JP5782229B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP5782229B2
JP5782229B2 JP2010080739A JP2010080739A JP5782229B2 JP 5782229 B2 JP5782229 B2 JP 5782229B2 JP 2010080739 A JP2010080739 A JP 2010080739A JP 2010080739 A JP2010080739 A JP 2010080739A JP 5782229 B2 JP5782229 B2 JP 5782229B2
Authority
JP
Japan
Prior art keywords
wastewater
treatment
concentration
line
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010080739A
Other languages
Japanese (ja)
Other versions
JP2011212520A (en
Inventor
洋樹 山地
洋樹 山地
知福 博行
博行 知福
進吾 池田
進吾 池田
仁人 細谷
仁人 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2010080739A priority Critical patent/JP5782229B2/en
Publication of JP2011212520A publication Critical patent/JP2011212520A/en
Application granted granted Critical
Publication of JP5782229B2 publication Critical patent/JP5782229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、生産工程から排出される排水を処理する排水処理方法に関し、特には、例えば、半導体デバイスや液晶などフラットパネルディスプレイなど各種の電子工業製品の製造工場から排出される排水処理方法に関するものである。
The present invention relates to a waste water treatment how to handle the waste water discharged from the production process, in particular, for example, waste water treatment direction discharged from manufacturing plants of various electronic industrial products such as flat panel displays, such as semiconductor devices and liquid crystal it relates to the law.

半導体デバイスなどの電子部品やフラットパネルディスプレイなどの製造工場では、その製造工程で、IPA(イソプロピルアルコール)、メタノール、アセトン、TMAH(テトラメチルアンモニウムハイドロオキサイド)、DMSO(ジメチルスルホキシド)、フェノール、酢酸、界面活性剤など有機性薬品や、無機系薬品など、種々の薬品が使用されている。
これらの製造工程では、各製造工程の処理毎にそれぞれ異なる薬品が使用されるため、各工程から排出される排水中に含まれる薬品の成分も異なる。
In manufacturing plants for electronic components such as semiconductor devices and flat panel displays, IPA (isopropyl alcohol), methanol, acetone, TMAH (tetramethylammonium hydroxide), DMSO (dimethyl sulfoxide), phenol, acetic acid, Various chemicals such as organic chemicals such as surfactants and inorganic chemicals are used.
In these manufacturing processes, since different chemicals are used for each process of the manufacturing processes, the components of the chemicals contained in the waste water discharged from each process are also different.

また、各工程において薬品処理を行った後には純水による洗浄を行うため、洗浄後の薬品を含む洗浄水も排水として排出される。この洗浄水の排水は、薬品処理工程直後の初期洗浄においては高濃度の薬品が含まれているが、何度も洗浄を繰り返していく場合、後工程の洗浄において排出される洗浄水中の薬品は非常に低濃度になる。   In addition, since cleaning with pure water is performed after chemical treatment in each process, cleaning water containing the cleaned chemical is also discharged as waste water. This drainage of washing water contains high-concentration chemicals in the initial washing immediately after the chemical treatment process, but when washing is repeated many times, Very low concentration.

従って、製造工程から排出される排水は、排出される工程によって、成分やその濃度が相違する排水が排出されることになる。   Therefore, the wastewater discharged from the manufacturing process is discharged with different components and concentrations depending on the discharged process.

上記のような電子工業製品の製造工場から排出される排水を処理して、洗浄水などとして再利用するため、従来から種々の排水処理の方法が検討されている。
無機系薬品を含有する排水は、通常イオン交換処理などでイオンを吸着除去する処理が行われる(非特許文献1)。
Various wastewater treatment methods have been studied in order to treat wastewater discharged from a manufacturing factory for electronic industrial products as described above and reuse it as washing water or the like.
The wastewater containing inorganic chemicals is usually subjected to a process of adsorbing and removing ions by an ion exchange process or the like (Non-Patent Document 1).

有機性薬品を含有する排水を処理する方法として、例えば、生物処理によって排水中の有機物を分解する生物処理方法(非特許文献1)や、紫外線やオゾンなどを照射して酸化分解する方法などが知られている(特許文献1)。   Examples of a method for treating wastewater containing organic chemicals include a biological treatment method (Non-Patent Document 1) that decomposes organic matter in wastewater by biological treatment, and a method that oxidizes and decomposes by irradiating ultraviolet rays, ozone, and the like. Known (Patent Document 1).

非特許文献1に記載の生物処理は、好気性生物により排水中の有機物を生物化学的反応で分解し、ろ過することで回収水として回収するもので、経済的に排水処理が行えるという利点がある。
一方、排水中の有機物濃度が高い場合、例えば、排水中の全有機炭素(以下、TOCという)濃度が、数10mg/L以上である高濃度の有機性薬品を含有する排水を処理する場合、高濃度の有機物を含有する排水処理に適した生物処理法(活性汚泥、流動床、固定床、膜分離活性汚泥法)では生物代謝物が生成されるため、排水中の有機物が全て分解されても、さらに数mg/Lの生物代謝物としての有機物が排水中に残留してしまう。
The biological treatment described in Non-Patent Document 1 is a method in which organic matter in wastewater is decomposed by an aerobic organism by a biochemical reaction and recovered as recovered water by filtration, and has an advantage that wastewater treatment can be performed economically. is there.
On the other hand, when the organic matter concentration in the wastewater is high, for example, when treating wastewater containing a high concentration organic chemical in which the total organic carbon (hereinafter referred to as TOC) concentration in the wastewater is several tens mg / L, In biological treatment methods (active sludge, fluidized bed, fixed bed, membrane separation activated sludge method) suitable for wastewater treatment containing high concentrations of organic matter, biological metabolites are generated, so all organic matter in the wastewater is decomposed. However, an organic substance as a biological metabolite of several mg / L remains in the waste water.

前記生物処理後の排水はすでに微生物によって分解処理が行われているため、生物代謝物としての有機物を処理するため、重ねて生物的処理を行っても有効に有機物の分解ができないという問題があった。   Since the wastewater after the biological treatment has already been decomposed by microorganisms, the organic matter as a biological metabolite is treated, so that there is a problem that the organic matter cannot be effectively decomposed even if the biological treatment is repeated. It was.

そこで、特許文献1に記載のように、生物処理後の後処理として、紫外線照射やオゾン添加による処理などの非生物的な分解処理(物理化学的酸化分解処理)が行われている。
紫外線照射やオゾン添加による分解処理は、紫外線ランプやオゾン発生器などから紫外線やオゾンを発生させ排水と反応させることで排水中の有機物を酸化分解するもので、生物処理した後の残留TOCも効果的に分解することができる。
Therefore, as described in Patent Document 1, abiotic decomposition treatment (physicochemical oxidative decomposition treatment) such as treatment by ultraviolet irradiation or ozone addition is performed as post-treatment after biological treatment.
Decomposition treatment by ultraviolet irradiation or ozone addition is an oxidative decomposition of organic matter in wastewater by generating ultraviolet rays or ozone from an ultraviolet lamp or ozone generator and reacting with wastewater. Residual TOC after biological treatment is also effective Can be decomposed.

しかし、このような物理化学的酸化分解処理は、前記のように紫外線ランプやオゾン発生器などの酸化分解するための手段が必要であり大きなエネルギーを必要とし、前記生物処理よりもコストがかかる処理である。従って、酸化分解による処理を行う排水の量が増えると、排水処理全体のコストが増加するという問題があった。   However, such physicochemical oxidative decomposition treatment requires a means for oxidative decomposition such as an ultraviolet lamp and an ozone generator as described above, requires a large amount of energy, and is more expensive than the biological treatment. It is. Therefore, when the amount of wastewater to be treated by oxidative decomposition increases, there is a problem that the cost of the whole wastewater treatment increases.

神鋼パンテツク(株)、神鋼パンテツク技報Vol.39 No.2、p.49−55(1996/3)Shinko Pantech Co., Ltd., Shinko Pantech Technical Report Vol. 39 no. 2, p. 49-55 (1996/3)

特開2007−69204号公報JP 2007-69204 A

上記従来の問題点に鑑み、本発明は、薬品成分を含有する排水の処理において、残留TOC濃度の低い回収水を経済的に回収しうる排水処理方法を提供することを課題とする。
The view of the conventional problems, the present invention provides a process of wastewater containing chemicals components, and to provide a wastewater treatment how that can economically recover low recovery water residual TOC concentration.

排水処理方法に係る本発明は、製造工程から排出される排水のうち、高濃度の有機性薬品を含有する排水を高濃度排水処理ラインへ導入し、低濃度の有機性薬品を含有する排水を低濃度排水処理ラインへ導入し、前記高濃度排水処理ラインでは、排水中の有機物を微生物によって処理する生物処理工程と、物理化学的酸化分解工程が実施され、前記低濃度排水処理ラインでは、未生物処理水である排水を、微生物によって処理する生物処理工程が実施されることを特徴としている。   The present invention relating to the wastewater treatment method introduces wastewater containing high concentration organic chemicals into wastewater treatment line, introducing wastewater containing high concentration organic chemicals into high concentration wastewater treatment line. Introduced into the low-concentration wastewater treatment line, in the high-concentration wastewater treatment line, a biological treatment process for treating organic matter in the wastewater with microorganisms and a physicochemical oxidative decomposition process are carried out. A biological treatment process for treating wastewater, which is biologically treated water, with microorganisms is performed.

さらに、排水処理方法に係る本発明は、前記低濃度排水処理ラインでは、該生物処理工程を実施する前に、排水中の有機物濃度を測定し、該有機物濃度が所定の濃度よりも高い場合には、該排水の少なくとも一部を前記高濃度排水処理ラインの物理化学的酸化分解工程へ導入することが好ましい。   Furthermore, the present invention relating to the wastewater treatment method is to measure the organic matter concentration in the wastewater before the biological treatment step in the low-concentration wastewater treatment line, and when the organic matter concentration is higher than a predetermined concentration. It is preferable to introduce at least a part of the waste water into the physicochemical oxidative decomposition process of the high-concentration waste water treatment line.

