WO2013168781A1 - 画像記録装置及び画像記録方法 - Google Patents

画像記録装置及び画像記録方法 Download PDF

Info

Publication number
WO2013168781A1
WO2013168781A1 PCT/JP2013/063128 JP2013063128W WO2013168781A1 WO 2013168781 A1 WO2013168781 A1 WO 2013168781A1 JP 2013063128 W JP2013063128 W JP 2013063128W WO 2013168781 A1 WO2013168781 A1 WO 2013168781A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
head
recording element
shift amount
unit
Prior art date
Application number
PCT/JP2013/063128
Other languages
English (en)
French (fr)
Inventor
角 克人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013168781A1 publication Critical patent/WO2013168781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0451Control methods or devices therefor, e.g. driver circuits, control circuits for detecting failure, e.g. clogging, malfunctioning actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04508Control methods or devices therefor, e.g. driver circuits, control circuits aiming at correcting other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2139Compensation for malfunctioning nozzles creating dot place or dot size errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14459Matrix arrangement of the pressure chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules

Definitions

  • the present invention relates to an image recording apparatus and an image recording method, and more particularly to a technique that includes a plurality of recording element arrays and that records defective recording elements in one recording element array by complementing normal recording elements in the other recording element array. .
  • nozzles that are in a non-ejection state due to clogging or failure occur.
  • the location of the non-ejection nozzle is visually recognized as a white stripe, correction is necessary.
  • Patent Document 1 when complementation is impossible, it is determined whether or not the positions of the non-ejection nozzles are overlapped on the assumption that a plurality of printing element arrays are arranged to be shifted by several nozzles.
  • a technique is described in which, when it is determined that the data is not to be recorded, the relative positions between the plurality of recording element arrays are shifted, and the positions of the data to be recorded are also shifted.
  • the head can be shifted to a position where they do not overlap, so that a good image that is not affected by the non-ejection nozzles can be recorded.
  • the durability (life) of the print head with respect to the target number of output sheets can be made almost 100%, and further, the production yield can be made almost 100% by allowing the number of nozzles not ejecting.
  • the present invention has been made in view of such circumstances, and in a recording head having a plurality of recording element arrays, when the positions of defective recording elements overlap, the relative shift amount of the recording element arrays is determined deterministically.
  • Another object of the present invention is to provide an image recording apparatus and an image recording method capable of reliably creating a state in which the positions of defective recording elements do not match.
  • one aspect of an image recording apparatus includes: a recording head having a plurality of recording element arrays that perform recording of the same color; and at least one of the recording head and the recording medium is conveyed to perform recording with the recording head.
  • a transport unit that relatively moves the medium in the transport direction
  • a data acquisition unit that acquires image data to be recorded in the recording head
  • a distribution unit that distributes to each recording element corresponding to each raster line, a distribution unit that distributes data corresponding to a defective recording element to recording elements in another recording element row
  • a recording unit for recording by a recording head a defective recording element information acquisition unit for acquiring information on the position of defective recording elements in a plurality of recording element arrays, and a position of the acquired defective recording element Based on the information, a relative shift amount in a direction orthogonal to the conveyance direction of the plurality of print element arrays, and at least one shift amount for
  • a shift amount determining unit a moving unit that moves the relative positions of the plurality of recording element arrays, a control unit that relatively shifts the plurality of recording element arrays by the shift amount determined by the moving unit, and a determined shift amount And a data moving unit that shifts image data distributed by the distributing unit.
  • the image data is distributed to the respective recording elements corresponding to the respective raster lines, and the data corresponding to the defective recording elements is distributed to the recording elements of the other recording element columns, and the position of the acquired defective recording element
  • a relative shift amount in a direction orthogonal to the conveyance direction of the plurality of print element arrays and at least one shift amount for associating a print element that is not a defective print element with each raster line.
  • the moving unit that determines and moves the relative positions of the plurality of recording element arrays shifts the plurality of recording element arrays relatively by the determined shift amount, and further shifts and distributes the image data to be distributed by the determined shift amount. Since the image data is recorded by the recording head, when the position of the defective recording element overlaps, the shift amount is definitely determined, and the position of the defective recording element is surely determined. It is possible to create a state that does not match.
  • the recording elements of the recording element array are arranged over a length corresponding to the full recordable width of the recording medium, and the transport unit transports at least one of the recording head and the recording medium to move the recording head and the recording medium once. It is preferable to move only relative.
  • This aspect can be applied to an image recording apparatus that relatively moves the recording head and the recording medium only once.
  • a conversion unit for converting the position of each defective recording element into the position of one coordinate system from the acquired information on the position of the defective recording element of the plurality of recording element arrays, and the defect of one of the plurality of recording element arrays A calculation unit that calculates the difference between the position of the recording element and the position of the defective recording element in the other recording element row, and an extraction unit that extracts a candidate for the shift amount from the calculated difference, the shift amount determination unit, It is preferable to determine a value closest to 0 among the extracted candidates for the shift amount as the shift amount. Thereby, an appropriate shift amount can be determined.
  • the calculation unit calculates a difference in position within a movable range of the moving unit. Thereby, calculation time can be shortened.
  • the shift amount determination unit may periodically determine a different value from the extracted shift amount candidates as the shift amount.
  • At least one of the plurality of recording element arrays is composed of a plurality of sub recording element arrays arranged in a direction orthogonal to the transport direction, and the shift amount determining unit determines the shift amount for each sub recording element array.
  • the moving unit is provided for each sub recording element row, and the control unit shifts the sub recording element row based on the determined shift amount.
  • the recording element is a nozzle that ejects ink
  • the defective recording element information acquisition unit is a non-ejection nozzle that cannot eject ink, or a nozzle that has a defective nozzle including a bent nozzle, a nozzle with a different droplet amount, and a splash nozzle.
  • a nozzle whose discharge direction deviates from a predetermined direction by a predetermined amount or more is called a bent nozzle.
  • a storage unit that stores information on the position of defective recording elements in a plurality of recording element rows may be provided. Thereby, the position information of the defective recording element can be appropriately acquired.
  • the recording element array that is moved by the moving unit among the plurality of recording element arrays has an excess recording element in a direction orthogonal to the transport direction. As the number of extra recording elements increases, the moving range of the moving unit can be expanded.
  • one aspect of an image recording method is to convey at least one of a recording head and a recording medium having a plurality of recording element arrays that perform recording of the same color to convey the recording head and the recording medium.
  • the data acquisition process to acquire the image data to be recorded in the recording head, and the image data to complement each other with a plurality of recording element arrays.
  • a distribution step of distributing to each corresponding recording element, the distribution step of distributing data corresponding to the defective recording element to the recording elements of the other recording element sequence, and the position of the defective recording element of the plurality of recording element sequences Based on the acquired defective recording element information acquisition step and the acquired information on the position of the defective recording element, the relative shift in the direction orthogonal to the conveyance direction of the plurality of recording element arrays
  • the relative shift amount of the recording element arrays is determined deterministically and reliably. A state in which the positions of the defective recording elements do not match can be created. Therefore, even when there is a defective recording element, data corresponding to the defective recording element can be recorded by recording elements in other recording element columns.
  • FIG. 1A is a schematic diagram showing a side view of an inkjet recording apparatus
  • FIG. 1B is a schematic diagram showing a plan view of the ink jet recording apparatus
  • FIG. 2 is a diagram showing a surface of the line head that faces the paper
  • FIG. 3 is a top view for explaining the image recording on the paper by the head.
  • FIG. 4 is a schematic diagram showing a case where the head is moved in the right direction of the drawing.
  • FIG. 5 is a diagram showing the probability that the non-ejection nozzles of both heads become corresponding nozzles on the same raster line.
  • FIG. 6 is a flowchart showing an image recording method in the present embodiment.
  • FIG. 7 is a flowchart showing the shifting process.
  • FIG. 1A is a schematic diagram showing a side view of an inkjet recording apparatus
  • FIG. 1B is a schematic diagram showing a plan view of the ink jet recording apparatus
  • FIG. 2 is a diagram showing a surface of the line head that faces
  • FIG. 8 is a schematic diagram showing an example of positions of the dual head and its non-ejection nozzle
  • FIG. 9A is a diagram showing a state in which one of the dual heads (B head) is shifted leftward by two rasters
  • FIG. 9B is a diagram showing a state where one of the dual heads (B head) is shifted rightward by 3 rasters
  • FIG. 10 is a table showing the frequency of differences for all combinations of non-ejection nozzle positions of the dual head.
  • FIG. 11 is a diagram showing the positions of the dual head and its non-ejection nozzle
  • FIG. 12 is a diagram showing a state where one of the sub-heads is shifted leftward.
  • FIG. 13 is a graph showing the probability that the positions of the non-ejection nozzles of both heads match when divided into sub-heads.
  • FIG. 14 is another configuration diagram of the ink jet recording apparatus,
  • FIG. 15A is a plan perspective view showing a structural example of a head;
  • FIG. 15B is an enlarged view of a part of FIG. 15A.
  • FIG. 16A is a plan perspective view showing another structural example of the head;
  • FIG. 16B is a plan perspective view showing still another structural example of the head;
  • FIG. 17 is a cross-sectional view showing a three-dimensional configuration of a droplet discharge element for one channel,
  • FIG. 18 is a principal block diagram showing the system configuration of the inkjet recording apparatus,
  • FIG. 19 is a block diagram illustrating an internal configuration of the print control unit.
  • FIG. 1A and 1B are schematic views showing an ink jet recording apparatus according to the present embodiment.
  • FIG. 1A is a side view and FIG. 1B is a plan view.
  • the ink jet recording apparatus 10 has a line head on the recording surface of the paper P that is transported in the paper transport direction (y direction) by a transport section (not shown in FIGS. 1A and 1B; see FIG. 14) such as a rotating transfer cylinder or impression cylinder.
  • 20 is a printer that forms an image on the recording surface of the paper P by ejecting ink from the paper 20.
  • FIG. 2 is a diagram showing a surface of the line head 20 that faces the paper P.
  • the line head 20 is a dual head composed of a head 30 and a head 40 arranged in order along the y direction.
  • nozzles 30a for ejecting ink are arranged at intervals L in a direction (x direction) orthogonal to the paper transport direction.
  • the nozzles 30a of the head 30 are arranged over a length corresponding to the full recordable width of the paper P, and an image can be formed on the entire surface of the paper P by the head 30 alone.
  • nozzles 40a that eject ink of the same color as the nozzles 30a are arranged at intervals L in the x direction over the length corresponding to the full recordable width of the paper P.
  • An image can be formed on the entire surface of the paper P by 40 alone.
  • the head 40 is configured to be movable in units of L (nozzle interval) L in the x direction by a moving unit (not shown). That is, the nozzle 40a corresponding to each raster line can be shifted.
  • FIG. 3 is a top view for explaining image recording on the paper P by the head 30 and the head 40, and is a view seen through each nozzle.
  • normal nozzles are indicated by white circles “ ⁇ ”
  • non-ejection nozzles are indicated by black circles “ ⁇ ”.
  • dots recorded by the nozzles of the head 30 are indicated by square marks “ ⁇ ”
  • dots recorded by the nozzles of the head 40 are indicated by triangle marks “ ⁇ ”.
  • the nozzle 31 of the head 30 and the nozzle 41 of the head 40 are arranged on the same straight line parallel to the y direction. In this way, the two nozzles that overlap on the same straight line are called “corresponding nozzles on the same raster line” (printing elements for printing complementarily with each other). As shown in FIG. 3, a dot row is recorded on the raster 51 by alternately ejecting dots by the nozzle 31 and the nozzle 41.
  • the inkjet recording apparatus 10 distributes raster line data to the head 30 and the head 40 by the recording unit (not shown), and the head 30 performs image processing. A half dot of data is recorded, and the remaining half is recorded by the head 40.
  • the nozzle 32 and the nozzle 42 correspond to corresponding nozzles on the same raster line.
  • the nozzle 32 is a non-ejection nozzle and cannot eject ink. For this reason, the dot row is recorded on the raster 52 by ejecting all dots at the nozzle 42 here.
  • the nozzle 33 and the nozzle 43 correspond to corresponding nozzles on the same raster line.
  • the nozzle 43 is a non-ejection nozzle, a dot row is recorded on the raster 53 by ejecting all dots at the nozzle 33.
  • the inkjet recording apparatus 10 complements and records using the other nozzle. That is, when there are non-ejection nozzles, raster line data is distributed and recorded by the recording unit (not shown) to the heads having the non-ejection nozzles of the head 30 and the head 40. Thereby, an image without a defect can be recorded.
  • the nozzle 34 and the nozzle 44 correspond to corresponding nozzles on the same raster line, and both nozzles are non-ejection nozzles. For this reason, dots cannot be ejected by any nozzle, and white streaks occur in the raster 54.
  • FIG. 4 is a schematic diagram showing a case where the head 40 is moved rightward in the drawing by a distance L, that is, one raster, in the example shown in FIG.
  • the corresponding nozzle on the same raster line as the nozzle 31 is the nozzle 45 located on the left side of the nozzle 41. Therefore, a dot row can be formed on the raster 51 by alternately ejecting dots by the nozzle 31 and the nozzle 45. That is, data corresponding to the nozzle 41 before the head 40 is moved is ejected by the nozzle 45. Thus, it is necessary to shift the data to be ejected by the head 40 according to the movement amount of the head 40.
  • the corresponding nozzle on the same raster line with respect to the nozzle 32 which is a non-ejection nozzle is the nozzle 46 located on the left side of the nozzle 42. Accordingly, a dot row is formed on the raster 52 by ejecting all the dots complemented by the nozzle 46. That is, the nozzle 46 ejects droplet ejection data corresponding to the nozzle 42 before the head 40 moves.
  • the corresponding nozzle on the same raster line with respect to the nozzle 43 which is a non-ejection nozzle is the nozzle 35 located on the right side of the nozzle 33. Accordingly, a dot row is formed on the raster 53 by ejecting all the dots complemented by the nozzle 35.
  • the corresponding nozzle on the same raster line with respect to the nozzle 34 which is a non-ejection nozzle is a nozzle 47 located on the left side of the nozzle 44. Accordingly, a dot row is formed on the raster 55 by ejecting all the dots complemented by the nozzles 47. That is, the nozzle 47 ejects the droplet ejection data corresponding to the nozzle 44 before the movement of the head 40.
  • the corresponding nozzle on the same raster line with respect to the nozzle 44 that is a non-ejection nozzle is the nozzle 36 that is located on the right side of the nozzle 34. Therefore, a dot row is formed on the raster 56 by ejecting all the dots complemented by the nozzles 36.
  • the inkjet recording apparatus 10 changes the combination of the corresponding nozzles on the same raster line, and at least one of the combinations of all the corresponding nozzles. By changing the combination to a normal nozzle, image defects can be avoided.
  • At least one of the combinations of the corresponding nozzles is a combination that is a normal nozzle.
  • the probability that the non-ejection nozzles of both heads coincide that is, the non-ejection of both heads.
  • the probability that a nozzle will be a corresponding nozzle on the same raster line is shown in FIG.
  • the probability that the non-ejection nozzles match is about 90%, as shown in FIG.
  • the number of non-ejection nozzles absolute number
  • the shift amount is not determined by trial and error, but is determined deterministically, and a state in which defective nozzles do not match is surely created by shifting with the determined shift amount.
  • FIG. 6 is a flowchart showing the image recording method in the present embodiment
  • FIG. 7 is a flowchart showing the shifting process (S102 in FIG. 6) in the present embodiment
  • FIG. 8 is a dual head (corresponding to a recording head) that records the same color composed of an A head and a B head arranged in order along the transport direction (y direction) of the paper P by a transport unit (not shown). ) And an example of the position of the non-ejection nozzle.
  • the nozzles of the A head and the nozzle of the B head are arranged so as to overlap on the same straight line parallel to the y direction.
  • the B head is configured to be movable in raster units in the x direction.
