WO2013168985A1 - 광섬유 적용 항균 필터 및 이를 포함한 공기청정기 - Google Patents

광섬유 적용 항균 필터 및 이를 포함한 공기청정기 Download PDF

Info

Publication number
WO2013168985A1
WO2013168985A1 PCT/KR2013/003989 KR2013003989W WO2013168985A1 WO 2013168985 A1 WO2013168985 A1 WO 2013168985A1 KR 2013003989 W KR2013003989 W KR 2013003989W WO 2013168985 A1 WO2013168985 A1 WO 2013168985A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light source
filter
source unit
air
Prior art date
Application number
PCT/KR2013/003989
Other languages
English (en)
French (fr)
Inventor
박현설
여정구
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120048761A external-priority patent/KR101350942B1/ko
Priority claimed from KR1020120051867A external-priority patent/KR101523656B1/ko
Priority claimed from KR1020120051866A external-priority patent/KR101431562B1/ko
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US14/360,536 priority Critical patent/US9393339B2/en
Priority to CN201380004511.4A priority patent/CN104010710B/zh
Publication of WO2013168985A1 publication Critical patent/WO2013168985A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light

Definitions

  • the present invention relates to an optical fiber applied antibacterial filter and an air cleaner including the same, and more particularly, to a technique for killing harmful microorganisms collected in a filter when the air is purified using the filter.
  • Antibacterial and sterilization techniques include heat, ultraviolet rays, radiation, chemical treatment, etc.
  • the present invention corresponds to antibacterial technique using ultraviolet rays.
  • High-efficiency filters used for air purification can effectively trap almost all harmful microorganisms.
  • the microorganisms trapped in the filter can survive for a long time and even multiply.
  • Various antibacterial filters have been developed to solve this problem.
  • the air purification filter has been applied to the filter by generating an ion cluster in front of the filter to kill the microorganism by attaching ions to the microorganisms collected in the filter. Since dust continuously accumulates and serves as a protective barrier against microorganisms, there is a problem in that conventional techniques cannot effectively kill harmful microorganisms.
  • the present invention has been made to solve the above-mentioned conventional problems, and irradiates ultraviolet rays, visible light, or natural light through the optical fiber surface constituting the filter material to sterilize harmful microorganisms such as bacteria, fungi, viruses, and the like within the filter.
  • harmful microorganisms such as bacteria, fungi, viruses, and the like within the filter.
  • the antimicrobial filter applied to the optical fiber according to the present invention includes one or more optical fibers that are received at one end and the light source traveling along the longitudinal direction is emitted through the surface, the air in the thickness direction
  • a filter medium having a porous structure that can permeate and filter particulate matter in the air A light source unit irradiating a light source to one end of the optical fiber included in the filter medium;
  • a power supply unit connected to the light source unit and applying power to operate the light source, and the air cleaner according to the present invention has the antibacterial filter applied to the optical fiber.
  • the antimicrobial filter applied to the optical fiber according to the present invention the optical fiber layer consisting of only the optical fiber that is received at one end and proceeds along the longitudinal direction can emit light through the surface, and filtration for filtering particulate matter in the air without including the optical fiber A layered filter medium; A light source unit irradiating a light source to one end of the optical fiber constituting the optical fiber layer; And a power supply unit connected to the light source unit and applying power to operate the light source.
  • the antimicrobial filter applied to the optical fiber according to the present invention is an optical fiber layer consisting of only the optical fiber that is received at one end and proceeds along the longitudinal direction and can emit light through the surface, and filtration for filtering particulate matter in the air without including the optical fiber
  • a layered filter medium A light source unit irradiating a light source to one end of the optical fiber constituting the optical fiber layer; A connector connecting one end surface of the optical fiber constituting the optical fiber layer and the light source unit; And a power supply unit connected to the light source unit and applying power to operate the light source.
  • the optical fiber applied antimicrobial filter according to the present invention is an optical fiber mixing non-woven fabric formed by irregularly mixing the optical fiber and the normal fiber that the light source is received at one end and proceeds along the longitudinal direction; A light source unit irradiating a light source to one end of the optical fiber mixed nonwoven fabric; And a power supply unit connected to the light source unit and applying power to operate the light source.
  • the optical fiber applied antimicrobial filter according to the present invention is to be laminated with the optical fiber mixed nonwoven fabric and the optical fiber mixed non-woven fabric is formed by mixing the optical fiber and the normal fiber light source that is received at one end and proceeds along the longitudinal direction light emitting through the surface
  • a filter medium formed of a filtration layer which does not include the optical fiber and filters particulate matter in the air A filter medium formed of a filtration layer which does not include the optical fiber and filters particulate matter in the air;
  • a light source unit irradiating a light source to one end of the optical fiber mixed nonwoven fabric;
  • a power supply unit connected to the light source unit and applying power to operate the light source.
  • the antimicrobial filter applied to the optical fiber of the present invention and the air cleaner including the same by irradiating ultraviolet light, visible light, or natural light directly into the filter through the surface light emission of the optical fiber, bacteria, fungi, It can effectively sterilize microorganisms harmful to human body such as virus in a short time, and can increase the sterilization effect by coating the photocatalyst on the filter medium. Accordingly, the antibacterial filter has continuous dust particles, which are disadvantages of the existing antibacterial filter, on the filter fiber surface. There is an effect that can overcome the problem of lowering the sterilization effect caused by the collection.
  • 1 is a schematic view showing a conventional filter
  • FIG. 2 is a cross-sectional view showing an antimicrobial filter to which an optical fiber is applied according to an embodiment of the present invention.
  • FIG. 3 is a side view showing an antimicrobial filter to which an optical fiber is applied according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing an antimicrobial filter to which an optical fiber is applied according to an embodiment of the present invention.
  • FIG. 5 is a side cross-sectional view showing an optical fiber according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an air cleaner equipped with an antibacterial filter according to an embodiment of the present invention.
  • FIG. 7 is an enlarged view illustrating a portion A of FIG. 6,
  • FIG. 8 is a cross-sectional view showing an optical fiber layer applied antimicrobial filter according to an embodiment of the present invention.
  • FIG. 9 is a side view showing the antimicrobial filter applied to the optical fiber layer according to an embodiment of the present invention.
  • FIG. 10 is a side view showing an antimicrobial filter to which a multi-layered optical fiber layer is applied according to an embodiment of the present invention.
  • FIG. 11 is a schematic view showing an antimicrobial filter to which an optical fiber layer is applied according to an embodiment of the present invention.
  • FIG. 12 is a plan view showing an antibacterial filter having an optical fiber layer in the form of an optical fiber fabric according to an embodiment of the present invention
  • FIG. 13 is a schematic view showing a cross section of FIG. 12;
  • FIG. 14 is a schematic diagram showing an antibacterial filter having an optical fiber layer using an optical fiber connected over the front surface according to another embodiment of the present invention.
  • FIG. 15 is a schematic view showing an air cleaner equipped with an antibacterial filter having an optical fiber layer according to an embodiment of the present invention
  • FIG. 16 is an enlarged view of portion A of FIG. 15,
  • FIG. 17 is a schematic diagram showing an air cleaner equipped with an antibacterial filter having an optical fiber layer according to the first embodiment of the present invention
  • FIG. 18 is a schematic view showing an air cleaner with an antibacterial filter having an optical fiber layer according to a second embodiment of the present invention
  • FIG. 19 is a schematic view showing an air cleaner with an antibacterial filter having an optical fiber layer according to a third embodiment of the present invention.
  • 20 is a plan view showing the antimicrobial filter applied to the optical fiber mixing nonwoven fabric according to an embodiment of the present invention
  • 21 is an exploded plan view showing an antimicrobial filter applied with a nonwoven fabric mixed according to an embodiment of the present invention
  • FIG. 22 is a side view showing an antimicrobial filter applied with a nonwoven fabric mixed according to an embodiment of the present invention
  • FIG. 23 is a side view showing an antimicrobial filter applied to a multi-layer optical fiber mixed nonwoven fabric according to an embodiment of the present invention
  • FIG. 24 is a schematic view showing an air cleaner with an optical fiber mixing nonwoven fabric antibacterial filter according to an embodiment of the present invention
  • FIG. 25 is an enlarged view of portion A of FIG. 24;
  • 26 is a schematic view showing an air cleaner with an optical fiber mixing nonwoven fabric antibacterial filter according to the first embodiment of the present invention
  • FIG. 27 is a schematic view showing an air cleaner with an optical fiber mixing nonwoven fabric antibacterial filter according to a second embodiment of the present invention
  • FIG. 28 is a schematic view showing an air cleaner with an optical fiber mixing nonwoven fabric antibacterial filter according to a third embodiment of the present invention.
  • filter medium 20 optical fiber
  • optical fiber layer 60 filtration layer
  • pretreatment filter 120 adsorption filter
  • blower 140 charging device
  • the present invention has the following features to achieve the above object.
  • the antimicrobial filter applied to the optical fiber of the present invention includes one or more optical fibers in which a part of the light source received at one end and traveling along the longitudinal direction is emitted through the surface, and has a porous structure through which air can pass in the thickness direction.
  • a filter medium having a particle and filtering particulate matter in the air;
  • a light source unit irradiating a light source to one end of the optical fiber included in the filter medium;
  • a power source unit connected to the light source unit and applying power to operate the light source.
