉛(C)を含有する熱可塑性樹脂組成物及びそれを用いた反射フィルムに関する。 That is, the present invention relates to a thermoplastic resin composition containing polyester (A), compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and reflection using the same. Related to film.
 本発明の熱可塑性樹脂組成物は、硫酸バリウム等の遊離硫黄を含む化合物を含有する熱可塑性樹脂組成物であっても、接触又は近傍に存在する遊離硫黄により腐食性のある金属製の電極、電線、蒸着膜の腐食や変色を抑制でき、かつ高い白色度を有する。したがって、本発明の熱可塑性樹脂組成物は、金属製の電極、電線、蒸着膜を備えた液晶表示装置のバックライトユニットの反射フィルムに用いることができる。 Even if the thermoplastic resin composition of the present invention is a thermoplastic resin composition containing a compound containing free sulfur such as barium sulfate, a metal electrode corrosive due to free sulfur present in or near the contact, Corrosion and discoloration of electric wires and vapor-deposited films can be suppressed and high whiteness is achieved. Therefore, the thermoplastic resin composition of the present invention can be used for a reflective film of a backlight unit of a liquid crystal display device provided with a metal electrode, an electric wire, and a vapor deposition film.
 本発明の熱可塑性樹脂組成物は、ポリエステル(A)、遊離硫黄を含有する化合物(B)、及び比表面積が15m/g以上の酸化亜鉛(C)を含有するものである。 The thermoplastic resin composition of the present invention contains polyester (A), a compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more.
 前記ポリエステル(A)について説明する。前記ポリエステル(A)としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、これらの樹脂の変性品、複数の樹脂種の共重合体、ポリマーアロイ、ブレンド樹脂等も挙げられる。これらの中でも、安価で反射フィルムとした場合のフィルムとしての機械的物性に優れることからポリエチレンテレフタレートが好ましい。 The polyester (A) will be described. Examples of the polyester (A) include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like, and modified products of these resins, copolymers of a plurality of resin types, polymer alloys, blend resins, and the like. . Among these, polyethylene terephthalate is preferable because it is inexpensive and has excellent mechanical properties as a film when used as a reflective film.
 次に、前記化合物(B)について説明する。前記化合物(B)は、遊離硫黄を含有する化合物であり、その原料又は製造過程等で、遊離硫黄が微量に含有するものである。この化合物(B)としては、例えば、硫酸バリウムのような白色顔料、表面処理剤等の各種添加剤等が挙げられる。 Next, the compound (B) will be described. The compound (B) is a compound containing free sulfur and contains a small amount of free sulfur in the raw material or the production process. Examples of the compound (B) include various additives such as a white pigment such as barium sulfate and a surface treatment agent.
 前記化合物(B)においては、光を効率に反射するために、小粒径のものが好ましく、その平均粒子径としては0.001~20μm以下のものが好ましく、より好ましくは0.05~10μmの範囲が好ましい。なお、前記化合物(B)の平均粒子径は、レーザ回折散乱法により測定したものである。 The compound (B) preferably has a small particle diameter in order to reflect light efficiently, and the average particle diameter is preferably 0.001 to 20 μm or less, more preferably 0.05 to 10 μm. The range of is preferable. In addition, the average particle diameter of the said compound (B) is measured by the laser diffraction scattering method.
 さらに、前記酸化亜鉛(C)について説明する。前記酸化亜鉛(C)は、比表面積が15m/g以上のものである。この比表面積が15m/g以上であることで、少量でも効果的に金属の腐食や変色を防止できる。また、前記比表面積としては、上限は特にないが、製造の容易さや粒子の凝集性等を考慮すると、15~150m/gの範囲の範囲が好ましく、30~100m/g質量部の範囲がより好ましい。なお、前記酸化亜鉛(C)の比表面積は、窒素ガスを吸着ガスとしたBET法により測定したものである。 Further, the zinc oxide (C) will be described. The zinc oxide (C) has a specific surface area of 15 m 2 / g or more. When the specific surface area is 15 m 2 / g or more, corrosion and discoloration of the metal can be effectively prevented even with a small amount. The specific surface area is not particularly limited but is preferably in the range of 15 to 150 m 2 / g and more preferably in the range of 30 to 100 m 2 / g in view of ease of production and particle aggregation. Is more preferable. The specific surface area of the zinc oxide (C) is measured by the BET method using nitrogen gas as an adsorption gas.