  • each of the A head and the B head has 40 nozzles (corresponding to recording elements) arranged at equal intervals in the x direction (corresponding to recording element arrays).
  • Step S100 data acquisition step
  • Step S101 Distribution Step
  • Step S102 shift processing step
  • Step S103 Conveyance Process
  • At least one of the dual head composed of the A head and the B head and the recording medium is transported to relatively move the dual head and the recording medium in the transport direction.
  • Step S104 Recording Step
  • the image data subjected to the shifting process is recorded on the recording medium by the A head and the B head.
  • Step S1 (Defect Recording Element Information Acquisition Step)
  • information No._A (ng) and No._B (ng) of the non-ejection nozzle positions of both the A and B heads are acquired.
  • the non-ejection nozzle position information is acquired by printing a non-ejection nozzle detection test chart for each head and reading the test chart image printed by a scanner or the like.
  • information on the non-ejection nozzle position obtained based on the read data of the test chart image is stored in advance in the memory, and this information is read out from the memory and obtained.
  • Step S2 (coordinate conversion step, shift amount determination step)]
  • the information No._A (ng) and No._B (ng) of the non-ejection nozzle positions of both heads A and B are combined with the position information No. (A, ng), No. Convert to. (B, ng).
  • the B head is configured to be movable in raster units in the x direction, and the nozzle of the B head corresponding to each raster line of the paper P differs depending on the current movement amount (set position). come. Therefore, the non-ejection nozzle position of the B head is converted into the coordinate system of the A head based on the current movement amount.
  • Step S3 difference calculation step, shift amount determination step
  • ⁇ Is ⁇ No. (B ⁇ A) ⁇ 1, -14, -22, ⁇ 26 ⁇ .
  • ⁇ Is ⁇ No. (B ⁇ A) ⁇ 13, ⁇ 2, ⁇ 10, ⁇ 14 ⁇ .
  • Step S4 shift amount determination step
  • integer values not included in these values are candidates for the shift amount. That is, if the B head is shifted by the shift amount calculated in step S3, a raster in which both nozzles of the corresponding nozzle on the same raster line are non-ejection nozzles is generated. Conversely, if the B head is shifted by a shift amount other than the value calculated in step S3, at least one of the corresponding nozzles on the same raster line becomes a normal nozzle in all regions.
  • ⁇ ..., 6, 5, 4, 2, -3, -5, ... ⁇ can be extracted as candidates for the shift amount.
  • a value closest to 0 is selected from the candidates for the shift amount and set as the shift amount.
  • the shift amount 2.
  • Step S5 movement process, control process
  • the shift amount determined in step S4 is given between the A and B heads.
  • the shift amount 2
  • FIG. 9A is a diagram showing a state in which the B head is shifted leftward by two rasters. As shown in the figure, in the nozzles corresponding to the raster lines of A head and B head, there is no position where the non-ejection nozzles overlap. That is, all the raster lines can be recorded with the nozzles of A head or B head.
  • Step S6 Data Movement Step
  • the shift amount is definitely determined based on the position information of the non-discharge nozzles of the two heads, and the determined shift amount is given to the head, so that the position of the non-discharge nozzles is not surely matched. Can be produced.
  • FIG. 10 is a table showing simulation results when it is assumed that 240 non-ejection nozzles are randomly present in both the A and B heads when the number of nozzles of the A head and the B head is 25,000, respectively.
  • the B head is shifted in the x direction with respect to the calculated shift amount, but the shift is not limited to the B head, and the shift amount is relatively between the A head and the B head. Should be given.
  • the difference ⁇ No. (B ⁇ A) is calculated for all combinations of the non-ejection nozzle position information of the A head and the non-ejection nozzle position information of the B head.
  • the difference may be calculated at.
  • the non-ejection nozzles of the B head existing at positions within the ⁇ 5 raster lines.
  • ⁇ No. (B ⁇ A) an integer value close to 0 that is not included in these values and within the movable range of the B head is obtained and shifted. It can be an amount.
  • a plurality of candidates for the required shift amount can be listed. Therefore, by periodically changing the displacement amount of these candidates, it is possible to disperse the complementary nozzles with a large load, and thus it is possible to improve the durability of the head.
  • periodic may be every time the power is turned on, every job, every other predetermined number of prints, or every time the user manually switches.
  • FIG. 9B is a diagram illustrating a state in which the B head is shifted rightward by 3 rasters.
  • the complementary nozzles differ depending on the shift amount, and the load on each nozzle can be distributed. Thereby, the load of the head can be reduced and the durability can be improved.
  • the nozzles that do not perform printing are not limited to the non-ejection nozzles.
  • defective nozzles such as nozzles with large bends (nozzles whose discharge direction deviates from a predetermined amount by a predetermined amount), nozzles with a small discharge amount, and nozzles with large splashes are masked to make them non-discharge.
  • the processing of this embodiment can also be applied to the non-ejection nozzle in this case.
  • a head in which nozzles are arranged in a line in the x direction is used, but the present invention can also be applied to a head in which nozzles are arranged in a two-dimensional matrix.
  • the dual head in which two heads are sequentially arranged along the paper conveyance direction has been described.
  • the present invention can also be applied to a case where three or more heads are sequentially arranged along the paper conveyance direction.
  • the shift amount of each head may be calculated so that at least one normal nozzle is arranged in each nozzle corresponding to each raster line.
  • FIG. 11 is a diagram showing the positions of the A head and B head and the non-ejection nozzles in the present embodiment.
  • the A head of this embodiment is the same as that of the first embodiment, and 40 nozzles are arranged at equal intervals in the x direction.
  • sub heads (C1 head to C5 head, corresponding to the sub recording element array) in which 12 nozzles are arranged at equal intervals in the x direction are arranged in a staggered manner in the x direction.
  • These C1 to C5 heads are configured to be movable in raster units in the x direction by respective moving units (not shown). Further, the nozzles of the A head and the nozzle of the B head are arranged so as to overlap on the same straight line parallel to the y direction so that the raster lines are complementarily recorded.
  • the same raster as the 1st to 8th nozzles from the left of the A head is recorded in the nozzle of the C1 head, and the same 9th to 16th nozzles from the left of the A head are recorded in the nozzle of the C2 head.
  • the raster is recorded, and the same raster as the 17th to 24th nozzles from the left of the A head is recorded at the nozzle of the C3 head, and the same as the 25th to 32nd nozzles from the left of the A head at the nozzle of the C4 head.
  • the raster is recorded, and the same raster as the 33rd to 40th nozzles from the left of the A head is recorded in the nozzle of the C5 head.
  • Step S1 First, information on the ejection failure nozzle positions of both the A and B heads is acquired. Note that, as in the first embodiment, information on the non-ejection nozzle position for each head is stored in the memory in advance.
  • Step S2 the information No. A (ng) and No. CN (ng) of the non-ejection nozzle positions of both A and B heads are combined with the position information No. (A, ng), No. Convert to. (B, ng).
  • the non-ejection nozzle position of the movable B head is converted into the coordinate system of the A head.
  • Step S3 From the non-ejection nozzle position information No. (A, ng) and No. (B, ng) in one coordinate system obtained in step S2, the non-ejection nozzle positions overlap, that is, on the same raster line. It can be seen that both of the corresponding nozzles are non-ejection nozzles at the 27th position from the left of the A head. In the B head, the raster at this position is recorded by the C4 head, and therefore only the C4 head needs to be shifted in this example.
  • Step S5 the shift amount determined in step S4 is given between the A and B heads.
  • FIG. 12 is a diagram showing a state in which the C4 head of the B heads is shifted leftward by one raster. As shown in the figure, in each raster line, there is no position where the non-ejection nozzles of A head and B head overlap.
  • Step S6 Finally, the calculated shift amount is given to the image data recorded in the C4 head among the B heads. That is, the image data is shifted rightward in the drawing by one raster.
  • FIG. 13 shows the probability that the positions of the non-ejection nozzles of both heads coincide when there are the same number of non-ejection nozzles in both A and B heads when the number of nozzles of A head and B head is 25,000. It is the shown graph, and has shown the probability at the time of dividing
  • the shift amount when the positions of the non-ejection nozzles can be reduced.
  • the number of nozzles can be reduced and the manufacturing cost is reduced. If the number of nozzles is not reduced, the number of effective nozzles is increased, and the recording width can be expanded.
  • the B head is divided into sub-head units and the sub heads are movable in the x direction.
  • FIG. 14 is another configuration diagram of the ink jet recording apparatus to which the present embodiment is applicable.
  • This ink jet recording apparatus 100 is an impression cylinder direct drawing type ink jet that forms a desired color image by directly ejecting ink of a plurality of colors onto a recording medium 114 held on the impression cylinder 126c of the ink droplet ejection unit 108.
  • the recording apparatus is an on-demand type image forming apparatus to which a two-liquid reaction (aggregation) method for forming an image on a recording medium 114 using ink and a processing liquid (here, an aggregation processing liquid) is applied.
  • the ink jet recording apparatus 100 mainly includes a paper supply unit 102 that supplies a recording medium 114, a permeation suppression agent applying unit 104 that applies a permeation suppression agent to the recording medium 114, and a process that applies a treatment liquid to the recording medium 114.
  • the liquid application unit 106, the ink droplet ejection unit 108 that ejects ink onto the recording medium 114, the fixing unit 110 that fixes the image formed on the recording medium 114, and the recording medium 114 on which the image is formed are conveyed.
  • the paper discharge unit 112 is configured to be discharged.
  • the paper feed unit 102 is provided with a paper feed stand 120 on which a sheet recording medium 114 is loaded.
  • the recording media 114 loaded on the paper feed table 120 are sent one by one to the feeder board 122 in order from the top, and received by the pressure drum (permeation inhibitor drum) 126a of the permeation suppression agent applying unit 104 via the transfer drum 124a. Passed.
  • Holding claws 115a and 115b for holding the tip of the recording medium 114 are formed on the surface (circumferential surface) of the impression cylinder 126a.
  • the recording medium 114 transferred from the transfer drum 124a to the pressure drum 126a is in close contact with the surface of the pressure drum 126a while being held at the front end by the holding claws 115a and 115b (that is, the state wound around the pressure drum 126a).
  • In the rotational direction of the impression cylinder 126a counterclockwise direction in FIG. 14). The same configuration is applied to other impression cylinders 126b to 126d described later.
  • a member 116 is formed on the surface (circumferential surface) of the transfer drum 124a to transfer the tip of the recording medium 114 to the holding claws 115a and 115b of the pressure drum 126a.
  • the same configuration is applied to other transfer cylinders 124b to 124d described later.
  • the sheet preheating unit 128 and the permeation suppression agent discharge are disposed at positions facing the surface of the pressure drum 126a in order from the upstream side in the rotation direction of the pressure drum 126a (counterclockwise direction in FIG. 14).
  • a head 130 and a permeation suppression agent drying unit 132 are provided.
  • the paper preheating unit 128 and the permeation suppression agent drying unit 132 are each provided with a hot air dryer capable of controlling temperature and air volume.
  • a hot air dryer capable of controlling temperature and air volume.
  • the permeation suppression agent discharge head 130 discharges a solution containing a permeation suppression agent (hereinafter also simply referred to as “permeation suppression agent”) to the recording medium 114 held on the impression cylinder 126a.
  • a droplet ejection method is applied as a means for applying a permeation inhibitor to the surface of the recording medium 114, but the present invention is not limited to this, and various methods such as a roller coating method and a spray method are applied. It is also possible to do.
  • the permeation suppressor suppresses permeation of the solvent (and solvophilic organic solvent) contained in the treatment liquid and the ink liquid described later into the recording medium 114.
  • a resin particle dispersed (or dissolved) in a solution is used.
  • an organic solvent or water is used as the solution of the penetration inhibitor.
  • the organic solvent for the penetration inhibitor methyl ethyl ketone, petroleum, and the like are preferably used.
  • the paper preheating unit 128 makes the temperature Tm1 of the recording medium 114 higher than the minimum film forming temperature Tf1 of the resin particles of the permeation suppression agent.
  • a method for adjusting the temperature Tm1 there are a method of heating the recording medium 114 from the lower surface using a heating element such as a heater installed inside the pressure drum 126a, and a method of heating the upper surface of the recording medium 114 by applying hot air.
  • a method of heating from the upper surface of the recording medium 114 using an infrared heater or the like is used. These methods may be combined.
  • droplet ejection For the method of applying the penetration inhibitor, droplet ejection, spray coating, roller coating or the like is preferably used.
  • a permeation inhibitor can be selectively applied only to the ink droplet ejection location and its surroundings, which will be described later, which is preferable. Further, in the case of the recording medium 114 where curling is unlikely to occur, the application of the permeation inhibitor may be omitted.
  • a treatment liquid application unit 106 is provided following the permeation suppression agent application unit 104.
  • a transfer drum 124b is provided between the pressure drum (penetration inhibitor drum) 126a of the permeation suppression agent applying unit 104 and the pressure drum (processing liquid drum) 126b of the treatment liquid applying unit 106 so as to be in contact therewith. ing.
  • the recording medium 114 held on the pressure drum 126a of the permeation suppression agent applying unit 104 is delivered to the pressure drum 126b of the treatment liquid application unit 106 via the transfer drum 124b after the permeation suppression agent is applied. .
  • a sheet preheating unit 134 and a treatment liquid ejection head 136 are disposed at positions facing the surface of the pressure drum 126 b in order from the upstream side in the rotation direction of the pressure drum 126 b (counterclockwise direction in FIG. 14). , And a processing liquid drying unit 138 are provided.
  • the paper preheating unit 134 has the same configuration as that of the paper preheating unit 128 of the permeation suppression agent applying unit 104, and thus the description thereof is omitted here. Of course, different configurations may be applied.
  • the treatment liquid ejection head 136 is for ejecting treatment liquid onto the recording medium 114 held by the pressure drum 126b, and is the same as each ink ejection head 140C, 140M, 140Y, 140K of the ink ejection unit 108. Configuration is applied.
  • the processing liquid used in this example agglomerates color materials contained in the ink ejected from the ink ejection heads 140M, 140K, 140C, and 140Y disposed in the ink ejection unit 108 toward the recording medium 114. It is an acidic liquid having an action.
  • the treatment liquid drying unit 138 is provided with a hot air dryer capable of controlling the temperature and the air volume, and the recording medium 114 held on the impression cylinder 126b passes through a position facing the hot air dryer of the treatment liquid drying unit 138. In this case, air (hot air) heated by a hot air dryer is blown onto the processing liquid on the recording medium 114.
  • a hot air dryer capable of controlling the temperature and the air volume
  • the temperature and air volume of the hot air dryer are adjusted so that the processing liquid applied on the recording medium 114 is dried by the processing liquid discharge head 136 disposed on the upstream side in the rotation direction of the impression cylinder 126 b, and the solid is formed on the surface of the recording medium 114.
  • a semi-solid solution aggregation treatment agent layer is set to such a value.
  • An ink droplet ejection unit 108 is provided following the treatment liquid application unit 106.
  • a transfer cylinder 124c is provided between the pressure drum (processing liquid drum) 126b of the treatment liquid application unit 106 and the pressure drum 126c of the ink droplet ejection unit 108 so as to be in contact therewith.
  • the recording medium 114 held on the pressure drum 126b of the treatment liquid application unit 106 is applied with the treatment liquid to form a solid or semi-solid aggregating treatment agent layer, and then via the transfer cylinder 124c.
  • the ink is transferred to a pressure drum (drawing drum) 126c of the ink droplet ejection unit 108.
  • the ink droplet ejection unit 108 has four colors of CMYK at positions facing the surface of the impression cylinder 126c in order from the upstream side in the rotation direction (counterclockwise direction in FIG. 14) of the impression cylinder 126c (corresponding to the conveyance unit).
  • Ink droplet ejection heads 140C, 140M, 140Y, and 140K (corresponding to recording heads) corresponding to the respective inks are provided side by side, and further, solvent drying units 142a and 142b are provided downstream thereof.
