WO2013172241A1 - Water treatment device and method - Google Patents

Water treatment device and method Download PDF

Info

Publication number
WO2013172241A1
WO2013172241A1 PCT/JP2013/063000 JP2013063000W WO2013172241A1 WO 2013172241 A1 WO2013172241 A1 WO 2013172241A1 JP 2013063000 W JP2013063000 W JP 2013063000W WO 2013172241 A1 WO2013172241 A1 WO 2013172241A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
membrane module
water
membrane
air
Prior art date
Application number
PCT/JP2013/063000
Other languages
French (fr)
Japanese (ja)
Inventor
錫輝 張
帥 ▲リー▼
亮 張
鈴木 辰彦
Original Assignee
前澤工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前澤工業株式会社 filed Critical 前澤工業株式会社
Priority to CN201390000497.6U priority Critical patent/CN204265490U/en
Publication of WO2013172241A1 publication Critical patent/WO2013172241A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3

Definitions

  • the present invention relates to a water treatment apparatus and method, and more particularly, to a water treatment apparatus that performs water purification treatment and wastewater reuse treatment using an immersion membrane, and to this water treatment method.
  • ozone activated carbon treatment technology is a known advanced water purification treatment technology that integrates ozone oxidation, activated carbon adsorption, biodegradation, and the like.
  • the action of ozone enhances the biodegradability of organic matter, enhances the biodegradability of the activated carbon filter tank, and promotes the decomposition of the organic substance adsorbed by the activated carbon itself in the activated carbon filter tank due to the enhanced biological action.
  • the adsorption capacity of the activated carbon is restored, and the replacement period of the activated carbon is significantly extended.
  • Ozone activated carbon treatment technology enhances the ability to remove organic matter, and is superior to all conventional standard treatment technologies in terms of removing contaminants such as turbidity, ammoniacal nitrogen and odorous substances.
  • ozone activated carbon has a problem of biological leakage, and the biological safety of the discharged water cannot be guaranteed.
  • applying ozone activated carbon treatment technology to existing standard process water purification plants requires high costs for improvement work and requires a large site, which is limited by funds and land.
  • Membrane technology in water treatment is the 21st century drinking water treatment technology.
  • Membrane technologies represented by MF membranes and UF membranes are advantageous in water quality, site area, biosafety, and can be easily automated, and play an important role in the drinking water treatment field.
  • membrane contamination (or membrane clogging) in membrane filtration is a major challenge that hinders the application of membrane technology.
  • Previous studies have shown that agglomeration, oxidation, etc. are effective in delaying membrane contamination and stabilizing membrane flux, and recently include membrane filtration and agglomeration, adsorption, oxidation, biological effects, etc. Hybridization with other treatment processes has been extensively studied. Much of membrane application technology in large-scale water treatment facilities employs organic membranes.
  • the material for the membrane for example, cellulose acetate, polyvinylidene fluoride, polypropylene, polyethersulfone, and the like are known.
  • Many combinations of aggregation and organic films have been proposed, but combinations of organic films and oxidation treatments are rare. This is due to the fact that these currently employed organic films have low oxidation resistance and are difficult to use in an oxidizing atmosphere. For this reason, it has been proposed to combine oxidation and ceramic membranes, but because of the disadvantages of high cost of ceramic membranes, small membrane area per unit volume, high energy consumption, etc. Most remain at the laboratory level.
  • JP 2006-305443 A Japanese Patent Laid-Open No. 9-192459
  • the suspended components may not be sufficiently removed from the submerged membrane only by air aeration or ozone aeration alone.
  • the present invention provides a water treatment apparatus and method that can reliably remove suspended components adhering to the immersion membrane, and can stably obtain highly purified water and reused water from waste water.
  • the purpose is to do.
  • the water treatment apparatus of the present invention is a submerged membrane type water treatment apparatus that obtains treated water by separating the suspended components with a membrane module immersed in the water to be treated containing suspended components.
  • a membrane module immersed in the water to be treated containing suspended components.
  • an air diffuser for diffusing air toward the membrane module and an ozone diffuser for diffusing ozone-containing gas toward the membrane module are provided,
  • the membrane module is characterized in that both the support and the membrane are made of polytetrafluoroethylene.
  • the water treatment method of the present invention is a submerged membrane type water treatment method in which a suspended component contained in water to be treated is separated by a membrane module immersed in the water to be treated to obtain treated water.
  • Air and ozone-containing gas were simultaneously diffused into the membrane module from below, and the suspended components adhering to the membrane module were oxidized by chemical oxidation reaction with ozone in the diffused ozone-containing gas and diffused.
  • Suspended components adhering to the membrane module due to air bubbles are removed by physical vibration, and in particular, the ozone-containing gas contains 20 g or more of ozone per 1 m 3 of ozone-containing gas in a standard state. It is characterized by that.
  • various suspended substances can be reliably removed from the immersion membrane. Therefore, it is possible to stably obtain highly purified water and reused water from waste water.