 前記酸化亜鉛(C)の粒子径は特に限定されるものではなく、例えば平均粒子径10〔nm〕~10〔μm〕のものを用いることができ、特に金属の腐食又は変色の防止効果に優れることから20〔nm〕~100〔nm〕の平均粒子径を有するものか、または1〔μm〕~10〔μm〕でかつ表面が多孔質であるものを用いることが好ましく、さらに、表面外観性に優れることから20〔nm〕~100〔nm〕の平均粒子径を有するものが特に好ましい。また、前記BET比表面積を有するものであれば、シリコーンやSiなどの表面処理剤を用いて、酸化亜鉛表面を処理したものを用いることもできるが、未処理のものを用いることが好ましい。なお、前記酸化亜鉛(C)の平均粒子径は、粉体を一次粒子まで分散後、透過型電子顕微鏡で撮影し(撮影個数は1,000個以上)、撮影された個々の粒子を画像解析式粒度分布測定装置で画像処理を行い、円相当径を測定したものである。 The particle diameter of the zinc oxide (C) is not particularly limited. For example, particles having an average particle diameter of 10 [nm] to 10 [μm] can be used, and particularly excellent in the effect of preventing metal corrosion or discoloration. Therefore, it is preferable to use one having an average particle size of 20 [nm] to 100 [nm], or 1 [μm] to 10 [μm] and having a porous surface. Those having an average particle diameter of 20 nm to 100 nm are particularly preferable. Moreover, as long as it has the said BET specific surface area, what processed the surface of zinc oxide using surface treating agents, such as silicone and Si, can also be used, However, It is preferable to use an untreated thing. The average particle size of the zinc oxide (C) was determined by dispersing the powder to primary particles and then photographing with a transmission electron microscope (captured number of 1,000 or more), and analyzing the individual particles photographed. An image processing is performed by an equation particle size distribution measuring apparatus, and an equivalent circle diameter is measured.
 前記酸化亜鉛(C)の使用量は、金属の腐食又は変色の防止効果が十分に得られ、優れた成形性が得られることから、前記化合物(B)100質量部に対して、0.05~15質量部の範囲の範囲が好ましく、0.1~10質量部の範囲がより好ましく、0.2~9質量部の範囲がさらに好ましい。 The zinc oxide (C) is used in an amount of 0.05 to 100 parts by mass of the compound (B) because a sufficient effect of preventing corrosion or discoloration of metal is obtained and excellent moldability is obtained. The range of ˜15 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.2 to 9 parts by mass is more preferable.
 また、前記酸化亜鉛(C)は、本発明の熱可塑性樹脂組成物にどのように添加してもよく、前記酸化亜鉛(C)の粉体をそのまま添加する方法のほかに、炭酸亜鉛、水酸化亜鉛、塩化亜鉛等の亜鉛化合物を本発明の熱可塑性樹脂組成物に添加した後、温度条件等により酸化亜鉛に変質させても構わない。 Further, the zinc oxide (C) may be added to the thermoplastic resin composition of the present invention in any manner. Besides the method of adding the zinc oxide (C) powder as it is, zinc carbonate, water After adding a zinc compound such as zinc oxide or zinc chloride to the thermoplastic resin composition of the present invention, it may be transformed into zinc oxide depending on the temperature condition or the like.
 本発明の熱可塑性樹脂組成物の製造は、通常の二軸押出機を用いた溶融混錬法で行うことができる。また、本発明の熱可塑性樹脂組成物は、そのまま成形品に利用できるコンパウンドの形態でも、高濃度品であるマスターバッチの形態でも利用することができる。 The production of the thermoplastic resin composition of the present invention can be carried out by a melt kneading method using an ordinary twin screw extruder. The thermoplastic resin composition of the present invention can be used in the form of a compound that can be used as it is for a molded product, or in the form of a masterbatch that is a high-concentration product.
 本発明の反射フィルムは、本発明の熱可塑性樹脂組成物を成形したものである。その成形方法としては、Tダイ等を用いた溶融押出成形法などが挙げられる。また、溶融押出成形法などで、フィルム又はシート状に成形した後、一軸ないし二軸延伸しても構わない。特に、二軸延伸したものは、高い反射率を付与することができることから好ましい。 The reflective film of the present invention is obtained by molding the thermoplastic resin composition of the present invention. Examples of the molding method include a melt extrusion molding method using a T die and the like. Further, after forming into a film or a sheet by a melt extrusion molding method or the like, it may be uniaxially or biaxially stretched. In particular, a biaxially stretched material is preferable because high reflectance can be imparted.
 以下に、本発明の反射フィルムの製造方法について一例を挙げて説明するが、下記製造法に何等限定されるものではない。    Hereinafter, although an example is given and demonstrated about the manufacturing method of the reflective film of this invention, it is not limited to the following manufacturing method at all.
