WO2017002780A1 - Polyester film and light control film - Google Patents

Polyester film and light control film Download PDF

Info

Publication number
WO2017002780A1
WO2017002780A1 PCT/JP2016/069073 JP2016069073W WO2017002780A1 WO 2017002780 A1 WO2017002780 A1 WO 2017002780A1 JP 2016069073 W JP2016069073 W JP 2016069073W WO 2017002780 A1 WO2017002780 A1 WO 2017002780A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
polyester film
light control
flame
Prior art date
Application number
PCT/JP2016/069073
Other languages
French (fr)
Japanese (ja)
Inventor
悠 松浦
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to CN201680024889.4A priority Critical patent/CN107531986A/en
Priority to JP2017526353A priority patent/JPWO2017002780A1/en
Publication of WO2017002780A1 publication Critical patent/WO2017002780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus

Definitions

  • the present invention relates to a polyester film and a light control film, and more specifically, a polyester film imparted with excellent flame retardancy while maintaining high transparency inherent in the polyester film, and light control using the polyester film as a base material Related to film.
  • Polyester resin products can be manufactured at low cost and are excellent in heat resistance, electrical insulation, chemical resistance, mechanical strength, etc., so they are widely used in all fields regardless of industrial use for general households.
  • the polyester resin is preferably flame-retardant.
  • the increase in heat generation due to the densification of products and the replacement of nonflammable metal parts with flammable resin parts are progressing at the same time. It is essential.
  • Patent Document 1 discloses a polyester film containing a metal salt of phosphinic acid or diphosphinic acid.
  • Patent Document 3 discloses a polyester film containing an organophosphorus oligomer having a specific structure.
  • polyester film of Patent Document 1 is colored yellow by the polyimide compound laminated on both sides, the polyester film of Patent Document 2 is opaque silver-white, and the polyester film of Patent Document 3 is uncolored but transparent because of high haze. It's hard to say. Neither film is suitable for applications requiring high transparency.
  • the film itself as the base material is also flame-retardant.
  • a polyester film having both high transparency and flame retardancy is not known.
  • the present invention has been made in view of the above circumstances, and a problem to be solved is to provide a polyester film that can simultaneously achieve high transparency and flame retardancy inherent in the polyester film.
  • the gist of the present invention includes a compound represented by the following chemical formula (1) (hereinafter simply referred to as compound (1)) as a copolymerization component, and a phosphorus element content of 0.2 to 3.3 wt. % Polyester film characterized in that it is%.
  • the compound (1) used in the present invention is hardly colored and has excellent compatibility with the polyester resin. According to the present invention, a polyester film having both excellent transparency and flame retardancy can be provided. Flame retardancy can be imparted to products that require a clear appearance such as a light control film, and the industrial value of the present invention is very high.
  • the polyester film referred to in the present invention is a polyester resin itself or a mixture of a polyester resin with one or more optional components added and mixed into a thin and flat shape.
  • the thickness range is not clearly defined, but if the thickness is too thick, haze increases and the transparency is inferior, and if it is too thin, inconvenience may occur in productivity and handling. Therefore, the thickness of the film of the present invention is usually 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and most preferably 30 to 100 ⁇ m.
  • the film laminate structure is not limited, and may be a single layer structure or a structure in which two or more layers are laminated in the thickness direction. When a polyester film has two or more layers, it is preferable from a viewpoint of a flame retardance improvement that the polyester with which the compound (1) was copolymerized is contained in all the layers.
  • the kind of the “arbitrary component” described above is not limited at all, and any additive can be selected as necessary.
  • all polymer materials whether compatible or incompatible with the base
  • pigments organic particles, inorganic particles, ultraviolet absorbers, infrared absorbers, ultraviolet rays, including polyesters other than the base polyester
  • polyesters other than the base polyester examples thereof include a reflective agent, an infrared reflective agent, a heat stabilizer, an antioxidant, an antistatic agent, a lubricant, a plasticizer, a nucleating agent, a molecular chain extender, a crosslinking agent, and a resin reinforcing filler.
  • the addition amount of these additives is not limited, and may be higher than the compounding amount of the base polyester resin as long as it can be practically used as a film.
  • the method for mixing the polyester resin and the other components is not particularly limited.
  • the polyester resin and the other components can be continuously produced by introducing them into various extruders, or bulk in a container.
  • a method in which the mixture is heated and stirred for mixing In film production, a method of continuous production using an extruder is preferred, and these components may be formed into a high-concentration masterbatch in advance from the viewpoint of handling.
  • the timing of mixing other components with the polyester resin may be after polymerization or before polymerization.
  • the method for forming the polyester resin into a film is not particularly limited, and various generally well-known methods such as an inflation method, a T-die method, and a calendar method can be used.
  • the method of laminating each layer when producing a multilayer film of two or more layers is also not particularly limited, and various generally well-known methods such as a coextrusion method, a laminating method, and a heat sealing method can be used. From the viewpoint of production efficiency, the coextrusion method is preferable.
  • the polyester film of the present invention is preferably stretched and heat-fixed in the biaxial direction.
  • Either the sequential biaxial stretching method or the simultaneous biaxial stretching method may be used.
  • the sequential biaxial stretching method the unstretched polyester sheet is stretched 2 to 6 times in the longitudinal direction at 70 to 145 ° C.
  • the longitudinally uniaxially stretched film it is preferably stretched 2 to 6 times at 90 to 160 ° C. in the transverse direction, and then heat treated at 150 to 250 ° C. for 1 to 600 seconds.
  • a longitudinal stretch and / or a lateral stretch process can also be added as needed.
  • the polyester resin used in the present invention is not particularly limited, and is mainly a polyester obtained using dicarboxylic acid or an ester compound thereof and glycol as main starting materials.
  • polyethylene terephthalate (PET) or polyethylene- Examples include 2,6-naphthalenedicarboxylate (PEN).
  • PET polyethylene terephthalate
  • PEN 2,6-naphthalenedicarboxylate
  • the other 3rd component may be contained.
  • mixing with polyester-type resin, such as a polycarbonate, compatible with resin is mentioned.
  • dicarboxylic acid component aromatic dicarboxylic acid is preferable, and terephthalic acid and dimethyl terephthalate, 2,6-naphthalenedicarboxylic acid, isophthalic acid, phthalic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxy acid) Ethoxybenzoic acid etc.) can be used, and it is particularly preferable to use terephthalic acid or dimethyl terephthalate.
  • dicarboxylic acid components can be used alone or in combination of two or more.
  • glycol component examples include, in addition to ethylene glycol, for example, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, and neopentyl glycol. Among them, ethylene glycol is preferably used. One or two or more of these glycol components can be used simultaneously.
  • the polyester film of the present invention contains a compound represented by the following chemical formula (1) as a copolymerization component.
  • the range of the molecular weight of the compound (1) is not particularly limited, but is preferably 10,000 to 30,000 in terms of number average molecular weight and 80,000 to 200,000 in terms of weight average molecular weight.
  • n in chemical formula (1) represents a natural number.
  • the polyester obtained by copolymerization of the compound (1) is specifically a copolymer produced by a transesterification reaction with the polyester, in which the compound (1) serves as a copolymerization component.
  • the transesterification reaction is represented by the reaction mechanism of FIG. Specifically, the oxygen atom of the hydroxy group at the terminal of the compound (1) is bonded to the carbonyl carbon of the ester bond in the polyester molecule, and the reaction is completed when the molecular chain on the diol side is eliminated from the ester bond.
  • the phosphorus element content in the polyester film of the present invention is 0.2 to 3.3% by weight.
  • the phosphorus element content is less than 0.2% by weight, sufficient flame retardancy may not be obtained.
  • it exceeds 3.3% by weight the load on the extruder becomes too large, and the extruder may be damaged.
  • Table 1 The phosphorus element content in the polyester film of the present invention is 0.2 to 3.3% by weight.
  • IV is less than 0.50 dl / g, there is a risk of film breakage during production due to insufficient strength.
  • the upper limit of IV of the film is not particularly limited, but due to the load applied to the extruder, the productivity is deteriorated when it exceeds 0.70 dl / g, and the practical upper limit is 0.90 dl / g. .
  • the haze (cloudiness) of the polyester film of the present invention is usually 10% or less, preferably 8% or less, more preferably 6% or less, most preferably 4% or less, and the lower the better.
  • a film having a haze of more than 10% is inferior in transparency, and is unsuitable for use as a base material for products requiring transparency such as a light control film.
  • the polyester film of the present invention may contain various inert fine particles as necessary.
  • the average particle diameter is usually 0.5 to 3.0 ⁇ m, preferably 0.8 to 2.0 ⁇ m.
  • the addition amount of the fine particles is usually 0.005 to 0.5% by weight, preferably 0.01 to 0.1% by weight. If the average particle size of the fine particles exceeds 3.0 ⁇ m or the addition amount exceeds 0.5% by weight, the flatness and / or transparency of the film may be impaired.
  • Examples of the aforementioned inert fine particles include aluminum oxide, silicon oxide, titanium oxide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, Examples thereof include lithium fluoride, zeolite, celite, kaolin, talc, carbon black, and crosslinked polymer fine particles as described in Patent Document 3. These fine particles can be used alone or in combination of two or more as required.
  • the polyester film of the present invention can be suitably used as a base material for a light control film.
  • the light control film as used herein refers to all films that can adjust the light transmittance for each wavelength, such as a light shielding film, an ultraviolet cut film, and an infrared cut film, in addition to an automatic light control film. Among these, an automatic light control film is particularly preferable.
  • the above-mentioned automatic light control film is a film having a structure in which an automatic light control layer whose transmittance is changed by voltage application is provided between two opposing transparent electrode layers carried on a film substrate.
  • an automatic light control layer whose transmittance is changed by voltage application is provided between two opposing transparent electrode layers carried on a film substrate.
  • Well-known materials such as a polymer dispersion type liquid crystal, a network polymer type liquid crystal, and an electrochromic material, can be used.
  • a transparent electrode layer needs to be provided on the polyester film surface.
  • the material of the transparent electrode is not particularly limited, and various known materials can be used.
  • ITO, ATO, indium oxide, tin oxide, zinc oxide, tin-antimony composite oxide, zinc-aluminum composite oxide examples thereof include indium-zinc composite oxide, silver and silver alloy, copper and copper alloy, gold, and carbon nanotube.
  • conductive polymers such as polyacetylene, P3HT, and PEDOT: PSS.
  • a known method can be appropriately used.
  • a vacuum deposition method, a sputtering method, a chemical vapor deposition method, an ion plating method, a spray method, and the like can be given.
