WO2013171920A1 - 生物学的排水処理装置 - Google Patents

生物学的排水処理装置 Download PDF

Info

Publication number
WO2013171920A1
WO2013171920A1 PCT/JP2012/073018 JP2012073018W WO2013171920A1 WO 2013171920 A1 WO2013171920 A1 WO 2013171920A1 JP 2012073018 W JP2012073018 W JP 2012073018W WO 2013171920 A1 WO2013171920 A1 WO 2013171920A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter bed
tank
fixed filter
biodegradation
treated water
Prior art date
Application number
PCT/JP2012/073018
Other languages
English (en)
French (fr)
Inventor
青山章
松本晴彦
Original Assignee
株式会社アオヤマエコシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アオヤマエコシステム filed Critical 株式会社アオヤマエコシステム
Priority to CN201280001424.9A priority Critical patent/CN103534213B/zh
Publication of WO2013171920A1 publication Critical patent/WO2013171920A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2813Anaerobic digestion processes using anaerobic contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/60Use in several different columns
    • B01J2220/603Use in several different columns serially disposed columns
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • a treatment facility for organic wastewater having at least two biological treatment tanks, and a total capacity of the at least two biological treatment tanks As a treatment facility for purifying wastewater with almost no generation of surplus sludge, “a treatment facility for organic wastewater having at least two biological treatment tanks, and a total capacity of the at least two biological treatment tanks”
  • the fixed filter bed (4) is installed in a biological treatment tank corresponding to a volume of at least 1/2 or more, and the filter medium (8) of the fixed filter bed (4) has a specific surface area of 60 to 100 m 2 / m 3. And the filling rate of the filter medium (8) with respect to the tank volume of the biological treatment tank in which the fixed filter bed (4) is installed is 70 to 90% by volume.
  • An organic wastewater treatment facility Patent Document 1 is known.
  • An object of the present invention is to provide a wastewater treatment apparatus in which excess sludge is not generated.
  • the features of the biological wastewater treatment apparatus of the present invention are a pretreatment tank (X), An aeration tool (da), a fixed filter bed for aerobic microorganisms (ae) and at least one tank of a biodegradation digester tank (A) provided with a fixed filter bed for anaerobic microorganisms (an);
  • the main point is that the fixed filter bed for anaerobic microorganisms (an) is disposed below the fixed filter bed for aerobic microorganisms (ae).
  • the biological wastewater treatment apparatus of the present invention can efficiently treat aerobic microorganisms and anaerobic microorganisms, and thus does not generate surplus sludge (such as dead microorganisms).
  • FIG. 1 It is a flow sheet (side view) showing typically one mode of the biological waste water treatment equipment of the present invention.
  • an aeration nozzle is used as an air diffuser, and bubbles supplied from the aeration nozzle in the ascending region (ua) rise together with the treated water, and a descending region (
  • a gas-liquid mixing ejector is used as a diffuser, and the discharged mixed liquid is discharged on the upper part of the fixed filter bed (ae) for aerobic microorganisms.
  • a gas-liquid mixing ejector is used as a diffuser, and the gas-liquid mixing ejector is bubbled so that the discharging direction of the discharged mixed liquid is upward.
  • a gas-liquid mixing ejector is bubbled so that the discharging direction of the discharged mixed liquid is upward.
  • ua a broken line represents the flow of treated water.
  • A biodegradation digestion tank (A) prepared in the Example typically (a 3-digit number represents a dimension (mm)).
  • a known pretreatment tank can be used, which is scattered in the presence of a raw water tank for adjusting the flow rate and concentration fluctuation of drainage, and agglomerates containing aerobic microorganisms. It includes a raw water adjustment tank (or aeration tank) that performs an air treatment to adsorb organic substances on the agglomerates and to grow aerobic microorganisms.
  • Drainage pumped up from the raw water tank is usually passed through the screen and transferred to the raw water adjustment tank, but depending on the type of drainage, etc., it may be allowed to fall naturally without passing through the screen or through the screen. It is not necessary to have a raw water tank.
  • the biodegradation digester (A) includes an air diffuser (da), an aerobic microorganism fixed filter bed (ae), and an anaerobic microorganism fixed filter bed (an).
  • the fixed filter bed for aerobic microorganisms is not limited as long as it is composed of a biological carrier, but aerobic microorganisms are liable to settle, microorganisms are difficult to fall off as agglomerates, and sufficient air or oxygen is supplied.
  • the treatment water is preferably composed of a biological carrier that is easy to circulate.
  • the fixed filter bed for aerobic microorganisms is composed of a biological carrier in which aerobic microorganisms are liable to settle and is supplied with sufficient air or oxygen, but is not necessarily limited to those inhabited only by aerobic microorganisms, This does not exclude cases where anaerobic microorganisms live inside the biofilm (biolayer) formed on the biocarrier.
  • the fixed filter bed for anaerobic microorganisms is composed of a biological carrier in which anaerobic microorganisms are liable to settle and is hardly supplied with air or oxygen, but is not necessarily limited to those inhabited by only anaerobic microorganisms. This does not exclude cases where aerobic microorganisms inhabit the surface layer of the biofilm (biolayer) formed on the carrier.
  • the fixed filter bed for anaerobic microorganisms is not limited as long as it is composed of a biological carrier, but it is a biological carrier that is easy for anaerobic microorganisms to settle in, the microorganisms do not easily fall off as agglomerates, and the treated water is easy to circulate.
  • it is configured.
  • porous plates that can circulate liquid freely (such as wire mesh, punching metal, and expanded metal)
  • the fixed filter bed for anaerobic microorganisms (an) is disposed below the fixed filter bed for aerobic microorganisms (ae), it is easy to supply air or oxygen to the fixed filter bed for aerobic microorganisms (ae).
  • gases methane, hydrogen sulfide, etc. generated by anaerobic microorganisms are Since it is supplied to the fixed filter bed (ae) for aerobic microorganisms at the upper part and processed by aerobic microorganisms, it is difficult for these gases to be discharged to the outside of the biological wastewater treatment apparatus, so problems such as air pollution Does not occur.
  • agglomerates that may fall off the fixed filter bed for aerobic microorganisms (ae) (sometimes dropped due to fluctuations in the amount of drainage) and floating agglomerates are received by the fixed filter bed for anaerobic microorganisms (an).
  • the agglomerates are treated with anaerobic microorganisms, and excess agglomerates can be digested.
  • the fixed filter bed for anaerobic microorganisms (an) is arranged in the lower part of the fixed filter bed for aerobic microorganisms (ae), they can maintain a mutual assistance relationship.
  • a blocking wall is arranged between the bubble rising region (ua) and the water falling region (da)
  • a part of the porous plate that may constitute the aerobic microorganism fixed filter bed (ae) is used as the blocking wall. It may be replaced, or a blocking wall may be provided overlapping the porous plate.
  • an ascending region (ua) where the treated water can rise from a deep part to a shallow part by arranging a barrier wall on the fixed filter bed (an) for anaerobic microorganisms so that the wall surface is vertical.
  • a falling area (da) is formed in the fixed filter bed (an) for anaerobic microorganisms (see FIG. 2).
  • a biological carrier may or may not be disposed.
  • no biological carrier is disposed in the descending region (da).
  • a blocking wall is arranged between the bubble rising region (ua) and the water falling region (da)
  • a part of the porous plate that may constitute the anaerobic microorganism fixed filter bed (an) is used as the blocking wall. It may be replaced, or a blocking wall may be provided overlapping the porous plate.
  • the aerobic microorganisms Each barrier wall may be arranged so that the virtual extension surface of the barrier wall arranged on the fixed filter bed (ae) and the virtual extension surface of the barrier wall arranged on the fixed filter bed for anaerobic microorganisms (an) overlap.
  • the rising region (ua) formed in the fixed filter bed for anaerobic microorganisms (an) and the rising region (ua) formed in the fixed filter bed for anaerobic microorganisms (an) are continuously formed. Is preferred.
  • the air diffuser (da) is not limited as long as it can supply air or oxygen to the aerobic microorganisms inhabiting the fixed filter bed (ae) for aerobic microorganisms, and an aeration nozzle and / or an ejector can be used.
  • the ejector means that the main fluid (air, water, etc.) that flows through the pipe passes through a thinner pipe regardless of the mechanical movement of the pump, etc., and the pressure decreases and the pressure decreases. Is a member that sucks in other fluids (sub-fluids; air, water, etc.) from the suction port and mixes and discharges the fluids.