さらに、排水処理方法に係る本発明は、前記製造工程から排出される排水のうち、無機系薬品を含有する排水を無機系排水処理ラインへ導入し、該無機系排水処理ラインでは、排水中のイオンを除去する。 Furthermore, this invention which concerns on a wastewater treatment method introduce | transduces the waste_water | drain containing an inorganic type chemical | medical agent into an inorganic-type wastewater treatment line among the wastewater discharged | emitted from the said manufacturing process, In this inorganic-type wastewater treatment line, It removes ions.

また、排水処理方法に係る本発明は、前記イオン除去処理工程で処理された排水を前記低濃度排水処理ラインの前記生物処理工程で処理する。
Further, the present invention according to the waste water treatment method that processes the processed by the ion removal process wastewater in the biological treatment process of the low-concentration waste water treatment line.

さらに、排水処理方法に係る本発明は、前記高濃度排水処理ラインでは、排水を逆浸透膜によって透過処理を行う逆浸透膜処理工程が実施され、該逆浸透膜処理工程で処理された排水を前記物理化学的酸化分解工程で処理することが好ましい。   Further, according to the present invention relating to the wastewater treatment method, in the high-concentration wastewater treatment line, a reverse osmosis membrane treatment step is performed in which the wastewater is permeated with a reverse osmosis membrane, and the wastewater treated in the reverse osmosis membrane treatment step is treated. It is preferable to treat in the physicochemical oxidative decomposition step.

また、排水処理方法に係る本発明は、前記物理化学的酸化分解工程が、紫外線またはオゾンによって酸化分解を行うことが好ましい。   In the present invention relating to the wastewater treatment method, the physicochemical oxidative decomposition step is preferably oxidatively decomposed by ultraviolet rays or ozone.

尚、本発明でいう未生物処理水とは、微生物によって排水中の有機物を分解するための生物処理を行っていない水をいう。   In addition, the abiotic treated water as used in the field of this invention means the water which has not performed the biological treatment for decomposing | disassembling the organic substance in wastewater with microorganisms.

また、排水処理装置は、製造工程から排出される有機性薬品を含有する排水のうち、高濃度の有機性薬品を含有する排水を高濃度排水処理ラインへ導入し、低濃度の有機性薬品を含有する排水を低濃度排水処理ラインへ導入する導入手段を備えた排水処理装置であって、前記高濃度排水処理ラインは、排水を微生物によって処理する生物処理手段と、物理化学的酸化分解手段を備え、前記低濃度排水処理ラインは、排水を生物によって処理する生物処理装置を備えていることを特徴としている。
In addition, wastewater treatment equipment introduces wastewater containing high-concentration organic chemicals into high-concentration wastewater treatment lines out of wastewater containing organic chemicals discharged from the manufacturing process. A wastewater treatment apparatus having an introduction means for introducing wastewater contained therein into a low-concentration wastewater treatment line, the high-concentration wastewater treatment line comprising biological treatment means for treating wastewater with microorganisms, and physicochemical oxidative decomposition means And the low-concentration wastewater treatment line is characterized by comprising a biological treatment device for treating the wastewater with a living organism.

さらに、排水処理装置は、前記低濃度排水処理ラインは、該生物処理装置に排水を導入する前の排水中の有機物濃度を測定する測定装置と、該測定装置によって測定された有機物濃度が所定の濃度よりも高い場合に、該排水の少なくとも一部を前記高濃度排水処理ラインの前記物理化学的酸化分解手段へ導入するバイパスラインとを備えていることが好ましい。 Further, the wastewater treatment apparatus includes a low-concentration wastewater treatment line, a measurement device that measures the organic matter concentration in the wastewater before the wastewater is introduced into the biological treatment device, and the organic matter concentration measured by the measurement device is a predetermined value. It is preferable to provide a bypass line that introduces at least a part of the wastewater into the physicochemical oxidative decomposition means of the high-concentration wastewater treatment line when the concentration is higher.

本発明の処理方法では、高濃度の有機性薬品を含有する排水と低濃度の有機性薬品を含有する排水をそれぞれ別の処理ライン(高濃度排水処理ラインおよび低濃度排水処理ライン)に導入し排水処理がなされるため、高濃度排水処理ラインにおける物理化学的酸化分解工程で処理する排水の量が減るとともに、低濃度排水処理ラインでは、物理化学的酸化分解に比べて経済的な生物処理工程で排水を処理するため、全体として省エネルギー且つ低コストで排水中の有機物の分解処理をすることができる。
さらに低濃度排水処理ラインの生物処理工程では、未生物処理水である排水を処理するため、有機物の分解が効率よく行える。
また、前記物理化学的酸化分解工程の前に生物によって排水処理を行う生物処理工程を設けたため、生物処理を行うことで排水中の有機物を低濃度にしてから物理化学的酸化分解を行うため、物理化学的酸化分解処理のエネルギーコストを低くできる。
In the treatment method of the present invention, waste water containing a high concentration organic chemical and waste water containing a low concentration organic chemical are introduced into separate treatment lines (a high concentration waste water treatment line and a low concentration waste water treatment line), respectively. Since wastewater treatment is performed, the amount of wastewater treated in the physicochemical oxidative decomposition process in the high concentration wastewater treatment line is reduced, and in the low concentration wastewater treatment line, the biological treatment process is more economical than physicochemical oxidative decomposition. Since the wastewater is treated in this way, the organic matter in the wastewater can be decomposed at a low energy and cost as a whole.
Furthermore, in the biological treatment process of the low-concentration wastewater treatment line, wastewater that is unbiologically treated water is treated, so that organic matter can be efficiently decomposed.
In addition, since a biological treatment process for performing wastewater treatment by living organisms is provided before the physicochemical oxidative decomposition process, in order to perform physicochemical oxidative decomposition after reducing the organic matter in the wastewater by performing biological treatment, Energy cost of physicochemical oxidative decomposition treatment can be reduced.

尚、ここでいう高濃度の有機性薬品を含有する排水とは、排水中に含まれるTOCが約10mg/L以上、好ましくは30mg/L以上である排水をいう。
また、低濃度の有機性薬品を含有する排水とは、排水中に含まれるTOCが約10mg未満である排水をいう。
In addition, the waste water containing the high concentration organic chemical here refers to waste water having a TOC contained in the waste water of about 10 mg / L or more, preferably 30 mg / L or more.
Moreover, the wastewater containing a low concentration organic chemical means the wastewater whose TOC contained in wastewater is less than about 10 mg.

また、本発明の排水は生産工場などの各生産工程から排出された排水そのものであってもよく、あるいは、生産工程から排出された排水になんらかの処理を施して前記各濃度になるように調整された排水であってもよい。   Further, the wastewater of the present invention may be the wastewater itself discharged from each production process such as a production factory, or the wastewater discharged from the production process is subjected to some treatment to be adjusted to the respective concentrations. It may be drainage.

さらに、低濃度排水処理ラインで行われる生物処理工程を実施する前に排水中の有機物濃度を測定し、該有機物濃度が所定の濃度よりも高い場合には、該排水の少なくとも一部を前記高濃度排水処理ラインの物理化学的酸化分解工程へ導入するため、生物処理工程で処理できない高濃度の有機性薬品が低濃度排水処理ラインに混入した場合でも、安定した有機物の分解処理を行うことができ残留TOC濃度の低い回収水を得ることができる。   Further, the organic matter concentration in the wastewater is measured before performing the biological treatment process performed in the low-concentration wastewater treatment line, and when the organic matter concentration is higher than a predetermined concentration, at least a part of the wastewater is Because it is introduced into the physicochemical oxidative decomposition process of the concentration wastewater treatment line, even if high-concentration organic chemicals that cannot be treated in the biological treatment process are mixed into the low-concentration wastewater treatment line, stable organic substance decomposition processing can be performed. And recovered water having a low residual TOC concentration can be obtained.

本発明の排水処理方法に、無機系薬品を含有する排水を処理する無機系排水処理ラインでの処理を含み、且つ該無機系排水処理ラインでは、排水中のイオンを除去するイオン除去処理工程が実施される場合には、無機系薬品を含有する排水を前記高濃度の有機性薬品を含有する排水とは別の処理工程において処理することができるため、前記物理化学的酸化分解工程で処理する排水の量を増やすことなく、無機系薬品を含有する排水の処理も行うことができる。   The wastewater treatment method of the present invention includes treatment in an inorganic wastewater treatment line for treating wastewater containing inorganic chemicals, and the inorganic wastewater treatment line includes an ion removal treatment step for removing ions in the wastewater. When implemented, wastewater containing inorganic chemicals can be treated in a separate treatment step from wastewater containing high-concentration organic chemicals, and therefore treated in the physicochemical oxidative decomposition step. Without increasing the amount of waste water, waste water containing inorganic chemicals can also be treated.

また、前記イオン除去処理工程で処理された排水を前記生物処理工程で処理する場合には、無機系薬品を含有する排水中に有機物が含まれていた場合にも、物理化学的酸化分解に比べて経済的な生物処理によって除去できる。   In addition, when the wastewater treated in the ion removal treatment step is treated in the biological treatment step, the organic waste is contained in the wastewater containing inorganic chemicals as compared with the physicochemical oxidative decomposition. Can be removed by economical biological treatment.

