WO2013172288A1 - 管路内浄化装置、及び、管路内浄化装置の接続構造 - Google Patents

管路内浄化装置、及び、管路内浄化装置の接続構造 Download PDF

Info

Publication number
WO2013172288A1
WO2013172288A1 PCT/JP2013/063256 JP2013063256W WO2013172288A1 WO 2013172288 A1 WO2013172288 A1 WO 2013172288A1 JP 2013063256 W JP2013063256 W JP 2013063256W WO 2013172288 A1 WO2013172288 A1 WO 2013172288A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
purification apparatus
water
purification
carrier
Prior art date
Application number
PCT/JP2013/063256
Other languages
English (en)
French (fr)
Inventor
善治 松原
松坂 勝雄
秀之 那須
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP13791331.5A priority Critical patent/EP2905387A4/en
Priority to JP2014515609A priority patent/JP6078534B2/ja
Priority to AU2013261454A priority patent/AU2013261454A1/en
Priority to KR1020147030977A priority patent/KR20150018781A/ko
Priority to CN201380024856.6A priority patent/CN104285019B/zh
Priority to SG11201407550PA priority patent/SG11201407550PA/en
Publication of WO2013172288A1 publication Critical patent/WO2013172288A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/02Arrangement of sewer pipe-lines or pipe-line systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/14Devices for separating liquid or solid substances from sewage, e.g. sand or sludge traps, rakes or grates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/08Treatment of wastewater in the sewer, e.g. to reduce grease, odour
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/04Pipes or fittings specially adapted to sewers
    • E03F3/043Partitioned to allow more than one medium to flow through
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an in-pipe purification apparatus capable of purifying sewage at low cost and with high efficiency. Further, the present invention relates to a connection structure of the in-pipe purification apparatus capable of achieving both excellent flow-down performance and excellent purification performance.
  • Patent Document 1 discloses a sewage purification apparatus for pipelines, in which sewage is brought into contact with useful microorganisms by providing a film of a ceramic material containing useful microorganisms on the inner surface of the pipeline, to purify sewage.
  • the fixed bed is immersed in sewage by having a water-permeable fixed bed capable of establishing microorganisms and an oxygen supplying means for supplying oxygen into the fixed bed in the pipeline.
  • the contact area with the microorganisms is not sufficient yet, and the purification time is low because the contact time between the microorganisms and the sewage is short.
  • the purifier for pipelines needs to sufficiently ensure the flow-down performance of the sewage and to prevent the damage due to the stress generated at the time of burial etc.
  • An object of the present invention is to provide an in-pipe purification apparatus capable of purifying sewage at low cost and with high efficiency. Another object of the present invention is to provide a connection structure of an in-pipe purification apparatus capable of achieving both excellent flow-down performance and excellent purification performance.
  • the present invention secures a water flow rate, a pipe line having a flow rate securing unit having water permeability, and a water purification unit located below the flow rate securing unit and purifying water supplied from the flow rate securing unit. It is an internal purification device.
  • the present invention will be described in detail below.
  • the inventors of the present invention have found that according to the in-pipe purification apparatus of the above-described structure, the waste water can be purified at low cost and with high efficiency, and the present invention has been completed.
  • the in-pipe purification apparatus secures a water flow rate, is located at a flow rate securing unit having water permeability, and at a lower portion of the flow rate securing unit, and purifies water supplied from the flow rate securing unit.
  • a flow rate securing unit having water permeability and at a lower portion of the flow rate securing unit, and purifies water supplied from the flow rate securing unit.
  • Examples of means for providing water permeability to the flow rate securing unit include a method of providing an opening in the flow rate securing unit, and the like.
  • the ratio of the opening to the surface area of the flow rate securing unit is not particularly limited, but a preferable lower limit is 5% and a preferable upper limit is 80%. If the ratio occupied by the opening is less than 5%, the amount of dirty water supplied between the flow rate securing unit and the water purification unit may be insufficient. If the ratio occupied by the opening exceeds 80%, the strength necessary for the flow rate securing unit may not be obtained.
  • the size of the air gap of the opening portion of the flow rate securing unit is not particularly limited, but a preferable lower limit is 1 mm 2 and a preferable upper limit is 3000 mm 2 . If the size of the gap is less than 1 mm 2 , sufficient permeability may not be expressed, and the amount of dirty water supplied between the flow rate securing unit and the water purification unit may be insufficient. When the size of the void exceeds 3000 mm 2 , a microbial carrier described later may flow out to the flow rate securing unit.
  • an in-pipe purification apparatus for example, it has a double pipe structure comprising an outer pipe and an inner pipe having water permeability, and the inner pipe is a flow rate securing unit, and the outer pipe and the inner pipe
  • the in-pipe purification device (hereinafter, also referred to as the in-pipe purification device having a double pipe structure) in which the gap between the two is a water purification unit, or the permeable partition that divides the inside of the pipe into an upper section and a lower section
  • the in-pipe purification apparatus hereinafter, also referred to as an in-pipe purification apparatus having a partition) or the like in which the upper section is a flow rate securing section and the lower section is a water purification section.
  • the pipeline means a tube for transporting a fluid or the like, and not only a conduit having a closed cross section but also an open gutter (a water channel without lid or a structure with which the lid can be easily removed), It shall include culverts (waterways buried underground).
  • the above-mentioned inner pipe has a role as a flow path after the sewage is supplied in the pipe and a role for supplying the sewage between the inner pipe and the outer pipe.
  • the waste water supplied from the inner pipe is allowed to flow down while purifying between the inner pipe and the outer pipe.
  • the material constituting the inner pipe is not particularly limited as long as it can be used as a sewage pipe, for example, resins such as polyethylene and vinyl chloride, metals such as fiber reinforced plastics, steel and ductile cast iron And reinforced concrete (fumed pipe).
  • the cross-sectional shape of the inner pipe in the pipe radial direction is not particularly limited as long as it can be used as a sewage pipe, and for example, a pipe having a rectangular, circular or oval cross-section is mentioned. Is preferred.
  • the conduit diameter of the inner pipe is not particularly limited, but a preferable lower limit is 100 mm and a preferable upper limit is 3000 mm. If the pipe diameter of the inner pipe is less than 100 mm, the solid matter in the sewage may make it impossible to transfer the sewage.
  • pipeline diameter means the diameter of the circumscribed circle of the inner cross section of a pipeline.
  • the inner pipe is permeable to water.
  • means for imparting water permeability to the inner pipe include a method of providing an opening in the inner pipe, and the like.
  • the material constituting the outer pipe is not particularly limited as long as it can be used as a sewage pipe line, for example, resins such as polyethylene and vinyl chloride, metals such as fiber reinforced plastics, steel and ductile cast iron And reinforced concrete (fumed pipe).
  • the cross-sectional shape of the outer pipe in the pipe radial direction is not particularly limited as long as it can be used as a sewage pipe, for example, rectangular, circular, oval, etc. It is preferable to be circular because stress concentration due to In the case where the outer pipe is not embedded, the outer pipe may be a grooved pipe whose upper portion is continuously opened in the axial direction of the pipe.
  • the pipe diameter of the outer pipe is not particularly limited, but a preferable lower limit is 120% of the pipe diameter of the inner pipe, and a preferable upper limit is 300% of the pipe diameter of the inner pipe.
  • a preferable lower limit is 120% of the pipe diameter of the inner pipe
  • a preferable upper limit is 300% of the pipe diameter of the inner pipe.
  • the inner pipe is preferably installed on a pedestal installed in the outer pipe.
  • the present inventors set up a rack on the outer pipe and install the inner pipe on the rack so that the flow performance is excellent and the stress generated at the time of burial etc. It has been found that it is possible to obtain an in-pipe purification device which can prevent damage.
  • the same material as the above-mentioned inner pipe or the above-mentioned outer pipe can be used.
  • a shape of the said mount frame the shape which has a plate shape, a support part and a leg part, a half tube etc. are mentioned, for example. Among them, the plate shape is preferable because of easy processing.
  • mounts installed in the outer pipe is not particularly limited, it is preferable to install at least one mount near each end of the outer pipe.
  • the gantry is preferably fixed to the outer pipe.
  • the inner pipe can be stably installed.
  • welding, adhesion using an adhesive, adhesion using an adhesive putty, etc. may be mentioned.
  • the gantry is preferably fixed to the inner pipe.
  • the pedestal By fixing the pedestal to the inner pipe, it is possible to prevent the inner pipe and the pedestal from being displaced or the inner pipe from being detached from the pedestal.
  • the above-mentioned mount to the above-mentioned inner pipe the same method as the method of fixing to the above-mentioned outer pipe can be used.
  • the contact position between the mount and the inner pipe be lower than the center of the inner pipe. If the contact point between the above-mentioned mount and the above-mentioned inner pipe is at a height higher than the center of the inner pipe, the work of installing the inner pipe inside the outer pipe becomes difficult and And, the outer tube may generate a large stress.
  • the in-pipe purification apparatus having a double pipe structure is provided between the upper part of the inner pipe and the upper part of the outer pipe. It is preferred to have a gap.
  • the upper section in the pipe divided by the partition has a role as a flow path after the sewage is supplied in the pipe and a role of supplying the sewage to the lower section.
  • the lower section in the pipeline has the role of purifying and flowing down the sewage supplied from the upper section.
  • the pipe serving as the outer wall of the pipe in the pipe inner purification apparatus having the above partition is also referred to as an outer pipe.
  • metal such as resin, such as polyethylene and a vinyl chloride, fiber reinforced plastics, steel, ductile cast iron, reinforced concrete etc. are mentioned, for example.
  • the shape of the partition is such that the height of the part in contact with the outer pipe is higher than the height of the part separated from the outer pipe, that is, the central part, because the upper section is excellent in flow-down performance. Is preferred.
  • water permeability is assumed in the vicinity of the part in contact with the outer pipe, and the central part does not have water permeability.
  • the microorganism carrier can efficiently repeat immersion with sewage and exposure with air according to the water level in the pipeline.
  • Examples of means for imparting water permeability to the partition include a method of providing an opening in the partition, and the like.
  • the size of the void of the opening of the partition is not particularly limited, the preferable lower limit is 1 mm 2 , and the preferable upper limit is 3000 mm 2 . If the size of the void is less than 1 mm 2 , sufficient permeability may not be obtained, and the amount of sewage supplied to the lower section may be insufficient. When the size of the void exceeds 3000 mm 2 , solid matter in the sewage supplied to the lower compartment may cause clogging of the microbial carrier or the microbial carrier may flow out into the upper compartment.
  • the partition can be installed on the outer pipe by a known method according to the material to be used, application, etc., such as fitting, welding, adhesion using an adhesive, and the like.
  • Examples of the method for purifying dirty water in the water purification unit include a method using an aeration apparatus and a method using microorganisms. Among them, a method using a microorganism is preferable because sewage can be purified without using power, and the in-pipe purification apparatus of the present invention is more preferably that the water purification unit is filled with a microorganism carrier. preferable. By filling the water purification unit with the microorganism carrier, it becomes possible to hold a large amount of microorganisms while preventing the outflow of the microorganism carrier, and a high BOD (Biochemical Oxygen Demand) removal amount can be obtained.