 まず、ポリエステル(A)に、遊離硫黄を含有する化合物(B)、及び比表面積が15m/g以上の酸化亜鉛(C)、その他の加水分解防止剤等の公知の添加剤を必要に応じて配合した熱可塑性樹脂組成物を作製する。具体的には、ポリエステル(A)に遊離硫黄を含有する化合物(B)、及び比表面積が15m/g以上の酸化亜鉛(C)、その他の加水分解防止剤等の公知の添加剤を必要に応じて加えて、リボンブレンダー、タンブラー、ヘンシェルミキサー等で混合した後、バンバリーミキサー、1軸または2軸押出機等を用いて、樹脂の融点以上の温度(例えば170℃~230℃)で混練することにより熱可塑性樹脂組成物を得ることができる。また、遊離硫黄を含有する化合物(B)、及び比表面積が15m/g以上の酸化亜鉛(C)、その他の加水分解防止剤等の公知の添加剤をポリエステル(A)に高濃度に配合した、いわゆるマスターバッチを作っておき、このマスターバッチとポリエステル(A)とを混合して所望の濃度の熱可塑性樹脂組成物とすることもできる。    First, a known additive such as a compound (B) containing free sulfur, zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other hydrolysis inhibitors is added to the polyester (A) as necessary. To prepare a blended thermoplastic resin composition. Specifically, the compound (B) containing free sulfur in the polyester (A), zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other known additives such as hydrolysis inhibitors are required. In addition, mixing with a ribbon blender, tumbler, Henschel mixer, etc., followed by kneading at a temperature above the melting point of the resin (eg, 170 ° C. to 230 ° C.) using a Banbury mixer, single screw or twin screw extruder By doing so, a thermoplastic resin composition can be obtained. Also, compound (B) containing free sulfur, zinc oxide (C) having a specific surface area of 15 m 2 / g or more, and other known additives such as other hydrolysis inhibitors are blended in high concentration in polyester (A). A so-called master batch can be prepared, and the master batch and polyester (A) can be mixed to obtain a thermoplastic resin composition having a desired concentration.
 次に、このようにして得られた熱可塑性樹脂組成物を溶融し、フィルム状に形成する。例えば、熱可塑性樹脂組成物を乾燥した後、押出機に供給し、樹脂の融点以上の温度に加熱して溶融する。あるいは、熱可塑性樹脂組成物を乾燥させずに押出機に供給しても良いが、乾燥させない場合には溶融押出する際に真空ベントを用いることが好ましい。押出温度等の条件は、分解によって分子量が低下すること等を考慮して設定されることが必要であるが、例えば、押出し温度は170℃~230℃の範囲が好ましい。その後、溶融した熱可塑性樹脂組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させてキャストシートを形成する。    Next, the thermoplastic resin composition thus obtained is melted and formed into a film. For example, after drying a thermoplastic resin composition, it is supplied to an extruder and heated to a temperature equal to or higher than the melting point of the resin to melt. Or you may supply a thermoplastic resin composition to an extruder, without drying, but when not drying, it is preferable to use a vacuum vent at the time of melt-extrusion. Conditions such as the extrusion temperature need to be set in consideration of a decrease in molecular weight due to decomposition. For example, the extrusion temperature is preferably in the range of 170 ° C to 230 ° C. Thereafter, the molten thermoplastic resin composition is extruded from the slit-shaped discharge port of the T die, and is solidified on a cooling roll to form a cast sheet.
 本発明の熱可塑性樹脂組成物を用いた反射フィルムは面積倍率が1.1~10倍の範囲となるよう、少なくとも1軸方向に延伸されていることが好ましく、2軸方向に延伸されていることが更に好ましい。キャストシートを延伸する際の延伸温度は、公知の範囲でよく、例えば50℃以上、90℃以下であることが好ましい。なお、2軸延伸を行う場合、その延伸順序は特に制限されることはなく、例えば、同時2軸延伸でも逐次延伸でも構わない。延伸設備を用いて、溶融製膜した後、ロール延伸によってMD方向に延伸した後、テンター延伸によってTD方向に延伸しても良いし、チューブラー延伸等によって2軸延伸を行ってもよい。    The reflective film using the thermoplastic resin composition of the present invention is preferably stretched in at least a uniaxial direction so that the area magnification is in a range of 1.1 to 10 times, and is stretched in a biaxial direction. More preferably. The stretching temperature for stretching the cast sheet may be within a known range, and is preferably 50 ° C. or higher and 90 ° C. or lower, for example. In addition, when performing biaxial stretching, the stretching order is not particularly limited, and for example, simultaneous biaxial stretching or sequential stretching may be used. After melt film formation using a stretching facility, the film may be stretched in the MD direction by roll stretching, and then stretched in the TD direction by tenter stretching, or biaxial stretching may be performed by tubular stretching or the like.
 本発明においては、熱可塑性樹脂組成物を用いた反射フィルムに耐熱性および寸法安定性を付与するために、延伸後に例えば90~160℃で熱固定を行うことが好ましい。延伸設備等については特に限定はないが、延伸後に熱固定処理を行うことができるテンター延伸を行うことが好ましい。    In the present invention, in order to impart heat resistance and dimensional stability to the reflective film using the thermoplastic resin composition, it is preferable to perform heat setting at 90 to 160 ° C. after stretching. Although there is no limitation in particular about extending | stretching equipment etc., it is preferable to perform tenter extending | stretching which can perform a heat setting process after extending | stretching.