  • a liquid-liquid mixing ejector that uses a liquid (water, etc.) as a main fluid, a gas (air or oxygen, etc.) as a subfluid, a liquid (water, etc.) as a main fluid, and a liquid (water, etc.) as a subfluid There is a mixed ejector.
  • the installation position of the diffuser is preferably not arranged deeper (lower part) than the fixed filter bed for anaerobic microorganisms (an).
  • air or oxygen is supplied to the fixed filter bed for anaerobic microorganisms (an) and the growth of anaerobic microorganisms is inhibited. It becomes easy to be done. That is, an air diffuser is arranged so that air or oxygen can be supplied only to the fixed filter bed for aerobic microorganisms (ae) without being supplied to the fixed filter bed for anaerobic microorganisms (an).
  • the air diffuser not only supplies air or oxygen, but the supply can raise the treated water as the bubbles rise. Therefore, it is preferable to install so that the bubbles supplied from the diffuser can rise in the ascending region (ua).
  • an aeration nozzle When an aeration nozzle is used as an air diffuser, the bubbles supplied from the aeration nozzle rise in the treated water, thereby causing convection in the treated water in the biodegradation digester (A), and the rising bubbles It is preferable to arrange an aeration nozzle so that it can rise to the surface of the treated water without being obstructed by the fixed filter bed (ae) for aerobic microorganisms, and more preferably, a blocking wall is arranged as described above to provide a rising region.
  • a main fluid is treated water, and a gas-liquid mixed ejector using air or oxygen as a subfluid is used.
  • the gas-liquid mixing ejector may be disposed anywhere as long as it can supply a liquid mixture of air or oxygen and treated water to the fixed filter bed for aerobic microorganisms (ae), but the fixed filter bed for anaerobic microorganisms (an) It is possible to arrange so that the mixed liquid is difficult to come into contact with, and the fixed filter bed for aerobic microorganisms (ae) and the fixed filter bed for anaerobic microorganisms (an) are not directly sprayed with the mixed liquid. preferable.
  • the discharge direction of the discharged mixed liquid is ⁇ 30 (preferably ⁇ 20, more preferably ⁇ 10 with respect to the horizontal direction or the horizontal direction. )
  • the gas-liquid mixing ejector is arranged so as to be in the direction of the angle (see FIGS. 3 and 4), or a rising region (ua) is provided as in the case of using an aeration nozzle, and this bubble rising region (ua ), It is preferable to arrange the gas-liquid mixing ejector so that the discharging direction of the discharged mixed liquid is upward (see FIG. 5).
  • the gas-liquid mixing ejector When the gas-liquid mixing ejector is arranged in this manner, the bubbles and the treated water rise together while being mixed in the bubble rising region (ua), and then the mixed solution of the bubbles and the treated water is preferred in the water descending region (da). Since it descends in contact with the fixed filter bed for aerobic microorganisms (ae), bubbles are consumed by aerobic microorganisms and the treated water descends while being purified, and a part of the treated water is fixed for anaerobic microorganisms (an ) And a part of the treated water is again raised in the bubble rising region (ua) while the bubbles and the treated water are mixed and mixed (circulation of treated water) (see FIG. 5).
  • the treated water can be treated using a liquid-liquid mixing ejector, a stirring blade, a circulation pump, etc. You may help circulation of. Of these, a liquid-liquid mixing ejector is preferable from the viewpoint of maintenance and inspection.
  • a barrier wall similar to the barrier wall that can be installed in the fixed filter bed for aerobic microorganisms (ae) is provided in the fixed filter bed for anaerobic microorganisms, and the circulation flow is in a certain direction. You can also prompt.
  • the aeration nozzle can be used without limitation as long as it can be aerated, but an aeration board structure described in Chinese Utility Model Patent CN201668653U is preferably exemplified.
  • an ejector if a gas-liquid mixing or liquid-liquid mixing can be performed, there will be no restriction
  • the size, shape, etc. of each can be determined as appropriate according to the degree of drainage contamination, the amount of drainage, etc. .
  • the biodegradation digestion tank (A) may be provided with at least one tank, preferably 2-10, more preferably 3-8, and particularly preferably 4-6.
  • a biodegradation digester (A) it is preferable to install a biodegradation digester (A) in series.
  • the air supply is increased as the front stage is increased, and the air is increased in the rear stage.
  • the treated water is supplied from the pretreatment tank (X) or the biodegradation digester (A) to the biodegradation digester (A). It is preferable to provide the inlet for making it flow in in the upper part of a biodegradation digester (A). Moreover, it is preferable to provide the outflow port for making treated water flow out into a post-treatment tank (Y) or a biodegradation digester (A) in a back
  • the waste water When the inlet is provided in the upper part of the biodegradation digester (A), the waste water first comes into contact with the fixed filter bed for aerobic microorganisms (ae), and then the fixed filter bed for anaerobic microorganisms (an). The waste water can be purified more efficiently. Moreover, when the outlet is provided at the deepest part of the biodegradation digester (A), the flow of treated water from the aerobic microorganism fixed filter bed (ae) to the anaerobic microorganism fixed filter bed (an) is promoted, Further, the waste water can be purified more efficiently, and the treated water can be more easily convected (circulated) in the biodegradation digester (A).
  • the post-treatment tank (Y) includes an agglomeration separation tank (B) and an inorganic substance separation tank (C).
  • the agglomeration separation tank (B) is a separation tank for separating the agglomerate and the treated water, and includes an inlet for allowing treated water from the biodegradation digester (A) to flow in, It has a return port for returning to the treatment tank (X) and a discharge port for discharging the treated water or discharging it to another post-treatment tank, and does not have other outflow ports. That is, the agglomeration separation tank does not have an outlet for discharging excess agglomerates (or excess sludge) to the outside of the biological wastewater treatment apparatus.
  • the raw water adjustment tank is preferable as the return destination of the agglomerate, it may be returned to the biodegradation digester tank (A).
  • microorganisms (aerobic microorganisms, anaerobic microorganisms) ingest organic matter in the wastewater, and discharge gas (carbon dioxide, methane, ammonia, hydrogen sulfide, etc.) and water.
  • gas carbon dioxide, methane, ammonia, hydrogen sulfide, etc.
  • the gas (methane, ammonia, hydrogen sulfide, etc.) emitted by anaerobic microorganisms is re-ingested by aerobic microorganisms and converted into carbon dioxide and water, and its own cells.
  • the organic component contained in the wastewater is converted into water and carbon dioxide, which are released to the outside of the biological wastewater treatment apparatus.
  • microorganisms ingest and discharge inorganic substances (nitrate ions, sulfate ions, phosphate ions, metal ions, and compounds composed of these) (or exist without being ingested).
  • Some inorganic substances may be converted into ammonia, nitrogen, hydrogen sulfide, etc. by returning the agglomerates or food chains, but metal ions (In particular, heavy metal ions), phosphate ions, and the like are released to the outside of the biological waste water treatment apparatus as they are contained in the discharged water (or treated water). Therefore, the biological wastewater treatment apparatus of the present invention is provided with an inorganic substance separation tank (C) for separating and removing metal ions (particularly heavy metal ions) and phosphate ions from treated water immediately before being discharged. It is preferable.
  • C inorganic substance separation tank
  • the inorganic substance separation tank (C) is preferably filled with an inorganic substance separating material capable of separating and removing metal ions (particularly heavy metal ions) and phosphate ions from treated water immediately before being discharged. Inorganic substances may be removed.
  • activated carbon zeolite, diatomaceous earth, activated clay, or the like may be used, but a charcoal / metal porous composite constituted by a metal particle and a charcoal particle being in contact with each other and being porous is preferable.
  • charcoal / metal porous composite examples include a water treatment charcoal-metal composite described in JP2011-25160, and a TERRAST series (charcoal / metal porous composite; Aoyama Ecosystem Co., Ltd.). ) Can be preferably used.
  • the metal and charcoal are in contact with each other to form a battery, and in the water, the metal elutes, and this metal supplements the inorganic substance and is considered to coagulate and precipitate. It is done. Therefore, the metal of the charcoal / metal porous composite can be appropriately determined depending on the type of inorganic substance to be separated, but aluminum and iron are preferable because many kinds of inorganic substances can be coagulated and precipitated.