  • each of the ink droplet ejection heads 140C, 140M, 140Y, and 140K a dual head in which a plurality of recording heads (liquid droplet ejection heads) that eject liquid is arranged in order along the transport direction is applied. That is, each of the ink droplet ejection heads 140C, 140M, 140Y, and 140K has a plurality of heads arranged in order along the transport direction, and a recording medium in which the corresponding color ink droplets are held on the impression cylinder 126c. It discharges toward 114.
  • the ink storage / loading unit (not shown) includes an ink tank that stores the ink supplied to each of the ink ejection heads 140C, 140M, 140Y, and 140K. Each ink tank communicates with a corresponding head via a required flow path, and supplies a corresponding ink to each ink droplet ejection head.
  • the ink storage / loading unit includes a notification unit (display unit, warning sound generation unit) that notifies when the liquid remaining amount in the tank is low, and has a mechanism for preventing erroneous loading between colors. ing.
  • Ink is supplied from each ink tank of the ink storage / loading unit to each ink droplet ejection head 140C, 140M, 140Y, 140K, and from each ink droplet ejection head 140C, 140M, 140Y, 140K to the recording medium 114 according to an image signal. On the other hand, corresponding color inks are ejected.
  • Each of the ink droplet ejection heads 140C, 140M, 140Y, and 140K has a length corresponding to the maximum width of the image forming area in the recording medium 114 held by the impression cylinder 126c, and the image forming area is disposed on the ink ejection surface.
  • This is a dual head having a plurality of full-line heads in which a plurality of nozzles for ink ejection (not shown in FIG. 14) are arranged over the entire width (see FIGS. 15A and 15B).
  • the ink droplet ejection heads 140C, 140M, 140Y, and 140K are installed so as to extend in a direction orthogonal to the rotation direction of the impression cylinder 126c (conveying direction of the recording medium 114).
  • the recording medium 114 is conveyed at a constant speed by the impression cylinder 126c, and this conveying direction ( With respect to the sub-scanning direction), the image of the recording medium 114 can be obtained by performing the operation of relatively moving the recording medium 114 and the ink ejection heads 140C, 140M, 140Y, and 140K once (that is, in one sub-scanning). An image can be recorded in the formation area.
  • Single-pass image formation with such a full-line (page wide) head is a multi-pass with a serial (shuttle) type head that reciprocates in the direction (main scanning direction) orthogonal to the recording medium conveyance direction (sub-scanning direction).
  • a serial (shuttle) type head that reciprocates in the direction (main scanning direction) orthogonal to the recording medium conveyance direction (sub-scanning direction).
  • High-speed printing is possible as compared with the case where the method is applied, and print productivity can be improved.
  • the ink jet recording apparatus 100 of the present example is capable of recording up to, for example, a recording medium (recording paper) having a maximum chrysanthemum half size. Is used.
  • the ink ejection volumes of the ink ejection heads 140C, 140M, 140Y, and 140K are, for example, 2 pl, and the recording density is the main scanning direction (width direction of the recording medium 114) and the sub-scanning direction (conveyance direction of the recording medium 114). Both are 1200 dpi, for example.
  • CMYK configuration of four colors of CMYK is illustrated, but the combination of ink colors and the number of colors is not limited to the present embodiment, and R (red), G (green), and B as necessary.
  • (Blue) ink, light ink, dark ink, and special color ink may be added.
  • a head for ejecting light ink such as light cyan and light magenta, and the arrangement order of the color heads is not particularly limited.
  • head maintenance such as preliminary ejection and suction operation is performed from the image recording position (drawing position) immediately above the impression cylinder 126c (drawing drum) to the maintenance position (for example, the impression cylinder 126c). It is configured to execute in a state of being retracted to a position outside the drum in the axial direction).
  • the solvent drying units 142a and 142b are configured to include a hot air dryer capable of controlling the temperature and the air volume, like the paper preheating units 128 and 134, the permeation suppression agent drying unit 132, and the treatment liquid drying unit 138 described above.
  • a hot air dryer capable of controlling the temperature and the air volume, like the paper preheating units 128 and 134, the permeation suppression agent drying unit 132, and the treatment liquid drying unit 138 described above.
  • the solvent components are dried by the hot air dryers of the solvent drying units 142a and 142b. Is evaporated and dried.
  • a fixing unit 110 is provided following the ink droplet ejection unit 108.
  • a transfer drum 124d is provided between the pressure drum (drawing drum) 126c of the ink droplet ejection unit 108 and the pressure drum (fixing drum) 126d of the fixing unit 110 so as to be in contact therewith.
  • the recording medium 114 held on the pressure drum 126c of the ink droplet ejection unit 108 is delivered to the pressure drum 126d of the fixing unit 110 via the transfer drum 124d after each color ink is applied.
  • print detection is performed by reading the print result from the ink droplet ejection unit 108 at a position facing the surface of the pressure drum 126 d in order from the upstream side in the rotation direction (counterclockwise direction in FIG. 14) of the pressure drum 126 d.
  • a portion 144 and heating rollers 148a and 148b are provided.
  • the print detection unit 144 is a reading unit that reads an output image, and includes an image sensor for imaging the printing results of the ink droplet ejection unit 108 (the droplet ejection results of the ink droplet ejection heads 140C, 140M, 140Y, and 140K). It functions as a means for checking nozzle clogging and other ejection defects from the droplet ejection image read by the image sensor, and functions as a colorimetric unit for acquiring color information.
  • a test pattern based on a line pattern, a density pattern, or a combination thereof is formed in an image recording area or a non-image area (so-called blank area) of the recording medium 114, and the test pattern is read by the print detection unit 144. Based on the reading result, inline detection is performed such as acquisition of color information (colorimetry), detection of density unevenness, and determination of the presence or absence of ejection abnormality for each nozzle.
  • the heating rollers 148a and 148b are rollers capable of controlling the temperature at, for example, 100 ° C. to 180 ° C., and the recording medium 114 sandwiched between the heating rollers 148a and 148b and the impression cylinder 126d is heated and pressed while being recorded.
  • the image formed on 114 is fixed.
  • the heating temperature of the heating rollers 148a and 148b is preferably set according to the glass transition temperature of the polymer fine particles contained in the treatment liquid or ink.
  • the inkjet recording apparatus 100 includes a UV exposure unit that exposes the ink on the recording medium 114 to UV light instead of the heat-pressure fixing unit using a heat roller.
  • an actinic ray curable resin such as a UV curable resin
  • an actinic ray is irradiated, such as a UV lamp or an ultraviolet LD (laser diode) array, instead of a fixing roller for heat fixing. Means are provided.
  • the paper discharge unit 112 includes a paper discharge drum 150 that receives the recording medium 114 on which an image is fixed, a paper discharge tray 152 on which the recording medium 114 is loaded, and a sprocket and a paper discharge tray 152 provided on the paper discharge drum 150. And a paper discharge chain 154 provided with a plurality of paper discharge grippers. Although the details of the paper transport mechanism by the paper discharge chain 154 are not shown, the recording medium 114 after printing is held at the leading edge of the paper by a gripper of a bar (not shown) passed between the endless paper discharge chains 154. Then, the sheet is transported above the sheet discharge table 152 by the rotation of the sheet discharge chain 154.
  • FIG. 15A is a plan perspective view showing an example of the structure of the head 250
  • FIG. 15B is an enlarged view of a part thereof.
  • 16A and 16B are plan perspective views showing other structural examples of the head 250
  • FIG. 17 is a three-dimensional view of one-channel droplet discharge elements (ink chamber units corresponding to one nozzle 251) serving as recording element units.
  • FIG. 16 is a cross-sectional view (a cross-sectional view taken along line AA in FIGS. 15A and 15B) showing a typical configuration.
  • the head 250 of this example is a dual in which a head 250A and a head 250B (each corresponding to a printing element array) are sequentially arranged along the y direction (the conveyance direction of the printing medium 114).
  • the head 250A and the head 250B each have a matrix of a plurality of ink chamber units (droplet discharge elements) 253 including nozzles 251 that are ink discharge ports that discharge ink of the same color and pressure chambers 252 corresponding to the nozzles 251.
  • the density of the substantial nozzle interval (projection nozzle pitch) projected (orthogonal projection) so as to be aligned along the x direction is achieved.
  • the two heads 250A and 250B constituting the head 250 are configured to be relatively movable in the x direction.
  • the head 250A is fixed, and the head 250B is movable in the x direction by a piezo actuator (not shown, corresponding to a moving unit).
  • the moving unit that moves the head 250B is not particularly limited.
  • the printable range in the x direction of the recording medium 114 in the head 250 is a range where the printable range in the x direction of the head 250A (the range in which the nozzles 251 are disposed) and the printable range in the x direction of the head 250B overlap. . Therefore, it is preferable that the head 250B configured to be movable in the x direction has a surplus nozzle 251 in the x direction. As the number of surplus nozzles 251 increases, the moving range in the x direction of the head 250B can be expanded while keeping the recordable range of the head 250A as the recordable range of the recording medium 114.
  • the head 250B is provided with 12 extra nozzles (nozzle group 260 surrounded by a broken line) at both ends in the x direction. Therefore, if the moving range of the head 250B is a range of 12 nozzles on the left and right in the x direction (12 raster lines), the printable range in the x direction in the head 250 can be made constant.
  • the head 250B is configured to be movable in the x direction.
  • the head 250A when the head 250A is configured to be movable in the x direction, it is preferable that the head 250A also includes an extra nozzle 251 in the x direction. .
  • the head 250A by providing an extra nozzle for the movable head, it is possible to widen the moving range of the head while keeping the recordable range constant.
  • region of the recording medium 114 in the direction (x direction) substantially orthogonal to ay direction is not limited to this example.
  • the short width subheads 250 ′ in which a plurality of nozzles 251 are two-dimensionally arranged are arranged in a staggered manner and connected to form the entire width of the recording medium 114.
  • a mode in which a line head having a nozzle row of a corresponding length is configured, and a mode in which the sub heads 250 ′′ are arranged in a row and connected as shown in FIG. 16B.
  • These sub heads are preferably configured to be movable in the x direction as described with reference to FIG. In this case, it is necessary to provide extra nozzles 251 (nozzle groups 260 ′ and 260 ′′ surrounded by broken lines) in the x direction of each sub head.
  • the pressure chambers BR> Q52 provided corresponding to the respective nozzles 251 have a substantially square planar shape (see FIGS. 15A and 15B), and are connected to the nozzles 251 at one of the diagonal corners.
  • An outflow port is provided, and an inflow port (supply port) 254 for supply ink is provided on the other side.
  • the shape of the pressure chamber 252 is not limited to this example, and the planar shape may have various forms such as a quadrangle (rhombus, rectangle, etc.), a pentagon, a hexagon, other polygons, a circle, and an ellipse. As shown in FIG.
  • the head 250 has a structure in which a nozzle plate 251A in which nozzles 251 are formed and a flow path plate 252P in which flow paths such as a pressure chamber 252 and a common flow path 255 are formed are laminated and joined.
  • the nozzle plate 251A constitutes a nozzle surface (ink ejection surface) 250C of the head 250, and a plurality of nozzles 251 communicating with the pressure chambers 252 are two-dimensionally formed.
  • the flow path plate 252P forms a side wall of the pressure chamber 252 and a flow path that forms a supply port 254 as a narrowed portion (most narrowed portion) of an individual supply path that guides ink from the common flow path 255 to the pressure chamber 252. It is a forming member.
  • the flow path plate 252P has a structure in which one or a plurality of substrates are stacked, although it is illustrated schematically in FIG.
  • the nozzle plate 251A and the flow path plate 252P can be processed into a required shape by a semiconductor manufacturing process using silicon as a material.
  • the common channel 255 communicates with an ink tank (not shown) as an ink supply source, and the ink supplied from the ink tank is supplied to each pressure chamber 252 via the common channel 255.
  • a piezo actuator 258 having individual electrodes 257 is joined to a diaphragm 256 constituting a part of the pressure chamber 252 (the top surface in FIG. 17).
  • the diaphragm 256 of this example is made of silicon (Si) with a nickel (Ni) conductive layer functioning as a common electrode 259 corresponding to the lower electrode of the piezoelectric actuator 258, and is arranged corresponding to each pressure chamber 252. It also serves as a common electrode for the actuator 258. It is also possible to form the diaphragm with a non-conductive material such as resin. In this case, a common electrode layer made of a conductive material such as metal is formed on the surface of the diaphragm member. Moreover, you may comprise the diaphragm which serves as a common electrode with metals (conductive material), such as stainless steel (SUS).
  • conductive material such as stainless steel (SUS).
  • the piezo actuator 258 By applying a driving voltage to the individual electrode 257, the piezo actuator 258 is deformed and the volume of the pressure chamber 252 is changed, and ink is ejected from the nozzle 251 by the pressure change accompanying this. When the piezo actuator 258 returns to its original state after ink ejection, new ink is refilled into the pressure chamber 252 from the common channel 255 through the supply port 254.
  • each nozzle 251 of the head 250A and each nozzle 251 of the head 250B are arranged so as to overlap on the same straight line parallel to the y direction.
  • the head 250B is configured to be movable in the x direction.
  • the arrangement form of the nozzles 251 in the head 250 is not limited to the illustrated example, and various nozzle arrangement structures can be applied.
  • a linear array of lines, a V-shaped nozzle array, and a zigzag (W-shaped) nozzle array having a V-shaped array as a repeating unit. Etc. are also possible.
  • the means for generating the discharge pressure (discharge energy) for discharging the droplets from each nozzle in the inkjet head is not limited to the piezo actuator (piezoelectric element), but the thermal method (the pressure of film boiling due to the heating of the heater)
  • Various pressure generating elements (energy generating elements) such as heaters (heating elements) and other actuators based on other systems can be applied.
  • Corresponding energy generating elements are provided in the flow path structure according to the ejection method of the head.
  • FIG. 18 is a principal block diagram showing the system configuration of the inkjet recording apparatus 100.
  • the inkjet recording apparatus 100 includes a communication interface 170, a system controller 172, a memory 174, a motor driver 176, a heater driver 178, a print control unit 180, an image buffer memory 182, a head driver 184, and the like.
  • the communication interface 170 is an interface unit (corresponding to a data acquisition unit) that receives image data sent from the host computer 186.
  • the communication interface 170 may be a serial interface such as USB (Universal Serial Bus), IEEE 1394, Ethernet (registered trademark), a wireless network, or a parallel interface such as Centronics.
  • a buffer memory (not shown) for speeding up communication may be mounted. Image data sent from the host computer 186 is taken into the inkjet recording apparatus 100 via the communication interface 170 and temporarily stored in the memory 174.
  • the memory 174 is a storage unit that temporarily stores an image input through the communication interface 170, and data is read and written through the system controller 172.
  • the memory 174 is not limited to a memory made of a semiconductor element, and a magnetic medium such as a hard disk may be used.
  • the system controller 172 includes a central processing unit (CPU) and its peripheral circuits, and functions as a control device that controls the entire inkjet recording apparatus 100 according to a program, and also functions as an arithmetic device that performs various calculations. That is, the system controller 172 controls the communication interface 170, the memory 174, the motor driver 176, the heater driver 178, and the like, performs communication control with the host computer 186, read / write control of the memory 174, etc. A control signal for controlling the motor 188 and the heater 189 is generated.
  • CPU central processing unit
  • the memory 174 stores programs executed by the CPU of the system controller 172 and various data necessary for control.
  • the memory 174 may be a non-rewritable storage unit or a rewritable storage unit such as an EEPROM.
  • the memory 174 is used as a temporary storage area for image data, and is also used as a program development area and a calculation work area for the CPU.
  • the program storage unit 190 may use a semiconductor memory such as a ROM or an EEPROM, or may use a magnetic disk or the like.
  • An external interface may be provided and a memory card or PC card may be used. Of course, you may provide several recording media among these recording media.
  • the program storage unit 190 may also be used as a storage unit for operating parameters.
  • the motor driver 176 is a driver that drives the motor 188 in accordance with an instruction from the system controller 172.