 本発明の熱可塑性樹脂組成物を用いた反射フィルムの厚みは、特に限定されないが、通常は30μm~500μmであり、実用面における取り扱い性を考慮すると50μm~500μm程度の範囲内であることが好ましい。特に、小型、薄型の反射板用途の反射フィルムとしては、厚みが30μm~100μmであることが好ましい。かかる厚みの反射フィルムを用いれば、例えばノート型パソコンや携帯電話等の小型、薄型の液晶ディスプレイ等にも使用することができる。また、本発明の反射フィルムは、単層構成でもよいが、2層以上積層した多層構成としてもよい。 The thickness of the reflective film using the thermoplastic resin composition of the present invention is not particularly limited, but is usually 30 μm to 500 μm, and is preferably in the range of about 50 μm to 500 μm in view of practical handling. . In particular, as a reflective film for small and thin reflectors, the thickness is preferably 30 μm to 100 μm. If a reflective film having such a thickness is used, it can also be used for small and thin liquid crystal displays and the like such as notebook computers and mobile phones. In addition, the reflective film of the present invention may have a single layer configuration, but may also have a multilayer configuration in which two or more layers are laminated.
 また、本発明の熱可塑性樹脂組成物を用いた反射フィルムを用いて液晶ディスプレイ等に用いられる反射板を形成することができる。例えば、熱可塑性樹脂組成物を用いた反射フィルムを金属板もしくは樹脂板に被覆して反射板を形成することができる。この反射板は、液晶表示装置、照明器具、照明看板等に用いられる反射板として有用である。以下に、このような反射板の製造方法について一例を挙げて説明するが、これらに限られるものではない。 Moreover, a reflective plate used for a liquid crystal display or the like can be formed using a reflective film using the thermoplastic resin composition of the present invention. For example, a reflective film using a thermoplastic resin composition can be coated on a metal plate or a resin plate to form a reflective plate. This reflecting plate is useful as a reflecting plate used for liquid crystal display devices, lighting fixtures, lighting signs, and the like. Below, an example is given and demonstrated about the manufacturing method of such a reflecting plate, but it is not restricted to these.
 反射フィルムを金属板もしくは樹脂板に被覆する方法としては、接着剤を使用する方法、接着剤を使用せずに熱融着する方法、接着性シートを介して接着する方法、押出しコーティングする方法等があり、特に限定されるものではない。例えば、金属板もしくは樹脂板の反射フィルムを貼り合わせる側の面に、ポリエステル系、ポリウレタン系、エポキシ系等の接着剤を塗布し、反射フィルムを貼り合わせることができる。この方法においては、リバースロールコーター、キスロールコーター等の一般的に使用されるコーティング設備を使用し、反射フィルムを貼り合わせる金属板等の表面に乾燥後の接着剤膜厚が2~4μm程度となるように接着剤を塗布する。次いで、赤外線ヒーター及び熱風加熱炉により塗布面の乾燥及び加熱を行い、板の表面を所定の温度に保持しつつ、直にロールラミネーターを用いて、反射フィルムを被覆、冷却することにより、反射板を得ることできる。この場合、金属板等の表面を210℃以下に保持すると、反射板の光反射性を高く維持できて好ましい。 As a method of coating the reflective film on a metal plate or a resin plate, a method using an adhesive, a method of heat fusion without using an adhesive, a method of bonding via an adhesive sheet, a method of extrusion coating, etc. There is no particular limitation. For example, a reflective film can be bonded by applying an adhesive such as polyester, polyurethane, or epoxy to the surface of the metal plate or resin plate on the side where the reflective film is bonded. In this method, a commonly used coating facility such as a reverse roll coater or a kiss roll coater is used, and the adhesive film thickness after drying on the surface of a metal plate or the like to which a reflective film is bonded is about 2 to 4 μm. Apply an adhesive so that Next, the coated surface is dried and heated by an infrared heater and a hot-air heating furnace, and while maintaining the surface of the plate at a predetermined temperature, the reflective film is directly coated and cooled using a roll laminator, thereby reflecting the reflective plate Can get. In this case, it is preferable to keep the surface of the metal plate or the like at 210 ° C. or lower because the light reflectivity of the reflecting plate can be maintained high.
   なお、一般的に、シートとフィルムの定義の境界は定かでなく、明確には区別しにくいことから、本発明においては、フィルムおよびシートを総称してフィルムと言うものとする。 In general, the boundary between the definition of a sheet and a film is not clear and it is difficult to clearly distinguish the film. In the present invention, the film and the sheet are collectively referred to as a film.