  • an in-line or off-line coating method described later can be employed.
  • the polyester film of the present invention may be provided with a coating layer.
  • the coating layer it may be provided by in-line coating, which treats the film surface during the stretching process of the polyester film, or may be applied off-system on the film once manufactured, and may employ both offline coating. You may use together.
  • In-line coating is preferably used in that it can be applied at the same time as film formation, and thus can be manufactured at low cost, and the thickness of the coating layer can be changed by the draw ratio.
  • the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
  • a coating layer is provided on a polyester film by in-line coating, coating can be performed simultaneously with film formation, and the coating layer can be processed at a high temperature, and a film suitable as a polyester film can be produced.
  • aqueous polymer that is dissolved, emulsified or suspended in water as the binder in the coating liquid composition
  • examples of the aqueous polymer that is dissolved, emulsified or suspended in water as the binder in the coating liquid composition include, for example, polyurethane resins, polyacrylic resins, polyester resins, epoxy resins, polyvinyl alcohol resins, and polyvinylidene chloride. Resin, polystyrene resin, polyvinyl pyrrolidone and copolymers thereof, but are not limited thereto. These compounds can be used alone or in combination of two or more.
  • crosslinking agent is also contained as a component in the coating liquid composition.
  • Cross-linking agents include methylolated or alkylolized urea-based, melamine-based, guanamine-based, acrylamide-based, amide-based compounds, epoxy compounds, aziridine compounds, polyisocyanurates, block polyisocyanates, water-soluble polymers containing oxazoline groups Silane coupling agent, titanium coupling agent, zirco-aluminate coupling agent.
  • lubricants, antistatic agents, antifoaming agents, applicability improvers, thickeners as long as the effects of the present invention are not impaired. You may contain an antistatic agent, an ultraviolet absorber, an infrared absorber, antioxidant, a foaming agent, a pigment, dye, etc.
  • a typical coating layer includes a coating layer containing an organosilane compound.
  • organosilane compound include monoalkoxysilane, dialkoxysilane, trialkoxysilane, tetraalkoxysilane, and the like, and a mixture or condensation reaction product thereof may be used.
  • alkoxysilane having an organic functional machine in the molecule is preferable.
  • a typical example thereof is an organic silane compound represented by the following general formula, and these are known as silane coupling agents.
  • R 1 is a substituted alkyl group such as an alkyl group represented by a methyl group or an ethyl group or a methoxyalkyl group
  • R 2 and R 3 are each independently an alkylene group such as a propylene group
  • X, Y Are each independently an organic functional group
  • the organic functional group of X or Y is preferably an amino group, an epoxy group, a vinyl group, a hydroxyl group, a carboxyl group, an epoxycyclohexyl group, a mercapto group, or a glycidyl group.
  • the organic functional group may be a substituted amino group such as N- ⁇ (aminoethyl) amino group or a substituted one such as polyethyleneimine.
  • silane coupling agent having an organic functional group examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, Preferred examples include N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane and the like. These may be used alone or in combination of two or more and, if necessary, a mixture or condensate containing an alkoxysilane having no functional group.
  • the organosilane compound can be used after diluted with an alcohol solvent, but is preferably an aqueous system, and in this case, various surfactants can be blended for the purpose of improving the coating property. Further, if necessary, one or more of the above-mentioned aqueous polymers may be used in combination to improve the coating property. In addition, inorganic particles or organic particles may be added to the coating agent of the present invention for the purpose of ensuring the slipperiness of the coated surface.
  • particles in the coating layer in order to improve the slipperiness and blocking of the coating layer.
  • the particles used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
  • ICP measurement Using an ICP emission spectrometer (Varian 730-ES), the phosphorus element content in the sample was measured. For the measurement, SPST XSTC-22 (phosphorus content: 100 ppm) was used as a standard solution, and calibration curves were prepared from three types of solutions: stock solution, 10-fold dilution (10 ppm) and 100-fold dilution (1 ppm). .
  • (Ii) Conditioning The specimen obtained in (i) above is treated for (a) at an ambient temperature of 23 ⁇ 2 ° C. and a relative humidity of 50 ⁇ 5% for 48 hours or more. (B) after an ambient temperature of 70 ° C. ⁇ 2 ° C. for 168 ⁇ 2 hours. Prepare 10 pieces each of which has been subjected to a cooling process of 4 hours or more at a temperature of 23 ⁇ 2 ° C. and a relative humidity of 20% or less. (A) is called an acceptance state, and (b) is called an aging state.
  • Test piece fixation The vertical axis of the test piece of (ii) above is vertical, and is clamped and clamped with a spring-loaded clamp (1) at a position of 6 mm in the upper end, and the upper end of the cylinder is closed and no chimney effect is produced during the test. Like that. Immediately below the test piece, a piece of 0.05 g cotton (5) (50 mm ⁇ 50 mm) having a maximum thickness of 6 mm is horizontally placed, and the lower end of the test piece is 300 mm above the cotton (5). (See FIG. 2).
  • Burner adjustment Adjust so that a blue flame with a height of 20 mm comes out from the burner (4). In order to put out the flame, the supply amount of the combustible gas is adjusted so that a blue flame having a yellow tip and a height of 20 mm comes out. Then increase the air supply until the yellow tip disappears. Then measure the flame height again and readjust as necessary. Methane is used as the combustible gas, and the flow rate of methane gas supply to the burner (4) is adjusted by a method according to “ASTM D 5207”.
  • the burner (4) is moved away from the test piece at a speed of about 300 mm per second by at least 150 mm, and at the same time, the afterflame time t1 is started to be measured in seconds by the time-lapse apparatus.
  • Second flame contact When the after flame of the test piece resulting from the first flame contact has disappeared (even if the burner (4) has not been moved further than 150 mm away from the test piece), immediately place the burner (4) under the test piece. And hold the burner (4) at a location 10 mm ⁇ 1 mm away from the lower end of the remaining part of the test piece. However, if necessary, the burner (4) is moved so that the behavior of falling objects due to combustion can be confirmed in the state without obstruction. Immediately after the 3 second indirect flame, the burner (4) is moved away from the test piece at a speed of about 300 mm per second by at least 150 mm, and at the same time, the afterflame time t2 is started to be measured in seconds by the time-lapse apparatus.
  • Vii Flame retardant evaluation criteria: A UL94 VTM test is performed on 10 test pieces in each of the accepting state and the aging state, and evaluation is performed based on whether all the test pieces satisfy the conditions shown in Table 2 below. However, if only one out of 10 test pieces is rejected, the test is accepted. This reflects the fact that the actual VTM test is performed as a set of 5 test pieces, and retesting is allowed only once when there is only one failure.
  • “5 test pieces” in “total of t1 and t2 of 5 test pieces” in Table 2 means a combination of 5 pieces having the largest total of t1 and t2 among 10 test pieces. Point to.
  • the raw material production methods used in the examples and comparative examples are as follows.
  • polyester A 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, 0.02 part by weight of magnesium acetate tetrahydrate as a catalyst is taken in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is gradually distilled off. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was terminated. After adding 0.03 part by weight of ethyl acid phosphate to this reaction mixture, it was transferred to a polycondensation tank, 0.04 part by weight of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours.
  • the temperature was gradually raised from 230 ° C. to 280 ° C.
  • the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg.
  • polyester C was obtained in the same manner as polyester A, except that 0.1 part by weight of silica particles having an average particle size of 2.30 ⁇ m was blended at the end of the transesterification reaction.
  • the obtained polyester C had an IV of 0.62.
  • the obtained reaction product was recovered in accordance with the usual reaction method, put into a twin-screw extruder, extruded into water, then led to a strand cutter and cut into pellets.
  • the obtained pellets were 3,827 g.
  • the required amount of compound (1) was secured by repeating this reaction several times. This compound (1) was transparent, the phosphorus element content was 10.8% by weight, and the IV was 0.80 dl / g. From GPC analysis, the compound (1) was found to have a number average molecular weight of 2.39 ⁇ 10 4 and a weight average molecular weight of 1.68 ⁇ 10 5 .
  • the produced water was removed by adjusting the distillation rate of the distillation port. Furthermore, while maintaining the boiling state of the contents, the temperature in the flask was raised, and the degree of vacuum was also lowered accordingly. As a breakdown, it took 4 hours for the temperature of the contents to reach 185 ° C., and the degree of vacuum at this point was 430 Torr. Further, the heating was continued, and finally the contents were heated until the temperature reached 200 ° C. After confirming this point, nitrogen gas was blown into the reactor to return the flask to normal pressure.
  • the reaction mixture is an ethylene glycol solution of the following chemical formula (5). Moreover, a solid compound of the following chemical formula (5) can be purified by removing ethylene glycol under reduced pressure.
  • the above-mentioned deethylene glycol polycondensate and polyester B were compounded in a twin screw extruder with a vent at a ratio of 35:65 to obtain a flame retardant polyester.
  • the flame retardant polyester had a phosphorus element content of 2.8% by weight and an IV of 0.43 dl / g.
  • Examples 1-14 The raw materials mixed in the proportions described in Table 3 below were fed into the same direction twin screw extruder set at 270 ° C.
  • This polyester resin is extruded through a gear pump and a filter from a base into a sheet shape, rapidly cooled and solidified using an electrostatic cooling method with a rotary cooling drum whose surface temperature is set to 30 ° C., and is substantially amorphous.
  • a sheet was obtained.
  • the obtained amorphous sheet was stretched 3.0 times at 85 ° C. in the longitudinal direction, then stretched 3.0 times at 125 ° C. in the transverse direction, heat treated at 215 ° C., and biaxially stretched with a thickness of 15 to 250 ⁇ m.
  • a polyester film was obtained. In any example, as shown in Table 3, the obtained film exhibited good flame retardancy and was stable in production.
  • Comparative Examples 1 to 3 The raw materials mixed in the proportions shown in Table 3 were processed in the same manner as in Examples to obtain a polyester film having a thickness of 15 to 250 ⁇ m. As shown in Table 3, the obtained film had good productivity, but flame retardancy was not sufficient.
  • Comparative Example 4 The raw materials mixed in the proportions shown in Table 3 were charged into the extruder in the same manner as in the examples. However, the load applied to the extruder was too large, making it difficult to extrude and film formation could not be performed.
  • Comparative Example 5 The raw materials mixed in the proportions shown in Table 3 were processed in the same manner as in the Examples to obtain a polyester film having a thickness of 50 ⁇ m. Since the IV of the film was too low, breakage occurred frequently during processing, and as shown in Table 3, the obtained film had poor appearance due to high haze.
  • Example 15 An automatic light control film using a polyester film having a thickness of 50 ⁇ m described in Example 6 as a substrate was produced. A specific manufacturing method is shown below.
  • a homogenizer manufactured by Nippon Seiki Co., Ltd.
  • polyester film having both high flame retardancy and transparency it is possible to provide a polyester film having both high flame retardancy and transparency.
  • the polyester film of the present invention can be used for various applications that require transparency, and its industrial value is high.