また、前記高濃度排水処理ラインにおいて、排水を逆浸透膜処理工程によって処理してから前記酸化分解工程で処理した場合には、酸化分解する有機物がより少なくなり、酸化分解工程でのエネルギーをさらに低くすることができる。   In the high-concentration wastewater treatment line, when wastewater is treated in the reverse osmosis membrane treatment process and then treated in the oxidative decomposition process, the amount of organic matter that undergoes oxidative decomposition is reduced, and energy in the oxidative decomposition process is further increased. Can be lowered.

本発明の排水処理方法において、物理化学的酸化分解手段として紫外線またはオゾンを使用した場合には、排水中の有機物を確実に分解することができる。   In the wastewater treatment method of the present invention, when ultraviolet rays or ozone is used as the physicochemical oxidative decomposition means, organic substances in the wastewater can be reliably decomposed.

本発明の排水処理装置及び方法を示す概略フロー図。1 is a schematic flow diagram showing a wastewater treatment apparatus and method of the present invention. 本発明の排水処理装置及び方法を示す概略フロー図。1 is a schematic flow diagram showing a wastewater treatment apparatus and method of the present invention. 実施例の排水処理方法を示す概略フロー図Schematic flowchart showing the wastewater treatment method of the example 比較例の排水処理方法を示す概略フロー図Schematic flow diagram showing the wastewater treatment method of the comparative example 比較例の排水処理方法を示す概略フロー図Schematic flow diagram showing the wastewater treatment method of the comparative example 生物活性炭処理装置へ流入する積算TOC量と差圧の関係を示すグラフGraph showing the relationship between accumulated TOC amount flowing into biological activated carbon treatment equipment and differential pressure 生物活性炭処理装置へ流入するTOC濃度と処理可能な継続時間を示すグラフGraph showing the TOC concentration flowing into the biological activated carbon treatment equipment and the duration of treatment

<第一実施形態>
以下、図1に基づき本発明の第一の実施形態の排水処理装置および排水処理方法について説明する。
先ず、排水処理装置について説明する。
図1は、本実施形態の排水処理装置についての概略フロー図である。
図中の符号1が排水処理装置を示している。
本実施形態の排水処理装置1は、高濃度の有機性薬品を含有する排水が導入される高濃度排水処理ライン10と、低濃度の有機性薬品を含有する排水が導入される低濃度排水処理ライン20とを備えている。
<First embodiment>
Hereinafter, the waste water treatment apparatus and waste water treatment method of the first embodiment of the present invention will be described with reference to FIG.
First, the waste water treatment apparatus will be described.
FIG. 1 is a schematic flow diagram of the waste water treatment apparatus of the present embodiment.
The code | symbol 1 in a figure has shown the waste water treatment apparatus.
The wastewater treatment apparatus 1 of this embodiment includes a high-concentration wastewater treatment line 10 into which wastewater containing high-concentration organic chemicals is introduced, and a low-concentration wastewater treatment into which wastewater containing low-concentration organic chemicals is introduced. Line 20.

さらに、本実施形態の排水処理装置1は、無機系薬品を含む排水を処理する無機系排水処理ライン30を備えている。   Furthermore, the wastewater treatment apparatus 1 of this embodiment includes an inorganic wastewater treatment line 30 for treating wastewater containing inorganic chemicals.

排水処理装置1は、前記各処理ラインへ排水を導入する導入ライン(図示せず)を備えている。   The waste water treatment apparatus 1 includes an introduction line (not shown) for introducing waste water into each treatment line.

前記高濃度排水処理ライン10は、物理化学的酸化分解処理装置として排水に紫外線を照射して酸化分解を行う紫外線酸化分解処理装置11を備えている。
さらに前記高濃度排水処理ライン10は、生物処理装置12と、該生物処理装置12で処理された排水を濾過するろ過処理装置13と、前記紫外線酸化分解処理装置11に導入する前に排水を逆浸透膜にて処理する逆浸透膜処理装置14とを備えている。
The high-concentration wastewater treatment line 10 includes an ultraviolet oxidative decomposition treatment apparatus 11 that performs oxidative decomposition by irradiating wastewater with ultraviolet rays as a physicochemical oxidative decomposition treatment apparatus.
Further, the high-concentration wastewater treatment line 10 includes a biological treatment device 12, a filtration treatment device 13 that filters wastewater treated by the biological treatment device 12, and reverses the wastewater before being introduced into the ultraviolet oxidative decomposition treatment device 11. And a reverse osmosis membrane processing apparatus 14 for processing with the osmosis membrane.

前記紫外線酸化分解処理装置11は、紫外線を照射する手段として紫外線ランプを備えており、前記逆浸透膜処理装置で透過水として分離された排水を処理装置に導入し、該排水に紫外線を照射して排水中の有機物を酸化分解する。尚、紫外線酸化分解処理装置に廃水を供給する際に、排水に過酸化水素等の酸化剤を添加するのが好ましい。   The ultraviolet oxidative decomposition treatment apparatus 11 includes an ultraviolet lamp as a means for irradiating ultraviolet rays. The wastewater separated as permeate by the reverse osmosis membrane treatment apparatus is introduced into the treatment apparatus, and the wastewater is irradiated with ultraviolet rays. To oxidize and decompose organic matter in the wastewater. In addition, when supplying wastewater to an ultraviolet oxidative decomposition treatment apparatus, it is preferable to add an oxidizing agent such as hydrogen peroxide to the wastewater.

紫外線酸化分解処理装置11としては、紫外線ランブを備えた公知の紫外線酸化分解装置が使用できるが、例えば、排水を貯留する排水槽内に紫外線ランプを挿入して貯留槽内の排水に紫外線を照射するものや、筒状の排水管内に紫外線ランプを差し込み、排水管内に排水を流通させながら紫外線を照射するものなどが使用できる。
紫外線ランプも公知のものが使用できるが、波長185から365nm、好ましくは185から254nmのものが適している。
As the ultraviolet oxidative decomposition treatment apparatus 11, a known ultraviolet oxidative decomposition apparatus equipped with an ultraviolet lamp can be used. For example, an ultraviolet lamp is inserted into a drainage tank for storing wastewater to irradiate the wastewater in the storage tank with ultraviolet rays. The one which irradiates ultraviolet rays while inserting the ultraviolet lamp into the cylindrical drainage pipe and circulating the drainage through the drainage pipe can be used.
A well-known ultraviolet lamp can be used, but one having a wavelength of 185 to 365 nm, preferably 185 to 254 nm is suitable.

前記生物処理装置12は、活性汚泥処理装置、流動床式生物処理装置、固定床式生物処理装置、膜分離活性汚泥処理装置などの公知の生物処理装置であり、該生物処理装置内に排水を通水することで、前記微生物によって排水中の有機物を分解するものである。尚、微生物は、好気性微生物や嫌気性微生物等の各種微生物が挙げられ、高濃度の有機性薬品を含有する排水の成分によって、使用される微生物や装置を適宜選択することができる。   The biological treatment apparatus 12 is a known biological treatment apparatus such as an activated sludge treatment apparatus, a fluidized bed biological treatment apparatus, a fixed bed biological treatment apparatus, or a membrane separation activated sludge treatment apparatus, and drains water into the biological treatment apparatus. By passing water, the organic matter in the wastewater is decomposed by the microorganisms. In addition, various microorganisms, such as an aerobic microorganism and an anaerobic microorganism, are mentioned as microorganisms, The microorganisms and apparatus to be used can be suitably selected with the component of the waste_water | drain containing a high concentration organic chemical | medical agent.

前記生物処理装置の12の後段に設けられた前記ろ過処理装置13は、装置内に精密ろ過膜あるいは限外ろ過膜が備えられ、前記生物処理装置12から流失した微生物などをろ過することで排水中から除去できる。
前記逆浸透膜処理装置14は装置内に逆浸透膜を備えており、該逆浸透膜に排水を加圧接触させることによって排水が濃縮水と透過水に分離され、透過水を前記紫外線酸化分解処理装置11へ導入する。
濃縮水は、蒸留したあと回収水として回収され、蒸留により残存した固形物(塩類等)は別途廃棄等される。尚、濃縮水は、排水処理して系外に放流してもよい。
The filtration treatment device 13 provided in the latter stage of the biological treatment device 12 is provided with a microfiltration membrane or an ultrafiltration membrane in the device, and drains water by filtering microorganisms and the like washed away from the biological treatment device 12. Can be removed from inside.
The reverse osmosis membrane treatment device 14 includes a reverse osmosis membrane in the device, and the wastewater is separated into concentrated water and permeate by bringing the wastewater into pressure contact with the reverse osmosis membrane. Introduced into the processing apparatus 11.
Concentrated water is recovered as recovered water after distillation, and solids (such as salts) remaining by distillation are discarded separately. The concentrated water may be discharged from the system after drainage treatment.

前記低濃度排水処理ライン20には生物処理装置としての生物活性炭処理装置21が備えられている。
該生物活性炭処理装置21は、好気性微生物等の有機物を分解する微生物を担持させた粒状活性炭を充填した充填層を備え、該充填層に排水を導入し、充填層内で排水中の有機物を微生物によって分解する。
The low-concentration wastewater treatment line 20 is provided with a biological activated carbon treatment device 21 as a biological treatment device.
The biological activated carbon treatment device 21 includes a packed bed filled with granular activated carbon supporting microorganisms that decompose organic substances such as aerobic microorganisms, introduces waste water into the packed bed, and removes organic matter in the waste water in the packed bed. Degraded by microorganisms.

前記無機系排水処理ライン30は、イオン除去処理装置31を備えている。該イオン除去処理装置31は、イオン交換樹脂が充填された充填塔を備えており、該充填塔に排水を通水することで、イオン交換樹脂と排水が接触し、排水中のイオンがイオン交換樹脂に吸着されて、除去される。   The inorganic wastewater treatment line 30 includes an ion removal treatment device 31. The ion removal treatment device 31 includes a packed tower filled with an ion exchange resin. By passing waste water through the packed tower, the ion exchange resin and waste water come into contact with each other, and ions in the waste water are ion exchanged. It is adsorbed by the resin and removed.