  • the water treatment apparatus shown in this embodiment is an immersion membrane type water treatment apparatus in which the membrane module 12 is immersed in a liquid to be treated introduced into a treatment tank 11 from a treatment water introduction path (not shown). .
  • a treatment water introduction path (not shown)
  • the treated water lead-out path 13 communicating with the inside of the membrane module 12
  • the suspended matter in the liquid to be treated is captured by the membrane module 12. Separated treated water can be obtained.
  • an air diffuser 14 that diffuses air toward the membrane module 12 and an ozone diffuser 15 that diffuses ozone-containing gas toward the membrane module 12 are provided. Yes.
  • the air diffusing means 14 is connected to an air supply facility 16 that pressurizes and supplies air.
  • the ozone diffuser 15 is connected to an ozone generator 17 that generates ozone by silent discharge, for example.
  • the ozone-containing gas diffused from the ozone diffuser 15 is an ozone-containing gas containing 20 g or more of ozone per m 3 in a standard state (0 ° C., 100 kPa), that is, an ozone concentration of 20 g / Nm 3 or more, preferably 25 g. It is preferable to use an ozone-containing gas of / Nm 3 or more, and by diffusing an ozone-containing gas having a high ozone concentration, the suspended substances attached to the membrane module 12 can be effectively oxidized.
  • the amount of ozone added to the amount of treated water varies depending on the quality of the water to be treated, but is generally in the range of 0.1 to 2.0 mg / L.
  • the membrane module 12 is an immersion type hollow fiber filtration membrane, and water to be treated enters the inside of the membrane yarn from the outer periphery of the cylindrical membrane yarn through the membrane body (skin layer) and the support body (support layer). Then, the treated water flows out from the end of the membrane yarn. The suspended matter is separated from the treated water by being blocked by the membrane body on the outer periphery of the membrane yarn.
  • a material having ozone resistance for example, polytetrafluoroethylene (PTFE).
  • the membrane module 12 removes the ozone-containing gas from the ozone diffuser 15.
  • the suspended components adhering to the membrane module 12 can be chemically oxidized by the strong oxidizing power of ozone contained in the ozone-containing gas, and the air is diffused from the air aeration means 14.
  • the suspended components adhering to the membrane module 12 are physically removed from the membrane module 12 by vibration caused by air bubbles diffused from the air diffusing means 14. Can do.
  • organic matter and microorganisms in the water to be treated can be decomposed and removed, sterilized, and sterilized by the oxidizing action of ozone.
  • the ozone concentration is lower than when only ozone-containing gas is diffused, but the ozone in the ozone-containing gas can reliably oxidize contaminants on the film surface. In addition, oxidized contaminants can be stripped from the membrane surface by aerated air.
  • the suspended components adhering to the membrane module 12 are surely removed to increase the differential pressure.
  • treated water obtained by separating suspended components from the treated water for example, highly treated purified water and reused water from waste water can be stably obtained at a high flow rate.
  • the membrane module 12 formed of polytetrafluoroethylene it is possible to suppress a deterioration of the membrane due to ozone and continue a stable operation over a long period of time.
  • the air diffuser 14 and the ozone diffuser 15 are not limited to the operation in which air is diffused at the same time, and there may be an operation period in which air is diffused from only one of them. Furthermore, the amount of air diffused from each air diffuser can be set as appropriate according to the state of the membrane module 12.
  • ancillary equipment attached to the submerged membrane type water treatment apparatus such as sludge removal means and backwashing means, use the auxiliary equipment provided in the conventionally known submerged membrane type water treatment apparatus as it is. Therefore, detailed description thereof will be omitted.
  • Change of the differential pressure when the ozone-containing gas having an ozone concentration of 20 g / Nm 3 is diffused from the ozone and the ozone-containing gas having an ozone concentration of 10 g / Nm 3 from the ozone aeration means 15 while operating the air aeration means 14 The change in differential pressure when air was diffused was measured.
  • SYMBOLS 11 Treatment tank, 12 ... Membrane module, 13 ... Treatment water extraction route, 14 ... Air diffuser, 15 ... Ozone diffuser, 16 ... Air supply equipment, 17 ... Ozone generator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The immersed membrane-type water treatment device, which is a water treatment device capable of reliably removing suspended components adhering to the immersed membrane and of stably obtaining highly processed clean water or water recycled from waste water and which obtains processed water by separating suspended components using a membrane module (12) immersed in the suspended component-containing water to be treated, is provided with an air-diffusing means (14) that diffuses air toward the membrane module and an ozone-diffusing means (15) that diffuses ozone-containing gas toward the membrane module below the membrane module, and simultaneously diffuses air and the ozone-containing gas toward the membrane module to oxidize the suspended components adhering to the membrane module by a chemical oxidation reaction using the ozone in the diffused ozone-containing gas and to remove the suspended components adhering to the membrane module by physical vibration using air bubbles of the diffused air.