  • the present invention is characterized by an air cleaner having the optical fiber applied antibacterial filter.
  • the antimicrobial filter applied to the optical fiber layer of the present invention is an optical fiber layer consisting of only the optical fiber that is received at one end and proceeds along the longitudinal direction and emits light through the surface, and a filtration layer for filtering particulate matter in the air without including the optical fiber.
  • the antimicrobial filter applied to the optical fiber layer of the present invention is an optical fiber layer consisting of only the optical fiber that is received at one end and proceeds along the longitudinal direction and emits light through the surface, and filtration for filtering particulate matter in the air without including the optical fiber.
  • a layered filter medium A light source unit irradiating a light source to one end of the optical fiber constituting the optical fiber layer; A connector connecting one end surface of the optical fiber constituting the optical fiber layer and the light source unit; And a power supply unit connected to the light source unit and applying power to operate the light source.
  • the antimicrobial filter applied to the optical fiber mixed nonwoven fabric of the present invention comprises: an optical fiber mixed nonwoven fabric formed by irregularly mixing an optical fiber capable of emitting light through a surface and a general fiber, the light source being received at one end and traveling along a longitudinal direction; A light source unit irradiating a light source to one end of the optical fiber mixed nonwoven fabric; And a power source unit connected to the light source unit and applying power to operate the light source.
  • the antimicrobial filter applied to the optical fiber mixed nonwoven fabric of the present invention is an optical fiber mixed nonwoven fabric formed by mixing the optical fiber and the normal fiber light source that is received at one end and proceeds along the longitudinal direction and the light emitted through the surface, and laminated with the optical fiber mixed nonwoven fabric
  • a light source unit irradiating a light source to one end of the optical fiber mixed nonwoven fabric
  • a power source unit connected to the light source unit and applying power to operate the light source.
  • FIG. 2 is a cross-sectional view showing an antimicrobial filter to which an optical fiber is applied according to an embodiment of the present invention
  • FIG. 3 is a side view showing an antimicrobial filter to which an optical fiber is applied according to an embodiment of the present invention
  • FIG. 4 is an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing an antimicrobial filter to which the optical fiber is applied according to an example
  • Figure 5 is a side cross-sectional view showing an optical fiber according to an embodiment of the present invention.
  • the antimicrobial filter 100 of the present invention includes one or more optical fibers that are received at one end and a portion of the light source that proceeds along the longitudinal direction is emitted through the surface is formed , Has a porous structure through which air can pass in the thickness direction, the filter medium 10 for filtering particulate matter in the air, and the light source unit 30 to which a light source is irradiated to one end of the optical fiber included in the filter medium 10. And a power supply unit 40 connected to the light source unit 30 and applying power to operate the light source.
  • the filter medium 10 filters particulate matter in the air (bacteria, fungi, viruses, etc.), has a porous structure, and generally has the form of a fibrous fabric or a fibrous nonwoven fabric.
  • the optical fiber 20 is formed to be included in the filter medium 10, and when the light source of the light source unit 30 is irradiated to one end of the optical fiber 20, the light source is an optical fiber. Transmitted in the longitudinal direction of the (20), the light transmitted through the core portion 21 of the optical fiber 20 is emitted through the surface of the cladding portion 22 to the filter medium 10 or the optical fiber 20 Effectively kills the collected harmful microorganisms (2).
  • the optical fiber 20 extends in the longitudinal direction and surrounds the core portion 21 having a refractive index lower than the refractive index of the core portion 21 and a refractive index higher than that of air.
  • the cladding portion may be combined with a material having various values of the refractive index or by adjusting the thickness of the cladding portion 22. (22) Light can be emitted through the surface.
  • the optical fiber 20 may be formed of a plastic material, and the light diverging part 23 is evenly distributed on the surface of the optical fiber 20.
  • optical fiber 20 is formed with a diameter of 2 mm or less in order to secure flexibility (flexible), in the present invention is formed as 1mm in one embodiment.
  • the filter medium 10 including the optical fiber 20 is coated with a photocatalyst to enhance the sterilization effect.
  • the light source unit 30 is a device for generating a light source irradiated to one end of the optical fiber 20 included in the fiber filter material 10, but includes various devices.
  • the light source unit 30 is connected to a printed circuit board (PCB) 31 to control the light source. Irradiation of the light source of the light source unit 30 is a commonly known technique, and thus no separate function and structure will be described.
  • the light source may be any one of visible light, ultraviolet light, or natural light selectively, and at least one may be used at the same time.
  • the irradiation time of the light source is sufficient to sterilize even if the light source is used within 1 hour per day to prevent the destruction of the polymer constituting the filter medium due to the use of the light source for a long time.
  • the power supply unit 40 is connected to the light source unit 30 and applies power to operate the light source.
  • the power source unit 40 is connected to the PCB 31 to generate power. To feed.
  • FIG. 6 is a schematic view showing an air cleaner having an optical fiber applied antibacterial filter according to an embodiment of the present invention
  • FIG. 7 is an enlarged view of portion A of FIG. 6.
  • the air cleaner 200 of the present invention is an air cleaner 200 equipped with the antibacterial filter 100 to which the above-described optical fiber 20 is applied, and the air cleaner 200.
  • the antimicrobial filter 100 is inserted into and provided in the duct case 160 of the light source unit 30 and the power supply unit 40 at one end of the antimicrobial filter 100, that is, the side surface of the duct case 160 of the air cleaner 200. ) Is provided.
  • the antibacterial filter 100 provided in the air cleaner 200 is formed of a bent filter bent in the form of " ⁇ " in order to increase the filtration area, which in one embodiment, changes the design in various forms This is possible.
  • FIG. 8 is a cross-sectional view showing an optical fiber layer applied antibacterial filter according to an embodiment of the present invention
  • Figure 9 is a side view showing an optical fiber layer applied antibacterial filter according to an embodiment of the present invention
  • Figure 10 is an embodiment of the present invention
  • FIG. 11 is a side view showing an antimicrobial filter to which a multi-layered optical fiber layer is applied
  • FIG. 11 is a schematic view showing an antimicrobial filter to which an optical fiber layer is applied according to an embodiment of the present invention
  • FIG. 12 is an optical fiber according to an embodiment of the present invention.
  • Fig. 13 is a plan view showing the antimicrobial filter having the optical fiber layer in the form of a cloth
  • Fig. 13 is a schematic view showing the cross section of Fig.
  • the antimicrobial filter 100A applied to the optical fiber layer of the present invention is an optical fiber layer consisting of only the optical fiber 20 capable of emitting light through the surface of the light source received in one end and proceeding along the longitudinal direction ( 50 and a filter medium (10) comprising a filter layer (60) for filtering particulate matter in air without including the optical fiber (20);
  • the filter medium 10 includes an optical fiber layer 50 and a filtration layer 60.
  • the optical fiber layer 50 is a layer composed of only a plurality of optical fibers 20. to be.
  • the optical fiber 20 is as described with reference to FIG.
  • the optical fiber layer 50 in the form of an optical fiber fabric may be composed of a plurality of optical fibers 20 woven in a form such as a fabric composed of a string and a blade, as shown in FIGS. 12 and 13.
  • the optical fibers 20 may be bent at a portion where the string fiber and the raw fiber cross each other, so that more light incident from the light source and traveling inside the optical fibers 20 may be emitted to the outside.
  • the filtration layer 60 is a porous layer that does not contain an optical fiber, it may be a non-woven or woven layer made of fibers (11).
  • the filtration layer 60 composed of the filtration layer 60 or the optical fiber layer 50 and the filtration layer 60 may be coated with a photocatalyst.
  • the photocatalyst may be prepared by various methods such as a sol-gel method and may be coated on the filter layer 60 and the filter medium 10 by spraying or applying. Titanium dioxide (TiO 2), zinc oxide (ZnO), tungsten oxide (WO 3), etc. may be used as the photocatalyst, and materials having the property of being activated by ultraviolet rays, visible rays, or mixed light thereof to kill harmful microorganisms may be applied. have.
  • the light source unit 30 is a device for generating a light source irradiated to one end of the optical fiber 20 included in the filter medium 10, but includes various devices.
  • the light source unit 30 is connected to a printed circuit board (PCB) 41 to control the light source. Irradiation of the light source of the light source unit 30 is a commonly known technique, and thus no separate function and structure will be described.
  • the light source may be any one of visible light, ultraviolet light, or natural light selectively, and at least one may be used at the same time.
  • the irradiation time of the light source is sufficient to use the light source within 1 hour per day to prevent destruction of the polymer constituting the filter medium 10 due to the use of the light source for a long time is sufficient.
  • the power supply unit 40 is connected to the light source unit 30 and applies power to operate the light source.
  • the power supply unit 40 is connected to the PCB 41 to generate power. To feed.
  • FIG. 14 is a schematic diagram showing an antibacterial filter having an optical fiber layer using optical fibers connected across the front surface according to another embodiment of the present invention.
  • the optical fiber layer applied antimicrobial filter of the present invention is formed in the same structure, structure, and shape as the optical fiber layer applied antimicrobial filter described in one embodiment.
  • a connector 70 connected to the light source unit 30 to interconnect one end surface of the optical fiber 20 constituting the optical fiber layer 50 is further formed.
  • the optical fiber layer 50 includes at least one optical fiber 20 continuously connected over the entire area of the optical fiber layer 50, and more preferably, one end of the optical fiber layer 50 connected to one connector 70. It may include optical fibers 20.