  • BOD Biochemical Oxygen Demand
  • microbe carrier means a granular or small particle material used to attach aerobic microorganisms, anaerobic microorganisms etc., and after about 1 to 4 weeks have passed since the start of sewage flow, aerobic microorganisms or Anaerobic microbes naturally adhere to the microbe carrier and grow.
  • the material which comprises the said microbial support is not specifically limited, For example, resin, such as polyethylene, a polypropylene, a polyurethane, ceramics, etc. are mentioned. Since water permeability is required for the microorganism carrier, in the case of a hydrophobic material such as polyethylene and polypropylene, it is preferable that a hydrophilization treatment is performed. It is preferable to use a fibrous body, a foam, a porous body, a net-like body, etc. which have a large specific surface area and are hard to clog because the above-mentioned microorganism carrier needs to contact oxygen and microorganisms efficiently. . When a foam is used as the microorganism carrier, it is preferable to use an open-cell-type foam rather than a closed-cell-type foam, since it is preferable that dirty water permeates to the inside of the microorganism-carrier.
  • resin such as polyethylene, a polypropylene, a polyurethane, ceramic
  • the shape of the above-mentioned microorganism carrier is not particularly limited, and examples thereof include a spherical shape, a rectangular solid shape, a cubic shape, a sheet shape, a fibrous shape, and a net shape. Also, in order to prevent the outflow of the microorganism carrier and to immobilize the inner tube, the above-mentioned microorganism carrier may be enclosed in a container having high water permeability, such as a mesh or a perforated tube (carrier holding tube described later). Good.
  • the volume of the above-mentioned microorganism carrier is preferably 25 mm 3 or more. If the volume per unit is less than 25 mm 3 , the microbial carrier may flow out with the sewage.
  • the said microbial support is a fibrous body or a foam
  • the porosity is preferably more than 50%, and more preferably more than 80%.
  • the “porosity” means the ratio of the clearance per unit volume represented by 100 percent.
  • the in-pipe purification apparatus has its height and filling rate adjusted so that the above-mentioned microorganism carrier can repeat immersion and exposure with air to a suitable degree. Is preferred.
  • a preferable lower limit of the height at which the microorganism carrier is filled is 20% of the pipe diameter of the outer pipe. If the height at which the microorganism carrier is filled is less than 20% of the pipe diameter of the outer pipe, high purification performance may not be obtained.
  • the packing ratio of the microorganism carrier is defined by the ratio of the volume of the microorganism carrier to the volume surrounded by the outer tube and the inner tube, and the preferable lower limit is 10%, and the preferable upper limit is 100%. If the filling rate is less than 10%, high purification performance may not be obtained.
  • the microorganism carrier is preferably fixed to the water purification unit by a carrier holding material having water permeability.
  • a carrier holding material having water permeability examples include polyethylene and polypropylene.
  • the carrier holding material is a tubular carrier holding tube, and preferably has a function of adjusting and holding the volume of the water purification unit.
  • the cross-sectional shape in the pipe radial direction of the carrier holding tube may be rectangular or circular, but is preferably circular.
  • the preferred lower limit of the channel diameter of the carrier holding tube is twice the size of the microorganism carrier, and the preferred upper limit of the tubular diameter of the carrier holding tube is 30 times the size of the microbial carrier.
  • the channel diameter of the carrier holding tube is less than twice the size of the microorganism carrier, it may be difficult to fill the carrier carrier with the microorganism carrier. If the channel diameter of the carrier holding tube exceeds 30 times the size of the microorganism carrier, the space between the carrier holding tubes may be too wide, and the sewage may pass through the microorganism carrier without passing through it.
  • the carrier holding tube has water permeability.
  • means for imparting water permeability to the carrier holding tube include a method of providing an opening in the carrier holding tube, and the like.
  • the ratio of the opening to the surface area of the carrier holding tube is not particularly limited, but a preferable lower limit is 20% and a preferable upper limit is 95%. When the proportion of the opening is less than 20%, the amount of waste water supplied to the microorganism carrier may be insufficient. If the proportion of the opening exceeds 95%, the carrier holding pipe may be inferior in strength.
  • the size of the void in the opening of the carrier holding tube is not particularly limited, but a preferred lower limit is 5 mm 2 and a preferred upper limit is 400 mm 2 . If the size of the gap is less than 5 mm 2 , the inflow of sewage into the carrier holding pipe may be insufficient. When the size of the void exceeds 400 mm 2 , the microorganism carrier may flow out of the carrier holding tube.
  • the purification apparatus in a pipe according to the present invention has a plurality of carrier holding materials and have a gap serving as a flow path between the respective carrier holding materials.
  • a gap serving as a flow path between each carrier holding material.
  • the in-pipe purification apparatus of the present invention has a bottom continuous gap formed continuously along the axial direction of the pipe which is a flow path at the bottom.
  • a bottom continuous gap which is a continuous flow path along the tube axis direction between the bottom of the outer pipe and the mount. It is preferable to have The flow performance in the water purification section can be sufficiently ensured, and maintenance work such as cleaning in the pipe can be easily performed, so the cross-sectional area in the pipe radial direction of the bottom continuous gap is 7 cm 2 or more Is preferred.
  • the bottom continuous gap there is a method of providing a permeable partition which divides the microorganism carrier between the outer tube and the inner tube so that the upper continuous gap and the bottom continuous gap are substantially lower,
  • the method of installing the bottom continuous gap holding material which has the water permeability which divides a microbial support
  • the bottom continuous gap holding material has the same water permeability as the carrier holding material, and thus the carrier support may be used as the bottom continuous gap holding material without enclosing the microorganism carrier.
  • the upstream in-pipe purification apparatus A and the downstream in-pipe purification apparatus B are connected via a human hole having a water channel.
  • the in-pipe purification apparatus A and the in-pipe purification apparatus A are configured such that water flowing through the water purification unit of the in-pipe purification apparatus A flows into the flow rate securing unit of the in-pipe purification apparatus B in the human hole.
  • the connection structure of the in-pipe purification apparatus to which the in-pipe purification apparatus B is connected is also one of the present invention.
  • the water supplied from the flow rate securing unit and purified by the water purification unit flows through the water purification unit as it is.
  • connection structure of the in-pipe purification apparatus of the present invention has a structure in which the in-pipe purification apparatus A on the upstream side and the in-pipe purification apparatus B on the downstream side are connected via a human hole having a water channel.
  • the water flowing through the water purifier of the in-pipe purification apparatus A flows into the flow rate securing section of the in-pipe purification apparatus B in the human hole.
  • the in-pipe purification apparatus A and the in-pipe purification apparatus B are connected to each other.
  • the water supplied from the flow rate securing portion of the in-pipe purification apparatus A to the water purification section by such a human hole and flowing through the water purification section of the in-pipe purification apparatus A as it is is the in-pipe purification apparatus B It will be supplied to the flow rate securing part, and the excellent purification performance can be exhibited without lowering the flow down performance.
  • the entire amount of water flowing through the water purification unit of the in-pipe purification device A is supplied to the flow rate securing unit of the in-pipe purification device B, but at least in the pipe to secure the flow down performance.
  • at least 50% or more of the water flowing through the water purification unit of the purification device A is supplied to the flow rate securing unit of the in-pipe purification device B.
  • the same human hole as the well-known human hole used for the connection of the sewage pipe can be used except for the connection portion between the in-pipe purification apparatus A and the in-pipe purification apparatus B.
  • the water connected to the human hole may be connected there is a method of providing a difference between the heights of the in-pipe purification apparatus A and the in-pipe purification apparatus B, a method of using an apparatus such as a pump, and the like. Among them, since power is not required, it is preferable to provide a difference in height between the in-pipe purification apparatus A and the in-pipe purification apparatus B.
  • the in-pipe purification apparatus A and the in-pipe purification apparatus B As a method of providing a difference in height between the in-pipe purification apparatus A and the in-pipe purification apparatus B, for example, the height below the water purification unit of the in-pipe purification apparatus A in the human hole, And the method etc. of providing the water channel which becomes the height more than the flow volume ensuring part of the said purification apparatus B in a pipe line etc. are mentioned. It is preferable that the water channel of the above-mentioned manhole is connected to the in-pipe purification apparatus at the same height as the water purification part of the in-pipe purification apparatus A and the flow rate securing part of the in-pipe purification apparatus B.
  • the in-pipe purification apparatus which can purify
  • FIG. 6 is a cross-sectional view of a carrier holding pipe in a pipe radial direction.
  • FIG. 1 is a sectional view in the pipe radial direction showing an example of the in-pipe purification apparatus of the present invention.
  • the in-pipe purification apparatus of the present invention has a double pipe structure of an outer pipe 1 and an inner pipe 3 having an opening 4 as shown in FIG. It is configured by being filled with the microorganism carrier 5.
  • the inner pipe 3 is provided with water permeability by providing the opening 4.
  • the inner pipe 3 having such water permeability inside the outer pipe most of the solids in the sewage which are difficult to be decomposed by microorganisms are transported by the inner pipe 3, and the sewage which is easily decomposed by the microorganisms is Since it is supplied between the inner pipe 3 having the carrier 5 and the outer pipe 1, the sewage purification process can be stably performed.
  • the immersion of the microorganism carrier 5 with the sewage and the exposure with air are repeated depending on the water level in the pipe due to the passage of time.
  • the inner pipe 3 is disposed at the central portion of the outer pipe 1, and the microorganism carrier 5 is filled to the height of the pipe diameter 1/2 of the outer pipe 1.
  • the water level of the inner pipe 3 is the water surface 2 (FIG. 1 (a))
  • the water level of the outer pipe 1 is slightly lower than the water level of the inner pipe 3.
  • the amount of water flowing to the inner pipe 3 decreases and the water level of the inner pipe 3 becomes the water surface 6 of the inner pipe (Fig.
  • the sewage hardly penetrates the outer pipe 1, and the water level of the outer pipe 1 is It falls to the water surface 7 of the outer tube 1.
  • the microorganism carrier 5 can be in contact with air. Since the water level of the outer tube 1 repeats up and down with the passage of time, the microorganism carrier 5 can also be exposed to air at intervals according to this, and oxygen necessary for aerobic decomposition by aerobic microorganisms can be supplied.
  • anaerobic microorganisms can be proliferated and the sewage can be anaerobically decomposed.
  • the in-pipe purification apparatus of the present invention may have the arrangement of the outer pipe 1 and the inner pipe 3 changed as shown in FIG. 2 and FIG.
  • the arrangement of the outer tube 1 and the inner tube 3 is changed as shown in FIG. 2
  • the time during which the microorganism carrier 5 is in contact with air is extended, but the filling amount is reduced.