前記該イオン除去処理装置31で処理された排水は、前記低濃度排水処理ライン20に備えられた前記生物活性炭処理装置21へ導入される。   The wastewater treated by the ion removal treatment device 31 is introduced into the biological activated carbon treatment device 21 provided in the low concentration wastewater treatment line 20.

本実施形態に係る排水処理装置1には、前記紫外線酸化分解処理装置11および前記生物活性炭処理装置21で処理された排水を回収水として回収する回収槽15を備えている。   The wastewater treatment apparatus 1 according to this embodiment includes a collection tank 15 that collects wastewater treated by the ultraviolet oxidative decomposition treatment apparatus 11 and the biological activated carbon treatment apparatus 21 as recovered water.

次に、本実施形態の排水処理装置において実施される排水処理方法について説明する。
図1に示すように、排水処理装置1には、半導体デバイスや液晶フラットディスプレイの製造工程から排出された排水が導入される。
Next, the waste water treatment method implemented in the waste water treatment apparatus of this embodiment will be described.
As shown in FIG. 1, waste water discharged from a manufacturing process of a semiconductor device or a liquid crystal flat display is introduced into the waste water treatment apparatus 1.

製造工程の各工程毎に排水は集められる。通常、各製造工程で使用される薬品の種類は決まっているため、排水が集められる工程によって排水が有機性薬品を高濃度に含有する排水か、有機性薬品を低濃度で含有する排水か、無機系薬品を含有する排水かを判別し、前記高濃度排水処理ライン10、低濃度排水処理ライン20または無機系排水処理ライン30のいずれかに排水を導入する。   Wastewater is collected for each process of the manufacturing process. Usually, since the type of chemical used in each manufacturing process is determined, whether the wastewater contains a high concentration of organic chemicals or the wastewater contains a low concentration of organic chemicals, depending on the process in which the wastewater is collected, It is determined whether the wastewater contains inorganic chemicals, and wastewater is introduced into any one of the high-concentration wastewater treatment line 10, the low-concentration wastewater treatment line 20, or the inorganic wastewater treatment line 30.

この時の判断基準としては、排水中に含まれるTOCが約10mg/L以上である排水であれば、高濃度の有機性薬品含有排水と判断する。
また、排水中に含まれるTOCが10mg/L未満である排水は、低濃度の有機性薬品含有排水と判断する。
また、無機系薬品含有排水にはTOC濃度として10mg/L未満程度の微量の有機物が混入されていてもよい。
As a judgment standard at this time, if the TOC contained in the wastewater is about 10 mg / L or more, it is judged as wastewater containing high concentration organic chemicals.
Moreover, the waste water whose TOC contained in waste water is less than 10 mg / L is judged as a low concentration organic chemical containing waste water.
The inorganic chemical-containing waste water may be mixed with a trace amount of organic matter having a TOC concentration of less than 10 mg / L.

高濃度排水処理ライン10へ導入された排水は、まず前記生物処理装置12で微生物によって排水中の有機物が分解処理される。この生物処理装置12によって処理された排水は、前記ろ過処理装置13によって前記生物処理装置12から流失した微生物などが除去される。
さらに、排水は前記逆浸透膜装置14で濃縮水と透過水に分離されて、有機物がさらに除去された透過水として回収された排水を、前記紫外線酸化分解処理装置11へ導入する。
濃縮水は、有機物や塩類等が含有されているため、蒸留あるいは逆浸透膜ろ過などによってさらに濃縮分離してから水分を回収してもよい。
The wastewater introduced into the high-concentration wastewater treatment line 10 is first decomposed by organic matter in the wastewater by the microorganisms in the biological treatment device 12. From the wastewater treated by the biological treatment device 12, microorganisms and the like that have been washed away from the biological treatment device 12 are removed by the filtration treatment device 13.
Further, the wastewater is separated into concentrated water and permeated water by the reverse osmosis membrane device 14, and the wastewater recovered as permeated water from which organic substances are further removed is introduced into the ultraviolet oxidative decomposition treatment device 11.
Since concentrated water contains organic substances, salts, and the like, the water may be recovered after further concentration and separation by distillation or reverse osmosis membrane filtration.

前記のようにTOCが約10mg/L以上含まれている高濃度の有機性薬品含有排水は、生物処理装置12を経ることで排水中のTOC濃度が約5mg/Lから約10mg/L程度になり、また、前記ろ過処理装置13および逆浸透膜装置14での処理によって、例えば、約1mg/Lにまで低下する。   As described above, wastewater containing organic chemicals with a high concentration containing TOC of about 10 mg / L or more has a TOC concentration in the wastewater of about 5 mg / L to about 10 mg / L through the biological treatment device 12. Moreover, it falls to about 1 mg / L by the process in the said filtration processing apparatus 13 and the reverse osmosis membrane apparatus 14, for example.

このようにTOC濃度が約1mg/Lまで低下した状態で排水は前記紫外線酸化分解処理装置11へ導入される。
前記紫外線酸化分解処理装置11へ導入された排水に、紫外線を照射し、排水中の有機物を酸化分解する。このときの紫外線ランプの消費電力1.1kWh/m3、処理時間約20分程度で処理を行うことが好ましい。
In this way, wastewater is introduced into the ultraviolet oxidative decomposition treatment apparatus 11 with the TOC concentration lowered to about 1 mg / L.
The wastewater introduced into the ultraviolet oxidative decomposition treatment apparatus 11 is irradiated with ultraviolet rays to oxidize and decompose organic substances in the wastewater. At this time, it is preferable to perform the treatment with the power consumption of the ultraviolet lamp 1.1 kWh / m 3 and the treatment time of about 20 minutes.

このように、紫外線酸化処理装置11に導入された時点では、排水のTOC濃度はかなり低下しているため、紫外線を短時間照射することで排水中の有機物の分解を行うことができる。   As described above, since the TOC concentration of the wastewater is considerably lowered at the time when it is introduced into the ultraviolet oxidation treatment apparatus 11, the organic matter in the wastewater can be decomposed by irradiating with ultraviolet rays for a short time.

一方、低濃度排水処理ライン20へ導入された排水は、前記生物活性炭処理装置21上方から排水を下向流で通水し活性炭に担持された微生物によって排水中の有機物が分解された処理水が、装置下方から回収水として回収される。
この生物活性炭処理装置21で処理された排水のTOC濃度は約0.3mg/L以下になり、回収水として回収可能な程度までTOC濃度は低下する。
On the other hand, the wastewater introduced into the low-concentration wastewater treatment line 20 is treated water in which organic matter in the wastewater is decomposed by the microorganisms carried on the activated carbon by passing the wastewater downward from the biological activated carbon treatment device 21. It is recovered as recovered water from below the apparatus.
The TOC concentration of the wastewater treated by the biological activated carbon treatment device 21 is about 0.3 mg / L or less, and the TOC concentration is reduced to the extent that it can be recovered as recovered water.

低濃度排水処理ライン20には低TOC濃度の排水が導入されるため通常の処理の範囲では前記生物活性炭処理装置21のみの処理でも十分に処理が可能である。
また、低濃度排水処理ライン20では生物活性炭処理21で処理される前には特に前処理されておらず、すなわち生物活性炭処理装置21へは生物処理を経ていない未生物処理水である排水が導入されることになり、生物活性炭処理装置による生物処理で効果的に有機物を分解することができる。
Since low-concentration wastewater treatment line 20 is introduced with wastewater having a low TOC concentration, treatment with only the biological activated carbon treatment device 21 can be sufficiently performed within the normal treatment range.
Further, in the low concentration wastewater treatment line 20, the wastewater which is not pretreated before being treated with the biological activated carbon treatment 21, that is, the biologically treated water which has not undergone biological treatment is introduced into the biological activated carbon treatment apparatus 21. Therefore, the organic matter can be effectively decomposed by the biological treatment by the biological activated carbon treatment apparatus.

さらに、無機系排水処理ライン30に導入された排水は、前記イオン除去処理装置31に導入されて、排水中のイオンを除去される。
イオン除去処理装置31によってイオンを除去された排水は、前記低濃度排水処理ライン20の生物活性炭処理装置21に導入される。
このように無機系薬品含有排水も生物活性炭処理装置21で処理することにより、有機物がわずかに含まれている場合でも、確実に有機物を処理することができる。
Further, the wastewater introduced into the inorganic wastewater treatment line 30 is introduced into the ion removal treatment device 31 to remove ions in the wastewater.
The wastewater from which ions have been removed by the ion removal treatment device 31 is introduced into the biological activated carbon treatment device 21 of the low-concentration wastewater treatment line 20.
By treating the waste water containing inorganic chemicals with the biological activated carbon treatment device 21 as described above, the organic matter can be reliably treated even when the organic matter is slightly contained.

上記のように紫外線酸化処理を行うのが、全排水のうち高濃度に有機性薬品を含有する排水だけであるため、運転コストの高い紫外線処理を行う処理量が少なくて済み、省エネルギーとなり経済的である。
さらに、紫外線処理を行う排水も、事前に生物処理を行うことで排水中の有機物濃度が低下しているため、少ない紫外線照射量でも低TOC濃度の回収水を得ることができる。
As described above, only the wastewater containing organic chemicals at a high concentration out of all wastewater is subjected to ultraviolet oxidation treatment, so the amount of treatment with high operation cost for ultraviolet treatment is small, saving energy and being economical. It is.
Furthermore, since wastewater subjected to ultraviolet treatment is also subjected to biological treatment in advance, the concentration of organic matter in the wastewater is reduced, so that recovered water having a low TOC concentration can be obtained even with a small amount of ultraviolet irradiation.