  • the biological wastewater treatment apparatus of the present invention can be purified regardless of the type, concentration, amount, etc., as long as it is wastewater containing organic components and can be biologically purified.
  • it can be applied to domestic wastewater, household wastewater, manure wastewater, factory wastewater, manufacturing wastewater generated in the middle of the manufacturing process, and the like.
  • a cylindrical barrier wall with a diameter of 210 mm and a height of 1000 mm at the center of a cube of stainless steel expanded metal (SW 36 mm, LW 101.6 mm), having a side and bottom surface and having an outer dimension of width 740 mm ⁇ depth 740 mm ⁇ height 1000 mm. 3) is provided so that the wall surface is in the vertical direction, and the inside is filled with a biological contact material structure described in Chinese Utility Model Patent CN2016686549U as a biological carrier, and the fixed filter bed for anaerobic microorganisms (2) Was prepared.
  • the bottom surface of the fixed filter bed for anaerobic microorganisms (2) is 200 mm from the bottom surface of the rectangular parallelepiped stainless steel tank in a rectangular parallelepiped stainless steel tank with an internal size of width 750 mm ⁇ depth 750 mm ⁇ height 2200 mm
  • Four fixed angle bars for holding the fixed filter bed (2) are attached, and the fixed angle bar holds the fixed filter bed for anaerobic microorganisms (2), and the fixed filter bed for aerobic microorganisms
  • the fixed filter bed for aerobic microorganisms (1) was suspended from the upper end of the rectangular parallelepiped stainless steel tank so that the upper surface of) was 200 mm from the upper end of the rectangular parallelepiped stainless steel tank.
  • Anaerobic microorganisms so that bubbles can rise in the ascending region (ua) surrounded by the cylindrical barrier (3) of the fixed filter bed for aerobic microorganisms (1) and the fixed filter bed for anaerobic microorganisms (2)
  • An aeration nozzle (4; an aeration panel structure described in Chinese Utility Model Patent CN2016686553U) is installed in the center of the cylindrical barrier wall (3) of the fixed filter bed (2), and this is connected to the air transfer pipe. Connected.
  • An inlet (7) for inflow of treated water is provided near the upper end of the rectangular parallelepiped stainless steel tank, and an outlet (8) for outflow of treated water is provided near the bottom of the rectangular parallelepiped stainless steel tank for biodegradation digestion
  • a tank (A) was prepared (see FIG. 6). Similarly, a total of 4 biodegradation digesters (A) were prepared.
  • a receiving port (12) for receiving drainage is provided in the vicinity of the upper end of a rectangular parallelepiped stainless steel tank having a width of 400 mm, a depth of 750 mm, and a height of 2200 mm.
  • a raw water tank (X1) was prepared with a stainless steel tank height of about 1000 mm.
  • aeration nozzle 4; aeration board structure described in Chinese Utility Model Patent CN16166653U
  • An inlet (7) for connecting the transfer pipe and allowing the drainage to flow in is provided near the upper end of the rectangular parallelepiped stainless steel tank, and an outlet (8) for allowing the treated water to flow out is provided near the bottom of the rectangular parallelepiped stainless steel tank.
  • the raw water adjustment tank (X2) was prepared by providing the return mass inlet (11) for receiving the return mass from the mass separation tank.
  • a rectangular pyramid with a bottom of 400 mm x 400 mm x 500 mm in height is provided at the bottom of a rectangular parallelepiped stainless steel tank with an internal size of width 400 mm x depth 400 mm x height 2200 mm.
  • An outlet (10) for returning and collecting agglomerates is provided in the section, and an inlet (7) for allowing the treated water to flow in is provided in the vicinity of 1000 mm from the upper end of the rectangular parallelepiped stainless steel tank. 8) was provided near the upper end of the rectangular parallelepiped stainless steel tank to prepare an agglomeration separation tank (B).
  • An inflow port (7) for inflowing treated water is provided near the center of the bottom of a rectangular parallelepiped stainless steel tank (C1) having a width of 400 mm ⁇ depth of 400 mm ⁇ height of 2200 mm, and the treated water is adjacent to the tank.
  • An outflow port (8) for flowing out into a cylindrical stainless steel tank (C2; width 400 mm ⁇ depth 400 mm ⁇ height 2200 mm in internal dimensions) is provided near the upper end of the rectangular parallelepiped stainless steel tank (C1).
  • a rectangular pyramid with a bottom of 400 mm x 400 mm x 500 mm in height is provided at the bottom of C2) so that the bottom is on the top and the top is on the bottom.
  • An inflow port (7) for allowing treated water to flow in from the outflow port (8) of (C1) is provided in the vicinity of a height of 1000 mm of the rectangular parallelepiped stainless steel tank (C2).
  • a discharge port (13) for discharging treated water is provided in the vicinity of the upper end of the gas tank (C2), and further, in the rectangular parallelepiped stainless steel tank (C1), a charcoal / metal porous composite (TERRAST Fe; iron and charcoal) A porous composite, Aoyama Ecosystem Co., Ltd.) packed in a polyethylene mesh bag is filled, and the inside of the rectangular parallelepiped stainless steel tank (C1) is filled with a carbon metal porous composite, and an inorganic substance separation tank (C) was prepared.
  • the raw water adjustment tank (X2) is placed in front of the first biodegradation digester (A), and the raw water tank (X1) is placed in front of this.
  • the agglomeration separation tank (B) is arranged after the last stage biodegradation digestion tank (A), and then the inorganic substance separation tank (C) is installed so that each tank is in series.
  • a biological wastewater treatment apparatus of the present invention was prepared by connecting the agglomerate inlet (11) with a pipe and, if necessary, providing a transfer pump in the middle of each pipe (see FIG. 1).
  • VOC removal scrubber wastewater (about 9000 liters / day) in a chemical factory is treated, and JIS K0102: 2008 “21. Biochemical oxygen consumption (BOD), 32. Accepted wastewater and discharge according to “Dissolved oxygen (32.3 diaphragm electrode method)”, “17. Oxygen consumption by potassium permanganate at 100 ° C. (COD Mn )”, “14.2 Total evaporation residue”
  • BOD, COD and total evaporation residue were measured and the results are shown in Table 1 (units are in ppm).
  • generation of surplus agglomerates or surplus sludge was not observed, and the amount of return agglomerates was also small.
  • VOC-removal scrubber wastewater is stored in the scrubber tank and reused by circulation and replaced with fresh water at a rate of once a week. It was tested to do. Further, after 57 days to 97 days, total evaporation residue was not measured.
  • Example 2 The coating line pretreatment waste water (330 liters / day) was treated for 3 days using an apparatus 1/2 the size of the biological waste water treatment apparatus prepared in Example 1, and after 3 days, JIS K0102: 2008, “45. Total nitrogen, 45.2 UV spectrophotometry”, “46. Total phosphorus, 46.3.2 Nitric acid-perchloric acid decomposition method”, “53. Zinc, 53.3 ICP emission spectroscopy” In accordance with “59. Nickel, 59.3 ICP Emission Spectroscopy”, “34.
  • Example 3 Device of 1/2 size of biological waste water treatment device prepared in Example 1 (However, the inorganic substance separation tank (C) is not provided, and the outlet of the treated water in the agglomeration separation tank (B) is discharged. Was discharged from here as a mouth), and the waste water from the soap factory (1000 liters / day) was treated for 22 days. After 22 days, JIS K0102: 2008 “21. Biochemical oxygen consumption (BOD), 32. “Dissolved oxygen (32.3 diaphragm electrode method)” and “Environment Agency Notification No.
  • Annex 4 hexane extractant; acidify the sample to hydrochloric acid with a pH of 4 or less, extract oil in the sample with hexane, about 80
  • Example 4 Device of 1/2 size of biological waste water treatment device prepared in Example 1 (However, the inorganic substance separation tank (C) is not provided, and the outlet of the treated water in the agglomeration separation tank (B) is discharged. The wood processing factory effluent (1000 liters / day) was treated for 24 days using this as a mouth.) After 24 days, “21. Biochemical oxygen consumption (BOD) of JIS K0102: 2008, 32. “Dissolved oxygen (32.3 diaphragm electrode method)”, “17. Oxygen consumption by potassium permanganate at 100 ° C. (COD Mn )” and “Environment Agency Notification No.
  • BOD Biochemical oxygen consumption
  • the biological wastewater treatment apparatus of the present invention is capable of efficiently purifying surplus agglomerates (or surplus sludge) even if it is wastewater from a chemical factory containing a hardly decomposable substance. The occurrence of no occurrence was observed, and there was no or little amount of return mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本発明の目的は余剰汚泥が発生しない排水処理装置を提供することである。 本発明は、前処理槽(X)と、 散気具(da)、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)を備える生物分解消化槽(A)の少なくとも1槽とを設置してなり、 好気性微生物用固定濾床(ae)の下部に嫌気性微生物用固定濾床(an)を配することを特徴とする生物学的排水処理装置である。 本発明は複数個の生物分解消化槽(A)を直列に設置し、この設置数が2~10個であることが好ましい。 本発明は前段の前処理槽(X)又は生物分解消化槽(A)から生物分解消化槽(A)へ処理水を流入させるための流入口を生物分解消化槽(A)の上部に備え、 後段の後処理槽(Y)又は生物分解消化槽(A)へ処理水を流出させるための流出口を生物分解消化槽(A)の最深部に備えることが好ましい。