Description

水処理装置及び方法Water treatment apparatus and method
 本発明は、水処理装置及び方法に関し、詳しくは、浸漬膜を使用して浄水処理や排水の再利用処理を行う水処理装置及びこの水処理方法に関する。 The present invention relates to a water treatment apparatus and method, and more particularly, to a water treatment apparatus that performs water purification treatment and wastewater reuse treatment using an immersion membrane, and to this water treatment method.
 国内外、特に中国では、都市化の加速、生活レベルの向上に従って、飲用水の水質に対する要求が高まり、従来の標準的な上水処理プロセスでは、すでに人々の要求を満足させることができないため、新しい基準が設けられている。この中国の新しい基準《生活飲用水衛生標準(GB5749-2006)》の中で規定する水質の指標が旧標準の35項目から106項目に増加し、2012年7月1日以降にすべての浄水場が新しい水質基準を満たすように要求している。しかし、飲用水の主要水源は地表水であり、工業及び農業の汚水、季節的な洪水、海水の逆流などの影響を受けるため、水質の悪化が著しい。中国では、多くの浄水場が依然として通常処理(消毒、固液分離のみ)を採用しており、BOD成分、アンモニア性窒素、微量有機物などの除去能力に限界があり、新しい水質基準を保証できない浄水場が存在する。このため、旧式浄水場の改良が差し迫っており、新しい飲用水の処理技術の開発が大きな意義を持っている。 At home and abroad, especially in China, the demand for drinking water quality increases with the acceleration of urbanization and the improvement of living standards, and the conventional standard water treatment process cannot already meet the demands of people. New standards are in place. The water quality index specified in this new Chinese standard “Drinking water hygiene standard (GB5749-2006)” has increased from 35 items to 106 items from the old standard, and all water treatment plants have been changed since July 1, 2012. Demands new water quality standards. However, the main source of drinking water is surface water, and it is affected by industrial and agricultural sewage, seasonal floods, seawater backflow, etc., so the water quality is greatly deteriorated. In China, many water treatment plants still use regular treatment (disinfection, solid-liquid separation only), and there is a limit to the removal ability of BOD components, ammonia nitrogen, trace organics, etc., and it is impossible to guarantee new water quality standards. There is a place. For this reason, the improvement of the old-style water treatment plant is imminent, and the development of new drinking water treatment technology has great significance.
 現在、新しい飲用水の処理技術は、活性炭処理、生物前処理、粉末活性炭投入、膜処理技術などがある。オゾン活性炭処理技術は、公知の浄水高度処理技術で、オゾン酸化、活性炭吸着、生物分解などを一体化した技術である。オゾンの作用は、有機物の生分解性を高め、活性炭濾過槽の生物分解能力を強化し、かつ、強化された生物作用によって活性炭濾過槽で活性炭自身が吸着した有機物の分解を促進し、これによって活性炭の吸着容量が回復し、活性炭の交換周期が顕著に延長される。オゾン活性炭処理技術は、有機物の除去能力を高め、濁度、アンモニア性窒素、臭気物質などの汚染質の除去効果が、全ての従来の標準処理技術より優れている。しかし、原水の水質変動によっては、オゾン活性炭では生物漏洩の問題があり、放出水の生物安全性を保障できない。また、既存の標準プロセス浄水場に、オゾン活性炭処理技術を適用するには、改良工事に高いコストが必要であり、広い敷地も必要とするため、資金と土地との制限を受ける。 Currently, new drinking water treatment technologies include activated carbon treatment, biological pretreatment, powdered activated carbon charging, and membrane treatment technology. The ozone activated carbon treatment technology is a known advanced water purification treatment technology that integrates ozone oxidation, activated carbon adsorption, biodegradation, and the like. The action of ozone enhances the biodegradability of organic matter, enhances the biodegradability of the activated carbon filter tank, and promotes the decomposition of the organic substance adsorbed by the activated carbon itself in the activated carbon filter tank due to the enhanced biological action. The adsorption capacity of the activated carbon is restored, and the replacement period of the activated carbon is significantly extended. Ozone activated carbon treatment technology enhances the ability to remove organic matter, and is superior to all conventional standard treatment technologies in terms of removing contaminants such as turbidity, ammoniacal nitrogen and odorous substances. However, depending on the quality of the raw water, ozone activated carbon has a problem of biological leakage, and the biological safety of the discharged water cannot be guaranteed. In addition, applying ozone activated carbon treatment technology to existing standard process water purification plants requires high costs for improvement work and requires a large site, which is limited by funds and land.
 水処理における膜技術は、21世紀の飲用水処理技術である。MF膜及びUF膜で代表される膜技術は、水質、敷地面積、生物安全性において有利であり、自動化も容易に行えるという利点を有し、飲用水処理分野で重要な役割を発揮している。しかし、膜濾過における膜の汚染(あるいは膜の詰まり)は、膜技術の応用を妨げる主要な難題である。従来の研究により、凝集、酸化などが膜の汚染を遅らせ、膜フラックスを安定させるのに有効であることがわかっており、近年は、膜濾過と、凝集、吸着、酸化、生物作用などを含む他の処理プロセスとのハイブリッド化が幅広く研究されている。水処理設備の大規模化における膜応用技術の多くは、有機物からなる膜を採用している。膜の材質としては、例えば、ポリ酢酸セルロース、ポリフッ化ビニリデン、ポリプロピレン、ポリエーテルスルホンなどが知られている。凝集と有機膜との組合せは、多く提案されているが、有機膜と酸化処理との組み合わせは稀である。これは、現在採用されているこれらの有機膜の耐酸化性能力が低く、酸化雰囲気では使用が困難であることが原因となっている。このため、酸化とセラミック膜とを組合せることが提案されているが、セラミックス膜のコストが高く、単位容積当たりの膜面積が小さく、エネルギー消耗が高いなどの欠点を持っているため、現在は、ほとんどが研究室レベルに留まっている。 