一方、低濃度に有機性薬品を含有する排水や、無機系薬品を含有する排水については、紫外線照射よりも低コストの生物活性炭による有機物の分解除去を行うことによって、運転コストの高い紫外線処理を行う処理量を減らすことができ、且つ省エネルギーで低コストでの排水処理ができる。
さらに低濃度排水処理ラインの生物活性炭処理装置では、未生物処理水を処理するため効果的に排水中の有機物を分解することができる。
On the other hand, wastewater containing organic chemicals at low concentrations and wastewater containing inorganic chemicals can be subjected to UV treatment with high operating costs by decomposing and removing organic substances using biological activated carbon, which is less expensive than ultraviolet irradiation. The amount of treatment to be performed can be reduced, and wastewater treatment can be performed at low cost with energy saving.
Furthermore, in the biological activated carbon treatment apparatus of the low concentration waste water treatment line, the organic matter in the waste water can be effectively decomposed in order to treat the non-biological treated water.

<第二実施形態>
次に、図2に基づき本発明の第二の実施形態の排水処理装置および排水処理方法について説明する。
本実施形態の排水処理装置1は、上記第一実施形態の排水処理装置と同様の構成の高濃度有機排水処理ライン10および低濃度有機排水処理ライン20を備えている。
また、無機系排水処理ライン30も同様に備えられている。
<Second embodiment>
Next, the waste water treatment apparatus and waste water treatment method of the second embodiment of the present invention will be described with reference to FIG.
The wastewater treatment apparatus 1 of this embodiment includes a high-concentration organic wastewater treatment line 10 and a low-concentration organic wastewater treatment line 20 having the same configuration as the wastewater treatment apparatus of the first embodiment.
An inorganic wastewater treatment line 30 is also provided in the same manner.

図2に示すように低濃度有機排水処理ライン20の生物活性炭処理装置21に排水を導入する前の排水導入管21aには排水のTOC濃度を測定できる濃度測定手段22が設けられている。
また、前記生物活性炭処理装置21へ排水を導入する導入管21aにはバルブ23と、前記高濃度排水処理ライン10の紫外線酸化分解処理装置11へ導入する導入管と接続されたバイパスライン40が設けられている。該バイパスライン40にもバルブ40aが設けられている。
As shown in FIG. 2, a concentration measuring means 22 capable of measuring the TOC concentration of the wastewater is provided in the wastewater introduction pipe 21 a before introducing the wastewater into the biological activated carbon treatment device 21 of the low concentration organic wastewater treatment line 20.
The introduction pipe 21a for introducing the waste water into the biological activated carbon treatment apparatus 21 is provided with a valve 23 and a bypass line 40 connected to the introduction pipe for introduction into the ultraviolet oxidative decomposition treatment apparatus 11 of the high concentration waste water treatment line 10. It has been. The bypass line 40 is also provided with a valve 40a.

本実施形態の排水処理装置1での排水処理方法は、まず、上記第一実施形態と同様に製造工程の各工程毎に集められた排水を前記高濃度排水処理ライン10、低濃度排水処理ライン20または無機系排水処理ライン30のいずれかに導入する。   In the wastewater treatment method in the wastewater treatment apparatus 1 of the present embodiment, first, wastewater collected in each step of the manufacturing process is treated as the high-concentration wastewater treatment line 10 and the low-concentration wastewater treatment line as in the first embodiment. 20 or the inorganic wastewater treatment line 30.

低濃度排水処理ライン20に導入された排水は生物活性炭処理装置21へ導入される前に、前記濃度測定手段22によって排水中のTOC濃度が測定される。   Before the wastewater introduced into the low-concentration wastewater treatment line 20 is introduced into the biological activated carbon treatment device 21, the concentration measuring means 22 measures the TOC concentration in the wastewater.

測定されたTOC濃度が、前記生物活性炭処理装置21で処理可能な濃度を超えていた場合には、導入管21aのバルブ23が閉まると同時に前記バイパスライン40のバルブ40aが開かれ、排水は該バイパスライン40を通って前記高濃度排水処理ライン10の酸化分解処理装置11へ導入される。
一方、測定されたTOC濃度が、前記生物活性炭処理装置21で処理可能な濃度である場合には、前記導入管21aのバルブ23が開けられ、同時にバイパスライン40のバルブ40aは閉められ、排水は通常どおり導入管21aを通り生物活性炭処理装置21へ導入される。
尚、生物活性炭処理装置で処理可能なTOC濃度とは、使用する生物活性炭処理装置の処理能力に応じて所定の濃度を設定することができる。
この所定濃度の適切な範囲は使用する生物活性炭処理装置によって変わるが、一般的な装置において、通水12時間に1回の逆洗浄頻度を上限とし、5mg/Lから10mg/Lの範囲で設定することが好ましい。
When the measured TOC concentration exceeds the concentration that can be treated by the biological activated carbon treatment device 21, the valve 23 of the introduction pipe 21a is closed and the valve 40a of the bypass line 40 is opened simultaneously, It is introduced into the oxidative decomposition treatment apparatus 11 of the high-concentration wastewater treatment line 10 through the bypass line 40.
On the other hand, when the measured TOC concentration is a concentration that can be processed by the biological activated carbon treatment device 21, the valve 23 of the introduction pipe 21a is opened, and the valve 40a of the bypass line 40 is closed at the same time, It is introduced into the biological activated carbon treatment device 21 through the introduction tube 21a as usual.
The TOC concentration that can be processed by the biological activated carbon treatment device can be set to a predetermined concentration according to the treatment capacity of the biological activated carbon treatment device to be used.
The appropriate range of the predetermined concentration varies depending on the biological activated carbon treatment apparatus to be used. In a general apparatus, the upper limit is the frequency of backwashing once every 12 hours of water flow, and the range is set in the range of 5 mg / L to 10 mg / L. It is preferable to do.

通常、製造工程から排出される排水は処理によって排水中の有機物濃度などが判別できるが、なんらかの事情で、低濃度排水処理ラインに有機物濃度が高い排水が混入することがあっても、生物活性炭処理装置21へ導入する前にTOC濃度を測定することで、生物活性炭処理装置21へ負荷をかけることが防止できると同時に、確実に低TOC濃度の回収水を得ることができる。   Normally, the wastewater discharged from the manufacturing process can be distinguished from the organic matter concentration in the wastewater by treatment, but for some reason, even if wastewater with a high organic matter concentration is mixed into the low-concentration wastewater treatment line, biological activated carbon treatment By measuring the TOC concentration before introducing it into the device 21, it is possible to prevent the biological activated carbon treatment device 21 from being loaded, and at the same time, it is possible to reliably obtain recovered water with a low TOC concentration.

尚、低濃度排水処理ライン20からバイパスライン40を介して高濃度排水処理ライン10へ振り分ける排水の量は、全部でもよくあるいはその一部をバイパスライン40へ、残りの排水は通常のとおり生物活性炭処理装置21へ導入してもよい。要は、生物活性炭処理装置21において処理できる範囲の有機物量を超える量の有機物を含む排水は高濃度排水処理ライン10へ導入されればよい。
排水の振り分ける量を調整するには、導入管21aとバイパスライン40のバルブ23、40aの開閉状態を調整すればよい。
Note that the amount of wastewater that is distributed from the low-concentration wastewater treatment line 20 to the high-concentration wastewater treatment line 10 via the bypass line 40 may be all or a part thereof to the bypass line 40, and the remaining wastewater is biologically activated carbon as usual. You may introduce into the processing apparatus 21. FIG. In short, wastewater containing an amount of organic matter that exceeds the amount of organic matter that can be treated in the biological activated carbon treatment device 21 may be introduced into the high-concentration wastewater treatment line 10.
In order to adjust the amount of wastewater to be distributed, the open / close states of the introduction pipe 21a and the valves 23 and 40a of the bypass line 40 may be adjusted.

また、前記濃度測定手段22で排水のTOC濃度を測定するタイミングとしては、常時測定してもよく、あるいは定期的に測定するようにしてもよい。   Further, the timing for measuring the TOC concentration of the waste water by the concentration measuring means 22 may be measured constantly or periodically.

さらに、上記第二実施形態では、低濃度排水処理ライン20から高濃度排水処理ライン10へ排水の流れを振り分ける手段として、バルブ23、40aを使用したが、これに限定されるものではなく、自動弁で切り替えたり、専用の移送ポンプを設けて必要時に稼働させるなどの公知の振り替え手段を使用することができる。   Furthermore, in said 2nd embodiment, although the valves 23 and 40a were used as a means to distribute the flow of waste water from the low concentration waste water treatment line 20 to the high concentration waste water treatment line 10, it is not limited to this, and automatic It is possible to use a known transfer means such as switching with a valve or providing a dedicated transfer pump to operate when necessary.

尚、上記第一および第二実施形態では、無機系排水処理ライン30を設けて、無機系の薬品を別途処理したが、このような無機系排水処理ライン30を別途設けることは任意である。
例えば、低濃度排水処理ライン20にイオン除去処理装置を設けて、低濃度に有機性薬品を含有する排水と無機系の薬品を含有する排水を同時に処理することもできる。
In the first and second embodiments, the inorganic waste water treatment line 30 is provided and the inorganic chemicals are separately treated. However, such an inorganic waste water treatment line 30 may be separately provided.
For example, an ion removal treatment device can be provided in the low-concentration wastewater treatment line 20 to treat wastewater containing organic chemicals at low concentrations and wastewater containing inorganic chemicals at the same time.