Abstract

Provided is a polyester film which is imparted with unprecedented high flame retardancy, without deteriorating excellent characteristics inherent to films that are formed from a polyester resin (such as heat resistance, mechanical characteristics and the like of polyester films) and maintaining the characteristics at high levels, and which is able to be advantageously used in various applications where flame retardancy is highly required. A polyester film which contains a compound represented by chemical formula (1) as a copolymerization component, while having an elemental phosphorus content of 0.2-3.3% by weight.

Description

ポリエステルフィルム及び調光フィルムPolyester film and light control film
 本発明は、ポリエステルフィルム及び調光フィルムに関し、詳しくは、ポリエステルフィルムが本来有する高い透明性を維持したまま優れた難燃性を付与したポリエステルフィルム、およびそのポリエステルフィルムを基材に用いた調光フィルムに関する。 The present invention relates to a polyester film and a light control film, and more specifically, a polyester film imparted with excellent flame retardancy while maintaining high transparency inherent in the polyester film, and light control using the polyester film as a base material Related to film.
 ポリエステル樹脂製品は低コストで製造でき、なおかつ耐熱性、電気絶縁性、耐薬品性、機械強度などに優れることから、産業向け一般家庭向け問わずあらゆる分野に広く用いられている。 Polyester resin products can be manufactured at low cost and are excellent in heat resistance, electrical insulation, chemical resistance, mechanical strength, etc., so they are widely used in all fields regardless of industrial use for general households.
 それらの広範な用途において使用するために、ポリエステル樹脂は難燃化されていることが好ましい。特に電気電子製品の分野においては、近年の小型軽量化の要望から、製品の緻密化による発熱の増大と、不燃の金属部品から燃えやすい樹脂部品への置き換えが同時に進んでおり、難燃化は必須である。 In order to use in such a wide range of applications, the polyester resin is preferably flame-retardant. Especially in the field of electrical and electronic products, due to the recent demand for smaller size and lighter weight, the increase in heat generation due to the densification of products and the replacement of nonflammable metal parts with flammable resin parts are progressing at the same time. It is essential.
 このような背景から、各フィルムメーカーにて難燃性を付与されたポリエステルフィルムの開発が進められている。例えば特許文献1において、ポリエステルフィルムの両面にポリイミド系の化合物を含む層を積層してなるポリエステルフィルムが開示されている。また、特許文献2において、ホスフィン酸またはジホスフィン酸の金属塩を含有するポリエステルフィルムが開示されている。他にも特許文献3において、特定の構造を有する有機リン系オリゴマーを含有するポリエステルフィルムが開示されている。 From such a background, development of polyester films imparted with flame retardancy is being promoted by each film manufacturer. For example, in patent document 1, the polyester film formed by laminating | stacking the layer containing a polyimide-type compound on both surfaces of a polyester film is disclosed. Patent Document 2 discloses a polyester film containing a metal salt of phosphinic acid or diphosphinic acid. In addition, Patent Document 3 discloses a polyester film containing an organophosphorus oligomer having a specific structure.
 しかしこれらの難燃性ポリエステルフィルムは、高度な難燃性を有する代わりに外観上の問題を抱えている。特許文献1のポリエステルフィルムは両面に積層されたポリイミド化合物により黄色く着色しており、特許文献2のポリエステルフィルムは不透明の銀白色であり、特許文献3のポリエステルフィルムは無着色だがヘーズが高いため透明とは言い難い。いずれのフィルムも高い透明性を要求される用途には適さない。 However, these flame retardant polyester films have a problem in appearance instead of having high flame retardancy. The polyester film of Patent Document 1 is colored yellow by the polyimide compound laminated on both sides, the polyester film of Patent Document 2 is opaque silver-white, and the polyester film of Patent Document 3 is uncolored but transparent because of high haze. It's hard to say. Neither film is suitable for applications requiring high transparency.
 近年、デジタルサイネージ、プライバシー保護、防眩、紫外線カット、遮熱などの目的で調光ガラスの採用が広まっており、特に施工性や取り回しの観点から、通常のガラスに貼り付けることで手軽に調光機能を付与できる調光フィルムの需要が大きい。この調光フィルムは建築物の他に自動車や電車、飛行機などの乗り物の窓への需要もあるが、特に狭い閉鎖空間である乗り物に使用する場合、調光フィルムは難燃化されていることが望ましい。 In recent years, the use of light control glass has become widespread for the purposes of digital signage, privacy protection, anti-glare, UV protection, heat insulation, etc. Especially from the viewpoint of workability and handling, it can be easily adjusted by sticking to normal glass. There is a great demand for light control films that can provide light functions. In addition to buildings, there is a demand for the windows of vehicles such as automobiles, trains, and airplanes, but this light-control film is flame-retardant, especially when used in vehicles with a narrow enclosed space. Is desirable.
 調光フィルムの難燃化のためには基材となるフィルム自体も難燃化されていることが望ましいが、上述の通り高い透明性と難燃性を両立するポリエステルフィルムは知られていない。 In order to make the light control film flame-retardant, it is desirable that the film itself as the base material is also flame-retardant. However, as described above, a polyester film having both high transparency and flame retardancy is not known.
特開2007-001292号公報JP 2007-001292 A 特開2014-088582号公報JP 2014-088582 A 特開2013-226797号公報JP 2013-226797 A
 本発明は上記実情に鑑みてなされたものであり、その解決課題は、ポリエステルフィルムが本来有する高い透明性と難燃性を同時に達成できるポリエステルフィルムを提供することにある。 The present invention has been made in view of the above circumstances, and a problem to be solved is to provide a polyester film that can simultaneously achieve high transparency and flame retardancy inherent in the polyester film.
 本発明者は、上記課題に鑑み鋭意検討した結果、高い難燃性とポリエステル本来の透明性を両立させたポリエステルフィルムを提供することが可能であることを見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above problems, the present inventors have found that it is possible to provide a polyester film that achieves both high flame retardancy and inherent transparency of the polyester, and have completed the present invention. .
 すなわち、本発明の要旨は、下記化学式(1)で表される化合物(以下、単に化合物(1)と表記する)を共重合成分として含み、リン元素含有量が0.2~3.3重量%であることを特徴とするポリエステルフィルムに存する。 That is, the gist of the present invention includes a compound represented by the following chemical formula (1) (hereinafter simply referred to as compound (1)) as a copolymerization component, and a phosphorus element content of 0.2 to 3.3 wt. % Polyester film characterized in that it is%.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 本発明に用いられる化合物(1)は、着色がほとんどない上に、ポリエステル樹脂との相溶性にも優れている。本発明に依れば、優れた透明性と難燃性を両立したポリエステルフィルムを提供することができる。調光フィルムのようなクリアな外観を求められる製品に難燃性を付与することができ、本発明の産業的価値は非常に高い。 The compound (1) used in the present invention is hardly colored and has excellent compatibility with the polyester resin. According to the present invention, a polyester film having both excellent transparency and flame retardancy can be provided. Flame retardancy can be imparted to products that require a clear appearance such as a light control film, and the industrial value of the present invention is very high.
ポリエチレンテレフタレート(PET)と化合物(1)の反応機構の説明図Explanatory drawing of reaction mechanism of polyethylene terephthalate (PET) and compound (1) 燃焼試験装置の概念図Conceptual diagram of combustion test equipment
 本発明でいうポリエステルフィルムとは、ポリエステル樹脂そのもの、あるいはポリエステル樹脂に1種類以上の任意の成分を添加して混合したものを、薄く平坦な形状に成型加工したものである。その厚み範囲に明確な定義があるわけではないが、分厚すぎるとヘーズが上昇して透明感に劣り、薄すぎると生産性や取り回しに不都合が生じる場合がある。そのため本発明のフィルムの厚みは、通常1~300μm、好ましくは10~200μm、さらに好ましくは20~150μm、最も好ましくは30~100μmである。フィルム積層構造は限定されず、単層構造でもよいし、2つ以上の層が厚み方向に積層された構造でもよい。ポリエステルフィルムが2つ以上の層を有する場合、すべての層に化合物(1)が共重合されたポリエステルが含まれていることが、難燃性向上の観点から好ましい。 The polyester film referred to in the present invention is a polyester resin itself or a mixture of a polyester resin with one or more optional components added and mixed into a thin and flat shape. The thickness range is not clearly defined, but if the thickness is too thick, haze increases and the transparency is inferior, and if it is too thin, inconvenience may occur in productivity and handling. Therefore, the thickness of the film of the present invention is usually 1 to 300 μm, preferably 10 to 200 μm, more preferably 20 to 150 μm, and most preferably 30 to 100 μm. The film laminate structure is not limited, and may be a single layer structure or a structure in which two or more layers are laminated in the thickness direction. When a polyester film has two or more layers, it is preferable from a viewpoint of a flame retardance improvement that the polyester with which the compound (1) was copolymerized is contained in all the layers.
 上述の「任意の成分」の種類は一切限定されず、必要に応じてあらゆる添加物を選択することができる。例として、ベースのポリエステルとは別のポリエステルを含む全ての高分子材料(ベースと相溶か非相溶かは問わない)、顔料、有機粒子、無機粒子、紫外線吸収剤、赤外線吸収剤、紫外線反射剤、赤外線反射剤、熱安定化剤、酸化防止剤、帯電防止剤、滑剤、可塑剤、造核剤、分子鎖伸長剤、架橋剤、樹脂強化用フィラー、などが挙げられる。これらの添加剤の添加量も制限はなく、フィルムとして実用に耐えうる範囲であれば、ベースのポリエステル樹脂の配合量を上回っても構わない。 The kind of the “arbitrary component” described above is not limited at all, and any additive can be selected as necessary. For example, all polymer materials (whether compatible or incompatible with the base), pigments, organic particles, inorganic particles, ultraviolet absorbers, infrared absorbers, ultraviolet rays, including polyesters other than the base polyester Examples thereof include a reflective agent, an infrared reflective agent, a heat stabilizer, an antioxidant, an antistatic agent, a lubricant, a plasticizer, a nucleating agent, a molecular chain extender, a crosslinking agent, and a resin reinforcing filler. The addition amount of these additives is not limited, and may be higher than the compounding amount of the base polyester resin as long as it can be practically used as a film.
 本発明において、ポリエステル樹脂とその他の成分を混合するための方法は特に限定されず、例えばポリエステル樹脂とその他の成分を各種の押出機に投入して連続的に生産する方法や、容器中でバルク的に加熱攪拌して混合する方法が挙げられる。フィルム製造においては押出機を用いて連続生産する方法が好ましく、それらの成分はハンドリングの観点から、事前に高濃度マスターバッチ化されていてもよい。マスターバッチ製造においてポリエステル樹脂に他成分を混合するタイミングは、重合後でも重合前でもよい。 In the present invention, the method for mixing the polyester resin and the other components is not particularly limited. For example, the polyester resin and the other components can be continuously produced by introducing them into various extruders, or bulk in a container. For example, a method in which the mixture is heated and stirred for mixing. In film production, a method of continuous production using an extruder is preferred, and these components may be formed into a high-concentration masterbatch in advance from the viewpoint of handling. In the masterbatch production, the timing of mixing other components with the polyester resin may be after polymerization or before polymerization.