  • the arrangement of the outer tube 1 and the inner tube 3 is changed as shown in FIG. 3, the loading amount of the microorganism carrier 5 increases, but the time during which the microorganism carrier 5 is immersed in the sewage is become longer.
  • the arrangement of the outer pipe 1 and the inner pipe 3 it is possible to perform the treatment corresponding to the flow rate and the property of the sewage.
  • FIG. 4 is a pipe radial direction sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • the in-pipe purification apparatus of the present invention is preferably provided with a carrier holding pipe 8.
  • the carrier holding pipe 8 has a sufficient strength to support the weight of the inner pipe 3 and is provided with an opening so that the sewage can easily penetrate from the outer periphery.
  • the microbe carrier 5 By filling the microbe carrier 5 with a small load resistance and a large specific surface area inside the carrier holding tube 8, the microbe carrier 5 itself is loaded with a load by the inner pipe 3 and functions to prevent the microbe carrier 5 from being consolidated.
  • the carrier holding tube 8 is less likely to be clogged by solids and the like in the sewage as compared with the case where the microorganism carrier 5 is filled as it is.
  • FIG. 5 is a cross-sectional view of the carrier holding pipe in the pipe radial direction.
  • a carrier holding tube 8 filled with a microbial carrier 5 is shown inside.
  • the carrier holding tube 8 is provided with water permeability by providing the opening 10.
  • FIG. 6 is a pipe radial direction sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • the bottom portion of the outer pipe 1 is provided with a permeable bottom portion continuous gap retaining member 11 which divides the space between the outer pipe 1 and the inner pipe 3 up and down.
  • the bottom continuous gap 12 formed between the bottom continuous gap retainer 11 provided at the bottom of the outer tube 1 and the bottom of the outer tube 1 becomes a flow path.
  • FIG. 7 is a pipe radial direction sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • the in-pipe purification apparatus of the present invention has a structure in which the outer pipe 1 is divided by a partition 13 into an upper section 15 and a lower section 16.
  • the partition 13 is provided with water permeability by providing the opening 14. By having the partition 13 having such water permeability, much of the solid matter in the sewage is transported by the upper section 15, and the sewage having a low solid content ratio is supplied to the lower section 16, so that it is stable. Sewage can be purified.
  • FIG. 8 is a sectional view in the radial direction of a pipe showing another example of the purification apparatus in a pipe according to the present invention, where (a) is the amount of water in the pipe, and (b) is the amount of water in the pipe In each case, there are few cases.
  • FIG. 8 when the sewage is cleaned by filling the lower compartment 16 with the microorganism carrier 5, as described above, most of the solid substances which are difficult to be decomposed by the microorganisms are transferred by the upper compartment 15, and the solid A stable purification performance can be obtained by supplying the lower section 16 with waste water which has a low content ratio of substances and is easily decomposed by microorganisms.
  • the immersion of the microorganism carrier 5 with the sewage and the exposure with air are repeated depending on the water level in the pipe due to the passage of time.
  • the height of the part in contact with the outer pipe 1 of the partition 13 is higher than the height of the part separated from the outer pipe 1, that is, the central part, and the flow performance of the upper section 15 is excellent.
  • the partition 13 has an opening in the vicinity of the portion in contact with the outer pipe 1 and the central portion does not have an opening, and the microbial carrier 5 is contaminated with sewage depending on the water level in the pipe. Immersion and exposure to air can be repeated efficiently.
  • FIG. 9 is a radial cross-sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • the in-pipe purification apparatus of FIG. 9 since the height of the partition 13 is constant, the flow performance and the purification performance by microorganisms are inferior to those in the in-pipe purification apparatus of FIG.
  • FIG. 10 is a pipe radial direction sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • the microorganism carrier 5 is fixed by the carrier holding pipe 8.
  • the carrier holding tube 8 is disposed so as to form a gap 9 which becomes a flow path between the carrier holding tubes 8, and when the gap 9 becomes a flow path, the microbial carrier 5 is filled as it is As compared with (FIG. 8), clogging due to solids and the like in sewage becomes less likely to occur.
  • FIG. 11 is a pipe radial direction sectional view showing another example of the in-pipe purification apparatus of the present invention.
  • a permeable bottom continuous gap retaining material 11 is provided to further divide the lower section 16 up and down.
  • the bottom continuous gap 12 formed between the bottom continuous gap holding member 11 provided in the lower section 16 and the bottom of the outer pipe 1 becomes a flow path, as compared with the in-pipe purification apparatus of FIG.
  • the flow-down performance of the lower section 16 can be sufficiently secured.
  • FIG. 12 is a pipe radial direction sectional view showing an example of a conventional in-pipe purification apparatus.
  • the in-pipe purification apparatus shown in FIG. 12 does not have an inner pipe or partition, and has a microbial membrane 19 on the inner surface of the outer pipe 1.
  • a pipe line using a microbial carrier as shown in FIG. 1 and an in-pipe purification apparatus using a microbial carrier as shown in FIG.
  • the surface area, the BOD loading amount, and the BOD removal amount are shown in Table 1, Table 2, and Table 3, respectively.
  • the outer pipe is used when the microbial membrane adheres to half of the inner surface of the pipe having a 350 mm pipe diameter.
  • the microbial membrane surface area per 1 m is 0.55 m 2 / m.
  • an outer pipe with a pipe diameter of 350 mm and an inner pipe with a pipe diameter of 200 mm were used.
  • the surface area of the carrier per 1 m of the pipe axial direction of the outer pipe is 96 m 2 / m.
  • carrier with a large specific surface area, compared with the case where the biofilm of the pipe inner surface is used, 100 times or more of surface area can be hold
  • Table 3 in the in-pipe purification apparatus using a microorganism carrier as shown in FIG. 8, the inside of the pipe of the outer pipe having a pipe diameter of 350 mm is divided into upper and lower sections by partitions.
  • the amount of BOD removed per 1 m in the axial direction is estimated to be 2.5 g / m ⁇ d.
  • the BOD volume loading of the microorganism carrier is 1 kg / m 3 ⁇ d and the BOD removal rate is 90%
  • sponge-like carriers as shown in FIGS. 1 and 8 were used.
  • the amount of BOD removed per day per 1 m in the pipe axial direction of the in-pipe purification apparatus is estimated to be 29 g / m ⁇ d.
  • FIG. 13 is (a) a perspective view and (b) a pipe radial direction sectional view showing an example of a method of installing a gantry in the in-pipe purification apparatus of the present invention.
  • a plate-like mount 20 having a notch formed along the bottom of the inner pipe 3 is installed on the outer pipe 1, and the inner pipe 3 is installed on the mount 20. It is done. Between the plate-like mount 20 and the bottom of the outer tube 1, a bottom continuous gap 12 is formed which is a continuous flow path along the tube axis direction, and between the outer tube 1 and the inner tube 3. Sewage drainage performance is secured.
  • FIG. 14 is (a) perspective view which shows another example of the installation method of the mount frame in the purification apparatus in a pipe line of this invention, and (b) pipe radial direction sectional drawing.
  • a gantry 20 having a support and a leg shaped along the bottom of the inner pipe 3 is installed on the outer pipe 1, and the inner pipe 3 is installed on the gantry 20.
  • the gantry 20 is installed in order to stably install the inner pipe 3 and to prevent the inner pipe 3 and the gantry 20 from being shifted or the inner tube 3 being detached from the gantry 20.
  • a bottom continuous gap 12 which is a continuous flow path along the axial direction of the pipe is formed between the pedestal 20 and the bottom of the outer pipe 1, and the flow of sewage between the outer pipe 1 and the inner pipe 3 Performance is secured.
  • FIG. 15 is (a) perspective view which shows another example of the installation method of the mount frame in the purification apparatus in a pipe line of this invention, and (b) pipe radial direction sectional drawing.
  • a mount 20 formed by connecting three half pipes is installed on the outer pipe 1
  • the inner pipe 3 is installed on the mount 20.
  • the inner pipe 3 is supported at three points by the three half pipes of the gantry 20.
  • a bottom continuous gap 12 is formed by the half tubes, which is a continuous flow path along the axial direction of the tube, and the outer tube 1 and the inner tube 3 Sewage flow performance between the two is secured.
  • the contact position of the gantry 20 with the inner pipe is at the lower side than the center of the inner pipe 3, and therefore no adhesive force is necessary to support the weight of the inner pipe. Also, the work of installing the inner pipe inside the outer pipe becomes easy. Further, a gap is formed between the upper portion of the inner pipe 3 and the upper portion of the outer pipe 1. For this reason, it is possible to prevent a defect such as a crack or a crack due to stress concentration in the earth pressure or the like at the time of burial.
  • the in-pipe purification apparatus shown in FIGS. 13 to 15 has a wide gap between the bottom of the outer tube 1 and the inner tube 3 so that the gap can be filled with a large amount of microbial carriers.
  • FIG. 16 is a sectional view in the axial direction of the conduit showing an example of the connection structure of the in-pipe purification device of the present invention
  • FIG. 17 is a perspective view showing an example of the connection structure of the in-pipe purification device of the present invention is there.
  • the connection structure of the in-pipe purification apparatus according to the present invention as shown in FIGS. 16 and 17, has the water channel 301 in the upstream in-pipe purification apparatus A100 and the downstream in-pipe purification apparatus B200. It has a structure connected via a human hole 300.
  • the in-pipe purification apparatus A 100 and the in-pipe purification apparatus B 200 connected by the connection structure of the in-pipe purification apparatus in FIGS. 16 and 17 are respectively formed by the outer pipe 101 and the inner pipe 102, and the outer pipe 201 and the inner pipe 202. It has a double tube structure.
  • the insides of the inner pipes 102 and 202 become flow rate securing sections 103 and 203, respectively, and the gap between the outer pipe 101 and the inner pipe 102
  • the gaps between the pipe 21 and the inner pipe 22 become the water purifiers 104 and 204, respectively.
  • FIG. 18 is a pipe axial direction sectional view showing another example of the connection structure of the in-pipe purification apparatus of the present invention.
  • the outer pipes 101 and 201 are divided into upper and lower sections by partitions 105 and 205, respectively. It has a divided structure.
  • the upper sections are flow rate securing sections 103 and 203, and the lower sections are water purification sections 104 and 204, respectively.
  • the partitions 105 and 205 are provided with water permeability by providing an opening and the like.
  • the partitions 105 and 205 having such water permeability, most of the solid matter in the water is transferred by the flow rate securing unit 103 and 203, and water having a small content ratio of solid matter is supplied to the water purification unit 104 and 204. Since the purifiers A100 and B200 shown in FIG. 18 are supplied, the water purifiers 104 and 204 stably receive water as in the purifiers A100 and B200 shown in FIGS. Can be cleaned up.
  • the in-pipe purification apparatus A 100 and the in-pipe purification apparatus B 200 in FIGS. 16 and 17 have a wide gap between the bottom of the outer pipe 101 and the inner pipe 102 and between the bottom of the outer pipe 201 and the inner pipe 202. Therefore, a large amount of microbial carriers can be filled as the water purifiers 104 and 204, respectively.
  • the bottom of the outer pipe 101 of the upstream in-pipe purification apparatus A100 and the bottom of the inner pipe 202 of the downstream in-pipe purification apparatus B200 are It is connected by the water channel 301 of the human hole 300.
  • the water once supplied from the flow rate securing unit 103 of the in-pipe purification apparatus A 100 to the water purification section 104 passes through the water channel 301 of the human hole 300 and the flow rate of the in-pipe purification apparatus B 200 As it is supplied to the securing unit 203, excellent purification performance can be exhibited without lowering the flow-down performance.
  • the in-pipe purification apparatus which can purify