Membrane technology in water treatment is the 21st century drinking water treatment technology. Membrane technologies represented by MF membranes and UF membranes are advantageous in water quality, site area, biosafety, and can be easily automated, and play an important role in the drinking water treatment field. . However, membrane contamination (or membrane clogging) in membrane filtration is a major challenge that hinders the application of membrane technology. Previous studies have shown that agglomeration, oxidation, etc. are effective in delaying membrane contamination and stabilizing membrane flux, and recently include membrane filtration and agglomeration, adsorption, oxidation, biological effects, etc. Hybridization with other treatment processes has been extensively studied. Much of membrane application technology in large-scale water treatment facilities employs organic membranes. As the material for the membrane, for example, cellulose acetate, polyvinylidene fluoride, polypropylene, polyethersulfone, and the like are known. Many combinations of aggregation and organic films have been proposed, but combinations of organic films and oxidation treatments are rare. This is due to the fact that these currently employed organic films have low oxidation resistance and are difficult to use in an oxidizing atmosphere. For this reason, it has been proposed to combine oxidation and ceramic membranes, but because of the disadvantages of high cost of ceramic membranes, small membrane area per unit volume, high energy consumption, etc. Most remain at the laboratory level.
 一方、浄水処理や排水の再利用処理において、懸濁成分を含む被処理水中に浸漬した膜モジュール(浸漬膜)によって懸濁成分を分離する際に、空気を散気して浸漬膜に付着した懸濁成分を除去する空気散気、あるいは、オゾン含有ガスを散気して浸漬膜に付着した懸濁成分を除去するオゾン散気を行い、懸濁成分の付着によって浸漬膜が閉塞することを防止することが提案されている(例えば、特許文献1,2参照。)。 On the other hand, when the suspended components were separated by the membrane module (immersion membrane) immersed in the water to be treated containing the suspended components in water purification treatment or wastewater reuse treatment, air was diffused and adhered to the immersion membrane. Air diffusion to remove suspended components, or ozone diffusion to remove suspended components adhering to the immersion membrane by aeration of ozone-containing gas, and the immersion membrane is blocked by adhesion of the suspended components. It has been proposed to prevent (see, for example, Patent Documents 1 and 2).
特開2006-305443号公報JP 2006-305443 A 特開平9-192459号公報Japanese Patent Laid-Open No. 9-192459
 しかし、被処理水中の懸濁成分の性状によっては、空気散気のみ、あるいは、オゾン散気のみでは懸濁成分を浸漬膜から十分に除去できないことがある。 However, depending on the properties of the suspended components in the water to be treated, the suspended components may not be sufficiently removed from the submerged membrane only by air aeration or ozone aeration alone.
 そこで本発明は、浸漬膜に付着した懸濁成分を確実に除去することができ、高度処理された浄水や、排水からの再利用水を安定して得ることができる水処理装置及び方法を提供することを目的としている。 Accordingly, the present invention provides a water treatment apparatus and method that can reliably remove suspended components adhering to the immersion membrane, and can stably obtain highly purified water and reused water from waste water. The purpose is to do.
 上記目的を達成するため、本発明の水処理装置は、懸濁成分を含む被処理水中に浸漬した膜モジュールにより前記懸濁成分を分離して処理水を得る浸漬膜式の水処理装置において、前記膜モジュールの下方に、前記膜モジュールに向けて空気を散気する空気散気手段と、前記膜モジュールに向けてオゾン含有ガスを散気するオゾン散気手段とを設けたことを特徴とし、特に、前記膜モジュールが、支持体及び膜体が共にポリテトラフルオロエチレンで形成されていることを特徴としている。 In order to achieve the above object, the water treatment apparatus of the present invention is a submerged membrane type water treatment apparatus that obtains treated water by separating the suspended components with a membrane module immersed in the water to be treated containing suspended components. Below the membrane module, an air diffuser for diffusing air toward the membrane module and an ozone diffuser for diffusing ozone-containing gas toward the membrane module are provided, In particular, the membrane module is characterized in that both the support and the membrane are made of polytetrafluoroethylene.
 また、本発明の水処理方法は、被処理水に含まれる懸濁成分を,前記被処理水中に浸漬した膜モジュールにより分離して処理水を得る浸漬膜式の水処理方法において、前記膜モジュールの下方から該膜モジュールに空気とオゾン含有ガスとを同時に散気し、散気したオゾン含有ガス中のオゾンによって膜モジュールに付着した懸濁成分を化学的酸化反応により酸化するとともに、散気した空気の気泡によって膜モジュールに付着した懸濁成分を物理的振動により除去することを特徴とし、特に、前記オゾン含有ガスが、標準状態のオゾン含有ガス1m当たり、20g以上のオゾンを含んでいることを特徴としている。 Further, the water treatment method of the present invention is a submerged membrane type water treatment method in which a suspended component contained in water to be treated is separated by a membrane module immersed in the water to be treated to obtain treated water. Air and ozone-containing gas were simultaneously diffused into the membrane module from below, and the suspended components adhering to the membrane module were oxidized by chemical oxidation reaction with ozone in the diffused ozone-containing gas and diffused. Suspended components adhering to the membrane module due to air bubbles are removed by physical vibration, and in particular, the ozone-containing gas contains 20 g or more of ozone per 1 m 3 of ozone-containing gas in a standard state. It is characterized by that.