  • a motor (actuator) arranged at each part in the apparatus is represented by reference numeral 188.
  • the motor 188 shown in FIG. 18 includes a motor for driving the pressure drums 126a to 126d, the transfer drums 124a to 124d and the paper discharge drum 150 in FIG. 14, the head B in FIGS. 9A and 9B, and the head 250B in FIG.
  • a motor for shifting in the x direction is included.
  • the heater driver 178 is a driver that drives the heater 189 in accordance with an instruction from the system controller 172.
  • a plurality of heaters provided in the ink jet recording apparatus 100 are represented by reference numeral 189.
  • the heater 189 shown in FIG. 18 includes the paper preheating units 128 and 134, the permeation suppression agent drying unit 132, the treatment liquid drying unit 138, the solvent drying units 142a and 142b, and the heating rollers 148a and 148b shown in FIG. A built-in heater is included.
  • the print control unit 180 (corresponding to a recording unit) has a signal processing function for performing various processes such as processing and correction for generating a print control signal from image data in the memory 174 in accordance with the control of the system controller 172.
  • the control unit distributes the generated print data (dot data) to each head of the dual head and supplies it to the head driver 184. Necessary signal processing is performed in the print controller 180, and the ejection amount and ejection timing of the ink droplets of the head 250 are controlled via the head driver 184 based on the image data. Thereby, a desired dot size and dot arrangement are realized.
  • the print control unit 180 is provided with an image buffer memory 182, and image data, parameters, and other data are temporarily stored in the image buffer memory 182 when image data is processed in the print control unit 180. Also possible is an aspect in which the print controller 180 and the system controller 172 are integrated and configured with one processor.
  • FIG. 19 is a block diagram showing the internal configuration of the print control unit 180.
  • the print control unit 180 includes a non-ejection nozzle data storage unit 201, a non-ejection nozzle coordinate conversion unit 202, a difference calculation unit 203, a shift amount candidate extraction unit 204, a shift amount determination unit 205, and a head control unit. 206, a data shifting unit 207, and the like.
  • the non-ejection nozzle data storage unit 201 (corresponding to the storage unit) stores information such as the position in the head of a nozzle (non-ejection nozzle) that cannot eject ink. In addition, even when defective nozzles such as bent nozzles, nozzles with different droplet amounts, and splash nozzles are made non-ejecting (ink ejection is stopped), information such as the position of these non-ejecting nozzles in the head is stored. To do.
  • the non-ejection nozzle coordinate conversion unit 202 acquires information on the non-ejection nozzles of each head of the dual head from the non-ejection nozzle data storage unit 201 (corresponding to a defective recording element information acquisition unit and conversion unit), and the position of the non-ejection nozzles Is converted into a position in one unified coordinate system.
  • the difference calculation unit 203 calculates the difference between the non-ejection nozzle positions of each head based on the positions of the non-ejection nozzles of each head of the dual head converted by the non-ejection nozzle coordinate conversion unit 202. .
  • the difference calculation unit 203 performs the process of step S3 in the flowchart illustrated in FIG.
  • the shift amount candidate extraction unit 204 (corresponding to the extraction unit) calculates an integer value not included in these values as a shift amount candidate for the difference calculated by the difference calculation unit 203.
  • the shift amount determination unit 205 (corresponding to the shift amount determination unit) determines the shift amount from the shift amount candidates extracted by the shift amount candidate extraction unit 204.
  • the process of step S4 in the flowchart illustrated in FIG. 7 is performed by the shift amount candidate extraction unit 204 and the shift amount determination unit 205.
  • the head control unit 206 (corresponding to the control unit) gives the shift amount determined by the shift amount determination unit 205 between the dual heads via the system controller 172 and the motor driver 176.
  • the head control unit 206 performs the process in step S5 of the flowchart shown in FIG.
  • the data shift unit 207 (corresponding to a data moving unit and a distribution unit) gives the shift amount determined by the shift amount determination unit 205 to the data of the shifted head. That is, the image data in the memory 174 is subjected to signal processing, and the generated dot data is distributed to the head 250A and the head 250B. Then, the data of the head 250B is shifted by the shift amount determined by the shift amount determination unit 205. Further, as a result of shifting the data, the position of the non-ejection nozzle corresponding to each raster line changes, so the data corresponding to the non-ejection nozzle is redistributed to the head 250A and the head 250B and supplied to the head driver 184.
  • the data shifting unit 207 performs the process in step S6 of the flowchart shown in FIG.
  • Image data to be printed is input from the outside via the communication interface 170 and stored in the memory 174.
  • RGB multivalued image data is stored in the memory 174.
  • the original image (RGB) data stored in the memory 174 is sent to the print control unit 180 via the system controller 172, and the print control unit 180 uses the halftoning process using a threshold matrix, an error diffusion method, etc. It is converted into dot data (binary data or multi-value data including dot size information) for each color (K, C, M, Y). When a relative shift amount is given between the dual heads, data is generated according to the shift amount.
  • the dot data generated by the print control unit 180 is stored in the image buffer memory 182.
  • the dot data for each color is converted into CMYK droplet ejection data for ejecting ink from the nozzles of the head 250, and the ink ejection data to be printed is determined.
  • the head driver 184 is a piezoelectric element (piezoactuator 258 in FIG. 17) corresponding to each nozzle 251 of the head 250 based on print data (that is, dot data stored in the image buffer memory 182) given from the print controller 180.
  • a drive signal for driving is output.
  • the head driver 184 may include a feedback control system for keeping the head driving condition constant.
  • the inkjet recording apparatus 100 shown in this example applies a common drive waveform signal to each piezoelectric element corresponding to a plurality of nozzles belonging to the same nozzle group block divided into M, and discharge timing of each piezoelectric element (piezo actuator 258). Accordingly, a piezoelectric drive method is applied in which ink is ejected from the nozzle corresponding to each piezoelectric element by switching on and off the switch element connected to the individual electrode of each piezoelectric element.
  • the print detection unit 144 is a block including a CCD line sensor, reads an image printed on the recording medium 114, performs necessary signal processing, etc., and performs printing status (color, density, presence / absence of ejection, variation in droplet ejection, etc.) ) And the detection result is provided to the print controller 180 via the system controller 172.
  • the print control unit 180 functions as a defective recording element information acquisition unit that determines ejection abnormal nozzles based on information obtained from the print detection unit 144.
  • abnormal ejection nozzles include non-ejection nozzles, nozzles with large bends, nozzles with small ejection amounts, and nozzles with large splashes.
  • the print control unit 180 causes the non-ejection nozzle data storage unit 201 to store non-ejection nozzle position information and the like. Further, when ejection failure nozzles other than the ejection failure nozzles are ejected, position information of the ejection failure nozzles and the like are also stored.
  • a control signal may be sent to each part via the system controller 172 so that a nozzle recovery operation such as preliminary discharge or suction is performed on the abnormal discharge nozzle.
  • the recording medium 114 is sent from the paper feed stand 120 of the paper feed unit 102 to the feeder board 122.