 本発明において、ポリエステル樹脂をフィルム状に成形する方法も特に限定されず、インフレーション法、Tダイ法、カレンダー法など一般的によく知られた各種の方法を用いることができる。2層以上の多層フィルムを製造する際に各層を積層する方法も、やはり特に限定されず、共押出法、ラミネート法、ヒートシール法など一般的に良く知られた各種の方法を用いることができ、製造効率の観点から共押出法が好ましい。 In the present invention, the method for forming the polyester resin into a film is not particularly limited, and various generally well-known methods such as an inflation method, a T-die method, and a calendar method can be used. The method of laminating each layer when producing a multilayer film of two or more layers is also not particularly limited, and various generally well-known methods such as a coextrusion method, a laminating method, and a heat sealing method can be used. From the viewpoint of production efficiency, the coextrusion method is preferable.
 本発明のポリエステルフィルムは、二軸方向に延伸および熱固定されていることが好ましい。逐次二軸延伸法と同時二軸延伸法のどちらを用いてもよいが、例えば逐次二軸延伸法を用いる場合、未延伸のポリエステルシートを縦方向に70~145℃で2~6倍に延伸して縦一軸延伸フィルム化した後、横方向に90~160℃で2~6倍延伸を行い、その後150~250℃で1~600秒間熱処理を行うことが好ましい。この際、熱処理の最高温度ゾーンおよび/または熱処理出口の冷却ゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩工程を追加することが好ましい。また、二軸延伸フィルム化した後に、必要に応じてさらに縦延伸および/または横延伸工程を追加することもできる。 The polyester film of the present invention is preferably stretched and heat-fixed in the biaxial direction. Either the sequential biaxial stretching method or the simultaneous biaxial stretching method may be used. For example, when the sequential biaxial stretching method is used, the unstretched polyester sheet is stretched 2 to 6 times in the longitudinal direction at 70 to 145 ° C. Then, after forming a longitudinally uniaxially stretched film, it is preferably stretched 2 to 6 times at 90 to 160 ° C. in the transverse direction, and then heat treated at 150 to 250 ° C. for 1 to 600 seconds. At this time, it is preferable to add a 0.1 to 20% relaxation step in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet. Moreover, after forming into a biaxially stretched film, a longitudinal stretch and / or a lateral stretch process can also be added as needed.
 本発明において用いられるポリエステル樹脂は特に限定されるものではなく、ジカルボン酸またはそのエステル化合物とグリコールとを主たる出発原料として得られるポリエステルを主とするものであり、例えばポリエチレンテレフタレート(PET)やポリエチレン-2,6-ナフタレンジカルボキシレート(PEN)などが挙げられる。そして、上記の範囲を逸脱しない条件であれば、他の第三成分を含有していてもよい。例えば、ポリカーボネートなどポリエステル系樹脂と相溶性のある樹脂との混合が挙げられる。 The polyester resin used in the present invention is not particularly limited, and is mainly a polyester obtained using dicarboxylic acid or an ester compound thereof and glycol as main starting materials. For example, polyethylene terephthalate (PET) or polyethylene- Examples include 2,6-naphthalenedicarboxylate (PEN). And if it is the conditions which do not deviate from said range, the other 3rd component may be contained. For example, mixing with polyester-type resin, such as a polycarbonate, compatible with resin is mentioned.
 ジカルボン酸成分の例としては、芳香族ジカルボン酸が好ましく、テレフタル酸およびテレフタル酸ジメチル、2,6-ナフタレンジカルボン酸、イソフタル酸、フタル酸、アジピン酸、セバシン酸、オキシカルボン酸(例えばp-オキシエトキシ安息香酸など)などを用いることができ、中でもテレフタル酸もしくはテレフタル酸ジメチルを用いることが特に好ましい。これらのジカルボン酸成分は、1種類または2種類以上を同時に用いることができる。 As an example of the dicarboxylic acid component, aromatic dicarboxylic acid is preferable, and terephthalic acid and dimethyl terephthalate, 2,6-naphthalenedicarboxylic acid, isophthalic acid, phthalic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxy acid) Ethoxybenzoic acid etc.) can be used, and it is particularly preferable to use terephthalic acid or dimethyl terephthalate. These dicarboxylic acid components can be used alone or in combination of two or more.
 グリコール成分の例としては、エチレングリコール以外に、例えばジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコールが挙げられ、中でもエチレングリコールを用いることが好ましい。これらのグリコール成分は、1種類または2種類以上を同時に用いることができる。 Examples of the glycol component include, in addition to ethylene glycol, for example, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, and neopentyl glycol. Among them, ethylene glycol is preferably used. One or two or more of these glycol components can be used simultaneously.
 本発明のポリエステルフィルムは、下記化学式(1)で表される化合物を共重合成分として含有する。化合物(1)の分子量の範囲は、特に限定しないが、数平均分子量で10,000~30,000、重量平均分子量で80,000~200,000であることが好ましい。なお、化学式(1)中のnは自然数を表す。 The polyester film of the present invention contains a compound represented by the following chemical formula (1) as a copolymerization component. The range of the molecular weight of the compound (1) is not particularly limited, but is preferably 10,000 to 30,000 in terms of number average molecular weight and 80,000 to 200,000 in terms of weight average molecular weight. In addition, n in chemical formula (1) represents a natural number.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 前述の化合物(1)が共重合されたポリエステルとは、具体的には化合物(1)が共重合成分となり、ポリエステルとのエステル交換反応によって生成された共重合体のことである。PETとの反応を例にとると、エステル交換反応は図1の反応機構で表される。具体的には、化合物(1)の末端のヒドロキシ基の酸素原子がポリエステル分子中のエステル結合のカルボニル炭素に結合し、エステル結合からジオール側の分子鎖が脱離することで反応が完了する。 The polyester obtained by copolymerization of the compound (1) is specifically a copolymer produced by a transesterification reaction with the polyester, in which the compound (1) serves as a copolymerization component. Taking the reaction with PET as an example, the transesterification reaction is represented by the reaction mechanism of FIG. Specifically, the oxygen atom of the hydroxy group at the terminal of the compound (1) is bonded to the carbonyl carbon of the ester bond in the polyester molecule, and the reaction is completed when the molecular chain on the diol side is eliminated from the ester bond.
 本発明のポリエステルフィルム中のリン元素含有量は0.2~3.3重量%である。リン元素含有量が0.2重量%未満の場合、十分な難燃性を得られない場合がある。一方3.3重量%を超える場合、押出機の負荷が大きくなりすぎて押出機を破損させてしまうおそれがある。フィルム厚みが大きいほど、少ないリン元素含有量で十分な難燃性が得られる傾向があり、厚みごとの好ましい範囲を表1に示す。 The phosphorus element content in the polyester film of the present invention is 0.2 to 3.3% by weight. When the phosphorus element content is less than 0.2% by weight, sufficient flame retardancy may not be obtained. On the other hand, when it exceeds 3.3% by weight, the load on the extruder becomes too large, and the extruder may be damaged. As the film thickness increases, sufficient flame retardancy tends to be obtained with a small phosphorus element content, and preferred ranges for each thickness are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明のフィルムのIV(=Intrinsic Viscosity、固有粘度または極限粘度)は、通常0.50dl/g以上、好ましくは0.55dl/g以上、更に好ましくは0.60以上、特に好ましくは0.65dl/g以上である。IVが0.50dl/g未満の場合、強度不足で製造中のフィルム破れが頻発する恐れがある。一方フィルムのIVの上限については特に限定しないが、押出機にかかる負荷のため、0.70dl/gを超えると生産性が悪化するようになり、事実上の上限は0.90dl/gである。 The IV of the film of the present invention (= Intrinsic Viscosity, intrinsic viscosity or intrinsic viscosity) is usually 0.50 dl / g or more, preferably 0.55 dl / g or more, more preferably 0.60 or more, particularly preferably 0.65 dl. / G or more. When IV is less than 0.50 dl / g, there is a risk of film breakage during production due to insufficient strength. On the other hand, the upper limit of IV of the film is not particularly limited, but due to the load applied to the extruder, the productivity is deteriorated when it exceeds 0.70 dl / g, and the practical upper limit is 0.90 dl / g. .
 本発明のポリエステルフィルムのヘーズ(曇り度)は通常10%以下であるが、好ましくは8%以下、更に好ましくは6%以下、最も好ましくは4%以下であり、低ければ低いほど良い。ヘーズが10%を超えるフィルムは透明性に劣るため、調光フィルムのような透明感を求められる製品の基材として用いるには不向きである。 The haze (cloudiness) of the polyester film of the present invention is usually 10% or less, preferably 8% or less, more preferably 6% or less, most preferably 4% or less, and the lower the better. A film having a haze of more than 10% is inferior in transparency, and is unsuitable for use as a base material for products requiring transparency such as a light control film.
 本発明のポリエステルフィルムは、必要に応じて各種の不活性な微粒子を含有していてもよい。その平均粒径は、通常0.5~3.0μm、好ましくは0.8~2.0μmである。また、当該微粒子の添加量は、通常0.005~0.5重量%、好ましくは0.01~0.1重量%である。微粒子の平均粒径が3.0μmを超える、あるいは添加量が0.5重量%を超えると、フィルムの平面性および/または透明性が損なわれる恐れがある。 The polyester film of the present invention may contain various inert fine particles as necessary. The average particle diameter is usually 0.5 to 3.0 μm, preferably 0.8 to 2.0 μm. The addition amount of the fine particles is usually 0.005 to 0.5% by weight, preferably 0.01 to 0.1% by weight. If the average particle size of the fine particles exceeds 3.0 μm or the addition amount exceeds 0.5% by weight, the flatness and / or transparency of the film may be impaired.
 前述の不活性微粒子の例としては、酸化アルミニウム、酸化ケイ素、酸化チタン、窒化ケイ素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシウム、フッ化リチウム、ゼオライト、セライト、カオリン、タルク、カーボンブラックおよび特許文献3に記載されているような架橋高分子微粒子を挙げることができる。これらの微粒子は、必要に応じて1種類または2種類以上を併用することができる。 Examples of the aforementioned inert fine particles include aluminum oxide, silicon oxide, titanium oxide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, Examples thereof include lithium fluoride, zeolite, celite, kaolin, talc, carbon black, and crosslinked polymer fine particles as described in Patent Document 3. These fine particles can be used alone or in combination of two or more as required.
 本発明のポリエステルフィルムは調光フィルムの基材として好適に用いることができる。ここで言う調光フィルムとは、自動調光フィルムの他、遮光フィルム、紫外線カットフィルム、赤外線カットフィルムなど波長ごとの光透過率を調整できるようなフィルム全般のことを指す。これらの中では自動調光フィルムが特に好ましい。 The polyester film of the present invention can be suitably used as a base material for a light control film. The light control film as used herein refers to all films that can adjust the light transmittance for each wavelength, such as a light shielding film, an ultraviolet cut film, and an infrared cut film, in addition to an automatic light control film. Among these, an automatic light control film is particularly preferable.
 前述の自動調光フィルムとは、フィルム基材に担持された対向する二層の透明電極層の層間に、電圧印加によって透過率が変化する自動調光層を有する構造を持つフィルムである。自動調光層の種類に特に制限はなく、ポリマー分散型液晶、ネットワークポリマー型液晶、エレクトロクロミック材料など、公知の材料を用いることができる。 The above-mentioned automatic light control film is a film having a structure in which an automatic light control layer whose transmittance is changed by voltage application is provided between two opposing transparent electrode layers carried on a film substrate. There is no restriction | limiting in particular in the kind of automatic light control layer, Well-known materials, such as a polymer dispersion type liquid crystal, a network polymer type liquid crystal, and an electrochromic material, can be used.