 本発明によれば、様々な懸濁物質を浸漬膜から確実に除去することができる。したがって、高度処理された浄水や、排水からの再利用水を安定して得ることができる。 According to the present invention, various suspended substances can be reliably removed from the immersion membrane. Therefore, it is possible to stably obtain highly purified water and reused water from waste water.
本発明の水処理装置の一形態例を示す説明図である。It is explanatory drawing which shows one example of the water treatment apparatus of this invention. 実施例1における差圧の変化状況を示す図である。It is a figure which shows the change condition of the differential pressure | voltage in Example 1. FIG.
 本形態例に示す水処理装置は、処理槽11の内部に被処理水導入経路(図示せず)から導入された被処理液中に膜モジュール12を浸漬した浸漬膜式の水処理装置である。膜モジュール12の内部に連通した処理水導出経路13からポンプ(図示せず)によって膜モジュール12を透過した処理水を抜き出すことにより、被処理液中の懸濁物質を膜モジュール12で捕捉して分離した処理水を得ることができる。 The water treatment apparatus shown in this embodiment is an immersion membrane type water treatment apparatus in which the membrane module 12 is immersed in a liquid to be treated introduced into a treatment tank 11 from a treatment water introduction path (not shown). . By extracting the treated water that has passed through the membrane module 12 by a pump (not shown) from the treated water lead-out path 13 communicating with the inside of the membrane module 12, the suspended matter in the liquid to be treated is captured by the membrane module 12. Separated treated water can be obtained.
 前記膜モジュール12の下方には、膜モジュール12に向けて空気を散気する空気散気手段14と、膜モジュール12に向けてオゾン含有ガスを散気するオゾン散気手段15とが設けられている。空気散気手段14は、空気を昇圧して供給する空気供給設備16に接続されている。また、オゾン散気手段15は、例えば無声放電によってオゾンを発生するオゾン発生装置17に接続されている。 Below the membrane module 12, an air diffuser 14 that diffuses air toward the membrane module 12 and an ozone diffuser 15 that diffuses ozone-containing gas toward the membrane module 12 are provided. Yes. The air diffusing means 14 is connected to an air supply facility 16 that pressurizes and supplies air. The ozone diffuser 15 is connected to an ozone generator 17 that generates ozone by silent discharge, for example.
 オゾン散気手段15から散気するオゾン含有ガスは、標準状態(0℃、100kPa)で1m当たり20g以上のオゾンを含むオゾン含有ガス、すなわち、オゾン濃度が20g/Nm以上、好ましくは25g/Nm以上のオゾン含有ガスを用いることが好ましく、オゾン濃度が高いオゾン含有ガスを散気することにより、膜モジュール12に付着した懸濁物質を効果的に酸化することができる。処理水量に対するオゾン添加量は、被処理水の水質によって異なるが、一般的には0.1~2.0mg/Lの範囲が適当である。 The ozone-containing gas diffused from the ozone diffuser 15 is an ozone-containing gas containing 20 g or more of ozone per m 3 in a standard state (0 ° C., 100 kPa), that is, an ozone concentration of 20 g / Nm 3 or more, preferably 25 g. It is preferable to use an ozone-containing gas of / Nm 3 or more, and by diffusing an ozone-containing gas having a high ozone concentration, the suspended substances attached to the membrane module 12 can be effectively oxidized. The amount of ozone added to the amount of treated water varies depending on the quality of the water to be treated, but is generally in the range of 0.1 to 2.0 mg / L.
 前記膜モジュール12は、浸漬タイプの中空糸ろ過膜であり、被処理水が円筒状の膜糸外周から膜体(スキン層)と支持体(支持層)とを通って膜糸の内部に進入し、膜糸の端部から処理水が流出する。懸濁物質は、膜糸の外周にある膜体に阻止されて処理水から分離される。また、この膜モジュール12は、高濃度オゾンに接触するため、支持体及び膜体を含めた全体を耐オゾン性を有する材料、例えば、ポリテトラフルオロエチレン(PTFE)で形成することが好ましい。 The membrane module 12 is an immersion type hollow fiber filtration membrane, and water to be treated enters the inside of the membrane yarn from the outer periphery of the cylindrical membrane yarn through the membrane body (skin layer) and the support body (support layer). Then, the treated water flows out from the end of the membrane yarn. The suspended matter is separated from the treated water by being blocked by the membrane body on the outer periphery of the membrane yarn. In addition, since the membrane module 12 comes into contact with high-concentration ozone, it is preferable to form the whole including the support and the membrane with a material having ozone resistance, for example, polytetrafluoroethylene (PTFE).
 このように形成した水処理装置において、処理槽11内に被処理水を導入しながら処理水導出経路13を介して処理水を抜き出す際に、オゾン散気手段15からオゾン含有ガスを膜モジュール12に向けて散気することにより、オゾン含有ガスに含まれるオゾンの強力な酸化力によって膜モジュール12に付着した懸濁成分を化学的に酸化することができるとともに、空気散気手段14から空気を膜モジュール12に向けて空気を散気することにより、空気散気手段14から散気された空気の気泡による振動で膜モジュール12に付着した懸濁成分を物理的に膜モジュール12から除去することができる。さらに、オゾンの酸化作用によって被処理水中の有機物、微生物の分解除去処理、滅菌処理、殺菌処理も行うことができる。 In the water treatment apparatus formed as described above, when the treated water is extracted through the treated water outlet path 13 while introducing the treated water into the treatment tank 11, the membrane module 12 removes the ozone-containing gas from the ozone diffuser 15. As a result, the suspended components adhering to the membrane module 12 can be chemically oxidized by the strong oxidizing power of ozone contained in the ozone-containing gas, and the air is diffused from the air aeration means 14. By diffusing air toward the membrane module 12, the suspended components adhering to the membrane module 12 are physically removed from the membrane module 12 by vibration caused by air bubbles diffused from the air diffusing means 14. Can do. Furthermore, organic matter and microorganisms in the water to be treated can be decomposed and removed, sterilized, and sterilized by the oxidizing action of ozone.