  • the recording medium 114 is held by the pressure drum 126a of the permeation suppression agent applying unit 104 via the transfer drum 124a, preheated by the paper preheating unit 128, and the permeation suppression agent is ejected by the permeation suppression agent discharge head 130. .
  • the recording medium 114 held on the impression cylinder 126a is heated by the permeation suppression agent drying unit 132, and the solvent component (liquid component) of the permeation suppression agent is evaporated and dried.
  • the recording medium 114 subjected to the permeation suppression process is transferred from the pressure drum 126a of the permeation suppression agent applying unit 104 to the pressure drum 126b of the processing liquid application unit 106 through the transfer cylinder 124b.
  • the recording medium 114 held on the pressure drum 126 b is preheated by the paper preheating unit 134, and the processing liquid is ejected by the processing liquid discharge head 136. Thereafter, the recording medium 114 held on the pressure drum 126b is heated by the treatment liquid drying unit 138, and the solvent component (liquid component) of the treatment liquid is evaporated and dried. Thereby, a solid or semi-solid aggregation treatment agent layer is formed on the recording medium 114.
  • the recording medium 114 to which the treatment liquid is applied to form a solid or semi-solid aggregation treatment agent layer is formed on the recording medium 114 from the pressure drum 126b of the treatment liquid application section 106 through the transfer cylinder 124c. It is delivered to the trunk 126c.
  • Corresponding color inks are ejected from the respective ink ejection heads 140C, 140M, 140Y, and 140K on the recording medium 114 held on the impression cylinder 126c in accordance with the input image data.
  • the contact area between the ink droplets and the aggregation treatment agent layer is determined depending on the balance between the flight energy and the surface energy.
  • the aggregation reaction starts immediately after the ink droplets land on the aggregation treatment agent, but the aggregation reaction starts from the contact surface between the ink droplets and the aggregation treatment agent layer.
  • the aggregation reaction occurs only in the vicinity of the contact surface, and the color material in the ink is aggregated in a state where the adhesion force is obtained with the contact area at the time of ink landing, so that the color material movement is suppressed.
  • the recording medium 114 held on the impression cylinder 126c is heated by the solvent drying units 142a and 142b, and the solvent component (liquid component) separated from the ink aggregate on the recording medium 114 is evaporated and dried. As a result, curling of the recording medium 114 can be prevented and image quality deterioration due to the solvent component can be suppressed.
  • the recording medium 114 to which the color ink is applied by the ink droplet ejection unit 108 is transferred from the pressure drum 126c of the ink droplet ejection unit 108 to the pressure drum 126d of the fixing unit 110 through the transfer drum 124d.
  • the recording medium 114 held on the impression cylinder 126d is heated and pressed by the heating rollers 148a and 148b after the printing result of the ink ejection unit 108 is read by the printing detection unit 144.
  • the recording medium 114 is transferred from the pressure drum 126d to the paper discharge drum 150 and conveyed to the paper discharge tray 152 by the paper discharge chain 154.
  • the recording medium 114 on which the image has been formed in this manner is transported above the paper discharge table 152 by the paper discharge chain 154 and stacked on the paper discharge table 152.
  • the shift amount is definitely determined, and the state where the positions of the defective recording elements do not coincide with each other is ensured. Can be produced.
  • the present invention relates to an image recording apparatus of a type other than an ink jet recording apparatus, for example, a thermal transfer recording apparatus having a recording head having a thermal element as a recording element, and an LED electrophotography having a recording head having an LED element as a recording element.
  • the present invention can also be applied to a printer and a silver halide photographic printer having an LED line exposure head.

Abstract

 本発明の一の態様に係る画像記録装置によれば、画像データを各ラスタラインに対応するそれぞれの記録要素に分配するとともに不良記録要素に対応するデータを他の記録要素列の記録要素に分配し、取得した不良記録要素の位置の情報に基づいて、複数の記録要素列の搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定し、複数の記録要素列の相対位置を移動する移動部で、決定したずらし量だけ複数の記録要素列を相対的にずらし、さらに決定したずらし量だけ分配する画像データをずらし、分配された画像データを記録ヘッドによって記録するようにしたので、不良記録要素の位置が重なった場合に、ずらし量を確定的に決定し、確実に不良記録要素の位置が一致しない状態を作り出すことができる。

Description

画像記録装置及び画像記録方法
 本発明は画像記録装置及び画像記録方法に係り、特に複数の記録要素列を備え、一方の記録要素列の不良記録要素を他方の記録要素列の正常な記録要素で補完して記録する技術に関する。
 複数のノズルを備えるインクジェット記録装置では、目詰まりや故障により不吐出状態となったノズルが発生する。特に、シングルパス方式による描画の場合、不吐出ノズルの箇所は白スジと視認されるため、補正が必要となる。
 このような不吐出ノズルに起因する画像欠陥を改善するための不吐出補正技術は、従来から数多く提案されている。例えば、1つの記録要素列中に不吐出ノズルがあった際に、異なる記録要素列の正常なノズルで補完して記録するインクジェット記録装置が知られている。
 しかしながら、このような装置では、複数の記録要素列間で不吐出ノズルの位置が重なった場合には、補完が不可能となる。
 これに対し、特許文献1では、補完が不可能な場合に、複数の記録要素列を数ノズル分ずれるように配置したと仮定して不吐出ノズルの位置が重なるか否かを判定し、重ならないと判断した場合には、複数の記録要素列間の相対位置をずらし、かつ記録するデータの位置もずらして記録する技術が記載されている。
 これによれば、不吐出ノズルの位置が重なった場合であっても、重ならない位置にヘッドをずらすことができるので、不吐出ノズルの影響を受けない良好な画像を記録することができる。また、これにより、記録ヘッドの目標出力枚数に対する耐久性(寿命)をほぼ100%とし、さらに、ノズルの不吐出の数を許容することにより製造の歩留まりをほぼ100%にすることができる。
特開平10-6488号公報
 しかしながら、特許文献1に記載の技術では、数ノズル分ヘッドをずらしてもさらに不吐出ノズルの位置が重なる場合には、警告表示を行って動作停止をするに留まっており、その場合の対応が示されていない。また、数ノズル分ずらして重なりを判定する、というプロセスを繰り返すことも考えられるが、不吐出ノズル数が多い場合には、ずらしても別の箇所で重なってしまう確率が高くなる。
 本発明はこのような事情に鑑みてなされたもので、複数の記録要素列を有する記録ヘッドにおいて、不良記録要素の位置が重なった場合に、記録要素列の相対ずらし量を確定的に決定し、確実に不良記録要素の位置が一致しない状態を作り出すことができる画像記録装置及び画像記録方法を提供することを目的とする。
 上記目的を達成するために画像記録装置の一の態様は、同一色の記録を行う複数の記録要素列を有する記録ヘッドと、記録ヘッド及び記録媒体のうち少なくとも一方を搬送して記録ヘッドと記録媒体とを搬送方向に相対移動させる搬送部と、記録ヘッドにおいて記録する画像データを取得するデータ取得部と、画像データを複数の記録要素列で相互に補完して記録するために、画像データを各ラスタラインに対応するそれぞれの記録要素に分配する分配部であって、不良記録要素に対応するデータを他の記録要素列の記録要素に分配する分配部と、前記分配された画像データを前記記録ヘッドによって記録する記録部と、複数の記録要素列の不良記録要素の位置の情報を取得する不良記録要素情報取得部と、取得した不良記録要素の位置の情報に基づいて、複数の記録要素列の搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定するずらし量決定部と、複数の記録要素列の相対位置を移動する移動部と、移動部により、決定したずらし量だけ複数の記録要素列を相対的にずらす制御部と、決定したずらし量だけ分配部が分配する画像データをずらすデータ移動部とを備えた。
 本態様によれば、画像データを各ラスタラインに対応するそれぞれの記録要素に分配するとともに不良記録要素に対応するデータを他の記録要素列の記録要素に分配し、取得した不良記録要素の位置の情報に基づいて、複数の記録要素列の搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定し、複数の記録要素列の相対位置を移動する移動部で、決定したずらし量だけ複数の記録要素列を相対的にずらし、さらに決定したずらし量だけ分配する画像データをずらし、分配された画像データを記録ヘッドによって記録するようにしたので、不良記録要素の位置が重なった場合に、ずらし量を確定的に決定し、確実に不良記録要素の位置が一致しない状態を作り出すことができる。
 記録要素列の記録要素は、記録媒体の記録可能幅全幅に対応する長さにわたって配列され、搬送部は、記録ヘッド及び記録媒体のうち少なくとも一方を搬送して記録ヘッドと記録媒体とを1回だけ相対移動させることが好ましい。
 本態様は、記録ヘッドと記録媒体とを1回だけ相対移動させる画像記録装置に適用することができる。
 取得した複数の記録要素列の不良記録要素の位置の情報から各不良記録要素の位置を1つの座標系の位置に変換する変換部と、複数の記録要素列のうち一の記録要素列の不良記録要素の位置と他の記録要素列の不良記録要素の位置との差分をそれぞれ算出する算出部と、算出した差分からずらし量の候補を抽出する抽出部とを備え、ずらし量決定部は、抽出されたずらし量の候補の中から0に最も近い値をずらし量として決定することが好ましい。これにより、適切なずらし量を決定することができる。
 算出部は、移動部の移動可能な範囲において位置の差分を算出することが好ましい。これにより、演算時間を短縮することができる。
 ずらし量決定部は、抽出されたずらし量の候補の中から定期的に異なる値をずらし量として決定してもよい。
 定期的にずらし量を変更することで、不良記録要素を補完する記録要素の負荷を分散させることができ、記録ヘッドの耐久性を向上させることができる。
 複数の記録要素列のうち少なくとも1つの記録要素列は、搬送方向に直交する方向に複数配置された副記録要素列から構成され、ずらし量決定部は、副記録要素列毎にずらし量を決定し、移動部は、副記録要素列毎に設けられ、制御部は、決定したずらし量に基づいて副記録要素列をずらすことが好ましい。
 これにより、ずらし量が減らせるので、ノズル数を減らすことができるため、製造コストが低減される。また、ノズル数を減らさない場合には、有効ノズル数が増えることになり、記録幅を拡大することができる。
 記録要素はインクを吐出するノズルであり、不良記録要素情報取得部は、インクを吐出できない不吐出ノズル、又は曲がりノズル、滴量の異なるノズル、スプラッシュノズルを含む欠陥ノズルを不吐出化したノズルの位置の情報を取得してもよい。なお、ここでは吐出方向が所定方向から所定量以上ずれるノズルを曲がりノズルと呼んでいる。
 複数の記録要素列の不良記録要素の位置の情報を記憶する記憶部を備えてもよい。これにより、適切に不良記録要素の位置の情報を取得することができる。
 さらに、複数の記録要素列のうち移動部により移動する記録要素列は、搬送方向に直交する方向に余剰な記録要素を有することが好ましい。余剰な記録要素が多いほど移動部の移動範囲を広げることができる。
 上記目的を達成するために画像記録方法の一の態様は、同一色の記録を行う複数の記録要素列を有する記録ヘッド及び記録媒体のうち少なくとも一方を搬送して記録ヘッドと記録媒体とを搬送方向に相対移動させる搬送工程と、記録ヘッドにおいて記録する画像データを取得するデータ取得工程と、画像データを複数の記録要素列で相互に補完して記録するために、画像データを各ラスタラインに対応するそれぞれの記録要素に分配する分配工程であって、不良記録要素に対応するデータを他の記録要素列の記録要素に分配する分配工程と、複数の記録要素列の不良記録要素の位置の情報を取得する不良記録要素情報取得工程と、取得した不良記録要素の位置の情報に基づいて、複数の記録要素列の搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定するずらし量決定工程と、複数の記録要素列の相対位置を移動する移動部により、決定したずらし量だけ複数の記録要素列を相対的にずらす制御工程と、決定したずらし量だけ分配工程が分配する画像データをずらすデータ移動工程と、分配された画像データを記録ヘッドに記録させる記録工程とを備えた。
 本発明によれば、同一色の記録を行う複数の記録要素列を有する記録ヘッドにおいて、不良記録要素の位置が重なった場合に、記録要素列の相対ずらし量を確定的に決定し、確実に不良記録要素の位置が一致しない状態を作り出すことができる。したがって、不良記録要素がある場合であっても、不良記録要素に対応するデータを他の記録要素列の記録要素で記録することができる。