Abstract

本発明は、安価かつ高効率で汚水を浄化することができる管路内浄化装置を提供することを目的とする。また、本発明は、優れた流下性能と優れた浄化性能とを両立させることができる管路内浄化装置の接続構造を提供することを目的とする。 本発明は、水流量を確保し、透水性を有する流量確保部と、前記流量確保部の下部に位置し、前記流量確保部から供給された水の浄化を行う水浄化部とを有する管路内浄化装置である。

Description

管路内浄化装置、及び、管路内浄化装置の接続構造
本発明は、安価かつ高効率で汚水を浄化することができる管路内浄化装置に関する。また、本発明は、優れた流下性能と優れた浄化性能とを両立させることができる管路内浄化装置の接続構造に関する。
従来、汚水は、管路により下水処理施設まで移送され、汚水の浄化処理はすべて該下水処理施設で行われていた。そのため、下水処理施設では浄化用設備に伴う設備費用や設備スペースが必要であった。
近年、下水処理施設の負担を軽減するために、微生物を用いて管路内で汚水を浄化する方法が提案されている。例えば、特許文献1には、管路の内面に有用微生物群を含有したセラミック材の膜を設けることによって汚水を有用微生物と接触させ、汚水を浄化する管路用汚水浄化装置が開示されている。特許文献2には、管路内に、微生物が定着可能な通水性の固定床と、固定床中に酸素を供給するための酸素供給手段を有することにより、固定床が汚水中に浸漬した状態であっても、固定床中に酸素を供給し、好気性微生物の増殖を促進できる管路用浄水装置が開示されている。また、特許文献3には、圧送管の管路の内側にフィンを設け、圧送管内部に複数のパイプを設置することにより、汚水と微生物が接触する面積を拡大させ、効率的に汚水を浄化する方法が開示されている。
しかしながら、これらの方法では微生物との接触面積が未だ充分ではなく、微生物と汚水との接触時間が短いために浄化効率が低い。また、酸素供給手段を用いる場合には、設備費、施工費が高価になる等の問題があった。更に、管路用浄水装置は、汚水の流下性能を充分に確保し、埋設時等に生じる応力による破損を防止する必要がある。
特開平8-165704号公報 特開2010-024773号公報 実開平6-24799号公報
本発明は、安価かつ高効率で汚水を浄化することができる管路内浄化装置を提供することを目的とする。また、本発明は、優れた流下性能と優れた浄化性能とを両立させることができる管路内浄化装置の接続構造を提供することを目的とする。
本発明は、水流量を確保し、透水性を有する流量確保部と、上記流量確保部の下部に位置し、上記流量確保部から供給された水の浄化を行う水浄化部とを有する管路内浄化装置である。
以下に本発明を詳述する。
本発明者らは、上述の構造の管路内浄化装置によれば、安価かつ高効率で汚水を浄化することができることを見出し、本発明を完成させるに至った。
本発明の管路内浄化装置は、水流量を確保し、透水性を有する流量確保部と、上記流量確保部の下部に位置し、上記流量確保部から供給された水の浄化を行う水浄化部とを有する。
上記流量確保部に透水性を付与する手段としては、例えば、流量確保部に開口部を設ける方法等が挙げられる。
上記流量確保部の表面積に対する開口部の占める割合は特に限定されないが、好ましい下限は5%、好ましい上限は80%である。上記開口部の占める割合が5%未満であると、上記流量確保部と上記水浄化部との間への汚水供給量が不充分となることがある。上記開口部の占める割合が80%を超えると、流量確保部に必要な強度が得られなくなることがある。
上記流量確保部の開口部の空隙の大きさは特に限定されないが、好ましい下限は1mm、好ましい上限は3000mmである。上記空隙の大きさが1mm未満であると、充分な透水性が発現されず、上記流量確保部と上記水浄化部との間への汚水供給量が不充分となることがある。上記空隙の大きさが3000mmを超えると、後述する微生物担体が流量確保部に流出することがある。
このような管路内浄化装置としては、例えば、外管と、透水性を有する内管とからなる二重管構造を有し、上記内管内が流量確保部となり、上記外管と上記内管との間隙が水浄化部となる管路内浄化装置(以下、二重管構造を有する管路内浄化装置ともいう)や、管路内を上部区画と下部区画とに分ける透水性の間仕切りを有し、上記上部区画が流量確保部となり、上記下部区画が水浄化部となる管路内浄化装置(以下、間仕切りを有する管路内浄化装置ともいう)等が挙げられる。
なお、本発明において管路とは、流体等を輸送するための管であり、閉じた横断面を持つ導管だけでなく、開渠(蓋無しの水路又は簡単に蓋をはずせる構造のもの)、暗渠(地下に埋設されている水路)を含むものとする。
上記二重管構造を有する管路内浄化装置において、上記内管は、管路内に汚水が供給された後の流路としての役割及び内管と外管との間へ汚水を供給する役割を有し、上記内管と上記外管との間において、上記内管から供給された汚水を浄化しながら流下させる。
上記内管を構成する材料としては、下水管路として使用可能な材料であれば特に限定されず、例えば、ポリエチレン、塩化ビニル等の樹脂や、繊維強化プラスチックスや、鋼、ダクタイル鋳鉄等の金属や、鉄筋コンクリート(ヒューム管)等が挙げられる。
上記内管の管路径方向の断面形状は、下水管路として使用可能な断面形状であれば特に限定されず、例えば、矩形、円形、卵形等の断面が閉塞した管が挙げられるが、円形であることが好ましい。
上記内管の管路径は特に限定されないが、好ましい下限は100mm、好ましい上限は3000mmである。上記内管の管路径が100mm未満であると、汚水中の固形物により汚水の移送ができなくなることがある。
なお、本明細書において「管路径」とは、管路の内側断面の外接円の直径を意味する。
上記内管は、透水性を有する。
上記内管に透水性を付与する手段としては、例えば、内管に開口部を設ける方法等が挙げられる。
上記外管を構成する材料としては、下水管路として使用可能な材料であれば特に限定されず、例えば、ポリエチレン、塩化ビニル等の樹脂や、繊維強化プラスチックスや、鋼、ダクタイル鋳鉄等の金属や、鉄筋コンクリート(ヒューム管)等が挙げられる。
上記外管の管路径方向の断面形状は、下水管路として使用可能な断面形状であれば特に限定されず、例えば、矩形、円形、卵形等が挙げられるが、埋設される場合は土圧による応力集中が発生しにくいことから円形であることが好ましい。また、埋設されない場合では、上記外管は、上部が管軸方向に連続して開口した溝管であってもよい。
上記外管の管路径は特に限定されないが、好ましい下限は、上記内管の管路径の120%、好ましい上限は上記内管の管路径の300%である。上記外管の管路径が上記内管の管路径の120%未満であると、微生物担体を充分に充填できない等により浄化性能に劣るものとなることがある。上記外管の管路径が上記内管の管路径の300%を超えると、汚水流量に対して外管の管路径が大きすぎるため、管材や布設等のコストが必要以上に大きくなりすぎることがある。
上記二重管構造を有する管路内浄化装置において、上記内管は、上記外管に設置された架台上に設置されていることが好ましい。このような二重管構造とする場合、例えば、内管と外管とをボルト等によって固定した場合、埋設時の土圧による応力集中等によって固定した部分が破損するおそれがあった。そこで本発明者らは、内管の固定方法について鋭意検討した結果、外管に架台を設置し、該架台上に内管を設置することにより、流下性能に優れ、埋設時等に生じる応力による破損を防止できる管路内浄化装置を得ることができることを見出した。
上記架台を構成する材料としては、上記内管や上記外管と同様の材料を用いることができる。
上記架台の形状としては、例えば、プレート状、支持部と脚部とを有する形状、半割管状等が挙げられる。なかでも、加工が容易であることから、プレート状が好ましい。
上記外管に設置される架台の数は特に限定されないが、上記外管の両端付近に少なくとも1つずつの架台を設置することが好ましい。
上記架台は、上記外管に固定されていることが好ましい。上記外管に架台が固定されていることにより、上記内管を安定して設置することができる。上記架台を上記外管に固定する方法としては、溶接、接着剤を用いた接着、接着パテを用いた接着等が挙げられる。
上記架台は、上記内管に固定されていることが好ましい。上記内管に架台が固定されていることにより、上記内管と上記架台とがずれたり、上記架台から上記内管が外れたりすることを防止できる。上記架台を上記内管に固定する方法としては、上記外管に固定する方法と同様の方法を用いることができる。
上記架台と上記内管との接触位置は、上記内管の中心よりも下部にあることが好ましい。上記架台と上記内管との接触位置が内管の中心以上の高さにあると、外管内部に内管を設置する作業が困難になるとともに、埋設時の土圧等によって架台、内管、及び、外管に大きな応力が生じることがある。
内管の上部と外管の上部とが接していたり、内管の上部と外管の上部とがボルト等を介して固定されていたりする場合、埋設時の土圧等によって大きな応力が生じることがあり、内管又は外管に亀裂や割れ等の不具合が生じることがあるため、二重管構造を有する管路内浄化装置は、上記内管の上部と上記外管の上部との間に間隙を有することが好ましい。
上記間仕切りを有する管路内浄化装置において、上記間仕切りで分けられる管路内の上部区画は、管路内に汚水が供給された後の流路としての役割及び下部区画へ汚水を供給する役割を有し、管路内の下部区画は、上部区画から供給された汚水を浄化して流下させる役割を有する。
上記間仕切りを有する管路内浄化装置において、管路の外壁となる管を構成する材料としては、上記二重管構造を有する管路内浄化装置と同様のものが挙げられる。以下、上記間仕切りを有する管路内浄化装置における管路の外壁となる管についても外管という。