Description

生物学的排水処理装置
 本発明は、生物学的排水処理装置に関する。さらに詳しくは好気性微生物と嫌気性微生物とを活用した生物学的排水処理装置に関する。
 余剰汚泥の生成がほとんどない状態で排水を浄化する処理設備として、「少なくとも2以上の生物処理槽を備えた有機性廃水の処理設備であって、前記少なくとも2以上の生物処理槽の容量総計に対し、少なくとも1/2以上の容量相当分の生物処理槽に固定濾床(4)を設置し、該固定濾床(4)の濾材(8)は、比表面積が60~100m/mとなるように形成され、且つ前記固定濾床(4)が設置された生物処理槽の槽容積に対する濾材(8)の充填率が70~90容量%となるように構成されていることを特徴とする有機性廃水の処理設備(特許文献1)」が知られている。
特開2006-263503号公報
 従来の処理設備では、必ずしも余剰汚泥の生成がほとんどない状態で排水を浄化できないという問題がある。
 本発明の目的は、余剰汚泥が発生しない排水処理装置を提供することである。
 本発明の生物学的排水処理装置の特徴は、前処理槽(X)と、
散気具(da)、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)を備える生物分解消化槽(A)の少なくとも1槽とを設置してなり、
好気性微生物用固定濾床(ae)の下部に嫌気性微生物用固定濾床(an)を配する点を要旨とする。
 本発明の生物学的排水処理装置は、好気性微生物と嫌気性微生物とを効率的に活用して水処理できるため、余剰汚泥(微生物の死骸等)を発生しない。
本発明の生物学的排水処理装置の一態様を模式的に表したフローシート(側面図)である。 本発明の生物学的排水処理装置のうち、散気具として、エアレーションノズルを用いる一態様であって、上昇領域(ua)でエアレーションノズルから供給される気泡が処理水と共に上昇し、下降領域(da)で処理水が下降して、処理水が対流する様子を模式的に表した概念図(側面図)である(破線は処理水の流れを表す。)。 本発明の生物学的排水処理装置のうち、散気具として、気液混合エジェクターを用いる一態様であって、好気性微生物用固定濾床(ae)の上部に、排出される混合液体の排出方向が水平方向になるように気液混合エジェクターを配置した様子を模式的に表した概念図(側面図)である(破線は処理水の流れを表す。)。 本発明の生物学的排水処理装置のうち、散気具として、気液混合エジェクターを用いる一態様であって、好気性微生物用固定濾床(ae)の下部に、排出される混合液体の排出方向が水平方向になるように気液混合エジェクターを配置した様子を模式的に表した概念図(側面図)である(破線は処理水の流れを表す。)。 本発明の生物学的排水処理装置のうち、散気具として、気液混合エジェクターを用いる一態様であって、排出される混合液体の排出方向が上方向になるように気液混合エジェクターを気泡上昇領域(ua)に配置した様子を模式的に表した概念図(側面図)である(破線は処理水の流れを表す。)。 実施例で調製した生物分解消化槽(A)を模式的に表した側面図である(3桁の数字は寸法(mm)を表す。)。
 前処理槽(X)には、公知の前処理槽を使用でき、排水の流量や濃度の変動等を調整するための原水槽、好気性微生物を含む集塊(しゅうかい)の存在下で散気処理して、集塊に有機物を吸着させたり、好気性微生物を増殖させたりする原水調整槽(または曝気槽)を含む。
 原水槽からポンプアップされた排水は、通常、スクリーンを通過させて、原水調整槽の移送されるが、排水の種類等により、ポンプを使用せず自然落下させてもよいし、スクリーンを通過させなくてもよいし、また、原水槽を設置しなくてもよい。
 生物分解消化槽(A)は、散気具(da)、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)を備える。
 好気性微生物用固定濾床(ae)は、生物担体から構成されていれば制限ないが、好気性微生物が住み着きやすく、微生物が集塊として脱落しがたく、十分な空気又は酸素が供給され、処理水が循環しやすい生物担体で構成されることが好ましい。
 なお、好気性微生物用固定濾床(ae)は、好気性微生物が住み着きやすい生物担体で構成され、十分な空気又は酸素が供給されるが、必ずしも好気性微生物だけが生息するものに限らず、生物担体に形成される生物膜(生物層)の内部に嫌気性微生物が生息する場合を除くものではない。同様に、嫌気性微生物用固定濾床(an)は、嫌気性微生物が住み着きやすい生物担体で構成され、空気又は酸素がほとんど供給されないが、必ずしも嫌気性微生物だけが生息するものに限らず、生物担体に形成される生物膜(生物層)の表層部等に好気性微生物が生息する場合を除くものではない。
 このような好ましい生物担体としては、少なくとも互いに交差する複数個の板を備え、この板に大小異なる複数個の貫通孔を備える生物担体が含まれ、たとえば、中国実用新案特許CN201686549U号公報に記載された生物接触材構造や、特公昭47-41225号公報に記載された気液接触装置用充填体、特許文献1の図3に記載された濾材が好ましく例示される。
 好気性微生物用固定濾床(ae)において、生物担体の設置方法に制限はないが、保守・点検等の観点から、液体及び気体が自由に循環できる多孔質板(金網、パンチングメタル及びエキスパンドメタル等)又は多孔質袋(網袋等)で形成された容器に複数の生物担体を保持して設置することが好ましい。
 嫌気性微生物用固定濾床(an)は、生物担体から構成されていれば制限ないが、嫌気性微生物が住み着きやすく、微生物が集塊として脱落しがたく、処理水が循環しやすい生物担体で構成されることが好ましい。
 このような好ましい生物担体としては、好気性微生物用固定濾床(ae)を構成するのに好ましい生物担体と同様のものが含まれ、同様のものが好ましく例示される。
 嫌気性微生物用固定濾床(an)において、生物担体の設置方法に制限はないが、保守・点検等の観点から、液体が自由に循環できる多孔質板(金網、パンチングメタルおよびエキスパンドメタル等)又は多孔質袋(網袋等)で形成された容器に複数の生物担体を保持して設置することが好ましい。
 嫌気性微生物用固定濾床(an)は、好気性微生物用固定濾床(ae)の下部に配置されていれば制限なく、すなわち、好気性微生物用固定濾床(ae)がより水面に近い箇所に設置され、嫌気性微生物用固定濾床(an)が好気性微生物固定濾床(ae)よりも深い箇所に設置されている必要がある。そして、嫌気性微生物用固定濾床(an)は最深部の底に密着させず、嫌気性微生物用固定濾床(an)の下に処理水が出入りできるスペースを設けることが好ましい(図1、2参照)。このようなスペースを設けると、処理水が、生物分解消化槽(A)内をさらに対流(循環)しやすくなる。
 好気性微生物用固定濾床(ae)と嫌気性微生物用固定濾床(an)とは、隣接又は接近していてもよいが、好気性微生物用固定濾床(ae)に気泡が供給でき、嫌気性微生物用固定濾床(an)には気泡が供給されないように一定距離を置いて設置することが好ましい。この一定距離は、気泡の供給量に対応する排水の汚染具合や排水量等により適宜決定できる。
 好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)の大きさは、排水の汚染具合(BOD、COD等)や排水量等により適宜決定できるが、嫌気性微生物用固定濾床(an)の大きさが好気性微生物用固定濾床(ae)の大きさよりも大きいことが好ましく、さらに好ましくは嫌気性微生物用固定濾床(an)の体積が好気性微生物用固定濾床(ae)の体積の1.5~4倍となる大きさ、特に好ましくは嫌気性微生物用固定濾床(an)の体積が好気性微生物用固定濾床(ae)の体積の1.7~3.5倍となる大きさである。