また、上記第一および第二実施形態のように無機系排水処理ライン30に、イオン除去処理装置以外に、精密ろ過膜や限外ろ過膜などのろ過装置や、逆浸透膜装置、あるいは電気透析装置など、他のイオン除去処理手段が設けられていてもよい   Further, as in the first and second embodiments, in addition to the ion removal treatment device, the inorganic wastewater treatment line 30 is equipped with a filtration device such as a microfiltration membrane or an ultrafiltration membrane, a reverse osmosis membrane device, or electrodialysis. Other ion removal processing means such as an apparatus may be provided.

さらに、上記第一および第二実施形態のように無機系薬品を含有する排水をイオン除去処理装置31による処理をした後に、排水を生物活性炭処理装置21で処理することも条件ではない。
但し、このように生物活性炭処理装置21へ導入することで、無機系薬品を含有する排水中にわずかに有機性の薬品が含有していても除去できる。
さらに、低濃度排水処理ライン20の生物活性炭処理装置21とは別に無機系排水処理ライン30に生物活性炭処理装置を設けて、無機系排水処理ライン30の生物活性炭処理装置で処理した後の排水を回収水として回収してもよい。
Furthermore, it is not a condition to treat the wastewater with the biological activated carbon treatment device 21 after treating the wastewater containing the inorganic chemicals with the ion removal treatment device 31 as in the first and second embodiments.
However, by introducing into the biological activated carbon treatment apparatus 21 in this way, even if organic chemicals are slightly contained in the wastewater containing inorganic chemicals, they can be removed.
Further, a biological activated carbon treatment device is provided in the inorganic wastewater treatment line 30 separately from the biological activated carbon treatment device 21 of the low concentration wastewater treatment line 20, and the wastewater after being treated by the biological activated carbon treatment device of the inorganic wastewater treatment line 30 is treated. You may collect | recover as collection | recovery water.

また、上記第一および第二実施形態では、半導体デバイスや液晶フラットディスプレイの製造工程から排出された排水を各工程毎に集めて直接各処理工程へ導入する場合について説明したが、排水になんらかの処理を施して前記各濃度になるように調整してから、本発明の処理方法あるいは処理装置で処理してもよい。
あるいは、高濃度の有機性薬品を含有する排水の量が多い場合に、その一部を低濃度の有機性薬品を含有する排水へ混合することで、高濃度排水処理ラインで処理する排水量を調整してもよい。
但し、低濃度排水処理ラインへ導入する排水には生物処理が施された排水が混入していないことが好ましい。生物処理された排水が混入している場合には、同じく生物処理の一種である生物活性炭処理での有機物分解能力が低下するためである。
In the first and second embodiments, the case where the wastewater discharged from the manufacturing process of the semiconductor device or the liquid crystal flat display is collected for each process and directly introduced into each processing process has been described. May be processed with the processing method or the processing apparatus of the present invention.
Or, when there is a large amount of wastewater containing high-concentration organic chemicals, the amount of wastewater treated in the high-concentration wastewater treatment line can be adjusted by mixing a part of it with wastewater containing low-concentration organic chemicals. May be.
However, it is preferable that the wastewater introduced into the low-concentration wastewater treatment line is not mixed with wastewater subjected to biological treatment. This is because when biologically treated wastewater is mixed, the ability to decompose organic matter in biological activated carbon treatment, which is also a kind of biological treatment, is reduced.

さらに、上記第一および第二実施形態では、ろ過処理装置として精密ろ過膜を備えたろ過処理装置を使用したが、ろ過処理装置としては、このほか、限外ろ過膜や凝集ろ過など、その公知のろ過手段から選択できる。あるいは、前記ろ過処理装置を低濃度排水処理ラインや、無機系排水処理ラインに設けてもよく、ろ過処理装置を設けなくてもよい。   Furthermore, in said 1st and 2nd embodiment, although the filtration processing apparatus provided with the microfiltration membrane was used as a filtration processing apparatus, as a filtration processing apparatus, it is well-known, such as an ultrafiltration membrane and coagulation filtration, besides this The filtration means can be selected. Or the said filtration apparatus may be provided in a low concentration waste water treatment line and an inorganic waste water treatment line, and it is not necessary to provide a filtration apparatus.

また、上記第一および第二実施形態では、高濃度排水処理ラインに逆浸透処理装置を設け、排水を濃縮水と透過水に分離したが、このような逆浸透処理装置を設けることは必須ではない。
あるいは逆浸透処理装置を低濃度排水処理ラインや、無機系排水処理ラインに設けてもよい。
Moreover, in said 1st and 2nd embodiment, although the reverse osmosis processing apparatus was provided in the high concentration wastewater treatment line and the waste_water | drain was isolate | separated into the concentrated water and the permeated water, it is indispensable to provide such a reverse osmosis treatment apparatus. Absent.
Or you may provide a reverse osmosis processing apparatus in a low concentration wastewater treatment line or an inorganic wastewater treatment line.

さらに、上記第一および第二実施形態では、物理化学的に酸化分解をする手段として紫外線酸化分解処理装置を使用したが、酸化分解する手段としては、このほかオゾンによる酸化分解処理を行う手段や、その他の物理化学的酸化分解手段を用いてもよい。   Furthermore, in the first and second embodiments, the ultraviolet oxidative decomposition apparatus is used as the physicochemical oxidative decomposition means. However, as the oxidative decomposition means, other means for performing oxidative decomposition treatment with ozone, Other physicochemical oxidative decomposition means may be used.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

(実施例)
実施例として、前記第一実施形態と同様の排水処理装置を用い、図3に示すような処理フローで排水処理を行った。
すなわち、まず、高濃度処理排水ラインにはTOC濃度が約120mg/Lの高濃度有機性排水を導入し、生物処理装置(本実施例では固定床生物処理装置を使用)、ろ過処理装置(本実施例ではMF膜を使用した装置を使用)、逆浸透処理装置(RO装置)へ順次導入し、高濃度有機性排水のRO処理水を得た。この時のRO処理水のTOC濃度は約1.1mg/Lであった。
尚、排水は液晶製造工程からの排水であり、主に、DMSO(ジメチルスルホキシド)、TMAH(テトラメチルアンモニウムハイドロオキサイド)、IPA(イソプロピルアルコール)などを含む排水である。
それぞれの製造工程で行われる処理によって排水中の成分や濃度は異なるため、工程毎に排水を回収し、前記実施形態で示したように高濃度有機性排水、低濃度有機性排水および無機系排水として振り分けた。
(Example)
As an example, the waste water treatment apparatus similar to that of the first embodiment was used, and waste water treatment was performed with a treatment flow as shown in FIG.
That is, first, high-concentration organic wastewater having a TOC concentration of about 120 mg / L is introduced into a high-concentration treatment drainage line, and a biological treatment device (a fixed-bed biological treatment device is used in this embodiment), a filtration treatment device (this In the examples, an apparatus using an MF membrane was used) and then introduced into a reverse osmosis treatment apparatus (RO apparatus) to obtain RO treated water of high concentration organic waste water. At this time, the TOC concentration of the RO-treated water was about 1.1 mg / L.
The waste water is waste water from the liquid crystal manufacturing process, and is mainly waste water containing DMSO (dimethyl sulfoxide), TMAH (tetramethyl ammonium hydroxide), IPA (isopropyl alcohol) and the like.
Since the components and concentration in the wastewater differ depending on the treatment performed in each manufacturing process, the wastewater is collected for each process, and as shown in the above embodiment, the high-concentration organic wastewater, the low-concentration organic wastewater, and the inorganic wastewater. Sorted as.

次に、前記RO処理水を酸化分解処理装置へ導入した。酸化分解処理装置としては、1kWの高圧紫外線ランプ(東芝ライテック製)を使用した酸化槽300Lの紫外線酸化分解処理装置を使用して、HRT(水理学的滞留時間)20分、900L/hで前記RO処理水の酸化分解処理を行った。
尚、紫外線酸化分解処理装置に導入する前に、酸素消費量の4倍量の過酸化水素を添加した。
紫外線酸化分解処理における排水単位容積当たりの紫外線照射電力は1.1kWh/m3であった。
この後、回収した回収水のTOC濃度は約0.22mg/Lまで低下していた。
Next, the RO treated water was introduced into an oxidative decomposition treatment apparatus. As the oxidative decomposition treatment apparatus, an ultraviolet oxidative decomposition treatment apparatus of 300 L in an oxidation tank using a 1 kW high-pressure ultraviolet lamp (manufactured by Toshiba Lighting & Technology) was used, and the above-mentioned HRT (hydraulic residence time) 20 minutes, 900 L / h. Oxidative decomposition treatment of RO treated water was performed.
In addition, before introducing into the ultraviolet oxidative decomposition treatment apparatus, hydrogen peroxide 4 times the amount of oxygen consumption was added.
The ultraviolet irradiation power per unit volume of waste water in the ultraviolet oxidative decomposition treatment was 1.1 kWh / m 3 .
Thereafter, the TOC concentration of the collected recovered water was reduced to about 0.22 mg / L.

無機系排水はイオン除去処理装置(本実施例ではイオン交換装置、(株)神鋼環境ソリューション社製を使用)で処理した。該イオン除去処理装置での処理後のTOC濃度は2.3mg/Lであった。
さらに、該イオン除去処理後の無機系排水と、TOC濃度約3.5 mg/Lの低濃度有機性排水とをそれぞれ140L/hで混合し、280L/hの処理量で生物活性炭処理装置で処理を行った。
Inorganic wastewater was treated with an ion removal treatment device (in this example, an ion exchange device, manufactured by Shinko Environmental Solution Co., Ltd.). The TOC concentration after the treatment with the ion removal treatment apparatus was 2.3 mg / L.
Further, the inorganic waste water after the ion removal treatment and the low concentration organic waste water having a TOC concentration of about 3.5 mg / L are mixed at 140 L / h, respectively, and the biological activated carbon treatment apparatus is used at a treatment amount of 280 L / h. Processed.