 本発明のポリエステルフィルムを自動調光フィルムの基材として用いる場合、ポリエステルフィルム表面に透明電極層が設けられている必要がある。透明電極の材料は特に限定されず、公知の各種の材料を用いることが可能で、たとえばITO、ATO、酸化インジウム、酸化スズ、酸化亜鉛、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物、銀および銀の合金、銅および銅の合金、金、カーボンナノチューブなどが挙げられる。また、ポリアセチレン、P3HT、PEDOT:PSSなどの導電性高分子を用いることも可能である。 When the polyester film of the present invention is used as a base material for an automatic light control film, a transparent electrode layer needs to be provided on the polyester film surface. The material of the transparent electrode is not particularly limited, and various known materials can be used. For example, ITO, ATO, indium oxide, tin oxide, zinc oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, Examples thereof include indium-zinc composite oxide, silver and silver alloy, copper and copper alloy, gold, and carbon nanotube. Moreover, it is also possible to use conductive polymers, such as polyacetylene, P3HT, and PEDOT: PSS.
 前述の透明電極層を設ける方法として、公知の方法を適宜用いることができる。例えば真空蒸着法、スパッタリング法、化学気相成長法、イオンプレーティング法、スプレー法などが挙げられる。他にも、後述するインラインまたはオフラインのコーティング法を採用することも可能である。 As a method for providing the above-mentioned transparent electrode layer, a known method can be appropriately used. For example, a vacuum deposition method, a sputtering method, a chemical vapor deposition method, an ion plating method, a spray method, and the like can be given. In addition, an in-line or off-line coating method described later can be employed.
 本発明のポリエステルフィルムには、塗布層を設けても構わない。塗布層に関しては、ポリエステルフィルムの延伸工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよく、両者を併用してもよい。製膜と同時に塗布が可能であるため、製造が安価に対応可能であり、塗布層の厚みを延伸倍率により変化させることができるという点でインラインコーティングが好ましく用いられる。 The polyester film of the present invention may be provided with a coating layer. As for the coating layer, it may be provided by in-line coating, which treats the film surface during the stretching process of the polyester film, or may be applied off-system on the film once manufactured, and may employ both offline coating. You may use together. In-line coating is preferably used in that it can be applied at the same time as film formation, and thus can be manufactured at low cost, and the thickness of the coating layer can be changed by the draw ratio.
 インラインコーティングについては、以下に限定するものではないが、例えば、逐次二軸延伸においては、特に縦延伸が終了した横延伸前にコーティング処理を施すことができる。インラインコーティングによりポリエステルフィルム上に塗布層が設けられる場合には、製膜と同時に塗布が可能になると共に塗布層を高温で処理することができ、ポリエステルフィルムとして好適なフィルムを製造できる。 Although the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished. When a coating layer is provided on a polyester film by in-line coating, coating can be performed simultaneously with film formation, and the coating layer can be processed at a high temperature, and a film suitable as a polyester film can be produced.
 塗布液組成物中のバインダーとして、水に溶解、乳化または懸濁する水性高分子としては、例えば、ポリウレタン系樹脂、ポリアクリル系樹脂、ポリエステル系樹脂、エポキシ樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルピロリドンおよびこれらの共重合体等を挙げることができるがこれらに限定されるものではない。これらの化合物は、1種または2種以上を混合して使用できる。 Examples of the aqueous polymer that is dissolved, emulsified or suspended in water as the binder in the coating liquid composition include, for example, polyurethane resins, polyacrylic resins, polyester resins, epoxy resins, polyvinyl alcohol resins, and polyvinylidene chloride. Resin, polystyrene resin, polyvinyl pyrrolidone and copolymers thereof, but are not limited thereto. These compounds can be used alone or in combination of two or more.
 塗布液組成物中の成分として、架橋剤も含有されることが好ましい。架橋剤としては、メチロール化あるいはアルキロール化した尿素系、メラミン系、グアナミン系、アクリルアミド系、アミド系などの化合物、エポキシ化合物、アジリジン化合物、ポリイソシアヌレート、ブロックポリイソシアネート、オキサゾリン基含有水溶性ポリマー、シランカップリング剤、チタンカップリング剤、ジルコ-アルミネートカップリング剤が挙げられる。塗布液中には、塗布性を向上するために、本発明の効果を損なわない範囲で、無機や有機の粒子、潤滑剤、帯電防止剤、消泡剤、塗布性改良剤、増粘剤、帯電防止剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、発泡剤、顔料、染料等を含有させてもよい。 It is preferable that a crosslinking agent is also contained as a component in the coating liquid composition. Cross-linking agents include methylolated or alkylolized urea-based, melamine-based, guanamine-based, acrylamide-based, amide-based compounds, epoxy compounds, aziridine compounds, polyisocyanurates, block polyisocyanates, water-soluble polymers containing oxazoline groups Silane coupling agent, titanium coupling agent, zirco-aluminate coupling agent. In the coating solution, in order to improve applicability, inorganic and organic particles, lubricants, antistatic agents, antifoaming agents, applicability improvers, thickeners, as long as the effects of the present invention are not impaired. You may contain an antistatic agent, an ultraviolet absorber, an infrared absorber, antioxidant, a foaming agent, a pigment, dye, etc.
 代表的な塗布層としては有機シラン化合物を含有する塗布層が挙げられる。有機シラン化合物としては、モノアルコキシシラン、ジアルコキシシラン、トリアルコキシシラン、テトラアルコキシシラン等があり、これらの混合物や縮合反応物であっても良い。特に、分子内に有機官能機を持ったアルコキシシランがこのましい。その代表的な例としては、下記一般式で表される有機シラン化合物があり、これらは、シランカップリング剤として知られている。 A typical coating layer includes a coating layer containing an organosilane compound. Examples of the organosilane compound include monoalkoxysilane, dialkoxysilane, trialkoxysilane, tetraalkoxysilane, and the like, and a mixture or condensation reaction product thereof may be used. In particular, alkoxysilane having an organic functional machine in the molecule is preferable. A typical example thereof is an organic silane compound represented by the following general formula, and these are known as silane coupling agents.
 XRSi(ORや(XR)(YR)Si(OR
(ここで、Rはメチル基またはエチル基で代表されるアルキル基やメトキシアルキル基等の置換アルキル基であり、R、Rはそれぞれ独立してプロピレン基等のアルキレン基、X、Yはそれぞれ独立して有機官能基である)。
XR 2 Si (OR 1 ) 3 and (XR 2 ) (YR 3 ) Si (OR 1 ) 2
(Here, R 1 is a substituted alkyl group such as an alkyl group represented by a methyl group or an ethyl group or a methoxyalkyl group, and R 2 and R 3 are each independently an alkylene group such as a propylene group, X, Y Are each independently an organic functional group).
  上記一般式において、XやYの有機官能基としては、アミノ基、エポキシ基、ビニル基、ヒドロキシル基、カルボキシル基、エポキシシクロヘキシル基、メルカプト基およびグリシジル基が好ましい。また、有機官能基としては、N-β(アミノエチル)アミノ基のような置換アミノ基やポリエチレンイミンのように、置換されたものであってもよい。有機官能基を有するシランカップリング剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン等が好ましく例示される。これらは一種または二種以上、および必要によっては、官能基を持たないアルコキシシランを含めた混合物や縮合物を用いることができる。 In the above general formula, the organic functional group of X or Y is preferably an amino group, an epoxy group, a vinyl group, a hydroxyl group, a carboxyl group, an epoxycyclohexyl group, a mercapto group, or a glycidyl group. The organic functional group may be a substituted amino group such as N-β (aminoethyl) amino group or a substituted one such as polyethyleneimine. Specific examples of the silane coupling agent having an organic functional group include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, Preferred examples include N-β (aminoethyl) γ-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-mercaptopropyltrimethoxysilane and the like. These may be used alone or in combination of two or more and, if necessary, a mixture or condensate containing an alkoxysilane having no functional group.
 有機シラン化合物は、アルコール溶媒で希釈して用いることができるが、水系であることが好ましく、その際には、塗布性を改善する目的で各種の界面活性剤を配合することができる。また、必要に応じて先に挙げた水性高分子の1種もしくは2種以上を併用し塗布性の向上を図ってもよい。また、本発明の塗布剤には、塗布面の滑り性確保する目的で、無機粒子や有機の粒子を加えても構わない。 The organosilane compound can be used after diluted with an alcohol solvent, but is preferably an aqueous system, and in this case, various surfactants can be blended for the purpose of improving the coating property. Further, if necessary, one or more of the above-mentioned aqueous polymers may be used in combination to improve the coating property. In addition, inorganic particles or organic particles may be added to the coating agent of the present invention for the purpose of ensuring the slipperiness of the coated surface.
 また、塗布層の滑り性改良やブロッキング改良のために、塗布層中へ粒子を含有することも可能である。用いる粒子としては、例えば、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等を挙げることができる。 Further, it is possible to contain particles in the coating layer in order to improve the slipperiness and blocking of the coating layer. Examples of the particles used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
(1)IV測定:
 サンプルを1.0g・dl-1の濃度になるようフェノール/1,1,2,2-テトラクロロエタンの重量比1:1溶液中に加えた。この溶液を110℃で20分間加熱し、ポリエステル樹脂組成物を溶解させた後、容器を30分間水道水に浸して室温まで冷却させた。毛細管粘度計“VMS-022UPC・F10”(離合社製)を用いて、この溶液の流下時間、およびフェノール/1,1,2,2-テトラクロロエタン溶液のみ(リファレンス液)の流下時間を測定し、それらの時間比率から、Hugginsの式を用いて、極限粘度を算出した。その際、粘度計の恒温水槽の温度は30℃とし、粘度計算に用いるHuggins定数は0.33と仮定した。なお、IVの単位は“dl・g-1”とする。
(1) IV measurement:
The sample was added to a 1: 1 phenol / 1,1,2,2-tetrachloroethane weight ratio solution to a concentration of 1.0 g · dl-1. This solution was heated at 110 ° C. for 20 minutes to dissolve the polyester resin composition, and then the container was immersed in tap water for 30 minutes and allowed to cool to room temperature. Using a capillary viscometer “VMS-022UPC • F10” (manufactured by Hosei Co., Ltd.), the flow time of this solution and the flow time of only the phenol / 1,1,2,2-tetrachloroethane solution (reference solution) were measured. From these time ratios, the intrinsic viscosity was calculated using the Huggins equation. At that time, the temperature of the thermostat bath of the viscometer was assumed to be 30 ° C., and the Huggins constant used for viscosity calculation was assumed to be 0.33. The unit of IV is “dl · g−1”.
(2)ヘーズ測定:
 ヘーズメーター“NDH-5000”(日本電色工業製)を用いて、JIS K 7136規格に基づいてフィルムのヘーズを測定した。
(2) Haze measurement:
Using a haze meter “NDH-5000” (manufactured by Nippon Denshoku Industries Co., Ltd.), the haze of the film was measured based on the JIS K 7136 standard.
(3)ICP測定:
 ICP発光分析装置(Varian製730-ES)を用いて、サンプル中のリン元素含有量を測定した。測定にあたり、標準溶液としてSPEX製のXSTC-22(リン含有量100ppm)を使用し、原液、10倍希釈(同10ppm)、100倍希釈(同1ppm)の3種類の溶液から検量線を作成した。
(3) ICP measurement:
Using an ICP emission spectrometer (Varian 730-ES), the phosphorus element content in the sample was measured. For the measurement, SPST XSTC-22 (phosphorus content: 100 ppm) was used as a standard solution, and calibration curves were prepared from three types of solutions: stock solution, 10-fold dilution (10 ppm) and 100-fold dilution (1 ppm). .
(4)難燃性:
 アンダーライターズラボラトリーズ(UL)社発行のプラスチック材料の燃焼性試験規格UL94のVTM試験に基づき、ポリエステルフィルムの燃焼試験を行った。VTM試験は結果のばらつきが大きい試験であるため、評価の信頼性をより高める目的で、1種のポリエステルフィルムサンプルに対し通常5回ずつ試験を行うところを10回ずつ行った。以下に、難燃性評価手順について説明する。
(4) Flame retardancy:
Based on the VTM test of UL94, a plastic material flammability test published by Underwriters Laboratories (UL), a polyester film flammability test was conducted. Since the VTM test is a test with a large variation in results, in order to further improve the reliability of evaluation, a test was normally performed 10 times for each type of polyester film sample 10 times. Below, a flame-retardant evaluation procedure is demonstrated.
(i)サンプル作成:
 フィルムを200mm×50mmに裁断し、試料下端から125mmのところで試料の幅方向に125mm標線(3)を入れた。試料の縦軸を直径12.7mmの棒の縦軸に硬く巻きつけて、125mmの線が外側に露出する、長さ200mmの円筒状にした。標線より上(75mm側)5mmの所と、試料上端から下5mmの所にテープ(2)を巻き付けて固定した。最後に棒を引き抜き、試料上端を試験片とした。
(I) Sample creation:
The film was cut into 200 mm × 50 mm, and a 125 mm mark (3) was placed in the width direction of the sample at 125 mm from the lower end of the sample. The vertical axis of the sample was tightly wound around the vertical axis of a rod having a diameter of 12.7 mm to form a cylindrical shape with a length of 200 mm in which a 125 mm line was exposed to the outside. Tape (2) was wound around and fixed at a position 5 mm above the marked line (75 mm side) and 5 mm below the upper end of the sample. Finally, the rod was pulled out and the upper end of the sample was used as a test piece.
(ii)コンディショニング:
 上記(i)により得られた試験片を
(a)気温23±2℃、相対湿度50±5%の環境下で48時間以上処理
(b)気温70℃±2℃で168±2時間処理後、気温23±2℃、相対湿度20%以下で4時間以上冷却
以上の処理を施したものをそれぞれ10本ずつ用意する。(a)を受理状態、(b)をエージング状態と呼ぶ。
(Ii) Conditioning:
The specimen obtained in (i) above is treated for (a) at an ambient temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5% for 48 hours or more. (B) after an ambient temperature of 70 ° C. ± 2 ° C. for 168 ± 2 hours. Prepare 10 pieces each of which has been subjected to a cooling process of 4 hours or more at a temperature of 23 ± 2 ° C. and a relative humidity of 20% or less. (A) is called an acceptance state, and (b) is called an aging state.
(iii)試験片固定:
 上記(ii)の試験片の縦軸を垂直にして、上端の長さ6mmの位置でスプリング付きのクランプ(1)で挟んで固定し、筒の上端が閉じて試験中に煙突効果を生じないようにする。試験片の真下には、最大厚みが6mmの1枚の0.05gのコットン(5)(50mm×50mm)を水平に置くが、試験片の下端はこのコットン(5)よりも300mm上にあるようにする(図2参照)。
(Iii) Test piece fixation:
The vertical axis of the test piece of (ii) above is vertical, and is clamped and clamped with a spring-loaded clamp (1) at a position of 6 mm in the upper end, and the upper end of the cylinder is closed and no chimney effect is produced during the test. Like that. Immediately below the test piece, a piece of 0.05 g cotton (5) (50 mm × 50 mm) having a maximum thickness of 6 mm is horizontally placed, and the lower end of the test piece is 300 mm above the cotton (5). (See FIG. 2).
(iv)バーナー調整:
 バーナー(4)から高さ20mmの青炎が出るよう調整する。その炎を出すためには、可燃性ガスの供給量を調整して先端が黄色い高さ20mmの青い炎が出るようにする。続いて黄色い先端が消えるまで空気の供給を増やす。その後再度炎の高さを測定して、必要に応じて再調整をする。可燃性ガスはメタンを用いることとし、バーナー(4)へのメタンガス供給は“ASTM D 5207”に準じた方法で流量を調整する。
(Iv) Burner adjustment:
Adjust so that a blue flame with a height of 20 mm comes out from the burner (4). In order to put out the flame, the supply amount of the combustible gas is adjusted so that a blue flame having a yellow tip and a height of 20 mm comes out. Then increase the air supply until the yellow tip disappears. Then measure the flame height again and readjust as necessary. Methane is used as the combustible gas, and the flow rate of methane gas supply to the burner (4) is adjusted by a method according to “ASTM D 5207”.
(v)1回目の接炎:
 炎は、試験片の巻かれていないほうの下端の中心点を中心に当て、バーナー(4)の先端はその中心点から10±1mm下にあるようにして、その位置で3秒接炎を続ける。ただし、試験片の長さおよび中心位置は燃焼によって変化するので、その変化に応じてバーナー(4)の位置を移動させる。接炎中に溶融物または発煙物が滴下する場合は、バーナー(4)の角度を45度までの範囲で傾け、バーナー(4)の管の中にそれらの物質が落下するのを防ぐためにちょうど十分なだけ試験片の下から移動させる。その間もバーナー(4)の先端の中心と試験片の残存部分間は10±1mmの距離を保たなければならない。3秒間接炎の後、直ちにバーナー(4)を試験片から毎秒約300mmの速度で少なくとも150mm遠ざけ、同時に経時装置により残炎時間t1を秒で計測し始める。
(V) First flame contact:
The flame is applied to the center point of the lower end of the test piece that is not wound, and the tip of the burner (4) is 10 ± 1 mm below the center point. to continue. However, since the length and center position of the test piece change due to combustion, the position of the burner (4) is moved according to the change. If the melt or fumes are dripping during flame contact, tilt the burner (4) at an angle of up to 45 degrees to prevent them from falling into the burner (4) tube. Move enough from under the specimen. Meanwhile, a distance of 10 ± 1 mm must be maintained between the center of the tip of the burner (4) and the remaining portion of the test piece. Immediately after the 3-second indirect flame, the burner (4) is moved away from the test piece at a speed of about 300 mm per second by at least 150 mm, and at the same time, the afterflame time t1 is started to be measured in seconds by the time-lapse apparatus.
(vi)二回目の接炎:
 1回目の接炎に由来する試験片の残炎が消滅した時点で、(バーナー(4)を試験片から150mm以上はなれたところまで遠ざけていなくても)直ちにバーナー(4)を試験片の下に持ってきて、試験片の残りの部分の下端から10mm±1mm離れた箇所にバーナー(4)を保持しておく。ただし、必要に応じてバーナー(4)を動かして、妨害物のない状態で燃焼による落下物の挙動が確認できるようにする。3秒間接炎の後、直ちにバーナー(4)を試験片から毎秒約300mmの速度で少なくとも150mm遠ざけ、同時に経時装置により残炎時間t2を秒で計測し始める。
(Vi) Second flame contact:
When the after flame of the test piece resulting from the first flame contact has disappeared (even if the burner (4) has not been moved further than 150 mm away from the test piece), immediately place the burner (4) under the test piece. And hold the burner (4) at a location 10 mm ± 1 mm away from the lower end of the remaining part of the test piece. However, if necessary, the burner (4) is moved so that the behavior of falling objects due to combustion can be confirmed in the state without obstruction. Immediately after the 3 second indirect flame, the burner (4) is moved away from the test piece at a speed of about 300 mm per second by at least 150 mm, and at the same time, the afterflame time t2 is started to be measured in seconds by the time-lapse apparatus.
(vii)難燃性評価基準:
 受理状態およびエージング状態それぞれ10本ずつの試験片に対してUL94のVTM試験を行い、全ての試験片が下記表2の条件を満たすかどうかで評価する。ただし不合格の試験片が10本中1本のみの場合は合格とする。これは、実際のVTM試験が5本の試験片を1組として行われ、不合格が1本のみの場合は1度だけ再試験が許されていることを反映している。なお、表2内の「試験片5本のt1とt2の総和」における「試験片5本」とは、10本の試験片のうちt1とt2の合計が最も大きい5本の組み合わせのことを指す。
(Vii) Flame retardant evaluation criteria:
A UL94 VTM test is performed on 10 test pieces in each of the accepting state and the aging state, and evaluation is performed based on whether all the test pieces satisfy the conditions shown in Table 2 below. However, if only one out of 10 test pieces is rejected, the test is accepted. This reflects the fact that the actual VTM test is performed as a set of 5 test pieces, and retesting is allowed only once when there is only one failure. In addition, “5 test pieces” in “total of t1 and t2 of 5 test pieces” in Table 2 means a combination of 5 pieces having the largest total of t1 and t2 among 10 test pieces. Point to.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
(5)生産性:
 二軸延伸ポリエステルフィルムの製造を6時間行い、以下の評価基準に基づいて生産性を評価した。
《評価基準》
 A:破断が一度もフィルム発生せず、継続して製膜することができた。
 B:破断が1~2回発生した。
 C:破断が3回以上発生した。
(5) Productivity:
The biaxially stretched polyester film was produced for 6 hours, and the productivity was evaluated based on the following evaluation criteria.
"Evaluation criteria"
A: The film was never broken and the film could be continuously formed.
B: Breaking occurred once or twice.
C: Breaking occurred 3 times or more.
 実施例および比較例にて用いた原料の製造方法は以下のとおりである。 The raw material production methods used in the examples and comparative examples are as follows.
≪ポリエステルAの製造≫
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム四水塩0.02重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、エステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.03重量部を添加した後、重縮合槽に移し、三酸化アンチモンを0.04重量部加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温して280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、IV=0.64に相当する時点で反応を停止し、ポリエステルAを得た。
≪Manufacture of polyester A≫
100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, 0.02 part by weight of magnesium acetate tetrahydrate as a catalyst is taken in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is gradually distilled off. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was terminated. After adding 0.03 part by weight of ethyl acid phosphate to this reaction mixture, it was transferred to a polycondensation tank, 0.04 part by weight of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to IV = 0.64 due to a change in stirring power of the reaction vessel, and polyester A was obtained.
≪ポリエステルBの製造≫
 ポリエステルAを出発原料とし、真空下220℃にて固相重合を行い、IV=0.85のポリエステルBを得た。
≪Manufacture of polyester B≫
Polyester A was used as a starting material and solid phase polymerization was performed at 220 ° C. under vacuum to obtain polyester B with IV = 0.85.
≪ポリエステルCの製造≫
 ポリエステルAの製造において、エステル交換反応終了時に、平均粒径2.30μmのシリカ粒子0.1重量部を配合する以外はポリエステルAと同様の方法でポリエステルCを得た。得られたポリエステルCのIVは0.62であった。
≪Manufacture of polyester C≫
In the production of polyester A, polyester C was obtained in the same manner as polyester A, except that 0.1 part by weight of silica particles having an average particle size of 2.30 μm was blended at the end of the transesterification reaction. The obtained polyester C had an IV of 0.62.
≪化合物(1)の製造≫
 攪拌機と蒸留塔を備えた容積12リットルの反応容器に3,726gのメチル亜リン酸ジフェニルエステル(下記化学式(2))、3,329gのビスフェノールA(下記化学式(3))、89gの1,1,1-トリス(4-ヒドロキシフェニル)エタン、600mgのナトリウムフェノキシドを入れ、250℃から300℃の温度、1.5ミリメートルHgから150ミリメートルHgの圧力下で15時間かけて反応させた。なお、反応開始から11時間の時点で600mgのナトリウムフェノキシドを追加した。
<< Production of Compound (1) >>
In a reaction vessel having a capacity of 12 liters equipped with a stirrer and a distillation column, 3,726 g of methyl phosphite diphenyl ester (the following chemical formula (2)), 3,329 g of bisphenol A (the following chemical formula (3)), 89 g of 1, 1,1-tris (4-hydroxyphenyl) ethane, 600 mg of sodium phenoxide was added and allowed to react at a temperature of 250 ° C. to 300 ° C. under a pressure of 1.5 millimeter Hg to 150 millimeter Hg for 15 hours. In addition, 600 mg of sodium phenoxide was added 11 hours after the start of the reaction.