 オゾン含有ガスと空気とを散気するので、オゾン含有ガスのみを散気する場合に比べてオゾン濃度は低くなるが、オゾン含有ガス中のオゾンによって膜表面の汚染物質を確実に酸化することができるとともに、酸化した汚染物質を、散気した空気によって膜表面から剥離させることができる。 Since ozone-containing gas and air are diffused, the ozone concentration is lower than when only ozone-containing gas is diffused, but the ozone in the ozone-containing gas can reliably oxidize contaminants on the film surface. In addition, oxidized contaminants can be stripped from the membrane surface by aerated air.
 したがって、連続的に、あるいは、適当な時間間隔で空気散気手段14及びオゾン散気手段15を作動させることにより、膜モジュール12に付着した懸濁成分を確実に除去して差圧の上昇を抑えることができ、被処理水中から懸濁成分を分離した処理水、例えば、高度処理された浄水や、排水からの再利用水を安定して高流量で得ることができる。特に、ポリテトラフルオロエチレンで形成した膜モジュール12を用いることにより、オゾンによる膜の劣化を抑制して長期にわたって安定した運転を継続することができる。 Therefore, by operating the air diffuser 14 and the ozone diffuser 15 continuously or at appropriate time intervals, the suspended components adhering to the membrane module 12 are surely removed to increase the differential pressure. Thus, treated water obtained by separating suspended components from the treated water, for example, highly treated purified water and reused water from waste water can be stably obtained at a high flow rate. In particular, by using the membrane module 12 formed of polytetrafluoroethylene, it is possible to suppress a deterioration of the membrane due to ozone and continue a stable operation over a long period of time.
 なお、空気散気手段14とオゾン散気手段15とは、同時に散気を行う運転に限らず、いずれか一方のみから散気を行う運転期間があってもよい。さらに、各散気手段からの散気量は、膜モジュール12の状態に応じて適宜設定することができる。また、浸漬膜式の水処理装置に付設されている汚泥抜き取り手段や逆洗手段などの付帯機器は、従来から周知の浸漬膜式の水処理装置に設けられている付帯機器をそのまま使用することができるので、これらの詳細な説明は省略する。 It should be noted that the air diffuser 14 and the ozone diffuser 15 are not limited to the operation in which air is diffused at the same time, and there may be an operation period in which air is diffused from only one of them. Furthermore, the amount of air diffused from each air diffuser can be set as appropriate according to the state of the membrane module 12. In addition, as ancillary equipment attached to the submerged membrane type water treatment apparatus, such as sludge removal means and backwashing means, use the auxiliary equipment provided in the conventionally known submerged membrane type water treatment apparatus as it is. Therefore, detailed description thereof will be omitted.
 図1に示す水処理装置において、オゾン散気手段15を停止させて空気散気手段14のみを作動させたときの差圧の変化と、空気散気手段14を作動させながらオゾン散気手段15からオゾン濃度が20g/Nmのオゾン含有ガスを散気したときの差圧の変化と、空気散気手段14を作動させながらオゾン散気手段15からオゾン濃度が10g/Nmのオゾン含有ガスを散気したときの差圧の変化とをそれぞれ測定した。 In the water treatment apparatus shown in FIG. 1, the change in differential pressure when the ozone diffuser 15 is stopped and only the air diffuser 14 is operated, and the ozone diffuser 15 while operating the air diffuser 14. Change of the differential pressure when the ozone-containing gas having an ozone concentration of 20 g / Nm 3 is diffused from the ozone and the ozone-containing gas having an ozone concentration of 10 g / Nm 3 from the ozone aeration means 15 while operating the air aeration means 14 The change in differential pressure when air was diffused was measured.
 その結果を図2に示す。図2から、空気散気手段14からの空気の散気のみでは、線Aに示すように差圧が増加して運転継続が困難になるのに対し、空気とオゾン濃度が20g/Nmのオゾン含有ガスとを散気した場合は、線Bに示すように、差圧を低下させることができ、長時間の運転が可能なことがわかる。また、空気とオゾン濃度が10g/Nmのオゾン含有ガスとを散気した場合は、線Cに示すように、差圧の変化がほとんどなく、差圧の上昇を抑えることができる。 The result is shown in FIG. From FIG. 2, only the air diffusing from the air diffusing means 14 increases the differential pressure as shown by the line A, making it difficult to continue the operation, whereas the air and ozone concentrations are 20 g / Nm 3 . When the ozone-containing gas is diffused, as shown by the line B, it can be seen that the differential pressure can be reduced, and operation for a long time is possible. Further, when air and an ozone-containing gas having an ozone concentration of 10 g / Nm 3 are diffused, as shown by line C, there is almost no change in the differential pressure, and an increase in the differential pressure can be suppressed.
 これらの結果から、オゾン濃度が10g/Nmでもある程度の長期継続運転の効果を期待できるが、オゾン濃度を20g/Nmに高めることにより、差圧を低下させることができ、長期間にわたる連続運転が可能になることがわかる。 From these results, even if the ozone concentration is 10 g / Nm 3 , a certain long-term continuous operation effect can be expected. However, by increasing the ozone concentration to 20 g / Nm 3 , the differential pressure can be reduced and continuous for a long period of time. It turns out that driving becomes possible.
 11…処理槽、12…膜モジュール、13…処理水導出経路、14…空気散気手段、15…オゾン散気手段、16…空気供給設備、17…オゾン発生装置 DESCRIPTION OF SYMBOLS 11 ... Treatment tank, 12 ... Membrane module, 13 ... Treatment water extraction route, 14 ... Air diffuser, 15 ... Ozone diffuser, 16 ... Air supply equipment, 17 ... Ozone generator