該生物活性炭処理装置としては、固定床下向流式Bio−ACカラム(300mmφ×3.8mH)、活性炭(140L、粒径1.3〜1.6mm 球状活性炭)を使用し、HRT=30分、280L/hでの処理条件で処理を行った。
生物活性炭処理における排水単位容積当たりの消費電力は0.2kWh/m3であった。この後、回収した回収水のTOC濃度は約0.24mg/Lまで低下していた。
As the biological activated carbon treatment apparatus, a fixed bed downward flow type Bio-AC column (300 mmφ × 3.8 mH), activated carbon (140 L, particle size 1.3 to 1.6 mm spherical activated carbon) was used, and HRT = 30 minutes, The treatment was performed under a treatment condition of 280 L / h.
The power consumption per unit volume of waste water in the biological activated carbon treatment was 0.2 kWh / m 3 . Thereafter, the TOC concentration of the collected recovered water was reduced to about 0.24 mg / L.

(比較例1)
比較例1として、前記実施例の排水処理装置の紫外線酸化分解処理装置に代えて、生物活性炭処理装置を備えた排水処理装置で、前記実施例と同様の高濃度有機性排水、低濃度有機性排水および無機系排水を、図4に示すようなフローで処理した。
すなわち、高濃度有機性排水は前記実施例と同様に生物処理装置、ろ過処理装置、逆浸透処理装置へ順次導入し、高濃度有機性排水のRO処理水を得た。この時のRO処理水のTOC濃度は約1.1mg/Lであった。
次に、前記RO処理水を前記生物活性炭処理装置へ280L/hで導入し、HRT=30分の処理条件で処理を行った。その結果、生物活性炭処理装置で処理された処理水のTOC濃度は1.0mg/Lと高く、回収して再利用できなかった。
生物活性炭処理における排水単位容積当たりの消費電力は0.2kWh/m3であった。
一方、無機系排水および低濃度有機性排水はそれぞれ上記実施例と同様の処理を行い、得られた回収水のTOC濃度は約0.24mg/Lであった。
この無機系排水および低濃度有機性排水の処理における生物活性炭処理の排水単位容積当たりの消費電力は0.2kWh/m3であった。
(Comparative Example 1)
As Comparative Example 1, in place of the ultraviolet oxidative decomposition treatment device of the wastewater treatment device of the above example, a wastewater treatment device equipped with a biological activated carbon treatment device is used. Wastewater and inorganic wastewater were treated by a flow as shown in FIG.
That is, high-concentration organic wastewater was sequentially introduced into a biological treatment device, a filtration treatment device, and a reverse osmosis treatment device in the same manner as in the above-described example, to obtain RO-treated water of high-concentration organic wastewater. At this time, the TOC concentration of the RO-treated water was about 1.1 mg / L.
Next, the RO treated water was introduced into the biological activated carbon treatment apparatus at 280 L / h, and the treatment was performed under the treatment conditions of HRT = 30 minutes. As a result, the TOC concentration of treated water treated with the biological activated carbon treatment apparatus was as high as 1.0 mg / L, and could not be recovered and reused.
The power consumption per unit volume of waste water in the biological activated carbon treatment was 0.2 kWh / m 3 .
On the other hand, the inorganic wastewater and the low-concentration organic wastewater were each treated in the same manner as in the above example, and the TOC concentration of the obtained recovered water was about 0.24 mg / L.
The power consumption per unit waste water volume of the biological activated carbon treatment in the treatment of the inorganic waste water and the low concentration organic waste water was 0.2 kWh / m 3 .

(比較例2)
比較例2として、前記比較例1の排水処理装置の2つの生物活性炭処理装置に代えて、実施例と同様の紫外線酸化分解処理装置を1つ備えた排水処理装置で前記実施例と同様の高濃度有機性排水、低濃度有機性排水および無機系排水を処理する図5に示すようなフローで処理を行った
すなわち、高濃度有機性排水は前記実施例1と同様に生物処理装置、ろ過処理装置、逆浸透処理装置へ順次導入し、高濃度有機性排水のRO処理水を得た。この時の高濃度有機性排水のTOC濃度は約1.1mg/Lであった。
次に、未処理の低濃度有機性排水および前記実施例と同様にイオン除去処理した後の無機系排水を、前記高濃度有機性排水のRO処理水と混合して、前記実施例と同様に前記紫外線酸化分解処理装置へ導入し、300L/h、HRT=28分の処理条件で処理を行った。
比較例2の排水単位容積当たりの装置全体の消費電力は3.3kWh/m3であった。
(Comparative Example 2)
As Comparative Example 2, in place of the two biological activated carbon treatment devices of the wastewater treatment device of Comparative Example 1, a wastewater treatment device provided with one ultraviolet oxidative decomposition treatment device similar to that of the example was used. The treatment was performed in the flow as shown in FIG. 5 for treating the concentration organic wastewater, the low concentration organic wastewater, and the inorganic wastewater. That is, the high concentration organic wastewater was treated with the biological treatment apparatus and the filtration treatment in the same manner as in Example 1. Introduced sequentially into the equipment and reverse osmosis treatment equipment, RO treated water of high concentration organic waste water was obtained. The TOC concentration of the high concentration organic waste water at this time was about 1.1 mg / L.
Next, the untreated low-concentration organic wastewater and the inorganic wastewater after the ion removal treatment in the same manner as in the above example are mixed with the RO-treated water of the high-concentration organic wastewater as in the above example. The sample was introduced into the ultraviolet oxidative decomposition treatment apparatus and treated under the treatment conditions of 300 L / h and HRT = 28 minutes.
The power consumption of the entire device per unit waste water volume of Comparative Example 2 was 3.3 kWh / m 3 .

以上の結果より、実施例は各比較例と比べて、処理装置全体の消費電力が少なく、且つ回収した処理済排水中のTOC濃度も低いことがわかる。
すなわち、実施例と比較例2で処理する総排水水量がそれぞれ同量(例えば総量3000m3/日)である場合、表1に示すように、実施例では1500kWh/日となり、比較例2の9900kWh/日に比べ消費電力量が抑制されている。
From the above results, it can be seen that the example consumes less power in the entire processing apparatus and the TOC concentration in the collected treated wastewater is lower than in each comparative example.
That is, when the total amount of waste water treated in the example and the comparative example 2 is the same amount (for example, the total amount of 3000 m 3 / day), as shown in Table 1, in the example, it becomes 1500 kWh / day, which is 9900 kWh of the comparative example 2. / Power consumption is suppressed compared to the day.

Figure 0005782229
Figure 0005782229

(生物活性炭処理装置における処理能力)
次に前記実施例の生物活性炭処理装置における処理能力についての検討を行った。
試験の結果、生物活性炭装置において、処理するTOC量が増加してくると、生物活性炭層の微生物量が加速度的に増加するため、差圧(生物活性炭層の圧力損失)も加速度的に増加するとともに微生物の処理効率も低下することが判明した。
この差圧が0.15kg/cm2を超えると処理効率の低下が著しかった。
前記実施例で使用した生物活性炭処理装置を用いて、生物活性炭処理装置へ流入されるTOC量(積算量)と差圧の関係を測定した結果を図6のグラフに示す。
図6のグラフから、TOC量が増加するに従い差圧が高くなることがわかり、差圧0.15kg/cm2以下で生物活性炭処理装置を稼動するためには、生物活性炭処理装置の活性炭単位容積当たりの積算流入TOC量が180g/m3以下で稼動する必要がある。
(Treatment capacity in biological activated carbon treatment equipment)
Next, the treatment capacity of the biological activated carbon treatment apparatus of the above example was examined.
As a result of the test, if the amount of TOC to be processed increases in the biological activated carbon device, the amount of microorganisms in the biological activated carbon layer increases at an accelerated rate, so the differential pressure (pressure loss in the biological activated carbon layer) also increases at an accelerated rate. At the same time, it was found that the treatment efficiency of microorganisms also decreased.
When this differential pressure exceeded 0.15 kg / cm 2 , the treatment efficiency was significantly reduced.
The graph of FIG. 6 shows the results of measuring the relationship between the TOC amount (integrated amount) flowing into the biological activated carbon treatment device and the differential pressure using the biological activated carbon treatment device used in the above examples.
From the graph of FIG. 6, it can be seen that the differential pressure increases as the amount of TOC increases. In order to operate the biological activated carbon treatment apparatus at a differential pressure of 0.15 kg / cm 2 or less, the activated carbon unit volume of the biological activated carbon treatment apparatus It is necessary to operate at an accumulated inflow TOC amount of 180 g / m 3 or less.

さらに、HRTが45分となる処理量において、180g/m3で前記生物活性炭処理装置を稼動するための排水中のTOC濃度と通水時間との関係を図7にグラフとして示した。
図7から判るように排水中のTOC濃度が10mg/Lより低ければ、12時間稼動しても生物活性炭処理装置は性能を維持できる。
一方、排水中のTOC濃度が10mg/L以上となった場合には生物活性炭処理装置で処理を続けると12時間未満で差圧が0.15kg/cm2を超え、処理効率の低下が始まる。
この場合には、前記第二実施形態で説明したように、低濃度排水処理ラインからバイパスラインなどの振り分け手段を介して高濃度排水処理ラインへ振り分けて、紫外線酸化分解処理装置で処理するようにすることが好ましい。
Furthermore, the relationship between the TOC concentration in the waste water and the water flow time for operating the biological activated carbon treatment apparatus at 180 g / m 3 at a treatment amount of 45 minutes in HRT is shown as a graph in FIG.
As can be seen from FIG. 7, if the TOC concentration in the wastewater is lower than 10 mg / L, the biological activated carbon treatment apparatus can maintain the performance even if it operates for 12 hours.
On the other hand, when the TOC concentration in the wastewater is 10 mg / L or more, if the treatment is continued with the biological activated carbon treatment apparatus, the differential pressure exceeds 0.15 kg / cm 2 in less than 12 hours, and the treatment efficiency begins to decline.
In this case, as described in the second embodiment, the low-concentration wastewater treatment line is distributed to the high-concentration wastewater treatment line via a distribution means such as a bypass line, and is processed by the ultraviolet oxidative decomposition treatment apparatus. It is preferable to do.