 以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
(実施例1)
 ポリエチレンテレフタレート(インドラマ社製「RAMAPET」;以下、「PET」と略記する。)64.95質量部、硫酸バリウム(堺化学工業株式会社製「バリエースB-55」、平均粒子径:0.3μm)35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-500」、比表面積50m/g、平均粒子径25nm)0.05質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(1)を得た。得られた樹脂組成物(1)について、下記の銀腐食促進試験、成形性試験及び明度の測定を行い、銀腐食、成形性及び白色度を評価した。
Example 1
Polyethylene terephthalate (“RAMAPET” manufactured by Indrama Co., Ltd .; hereinafter abbreviated as “PET”) 64.95 parts by mass, barium sulfate (“Variace B-55” manufactured by Sakai Chemical Industry Co., Ltd.), average particle size: 0.3 μm ) 35 parts by mass, and 0.05 part by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle size 25 nm) were premixed, and then the mixture was twin-screw extruder (Toshiba Machine Co., Ltd. “TEM-37BS”) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (1). The obtained resin composition (1) was subjected to the following silver corrosion acceleration test, moldability test, and lightness measurement to evaluate silver corrosion, moldability and whiteness.
[銀腐食促進試験]
 上記で得られた樹脂組成物(1)のペレット10gと、ガラス板に貼り付けた純銀箔(10mm×10mm)と、水10mlを入れた20mlガラスビンとを、純銀箔が樹脂組成物(1)のペレットに接触しないようにして、500ml密封ビンに入れ、85℃中で48時間静置後、目視にて純銀箔の変色の有無を確認した。変色の状況から、下記の基準にしたがって、銀腐食を評価した。
 ◎:腐食なし(変色なし)。
 ○:純銀箔の縁に幅1mm未満の腐食あり(着色あり)。
 △:純銀箔の縁に幅1mm以上5mm未満の腐食あり(着色あり)。
 ×:純銀箔の縁に幅5mm以上の腐食あり(着色あり)。
[Silver corrosion acceleration test]
10 g of pellets of the resin composition (1) obtained above, pure silver foil (10 mm × 10 mm) affixed to a glass plate, and a 20 ml glass bottle containing 10 ml of water, the pure silver foil is the resin composition (1) The sample was placed in a 500 ml sealed bottle so as not to come into contact with the pellets, allowed to stand at 85 ° C. for 48 hours, and then visually checked for the presence of discoloration of the pure silver foil. From the discoloration situation, silver corrosion was evaluated according to the following criteria.
A: No corrosion (no discoloration)
○: Corrosion of less than 1 mm in width at the edge of pure silver foil (colored).
Δ: Corrosion with a width of 1 mm or more and less than 5 mm (colored) at the edge of the pure silver foil
X: Corrosion of 5 mm or more in width at the edge of pure silver foil (colored).
[成形性の評価]
 上記で得られた樹脂組成物(1)のペレットを二軸押出機で溶融混錬後、280℃に設定された押出機(株式会社東洋精機製作所製「ラボプラストミル型式:50M」)及び120mm幅Tダイ(株式会社東洋精機製作所製)で成形し、厚さ100μmのフィルムを作製した。作製したフィルムの外観を目視で観察し、下記の基準にしたがって、成形性を評価した。
 ○:フィルムの外観が良好である。
 △:フィルム表面に気泡や破れがある。
 ×:フィルム表面に気泡や破れが数多くあり、成形が困難である。
[Evaluation of formability]
The pellet of the resin composition (1) obtained above was melt-kneaded with a twin-screw extruder, and then an extruder set at 280 ° C. (“Toyo Seiki Seisakusho Co., Ltd.,“ Lab Plast Mill Model: 50M ”) and 120 mm The film was formed with a width T die (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to produce a film having a thickness of 100 μm. The appearance of the produced film was visually observed, and the moldability was evaluated according to the following criteria.
○: The appearance of the film is good.
Δ: Bubbles or tears on the film surface.
X: There are many bubbles and tears on the film surface, and molding is difficult.