 得られた反応物は反応の定法に従い回収され、二軸押出機に投入して水中に押し出し、続いてストランドカッターに導き、ペレット状にカットした。得られたペレットは3,827gであった。この反応を数回繰り返すことで、必要量の化合物(1)を確保した。この化合物(1)は透明で、リン元素含有率は10.8重量%、IVは0.80dl/gだった。また、GPC分析より、この化合物(1)の数平均分子量は2.39×10、重量平均分子量は1.68×10と求められた。 The obtained reaction product was recovered in accordance with the usual reaction method, put into a twin-screw extruder, extruded into water, then led to a strand cutter and cut into pellets. The obtained pellets were 3,827 g. The required amount of compound (1) was secured by repeating this reaction several times. This compound (1) was transparent, the phosphorus element content was 10.8% by weight, and the IV was 0.80 dl / g. From GPC analysis, the compound (1) was found to have a number average molecular weight of 2.39 × 10 4 and a weight average molecular weight of 1.68 × 10 5 .
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
≪難燃ポリエステルの製造≫
 攪拌機、温度計、ガス吹き込み口、および蒸留口を備えた内容積3Lのガラス製フラスコに9,10-ジヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド(下記化学式(4))7.8molとエチレングリコール25.97molを加え、成分を溶解させるため、内容物の温度が100℃になるまでフラスコを加熱した。次いで、攪拌しながらイタコン酸7.96molを添加し、蒸留口から減圧器を介して、フラスコを30Torrの真空状態で加熱し、内容物を沸騰させた。この時点で、蒸留口の留出速度を調製することで、生成した水を除去した。さらに、内容物の沸騰状態を維持したまま、フラスコ内の温度を上昇させ、それに対応させて、減圧度も低下させていった。その内訳として、内容物の温度が185℃になるまでに4時間を要し、この時点での減圧度は430Torrであった。さらに、加熱を続け、最終的に内容物の温度が200℃になるまで加熱していった。この点を確認後、反応機に窒素ガスを吹き込んでフラスコを常圧に戻した。反応混合物は下記化学式(5)のエチレングリコール溶液である。また、減圧下、エチレングリコールを除去することにより、固形状の下記化学式(5)の化合物を精製できる。
≪Manufacture of flame retardant polyester≫
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (the following chemical formula (4)) was added to a 3 L glass flask equipped with a stirrer, thermometer, gas inlet, and distillation port. ) 7.8 mol and 25.97 mol of ethylene glycol were added and the flask was heated until the temperature of the contents reached 100 ° C. to dissolve the components. Next, 7.96 mol of itaconic acid was added with stirring, and the flask was heated from the distillation port through a vacuum device in a vacuum state of 30 Torr to bring the contents to a boil. At this point, the produced water was removed by adjusting the distillation rate of the distillation port. Furthermore, while maintaining the boiling state of the contents, the temperature in the flask was raised, and the degree of vacuum was also lowered accordingly. As a breakdown, it took 4 hours for the temperature of the contents to reach 185 ° C., and the degree of vacuum at this point was 430 Torr. Further, the heating was continued, and finally the contents were heated until the temperature reached 200 ° C. After confirming this point, nitrogen gas was blown into the reactor to return the flask to normal pressure. The reaction mixture is an ethylene glycol solution of the following chemical formula (5). Moreover, a solid compound of the following chemical formula (5) can be purified by removing ethylene glycol under reduced pressure.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 続いて、このフラスコ内に、三酸化アンチモン(Sb)0.33gおよび酢酸亜鉛二水和物[(AcO)Zn・2HO]0.29gを含んだエチレングリコール130gを添加し、フラスコ内を200℃に保持し、減圧度を徐々に高めていき、1Torr以下の真空状態とした。さらに、内容物の温度を220℃まで上昇させ、エチレングリコールの留出が極端に減少した点を反応終点とした。この点を確認後、内容物を窒素ガスで加圧しながら、SUS製容器内で固化させることで、淡黄色の透明なガラス状固体である、難燃性有機リン化合物、すなわち下記化学式(6)で表される2-(9,10-ジヒドロ-9-オキサ-10-オキサイド-10-ホスファフェナントレン-10-イル)メチルコハク酸ビス-(2-ヒドロキシエチル)の脱エチレングリコール重縮合物を得た。 Subsequently, 130 g of ethylene glycol containing 0.33 g of antimony trioxide (Sb 2 O 3 ) and zinc acetate dihydrate [(AcO) 2 Zn · 2H 2 O] was added into the flask. The inside of the flask was maintained at 200 ° C., and the degree of vacuum was gradually increased to obtain a vacuum state of 1 Torr or less. Furthermore, the temperature of the content was raised to 220 ° C., and the point at which the distillation of ethylene glycol was extremely reduced was determined as the reaction end point. After confirming this point, the content is solidified in a SUS container while pressurizing with nitrogen gas, so that it is a light yellow transparent glassy solid, a flame retardant organophosphorus compound, that is, the following chemical formula (6) A deethylene glycol polycondensate of 2- (9,10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl) methylsuccinic acid bis- (2-hydroxyethyl) represented by the formula It was.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 上記操作を繰り返すことにより、後述する実施例および比較例で添加する2-(9,10-ジヒドロ-9-オキサ-10-オキサイド-10-ホスファフェナントレン-10-イル)メチルコハク酸ビス-(2-ヒドロキシエチル)の脱エチレングリコール重縮合物の必要量を確保した。 By repeating the above operation, 2- (9,10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl) methylsuccinic acid bis- (2 The required amount of deethylene glycol polycondensate of (hydroxyethyl) was ensured.
 最後に、前述の脱エチレングリコール重縮合物とポリエステルBを、35:65の比でベント付きの二軸押出機にてコンパウンドし、難燃ポリエステルを得た。この難燃ポリエステルのリン元素含有量は2.8重量%、IVは0.43dl/gであった。 Finally, the above-mentioned deethylene glycol polycondensate and polyester B were compounded in a twin screw extruder with a vent at a ratio of 35:65 to obtain a flame retardant polyester. The flame retardant polyester had a phosphorus element content of 2.8% by weight and an IV of 0.43 dl / g.
 実施例1~14:
 後記の表3に記載の割合で混合した原料を、270℃に設定した同方向二軸押出機に送り込んだ。このポリエステル樹脂をギヤポンプ、フィルターを介して、口金よりシート状に押出し、表面温度を30℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、実質的に非晶質なシートを得た。得られた非晶質シートを縦方向に85℃で3.0倍延伸した後、横方向に125℃で3.0倍延伸し、215℃で熱処理を施し、厚み15~250μmの二軸延伸ポリエステルフィルムを得た。いずれの例においても、得られたフィルムは、表3に示す通り、良好な難燃性を示し、なおかつ生産も安定していた。
Examples 1-14:
The raw materials mixed in the proportions described in Table 3 below were fed into the same direction twin screw extruder set at 270 ° C. This polyester resin is extruded through a gear pump and a filter from a base into a sheet shape, rapidly cooled and solidified using an electrostatic cooling method with a rotary cooling drum whose surface temperature is set to 30 ° C., and is substantially amorphous. A sheet was obtained. The obtained amorphous sheet was stretched 3.0 times at 85 ° C. in the longitudinal direction, then stretched 3.0 times at 125 ° C. in the transverse direction, heat treated at 215 ° C., and biaxially stretched with a thickness of 15 to 250 μm. A polyester film was obtained. In any example, as shown in Table 3, the obtained film exhibited good flame retardancy and was stable in production.
 比較例1~3:
 表3に記載の割合で混合した原料を、実施例と同様に加工して厚み15~250μmのポリエステルフィルムを得た。得られたフィルムは、表3に示す通り、生産性は良好であったが、難燃性が十分でなかった。
Comparative Examples 1 to 3:
The raw materials mixed in the proportions shown in Table 3 were processed in the same manner as in Examples to obtain a polyester film having a thickness of 15 to 250 μm. As shown in Table 3, the obtained film had good productivity, but flame retardancy was not sufficient.
 比較例4:
 表3に記載の割合で混合した原料を実施例と同様に押出機に投入したが、押出機にかかる負荷が大きすぎて押出困難で、フィルム製膜できなかった。
Comparative Example 4:
The raw materials mixed in the proportions shown in Table 3 were charged into the extruder in the same manner as in the examples. However, the load applied to the extruder was too large, making it difficult to extrude and film formation could not be performed.
 比較例5:
 表3に記載の割合で混合した原料を実施例と同様に加工して厚み50μmのポリエステルフィルムを得た。フィルムのIVが低すぎるため加工中に頻繁に破断が発生したうえ、得られたフィルムは表3に示す通り、高ヘーズのため外観不良であった。
Comparative Example 5:
The raw materials mixed in the proportions shown in Table 3 were processed in the same manner as in the Examples to obtain a polyester film having a thickness of 50 μm. Since the IV of the film was too low, breakage occurred frequently during processing, and as shown in Table 3, the obtained film had poor appearance due to high haze.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 実施例15:
 実施例6に記載の厚み50μmのポリエステルフィルムを基材として用いた自動調光フィルムを製造した。具体的な製造方法を以下に示す。
Example 15:
An automatic light control film using a polyester film having a thickness of 50 μm described in Example 6 as a substrate was produced. A specific manufacturing method is shown below.
 ≪調光材料の製造≫
 ポリエーテルウレタンエマルジョン(水不揮発分40質量%)100重量部に対して、ネマチック液晶(複屈折率Δn=0.132)64重量部を添加した。この混合物をホモジナイザー(日本精機製)にて回転数8000rpmで10分間攪拌し、液晶エマルジョンを得た。続いてポリプロピレングリコールジグリシジルエーテルをイオン交換水に溶解し、50%の水溶液を調製した。前述の液晶エマルジョンを低速で攪拌しながら、この水溶液を4.8重量部添加することで、調光材料を得た。
≪Manufacture of light control materials≫
64 parts by weight of a nematic liquid crystal (birefringence Δn = 0.132) was added to 100 parts by weight of a polyether urethane emulsion (water non-volatile content: 40% by mass). This mixture was stirred with a homogenizer (manufactured by Nippon Seiki Co., Ltd.) at a rotation speed of 8000 rpm for 10 minutes to obtain a liquid crystal emulsion. Subsequently, polypropylene glycol diglycidyl ether was dissolved in ion-exchanged water to prepare a 50% aqueous solution. While the above liquid crystal emulsion was stirred at a low speed, 4.8 parts by weight of this aqueous solution was added to obtain a light control material.
 ≪透明電極フィルムの製造≫
 実施例6のポリエステルフィルム上に、スパッタによりITO層を100nmの厚みで製膜し、パターニングを行った後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行うことで、透明電極フィルムを得た。
≪Manufacture of transparent electrode film≫
An ITO layer having a thickness of 100 nm was formed by sputtering on the polyester film of Example 6, patterned, and then ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. Thus, a transparent electrode film was obtained.
 ≪自動調光フィルムの製造≫
 前述の透明電極フィルムのITO層上に、ワイヤーバーを用いて前述の調光材料を塗布し、100℃下で10分間真空乾燥させた。乾燥後の調光材料層の厚みは、45μmであった。続いて、調光材料層の上から、ITO層が対向するようにもう1枚の透明電極フィルムを貼り合せることで、自動調光フィルムを得た。この自動調光フィルムは不透明であるが、厚み方向に100Vの電圧を印加することで透明性が向上し、自動調光フィルムとして正常に動作することが分かった。
≪Manufacture of automatic light control film≫
On the ITO layer of the above-mentioned transparent electrode film, the above-mentioned light control material was apply | coated using the wire bar, and was vacuum-dried at 100 degreeC for 10 minutes. The thickness of the light control material layer after drying was 45 μm. Subsequently, another transparent electrode film was bonded from above the light control material layer so that the ITO layer was opposed to obtain an automatic light control film. Although this automatic light control film is opaque, it was found that application of a voltage of 100 V in the thickness direction improves the transparency and operates normally as an automatic light control film.
本発明によれば、高い難燃性と透明性を両立させたポリエステルフィルムを提供することが可能である。本発明のポリエステルフィルムは透明感を要求される各種の用途に用いることが可能であり、その工業的価値は高い。 According to the present invention, it is possible to provide a polyester film having both high flame retardancy and transparency. The polyester film of the present invention can be used for various applications that require transparency, and its industrial value is high.
 1 クランプ
 2 テープ
 3 125mm標線
 4 バーナー
 5 コットン
1 Clamp 2 Tape 3 125mm Mark 4 Burner 5 Cotton