図1Aは、インクジェット記録装置の側面図を示す模式図であり、 図1Bは、インクジェット記録装置の平面図を示す模式図であり、 図2は、ラインヘッドの用紙に対向する面を示す図であり、 図3は、ヘッドによる用紙への画像記録を説明するための上面図であり、 図4は、ヘッドを図面右方向に移動させた場合について示した模式図であり、 図5は、両ヘッドの不吐出ノズルが同一ラスタライン上の対応ノズルとなる確率を示す図であり、 図6は、本実施形態における画像記録方法を示すフローチャートであり、 図7は、ずらし処理を示すフローチャートであり、 図8は、デュアルヘッドとその不吐出ノズルの位置の一例を示す模式図であり、 図9Aは、デュアルヘッドの一方のヘッド(Bヘッド)を左方向へ2ラスタ分ずらした様子を示す図であり、 図9Bは、デュアルヘッドの一方のヘッド(Bヘッド)を右方向へ3ラスタ分ずらした様子を示す図であり、 図10は、デュアルヘッドの不吐出ノズル位置の全ての組合せについての差の頻度を示す表であり、 図11は、デュアルヘッドとその不吐出ノズルの位置を示す図であり、 図12は、サブヘッドの1つを左方向へずらした様子を示す図であり、 図13は、サブヘッドに分割した場合の両ヘッドの不吐出ノズルの位置が一致する確率を示したグラフであり、 図14は、インクジェット記録装置の他の構成図であり、 図15Aは、ヘッドの構造例を示す平面透視図であり、 図15Bは、図15Aの一部の拡大図であり、 図16Aは、ヘッドの他の構造例を示す平面透視図であり、 図16Bは、ヘッドのさらに他の構造例を示す平面透視図であり、 図17は、1チャンネル分の液滴吐出素子の立体的構成を示す断面図であり、 図18は、インクジェット記録装置のシステム構成を示す要部ブロック図であり、 図19は、プリント制御部の内部構成を示すブロック図である。
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
 <インクジェット記録装置の概要>
 図1A,1Bは、本実施形態に係るインクジェット記録装置を示す模式図であり、図1Aは側面図、図1Bは平面図である。インクジェット記録装置10は、回転する渡し胴や圧胴等の搬送部(図1A,1B中不図示;図14参照)により用紙搬送方向(y方向)に搬送される用紙Pの記録面にラインヘッド20からインクを吐出して用紙Pの記録面に画像を形成するプリンタである。
 図2は、ラインヘッド20の用紙Pに対向する面を示す図である。同図に示すように、ラインヘッド20は、y方向に沿って順に配置されたヘッド30及びヘッド40から構成されるデュアルヘッドである。
 ヘッド30には、インクを吐出する多数のノズル30aが、用紙搬送方向に直交する方向(x方向)に間隔Lで配置されている。ヘッド30の各ノズル30aは、用紙Pの記録可能幅全幅に対応する長さにわたって配列されており、ヘッド30単独で用紙Pの全面に画像を形成することができる。
 同様に、ヘッド40には、各ノズル30aと同じ色のインクを吐出する多数のノズル40aが、用紙Pの記録可能幅全幅に対応する長さにわたってx方向に間隔Lで配置されており、ヘッド40単独で用紙Pの全面に画像を形成することができる。
 さらに、ヘッド40は、移動部(不図示)により、x方向にノズル間隔(ラスタ間隔)L単位で移動可能に構成されている。即ち、各ラスタラインに対応するノズル40aをずらすことが可能である。
 図3は、ヘッド30及びヘッド40による用紙Pへの画像記録を説明するための上面図であり、各ノズルを透視した図である。ここでは、正常なノズルを白丸印「○」で示し、不吐出ノズルを黒丸印「●」で示している。また、ヘッド30のノズルによって記録されるドットを四角印「■」で示し、ヘッド40のノズルによって記録されたドットを三角印「▲」で示している。
 図3の例では、ヘッド30のノズル31とヘッド40のノズル41は、y方向に平行な同一直線上に重なって配置されている。このように、同一直線上に重なる2つのノズルを、ここでは「同一ラスタライン上の対応ノズル」(相互に補完して記録するための記録要素)と呼ぶ。図3に示すように、ノズル31とノズル41とによりドットを交互に打滴することにより、ラスタ51にドット列が記録される。
 このように、インクジェット記録装置10は、同一ラスタライン上の対応ノズルに欠陥がない場合には、記録部(不図示)によりラスタラインのデータがヘッド30及びヘッド40に分配され、ヘッド30によって画像データの1/2のドットを記録し、ヘッド40によって残りの1/2を記録する。
 同様に、ノズル32とノズル42とが、同一ラスタライン上の対応ノズルに該当する。しかし、ノズル32は不吐出ノズルであり、インクを吐出することができない。そのため、ここでは全てのドットをノズル42において打滴することで、ラスタ52にドット列を記録している。
 また、ノズル33とノズル43とが、同一ラスタライン上の対応ノズルに該当する。ここでは、ノズル43が不吐出ノズルであるため、全てのドットをノズル33において打滴することで、ラスタ53にドット列を記録している。
 このように、インクジェット記録装置10は、同一ラスタライン上の対応ノズルのうち一方のノズルに欠陥がある場合には、他方のノズルを用いて補完して記録する。即ち、不吐出ノズルが存在する場合は、記録部(不図示)により、ラスタラインのデータがヘッド30及びヘッド40のうち不吐出ノズルでないノズルを有するヘッドに分配され、記録される。これにより、欠陥の無い画像を記録することができる。
 しかしながら、ノズル34とノズル44とは、同一ラスタライン上の対応ノズルに該当し、かつ両ノズルとも不吐出ノズルである。このため、いずれのノズルによってもドットを打滴することができず、ラスタ54に白スジが発生してしまう。
 このように、ヘッド30又はヘッド40において、同一ラスタライン上の対応ノズルの両方に欠陥がある場合には、補完して記録することができず、形成した画像に欠陥が発生する。したがって、ヘッド40を移動部(不図示)により移動させることで、同一ラスタライン上の対応ノズルの組み合わせを変更し、画像の欠陥を回避する。
 図4は、図3に示した例において、ヘッド40を距離L、即ち1ラスタ分だけ図面右方向に移動させた場合について示した模式図である。
 図4の例では、ヘッド40を右方向に移動させたため、ノズル31と同一ラスタライン上の対応ノズルは、ノズル41の左隣に位置するノズル45となる。したがって、ラスタ51には、ノズル31とノズル45とによってドットを交互に打滴することによりドット列を形成することができる。即ち、ヘッド40の移動前にはノズル41に対応していたデータを、ノズル45によって打滴する。このように、ヘッド40の移動量に応じて、ヘッド40において打滴すべきデータについてもずらす必要がある。
 また、不吐出ノズルであるノズル32に対する同一ラスタライン上の対応ノズルは、ノズル42の左隣に位置するノズル46となる。したがって、ラスタ52には、全てのドットをノズル46において補完して打滴することでドット列が形成される。即ち、ヘッド40の移動前にノズル42に対応していた打滴するデータを、ノズル46によって打滴する。
 同様に、不吐出ノズルであるノズル43に対する同一ラスタライン上の対応ノズルは、ノズル33の右隣に位置するノズル35となる。したがって、ラスタ53には、全てのドットをノズル35において補完して打滴することでドット列が形成される。
 さらに、不吐出ノズルであるノズル34に対する同一ラスタライン上の対応ノズルは、ノズル44の左隣に位置するノズル47となる。したがって、ラスタ55には、全てのドットをノズル47において補完して打滴することでドット列が形成される。即ち、ヘッド40の移動前にノズル44に対応していた打滴するデータを、ノズル47によって打滴する。
 さらに、不吐出ノズルであるノズル44に対する同一ラスタライン上の対応ノズルは、ノズル34の右隣に位置するノズル36となる。したがって、ラスタ56には、全てのドットをノズル36において補完して打滴することでドット列が形成される。
 このように、インクジェット記録装置10は、同一ラスタライン上の対応ノズルの両方に欠陥がある場合には、同一ラスタライン上の対応ノズルの組み合わせを変更し、全ての対応ノズルの組み合わせにおいて、少なくとも一方が正常ノズルである組み合わせに変更することで、画像の欠陥を回避することができる。
 図4の例では、ヘッド40を図面右方向に1ノズル分ずらした場合に、全ての対応ノズルの組み合わせにおいて、少なくとも一方が正常ノズルである組み合わせとなった。
 ここで、2つのヘッドのノズル数がそれぞれ25000個の場合において、各ヘッドに同数の不吐出ノズルがあったときに、両ヘッドの不吐出ノズルの位置が一致する確率、即ち両ヘッドの不吐出ノズルが同一ラスタライン上の対応ノズルとなる確率を、図5に示す。
 例えば、不吐出ノズル数がそれぞれ240個(総ノズル数の約1%)存在する場合には、図5に示すように、不吐出ノズルが一致する確率は約90%となる。このように、不吐出ノズルの数(絶対数)が多い場合には、1ノズル分、又は数ノズル分ずつずらしながら少なくとも一方が正常ノズルである組み合わせを探し出そうとすると、その組み合わせに辿り着くまでに多くの時間を要することになる。
 したがって、本実施形態では、ずらし量を試行錯誤で求めるのではなく、確定的に決定し、決定したずらし量でずらすことで確実に不良ノズルが一致しない状態を作り出す。
 <ずらし処理の方法(第1の実施形態)>
 図6は、本実施形態における画像記録方法を示すフローチャートであり、図7は、本実施形態におけるずらし処理(図6のS102)を示すフローチャートである。また、図8は、搬送部(不図示)による用紙Pの搬送方向(y方向)に沿って順に配置されたAヘッド及びBヘッドから構成される同一色を記録するデュアルヘッド(記録ヘッドに相当)と、その不吐出ノズルの位置の一例を示す模式図である。
 各ラスタラインに対応してAヘッドとBヘッドとで相互に補完して記録するため、AヘッドのノズルとBヘッドのノズルは、y方向に平行な同一直線上に重なるように配置されている。また、Bヘッドがx方向にラスタ単位で移動可能に構成されている。
 図8に示す例では、Aヘッド及びBヘッドは、それぞれ40個ずつのノズル(記録要素に相当)がx方向に等間隔に配置(記録要素列に相当)されている。また、不吐出ノズル数は、AヘッドがNng_a=4個、BヘッドがNng_b=5個である。
 なお、図6に示すフローチャートは、不吐出ノズルの位置が同一ラスタライン上に重なった場合に実施してもよいし、後述する負荷分散のために不吐出ノズルが重なっていない場合に実施してもよい。
〔ステップS100(データ取得工程)〕
 Aヘッド及びBヘッドにおいて記録する画像データを取得する。
〔ステップS101(分配工程)〕
 取得した画像データをAヘッド及びBヘッドで相互に補完して記録するために、取得した画像データを各ラスタラインに対応するそれぞれのノズルに分配する。
〔ステップS102(ずらし処理工程)〕
 不良ノズルに対応するデータを他のヘッドのノズルに分配するために、Aヘッド及びBヘッドのずらし処理を行う。この詳細な処理は、図7を用いて後述する。
〔ステップS103(搬送工程)〕
 AヘッドとBヘッドとからなるデュアルヘッド及び記録媒体のうち少なくとも一方を搬送してデュアルヘッドと記録媒体とを搬送方向に相対移動させる。
〔ステップS104(記録工程)〕
 ずらし処理が行われた画像データをAヘッド及びBヘッドによって記録媒体に記録させる。
 次に、ステップS102のずらし処理工程の詳細について、図7を用いて説明する。
 〔ステップS1(不良記録要素情報取得工程)〕
 まず、A、B両ヘッドの不吐出ノズル位置の情報No._A(ng)、No._B(ng)を取得する。不吐出ノズル位置の情報は、ヘッド毎に不吐出ノズル検出用テストチャートを印字し、スキャナ等により印字したテストチャート画像を読み取ることで取得する。ここでは、テストチャート画像の読み取りデータに基づいて取得された不吐出ノズル位置の情報が予めメモリに記憶されており、この情報をメモリから読み出して取得する。
 図8に示した例であれば、不吐出ノズルの位置は、Aヘッドについては、No._A(ng)={4,19,27,31}であり、Bヘッドについては、No._B(ng)={5,17,27,30,34}である。
 〔ステップS2(座標変換工程、ずらし量決定工程)〕
 次に、A、B両ヘッドの不吐出ノズル位置の情報No._A(ng)、No._B(ng)を、統一した1つの座標系での位置の情報No.(A,ng)、No.(B,ng)に変換する。
 前述のように、ここではBヘッドがx方向にラスタ単位で移動可能に構成されており、用紙Pの各ラスタラインに対応するBヘッドのノズルは、現在の移動量(設定位置)によって異なってくる。したがって、Bヘッドの不吐出ノズル位置を、現在の移動量に基づいて、Aヘッドの座標系に変換する。
 図8に示した例では、Aヘッドについては、不吐出ノズルの1つの座標系での位置は、No.(A,ng)={4,19,27,31}である。また、Bヘッドの移動量は0であり、Bヘッドの不吐出ノズルの1つの座標系での位置は、No.B(ng)={5,17,27,30,34}である。Bヘッドが図面右方向に1ラスタ分移動している場合であれば、Bヘッドの不吐出ノズルの1つの座標系での位置は、Bヘッド内における不吐出ノズル位置から1ノズル分だけ加算した位置、即ちNo.B(ng)={6,18,28,31,35}となる。
 〔ステップS3(差分算出工程、ずらし量決定工程)〕
 ステップS2で得られた1つの座標系における不吐出ノズル位置の情報No.(A,ng)、No.(B,ng)に基づいて、Aヘッドの不吐出ノズル位置とBヘッドの不吐出ノズル位置の全ての組み合わせについての差ΔNo.(B-A)=No.(B,ng)-No.(A,ng)を求める。
 例えば、Bヘッドの1つの不吐出ノズルの位置No.(B,ng)=5に対して、Aヘッドの各不吐出ノズルの位置No.(A,ng)={4,19,27,31}との差は、ΔNo.(B-A)={1,-14,-22,-26}である。また、Bヘッドの他の不吐出ノズルの位置No.(B,ng)=17に対して、Aヘッドの各不吐出ノズルの位置No.(A,ng)={4,19,27,31}との差は、ΔNo.(B-A)={13,-2,-10,-14}である。同様に、Bヘッドのその他の不吐出ノズルの位置No.(B,ng)=27、No.(B,ng)=30、No.(B,ng)=34について、Aヘッドの各不吐出ノズルの位置との差を算出する。
 その結果、全ての組み合わせの差は、
ΔNo.(B-A)={30,26,23,15,13,11,8,7,3,3,1,0,-1,-2,-4,-10,-14,-14,-22,-26}となる。
 〔ステップS4(ずらし量決定工程)〕
 ステップS3で算出した複数の差ΔNo.(B-A)の値に対して、これらの値に含まれない整数値がずらし量の候補となる。即ち、ステップS3で算出した値のずらし量でBヘッドをずらすと、同一ラスタライン上の対応ノズルの両方のノズルが不吐出ノズルとなるラスタが発生する。逆に、ステップS3で算出した値以外のずらし量でBヘッドをずらせば、全ての領域で、同一ラスタライン上の対応ノズルの少なくとも一方は正常なノズルとなる。
 ここでは、ずらし量の候補として、{・・・,6,5,4,2,-3,-5,・・・}を抽出することができる。このずらし量の候補から、0に最も近い値を選択し、ずらし量とする。ここでは、ずらし量=2となる。
 〔ステップS5(移動工程、制御工程)〕
 次に、A、Bヘッド間に相対的にステップS4で決定したずらし量を与える。ここでは、ずらし量=2であるから、BヘッドをAヘッドに対して2ラスタ分だけずらせばよい。
即ち、Bヘッドを図8の左方向へ2ラスタ分だけずらす。
 図9Aは、Bヘッドを左方向へ2ラスタ分だけずらした様子を示す図である。同図に示すように、Aヘッド及びBヘッドの各ラスタラインに対応するノズルにおいて、不吐出ノズルが重なっている位置は無い。即ち、全てのラスタラインについてAヘッド又はBヘッドのノズルで記録することができる。
 〔ステップS6(データ移動工程)〕
 最後に、予め取得した(データ取得工程S100に相当)画像データに対し、Bヘッドにおいて記録する画像データに、算出したずらし量を与える。即ち、画像データを2ラスタ分図面右方向へずらし、Bヘッドに入力する。
 以上のように、2つのヘッドの不吐出ノズルの位置情報に基づいてずらし量を確定的に決定し、決定したずらし量をヘッドに与えることで、確実に不吐出ノズルの位置が一致しない状態を作り出すことができる。
 図10は、Aヘッド及びBヘッドのノズル数がそれぞれ25000個の場合において、A、B両ヘッドにそれぞれ240個の不吐出ノズルがランダムに存在すると仮定したときのシミュレーション結果を示す表であり、Aヘッドの不吐出ノズル位置とBヘッドの不吐出ノズル位置の全ての組み合わせについての差ΔNo.(B-A)について、ΔNo.(B-A)=-20~20となる頻度を示している。
 図10に示す例では、ΔNo.(B-A)が16、-13、-16となる組み合わせが存在しない。即ち、ずらし量の候補となる。このように、不吐出ノズルの数が多い場合には、ずらし量の候補を試行錯誤で発見することは困難である。これに対し、本実施形態の処理によれば、簡単な演算だけでずらし量を決定し、迅速にヘッドをずらすことができる。
 なお、本実施形態においては、算出したずらし量に対してBヘッドをx方向にずらしたが、ずらすのはBヘッドに限定されるものではなく、AヘッドとBヘッドとに相対的にずらし量が与えられればよい。
 例えば、本実施形態では、算出したずらし量=2に対してBヘッドを左方向へ2ラスタ分ずらしたが、Aヘッドを右方向へ2ラスタ分ずらしても同様の効果を得ることができる。また、Aヘッドを右方向へ1ラスタ分ずらし、かつBヘッドを左方向へ1ラスタ分ずらしても同様である。この場合、ずらしたヘッドについては、そのずらし量に対応させて画像データをずらして入力する必要がある。
 また、本実施形態では、Aヘッドの不吐出ノズル位置情報とBヘッドの不吐出ノズル位置情報の全ての組み合わせについての差ΔNo.(B-A)を算出したが、Bヘッドの移動可能範囲内において差分を算出してもよい。
 例えば、Bヘッドのx方向のずらし可能量が±5ラスタラインである場合には、Aヘッドの不吐出ノズルに対して、±5ラスタライン内の位置に存在するBヘッドの不吐出ノズルに対して、位置の差を算出する。この算出した複数の差ΔNo.(B-A)の値に対して、これらの値に含まれない0に近い整数値であって、Bヘッドの移動可能範囲内の値を求め、これをずらし量とすればよい。
 このように、必要な演算だけを行うことで、ずらし量の算出時間を短縮することができる。
 また、図3を用いて説明したように、同一ラスタライン上の対応ノズルが不吐出ノズルである場合は、そのノズルを補完してインクを打滴する必要があるため、補完ノズルは他のノズルよりも吐出回数が増え、負荷が大きい。
 これに対し、本実施形態によれば、必要なずらし量の候補を複数挙げることができる。したがって、定期的にこれらの候補のずらし量に変更することにより、負荷の大きい補完ノズルを分散することができるため、ヘッドの耐久性を向上させることができる。
 ここで、「定期的」とは、電源投入毎やジョブ毎、その他所定枚数の印刷毎等であってもよいし、ユーザが手動で切り替えるタイミング毎でもよい。
 上記の例では、ずらし量の候補として、{・・・,6,5,4,2,-3,-5,・・・}を抽出した。この候補の中から、例えばずらし量=2とずらし量=-3を選択する。このずらし量=2とずらし量=-3を定期的に切り替えることで、補完ノズルを切り替えることができる。
 図9Bは、Bヘッドを右方向へ3ラスタ分だけずらした様子を示す図である。図9A、9Bに示すように、ずらし量によってそれぞれ補完ノズルが異なることになり、各ノズルの負荷を分散させることができる。これにより、ヘッドの負荷を低減させ、耐久性を向上させることができる。
 また、本実施形態では、不吐出ノズルの位置が重なる場合を説明したが、記録を行わないノズルは不吐出ノズルに限定されない。例えば、曲がり(ヨレ)の大きなノズル(吐出方向が所定方向から所定量以上ずれるノズル)、吐出量の少ないノズル、スプラッシュの大きいノズル等の不良ノズルについて、それらのノズルをマスク処理して不吐出化する場合がある。この場合の不吐出化ノズルについても、本実施形態の処理を適用することができる。
 また、本実施形態では、x方向に一列にノズルを配置したヘッドを用いているが、ノズルが2次元マトリクス状に配列されたヘッドにおいても適用することができる。さらに、本実施形態では、2つのヘッドを用紙搬送方向に沿って順に配置したデュアルヘッドについて説明したが、3つ以上のヘッドを用紙搬送方向に沿って順に配置した場合にも適用可能である。3つ以上のヘッドを用いた場合には、各ラスタラインに対応する各ヘッドのノズルにおいて、少なくとも1つは正常なノズルが配置されるように、各ヘッドのずらし量を算出すればよい。