1:排水処理装置、
10:高濃度排水処理ライン、
11:紫外線酸化分解処理装置、
12:生物処理装置、
13:ろ過処理装置、
14:逆浸透膜処理装置、
15:回収装置、
20:低濃度排水処理ライン、
21:生物活性炭処理装置、
22:濃度測定手段、
23:バルブ、
30:無機系排水処理ライン、
31:イオン除去処理装置、
40:バイパスライン、
40a:バルブ
1: Waste water treatment equipment,
10: High concentration wastewater treatment line,
11: UV oxidative decomposition treatment device,
12: biological treatment device,
13: Filtration processing device,
14: Reverse osmosis membrane treatment device,
15: collection device,
20: Low concentration wastewater treatment line,
21: Biological activated carbon treatment device,
22: Concentration measuring means,
23: valve,
30: inorganic wastewater treatment line,
31: Ion removal processing device,
40: Bypass line,
40a: valve

Claims (3)

製造工程から排出される排水のうち、高濃度の有機性薬品を含有する排水を高濃度排水処理ラインへ導入し、低濃度の有機性薬品を含有する排水を低濃度排水処理ラインへ導入し、前記高濃度排水処理ラインでは、排水中の有機物を微生物によって処理する生物処理工程と、物理化学的酸化分解工程が実施され、前記低濃度排水処理ラインでは、未生物処理水である排水を、微生物によって処理する生物処理工程が実施され
前記製造工程から排出される排水のうち、無機系薬品を含有する排水を無機系排水処理ラインへ導入し、該無機系排水処理ラインでは、排水中のイオンを除去するイオン除去処理工程が実施さ
前記低濃度排水処理ラインでは、該生物処理工程を実施する前に、排水中の有機物濃度を測定し、該有機物濃度が所定の濃度よりも高い場合には、該排水の少なくとも一部を前記高濃度排水処理ラインの物理化学的酸化分解工程へ導入し、
前記イオン除去処理工程で処理された排水を前記低濃度排水処理ラインの前記生物処理工程で処理することを特徴とする排水処理方法。
Of the wastewater discharged from the manufacturing process, wastewater containing high concentration organic chemicals is introduced into the high concentration wastewater treatment line, wastewater containing low concentration organic chemicals is introduced into the low concentration wastewater treatment line, In the high-concentration wastewater treatment line, a biological treatment process that treats organic matter in the wastewater with microorganisms and a physicochemical oxidative decomposition process are performed. In the low-concentration wastewater treatment line, wastewater that is unbiologically treated water is converted into microorganisms. biological treatment step of treating is performed by,
Of the wastewater discharged from the manufacturing process, wastewater containing inorganic chemicals is introduced into an inorganic wastewater treatment line, and in the inorganic wastewater treatment line, an ion removal treatment step for removing ions in the wastewater is performed. This
In the low-concentration wastewater treatment line, before carrying out the biological treatment process, the organic matter concentration in the wastewater is measured, and when the organic matter concentration is higher than a predetermined concentration, at least a part of the wastewater is passed through the Introduced into the physicochemical oxidative decomposition process of the concentration wastewater treatment line,
Waste water treatment method characterized that you process wastewater which has been treated by the ion removing treatment step in the biological treatment process of the low-concentration waste water treatment line.
前記高濃度排水処理ラインでは、排水を逆浸透膜によって透過処理を行う逆浸透膜処理工程が実施され、該逆浸透膜処理工程で処理された排水を前記物理化学的酸化分解工程で処理する請求項1に記載の排水処理方法。 In the high-concentration wastewater treatment line, a reverse osmosis membrane treatment step is performed in which wastewater is permeated by a reverse osmosis membrane, and the wastewater treated in the reverse osmosis membrane treatment step is treated in the physicochemical oxidative decomposition step. Item 2. A wastewater treatment method according to Item 1 . 前記物理化学的酸化分解工程が、紫外線またはオゾンによって酸化分解を行う請求項1又は2に記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein the physicochemical oxidative decomposition step performs oxidative decomposition with ultraviolet rays or ozone.
JP2010080739A 2010-03-31 2010-03-31 Wastewater treatment method Active JP5782229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080739A JP5782229B2 (en) 2010-03-31 2010-03-31 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080739A JP5782229B2 (en) 2010-03-31 2010-03-31 Wastewater treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015086023A Division JP6007282B2 (en) 2015-04-20 2015-04-20 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2011212520A JP2011212520A (en) 2011-10-27
JP5782229B2 true JP5782229B2 (en) 2015-09-24

Family

ID=44942842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080739A Active JP5782229B2 (en) 2010-03-31 2010-03-31 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5782229B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957890B2 (en) * 2012-01-11 2016-07-27 栗田工業株式会社 Electronic industrial process wastewater recovery method and recovery device
CN103420473B (en) * 2012-05-16 2015-06-10 中国石油化工股份有限公司 Processing method of wastewater of acrylonitrile production refining process
JP6036011B2 (en) * 2012-08-28 2016-11-30 栗田工業株式会社 Method and apparatus for treating wastewater containing formaldehyde
CN104671386A (en) * 2013-11-29 2015-06-03 中国科学院兰州化学物理研究所 Water treatment method for continuously degrading high concentration macromolecular compounds in water
EP2878581A1 (en) * 2013-12-02 2015-06-03 Lappeenrannan Teknillinen Yliopisto A wastewater purification system
CN104944565B (en) * 2015-05-07 2017-03-15 北京科技大学 Multiple free radicals synergy method for treating water under a kind of plasma ambient
CN105692726A (en) * 2016-01-28 2016-06-22 山东省环境保护科学研究设计院 Device for treating low-concentration and difficult-to-degrade organic industrial wastewater
CN105749916B (en) * 2016-02-22 2018-07-24 中国科学院广州地球化学研究所 A kind of Fullerol/ferrihydrite catalysis material
CN109160639A (en) * 2018-10-23 2019-01-08 南京元亨化工科技有限公司 A kind of wastewater treatment equipment of tetramethylammonium hydroxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302288A (en) * 1993-03-19 1994-04-12 Zimpro Environmental, Inc. Treatment of highly colored wastewaters
JP3200314B2 (en) * 1994-11-29 2001-08-20 オルガノ株式会社 Organic wastewater treatment equipment
JP4065356B2 (en) * 1998-05-21 2008-03-26 日本錬水株式会社 Surfactant-containing wastewater treatment method
JP3721871B2 (en) * 1999-07-29 2005-11-30 栗田工業株式会社 Production method of ultra pure water
JP3912994B2 (en) * 2001-03-28 2007-05-09 アサヒ飲料株式会社 Wastewater treatment equipment
JP2002306930A (en) * 2001-04-13 2002-10-22 Toray Ind Inc Method for treating water and equipment for water treatment
JP4670322B2 (en) * 2004-11-18 2011-04-13 栗田工業株式会社 Wastewater treatment equipment containing organic sulfur compounds
JP4029100B2 (en) * 2005-09-14 2008-01-09 シャープ株式会社 Water treatment apparatus and water treatment method
JP2008100192A (en) * 2006-10-20 2008-05-01 Hitachi Chemical Maintenance Co Ltd Wastewater treatment method

Also Published As

Publication number Publication date
JP2011212520A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5782229B2 (en) Wastewater treatment method
Martınez et al. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent
JP3009535B2 (en) Method and apparatus for biologically purifying sewage
Azizi et al. Application of advanced oxidation process (H2O2/UV) for removal of organic materials from pharmaceutical industry effluent
Liu et al. Integration of ferrate (VI) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment
CN1215997C (en) Water treating technology by reinforced membrane biological reactor
KR100446041B1 (en) Industrial wastewater reusing system using combination biofilter process, AC/ACF/Sand filter process and advanced oxidation process
JP3227863B2 (en) Ultrapure water production method
JP5444684B2 (en) Organic wastewater treatment method and treatment equipment
KR20110095872A (en) Method and device for the biological treatment of a contaminated liquid feedstock containing a dispersible and digestible organic liquid phase such as an oil or a toxic solvent
KR200450243Y1 (en) Excess sludge decrement equipment of a wastewater treatment facility
JP6007282B2 (en) Waste water treatment method and waste water treatment equipment
CN103951141B (en) A kind of garbage leachate treatment process and treatment unit
KR101523019B1 (en) Water treatment system using ozone backwashing
WO2013172241A1 (en) Water treatment device and method
Wang Characterisation and removal of organic matter from a reverse osmosis concentrate by a PAC accumulative countercurrent four-stage adsorption-MF hybrid process
Hosseinzadeh et al. A study on membrane bioreactor for water reuse from the effluent of industrial town wastewater treatment plant
JP5753668B2 (en) Waste water treatment method and waste water treatment equipment
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
JP2887284B2 (en) Ultrapure water production method
CN203959993U (en) A kind of garbage leachate treatment device
KR200276381Y1 (en) Industrial wastewater reusing system
JP2013103156A (en) Biological sludge volume reduction method and apparatus
KR101363142B1 (en) Apparatus and Method for Treating Waste Water of Food
TW201141793A (en) Waste water recycle processing system and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150717

R150 Certificate of patent or registration of utility model

Ref document number: 5782229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250