  • the optical fibers 20 continuously form smaller and smaller squares and spirally extend toward the center of the optical fiber layer 50.
  • the optical fiber layer 50 need not be limited to this form and is continuous. May be arranged in a zigzag form or may be arranged to cross each other in some.
  • the connector 70 may have various shapes such that the light source emitted from the light source unit 30 is effectively incident.
  • FIG. 15 is a schematic view showing an air cleaner with an antimicrobial filter applied to an optical fiber layer according to an embodiment of the present invention
  • FIG. 16 is an enlarged view showing a portion A of FIG. 15, and
  • FIG. 17 is a first embodiment of the present invention.
  • FIG. 18 is a schematic view showing an air cleaner with an antibacterial filter applied to an optical fiber layer
  • FIG. 18 is a schematic view showing an air cleaner with an antibacterial filter applied to an optical fiber layer according to a second embodiment of the present invention
  • the air cleaner 200A of the present invention is an air cleaner 200A equipped with the antimicrobial filter 100A applied to the optical fiber layer described above, and the duct of the air cleaner 200A.
  • the antibacterial filter 100A is inserted into the case 160, and the light source unit 30 and the power supply unit 40 are provided at one end of the antibacterial filter 100A, that is, at the side surface of the duct case 160 of the air cleaner 200A. It is a form provided.
  • the antibacterial filter 100A provided in the air cleaner 200A is formed of a bent filter bent in a " ⁇ " form to increase the filtration area, which is an embodiment, the design change in various forms This is possible.
  • the air cleaner 200A includes a duct case 160 having an inlet 161 through which contaminated air is introduced, an outlet 162 through which filtered clean air is discharged, and the duct case as shown in FIG. 17.
  • the pretreatment filter 110 is installed at the inlet 161 in the 160 and filters the contaminated air first, and the rear surface of the pretreatment filter 110 filters the fine dust in the contaminated air. It is installed on the antibacterial filter (100A) and the rear of the antibacterial filter (100A) is installed on the adsorption filter (120) and the adsorption filter (120) for absorbing and filtering volatile organic compounds (VOC) and odors in the air.
  • the blower 130 is configured to transfer the filtered clean air.
  • a charging device 140 for electrically charging a foreign matter in the air is further provided between the pretreatment filter 110 and the optical fiber layer applied antibacterial filter 100A. Is installed.
  • the charging device 140 may be applied to the corona discharge or electrospray method.
  • the charging device 140 to which the corona discharge method is applied includes a ground electrode 141 and a discharge electrode 142 to generate corona discharge by receiving power from an external power source.
  • the ground electrode 141 is spaced apart from each other by a flat plate is formed, the discharge electrode 142 is provided between the plurality of ground electrode 141 in the form of metal wire, metal needle, carbon fiber and the like.
  • the air cleaner 200A is a HEPA Filter (High Efficiency Particulate Air Filter) or between the optical fiber layer applied antibacterial filter 100A and the adsorption filter 120 described in the first embodiment or A high performance filter 150 such as an ULPA filter (Ultra Low Penetration Air Filter) is further installed.
  • HEPA Filter High Efficiency Particulate Air Filter
  • ULPA filter Ultra Low Penetration Air Filter
  • the high-performance filter 150 to filter the foreign matter such as fine dust once again filtered by the antibacterial filter (100A), the air cleaner 200A is applied to a clean room for building air conditioning or industrial sites or hospitals Can be.
  • FIG. 20 is a plan view showing an optical fiber mixed nonwoven fabric applied antimicrobial filter according to an embodiment of the present invention
  • FIG. 21 is an exploded plan view showing an optical fiber mixed nonwoven fabric applied antimicrobial filter according to an embodiment of the present invention
  • FIG. FIG. 23 is a side view showing the antimicrobial filter applied to the optical fiber mixing nonwoven fabric according to an embodiment of the present invention
  • FIG. 23 is a side view showing the antimicrobial filter to the multi-layered optical fiber mixing nonwoven fabric according to an embodiment of the present invention
  • FIG. 24 is an embodiment of the present invention.
  • the optical fiber mixed nonwoven fabric applied antimicrobial filter 100B of the present invention is an optical fiber 20 and a general fiber (light source) which is received at one end and proceeds along the longitudinal direction to emit light through the surface ( 11) an optical fiber mixing nonwoven fabric 50 formed by mixing irregularly;
  • the optical fiber mixing nonwoven fabric 50 is a non-woven fabric in which a plurality of fibers 11 and a plurality of optical fibers 20 for emitting light on the surface between them are arranged in an irregular shape. All.
  • the plurality of fibers 11 may be conventional synthetic fibers.
  • the optical fiber mixing nonwoven fabric 50 may be coated with a photocatalyst.
  • the photocatalyst may be prepared by various methods such as a sol-gel method and may be coated on the optical fiber mixed nonwoven fabric 50 by spraying or applying. Titanium dioxide (TiO 2), zinc oxide (ZnO), tungsten oxide (WO 3), etc. may be used as the photocatalyst, and materials having the property of being activated by ultraviolet rays, visible rays, or mixed light thereof to kill harmful microorganisms may be applied. have.
  • the optical fiber mixing nonwoven fabric 50 includes a plurality of fibers 11 without including the optical fiber 20 to filter particulate matter in the air. It is formed to be laminated on the upper and lower portions of the optical fiber mixing nonwoven fabric 50 to form the filter medium 10.
  • the plurality of optical fiber mixing nonwoven fabrics 50 and the plurality of filter layers 60 may be alternately stacked.
  • a connector (not shown) is further installed to connect one end surface of the optical fiber mixing nonwoven fabric 50 to the light source unit 30.
  • optical fiber 20 is the same as described with reference to FIG. 5 even in the present embodiment.
  • the light source unit 30 is a device for generating a light source irradiated to one end of the optical fiber mixing nonwoven fabric 50, as shown in FIGS. 20 to 24, but includes a variety of devices, in the present invention, the light source unit 30 ) Is connected to a printed circuit board (PCB, 41, hereinafter referred to as PCB) to control the light source. Irradiation of the light source of the light source unit 30 is a commonly known technique, and thus no separate function and structure will be described.
  • PCB printed circuit board
  • the light source may be any one of visible light, ultraviolet light, or natural light selectively, and at least one may be used at the same time.
  • the irradiation time of the light source is sufficient to use the light source within 1 hour per day to prevent destruction of the polymer constituting the optical fiber mixed nonwoven fabric 50 due to the use of a light source for a long time is sufficient.
  • the power supply unit 40 is connected to the light source unit 30 and applies power to operate the light source.
  • the power source 40 is connected to the PCB 41 to generate power. To feed.
  • FIG. 24 is a schematic view showing an air cleaner with an optical fiber mixing nonwoven fabric antibacterial filter according to an embodiment of the present invention
  • FIG. 25 is an enlarged view showing a portion A of FIG. 24, and
  • FIG. 26 is a first embodiment of the present invention.
  • FIG. 27 is a schematic view showing an air purifier with an optical fiber mixed nonwoven antibacterial filter according to FIG. 27, and
  • FIG. 27 is a schematic view showing an air purifier with an optical fiber mixed nonwoven antibacterial filter according to a second embodiment of the present invention, and
  • the air purifier equipped with the optical fiber mixed nonwoven antibacterial filter of the present invention is an air purifier 200B equipped with the optical fiber mixed nonwoven antibacterial filter 100B described above, the air purifier
  • the optical fiber mixing nonwoven fabric antibacterial filter 100B is inserted into the duct case 160 of the 200B, and the light source unit is formed at one end of the antibacterial filter 100B, that is, the side surface of the duct case 160 of the air cleaner 200B. 30 and the power supply unit 40 are provided.
  • the optical fiber mixing nonwoven fabric antibacterial filter 100B provided in the air cleaner 200B is formed of a bent filter bent in a " ⁇ " form to increase the filtration area, which is an embodiment, various forms Design change is possible.
  • the air cleaner 200B, the duct case 160 is formed with an inlet 161 through which contaminated air is introduced, an outlet 162 through which filtered clean air is discharged, and the duct case.
  • the pretreatment filter 110 is installed at the inlet 161 in the 160 and filters the contaminated air first, and the rear surface of the pretreatment filter 110 filters the fine dust in the contaminated air.
  • Adsorption filter 120 and the adsorption filter 120 installed on the rear surface of the optical fiber mixed nonwoven fabric antibacterial filter 100B and the optical fiber mixed nonwoven fabric antibacterial filter 100B to adsorb and filter volatile organic compounds (VOC) and odors in the air. It is installed on the rear of the) consists of a blower 130 for transporting the filtered clean air.
  • a charging device 140 for electrically charging the foreign matter in the air further Is installed.
  • the charging device 140 may be applied to the corona discharge or electrospray method.
  • the charging device 140 to which the corona discharge method is applied includes a ground electrode 141 and a discharge electrode 142 to generate corona discharge by receiving power from an external power source.
  • the ground electrode 141 is spaced apart from each other by a flat plate is formed, the discharge electrode 142 is provided between the plurality of ground electrode 141 in the form of metal wire, metal needle, carbon fiber and the like.
  • the air cleaner 200B is a HEPA Filter (High Efficiency Particulate Air Filter) or between the optical fiber mixed nonwoven antibacterial filter 100B and the adsorption filter 120 described in the first embodiment or A high performance filter 150 such as an ULPA filter (Ultra Low Penetration Air Filter) is further installed.
  • HEPA Filter High Efficiency Particulate Air Filter
  • ULPA filter Ultra Low Penetration Air Filter
  • the high-performance filter 150 to filter the foreign matter such as fine dust once again filtered by the optical fiber mixed nonwoven antibacterial filter (100B), the air cleaner 200B is clean for building air conditioning, industrial sites, hospitals, etc. Can be applied to the room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 광섬유 적용 항균 필터 및 이를 포함한 공기청정기에 관한 것으로 서, 더욱 상세하게는 여과재 내부에 포함된 광섬유의 표면을 통해 직접적으로 자외선, 가시광, 또는 자연광을 발산함으로써, 여과재 내부에 포집된 세균, 진균, 바이러스 등 인체에 유해한 미생물을 짧은 시간 내에 효과적으로 사멸시킬 수 있고, 상기 여과재 표면에 광촉매를 코팅하여 살균 효과를 높일 수도 있으며, 이를 통해 기존 항균 필터의 단점인 먼지입자가 필터 섬유표면에 지속적으로 포집됨으로써 발생하였던 살균 효과 저하 문제를 극복할 수 있는 특징이 있다.