上記間仕切りを構成する材料としては、例えば、ポリエチレン、塩化ビニル等の樹脂や、繊維強化プラスチックスや、鋼、ダクタイル鋳鉄等の金属や、鉄筋コンクリート等が挙げられる。
上記間仕切りの形状は、上部区画が流下性能に優れたものとなるため、外管と接する部分の高さが、外管と離れた部分、即ち、中心部分の高さよりも高くなる形状であることが好ましい。また、外管と接する部分の高さが中心部分の高さよりも高い場合、外管と接する部分付近に透水性を有するものとし、中心部分は透水性を有さないものとすることにより、水浄化部となる下部区画に微生物担体を充填した際に、管路内の水位に応じて、該微生物担体が汚水による浸漬と空気による曝露とを効率よく繰り返すことができる。
上記間仕切りに透水性を付与する手段としては、例えば、間仕切りに開口部を設ける方法等が挙げられる。
上記間仕切りの開口部の空隙の大きさは特に限定されないが、好ましい下限は1mm、好ましい上限は3000mmである。上記空隙の大きさが1mm未満であると、充分な透水性が得られず、下部区画への汚水供給量が不充分となることがある。上記空隙の大きさが3000mmを超えると、下部区画へ供給された汚水中の固形物により微生物担体に目詰まりが生じたり、微生物担体が上部区画内に流出したりすることがある。
上記間仕切りは、嵌合、溶接、接着剤を用いた接着等、使用する材料や用途等に応じた公知の方法により、上記外管に設置することができる。
上記水浄化部において、汚水を浄化する方法としては、例えば、ばっ気装置を用いる方法や微生物を用いる方法等が挙げられる。なかでも、動力を使用せずに汚水を浄化することができるため、微生物を用いる方法が好ましく、本発明の管路内浄化装置は、上記水浄化部に微生物担体が充填されていることがより好ましい。上記水浄化部に微生物担体を充填することにより、微生物担体の流出を防止しながら多量の微生物を保持することが可能となり、高いBOD(Biochemical Oxygen Demand)除去量を得ることができる。
上記「微生物担体」とは、好気性微生物や嫌気性微生物等を付着させるために使用する粒状や小片の材料を意味し、汚水の通水開始後1~4週間程度経過した後に好気性微生物や嫌気性微生物等が自然に微生物担体に付着し、増殖する。
上記微生物担体を構成する材料は特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリウレタン等の樹脂やセラミックス等が挙げられる。微生物担体には透水性が必要であることから、ポリエチレン、ポリプロピレン等の疎水性材料の場合、親水化処理が施されていることが好ましい。
上記微生物担体は、酸素と微生物とを効率よく接触させる必要があるため、比表面積が大きく、かつ、目詰まりをしにくい繊維状体、発泡体、多孔質体、網状体等を用いることが好ましい。
上記微生物担体に発泡体を用いる場合は、微生物担体内部まで汚水が透水することが好ましいことから、独立気泡タイプの発泡体よりも、連続気泡タイプの発泡体を用いることが好ましい。
上記微生物担体の形状は特に限定されず、例えば、球状、直方体状、立方体状、シート状、繊維状、網状等が挙げられる。また、微生物担体の流出防止や内管の固定化のために、上記微生物担体を更に透水性の高い容器等、例えば、網状体や有孔管(後述する担体保持管)等に封入してもよい。
上記微生物担体は、一つあたりの体積が25mm以上であることが好ましい。一つあたりの体積が25mm未満であると、微生物担体が汚水とともに流出することがある。
上記微生物担体が繊維状体や発泡体である場合、比表面積を大きくするために、空隙率が高いものが好ましい。具体的には、空隙率が50%を超えるものが好ましく、80%を超えるものがさらに好ましい。
なお、本明細書において上記「空隙率」とは、単位体積当たりにおける隙間の割合を100分率で表したものを意味する。
上記微生物担体は、管路内の水位に応じて、汚水による浸漬と、空気による曝露とを繰り返すことが好ましい。そのため、本発明の管路内浄化装置は、上記微生物担体が適度に汚水による浸漬と空気による曝露とを繰り返すことができるように、上記微生物担体を充填する高さや充填率が調節されていることが好ましい。
二重管構造を有する管路内浄化装置において、上記微生物担体を充填する高さの好ましい下限は、上記外管の管路径の20%である。上記微生物担体を充填する高さが、上記外管の管路径の20%未満であると、高い浄化性能が得られないことがある。
上記微生物担体の充填率は、上記外管と上記内管で囲まれた体積に対する微生物担体の体積の割合で定義され、その好ましい下限は10%、好ましい上限は100%である。上記充填率が10%未満であると、高い浄化性能が得られないことがある。
上記微生物担体の流出を防止すること等を目的として、上記微生物担体は、透水性を有する担体保持材によって水浄化部に固定されていることが好ましい。
上記担体保持材の材料としては、例えば、ポリエチレン、ポリプロピレン等が挙げられる。上記担体保持材は、管状の担体保持管であり、水浄化部の容積を調節し、かつ、保持する機能を有することが好ましい。
上記担体保持管の管路径方向の断面形状は、矩形であってもよいし、円形であってもよいが、円形であることが好ましい。
上記担体保持管の管路径の好ましい下限は上記微生物担体の大きさに対して2倍、上記担体保持管の管路径の好ましい上限は上記微生物担体の大きさに対して30倍である。上記担体保持管の管路径が上記微生物担体の大きさの2倍未満であると、担体保持管への微生物担体の充填が困難となることがある。上記担体保持管の管路径が上記微生物担体の大きさの30倍を超えると、担体保持管同士の間隔が広すぎて汚水が微生物担体を通らずに通過することがある。
上記担体保持管は、透水性を有する。
上記担体保持管に透水性を付与する手段としては、例えば、担体保持管に開口部を設ける方法等が挙げられる。
上記担体保持管の表面積に対する開口部の占める割合は特に限定されないが、好ましい下限は20%、好ましい上限は95%である。上記開口部の占める割合が20%未満であると、上記微生物担体への汚水供給量が不充分となることがある。上記開口部の占める割合が95%を超えると、担体保持管が強度に劣るものとなることがある。
上記担体保持管の開口部の空隙の大きさは特に限定されないが、好ましい下限は5mm、好ましい上限は400mmである。上記空隙の大きさが5mm未満であると、担体保持管への汚水流入が不充分となることがある。上記空隙の大きさが400mmを超えると、担体保持管から微生物担体が流出することがある。
本発明の管路内浄化装置は、複数の担体保持材を有し、かつ、各担体保持材間に流路となる間隙を有することが好ましい。各担体保持材間に流路となる間隙を形成することにより、上記担体保持材を用いずに微生物担体をそのまま充填した場合に比べ、汚水中の固形物等による微生物担体の目詰まりが起こりにくくなる。
本発明の管路内浄化装置は、底部に、流路となる管軸方向に沿って連続して形成された底部連続間隙を有することが好ましい。上記底部連続間隙を有することにより、上記水浄化部における汚水の流下性能を確保することができる。なお、上記二重管構造を有する管路内浄化装置において、上述した架台を設置する場合は、外管の底部と架台との間に管軸方向に沿って連続した流路となる底部連続間隙を有することが好ましい。
上記水浄化部における流下性能を充分に確保することができるとともに、管路内清掃等のメンテナンス作業を容易に行うことができるため、上記底部連続間隙の管路径方向断面積は7cm以上であることが好ましい。上記底部連続間隙を設ける方法としては、上記外管と上記内管との間に微生物担体を略上側、底部連続間隙を略下側となるように分ける透水性の間仕切りを設ける方法や、上記外管と上記内管との間に微生物担体を略上側、底部連続間隙を略下側となるように分ける透水性を有する底部連続間隙保持材を設置する方法等が挙げられる。上記底部連続間隙保持材は上記担体保持材と同じく透水性を有するため、上記担体保持材に微生物担体を封入せず、そのまま上記底部連続間隙保持材として用いてもよい。
本発明の管路内浄化装置の接続構造であって、上流側の管路内浄化装置Aと、下流側の管路内浄化装置Bとを、水路を有する人孔を介して接続した構造であり、上記人孔において、上記管路内浄化装置Aの水浄化部を流れてきた水が、上記管路内浄化装置Bの流量確保部へ流れ込むように、上記管路内浄化装置Aと上記管路内浄化装置Bとが接続されている管路内浄化装置の接続構造もまた、本発明の1つである。
本発明の管路内浄化装置では、流量確保部から供給され、水浄化部にて浄化された水は、そのまま水浄化部を流れることとなる。そのため、このような管路内浄化装置では、下流側になるほど、流量確保部を流れる水が少なくなって充分な流下性能が得られなくなる。そこで本発明者らは鋭意検討した結果、人孔において、上流側の管路内浄化装置の水浄化部を流れてきた水が、下流側の管路内浄化装置の流量確保部へ流れ込むように接続することにより、一旦水浄化部に供給された水を再び流量確保部に戻すことで、優れた流下性能と優れた浄化性能とを両立させることができることを見出した。
本発明の管路内浄化装置の接続構造は、上流側の管路内浄化装置Aと、下流側の管路内浄化装置Bとを、水路を有する人孔を介して接続した構造を有する。
本発明の管路内浄化装置の接続構造では、上記人孔において、上記管路内浄化装置Aの水浄化部を流れてきた水が、上記管路内浄化装置Bの流量確保部へ流れ込むように、上記管路内浄化装置Aと上記管路内浄化装置Bとが接続されている。このような人孔によって、管路内浄化装置Aの流量確保部から水浄化部に供給され、そのまま管路内浄化装置Aの水浄化部を流れてきた水が、管路内浄化装置Bの流量確保部に供給されることとなり、流下性能を低下させることなく優れた浄化性能を発揮することができる。