(実施例2)
 PET64.9質量部、硫酸バリウム35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-500」、比表面積50m/g、平均粒子径25nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(2)を得た。得られた樹脂組成物(2)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Example 2)
64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (2). The obtained resin composition (2) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(実施例3)
 PET60質量部、硫酸バリウム35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-500」、比表面積50m/g、平均粒子径25nm)3質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(3)を得た。得られた樹脂組成物(3)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Example 3)
60 parts by mass of PET, 35 parts by mass of barium sulfate, and 3 parts by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, and then the mixture was mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (3). The obtained resin composition (3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(実施例4)
 PET64.9質量部、硫酸バリウム35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-150」、比表面積15m/g、平均粒子径70nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(4)を得た。得られた樹脂組成物(3)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Example 4)
64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-150” manufactured by Teika Co., Ltd., specific surface area 15 m 2 / g, average particle diameter 70 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (4). The obtained resin composition (3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(実施例5)
 PET64.9質量部、硫酸バリウム35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-300」、比表面積30m/g、平均粒子径35nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(5)を得た。得られた樹脂組成物(5)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Example 5)
64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“MZ-300” manufactured by Teika Co., Ltd., specific surface area 30 m 2 / g, average particle diameter 35 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melted and kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (5). The obtained resin composition (5) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(実施例6)
 PET64.9質量部、硫酸バリウム35質量部、及び活性亜鉛華(本荘ケミカル株式会社製「活性亜鉛華」、比表面積60m/g、多孔質、平均粒子径4000nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(6)を得た。得られた樹脂組成物(6)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Example 6)
Reserve 64.9 parts by weight of PET, 35 parts by weight of barium sulfate, and 0.1 parts by weight of active zinc white (“active zinc white” manufactured by Honjo Chemical Co., Ltd., specific surface area 60 m 2 / g, porous, average particle diameter 4000 nm) Next, the mixture is put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (6). It was. The obtained resin composition (6) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例1)
 PET65質量部、及び硫酸バリウム35質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R1)を得た。得られた樹脂組成物(R1)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 1)
65 parts by mass of PET and 35 parts by mass of barium sulfate are premixed, and then the mixture is put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. A pellet-shaped resin composition (R1) was obtained. The obtained resin composition (R1) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例2)
 PET64.9質量部、硫酸バリウム35質量部、及び酸化亜鉛(堺化学工業株式会社製「酸化亜鉛2種」、比表面積3.5m/g、平均粒子径200nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R2)を得た。得られた樹脂組成物(R2)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 2)
64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 3.5 m 2 / g, average particle size 200 nm) Next, the mixture is put into a twin-screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R2). It was. The obtained resin composition (R2) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例3)
 PET55質量部、硫酸バリウム35質量部、及び酸化亜鉛(堺化学工業株式会社製「酸化亜鉛2種」、比表面積3.5m/g、平均粒子径200nm)10質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R3)を得た。得られた樹脂組成物(R3)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 3)
55 parts by mass of PET, 35 parts by mass of barium sulfate, and 10 parts by mass of zinc oxide (“Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 3.5 m 2 / g, average particle diameter 200 nm) were premixed, The mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R3). The obtained resin composition (R3) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例4)
 PET64.9質量部、硫酸バリウム35質量部、及び酸化亜鉛(堺化学工業株式会社製「微細酸化亜鉛」、比表面積10m/g、平均粒子径110nm)0.1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R4)を得た。得られた樹脂組成物(R4)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 4)
64.9 parts by mass of PET, 35 parts by mass of barium sulfate, and 0.1 part by mass of zinc oxide (“Fine Zinc Oxide” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 10 m 2 / g, average particle size 110 nm) were premixed, Next, the mixture was put into a twin screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R4). The obtained resin composition (R4) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例5)
 PET55質量部、硫酸バリウム35質量部、及び酸化亜鉛(テイカ株式会社製「MZ-500」、比表面積50m/g、平均粒子径25nm)10質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R5)を得た。得られた樹脂組成物(R5)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 5)
55 parts by mass of PET, 35 parts by mass of barium sulfate, and 10 parts by mass of zinc oxide (“MZ-500” manufactured by Teika Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 25 nm) were premixed, and then the mixture was mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R5). The obtained resin composition (R5) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
(比較例6)
 PET64質量部、硫酸バリウム35質量部、及び塩基性炭酸亜鉛(堺化学工業株式会社製「透明性亜鉛白」、比表面積25m/g)1質量部を予備混合し、次いで、その混合物を二軸押出機(東芝機械株式会社製「TEM-37BS」)に投入し、270~300℃で溶融混錬して、ペレット状の樹脂組成物(R6)を得た。得られた樹脂組成物(R6)について、実施例1と同様に銀腐食促進試験、成形性試験を行って評価した。
(Comparative Example 6)
64 parts by mass of PET, 35 parts by mass of barium sulfate, and 1 part by mass of basic zinc carbonate (“Transparent Zinc White” manufactured by Sakai Chemical Industry Co., Ltd., specific surface area 25 m 2 / g) are premixed, and then the mixture is mixed with 2 parts. The mixture was put into a screw extruder (“TEM-37BS” manufactured by Toshiba Machine Co., Ltd.) and melt kneaded at 270 to 300 ° C. to obtain a pellet-shaped resin composition (R6). The obtained resin composition (R6) was evaluated by conducting a silver corrosion acceleration test and a moldability test in the same manner as in Example 1.