Description

광섬유 적용 항균 필터 및 이를 포함한 공기청정기
본 발명은 광섬유 적용 항균 필터 및 이를 포함한 공기청정기에 관한 것으로서, 더욱 상세하게는 필터를 사용하여 공기를 정화시킬 때 필터에 포집되는 유해한 미생물을 사멸하기 위한 기술에 관한 것이다. 항균 및 멸균 기술은 열, 자외선, 방사선, 화학약품처리 등이 있으며 본 발명은 이 중 자외선을 이용한 항균 기술에 해당된다.
공기정화에 사용되는 고효율 필터는 거의 모든 유해한 미생물을 효과적으로 포집할 수 있다. 그러나 필터에 포집된 미생물은 장시간 생존할 수 있으며 심지어 증식하기도 한다. 이러한 문제를 해결하기 위해 다양한 항균필터가 개발되었다.
여기서, 항균 물질을 필터 표면에 코팅한 항균기술, 공기정화용 필터의 경우 이온클러스터를 필터 전단에 발생시켜 이온이 필터에 포집된 미생물에 부착됨으로써 미생물을 사멸하는 항균기술 등이 적용되어 왔으나, 필터에 먼지가 지속적으로 쌓여 미생물에 대한 보호벽 역할을 하기 때문에 종래기술로는 유해한 미생물을 효과적으로 사멸시킬 수 없다는 문제점이 있다.
또한, 도 1에서처럼, 필터(1) 표면에 자외선(3) 광원을 조사하여 미생물(2)을 사멸시키는 방법이 시도되었으나, 자외선(3)이 필터(1)의 표면에만 조사되고 필터(1) 내부에 포집된 미생물(2)은 사멸시키지 못한다는 단점이 있었다.
따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로, 세균, 진균, 바이러스 등과 같은 유해 미생물을 멸균하기 위해 필터 소재를 구성하는 광섬유 표면을 통해서 자외선, 가시광, 또는 자연광을 필터 내부에서 조사하여 필터 섬유 표면에 포집된 유해 미생물을 사멸시킴으로써 먼지입자가 필터에 지속적으로 포집됨으로써 발생하였던 종래 항균 필터의 항균기능 저하 현상 및 낮은 항균성능을 극복하고자 하는 광섬유 혼합 부직포 적용 항균 필터 및 이를 포함한 공기청정기를 제공하는데 목적이 있다.
상기 목적을 달성하고자, 본 발명에 따른 광섬유 적용 항균 필터는, 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원의 일부가 표면을 통해 발산되는 광섬유가 하나 이상 형성되어 포함되고, 두께 방향으로 공기가 투과할 수 있는 다공성의 구조를 가지며, 공기 중의 입자상 물질을 필터링하는 여과재와; 상기 여과재에 포함된 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하고, 및 본 발명에 따른 공기청정기는 상기의 광섬유 적용 항균 필터를 갖는 것을 특징으로 한다.
또한 본 발명에 따른 광섬유 적용 항균 필터는, 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함한다.
또한, 본 발명에 따른 광섬유 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광섬유층을 구성하는 광섬유의 일단면과 상기 광원부를 연결하는 커넥터; 및 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함한다.
또한, 본 발명에 따른 광섬유 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 불규칙적으로 혼합되어 형성되는 광섬유 혼합 부직포와; 상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함한다.
또한, 본 발명에 따른 광섬유 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 혼합되어 형성되는 광섬유 혼합 부직포와, 상기 광섬유 혼합 부직포와 적층되도록 형성되어 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함한다.
이상에서 살펴 본 바와 같이, 본 발명의 광섬유 적용 항균 필터 및 이를 포함한 공기청정기는 광섬유의 표면발광을 통해 필터 내부에 직접적으로 자외선, 가시광, 또는 자연광을 조사함으로써, 필터 내부에 포집된 세균, 진균, 바이러스 등 인체에 유해한 미생물을 짧은 시간 내에 효과적으로 살균할 수 있고, 상기 여과재에 광촉매를 코팅하여 살균 효과를 높일 수도 있으며, 그에 따라 항균 필터는 기존 항균 필터의 단점인 먼지입자가 필터 섬유표면에 지속적으로 포집됨으로써 발생하였던 살균 효과 저하 문제를 극복할 수 있는 효과가 있다.
도 1은 종래의 필터를 나타낸 개략도이고,
도 2는 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 단면도이고,
도 3은 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 측면도이고,
도 4는 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 개략도이고,
도 5는 본 발명의 일실시예에 따른 광섬유를 나타낸 측면 단면도이고,
도 6은 본 발명의 일실시예에 따른 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 7은 도 6의 A부분을 나타낸 확대도이고,
도 8은 본 발명의 일실시예에 따른 광섬유층 적용 항균 필터를 나타낸 단면도이고,
도 9는 본 발명의 일실시예에 따른 광섬유층 적용 항균 필터를 나타낸 측면도이고,
도 10은 본 발명의 일실시예에 따른 다층구조용 광섬유층이 적용된 항균 필터를 나타낸 측면도이고,
도 11은 본 발명의 일실시예에 따른 광섬유층이 적용된 항균 필터를 나타낸 개략도이고,
도 12는 본 발명의 일실시예에 따른 광섬유 직물 형태의 광섬유층을 갖는 항균 필터를 나타낸 평면도이고,
도 13은 도 12의 단면을 나타낸 개략도이고,
도 14는 본 발명의 다른 일실시예에 따른 전면에 걸쳐 연결된 광섬유를 이용한 광섬유층을 갖는 항균 필터를 나타낸 개략도이고,
도 15는 본 발명의 일실시예에 따른 광섬유층을 갖는 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 16은 도 15의 A부분을 나타낸 확대도이고,
도 17은 본 발명의 제 1 실시예에 따른 광섬유층을 갖는 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 18은 본 발명의 제 2 실시예에 따른 광섬유층을 갖는 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 19는 본 발명의 제 3 실시예에 따른 광섬유층을 갖는 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 20은 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 평면도이고,
도 21은 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 분해 평면도이고,
도 22는 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 측면도이고,
도 23은 본 발명의 일실시예에 따른 다층구조용 광섬유 혼합 부직포 적용 항균 필터를 나타낸 측면도이고,
도 24는 본 발명의 일실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 25는 도 24의 A부분을 나타낸 확대도이고,
도 26은 본 발명의 제 1 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 27은 본 발명의 제 2 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고,
도 28은 본 발명의 제 3 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이다.
[부호의 설명]
10 : 여과재 20 : 광섬유
21 : 코어부 22 : 클래드부
23 : 광 발산부 30 : 광원부
31, 41 : PCB 40 : 전원부
50 : 광섬유층 60 : 여과층
70 : 커넥터 100 : 항균 필터
100A : 광섬유층 적용 항균 필터
100B : 광섬유 혼합 부직포 항균 필터
110 : 전처리 필터 120 : 흡착 필터
130 : 송풍기 140 : 하전장치
141 : 접지극 142 : 방전극
150 : 고성능 필터 160 : 덕트케이스
161 : 유입구 162 : 배출구
200, 200A, 200B : 공기청정기
본 발명은 상기의 목적을 달성하기 위해 아래와 같은 특징을 갖는다.
본 발명의 광섬유 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원의 일부가 표면을 통해 발산되는 광섬유가 하나 이상 형성되어 포함되고, 두께 방향으로 공기가 투과할 수 있는 다공성의 구조를 가지며, 공기 중의 입자상 물질을 필터링하는 여과재와; 상기 여과재에 포함된 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하여 구성되는 것을 특징으로 한다. 또한, 본 발명은 상기의 광섬유 적용 항균 필터를 갖는 공기청정기를 특징으로 한다.
본 발명의 광섬유층 적용 항균 필터는 일 단부에서 수광되어 길이방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하여 구성되는 것을 특징으로 한다. 또한, 본 발명의 광섬유층 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와; 상기 광섬유층을 구성하는 광섬유의 일단면과 상기 광원부를 연결하는 커넥터; 및 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하여 구성되는 것을 특징으로 한다.
본 발명의 광섬유 혼합 부직포 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 불규칙적으로 혼합되어 형성되는 광섬유 혼합 부직포와; 상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하여 구성되는 것을 특징으로 한다. 또한, 본 발명의 광섬유 혼합 부직포 적용 항균 필터는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 혼합되어 형성되는 광섬유 혼합 부직포와, 상기 광섬유 혼합 부직포와 적층되도록 형성되어 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와; 상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와; 상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;를 포함하여 구성되는 것을 특징으로 한다.