管路内浄化装置Aの水浄化部を流れてきた水は、全量が管路内浄化装置Bの流量確保部に供給されることが好ましいが、流下性能を確保するためには少なくとも管路内浄化装置Aの水浄化部を流れてきた水の少なくとも50%以上が、管路内浄化装置Bの流量確保部に供給されることが好ましい。
上記人孔は、上記管路内浄化装置Aと上記管路内浄化装置Bとの接続部以外は、下水管路の接続に用いられる公知の人孔と同様のものを用いることができる。
上記人孔において、上記管路内浄化装置Aの水浄化部を流れてきた水が、上記管路内浄化装置Bの流量確保部へ流れ込むようにする方法としては、上記人孔に接続する上記管路内浄化装置Aと上記管路内浄化装置Bとの高さに差を設ける方法や、ポンプ等の装置を用いる方法等が挙げられる。なかでも、動力を必要としないため、上記管路内浄化装置Aと上記管路内浄化装置Bとの高さに差を設ける方法が好ましい。
上記管路内浄化装置Aと上記管路内浄化装置Bとの高さに差を設ける方法としては、例えば、上記人孔に、上記管路内浄化装置Aの水浄化部以下の高さ、かつ、上記管路内浄化装置Bの流量確保部以上の高さとなる水路を設ける方法等が挙げられる。上記人孔の水路は、管路内浄化装置Aの水浄化部及び上記管路内浄化装置Bの流量確保部と同じ高さでそれぞれの管路内浄化装置と接続することが好ましい。
本発明によれば、安価かつ高効率で汚水を浄化することができる管路内浄化装置を提供できる。また、本発明によれば、優れた流下性能と優れた浄化性能とを両立させることができる管路内浄化装置の接続構造を提供できる。
本発明の管路内浄化装置の一例を示す管路径方向断面図であり、(a)水位が高い場合、(b)水位が低い場合をそれぞれ示す。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 担体保持管の管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図であり、(a)は、管路内の水量が多い場合、(b)は、管路内の水量が少ない場合をそれぞれ示す。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。 従来の管路内浄化装置の一例を示す管路径方向断面図である。 本発明の管路内浄化装置における架台の設置方法の一例を示す(a)斜視図及び(b)管路径方向断面図である。 本発明の管路内浄化装置における架台の設置方法の別の一例を示す(a)斜視図及び(b)管路径方向断面図である。 本発明の管路内浄化装置における架台の設置方法の別の一例を示す(a)斜視図及び(b)管路径方向断面図である。 本発明の管路内浄化装置の接続構造の一例を示す管路軸方向断面図である。 本発明の管路内浄化装置の接続構造の一例を示す斜視図である。 本発明の管路内浄化装置の接続構造の別の一例を示す管路軸方向断面図である。
以下に図面を用いて本発明の管路内浄化装置を更に詳しく説明するが、本発明は、これら図面に示した実施形態のみに限定されない。
図1は、本発明の管路内浄化装置の一例を示す管路径方向断面図である。
本発明の管路内浄化装置は、図1に示すように、外管1と、開口部4を有する内管3とによる二重管構造を有し、かつ、上記二重管構造の間隙に微生物担体5が充填されることにより構成されている。
内管3は、開口部4を設けることで透水性が付与されている。外管1の内部に、このような透水性を有する内管3を有することにより、微生物が分解困難な汚水中の固形物の多くを内管3により移送し、微生物が分解容易な汚水が微生物担体5を有する内管3と外管1との間に供給されるため、安定して汚水の浄化処理を行うことができる。
図1の管路内浄化装置は、時間経過による管路内水位の上下により、微生物担体5の汚水による浸漬と、空気による曝露とが繰り返される。図1では、内管3が外管1の中央部に配置されており、微生物担体5は外管1の管路径1/2の高さまで充填されている。内管3の水位が水面2の場合(図1(a))、外管1の水位は内管3の水位よりやや低くなる。内管3に流れる水量が低下し、内管3の水位が内管の水面6となった場合(図1(b))、汚水は外管1にほとんど浸透せず、外管1の水位は外管1の水面7にまで低下する。このとき微生物担体5は空気に触れることができる。外管1の水位は、時間経過に伴って上下を繰り返すため、微生物担体5もこれに応じた間隔で空気に曝露し、好気性微生物による好気性分解に必要な酸素を供給できる。また、微生物担体5が汚水に浸漬した状態では、嫌気性微生物が増殖し、汚水を嫌気分解することができる。
図2、図3は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。
本発明の管路内浄化装置は、図2、図3のように外管1と内管3の配置を変えたものであってもよい。図2のように外管1と内管3の配置を変えた場合、微生物担体5が空気に触れている時間は長くなるが、その充填量は少なくなる。これに対して、図3のように外管1と内管3の配置を変えた場合、上記微生物担体5の充填量は多くなるが、上記微生物担体5が汚水中に浸漬している時間は長くなる。このように、外管1と内管3の配置を変えることにより、汚水の流量、性状に対応した処理が可能となる。
図4は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。
本発明の管路内浄化装置は、図4のように外管1と内管3の間隔を保持するために、担体保持管8を設けたものであることが好ましい。担体保持管8は、内管3の重量を支えるのに充分な強度を保持しており、かつ、外周から汚水が浸透しやすくなるように、開口部を設けている。担体保持管8の内部に、耐荷重が小さく、比表面積の大きな微生物担体5を充填することにより、上記微生物担体5自体に内管3による荷重が掛かり、圧密されることを防ぐ働きをする。上記担体保持管8は、隣接する担体保持管同士の間に間隙9を設けることにより、微生物担体5をそのまま充填した場合に比べ、汚水中の固形物等による目詰まりが起こりにくくなる。
図5は、担体保持管の管路径方向断面図である。内部に微生物担体5を充填した担体保持管8を示している。担体保持管8は開口部10を設けることで、透水性が付与されている。
図6は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。図6の管路内浄化装置では、外管1の底部に、外管1と内管3との間を上下に分ける透水性の底部連続間隙保持材11が設けられている。外管1の底部に設けられた底部連続間隙保持材11と外管1の底部との間に形成された底部連続間隙12が流路となることで、外管1と内管3との間の流下性能を充分に確保することができる。
図7は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。
本発明の管路内浄化装置は、図1に示すように、外管1が、間仕切り13によって上部区画15と下部区画16とに分けられた構造を有する。
間仕切り13は、開口部14を設けることで透水性が付与されている。このような透水性を有する間仕切り13を有することにより、汚水中の固形物の多くを上部区画15により移送し、固形物の含有割合の少ない汚水が下部区画16に供給されるため、安定して汚水の浄化処理を行うことができる。
図8は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図であり、(a)は、管路内の水量が多い場合、(b)は、管路内の水量が少ない場合をそれぞれ示す。図8に示したように、下部区画16に微生物担体5を充填することで汚水を浄化する場合、上述したように、微生物が分解困難な固形物の多くが上部区画15により移送され、該固形物の含有割合が少なく、微生物による分解が容易となった汚水が下部区画16に供給されることで安定した浄化性能が得られる。
図8の管路内浄化装置は、時間経過による管路内水位の上下により、微生物担体5の汚水による浸漬と、空気による曝露とが繰り返される。図8において、間仕切り13は、外管1と接する部分の高さが、外管1と離れた部分、即ち、中心部分の高さよりも高くなっており、上部区画15の流下性能に優れる。更に、間仕切り13が、外管1と接する部分付近に開口部を有し、中心部分は開口部を有さないものとなっており、管路内の水位に応じて、微生物担体5が汚水による浸漬と空気による曝露とを効率よく繰り返すことができる。
図8の管路内浄化装置において、管路内を流れる水量が多い場合(図8(a))、下部区画16の水面18は上部区画15の水面17よりやや低くなる。管路内を流れる水量が少ない場合(図8(b))、汚水は下部区画16にほとんど供給されず、下部区画16の水位が低下する。このとき微生物担体5が空気に触れる。下部区画16の水位は、時間経過に伴って上昇と下降とを繰り返すため、微生物担体5もこれに応じて空気に曝露され、好気性微生物による好気性分解に必要な酸素が供給される。また、微生物担体5が汚水に浸漬した状態では、嫌気性微生物が増殖し、汚水を嫌気性分解することができる。
図9は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。図9の管路内浄化装置では、間仕切り13の高さが一定であるため、図8の管路内浄化装置に比べ、流下性能及び微生物による浄化性能に劣るものとなる。
図10は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。
図10の管路内浄化装置では、微生物担体5が担体保持管8により固定されている。担体保持管8の内部に、微生物担体5を充填することにより、微生物担体5の流出を防止することができる。また、担体保持管8は、各担体保持管8間に流路となる間隙9を形成するように設置されており、該間隙9が流路となることで、微生物担体5をそのまま充填した場合(図8)に比べ、汚水中の固形物等による目詰まりが起こりにくくなる。