 嫌気性微生物用固定濾床(an)が好気性微生物用固定濾床(ae)の下部に配置されていると、好気性微生物用固定濾床(ae)に空気又は酸素を供給しやすく、嫌気性微生物用固定濾床(an)には空気又は酸素が接触しがたくなる他に、嫌気性微生物が発生させる気体(メタン、硫化水素等)が、嫌気性微生物用固定濾床(an)の上部にある好気性微生物用固定濾床(ae)に供給され、好気性微生物によって処理されるため、これらの気体が生物学的排水処理装置の外部に排出されにくくなるため、大気汚染等の問題が発生しない。また、好気性微生物用固定濾床(ae)から脱落する集塊(排水量の変動等によって脱落することがある)や浮遊している集塊が、嫌気性微生物用固定濾床(an)に受け止められ、集塊が嫌気性微生物によって処理され、過剰な集塊を消化できる。このように嫌気性微生物用固定濾床(an)が好気性微生物用固定濾床(ae)の下部に配置されていると、これらは相互扶助の関係を保つことができる。
 好気性微生物用固定濾床(ae)に遮断壁を壁面が鉛直方向になるように配して、散気具から供給される気泡が処理水の水面まで上昇できる上昇領域(ua)を設けることが好ましい。なお、この上昇領域(ua)を設けることにより、好気性微生物用固定濾床(ae)内に下降領域(da)が形成される(図2参照)。そして、この上昇領域(ua)には、生物担体を配しても配さなくてもよいが、上昇領域(ua)に生物担体を配する場合、下降領域(da)に生物担体を配しないというように、上昇領域(ua)又は下降領域(da)のいずれか一方にのみ生物担体を配することが好ましい。
 気泡上昇領域(ua)と水下降領域(da)との間に遮断壁を配置する場合、好気性微生物用固定濾床(ae)を構成してもよい多孔質板の一部を遮断壁に置き換えてもよいし、多孔質板と重ねて遮断壁を設けてもよい。
 嫌気性微生物用固定濾床(an)に遮断壁を壁面が鉛直方向になるように配して、処理水が深部から浅部へ上昇できる上昇領域(ua)を設けることが好ましい。なお、この上昇領域(ua)を設けることにより、嫌気性微生物用固定濾床(an)内に下降領域(da)が形成される(図2参照)。そして、この上昇領域(ua)には、生物担体を配しても配さなくてもよいが、上昇領域(ua)に生物担体を配する場合、下降領域(da)に生物担体を配しないというように、上昇領域(ua)又は下降領域(da)のいずれか一方にのみ生物担体を配することが好ましい。
 気泡上昇領域(ua)と水下降領域(da)との間に遮断壁を配置する場合、嫌気性微生物用固定濾床(an)を構成してもよい多孔質板の一部を遮断壁に置き換えてもよいし、多孔質板と重ねて遮断壁を設けてもよい。
 好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)に遮断壁を壁面が鉛直方向になるように配して、上昇領域(ua)を設ける場合、好気性微生物用固定濾床(ae)に配する遮断壁の仮想延長面と嫌気性微生物用固定濾床(an)に配する遮断壁の仮想延長面とが重なるように、それぞれの遮断壁を配することが好ましい。すなわち、好気性微生物用固定濾床(an)に形成される上昇領域(ua)と嫌気性微生物用固定濾床(an)に形成される上昇領域(ua)とが連続して形成されることが好ましい。このように上昇領域(ua)が連続して形成されると、処理水が生物分解消化槽(A)の最深部から処理水の水面まで連続した処理水の流れが形成されやすく、この流れと共に、下降領域(da)を処理水が最深部へ容易に下降できる(図2参照)。
 散気具(da)は、好気性微生物用固定濾床(ae)に生息する好気性微生物に空気又は酸素を供給できれば制限なく、エアレーションノズル及び/又はエジェクター等が使用できる。
 なお、エジェクターとは、ポンプ等の機械的運動によらず、管内を流れる主流体(空気、水等)がより細い管を通過する際、より高速になると共に圧力が低下し、この圧力の低下により吸い込み口から他の流体(副流体;空気、水等)を吸い込み、流体同士が混合して排出できる部材である。そして、主流体として液体(水等)、副流体として気体(空気又は酸素等)を用いる気液混合エジェクターと、主流体として液体(水等)、副流体として液体(水等)を用いる液液混合エジェクターとがある。
 散気具の設置位置としては、嫌気性微生物用固定濾床(an)よりも深部(下部)に配しないことが好ましい。散気具を嫌気性微生物用固定濾床(an)よりも深部(下部)に配すると、嫌気性微生物用固定濾床(an)への空気又は酸素が供給され、嫌気性微生物の成育が阻害されやすくなる。すなわち、嫌気性微生物用固定濾床(an)には空気又は酸素が供給されず、好気性微生物用固定濾床(ae)にだけ空気又は酸素が供給できるように、散気具を配することが好ましい。散気具は、空気又は酸素を供給するだけではなく、この供給により、気泡の上昇と共に処理水を上昇させることができる。したがって、散気具から供給される気泡が上昇領域(ua)を上昇できるように設置することが好ましい。
 散気具として、エアレーションノズルを用いる場合、エアレーションノズルから供給される気泡が処理水中を上昇することによって、生物分解消化槽(A)中の処理水に対流を生じさせ、かつ、上昇する気泡が好気性微生物用固定濾床(ae)に妨げられることなく、処理水の水面まで上昇できるように、エアレーションノズルを配することが好ましく、さらに好ましくは上記の通り遮断壁を配置し上昇領域を設けて、(i)好気性微生物用固定濾床(an)に形成される上昇領域(ua)、(ii)好気性微生物用固定濾床(an)に形成される上昇領域(ua)と嫌気性微生物用固定濾床(an)に形成される上昇領域(ua)との間、又は(iii)嫌気性微生物用固定濾床(an)に形成される上昇領域(ua)に、エアレーションノズルを配することである。
 このようにエアレーションノズルを配すると、上昇領域(ua)において気泡と処理水とが混合しながら、気泡及び処理水が共に上昇し、引き続き、下降領域(da)において気泡及び処理水の混合液が好気性微生物用固定濾床(ae)と接触しながら下降するため、気泡が好気性微生物に消費され、処理水が浄化されながら下降し、処理水の大部分が嫌気性微生物用固定濾床(an)へ移動し、一部の処理水が再び、上昇領域(ua)において気泡と処理水とが混合しながら共に上昇するという対流(処理水の循環)が生じる(図2参照)。
 散気具として、エジェクターを用いる場合、主流体は処理水であり、副流体として空気又は酸素を用いる気液混合エジェクターを用いる。気液混合エジェクターは、好気性微生物用固定濾床(ae)に、空気又は酸素と処理水との混合液体を供給できれば、どこに配置してもよいが、嫌気性微生物用固定濾床(an)にこの混合液体が接触しがたいように、また、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)が直接混合液体の噴射を受けないように、配置することが好ましい。すなわち、好気性微生物用固定濾床(ae)の上部及び/又は下部において、排出される混合液体の排出方向が水平方向又は水平方向に対して±30(好ましくは±20、さらに好ましくは±10)度の角度となる方向になるように気液混合エジェクターを配置するか(図3、4参照)、エアレーションノズルを用いる場合のように上昇領域(ua)を設けて、この気泡上昇領域(ua)内において、排出される混合液体の排出方向が上方向になるように気液混合エジェクターを配置する(図5参照)ことが好ましい。このように気液混合エジェクターを配置すると、気泡上昇領域(ua)において気泡と処理水とが混合しながら共に上昇し、引き続き、水下降領域(da)において気泡と処理水との混合液が好気性微生物用固定濾床(ae)と接触しながら下降するため、気泡が好気性微生物に消費され、処理水が浄化されながら下降し、処理水の一部が嫌気性微生物用固定濾床(an)へ移動し、一部の処理水が再び、気泡上昇領域(ua)において気泡と処理水とが混合しながら共に上昇するという対流(処理水の循環)が生じる(図5参照)。
 エアレーションノズル及び/又は気液エジェクターを用いても、嫌気性微生物用固定濾床(an)に処理水を十分に循環できない場合、液液混合エジェクターや攪拌翼、循環ポンプ等を用いて、処理水の循環を補助してもよい。これらのうち、保守・点検等の観点から、液液混合エジェクターが好ましい。
 また、処理水の循環を促進させるため、好気性微生物用固定濾床(ae)で設置できる遮断壁と同様の遮断壁を嫌気性微生物用固定濾床に設けて、循環の流れを一定の方向に促すこともできる。