 <第2の実施形態>
 図11は、本実施形態におけるAヘッド、Bヘッドと、その不吐出ノズルの位置を示す図である。本実施形態のAヘッドは、第1の実施形態と同様であり、40個のノズルがx方向に等間隔に配置されている。
 また、本実施形態のBヘッドは、12個のノズルがx方向に等間隔に配置されたサブヘッド(C1ヘッド~C5ヘッド、副記録要素列に相当)が、x方向に千鳥状に配置されている。これらC1~C5ヘッドは、それぞれ移動部(不図示)により、x方向にラスタ単位で移動可能に構成されている。さらに、AヘッドのノズルとBヘッドのノズルは、各ラスタラインを相互に補完して記録するように、y方向に平行な同一直線上に重なるように配置されている。
 なお、ここでは、C1ヘッドのノズルにおいて、Aヘッドの左から1~8番目のノズルと同一のラスタを記録し、C2ヘッドのノズルにおいて、Aヘッドの左から9~16番目のノズルと同一のラスタを記録し、C3ヘッドのノズルにおいて、Aヘッドの左から17~24番目のノズルと同一のラスタを記録し、C4ヘッドのノズルにおいて、Aヘッドの左から25~32番目のノズルと同一のラスタを記録し、C5ヘッドのノズルにおいて、Aヘッドの左から33~40番目のノズルと同一のラスタを記録するものとする。
 以下、本実施形態におけるずらし処理方法を、図7のフローチャートに沿って説明する。
 〔ステップS1〕
 まず、A、B両ヘッドの不吐出ノズル位置の情報を取得する。なお、第1の実施形態と同様に、ヘッド毎の不吐出ノズル位置の情報は、予めメモリに記憶されているものとする。
 図11に示した例では、不吐出ノズル位置は、Aヘッドについては、No.A(ng)={4,19,27,31}である。また、Bヘッドについては、サブヘッド毎にNo.C1(ng)=7、No.C3(ng)=3、No.C4(ng)={5,8}、No.C5(ng)=4と表すことができる。
 〔ステップS2〕
 次に、A、B両ヘッドの不吐出ノズル位置の情報No.A(ng)、No.CN(ng)を、統一した1つの座標系での位置の情報No.(A,ng)、No.(B,ng)に変換する。ここでは、第1の実施形態と同様に、移動可能なBヘッドの不吐出ノズル位置を、Aヘッドの座標系に変換する。
 図11に示した例では、Aヘッドについては、不吐出ノズルの1つの座標系での位置は、No.(A,ng)={4,19,27,31}である。また、Bヘッドについては、C1~C5のヘッドの位置から、No.B(ng)={5,17,27,30,34}と表すことができる。
 〔ステップS3〕
 ステップS2で得られた1つの座標系における不吐出ノズル位置の情報No.(A,ng)、No.(B,ng)から、不吐出ノズルの位置が重なっている、即ち同一ラスタライン上の対応ノズルにおいて両方が不吐出ノズルであるのは、Aヘッドの左から27番目の位置であることがわかる。Bヘッドにおいて、この位置のラスタを記録するのはC4ヘッドであるから、本例ではC4ヘッドだけをずらせばよい。
 したがって、ここではAヘッドの不吐出ノズル位置情報のうちC4ヘッドが記録する範囲における不吐出ノズル位置情報と、Bヘッドの不吐出ノズル位置情報のうちC4ヘッドの不吐出ノズル位置情報の全ての組み合わせについての差ΔNo.(B-A)=No.(B,ng)-No.(A,ng)を求める。即ち、Aヘッドの不吐出ノズル位置情報No.(A,ng)={27,31}と、Bヘッドの不吐出ノズル位置情報No.B(ng)={27,30}との差を算出すればよい。
 その結果、全ての組み合わせの差は、ΔNo.(B-A)={3,0,-1,-4}となる。
 〔ステップS4〕
 ステップS3で算出した複数の差ΔNo.(B-A)の値に対して、これらの値に含まれない整数値がずらし量の候補となる。このずらし量の候補の中から、ここでは0に最も近い値を選択し、ずらし量とする。本例では、ずらし量=1となる。
 〔ステップS5〕
 次に、A、Bヘッド間に相対的にステップS4で決定したずらし量を与える。ここでは、ずらし量=1であるから、BヘッドのうちC4ヘッドをAヘッドに対して1ラスタ分だけずらせばよい。即ち、C4ヘッドを図11の左方向へ1ラスタ分だけずらす。
 図12は、BヘッドのうちC4ヘッドを左方向へ1ラスタ分だけずらした様子を示す図である。同図に示すように、各ラスタラインにおいて、Aヘッド及びBヘッドの不吐出ノズルが重なっている位置は無い。
 〔ステップS6〕
 最後に、BヘッドのうちC4ヘッドにおいて記録する画像データに、算出したずらし量を与える。即ち、画像データを1ラスタ分図面右方向へずらす。
 図13は、Aヘッド及びBヘッドのノズル数がそれぞれ25000個の場合において、A、B両ヘッドに同数の不吐出ノズルがあったときに、両ヘッドの不吐出ノズルの位置が一致する確率を示したグラフであり、それぞれ1、2、4、12個のサブヘッドに分割した場合の確率を示している。
 図13に示すように、全体の不吐出ノズル数が同数であっても、分割数が多いほど不吐出ノズルの位置が一致する確率が低くなることがわかる。したがって、少ないずらし量で各ラスタラインに少なくとも1つは正常ノズルを対応させることができる。
 以上のように、ヘッドをサブヘッド単位に分割し、サブヘッド毎に移動可能に構成することで、不吐出ノズルの位置が一致した場合のずらし量を小さくできる。これにより、ノズル数を減らすことができ、製造コストが低減される。また、ノズル数を減らさない場合には、有効ノズル数が増えることになり、記録幅を拡大することができる。
 なお、本実施形態においては、Bヘッドをサブヘッド単位に分割し、サブヘッドをそれぞれx方向に移動可能に構成したが、A、B両ヘッドをサブヘッド単位に分割する態様も可能である。
 <インクジェット記録装置のその他の構成例>
 図14は、本実施形態を適用可能なインクジェット記録装置の他の構成図である。このインクジェット記録装置100は、インク打滴部108の圧胴126cに保持された記録媒体114に直接的に複数色のインクを打滴して所望のカラー画像を形成する圧胴直描方式のインクジェット記録装置であり、インク及び処理液(ここでは凝集処理液)を用いて、記録媒体114上に画像形成を行う2液反応(凝集)方式が適用されたオンデマンドタイプの画像形成装置である。
 インクジェット記録装置100は、主として、記録媒体114を供給する給紙部102と、記録媒体114に対して浸透抑制剤を付与する浸透抑制剤付与部104と、記録媒体114に処理液を付与する処理液付与部106と、記録媒体114にインクを打滴するインク打滴部108と、記録媒体114上に形成された画像を定着させる定着部110と、画像が形成された記録媒体114を搬送して排出する排紙部112を備えて構成される。
 給紙部102には、枚葉紙の記録媒体114を積載する給紙台120が設けられている。給紙台120に積載された記録媒体114は上から順に1枚ずつフィーダボード122に送り出され、渡し胴124aを介して、浸透抑制剤付与部104の圧胴(浸透抑制剤ドラム)126aに受け渡される。
 圧胴126aの表面(周面)には、記録媒体114の先端を保持する保持爪115a,115b(グリッパ)が形成されている。渡し胴124aから圧胴126aに受け渡された記録媒体114は、保持爪115a,115bによって先端を保持されながら圧胴126aの表面に密着した状態(即ち、圧胴126a上に巻きつけられた状態)で圧胴126aの回転方向(図14において反時計回り方向)に搬送される。後述する他の圧胴126b~126dについても同様な構成が適用される。また、渡し胴124aの表面(周面)には、記録媒体114の先端を圧胴126aの保持爪115a,115bに受け渡す部材116が形成されている。後述する他の渡し胴124b~124dについても同様な構成が適用される。
 〔浸透抑制剤付与部〕
 浸透抑制剤付与部104には、圧胴126aの回転方向(図14において反時計回り方向)の上流側から順に、圧胴126aの表面に対向する位置に、用紙予熱ユニット128、浸透抑制剤吐出ヘッド130、及び浸透抑制剤乾燥ユニット132がそれぞれ設けられている。
 用紙予熱ユニット128及び浸透抑制剤乾燥ユニット132には、それぞれ温度や風量を制御可能な熱風乾燥器が設けられる。圧胴126aに保持された記録媒体114が、用紙予熱ユニット128や浸透抑制剤乾燥ユニット132に対向する位置を通過する際、熱風乾燥器によって加熱された空気(熱風)が記録媒体114の表面に向かって吹き付けられる構成となっている。
 浸透抑制剤吐出ヘッド130は、圧胴126aに保持される記録媒体114に対して浸透抑制剤を含有した溶液(以下、単に「浸透抑制剤」ともいう。)を吐出する。本例では、記録媒体114の表面に対して浸透抑制剤を付与する手段として、打滴方式を適用したが、これに限定されず、例えば、ローラ塗布方式、スプレー方式、などの各種方式を適用することも可能である。
 浸透抑制剤は、後述する処理液及びインク液に含まれる溶媒(及び親溶媒的な有機溶剤)の記録媒体114への浸透を抑制する。浸透抑制剤としては、樹脂粒子を溶液中に分散(または溶解)させたものを用いる。浸透抑制剤の溶液としては、例えば、有機溶剤又は水を用いる。浸透抑制剤の有機溶剤としては、メチルエチルケトン、石油類、等が好適に用いられる。
 用紙予熱ユニット128は、記録媒体114の温度Tm1を、浸透抑制剤の樹脂粒子の最低造膜温度Tf1よりも高くする。温度Tm1の調整方法には、圧胴126aの内部に設置したヒータ等の発熱体を用いて記録媒体114を下面から加熱する方法、記録媒体114の上面に熱風を当てて加熱する方法などがあり、本例では赤外線ヒータ等を用いて記録媒体114の上面から加熱する方法を用いている。これらの方法を組み合わせてもよい。
 浸透抑制剤の付与方法には、打滴、スプレー塗布、ローラ塗布等が好適に用いられる。打滴の場合には、後述するインク液の打滴箇所及びその周辺のみに、選択的に浸透抑制剤を付与することができるので、好適である。また、カールが発生し難い記録媒体114の場合には、浸透抑制剤の付与を省略してもよい。
 浸透抑制剤付与部104に続いて処理液付与部106が設けられている。浸透抑制剤付与部104の圧胴(浸透抑制剤ドラム)126aと処理液付与部106の圧胴(処理液ドラム)126bとの間には、これらに対接するようにして渡し胴124bが設けられている。これにより、浸透抑制剤付与部104の圧胴126aに保持された記録媒体114は、浸透抑制剤が付与された後、渡し胴124bを介して処理液付与部106の圧胴126bに受け渡される。
 〔処理液付与部〕
 処理液付与部106には、圧胴126bの回転方向(図14において反時計回り方向)の上流側から順に、圧胴126bの表面に対向する位置に、用紙予熱ユニット134、処理液吐出ヘッド136、及び処理液乾燥ユニット138がそれぞれ設けられている。
 用紙予熱ユニット134は、浸透抑制剤付与部104の用紙予熱ユニット128と同一構成が適用されるため、ここでは説明を省略する。もちろん、異なる構成が適用されてもよい。
 処理液吐出ヘッド136は、圧胴126bに保持される記録媒体114に対して処理液を打滴するものであり、インク打滴部108の各インク打滴ヘッド140C、140M、140Y、140Kと同一構成が適用される。
 本例で用いられる処理液は、インク打滴部108に配置される各インク打滴ヘッド140M、140K、140C、140Yから記録媒体114に向かって吐出されるインクに含有される色材を凝集させる作用を有する酸性液である。
 処理液乾燥ユニット138には、温度や風量を制御可能な熱風乾燥器が設けられており、圧胴126bに保持された記録媒体114が処理液乾燥ユニット138の熱風乾燥器に対向する位置を通過する際、熱風乾燥器によって加熱された空気(熱風)が記録媒体114上の処理液に吹き付けられる構成となっている。
 熱風乾燥器の温度や風量は、圧胴126bの回転方向上流側に配置される処理液吐出ヘッド136により記録媒体114上に付与された処理液を乾燥させて、記録媒体114の表面上に固体状又は半固溶状の凝集処理剤層(処理液が乾燥した薄膜層)が形成されるような値に設定される。
 〔インク打滴部〕
 処理液付与部106に続いてインク打滴部108が設けられている。処理液付与部106の圧胴(処理液ドラム)126bとインク打滴部108の圧胴126cとの間には、これらに対接するようにして渡し胴124cが設けられている。これにより、処理液付与部106の圧胴126bに保持された記録媒体114は、処理液が付与されて固体状又は半固溶状の凝集処理剤層が形成された後に、渡し胴124cを介してインク打滴部108の圧胴(描画ドラム)126cに受け渡される。
 インク打滴部108には、圧胴126c(搬送部に相当)の回転方向(図14において反時計回り方向)の上流側から順に、圧胴126cの表面に対向する位置に、CMYKの4色のインクにそれぞれ対応したインク打滴ヘッド140C、140M、140Y、140K(記録ヘッドに相当)が並んで設けられており、さらに、その下流側に溶媒乾燥ユニット142a、142bが設けられている。
 各インク打滴ヘッド140C、140M、140Y、140Kは、液体を吐出する方式の記録ヘッド(液滴吐出ヘッド)が搬送方向に沿って順に複数配置されたデュアルヘッドが適用される。即ち、各インク打滴ヘッド140C、140M、140Y、140Kは、それぞれ搬送方向に沿って順に配置された複数のヘッドを有し、対応する色インクの液滴を圧胴126cに保持された記録媒体114に向かって吐出する。
 インク貯蔵/装填部(不図示)は、各インク打滴ヘッド140C、140M、140Y、140Kにそれぞれ供給するインクを各々貯蔵するインクタンクを含んで構成される。各インクタンクは所要の流路を介してそれぞれ対応するヘッドと連通されており、各インク打滴ヘッドに対してそれぞれ対応するインクを供給する。インク貯蔵/装填部は、タンク内の液体残量が少なくなるとその旨を報知する報知部(表示部、警告音発生部)を備えるとともに、色間の誤装填を防止するための機構を有している。
 インク貯蔵/装填部の各インクタンクから各インク打滴ヘッド140C、140M、140Y、140Kにインクが供給され、画像信号に応じて各インク打滴ヘッド140C、140M、140Y、140Kから記録媒体114に対してそれぞれ対応する色インクが打滴される。
 各インク打滴ヘッド140C、140M、140Y、140Kは、それぞれ圧胴126cに保持される記録媒体114における画像形成領域の最大幅に対応する長さを有し、そのインク吐出面には画像形成領域の全幅にわたってインク吐出用のノズル(図14中不図示)が複数配列されたフルライン型のヘッドを複数有したデュアルヘッドとなっている(図15A,15B参照)。各インク打滴ヘッド140C、140M、140Y、140Kが圧胴126cの回転方向(記録媒体114の搬送方向)と直交する方向に延在するように設置される。
 記録媒体114の画像形成領域の全幅をカバーするノズル列を有するフルラインヘッドがインク色毎に設けられる構成によれば、圧胴126cによって記録媒体114を一定の速度で搬送し、この搬送方向(副走査方向)について、記録媒体114と各インク打滴ヘッド140C、140M、140Y、140Kを相対的に移動させる動作を1回行うだけで(即ち1回の副走査で)、記録媒体114の画像形成領域に画像を記録することができる。かかるフルライン型(ページワイド)ヘッドによるシングルパス方式の画像形成は、記録媒体の搬送方向(副走査方向)と直交する方向(主走査方向)に往復動作するシリアル(シャトル)型ヘッドによるマルチパス方式を適用する場合に比べて高速印字が可能であり、プリント生産性を向上させることができる。
 本例のインクジェット記録装置100は、例えば最大菊半サイズの記録媒体(記録用紙)までの記録が可能であり、圧胴(描画ドラム)126cとして、例えば記録媒体幅720mmに対応した直径810mmのドラムが用いられる。また、各インク打滴ヘッド140C、140M、140Y、140Kのインク吐出体積は例えば2plであり、記録密度は主走査方向(記録媒体114の幅方向)及び副走査方向(記録媒体114の搬送方向)ともに例えば1200dpiである。
 また、本例では、CMYKの4色の構成を例示したが、インク色や色数の組み合わせについては本実施形態に限定されず、必要に応じて、R(赤)、G(緑)、B(青)インク、淡インク、濃インク、特別色インクを追加してもよい。例えば、ライトシアン、ライトマゼンタなどのライト系インクを吐出するヘッドを追加する構成も可能であり、各色ヘッドの配置順序も特に限定はない。
 また、図には示されていないが、予備吐出や吸引動作などのヘッドメンテナンスは、ヘッドを圧胴126c(描画ドラム)の直上の画像記録位置(描画位置)からメンテナンス位置(例えば、圧胴126c軸方向のドラム外の位置)へ退避させた状態で実行するように構成されている。
 溶媒乾燥ユニット142a、142bは、上述した用紙予熱ユニット128、134や浸透抑制剤乾燥ユニット132、処理液乾燥ユニット138と同様に、温度や風量を制御可能な熱風乾燥器を含んで構成される。記録媒体114の表面上に形成された固体状又は半固溶状の凝集処理剤層上にインク液滴が打滴されると、記録媒体114上にはインク凝集体(色材凝集体)が形成されるとともに、色材と分離されたインク溶媒が広がり、凝集処理剤が溶解した液体層が形成される。このようにして記録媒体114上に残った溶媒成分(液体成分)は、記録媒体114のカールだけでなく、画像劣化を招く要因となる。そこで、本例では、各インク打滴ヘッド140C、140M、140Y、140Kからそれぞれ対応する色インクが記録媒体114上に打滴された後、溶媒乾燥ユニット142a、142bの熱風乾燥器によって、溶媒成分を蒸発させ、乾燥を行っている。
 インク打滴部108に続いて定着部110が設けられている。インク打滴部108の圧胴(描画ドラム)126cと定着部110の圧胴(定着ドラム)126dとの間には、これらに対接するように渡し胴124dが設けられている。これにより、インク打滴部108の圧胴126cに保持された記録媒体114は、各色インクが付与された後に、渡し胴124dを介して定着部110の圧胴126dに受け渡される。
 〔定着部〕
 定着部110には、圧胴126dの回転方向(図14において反時計回り方向)の上流側から順に、圧胴126dの表面に対向する位置に、インク打滴部108による印字結果を読み取る印字検出部144、加熱ローラ148a、148bがそれぞれ設けられている。
 印字検出部144は、出力画像を読み取る読取部であり、インク打滴部108の印字結果(各インク打滴ヘッド140C、140M、140Y、140Kの打滴結果)を撮像するためのイメージセンサを含み、該イメージセンサによって読み取った打滴画像からノズルの目詰まりその他の吐出不良をチェックする手段として機能したり、色情報を取得する測色部として機能する。
 本例では、記録媒体114の画像記録領域又は非画像領域(いわゆる余白部)にラインパターンや濃度パターン、或いはこれらの組み合わせなどによるテストパターンを形成し、印字検出部144によってこのテストパターンを読み取り、その読取結果に基づいて、色情報の取得(測色)や濃度むらの検出、各ノズルについて吐出異常の有無の判定など、インライン検出が行われるように構成されている。
 加熱ローラ148a、148bは、例えば100℃~180℃で温度制御可能なローラであり、加熱ローラ148a、148bと圧胴126dとの間に挟みこまれた記録媒体114を加熱加圧しながら、記録媒体114上に形成された画像を定着させる。加熱ローラ148a、148bの加熱温度は、処理液又はインクに含有されているポリマー微粒子のガラス転移点温度などに応じて設定することが好ましい。