図11は、本発明の管路内浄化装置の別の一例を示す管路径方向断面図である。図11の管路内浄化装置では、下部区画16を更に上下に分ける透水性の底部連続間隙保持材11が設けられている。下部区画16内に設けられた底部連続間隙保持材11と外管1の底部との間に形成された底部連続間隙12が流路となることで、図8の管路内浄化装置に比べ、下部区画16の流下性能を充分に確保することができる。
図12は、従来の管路内浄化装置の一例を示す管路径方向断面図である。図12の管路内浄化装置は、内管や間仕切りを有さず、外管1の内面に微生物膜19を有する。図12のような微生物膜を利用した従来の管路内浄化装置と、図1のような微生物担体を利用した管路と、図8のような微生物担体を利用した管路内浄化装置とにおける表面積、BOD負荷量、BOD除去量をそれぞれ、表1、表2、表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
表1に示したように、図12に示したような微生物膜を利用した管路内浄化装置において、管路径350mmの配管内面の1/2に微生物膜が付着している場合では、外管1m当たりの微生物膜表面積は0.55m/mとなる。
一方、表2に示したように、図1に示したような微生物担体を利用した管路内浄化装置において、管路径350mmの外管と管路径200mmの内管を用い、その間隙の1/2に微生物担体として比表面積3000m/mのスポンジ状担体を充填した場合では、外管の管路軸方向1m当たりの担体表面積は、96m/mとなる。このように二重管構造の間隙に比表面積が大きい微生物担体を充填することにより、管路内面の生物膜を用いる場合と比較して、100倍以上の表面積を保持することができる。
また、表3に示したように、図8に示したような微生物担体を利用した管路内浄化装置において、管路径350mmの外管の管路内を、間仕切りにより、上部区画と下部区画とが容積比で1:1となるように分け、充填量が40L/mとなるように微生物担体を充填し、微生物担体に比表面積3000m/mのスポンジ状担体を用いた場合では、下部区画1m当たりの担体表面積は、120m/mとなる。このように下部区画に比表面積が大きい微生物担体を充填することにより、管路内面の生物膜を用いる場合と比較して、100倍以上の表面積を保持することができる。
表1に示したように、微生物膜によるBOD表面積負荷量を5g/m・d、BOD除去率を90%とすると、図12のような微生物膜を利用した管路内浄化装置の管路軸方向1m当たりの1日当たりBOD除去量は2.5g/m・dと試算される。一方、表2、3に示したように、微生物担体のBOD容積負荷量を1kg/m・d、BOD除去率を90%とすると、図1及び図8のようなスポンジ状担体を利用した管路内浄化装置の管路軸方向1m当たりの1日当たりBOD除去量は29g/m・dと試算される。このように、二重管構造と微生物担体を用いることにより、微生物膜の10倍以上にもなるBOD除去量を達成することができる。
図13は、本発明の管路内浄化装置における架台の設置方法の一例を示す(a)斜視図及び(b)管路径方向断面図である。
図13の管路内浄化装置では、内管3の底部の形状に沿った切欠きが形成されたプレート状の架台20が外管1に設置されており、内管3は架台20上に設置されている。プレート状の架台20と外管1の底部との間には、管軸方向に沿って連続した流路となる底部連続間隙12が形成されており、外管1と内管3との間における汚水の流下性能が確保されている。
図14は、本発明の管路内浄化装置における架台の設置方法の別の一例を示す(a)斜視図及び(b)管路径方向断面図である。
図14の管路内浄化装置では、内管3の底部に沿った形状の支持部と脚部とを有する架台20が外管1に設置されており、内管3は架台20上に設置されている。このような架台20を用いる場合、内管3を安定して設置し、かつ、内管3と架台20とがずれたり、架台20から内管3が外れたりすることを防止するため、架台20は、外管1及び内管3と固定されていることが好ましい。架台20と外管1の底部との間には、管軸方向に沿って連続した流路となる底部連続間隙12が形成されており、外管1と内管3との間における汚水の流下性能が確保されている。
図15は、本発明の管路内浄化装置における架台の設置方法の別の一例を示す(a)斜視図及び(b)管路径方向断面図である。
図15の管路内浄化装置では、3つの半割管が連なってなる架台20が外管1に設置されており、内管3は架台20上に設置されている。図15の管路内浄化装置では、架台20の3つの半割管により、3点で内管3を支持している。架台20と外管1の底部との間には、各半割管によって管軸方向に沿って連続した流路となる底部連続間隙12が形成されており、外管1と内管3との間における汚水の流下性能が確保されている。
図13~15に示した管路内浄化装置において、架台20の内管との接触位置は内管3の中心よりも下部にあり、このため内管の重量を支えるための接着力が必要なく、外管内部に内管を設置する作業も容易となる。また、内管3の上部と外管1の上部との間には間隙が形成されている。このため、埋設時の土圧等での応力集中による亀裂や割れ等の不具合を防止することができる。
図13~15に示した管路内浄化装置は、外管1の底部と内管3との間に広い間隙を有するため、この間隙に多量の微生物担体を充填することができる。外管1と内管3との間に充填した微生物担体で汚水を浄化する場合、上述したように、微生物が分解困難な固形物の多くが内管3により移送され、該固形物の含有割合が少なく、微生物による分解が容易となった汚水が外管1と内管3との間に供給されることで安定した浄化性能が得られる。
図16は、本発明の管路内浄化装置の接続構造の一例を示す管路軸方向断面図であり、図17は、本発明の管路内浄化装置の接続構造の一例を示す斜視図である。
本発明の管路内浄化装置の接続構造は、図16、17に示したように、上流側の管路内浄化装置A100と、下流側の管路内浄化装置B200とを、水路301を有する人孔300を介して接続した構造を有する。
図16、17の管路内浄化装置の接続構造で接続される管路内浄化装置A100及び管路内浄化装置B200は、それぞれ外管101と内管102、外管201と内管202とによる二重管構造を有する。図16、17に示した管路内浄化装置A100及び管路内浄化装置B200では、内管102、202内がそれぞれ流量確保部103、203となり、外管101と内管102との間隙、外管21と内管22との間隙がそれぞれ水浄化部104、204となる。
図18は、本発明の管路内浄化装置の接続構造の別の一例を示す管路軸方向断面図である。
図18の管路内浄化装置の接続構造で接続される管路内浄化装置A100及び管路内浄化装置B200は、外管101、201が、それぞれ間仕切り105、205によって、上部区画と下部区画とに分けられた構造を有する。図18に示した管路内浄化装置A100及び管路内浄化装置B200では、上部区画がそれぞれ流量確保部103、203となり、下部区画がそれぞれ水浄化部104、204となる。
図18において、間仕切り105、205には、開口部を設ける等により透水性が付与されている。このような透水性を有する間仕切り105、205を有することにより、水中の固形物の多くを、流量確保部103、203により移送し、固形物の含有割合の少ない水が水浄化部104、204に供給されるため、図18に示した管路内浄化装置A100、B200は、図16、17に示した管路内浄化装置A100、B200と同様に、水浄化部104、204において安定して水の浄化処理を行うことができる。
図16、17における管路内浄化装置A100及び管路内浄化装置B200は、外管101の底部と内管102との間及び外管201の底部と内管202との間に広い間隙を有するため、この間隙をそれぞれ水浄化部104、204として多量の微生物担体を充填することができる。水浄化部104、204に充填した微生物担体で汚水を浄化する場合、上述したように、微生物が分解困難な固形物の多くが流量確保部103、203により移送され、該固形物の含有割合が少なく、微生物による分解が容易となった汚水が水浄化部104、204に供給されることで安定した浄化性能が得られる。
図16~18の管路内浄化装置の接続構造では、上流側の管路内浄化装置A100の外管101の底部と、下流側の管路内浄化装置B200の内管202の底部とが、人孔300の水路301で接続されている。このような構造を有することにより、一旦管路内浄化装置A100の流量確保部103から水浄化部104に供給された水が、人孔300の水路301を通って管路内浄化装置B200の流量確保部203に供給されることとなり、流下性能を低下させずに優れた浄化性能を発揮することができる。
本発明によれば、安価かつ高効率で汚水を浄化することができる管路内浄化装置を提供できる。また、本発明によれば、優れた流下性能と優れた浄化性能とを両立させることができる管路内浄化装置の接続構造を提供できる。
1 外管
2 内管の水面
3 内管
4 内管の開口部
5 微生物担体
6 内管の水面
7 外管の水面
8 担体保持管
9 間隙(流路)
10 担体保持管の開口部
11 底部連続間隙保持材
12 底部連続間隙(流路)
13 間仕切り
14 間仕切りの開口部
15 上部区画
16 下部区画
17 上部区画の水面
18 下部区画の水面
19 微生物膜
20 架台
100 管路内浄化装置A
101 管路内浄化装置Aの外管
102 管路内浄化装置Aの内管
103 管路内浄化装置Aの流量確保部
104 管路内浄化装置Aの水浄化部
105 管路内浄化装置Aの間仕切り
200 管路内浄化装置B
201 管路内浄化装置Bの外管
202 管路内浄化装置Bの内管
203 管路内浄化装置Bの流量確保部
204 管路内浄化装置Bの水浄化部
205 管路内浄化装置Bの間仕切り
300 人孔
301 人孔の水路