 エアレーションノズルとしては、エアーレーションできれば制限なく使用できるが、中国実用新案特許CN201686553U号公報に記載された曝気盤構造が好ましく例示される。また、エジェクターとしては、気液混合又は液液混合できれば制限なく、たとえば、バブリング・ジェット・ノズル、タンクミキシングエダクター(スプレーイングシステムジャパン株式会社)が提示できる。
 散気具(da)、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)について、それぞれの大きさ、形状等は、排水の汚染具合や排水量等によって適宜決定できる。
 生物分解消化槽(A)は、少なくとも1槽とを設置すればよいが、好ましくは2~10個の設置数、さらに好ましくは3~8個、特に好ましくは4~6個である。なお、複数個の生物分解消化槽(A)を設置する場合、生物分解消化槽(A)は直列に設置することが好ましい。
 複数個の生物分解消化槽(A)を直列に設置する場合、すべての生物分解消化槽(A)のうち、前段になる程、空気又は酸素の供給量を多くし、後段になる程、空気又は酸素の供給量を少なくすることが好ましい。これは、排水中の有機分を前段で効率よく処理し、後段では集塊(浮遊したもの、脱落したものの両方を含む)を効率よく処理するためである。
 生物分解消化槽(A)への処理水の流出入口の位置に制限はないが、前段の前処理槽(X)又は生物分解消化槽(A)から生物分解消化槽(A)へ処理水を流入させるための流入口は、生物分解消化槽(A)の上部に備えることが好ましい。また、後段の後処理槽(Y)又は生物分解消化槽(A)へ処理水を流出させるための流出口は、生物分解消化槽(A)の最深部に備えることが好ましい(図1、図6参照)。流入口が生物分解消化槽(A)の上部に備えると、排水が、まず、好気性微生物用固定濾床(ae)と接触してから、つぎに、嫌気性微生物用固定濾床(an)と接触するため、さらに効率的よく排水を浄化処理できる。また、流出口を生物分解消化槽(A)の最深部に備えると、好気性微生物用固定濾床(ae)から嫌気性微生物用固定濾床(an)への処理水の流れが促進され、さらに効率よく排水を浄化できると共に、処理水が、生物分解消化槽(A)内をさらに対流(循環)しやすくなる。
 本発明の生物学的排水処理装置には、後処理槽(Y)を設置することが好ましい。
 後処理槽(Y)としては、集塊分離槽(B)及び無機物質分離槽(C)が含まれる。
 集塊分離槽(B)は、集塊と処理水とを分離するための分離槽であって、生物分解消化槽(A)からの処理水を流入させるための流入口と、集塊を前処理槽(X)へ返送するための返送口と、処理水を放流又は別の後処理槽へ排出するための排出口とを有し、他の流出入口を持たないものである。すなわち、余剰集塊(または余剰汚泥)を生物学的排水処理装置の外部へ排出する出口を持たない集塊分離槽である。
 集塊の返送先としては、原水調整槽が好ましいが、生物分解消化槽(A)にも返送してよい。
 本発明の生物学的排水処理装置において、微生物(好気性微生物、嫌気性微生物)は、排水中の有機分を摂取し、気体(二酸化炭素、メタン、アンモニア、硫化水素等)と水とを排出するが、これらの気体のうち、嫌気性微生物が排出する気体(メタン、アンモニア、硫化水素等)は好気性微生物が再摂取し、二酸化炭素と水や、自己の細胞等に変換するため、結局、排水中に含まれる有機分は、水と二酸化炭素とに変換され、これらが生物学的排水処理装置の外部へ放出されることとなる。
 しかし、これらの他に、微生物は、無機物質(硝酸イオン、硫酸イオン、リン酸イオン、金属イオン及びこれらから構成される化合物等)も摂取すると共に排出し(または摂取されずにそのまま存在するものもあるかもしれない)、一部の無機物質(硝酸イオン、硫酸イオン等)は、集塊の返送や食物連鎖等により、アンモニア、窒素、硫化水素等にも変換されたりもするが、金属イオン(特に重金属イオン)やリン酸イオン等は、このまま放流水(または処理水)に含んだまま、生物学的排水処理装置の外部へ放出されてしまう。
 そこで、本発明の生物学的排水処理装置には、放流する直前の処理水から、金属イオン(特に重金属イオン)やリン酸イオン等を分離除去するための無機物質分離槽(C)を設置することが好ましい。
 無機物質分離槽(C)は、集塊分離槽(B)の後段に設置され、無機物質と処理水とを分離するためのものである。特に、放流水に含んだまま放出すると問題となる重金属原子やリン原子を分離して、これらを除いた処理水のみを放出するためのものである。
 無機物質分離槽(C)には、放流する直前の処理水から、金属イオン(特に重金属イオン)やリン酸イオン等を分離除去できる無機物質分離材が充填されていることが好ましいが、通電により無機物質を除去してもよい。
 無機物質分離材としては、活性炭、ゼオライト、珪藻土、活性白土等を用いてもよいが、金属粒子及び炭粒子が互いに接触し、多孔質に構成される炭/金属多孔質複合体が好ましい。
 このような炭/金属多孔質複合体としては、特開2011-25160号公報に記載された水処理用炭-金属複合体や、TERRASTシリーズ(炭/金属多孔質複合体;株式会社アオヤマエコシステム)が好ましく使用できる。
 炭/金属多孔質複合体において、金属と炭とは接触して電池を形成していると考えられ、水中で、金属が溶出し、この金属が無機物質を補足し、凝集沈殿するものと考えられる。したがって、炭/金属多孔質複合体の金属としては、分離したい無機物質の種類によって適宜決定できるが、多くの種類の無機物質を凝集沈殿できることから、アルミニウム及び鉄が好ましい。
 本発明の生物学的排水処理装置は、有機分を含む排水であって、生物学的に浄化処理できる排水であれば、種類、濃度、量等に関係なく、浄化処理することができる。たとえば、生活排水、屎尿排水、工場排水、製造工程の途中で発生する製造排水の他、家庭用生活排水等にも適用できる。
<実施例1>
 ステンレス製エキスパンドメタル(SW36mm、LW101.6mm)製の側面及び底面をもち、外寸で幅740mm×奥行き740mm×高さ500mmの直方体の中央に、直径210mm×高さ500mmの円柱状の遮断壁(3)を壁面が鉛直方向になるように設け、この内部に、生物担体として中国実用新案特許CN201686549U号公報に記載された生物接触材構造を充填して、好気性微生物用固定濾床(1)を調製した。
 ステンレス製エキスパンドメタル(SW36mm、LW101.6mm)製の側面及び底面をもち、外寸で幅740mm×奥行き740mm×高さ1000mmの立方体の中央に、直径210mm×高さ1000mmの円柱状の遮断壁(3)を壁面が鉛直方向になるように設け、この内部に、生物担体として中国実用新案特許CN201686549U号公報に記載された生物接触材構造を充填して、嫌気性微生物用固定濾床(2)を調製した。
 内寸で幅750mm×奥行き750mm×高さ2200mmの直方体状ステンレス槽内に、嫌気性微生物用固定濾床(2)の底面が直方体状ステンレス槽の底面から200mmとなるように、嫌気性微生物用固定濾床(2)を保持するための固定アングルバー4本を取り付け、この固定アングルバーに、嫌気性微生物用固定濾床(2)を保持させ、また、好気性微生物用固定濾床(1)の上面が直方体状ステンレス槽の上端から200mmとなるように、好気性微生物用固定濾床(1)を直方体状ステンレス槽の上端からつり下げた。
 好気性微生物用固定濾床(1)及び嫌気性微生物用固定濾床(2)の円柱状の遮断壁(3)で囲まれた上昇領域(ua)を気泡が上昇できるように、嫌気性微生物用固定濾床(2)の円柱状の遮断壁(3)の中央に、エアレーションノズル(4;中国実用新案特許CN201686553U号公報に記載された曝気盤構造)を設置し、これと空気移送配管を接続した。
 処理水を流入させるための流入口(7)を直方体状ステンレス槽の上端付近に設け、処理水を流出させるための流出口(8)を直方体状ステンレス槽の底面付近に設けて、生物分解消化槽(A)を調製した(図6参照)。同様にして、全部で4個の生物分解消化槽(A)を調製した。