이와 같은 특징을 갖는 본 발명은 그에 따른 바람직한 실시예를 통해 더욱 명확히 설명될 수 있을 것이다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 단면도이고, 도 3은 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 측면도이고, 도 4는 본 발명의 일실시예에 따른 광섬유가 적용된 항균 필터를 나타낸 개략도이고, 도 5는 본 발명의 일실시예에 따른 광섬유를 나타낸 측면 단면도이다.
도 2 내지 도 5에 도시한 바와 같이, 본 발명의 광섬유 적용 항균필터(100)는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원의 일부가 표면을 통해 발산되는 광섬유가 하나 이상 형성되어 포함되고, 두께 방향으로 공기가 투과할 수 있는 다공성의 구조를 가지며, 공기 중의 입자상 물질을 필터링하는 여과재(10)와, 상기 여과재(10)에 포함된 광섬유의 일 단부에 광원이 조사되는 광원부(30)와, 상기 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 전원부(40)로 구성된다.
상기 여과재(10)는 도 2와 도 3에 도시한 바와 같이, 공기 중의 입자상 물질(세균, 진균, 바이러스 등)이 필터링하고 다공성 구조를 갖으며, 일반적으로 섬유직포 또는 섬유부직포의 형태를 갖는다.
상기 광섬유(20)는 도 2 내지 도 5에 도시한 바와 같이, 상기 여과재(10) 내부에 포함되도록 형성되고, 상기 광섬유(20)의 일 단부에 광원부(30)의 광원을 조사하면 광원이 광섬유(20)의 길이방향으로 전달되며, 상기 광섬유(20)의 코어부(21)를 통해 전달된 광은 클래드부(22)의 표면을 통해 발산되어 상기 여과재(10) 또는 상기 광섬유(20)에 포집된 유해 미생물(2)을 효과적으로 사멸시킨다.
여기서, 상기 광섬유(20)는 길이 방향으로 연장되고 공기의 굴절률보다 높은 굴절율을 갖는 코어부(21)와, 상기 코어부(21)의 굴절률보다 낮은 굴절률을 가지고 상기 코어부(21)를 둘러싸는 클래드부(22), 및 상기 클래드부가 부분적으로 제거된 광 발산부(23)를 포함한다.
또한, 상기 광섬유(20)의 코어부(21)와 클래부(22)를 구성함에 있어, 다양한 값의 굴절률을 갖는 재질을 조합하거나 상기 클래드부(22)의 두께를 조절하는 방법을 통해서도 클래부(22) 표면을 통해 광을 발산할 수 있다.
그리고, 상기 광섬유(20)는 플라스틱 재질로 형성될 수도 있으며, 상기 광 발산부(23)는 상기 광섬유(20)의 표면에 고르게 분포된다.
또한, 상기 광섬유(20)는 유연성(flexible)을 확보하기 위해 단면의 직경이 2 mm 이하로 형성되는데, 본 발명에서는 일실시예로 1mm로 형성된다.
한편, 상기 광섬유(20)를 포함하는 여과재(10)는 살균효과를 증진시키기 위해 광촉매가 코팅된다.
상기 광원부(30)는 도 3과 도 4에 도시한 바와 같이, 섬유여과재(10)에 포함된 광섬유(20)의 일 단부에 조사되는 광원을 생성시키는 장치로써, 다양한 장치가 포함되어 이루어지지만, 본 발명에서는 광원부(30)가 인쇄회로기판(PCB, Printed Circuit Board, 31)과 연결되어 광원을 제어한다. 상기 광원부(30)의 광원조사는 통상적으로 알려진 기술이기에 별도의 기능 및 구조는 설명하지 않는다.
여기서, 상기 광원은 가시광선 또는 자외선 또는 자연광 중 어느 하나를 선택적으로 사용 가능하고, 동시에 하나 이상을 사용할 수 있는 등 다양한 실시예가 있다.
이때, 상기 광원의 조사시간은 장시간 광원 사용으로 인한 여과재를 구성하는 고분자의 파괴를 막기 위해 광원을 일일 1시간 이내로 사용하여도 살균 효과는 충분하다.
상기 전원부(40)는 도 3과 도 4에 도시한 바와 같이, 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 것으로, 상기 PCB(31)와 연결되어 생성된 전원을 PCB(31)에 공급한다.
도 6은 본 발명의 일실시예에 따른 광섬유 적용 항균 필터를 갖는 공기청정기를 나타낸 개략도이고, 도 7은 도 6의 A부분을 나타낸 확대도이다.
도 6 내지 도 7에 도시한 바와 같이, 본 발명의 공기청정기(200)는 상기에서 기술한 광섬유(20)가 적용된 항균필터(100)가 구비된 공기청정기(200)로써, 공기청정기(200)의 덕트케이스(160) 내에 항균필터(100)가 삽입되어 구비되고, 상기 항균필터(100)의 일 단부 즉, 공기청정기(200)의 덕트케이스(160) 측면부에 광원부 (30)와 전원부(40)가 구비되는 형태이다.
여기서, 상기 공기청정기(200) 내에 구비되는 항균필터(100)는 여과면 적을 증가시키기 위하여 "∧∧∧" 형태로 절곡된 절곡형 필터로 형성되는데, 이는 일실시예로써, 다양한 형태로 설계변경이 가능하다.
도 8은 본 발명의 일실시예에 따른 광섬유층 적용 항균 필터를 나타낸 단면도이고, 도 9는 본 발명의 일실시예에 따른 광섬유층 적용 항균 필터를 나타낸 측면도이고, 도 10은 본 발명의 일실시예에 따른 다층구조용 광섬유층이 적용된 항균 필터를 나타낸 측면도이고, 도 11은 본 발명의 일실시예에 따른 광섬유층이 적용된 항균 필터를 나타낸 개략도이고, 도 12는 본 발명의 일실시예에 따른 광섬유 직물 형태의 광섬유층을 갖는 항균 필터를 나타낸 평면도이고, 도 13은 도 12의 단면을 나타낸 개략도이다.
도 8 내지 도 13에 도시한 바와 같이, 본 발명의 광섬유층 적용 항균 필터(100A)는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유(20)만으로 이루어진 광섬유층(50)과, 상기 광섬유(20)를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층(60)으로 이루어지는 여과재(10)와; 상기 광섬유층(50)을 구성하는 광섬유(20)의 일 단부에 광원이 조사되는 광원부(30)와; 상기 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 전원부(40)로 구성된다.
상기 여과재(10)는 도 8 내지 도 12에 도시한 바와 같이, 광섬유층(50)과, 여과층(60)으로 구성되는데, 상기 광섬유층(50)은 다수개의 광섬유(20)로만 조합된 층이다. 상기 광섬유(20)는 상기 도 5를 인용하여 설명한 것과 같다.
여기서, 도 11과 도 12는 광섬유층이 적용된 항균 필터를 나타내는데, 상기 광섬유층(50)의 특징이 잘 보이도록 하기 위해 여과층(60)은 생략되었다. 광섬유 직물 형태의 광섬유층(50)은 도 12와 도 13에서처럼, 씨줄과 날줄로 이루어진 직물과 같은 형태로 짜여진 다수의 광섬유(20)들로 이루어질 수 있다. 이 경우 씨줄 광섬유와 날줄 광섬유가 교차하는 부분에서 상기 광섬유(20)들이 휘어져서, 광원으로부터 입사하여 상기 광섬유(20)들 내부를 진행하던 광이 더 많이 외부로 발산될 수도 있다.
한편, 상기 여과층(60)은 광섬유를 포함하지 않는 다공성 층으로서, 섬유(11)로 이루어진 부직포 또는 직포 형태의 층일 수도 있다. 여기서 상기 여과층(60) 또는 상기 광섬유층(50)과 상기 여과층(60)으로 구성된 여과재(10)는 광촉매로 코팅된 것일 수 있다. 광촉매는 졸겔(sol-gel)법 등 다양한 방법에 의해 제조 될 수 있고 분무 또는 도포에 의해 상기 여과층(60)과 여과재(10)에 코팅될 수 있다. 상기 광촉매로는 이산화티타늄 (TiO2), 산화아연(ZnO), 산화텅스텐(WO3) 등 사용될 수 있으며 자외선, 가시광선 또는 이들의 혼합광에 의해 활성화되어 유해 미생물을 사멸시키는 특성을 갖는 물질들이 적용될 수 있다.
상기 광원부(30)는 도 9과 도 10에 도시한 바와 같이, 여과재(10)에 포함된 광섬유(20)의 일 단부에 조사되는 광원을 생성시키는 장치로써, 다양한 장치가 포함되어 이루어지지만, 본 발명에서는 광원부(30)가 인쇄회로기판(PCB, Printed Circuit Board, 41)과 연결되어 광원을 제어한다. 상기 광원부(30)의 광원 조사는 통상적으로 알려진 기술이기에 별도의 기능 및 구조는 설명하지 않는다.
여기서, 상기 광원은 가시광선 또는 자외선 또는 자연광 중 어느 하나를 선택적으로 사용 가능하고, 동시에 하나 이상을 사용할 수 있는 등 다양한 실시예가 있다.
이때, 상기 광원의 조사시간은 장시간 광원 사용으로 인한 여과재(10)를 구성하는 고분자의 파괴를 막기 위해 광원을 일일 1시간 이내로 사용하여도 살균 효과는 충분하다.
상기 전원부(40)는 도 9과 도 10에 도시한 바와 같이, 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 것으로, 상기 PCB(41)와 연결되어 생성된 전원을 PCB(41)에 공급한다.
도 14는 본 발명의 다른 일실시예에 따른 전면에 걸쳐 연결된 광섬유를 이용한 광섬유층을 갖는 항균 필터를 나타낸 개략도이다.
도 14에 도시한 바와 같이, 본 발명의 광섬유층 적용 항균 필터는 일실시예에 기술된 광섬유층 적용 항균 필터와 동일한 구조, 구성 및 형태로 형성되는데, 다만, 도 9에서처럼, 다른 일실시예에서는 상기 광원부(30)와 연결되어 광섬유층(50)을 구성하는 광섬유(20)의 일단면을 상호 연결시켜주는 커넥터(70)가 추가로 더 형성되는 것이 특징이다.
또한, 도 14에서처럼, 또 다른 형태의 광섬유층(50)을 보인다. 광섬유층(50)의 특징을 잘 보이기 위해 여과층(60)은 도면에서 생략되었다. 본 실시예에 따른 광섬유층(50)은 상기 광섬유층(50)의 전체면적에 걸쳐 연속적으로 이어진 적어도 하나의 광섬유(20), 좀 더 바람직하게는 일단부가 하나의 커넥터(70)와 연결된 다수의 광섬유(20)들을 포함할 수 있다.
이렇듯, 상기 도 14에서는 광섬유(20)들이 연속적으로 점점 작은 사각형을 그리며 광섬유층(50)의 중심부 쪽으로 나선형으로 연장된 예를 보이지만, 상기 광섬유층(50)이 이러한 형태에 한정될 필요 없고, 연속적으로 연장된 광섬유(20)들이 지그재그 형태로 배치되거나, 일부에서 서로 교차되게 배치되어도 무방하다. 또한 상기 커넥터(70)는 여기서 자세히 도시되지는 않았으나, 상기 광원부(30)에서 방출된 광원이 효과적으로 입사되도록 하는 다양한 형태를 가질 수도 있다.
그 이외의 구성은 일실시예와 동일하기에 별도의 기술은 하지 않는다.