 上記の実施例1~6及び比較例1~6で調製した樹脂組成物(1)~(6)及び(R1)~(R6)の組成と、その評価結果を表1及び2に示す。 Tables 1 and 2 show the compositions of the resin compositions (1) to (6) and (R1) to (R6) prepared in Examples 1 to 6 and Comparative Examples 1 to 6 and their evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果から、本発明の樹脂組成物である実施例1~6の樹脂組成物(1)~(6)は、銀を腐食する(変色させる)ことなく、また、成形性も良好であることが分かった。 From the results shown in Table 1, the resin compositions (1) to (6) of Examples 1 to 6, which are the resin compositions of the present invention, do not corrode (discolor) silver and have good moldability. It was found to be good.
 一方、表2に示した結果から、下記のことが分かった。 On the other hand, from the results shown in Table 2, the following was found.
 比較例1は、酸化亜鉛を用いなかった例である。この比較例1のものは、成形性は良好であったが、銀を大きく腐食する問題があることが分かった。 Comparative Example 1 is an example in which no zinc oxide was used. Although the thing of this comparative example 1 had favorable moldability, it turned out that there exists a problem which corrodes silver large.
 比較例2及び3は、比表面積が15m/g未満の3.5m/gである酸化亜鉛を用いた例である。この比較例2及び3のものは、成形性は良好であったが、銀を大きく腐食する問題があることが分かった。 Comparative Examples 2 and 3 has a specific surface area of an example in which a zinc oxide is 3.5 m 2 / g of less than 15 m 2 / g. Although the comparative examples 2 and 3 had good moldability, it was found that there was a problem of greatly corroding silver.
 比較例4は、比表面積が15m/g未満の10m/gである酸化亜鉛を用いた例である。この比較例4のものは、成形性は良好であったが、銀を大きく腐食する問題があることが分かった。 Comparative Example 4 has a specific surface area of an example in which a zinc oxide is 10 m 2 / g of less than 15 m 2 / g. Although the thing of this comparative example 4 had favorable moldability, it turned out that there exists a problem which corrodes silver large.
 比較例5は、比表面積が15m/g以上である酸化亜鉛を(B)100質量部に対して15質量部以上用いた例である。この比較例5のものは、銀を腐食することはなかったが、成形性がやや不十分であることが分かった。 Comparative Example 5 is an example in which 15 parts by mass or more of zinc oxide having a specific surface area of 15 m 2 / g or more is used with respect to 100 parts by mass of (B). Although the thing of this comparative example 5 did not corrode silver, it turned out that a moldability is somewhat inadequate.
 比較例6は、比表面積が25m/gの塩基性炭酸亜鉛を(B)100質量部に対して1質量部用いた例である。この比較例6のものは、銀の腐食は防止できたが、成形性は不十分であることが分かった。 Comparative Example 6 is an example in which 1 part by mass of basic zinc carbonate having a specific surface area of 25 m 2 / g is used with respect to 100 parts by mass of (B). Although the thing of this comparative example 6 was able to prevent silver corrosion, it turned out that a moldability is inadequate.

Claims (6)

  1.  ポリエステル(A)、遊離硫黄を含有する化合物(B)及び比表面積が15m/g以上の酸化亜鉛(C)を含有することを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition comprising polyester (A), a compound (B) containing free sulfur, and zinc oxide (C) having a specific surface area of 15 m 2 / g or more.
  2.  前記化合物(B)が、硫酸バリウムである請求項1記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the compound (B) is barium sulfate.
  3.  前記酸化亜鉛(C)の配合量が、前記化合物(B)100質量部に対して、0.05~15質量部の範囲である請求項1記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the blending amount of the zinc oxide (C) is in the range of 0.05 to 15 parts by mass with respect to 100 parts by mass of the compound (B).
  4.  請求項1~3のいずれか1項記載の熱可塑性樹脂組成物からなることを特徴とする反射フィルム。 A reflective film comprising the thermoplastic resin composition according to any one of claims 1 to 3.
  5.  請求項4記載の反射フィルムを用いたことを特徴とする液晶ディスプレイ用反射板。 A reflection plate for a liquid crystal display using the reflection film according to claim 4.
  6.  請求項5記載の液晶ディスプレイ用反射板を用いたことを特徴とする液晶ディスプレイ。 A liquid crystal display using the reflector for a liquid crystal display according to claim 5.