Claims (4)

  1.  懸濁成分を含む被処理水中に浸漬した膜モジュールにより前記懸濁成分を分離して処理水を得る浸漬膜式の水処理装置において、前記膜モジュールの下方に、前記膜モジュールに向けて空気を散気する空気散気手段と、前記膜モジュールに向けてオゾン含有ガスを散気するオゾン散気手段とを設けたことを特徴とする水処理装置。 In a submerged membrane type water treatment apparatus that obtains treated water by separating the suspended components using a membrane module immersed in water to be treated containing suspended components, air is directed to the membrane module below the membrane module. A water treatment apparatus comprising an air diffuser for diffusing and an ozone diffuser for diffusing an ozone-containing gas toward the membrane module.
  2.  前記膜モジュールは、支持体及び膜体が共にポリテトラフルオロエチレンで形成されていることを特徴とする請求項1記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the membrane module has both a support and a membrane formed of polytetrafluoroethylene.
  3.  被処理水に含まれる懸濁成分を,前記被処理水中に浸漬した膜モジュールにより分離して処理水を得る浸漬膜式の水処理方法において、前記膜モジュールの下方から該膜モジュールに空気とオゾン含有ガスとを同時に散気し、散気したオゾン含有ガス中のオゾンによって膜モジュールに付着した懸濁成分を化学的酸化反応により酸化するとともに、散気した空気の気泡によって膜モジュールに付着した懸濁成分を物理的振動により除去することを特徴とする水処理方法。 In the submerged membrane type water treatment method for obtaining treated water by separating suspended components contained in the treated water by a membrane module immersed in the treated water, air and ozone are introduced into the membrane module from below the membrane module. The suspended components adhering to the membrane module are oxidized by the chemical oxidation reaction by ozone in the diffused ozone-containing gas at the same time, and the suspended gas adhering to the membrane module by the bubbles of the diffused air is oxidized. A water treatment method, wherein turbid components are removed by physical vibration.
  4.  前記オゾン含有ガスは、標準状態のオゾン含有ガス1m当たり、20g以上のオゾンを含んでいることを特徴とする請求項3記載の水処理方法。 The water treatment method according to claim 3, wherein the ozone-containing gas contains 20 g or more of ozone per 1 m 3 of ozone-containing gas in a standard state.
PCT/JP2013/063000 2012-05-16 2013-05-09 Water treatment device and method WO2013172241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201390000497.6U CN204265490U (en) 2012-05-16 2013-05-09 Water treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012112189A JP2015061716A (en) 2012-05-16 2012-05-16 Water treatment apparatus and method
JP2012-112189 2012-05-16