도 15는 본 발명의 일실시예에 따른 광섬유층 적용 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 16은 도 15의 A부분을 나타낸 확대도이고, 도 17은 본 발명의 제 1 실시예에 따른 광섬유층 적용 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 18은 본 발명의 제 2 실시예에 따른 광섬유층 적용 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 19는 본 발명의 제 3 실시예에 따른 광섬유층 적용 항균 필터가 구비된 공기청정기를 나타낸 개략도이다.
도 17 내지 도 19에 도시한 바와 같이, 본 발명의 공기청정기(200A)는 상기에서 기술한 광섬유층 적용 항균 필터(100A)가 구비된 공기청정기(200A)로써, 상기 공기청정기(200A)의 덕트케이스(160) 내에 항균 필터(100A)가 삽입되어 구비되고, 상기 항균 필터(100A)의 일 단부 즉, 공기청정기(200A)의 덕트케이스(160) 측면부에 광원부(30)와 전원부(40)가 구비되는 형태이다.
여기서, 상기 공기청정기(200A) 내에 구비되는 항균 필터(100A)는 여과면적을 증가시키기 위하여 "∧∧∧" 형태로 절곡된 절곡형 필터로 형성되는데, 이는 일실시예로써, 다양한 형태로 설계변경이 가능하다.
그리고, 상기 공기청정기(200A)는 도 17에서처럼, 오염공기가 내부에 유입되는 유입구(161)와, 여과된 청정공기가 배출되는 배출구(162)가 형성되는 덕트케이스(160)와, 상기 덕트케이스(160) 내의 유입구(161) 측에 설치되어 오염된 공기를 1차 필터링하는 전처리 필터(110)와, 상기 전처리 필터(110)의 후면에 설치되어 오염된 공기 내의 미세한 먼지까지 필터링하는 본 발명의 항균 필터(100A)와, 상기 항균 필터(100A)의 후면에 설치되어 공기 내의 휘발성유기화합물(VOC) 및 악취를 흡착하여 필터링하는 흡착필터(120) 및 상기 흡착필터(120)의 후면에 설치되어 필터링된 청정공기를 이송시키는 송풍기(130)로 구성된다.
이때, 도 18에서처럼, 상기 공기청정기(200A)의 제 2 실시예로서, 전처리 필터(110)와 광섬유층 적용 항균 필터(100A) 사이에는 공기 내의 이물질을 전기적으로 대전시키는 하전장치(140)가 더 설치된다.
여기서, 상기 하전장치(140)에는 코로나 방전 또는 전기분무 방식이 적용될 수 있다. 코로나 방전방식이 적용된 상기 하전장치(140)는 외부의 전원부에 전원을 인가받아 코로나 방전이 발생하도록 접지극(141)과 방전극(142)으로 이루어진다. 이때, 상기 접지극(141)은 평판으로써 상호 이격되어 다수개가 형성되고, 상기 방전극(142)은 다수개의 접지극(141) 사이에 금속와이어, 금속침, 탄소섬유 등의 형태로 각각 구비된다.
한편, 도 19에 도시한 바와 같이, 상기 공기청정기(200A)는 제 1 실시예에 기술된 광섬유층 적용 항균 필터(100A)와 흡착필터(120) 사이에 HEPA Filter(High Efficiency Particulate Air Filter) 또는 ULPA Filter(Ultra Low Penetration Air Filter)와 같은 고성능 필터(150)가 더 설치된다.
여기서, 상기 고성능 필터(150)는 항균 필터(100A)에서 필터링 못한 극세한 먼지 등의 이물질을 한번 더 필터링하는 것으로 이 공기청정기(200A)는 건물 공조용이나 산업현장 또는 병원 등의 클린룸에 적용될 수 있다.
도 20은 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 평면도이고, 도 21은 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 분해 평면도이고, 도 22는 본 발명의 일실시예에 따른 광섬유 혼합 부직포 적용 항균 필터를 나타낸 측면도이고, 도 23은 본 발명의 일실시예에 따른 다층구조용 광섬유 혼합 부직포 적용 항균 필터를 나타낸 측면도이고, 도 24는 본 발명의 일실시예에 따른 광섬유를 나타낸 측면 단면도이다.
도 20 내지 도 24에 도시한 바와 같이, 본 발명의 광섬유 혼합 부직포 적용 항균 필터(100B)는 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유(20)와 일반섬유(11)가 불규칙적으로 혼합되어 형성되는 광섬유 혼합 부직포(50)와; 상기 광섬유 혼합 부직포(50)의 일 단부에 광원이 조사되는 광원부(30)와; 상기 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 전원부(40)로 구성된다.
상기 광섬유 혼합 부직포(50)는 도 20 내지 도 24에 도시한 바와 같이, 다수의 섬유(11)들과 이들 사이사이에 표면에서 광을 발산하는 다수의 광섬유(20)들이 불규칙한 형태로 배치되는 부직포다. 상기 다수의 섬유(11)들은 통상적인 합성섬유일 수 있다.
또한, 상기 광섬유 혼합 부직포(50)는 광촉매로 코팅된 것일 수 있다. 광촉매는 졸겔(sol-gel)법 등 다양한 방법에 의해 제조될 수 있고 분무 또는 도포에 의해 상기 광섬유 혼합 부직포(50)에 코팅될 수 있다. 상기 광촉매로는 이산화티타늄 (TiO2), 산화아연(ZnO), 산화텅스텐(WO3) 등 사용될 수 있으며 자외선, 가시광선 또는 이들의 혼합광에 의해 활성화되어 유해 미생물을 사멸시키는 특성을 갖는 물질들이 적용될 수 있다.
한편, 상기 광섬유 혼합 부직포(50)는 도 21 내지 도 23에 도시한 바와 같이, 광섬유(20)를 포함하지 않고 다수의 섬유(11)들로 이루어져서 공기 중의 입자상 물질을 필터링하는 여과층(60)이 광섬유 혼합 부직포(50)의 상,하부에 적층되도록 형성되어 여과재(10)를 이룬다.
여기서, 상기 여과재(10)는 도 6에서처럼, 다수개의 상기 광섬유 혼합 부직포(50)와 다수개의 여과층(60)이 서로 교대로 적층될 수도 있다.
그리고, 상기 광섬유 혼합 부직포(50)의 일단면과 상기 광원부(30)가 연결되도록 커넥터(미도시)가 더 설치된다.
한편, 상기 광섬유(20)는 본 실시예의 경우에도 상기 도 5를 통해 설명한 것과 같다.
상기 광원부(30)는 도 20 내지 도 24에 도시한 바와 같이, 광섬유 혼합 부직포(50)의 일 단부에 조사되는 광원을 생성시키는 장치로써, 다양한 장치가 포함되어 이루어지지만, 본 발명에서는 광원부(30)가 인쇄회로기판(PCB, Printed Circuit Board, 41, 이하 PCB로 칭함.)과 연결되어 광원을 제어한다. 상기 광원부(30)의 광원조사는 통상적으로 알려진 기술이기에 별도의 기능 및 구조는 설명하지 않는다.
여기서, 상기 광원은 가시광선 또는 자외선 또는 자연광 중 어느 하나를 선택적으로 사용 가능하고, 동시에 하나 이상을 사용할 수 있는 등 다양한 실시예가 있다.
이때, 상기 광원의 조사시간은 장시간 광원 사용으로 인한 광섬유 혼합 부직포(50)를 구성하는 고분자의 파괴를 막기 위해 광원을 일일 1시간 이내로 사용하여도 살균 효과는 충분하다.
상기 전원부(40)는 도 20 내지 도 24에 도시한 바와 같이, 광원부(30)와 연결되어 광원이 작동되도록 전원을 인가하는 것으로, 상기 PCB(41)와 연결되어 생성된 전원을 PCB(41)에 공급한다.
도 24는 본 발명의 일실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 25는 도 24의 A부분을 나타낸 확대도이고, 도 26은 본 발명의 제 1 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 27은 본 발명의 제 2 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이고, 도 28은 본 발명의 제 3 실시예에 따른 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기를 나타낸 개략도이다.
도 24 내지 도 28에 도시한 바와 같이, 본 발명의 광섬유 혼합 부직포 항균 필터가 구비된 공기청정기는 상기에서 기술한 광섬유 혼합 부직포 항균 필터(100B)가 구비된 공기청정기(200B)로써, 상기 공기청정기(200B)의 덕트케이스(160) 내에 광섬유 혼합 부직포 항균 필터(100B)가 삽입되어 구비되고, 상기 항균 필터(100B)의 일 단부 즉, 공기청정기(200B)의 덕트케이스(160) 측면부에 광원부(30)와 전원부(40)가 구비되는 형태이다.
여기서, 상기 공기청정기(200B) 내에 구비되는 광섬유 혼합 부직포 항균 필터(100B)는 여과면적을 증가시키기 위하여 "∧∧∧" 형태로 절곡된 절곡형 필터로 형성되는데, 이는 일실시예로써, 다양한 형태로 설계변경이 가능하다.
그리고, 상기 공기청정기(200B)는 도 26에서처럼, 오염공기가 내부에 유입되는 유입구(161)와, 여과된 청정공기가 배출되는 배출구(162)가 형성되는 덕트케이스(160)와, 상기 덕트케이스(160) 내의 유입구(161) 측에 설치되어 오염된 공기를 1차 필터링하는 전처리 필터(110)와, 상기 전처리 필터(110)의 후면에 설치되어 오염된 공기 내의 미세한 먼지까지 필터링하는 본 발명의 광섬유 혼합 부직포 항균 필터(100B)와, 상기 광섬유 혼합 부직포 항균 필터(100B)의 후면에 설치되어 공기 내의 휘발성유기화합물(VOC) 및 악취를 흡착하여 필터링하는 흡착필터(120) 및 상기 흡착필터(120)의 후면에 설치되어 필터링된 청정공기를 이송시키는 송풍기(130)로 구성된다.
이때, 도 27에서처럼, 상기 공기청정기(200B)의 제 2 실시예로서, 전처리 필터(110)와 광섬유 혼합 부직포 항균 필터(100B) 사이에는 공기 내의 이물질을 전기적으로 대전시키는 하전장치(140)가 더 설치된다.
여기서, 상기 하전장치(140)에는 코로나 방전 또는 전기분무 방식이 적용될 수 있다. 코로나 방전방식이 적용된 상기 하전장치(140)는 외부의 전원부에 전원을 인가받아 코로나 방전이 발생하도록 접지극(141)과 방전극(142)으로 이루어진다. 이때, 상기 접지극(141)은 평판으로써 상호 이격되어 다수개가 형성되고, 상기 방전극(142)은 다수개의 접지극(141) 사이에 금속와이어, 금속침, 탄소섬유 등의 형태로 각각 구비된다.
한편, 도 28에 도시한 바와 같이, 상기 공기청정기(200B)는 제 1 실시예에 기술된 광섬유 혼합 부직포 항균 필터(100B)와 흡착필터(120) 사이에 HEPA Filter(High Efficiency Particulate Air Filter) 또는 ULPA Filter(Ultra Low Penetration Air Filter)와 같은 고성능 필터(150)가 더 설치된다.
여기서, 상기 고성능 필터(150)는 광섬유 혼합 부직포 항균 필터(100B)에서 필터링 못한 극세한 먼지 등의 이물질을 한번 더 필터링하는 것으로 이 공기청정기(200B)는 건물 공조용이나 산업현장 또는 병원 등의 클린룸에 적용될 수 있다.