PCT/JP2013/063292 2012-05-14 2013-05-13 Thermoplastic resin composition, and reflective film produced using same WO2013172303A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380025523.5A CN104302700A (en) 2012-05-14 2013-05-13 Thermoplastic resin composition, and reflective film produced using same
JP2014506666A JP5599534B2 (en) 2012-05-14 2013-05-13 Thermoplastic resin composition and reflective film using the same
KR1020147027852A KR20150012240A (en) 2012-05-14 2013-05-13 Thermoplastic resin composition, and reflective film produced using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110555 2012-05-14
JP2012110555 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172303A1 true WO2013172303A1 (en) 2013-11-21

Family

ID=49583708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063292 WO2013172303A1 (en) 2012-05-14 2013-05-13 Thermoplastic resin composition, and reflective film produced using same

Country Status (5)

Country Link
JP (1) JP5599534B2 (en)
KR (1) KR20150012240A (en)
CN (1) CN104302700A (en)
TW (1) TW201350534A (en)
WO (1) WO2013172303A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764262A (en) * 2021-02-09 2021-05-07 捷开通讯(深圳)有限公司 Liquid crystal display panel and liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245343A (en) * 1995-03-13 1996-09-24 Kao Corp Composite powder and cosmetic
JP2000037835A (en) * 1998-07-22 2000-02-08 Teijin Ltd White polyester film and image receiving sheet based thereon
JP2006048039A (en) * 2004-07-26 2006-02-16 Eternal Chemical Co Ltd Ultraviolet resistant optical film
WO2008126359A1 (en) * 2007-03-29 2008-10-23 Mitsubishi Plastics, Inc. Aliphatic polyester resin composition, aliphatic polyester film, reflective film and reflective plate
JP4474938B2 (en) * 2004-02-20 2010-06-09 東洋インキ製造株式会社 Inorganic compound resin dispersion, molded pellets and molded products
WO2012053249A1 (en) * 2010-10-22 2012-04-26 パナソニック株式会社 Unsaturated polyester resin composition for use in led reflector, and led reflector and led luminaire using said composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096202A (en) * 2001-09-26 2003-04-03 Hakusui Tech Co Ltd Method of manufacturing ultraviolet-shielding resin film
JP2009191245A (en) * 2008-01-18 2009-08-27 Aisin Chem Co Ltd Water-based coating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245343A (en) * 1995-03-13 1996-09-24 Kao Corp Composite powder and cosmetic
JP2000037835A (en) * 1998-07-22 2000-02-08 Teijin Ltd White polyester film and image receiving sheet based thereon
JP4474938B2 (en) * 2004-02-20 2010-06-09 東洋インキ製造株式会社 Inorganic compound resin dispersion, molded pellets and molded products
JP2006048039A (en) * 2004-07-26 2006-02-16 Eternal Chemical Co Ltd Ultraviolet resistant optical film
WO2008126359A1 (en) * 2007-03-29 2008-10-23 Mitsubishi Plastics, Inc. Aliphatic polyester resin composition, aliphatic polyester film, reflective film and reflective plate
WO2012053249A1 (en) * 2010-10-22 2012-04-26 パナソニック株式会社 Unsaturated polyester resin composition for use in led reflector, and led reflector and led luminaire using said composition

Also Published As

Publication number Publication date
CN104302700A (en) 2015-01-21
JPWO2013172303A1 (en) 2016-01-12
JP5599534B2 (en) 2014-10-01
KR20150012240A (en) 2015-02-03
TW201350534A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
KR101421766B1 (en) Aliphatic polyester film
JP4041160B2 (en) Reflective film
CN106908863B (en) Optical reflecting film and preparation method thereof
WO2014076971A1 (en) Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition
TW200829963A (en) White polyester film for reflecting sheet use in liquid crystalline display
JP2010085585A (en) Reflection film
WO2016080174A1 (en) Biaxially oriented polyester film
JP2018016719A (en) Polyvinyl chloride-based resin composition for light diffusible film
JP2014177522A (en) Pressure-sensitive adhesive sheet for optical substrate
WO2017169662A1 (en) Film, electrical insulation sheet using same, adhesive tape, and rotating machine
JP4877786B2 (en) Laminated polyester film
WO2012128136A1 (en) Laminate film and method for manufacturing same
JP5599534B2 (en) Thermoplastic resin composition and reflective film using the same
JP2016177211A (en) Laminated polyester film for polarizing plate protective film
WO2017002780A1 (en) Polyester film and light control film
JP2008233290A (en) Reflecting film and reflecting plate
JP5643452B2 (en) Reflective film, and liquid crystal display device, lighting device, and decorative article comprising the same
JP2007153932A (en) Polycarbonate resin composition and its molding
JP4325753B2 (en) Reflective film and liquid crystal display device
JP2008233291A (en) Reflecting film and reflecting plate
TW201643476A (en) Reflective film, as well as liquid crystal display device, illumination device, and decorative product provided with same
JP6464845B2 (en) White film
JP6540288B2 (en) Infrared ray transmitting polyester resin composition
JP7298325B2 (en) Film and its manufacturing method
JP2013170196A (en) Thermoplastic resin composition and reflective film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506666

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790908

Country of ref document: EP

Kind code of ref document: A1