 内寸で幅400mm×奥行き750mm×高さ2200mmの直方体状ステンレス槽の上端付近に、排水を受け入れるための受け入れ口(12)を設け、処理水を流出させるための流出口(8)を直方体状ステンレス槽の高さ1000mm付近に設けて、原水槽(X1)を調製した。
 内寸で幅400mm×奥行き750mm×高さ2200mmの直方体状ステンレス槽の底面中央付近に、エアレーションノズル(4;中国実用新案特許CN201686553U号公報に記載された曝気盤構造)に設置し、これと空気移送配管を接続し、排水を流入させるための流入口(7)を直方体状ステンレス槽の上端付近に設け、処理水を流出させるための流出口(8)を直方体状ステンレス槽の底面付近に設け、集塊分離槽からの返送集塊を受け入れる返送集塊流入口(11)を設けて、原水調整槽(X2)を調製した。
 内寸で幅400mm×奥行き400mm×高さ2200mmの直方体状ステンレス槽の下部に、底面が400mm×400mm×高さ500mmの四角錐を底面が上に、頂点が下になるように設け、この頂点部に返送集塊の取り出し口(10)を設け、処理水を流入させるための流入口(7)を直方体状ステンレス槽の上端から1000mm付近に設けて、処理水を流出させるための流出口(8)を直方体状ステンレス槽の上端付近に設けて、集塊分離槽(B)を調製した。
 内寸で幅400mm×奥行き400mm×高さ2200mmの直方体状ステンレス槽(C1)の底面中央付近に、処理水を流入させるための流入口(7)を設け、処理水をこの槽に隣接する直方体状ステンレス槽(C2;内寸で幅400mm×奥行き400mm×高さ2200mm)へ流出させるための流出口(8)を直方体状ステンレス槽(C1)の上端付近に設け、さらに、直方体状ステンレス槽(C2)の下部に、底面が400mm×400mm×高さ500mmの四角錐を底面が上に、頂点が下になるように設け、この頂点部に無機物の取り出し口(9)を設け、直方体ステンレス槽(C1)の流出口(8)からの処理水を流入させるための流入口(7)を直方体状ステンレス槽(C2)の高さ1000mm付近に設け、直方体ステンレス槽(C2)の上端付近に処理水を放流するための放流口(13)を設けて、さらに、直方体ステンレス槽(C1)に、炭/金属多孔質複合体(TERRAST Fe;鉄と炭との多孔質複合体、株式会社アオヤマエコシステム)をポリエチレン製メッシュ袋に充填したものを装填して、直方体ステンレス槽(C1)の内部を炭金属多孔質複合体で埋め尽くして、無機物質分離槽(C)を調製した。
 4個の生物分解消化槽(A)を直列に配置し、最前段の生物分解消化槽(A)の前に原水調整槽(X2)を配置し、この前に原水槽(X1)を配置し、さらに、最後段の生物分解消化槽(A)の後に集塊分離槽(B)を配置し、この後に無機物質分離槽(C)を設置して、それぞれの槽が直列になるように、流出口(8)と流入口(7)とを配管接続し、空気移送配管にブロワーを配管接続し、集塊分離槽(B)の返送集塊の取り出し口(10)と原水調整槽の返送集塊流入口(11)とを配管接続し、必要に応じて、各配管の途中に移送ポンプを設けて、本発明の生物学的排水処理装置を調製した(図1参照)。
 本発明の生物学的排水処理装置を用いて、化学工場のVOC除去スクラバー排水(約9000リットル/日)を処理し、JIS K0102:2008の「21.生物化学酸素消費量(BOD)、32.溶存酸素(32.3隔膜電極法)」、「17.100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」、「14.2全蒸発残留物」に準拠して、受け入れ排水及び放流水について、BOD、COD及び全蒸発残留物を測定し、これらの結果を表1に示した(単位はすべてppmである。)。
 また、97日間の排水処理の後、余剰集塊(または余剰汚泥)の発生は認められず、返送集塊の量も僅かであった。
 なお、VOC除去スクラバー排水は、スクラバー排水をスクラバータンクに溜め置いて、循環再利用し、1週間に1度の割合で新鮮な水と入れ替えているが、本試験において、97日間、水の入れ替えを行わすに試験した。また、57日後~97日後について、全蒸発残留物の測定は行わなかった。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 実施例1で調製した生物学的排水処理装置の1/2の大きさの装置を用いて、塗装ライン前処理排水(330リットル/日)を3日間にわたって処理し、3日後に、JIS K0102:2008の「45.全窒素、45.2紫外吸光光度法」、「46.全リン、46.3.2硝酸-過塩素酸分解法」、「53.亜鉛、53.3ICP発光分光分析法」、「59.ニッケル、59.3ICP発光分光分析法」、「34.フッ素、34.1ランタン-アリザリンコンプレキソン吸光光度法」に準拠して、受け入れ排水及び放流水について、全窒素、全リン、亜鉛、ニッケル及びフッ素を測定し、これらの結果を表2に示した(単位はすべてppmである。)。
 また、3日の排水処理後、余剰集塊(または余剰汚泥)及び返送集塊の発生は認められなかった。
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 実施例1で調製した生物学的排水処理装置の1/2の大きさの装置(ただし、無機物質分離槽(C)を設けず、集塊分離槽(B)の処理水の流出口を放流口としてここから放流した。)を用いて、石鹸製造工場排水(1000リットル/日)を22日間にわたって処理し、22日後に、JIS K0102:2008の「21.生物化学酸素消費量(BOD)、32.溶存酸素(32.3隔膜電極法)」及び「環境庁告示第64号別表4(ヘキサン抽出物質;試料をpH4以下の塩酸酸性にして、試料中の油分をヘキサンにより抽出し、約80℃でヘキサンを揮散させて残留する物質の質量を測定する方法、残渣には、鉱物油と動植物油とその他の不揮発性物質が含まれる。)」に準拠して、受け入れ排水及び放流水について、BOD及びノルマルヘキサン抽出物質含有量を測定し、これらの結果を表3に示した(単位はすべてppmである。)。
 また、22日の排水処理後、余剰集塊(または余剰汚泥)及び返送集塊の発生は認められなかった。
Figure JPOXMLDOC01-appb-T000003
<実施例4>
 実施例1で調製した生物学的排水処理装置の1/2の大きさの装置(ただし、無機物質分離槽(C)を設けず、集塊分離槽(B)の処理水の流出口を放流口としてここから放流した。)を用いて、木材加工工場排水(1000リットル/日)を24日間にわたって処理し、24日後に、JIS K0102:2008の「21.生物化学酸素消費量(BOD)、32.溶存酸素(32.3隔膜電極法)」、「17.100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」及び「環境庁告示第64号別表4(ヘキサン抽出物質)」に準拠して、受け入れ排水及び放流水について、BOD、CODMn及びノルマルヘキサン抽出物質含有量を測定し、これらの結果を表4に示した(単位はすべてppmである。)。
 また、24日の排水処理後、余剰集塊(または余剰汚泥)及び返送集塊の発生は認められなかった。
Figure JPOXMLDOC01-appb-T000004
 以上の通り、本発明の生物学的排水処理装置は、難分解物質を含むような化学工場からの排水であっても、効率的に浄化できるにも関わらず、余剰集塊(または余剰汚泥)の発生がは認められず、返送集塊の量もないか又は僅かであった。
 1 好気性微生物用固定濾床(ae)
 2 嫌気性微生物用固定濾床(an)
 3 遮断壁
 4 エアレーションノズル
 5 気液混合エジェクター
 6 処理水の水面
 7 処理水の流入口
 8 処理水の流出口
 9 無機物の取り出し口
10 返送集塊の取り出し口
11 返送集塊流入口
12 排水の受け入れ口
13 処理水の放流口
ua 上昇領域
da 下降領域
X1 前処理槽(原水槽)
X2 前処理槽(原水調整槽)
 A 生物分解消化槽
 B 集塊分離槽
 C 無機物質分離槽