Claims (3)

  1.  下記化学式(1)で表される化合物を共重合成分として含み、リン元素含有量が0.2~3.3重量%であることを特徴とするポリエステルフィルム。
    Figure JPOXMLDOC01-appb-C000001
     
    A polyester film comprising a compound represented by the following chemical formula (1) as a copolymerization component and having a phosphorus element content of 0.2 to 3.3% by weight.
    Figure JPOXMLDOC01-appb-C000001
  2.  ヘーズが10%以下である請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the haze is 10% or less.
  3.  請求項1又は2に記載のポリエステルフィルムを基材とする調光フィルム。
     
    The light control film which uses the polyester film of Claim 1 or 2 as a base material.
PCT/JP2016/069073 2015-07-02 2016-06-28 Polyester film and light control film WO2017002780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680024889.4A CN107531986A (en) 2015-07-02 2016-06-28 Polyester film and light modulation film
JP2017526353A JPWO2017002780A1 (en) 2015-07-02 2016-06-28 Polyester film and light control film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-133160 2015-07-02
JP2015133160 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017002780A1 true WO2017002780A1 (en) 2017-01-05

Family

ID=57608784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069073 WO2017002780A1 (en) 2015-07-02 2016-06-28 Polyester film and light control film

Country Status (3)

Country Link
JP (1) JPWO2017002780A1 (en)
CN (1) CN107531986A (en)
WO (1) WO2017002780A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031870A (en) * 2016-08-24 2018-03-01 凸版印刷株式会社 Dimming film, dimming device and screen
JP2019116524A (en) * 2017-12-26 2019-07-18 三菱ケミカル株式会社 Polyester film
JP2022044836A (en) * 2017-12-26 2022-03-17 三菱ケミカル株式会社 Method for producing polyester film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478754A (en) * 1977-12-06 1979-06-23 Teijin Ltd Flame-retardant polyester composition
JPH08127918A (en) * 1994-09-05 1996-05-21 Kanebo Ltd Highly flame-resistant polyester fiber
JP2004198883A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Light controlling element
JP2013177614A (en) * 2007-07-16 2013-09-09 Frx Polymers Inc Flame-retardant engineering polymer composition
WO2014005136A1 (en) * 2012-06-29 2014-01-03 Frx Polymers, Inc. Polyester co-phosphonates
JP2014139317A (en) * 2007-07-30 2014-07-31 Frx Polymers Inc Insoluble branched polyphosphonate and method related thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478754A (en) * 1977-12-06 1979-06-23 Teijin Ltd Flame-retardant polyester composition
JPH08127918A (en) * 1994-09-05 1996-05-21 Kanebo Ltd Highly flame-resistant polyester fiber
JP2004198883A (en) * 2002-12-20 2004-07-15 Fuji Xerox Co Ltd Light controlling element
JP2013177614A (en) * 2007-07-16 2013-09-09 Frx Polymers Inc Flame-retardant engineering polymer composition
JP2014139317A (en) * 2007-07-30 2014-07-31 Frx Polymers Inc Insoluble branched polyphosphonate and method related thereto
WO2014005136A1 (en) * 2012-06-29 2014-01-03 Frx Polymers, Inc. Polyester co-phosphonates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031870A (en) * 2016-08-24 2018-03-01 凸版印刷株式会社 Dimming film, dimming device and screen
JP2019116524A (en) * 2017-12-26 2019-07-18 三菱ケミカル株式会社 Polyester film
JP2022044836A (en) * 2017-12-26 2022-03-17 三菱ケミカル株式会社 Method for producing polyester film
JP7167438B2 (en) 2017-12-26 2022-11-09 三菱ケミカル株式会社 Uniaxially or biaxially oriented polyester film
JP7327537B2 (en) 2017-12-26 2023-08-16 三菱ケミカル株式会社 Method for producing polyester film

Also Published As

Publication number Publication date
CN107531986A (en) 2018-01-02
JPWO2017002780A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
TWI475069B (en) Biaxially oriented polyester film for solar cells
US9213126B2 (en) Polyester resin composition and polyester film using the same
CN109476864B (en) Polyester multilayer film
WO2014076971A1 (en) Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition
CN109789691B (en) Laminated polyester film
JP2012184399A (en) Polyester film
WO2017002780A1 (en) Polyester film and light control film
JP6926477B2 (en) Transparent flame-retardant polyester film and dimming film
JP2014084383A (en) Fire resistance white polyester film
JP7327537B2 (en) Method for producing polyester film
JP4951158B2 (en) Laminated polyester film
JP7167438B2 (en) Uniaxially or biaxially oriented polyester film
JP2015203034A (en) flame-retardant polyester film
JP7114895B2 (en) polyethylene terephthalate film
JP5876754B2 (en) Polyester film
JP2016216659A (en) Flame-retardant polyester film
JP2013041897A (en) Polyester film for solar cell rear face protection material
JP2007154001A (en) Optical laminated polyester film
JP6066687B2 (en) Polyester film
JP6492870B2 (en) Flame retardant polyester film
JP5973851B2 (en) Black polyester film with flame retardancy
JP2015151477A (en) white flame-retardant polyester film
JP2014185247A (en) Flame-retardant black polyester film
JP7020042B2 (en) Laminated polyester film
JP6481325B2 (en) White flame retardant polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817888

Country of ref document: EP

Kind code of ref document: A1