Claims (9)

  1. 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원의 일부가 표면을 통해 발산되는 광섬유가 하나 이상 형성되어 포함되고, 두께 방향으로 공기가 투과할 수 있는 다공성의 구조를 가지며, 공기 중의 입자상 물질을 필터링하는 여과재와;
    상기 여과재에 포함된 광섬유의 일 단부에 광원이 조사되는 광원부와;
    상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;
    를 포함하여 구성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  2. 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와;
    상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와;
    상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부; 를 포함하여 구성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  3. 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광가능한 광섬유만으로 이루어진 광섬유층과, 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와;
    상기 광섬유층을 구성하는 광섬유의 일 단부에 광원이 조사되는 광원부와;
    상기 광섬유층을 구성하는 광섬유의 일단면과 상기 광원부를 연결하는 커넥터; 및
    상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부; 를 포함하여 구성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  4. 제 2항 또는 제 3항에 있어서,
    상기 여과재는 다수개의 광섬유층과 다수개의 여과층이 상호 교대로 적층되어 형성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  5. 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 불규칙적으로 혼합되어 형성되는 광섬유 혼합 부직포와;
    상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와;
    상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부;
    를 포함하여 구성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  6. 일 단부에서 수광되어 길이 방향을 따라 진행하는 광원이 표면을 통해 발광 가능한 광섬유와 일반섬유가 혼합되어 형성되는 광섬유 혼합 부직포와, 상기 광섬유 혼합 부직포와 적층되도록 형성되어 상기 광섬유를 포함하지 않고 공기 중의 입자상 물질을 필터링하는 여과층으로 이루어지는 여과재와;
    상기 광섬유 혼합 부직포의 일 단부에 광원이 조사되는 광원부와;
    상기 광원부와 연결되어 광원이 작동되도록 전원을 인가하는 전원부; 를 포함하여 구성되는 것을 특징으로 하는 광섬유 적용 항균 필터.
  7. 제 1항, 제 2항, 제 3항, 제 5항 및 제 6항 중 어느 한 항에 있어서,
    상기 광원은 램프 또는 LED인 것을 특징으로 하는 광섬유 적용 항균 필터.
  8. 제 1항, 제 2항, 제 3항, 제 5항 및 제 6항 중 어느 한 항에 있어서,
    상기 광원은 다수 개의 광원이 일렬로 정렬된 패키지 형태인 것을 특징으로 하는 광섬유 적용 항균 필터.
  9. 제 1항 내지 제 8항 중 어느 한 항에 따른 광섬유 적용 항균 필터를 포함하는 공기청정기.
PCT/KR2013/003989 2012-05-08 2013-05-08 광섬유 적용 항균 필터 및 이를 포함한 공기청정기 WO2013168985A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/360,536 US9393339B2 (en) 2012-05-08 2013-05-08 Antimicrobial filter adopting optical fibers and air cleaner comprising same
CN201380004511.4A CN104010710B (zh) 2012-05-08 2013-05-08 采用光纤维的抗菌过滤器及包含其的空气净化器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020120048761A KR101350942B1 (ko) 2012-05-08 2012-05-08 광섬유 적용 항균 필터 및 이를 포함한 공기청정기
KR10-2012-0048761 2012-05-08
KR10-2012-0051867 2012-05-16
KR1020120051867A KR101523656B1 (ko) 2012-05-16 2012-05-16 광섬유 혼합 부직포 적용 항균 필터 및 이를 포함한 공기청정기
KR10-2012-0051866 2012-05-16
KR1020120051866A KR101431562B1 (ko) 2012-05-16 2012-05-16 광섬유층 적용 항균 필터 및 이를 포함하는 공기청정기