Claims (12)

  1. 前処理槽(X)と、
    散気具(da)、好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)を備える生物分解消化槽(A)の少なくとも1槽とを設置してなり、
    好気性微生物用固定濾床(ae)の下部に嫌気性微生物用固定濾床(an)を配することを特徴とする生物学的排水処理装置。
  2. 複数個の生物分解消化槽(A)を直列に設置し、
    この設置数が2~10個である請求項1に記載の生物学的排水処理装置。
  3. 前段の前処理槽(X)又は生物分解消化槽(A)から生物分解消化槽(A)へ処理水を流入させるための流入口を生物分解消化槽(A)の上部に備え、
    後段の後処理槽(Y)又は生物分解消化槽(A)へ処理水を流出させるための流出口を生物分解消化槽(A)の最深部に備える請求項1又は2に記載の生物学的排水処理装置。
  4. 好気性微生物用固定濾床(ae)に遮断壁を壁面が鉛直方向になるように配して、散気具から供給される気泡が処理水の水面まで上昇できる上昇領域(ua)を設ける請求項1~3のいずれかに記載の生物学的排水処理装置。
  5. 嫌気性微生物用固定濾床(an)に遮断壁を壁面が鉛直方向になるように配して、処理水が深部から浅部へ上昇できる上昇領域(ua)を設ける請求項1~4のいずれかに記載の生物学的排水処理装置。
  6. 散気具を上昇領域(ua)に配する請求項4又は5に記載の生物学的排水処理装置。
  7. 散気具がエアレーションノズル及び/又はエジェクターである請求項1~6のいずれに記載の生物学的排水処理装置。
  8. 好気性微生物用固定濾床(ae)及び嫌気性微生物用固定濾床(an)を構成する生物担体が、少なくとも互いに交差する複数個の板を備え、この板に大小異なる複数個の貫通孔を備える請求項1~7のいずれかに記載の生物学的排水処理装置。
  9. 後処理槽(Y)として、集塊と処理水とを分離するための分離槽であって、
    生物分解消化槽(A)からの処理水を流入させるための流入口と、集塊を前処理槽(X)へ返送するための返送口と、処理水を放流又は別の後処理槽へ排出するための排出口とを有し、他の流出入口を持たない集塊分離槽(B)を設置する請求項1~8のいずれかに記載の生物学的排水処理装置。
  10. 後処理槽(Y)として、集塊分離槽(B)の後段に、無機物質と処理水とを分離するための無機物質分離槽(C)を設置する請求項1~9のいずれかに記載の生物学的排水処理装置。
  11. 無機物質分離槽(C)に、金属粒子及び炭粒子が互いに接触し、多孔質に構成される炭/金属多孔質複合体を充填している請求項10に記載の生物学的排水処理装置。
  12. 金属がアルミニウム及び/又は鉄である請求項11に記載の生物学的排水処理装置。
PCT/JP2012/073018 2012-05-17 2012-09-10 生物学的排水処理装置 WO2013171920A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280001424.9A CN103534213B (zh) 2012-05-17 2012-09-10 生物学的排水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-113858 2012-05-17
JP2012113858A JP5918017B2 (ja) 2012-05-17 2012-05-17 生物学的排水処理装置

Publications (1)

Publication Number Publication Date
WO2013171920A1 true WO2013171920A1 (ja) 2013-11-21

Family

ID=49583358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073018 WO2013171920A1 (ja) 2012-05-17 2012-09-10 生物学的排水処理装置

Country Status (3)

Country Link
JP (1) JP5918017B2 (ja)
CN (1) CN103534213B (ja)
WO (1) WO2013171920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601347A (zh) * 2013-12-06 2014-02-26 哈尔滨工业大学 一种生活污水的处理方法及uafb-egsb耦合系统的快速启动方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132682B2 (ja) * 2018-11-09 2022-09-07 前澤工業株式会社 汚水処理装置及び汚水処理方法
JP2021133263A (ja) * 2020-02-21 2021-09-13 株式会社フジタ 水浄化システム、および水浄化方法
JP7344576B2 (ja) * 2021-04-07 2023-09-14 Wef技術開発株式会社 気泡/金属イオン複合体の製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681197A (en) * 1979-12-06 1981-07-02 Ebara Infilco Co Ltd Apparatus for nitrificating and denitrificating waste water biologically
JPH04197493A (ja) * 1990-11-29 1992-07-17 Ebara Infilco Co Ltd 汚水の濾過方法および装置
JP2008029943A (ja) * 2006-07-27 2008-02-14 Kanazawa Univ 微生物担体及び排水処理装置
JP2011025160A (ja) * 2009-07-24 2011-02-10 Aoyama Eco System:Kk 水処理用炭−金属複合体及び炭−金属複合体用成型体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201924A3 (de) * 1985-05-15 1988-07-13 Water Engineering and Plant Construction GtA reg.Trust Verfahren und Vorrichtung zur Reinigung von Abwässern
JP2005066432A (ja) * 2003-08-22 2005-03-17 N Ii T Kk 汚水処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681197A (en) * 1979-12-06 1981-07-02 Ebara Infilco Co Ltd Apparatus for nitrificating and denitrificating waste water biologically
JPH04197493A (ja) * 1990-11-29 1992-07-17 Ebara Infilco Co Ltd 汚水の濾過方法および装置
JP2008029943A (ja) * 2006-07-27 2008-02-14 Kanazawa Univ 微生物担体及び排水処理装置
JP2011025160A (ja) * 2009-07-24 2011-02-10 Aoyama Eco System:Kk 水処理用炭−金属複合体及び炭−金属複合体用成型体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601347A (zh) * 2013-12-06 2014-02-26 哈尔滨工业大学 一种生活污水的处理方法及uafb-egsb耦合系统的快速启动方法
CN103601347B (zh) * 2013-12-06 2014-10-01 哈尔滨工业大学 一种生活污水的处理方法及uafb-egsb耦合系统的快速启动方法

Also Published As

Publication number Publication date
JP5918017B2 (ja) 2016-05-18
CN103534213B (zh) 2016-05-04
JP2013240727A (ja) 2013-12-05
CN103534213A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
TWI568687B (zh) 包含懸浮系統與多重生物反應器區域的經懸浮介質膜生物反應器系統及方法
US20060191847A1 (en) Wastewater treatment device and wastewater treatment method
US11667554B2 (en) Wastewater treatment apparatus and process therefor
CN203144227U (zh) 多级氧化处理难降解废水的一体化装置
CN104529076B (zh) 一种污水深度处理生物滤池装置系统及处理工艺
CN201240972Y (zh) 臭氧氧化与下流式曝气生物滤池结合的废水深度处理装置
JP5918017B2 (ja) 生物学的排水処理装置
KR20120005857A (ko) 수처리 장치 및 방법
CN107963786A (zh) 一种污水处理方法及系统
AU2013394505B2 (en) Water treatment device
CN209974409U (zh) 一种用于垃圾渗滤液处理的厌氧反应器
KR100913728B1 (ko) 순산소에 의하여 용존산소농도를 조절하는 폐수처리 방법 및 이에 적합한 폐수처리 장치
CN206457377U (zh) 一种污水处理装置
CN106746357A (zh) 一种污水处理装置
CN111747605A (zh) 一种多级物化-生化联用的生活污水处理系统和处理方法
CN110510835A (zh) 处理农村废水的方法
CA2598524A1 (en) Aerating wastewater for re-use
KR200364601Y1 (ko) 미생물 반응교반기
CN205575883U (zh) 一种生活污水处理装置
CN108117196A (zh) 皮革废水深度处理系统及方法
TWI526406B (zh) 生物學的排水處理裝置
RU173044U1 (ru) Устройство биологической очистки сточных вод
CN205773941U (zh) 一种用于电镀废水处理的活性炭催化臭氧联合sbr装置
CN218931842U (zh) 一种污泥减量污水处理系统
CN210085208U (zh) 一种工业废水净化处理设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001424.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876655

Country of ref document: EP

Kind code of ref document: A1