Publications (1)

Publication Number Publication Date
WO2013172241A1 true WO2013172241A1 (en) 2013-11-21

Family

ID=49583647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063000 WO2013172241A1 (en) 2012-05-16 2013-05-09 Water treatment device and method

Country Status (3)

Country Link
JP (1) JP2015061716A (en)
CN (1) CN204265490U (en)
WO (1) WO2013172241A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695515B1 (en) * 2019-06-17 2020-05-20 三菱電機株式会社 Filtration membrane cleaning device, filtration membrane cleaning method, and water treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
JP2010253354A (en) * 2009-04-22 2010-11-11 Sumitomo Electric Ind Ltd Membrane separation type activated sludge treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
JP2010253354A (en) * 2009-04-22 2010-11-11 Sumitomo Electric Ind Ltd Membrane separation type activated sludge treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Also Published As

Publication number Publication date
CN204265490U (en) 2015-04-15
JP2015061716A (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
Al-Bastaki Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF
JP5909281B2 (en) Water treatment equipment
CN106132518B (en) Water treatment method and water treatment device using membrane
TWI513502B (en) Immersion membrane components of the drug cleaning method
JP5782229B2 (en) Wastewater treatment method
JP6194887B2 (en) Fresh water production method
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
JP2009240902A (en) Water treating method and water treating apparatus
US20080179256A1 (en) System and method for chemical-free metal particle removal from a liquid media
WO2013172241A1 (en) Water treatment device and method
KR100538126B1 (en) Ds-mt system
AU2012324220B2 (en) Fresh water generation system
JP4897255B2 (en) Water treatment apparatus and method
KR100473532B1 (en) Purifying system for hollow yarn membran and operation method of the purifying system
JP2011041907A (en) Water treatment system
JP6267567B2 (en) Vegetable wastewater filtration equipment
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
JP2004290765A (en) Method for treating soluble organic matter-containing liquid
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JP2003340247A (en) Device and method for treating water
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP6007282B2 (en) Waste water treatment method and waste water treatment equipment
JP2002035750A (en) Sewage filtering method
JP2005103510A (en) Method for cleaning liquid chemical

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000497.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791355

Country of ref document: EP

Kind code of ref document: A1