Publications (1)

Publication Number Publication Date
WO2013168985A1 true WO2013168985A1 (ko) 2013-11-14

Family

ID=49550956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003989 WO2013168985A1 (ko) 2012-05-08 2013-05-08 광섬유 적용 항균 필터 및 이를 포함한 공기청정기

Country Status (3)

Country Link
US (1) US9393339B2 (ko)
CN (1) CN104010710B (ko)
WO (1) WO2013168985A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974513B (zh) 2009-11-20 2022-10-14 康宁股份有限公司 具有侧面发光的光学光子纤维的照明系统及其制造方法
US20150144802A1 (en) * 2013-11-25 2015-05-28 Corning Incorporated Water purification and water supply system decontamination apparatus
US11213695B2 (en) 2013-11-26 2022-01-04 Corning Incorporated Illuminated bandage and method for disinfecting a wound
US9278148B2 (en) 2013-11-26 2016-03-08 Corning Incorporated Anti-bacterial light delivery system and method for disinfecting a surface
WO2016154186A1 (en) 2015-03-24 2016-09-29 Corning Incorporated Illuminating surgical device having light diffusing fiber
WO2017034908A1 (en) 2015-08-21 2017-03-02 Corning Incorporated Medical device disinfecting system and method
WO2017114918A1 (en) * 2015-12-30 2017-07-06 Koninklijke Philips N.V. A photocatalytic oxidation apparatus
US10549114B2 (en) 2016-02-03 2020-02-04 Corning Incorporated Therapeutic illumination assemblies and methods of illuminating medical devices and biological material using the same
US10918770B2 (en) 2016-02-12 2021-02-16 Corning Incorporated Vacuum assisted wound closure assembly and methods of irradiating a wound using the same
MX2019000025A (es) * 2016-06-24 2019-10-30 K&N Eng Inc Filtro de aire compuesto.
EP3701185A1 (en) 2017-10-24 2020-09-02 Corning Incorporated Light diffusing optical fibers having uniform illumination along diffusion lengths and methods of forming the same
CN107855001A (zh) * 2017-12-18 2018-03-30 浙江师范大学 一种光催化分解油烟的光导结构
US11850314B2 (en) 2018-01-16 2023-12-26 Corning Incorporated Illumination of light diffusing optical fibers, illumination of blue-violet light delivery systems, blue-violet light delivery systems, and methods for blue-violet light induced disinfection
US11606914B2 (en) * 2018-03-24 2023-03-21 Suntracker Technologies Ltd. Fiber-optic sheet lighting
KR102556384B1 (ko) * 2018-12-20 2023-07-14 주식회사 엘지화학 통기성 도광판 및 이를 포함하는 공기 청정 필터
US11726273B2 (en) 2018-12-21 2023-08-15 Corning Incorporated Light diffusing multi-fiber design configured for use with UV LEDs
CN112817085B (zh) * 2020-07-07 2022-02-22 南京锐普创科科技有限公司 一种用于光催化反应的微型光纤耦合光源系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290695A (ja) * 1998-04-10 1999-10-26 Sumitomo Electric Ind Ltd 光触媒フィルタ
JP2000051342A (ja) * 1998-08-10 2000-02-22 Tennex Corp 脱臭装置
KR100922254B1 (ko) * 2009-05-18 2009-10-15 문강인 천장 매립형 광촉매 공기청정기
JP2010513737A (ja) * 2006-12-20 2010-04-30 ブロシエール・テクノロジーズ 光触媒ベースの汚染制御特性を有する織物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048499A (en) * 1995-02-10 2000-04-11 Hirayma Setsube Kabushiki Kaisha Antiseptic clean system
JP2003265967A (ja) 2002-03-15 2003-09-24 Ambic Co Ltd 触媒フィルター材
JP4286709B2 (ja) 2004-04-22 2009-07-01 株式会社フジクラ 汚染物分解装置
KR20060092169A (ko) 2006-07-24 2006-08-22 김문찬 공기정화용 가시광촉매 및 장치
CN201350377Y (zh) * 2008-10-13 2009-11-25 詹淑嫔 结合活性炭的高分子聚合物空气滤材
CN101543785A (zh) 2009-04-30 2009-09-30 天津工业大学 具有可见光响应的掺杂中空硫化锌光催化剂及其制备方法
JP5845385B2 (ja) 2009-09-14 2016-01-20 パナソニックIpマネジメント株式会社 空気清浄装置
US8557188B2 (en) * 2010-01-12 2013-10-15 Yang Zhen Lo Unitized photocatalytic air sterilization device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290695A (ja) * 1998-04-10 1999-10-26 Sumitomo Electric Ind Ltd 光触媒フィルタ
JP2000051342A (ja) * 1998-08-10 2000-02-22 Tennex Corp 脱臭装置
JP2010513737A (ja) * 2006-12-20 2010-04-30 ブロシエール・テクノロジーズ 光触媒ベースの汚染制御特性を有する織物
KR100922254B1 (ko) * 2009-05-18 2009-10-15 문강인 천장 매립형 광촉매 공기청정기

Also Published As

Publication number Publication date
CN104010710B (zh) 2016-06-08
US9393339B2 (en) 2016-07-19
US20150075384A1 (en) 2015-03-19
CN104010710A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2013168985A1 (ko) 광섬유 적용 항균 필터 및 이를 포함한 공기청정기
WO2022019359A1 (ko) 미세먼지제거, 세균 및 바이러스 살균, 습도조절, 산소 및 음이온 발생 기능을 가지는 다기능 공기정화장치
WO2019004629A1 (ko) 공기살균 및 미세먼지제거 기능을 겸비한 공기정화장치
WO2014116066A1 (en) Air purifying apparatus using ultraviolet light emitting diode
US7473304B2 (en) Air filtration device for closed environments
JP2003035445A (ja) 空気清浄機
US8003058B2 (en) Air purification devices
JP3509741B2 (ja) 非放電型空気清浄器、非放電型空気清浄方法、及び、非放電型空気除菌器
WO2011142501A1 (ko) 습식 공기정화 장치
US20080083411A1 (en) Self-Sterilizing Particulate Respirator Facepiece and Method for Using Same
WO2014003446A1 (en) Apparatus for cleaning fluid
WO2019164072A1 (ko) 광촉매 필터 및 광촉매 필터를 포함한 공기 조화 장치
WO2015053426A1 (ko) 타원관 형상의 광촉매모듈 및 이온클러스터 발생모듈을 갖는 공기살균정화장치
DE102009060764A1 (de) Raumluftverbesserungseinrichtung
US20210338879A1 (en) Multi-layer air filtration media with integrated disinfection capability
WO2019160381A1 (ko) 선분 전기장을 이용한 미세먼지 제거 장치
KR101442155B1 (ko) 광섬유 필터를 이용한 공기청정기
KR101523656B1 (ko) 광섬유 혼합 부직포 적용 항균 필터 및 이를 포함한 공기청정기
KR20090035990A (ko) 천장형 공기청정기
KR100551215B1 (ko) 살균기능이 있는 필터 및 이를 이용한 여과기기
WO2013168984A1 (ko) 광섬유 적용 공기정화용 필터 및 이를 포함하는 공기청정기
KR101431562B1 (ko) 광섬유층 적용 항균 필터 및 이를 포함하는 공기청정기
WO2023286974A1 (ko) 다기능성 공기 정화 필터 및 그를 포함하는 정화 장치
WO2018062763A1 (ko) 실내 유입공기 정화장치
KR20160134069A (ko) 광조사 살균기능을 구비한 전기 집진 장치 및 이를 이용한 공기 청정기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360536

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788025

Country of ref document: EP

Kind code of ref document: A1