Claims (15)

  1. 水流量を確保し、透水性を有する流量確保部と、前記流量確保部の下部に位置し、前記流量確保部から供給された水の浄化を行う水浄化部とを有することを特徴とする管路内浄化装置。
  2. 外管と、透水性を有する内管とからなる二重管構造を有し、前記内管内が流量確保部となり、前記外管と前記内管との間隙が水浄化部となることを特徴とする請求項1記載の管路内浄化装置。
  3. 内管は、外管に設置された架台上に設置されていることを特徴とする請求項2記載の管路内浄化装置。
  4. 架台は、外管に固定されていることを特徴とする請求項3記載の管路内浄化装置。
  5. 架台は、内管に固定されていることを特徴とする請求項3又は4記載の管路内浄化装置。
  6. 架台と内管との接触位置が内管の中心よりも下部にあることを特徴とする請求項3、4又は5記載の管路内浄化装置。
  7. 内管の上部と外管の上部との間に間隙を有することを特徴とする請求項2、3、4、5又は6記載の管路内浄化装置。
  8. 管路内を上部区画と下部区画とに分ける透水性の間仕切りを有し、前記上部区画が流量確保部となり、前記下部区画が水浄化部となることを特徴とする請求項1記載の管路内浄化装置。
  9. 水浄化部に微生物担体が充填されていることを特徴とする請求項1、2、3、4、5、6、7又は8記載の管路内浄化装置。
  10. 微生物担体は、管路内の水位に応じて、汚水による浸漬と、空気による曝露とを繰り返すことを特徴とする請求項9記載の管路内浄化装置。
  11. 微生物担体は、透水性を有する担体保持材によって水浄化部に固定されていることを特徴とする請求項9又は10記載の管路内浄化装置。
  12. 担体保持材が管状の担体保持管であり、水浄化部の容積を調節し、かつ、保持する機能を有することを特徴とする請求項11記載の管路内浄化装置。
  13. 複数の担体保持材を有し、かつ、各担体保持材間に流路となる間隙を有することを特徴とする請求項11又は12記載の管路内浄化装置。
  14. 底部に、管軸方向に沿って連続した流路となる底部連続間隙を有することを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の管路内浄化装置。
  15. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13又は14記載の管路内浄化装置の接続構造であって、
    上流側の管路内浄化装置Aと、下流側の管路内浄化装置Bとを、水路を有する人孔を介して接続した構造であり、
    前記人孔において、前記管路内浄化装置Aの水浄化部を流れてきた水が、前記管路内浄化装置Bの流量確保部へ流れ込むように、前記管路内浄化装置Aと前記管路内浄化装置Bとが接続されている
    ことを特徴とする管路内浄化装置の接続構造。
PCT/JP2013/063256 2012-05-16 2013-05-13 管路内浄化装置、及び、管路内浄化装置の接続構造 WO2013172288A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13791331.5A EP2905387A4 (en) 2012-05-16 2013-05-13 TRANSPORT CONDUIT PURIFICATION DEVICES AND CONNECTION STRUCTURE FOR PURIFICATION DEVICES FOR TRANSPORT PIPES
JP2014515609A JP6078534B2 (ja) 2012-05-16 2013-05-13 管路内浄化装置、及び、管路内浄化装置の接続構造
AU2013261454A AU2013261454A1 (en) 2012-05-16 2013-05-13 Pipe line purifying devices and connecting structure for pipe line purifying devices
KR1020147030977A KR20150018781A (ko) 2012-05-16 2013-05-13 관로 내 정화 장치, 및 관로 내 정화 장치의 접속 구조
CN201380024856.6A CN104285019B (zh) 2012-05-16 2013-05-13 管路内净化装置以及管路内净化装置的连接构造
SG11201407550PA SG11201407550PA (en) 2012-05-16 2013-05-13 In-pipe purificationapparatus and connection structure of in-pipepurification apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012112778 2012-05-16
JP2012-112778 2012-05-16
JP2013-064758 2013-03-26
JP2013064758 2013-03-26
JP2013088635 2013-04-19
JP2013-088635 2013-04-19

Publications (1)

Publication Number Publication Date
WO2013172288A1 true WO2013172288A1 (ja) 2013-11-21

Family

ID=49583693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063256 WO2013172288A1 (ja) 2012-05-16 2013-05-13 管路内浄化装置、及び、管路内浄化装置の接続構造

Country Status (7)

Country Link
EP (1) EP2905387A4 (ja)
JP (1) JP6078534B2 (ja)
KR (1) KR20150018781A (ja)
CN (1) CN104285019B (ja)
AU (1) AU2013261454A1 (ja)
SG (1) SG11201407550PA (ja)
WO (1) WO2013172288A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234173A (zh) * 2014-09-16 2014-12-24 江苏永通市政园林建设有限公司 一种防堵塞污水管道
JP2016068003A (ja) * 2014-09-29 2016-05-09 積水化学工業株式会社 管路内浄化装置および管路内浄化装置の製造方法
JP2016087491A (ja) * 2014-10-30 2016-05-23 積水化学工業株式会社 管路内浄化装置および管路内浄化システム
CN106103356A (zh) * 2014-07-18 2016-11-09 积水化学工业株式会社 管路内净化装置及管路内净化系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544532B (en) * 2015-11-20 2021-02-17 Henou Abbas Alaa A combined waste conduit
US10273175B2 (en) 2017-04-12 2019-04-30 Waterloo Biofilter Systems Inc. Sewage treatment system
CN110790375B (zh) * 2019-10-17 2020-11-13 上海市政工程设计研究总院(集团)有限公司 排水管道源头控污多级生化处理系统
CN111593815B (zh) * 2020-06-24 2021-03-26 深圳市金源达建设集团有限公司 一种海绵城市景观园林渗排系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370729A (ja) * 1986-09-12 1988-03-30 山本 明雄 暗渠集排水管
JPH0624799U (ja) 1992-09-04 1994-04-05 株式会社クボタ 下水用圧送管
JPH07233556A (ja) * 1992-01-28 1995-09-05 Narashi 連続空隙体が内張りされた複合管路およびその製造方法
JPH08165704A (ja) 1994-12-13 1996-06-25 Kubota Corp 汚水管
JP2010024773A (ja) 2008-07-23 2010-02-04 Ihi Corp 下水管路用浄水装置及び下水管路用浄水方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1513857A (en) * 1974-04-08 1978-06-14 Boc International Ltd Treatment of sewage
JP2934925B2 (ja) * 1992-05-01 1999-08-16 元治 玉井 網状体によって粒状物が内張りされた複合管路および その製造方法
JP2713852B2 (ja) * 1993-04-27 1998-02-16 株式会社東洋エコ・リサーチ 浄化処理装置
CA2372337C (en) * 2001-02-26 2011-04-19 E. Craig Jowett In-pipe wastewater treatment system
US6821424B1 (en) * 2002-04-25 2004-11-23 Steven A. Branz Wastewater treatment and dispersal system
WO2004026771A1 (en) * 2002-09-17 2004-04-01 The White Oak Partnership, L.P. Wastewater biological treatment system and method therefor
KR100535917B1 (ko) * 2003-09-08 2005-12-12 변무원 정화기능을 가지는 하천수의 역류장치
FR2864561B1 (fr) * 2003-12-29 2006-03-24 Saint Gobain Pont A Mousson Tuyau de transport d'eau a potabiliser, installation, utilisation et procede d'exploitation correspondants.
DE202008004861U1 (de) * 2008-04-08 2009-08-20 Flw Forschungsgemeinschaft Landschaftsbau Und Wasserwirtschaft Ag Filter für Regen- und Abwasser
FR2966143B1 (fr) * 2010-10-19 2018-02-09 Simb Station d'epuration d'eaux usees a compartiments coaxiaux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370729A (ja) * 1986-09-12 1988-03-30 山本 明雄 暗渠集排水管
JPH07233556A (ja) * 1992-01-28 1995-09-05 Narashi 連続空隙体が内張りされた複合管路およびその製造方法
JPH0624799U (ja) 1992-09-04 1994-04-05 株式会社クボタ 下水用圧送管
JPH08165704A (ja) 1994-12-13 1996-06-25 Kubota Corp 汚水管
JP2010024773A (ja) 2008-07-23 2010-02-04 Ihi Corp 下水管路用浄水装置及び下水管路用浄水方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905387A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103356A (zh) * 2014-07-18 2016-11-09 积水化学工业株式会社 管路内净化装置及管路内净化系统
CN104234173A (zh) * 2014-09-16 2014-12-24 江苏永通市政园林建设有限公司 一种防堵塞污水管道
JP2016068003A (ja) * 2014-09-29 2016-05-09 積水化学工業株式会社 管路内浄化装置および管路内浄化装置の製造方法
JP2016087491A (ja) * 2014-10-30 2016-05-23 積水化学工業株式会社 管路内浄化装置および管路内浄化システム

Also Published As

Publication number Publication date
CN104285019B (zh) 2016-12-28
AU2013261454A1 (en) 2014-10-16
EP2905387A1 (en) 2015-08-12
CN104285019A (zh) 2015-01-14
KR20150018781A (ko) 2015-02-24
JP6078534B2 (ja) 2017-02-08
JPWO2013172288A1 (ja) 2016-01-12
EP2905387A4 (en) 2016-05-25
SG11201407550PA (en) 2014-12-30

Similar Documents

Publication Publication Date Title
WO2013172288A1 (ja) 管路内浄化装置、及び、管路内浄化装置の接続構造
WO1991010624A1 (en) System and method for treating sewage or other fluids
CN107055787A (zh) A20+mbr处理装置
CN107200401A (zh) 厌氧‑缺氧‑好氧‑膜组件处理方法
CN102964037B (zh) 一种新型轻质滤料与重质滤料曝气生物滤池联合使用的污水处理方法
CN209740808U (zh) 厌氧生物滤池污水处理系统
KR101549161B1 (ko) 비점오염 저감시설
JP5465394B2 (ja) 水質浄化装置
WO2012049909A1 (ja) 廃水処理装置
CN206828202U (zh) A20+mbr处理装置
CN206232523U (zh) 一体化污水处理设备
CN109399792A (zh) 一种对氧化沟进行提标改造的污水处理装置及方法
CN212740885U (zh) 一种河道废水一体化处理设备
JP5926663B2 (ja) 管路内浄化装置
CN210163288U (zh) 污水处理装置、包含其的系统
JP4019209B2 (ja) 水の浄化システム
JP2014201891A (ja) 管路内浄化装置
CN205222782U (zh) 包埋载体拦截装置
CN106977050B (zh) 一种分散式污水处理系统
EP1204607B1 (en) Method and arrangement for purification of water
CN211521957U (zh) 一种新型悬浮移动床污水处理集成设备
CN218811247U (zh) 一种难降解外排尾水的深度净化装置
CN206645884U (zh) 一种曝气生物滤池
CN106145453A (zh) 一体化污水处理设备
CN106219757B (zh) 移动式屋面雨水生态净化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515609

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013261454

Country of ref document: AU

Date of ref document: 20130513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201407112

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2013791331

Country of ref document: EP