 なお、高沸点溶媒及び熱可塑性樹脂粒子を含んだインクに代えて、UV露光にて重合硬化可能なモノマー成分を含有していてもよい。この場合、インクジェット記録装置100は、ヒートローラによる熱圧定着部の代わりに、記録媒体114上のインクにUV光を露光するUV露光部を備える。このように、UV硬化性樹脂などの活性光線硬化性樹脂を含んだインクを用いる場合には、加熱定着の定着ローラに代えて、UVランプや紫外線LD(レーザダイオード)アレイなど、活性光線を照射する手段が設けられる。
 〔排紙部〕
 定着部110に続いて排紙部112が設けられている。排紙部112には、画像が定着された記録媒体114を受ける排紙胴150と、該記録媒体114を積載する排紙台152と、排紙胴150に設けられたスプロケットと排紙台152の上方に設けられたスプロケットとの間に掛け渡され、複数の排紙用グリッパを備えた排紙用チェーン154とが設けられている。排紙用チェーン154による用紙搬送機構の詳細は図示しないが、印刷後の記録媒体114は無端状の排紙用チェーン154間に渡されたバー(不図示)のグリッパによって用紙先端部が保持され、排紙用チェーン154の回転によって排紙台152の上方に運ばれてくる。
 <ヘッドの構造>
 次に、ヘッドの構造について説明する。各インク打滴ヘッド140C、140M、140Y、140Kの構造は共通しているので、以下、これらを代表して符号250によってヘッドを示すものとする。
 図15Aはヘッド250の構造例を示す平面透視図であり、図15Bはその一部の拡大図である。また、図16A,16Bはヘッド250の他の構造例を示す平面透視図、図17は記録要素単位となる1チャンネル分の液滴吐出素子(1つのノズル251に対応したインク室ユニット)の立体的構成を示す断面図(図15A,15B中のA-A線に沿う断面図)である。
 図15A,15Bに示したように、本例のヘッド250は、ヘッド250Aとヘッド250B(それぞれ記録要素列に相当)とがy方向(記録媒体114の搬送方向)に沿って順に配置されたデュアルヘッドである。ヘッド250A及びヘッド250Bは、それぞれ同一色のインクを吐出するインク吐出口であるノズル251と、各ノズル251に対応する圧力室252等からなる複数のインク室ユニット(液滴吐出素子)253をマトリクス状に2次元配置させた構造を有し、これにより、x方向に沿って並ぶように投影(正射影)される実質的なノズル間隔(投影ノズルピッチ)の高密度化を達成している。
 ヘッド250を構成する2つのヘッド250Aと250Bとは、x方向に相対移動可能に構成されている。ここでは、ヘッド250Aは固定され、ヘッド250Bがピエゾアクチュエータ(不図示、移動部に相当)によりx方向に移動可能となっている。なお、ヘッド250Bを移動させる移動部は特に限定されない。
 ヘッド250における記録媒体114のx方向の記録可能範囲は、ヘッド250Aのx方向の記録可能範囲(ノズル251が配置された範囲)とヘッド250Bのx方向の記録可能範囲との重複する範囲となる。したがって、x方向に移動可能に構成されているヘッド250Bには、x方向に余剰なノズル251を有することが好ましい。余剰なノズル251が多いほど、ヘッド250Aの記録可能範囲を記録媒体114の記録可能範囲としたまま、ヘッド250Bのx方向の移動範囲を広げることができる。
 図15A,15Bに示した例では、ヘッド250Bは、x方向の両端に12個ずつの余剰なノズル(破線において囲まれたノズル群260)を備えている。したがって、ヘッド250Bの移動範囲がx方向の左右12ノズル分(12ラスタライン分)の範囲であれば、ヘッド250におけるx方向の記録可能範囲を一定とすることができる。
 ここでは、ヘッド250Bをx方向に移動可能な構成としたが、ヘッド250Aについてもx方向に移動可能な構成とする場合には、ヘッド250Aについてもx方向に余剰なノズル251を有することが好ましい。このように、移動可能なヘッドに余剰なノズルを持たせることで、記録可能範囲を一定としたまま、ヘッドの移動範囲を広げることができる。
 なお、y方向と略直交する方向(x方向)に記録媒体114の描画領域の全幅Wmに対応する長さ以上のノズル列を構成する形態は本例に限定されない。例えば、図15Aの構成に代えて、図16Aに示すように、複数のノズル251が2次元に配列された短尺のサブヘッド250’を千鳥状に配列して繋ぎ合わせることで記録媒体114の全幅に対応する長さのノズル列を有するラインヘッドを構成する態様や、図16Bに示すように、サブヘッド250”を一列に並べて繋ぎ合わせる態様もある。
 これらのサブヘッドは、図11を用いて説明したように、x方向に移動可能に構成することが好ましい。この場合、各サブヘッドのx方向には余剰なノズル251(破線において囲まれたノズル群260’、260”)を備えることが必要である。
 各ノズル251に対応して設けられている圧力室・BR>Q52は、その平面形状が概略正方形となっており(図15A,15B参照)、対角線上の両隅部の一方にノズル251への流出口が設けられ、他方に供給インクの流入口(供給口)254が設けられている。なお、圧力室252の形状は、本例に限定されず、平面形状が四角形(菱形、長方形など)、五角形、六角形その他の多角形、円形、楕円形など、多様な形態があり得る。図17に示すように、ヘッド250は、ノズル251が形成されたノズルプレート251Aと、圧力室252や共通流路255等の流路が形成された流路板252P等を積層接合した構造から成る。ノズルプレート251Aは、ヘッド250のノズル面(インク吐出面)250Cを構成し、各圧力室252にそれぞれ連通する複数のノズル251が2次元的に形成されている。
 流路板252Pは、圧力室252の側壁部を構成するとともに、共通流路255から圧力室252にインクを導く個別供給路の絞り部(最狭窄部)としての供給口254を形成する流路形成部材である。なお、説明の便宜上、図17では簡略的に図示しているが、流路板252Pは1枚又は複数の基板を積層した構造である。
 ノズルプレート251A及び流路板252Pは、シリコンを材料として半導体製造プロセスによって所要の形状に加工することが可能である。
 共通流路255はインク供給源たるインクタンク(不図示)と連通しており、インクタンクから供給されるインクは共通流路255を介して各圧力室252に供給される。
 圧力室252の一部の面(図17において天面)を構成する振動板256には、個別電極257を備えたピエゾアクチュエータ258が接合されている。本例の振動板256は、ピエゾアクチュエータ258の下部電極に相当する共通電極259として機能するニッケル(Ni)導電層付きのシリコン(Si)から成り、各圧力室252に対応して配置されるピエゾアクチュエータ258の共通電極を兼ねる。なお、樹脂などの非導電性材料によって振動板を形成する態様も可能であり、この場合は、振動板部材の表面に金属などの導電材料による共通電極層が形成される。また、ステンレス鋼(SUS)など、金属(導電性材料)によって共通電極を兼ねる振動板を構成してもよい。
 個別電極257に駆動電圧を印加することによってピエゾアクチュエータ258が変形して圧力室252の容積が変化し、これに伴う圧力変化によりノズル251からインクが吐出される。インク吐出後、ピエゾアクチュエータ258が元の状態に戻る際、共通流路255から供給口254を通って新しいインクが圧力室252に再充填される。
 かかる構造を有するインク室ユニット253を図15Bに示す如く、x方向及x方向に対して直交しない一定の角度θを有する斜めの列方向に沿って一定の配列パターンで格子状に多数配列させることにより、本例の高密度ノズルヘッドが実現されている。かかるマトリクス配列において、副走査方向の隣接ノズル間隔をLsとするとき、主走査方向については実質的に各ノズル251が一定のピッチP=Ls/tanθで直線状に配列されたものと等価的に取り扱うことができる。
 また、ヘッド250Aの各ノズル251とヘッド250Bの各ノズル251とは、y方向に平行な同一直線上に重なるように配置されている。
 前述のように、ヘッド250Bはx方向に移動可能に構成されているが、その移動の停止位置は、ヘッド250Aの各ノズル251とヘッド250Bの各ノズル251とがy方向に平行な同一直線上に重なる位置となる。即ち、ヘッド250Bの移動単位は、実質的なノズルピッチP(=ラスタ間隔)となっている。
 また、本発明の実施に際してヘッド250におけるノズル251の配列形態は図示の例に限定されず、様々なノズル配置構造を適用できる。例えば、図13で説明したマトリクス配列に代えて、一列の直線配列、V字状のノズル配列、V字状配列を繰り返し単位とするジグザク状(W字状など)のような折れ線状のノズル配列なども可能である。
 なお、インクジェットヘッドにおける各ノズルから液滴を吐出させるための吐出用の圧力(吐出エネルギー)を発生させる手段は、ピエゾアクチュエータ(圧電素子)に限らず、サーマル方式(ヒータの加熱による膜沸騰の圧力を利用してインクを吐出させる方式)におけるヒータ(加熱素子)や他の方式による各種アクチュエータなど様々な圧力発生素子(エネルギー発生素子)を適用し得る。ヘッドの吐出方式に応じて、相応のエネルギー発生素子が流路構造体に設けられる。
 <制御系の説明>
 図18は、インクジェット記録装置100のシステム構成を示す要部ブロック図である。インクジェット記録装置100は、通信インターフェース170、システムコントローラ172、メモリ174、モータドライバ176、ヒータドライバ178、プリント制御部180、画像バッファメモリ182、ヘッドドライバ184等を備えている。
 通信インターフェース170は、ホストコンピュータ186から送られてくる画像データを受信するインターフェース部(データ取得部に相当)である。通信インターフェース170にはUSB(Universal Serial Bus)、IEEE1394、イーサネット(登録商標)、無線ネットワークなどのシリアルインターフェースやセントロニクスなどのパラレルインターフェースを適用することができる。この部分には、通信を高速化するためのバッファメモリ(不図示)を搭載してもよい。ホストコンピュータ186から送出された画像データは通信インターフェース170を介してインクジェット記録装置100に取り込まれ、一旦メモリ174に記憶される。
 メモリ174は、通信インターフェース170を介して入力された画像を一旦格納する記憶部であり、システムコントローラ172を通じてデータの読み書きが行われる。メモリ174は、半導体素子からなるメモリに限らず、ハードディスクなど磁気媒体を用いてもよい。
 システムコントローラ172は、中央演算処理装置(CPU)及びその周辺回路等から構成され、プログラムに従ってインクジェット記録装置100の全体を制御する制御装置として機能するとともに、各種演算を行う演算装置として機能する。即ち、システムコントローラ172は、通信インターフェース170、メモリ174、モータドライバ176、ヒータドライバ178等の各部を制御し、ホストコンピュータ186との間の通信制御、メモリ174の読み書き制御等を行うとともに、搬送系のモータ188やヒータ189を制御する制御信号を生成する。
 メモリ174には、システムコントローラ172のCPUが実行するプログラム及び制御に必要な各種データなどが格納されている。なお、メモリ174は、書換不能な記憶部であってもよいし、EEPROMのような書換可能な記憶部であってもよい。メモリ174は、画像データの一時記憶領域として利用されるとともに、プログラムの展開領域及びCPUの演算作業領域としても利用される。
 プログラム格納部190には各種制御プログラムが格納されており、システムコントローラ172の指令に応じて、制御プログラムが読み出され、実行される。プログラム格納部はROMやEEPROMなどの半導体メモリを用いてもよいし、磁気ディスクなどを用いてもよい。外部インターフェースを備え、メモリカードやPCカードを用いてもよい。もちろん、これらの記録媒体のうち、複数の記録媒体を備えてもよい。なお、プログラム格納部190は動作パラメータ等の記億部と兼用してもよい。
 モータドライバ176は、システムコントローラ172からの指示に従ってモータ188を駆動するドライバである。図18には、装置内の各部に配置されるモータ(アクチュエータ)を代表して符号188で図示されている。例えば、図18に示すモータ188には、図14の圧胴126a~126dや渡し胴124a~124d、排紙胴150を駆動するモータや、図9A,9BのヘッドBや図15Aのヘッド250Bをx方向へずらすモータ等が含まれている。
 ヒータドライバ178は、システムコントローラ172からの指示に従って、ヒータ189を駆動するドライバである。図18には、インクジェット記録装置100に備えられる複数のヒータを代表して符号189で図示されている。例えば、図18に示すヒータ189には、図14に示す用紙予熱ユニット128、134や浸透抑制剤乾燥ユニット132、処理液乾燥ユニット138、溶媒乾燥ユニット142a、142bのヒータ、加熱ローラ148a,148bに内蔵されるヒータなどが含まれている。
 プリント制御部180(記録部に相当)は、システムコントローラ172の制御に従い、メモリ174内の画像データから印字制御用の信号を生成するための各種加工、補正などの処理を行う信号処理機能を有し、生成した印字データ(ドットデータ)をデュアルヘッドの各ヘッドに分配し、ヘッドドライバ184に供給する制御部である。プリント制御部180において所要の信号処理が施され、該画像データに基づいて、ヘッドドライバ184を介してヘッド250のインク液滴の吐出量や吐出タイミングの制御が行われる。これにより、所望のドットサイズやドット配置が実現される。
 また、プリント制御部180には画像バッファメモリ182が備えられており、プリント制御部180における画像データ処理時に画像データやパラメータなどのデータが画像バッファメモリ182に一時的に格納される。また、プリント制御部180とシステムコントローラ172とを統合して1つのプロセッサで構成する態様も可能である。
 さらに、プリント制御部180には、図6,7に示したフローチャートの処理を実現するための各処理ブロックが搭載されている。
 図19は、プリント制御部180の内部構成を示すブロック図である。図19に示すように、プリント制御部180は、不吐出ノズルデータ記憶部201、不吐出ノズル座標変換部202、差分算出部203、ずらし量候補抽出部204、ずらし量決定部205、ヘッド制御部206、データずらし部207等を備えて構成される。
 不吐出ノズルデータ記憶部201(記憶部に相当)は、インクの吐出を行うことができないノズル(不吐出ノズル)のヘッド内の位置等の情報が記憶されている。また、曲がりノズル、滴量の異なるノズル、スプラッシュノズル等の欠陥ノズルについて、不吐出化(インクの吐出を停止)させた場合も、これらの不吐出化ノズルのヘッド内の位置等の情報を記憶する。
 図7に示したフローチャートのステップS1における、A、B両ヘッドの不吐出ノズル位置の情報は、不吐出ノズルデータ記憶部201に記憶されている。
 不吐出ノズル座標変換部202は、不吐出ノズルデータ記憶部201からデュアルヘッドの各ヘッドの不吐出ノズルの情報を取得し(不良記録要素情報取得部、変換部に相当)、不吐出ノズルの位置を統一された1つの座標系における位置に変換する。図7に示したフローチャートのステップS2の処理は、不吐出ノズル座標変換部202において行う。
 差分算出部203(算出部に相当)は、不吐出ノズル座標変換部202において変換されたデュアルヘッドの各ヘッドの不吐出ノズルの位置に基づいて、各ヘッドの不吐出ノズル位置の差を算出する。図7に示したフローチャートのステップS3の処理は、差分算出部203において行う。
 ずらし量候補抽出部204(抽出部に相当)は、差分算出部203において算出した差分に対して、これらの値に含まれない整数値をずらし量の候補として算出する。また、ずらし量決定部205(ずらし量決定部に相当)は、ずらし量候補抽出部204において抽出されたずらし量の候補から、ずらし量を決定する。図7に示したフローチャートのステップS4の処理は、ずらし量候補抽出部204及びずらし量決定部205において行う。
 ヘッド制御部206(制御部に相当)は、システムコントローラ172、モータドライバ176を介してデュアルヘッド間にずらし量決定部205で決定したずらし量を与える。図7に示したフローチャートのステップS5の処理は、ヘッド制御部206において行う。
 データずらし部207(データ移動部、分配部に相当)は、ずらしたヘッドのデータに対してずらし量決定部205で決定したずらし量を与える。即ち、メモリ174内の画像データに対して信号処理を施し、生成したドットデータをヘッド250A及びヘッド250Bに分配する。そして、ずらし量決定部205で決定したずらし量だけ、ヘッド250Bのデータをずらす。また、データをずらした結果、各ラスタラインに対応する不吐出ノズルの位置が変わるので、この不吐出ノズルに対応するデータをヘッド250A及びヘッド250Bに再分配してヘッドドライバ184に供給する。図7に示したフローチャートのステップS6の処理は、データずらし部207において行う。
 画像入力から印字出力までの処理の流れを概説すると、印刷すべき画像のデータは、通信インターフェース170を介して外部から入力され、メモリ174に蓄えられる。この段階では、例えば、RGBの多値の画像データがメモリ174に記憶される。
 メモリ174に蓄えられた元画像(RGB)のデータは、システムコントローラ172を介してプリント制御部180に送られ、該プリント制御部180において閾値マトリクスや誤差拡散法などを用いたハーフトーニング処理によってインク色(K,C,M,Y)毎のドットデータ(2値データ又はドットサイズの情報を含んだ多値データ)に変換される。デュアルヘッド間に相対的なずらし量が与えられている場合には、ずらし量に応じてデータが生成される。
 こうして、プリント制御部180で生成されたドットデータは、画像バッファメモリ182に蓄えられる。この色別ドットデータは、ヘッド250のノズルからインクを吐出するためのCMYK打滴データに変換され、印字されるインク吐出データが確定する。
 ヘッドドライバ184は、プリント制御部180から与えられる印字データ(すなわち、画像バッファメモリ182に記憶されたドットデータ)に基づき、ヘッド250の各ノズル251に対応する圧電素子(図17のピエゾアクチュエータ258)を駆動するための駆動信号を出力する。ヘッドドライバ184にはヘッドの駆動条件を一定に保つためのフィードバック制御系を含んでいてもよい。
 本例に示すインクジェット記録装置100は、M分割された同じノズル群ブロックに属する複数のノズルに対応する各圧電素子に共通の駆動波形信号を印加し、各圧電素子(ピエゾアクチュエータ258)の吐出タイミングに応じて各圧電素子の個別電極に接続されたスイッチ素子のオンオフを切り換えることで、各圧電素子に対応するノズルからインクを吐出させる圧電駆動方式が適用される。
 印字検出部144は、CCDラインセンサを含むブロックであり、記録媒体114に印字された画像を読み取り、所要の信号処理などを行って印字状況(色、濃度、吐出の有無、打滴のばらつきなど)を検出し、システムコントローラ172を介してその検出結果をプリント制御部180に提供する。
 プリント制御部180は、印字検出部144から得られる情報に基づいて、吐出異常ノズルを判断する不良記録要素情報取得部として機能する。吐出異常ノズルとしては、不吐出ノズルの他、曲がり(ヨレ)の大きなノズル、吐出量の少ないノズル、スプラッシュの大きいノズル等がある。
 プリント制御部180は、不吐出ノズルデータ記憶部201に不吐出ノズルの位置情報等を記憶させる。また、不吐出ノズル以外の吐出異常ノズルについて、不吐出化した場合には、不吐出化ノズルの位置情報等も記憶させる。
 また、当該吐出異常ノズルに対して予備吐出や吸引などノズル回復動作を行うように、システムコントローラ172を介して各部へ制御信号を送出してもよい。
 〔インクジェット記録装置による印刷動作〕
 次に、上記のように構成されたインクジェット記録装置100の作用について説明する。
 給紙部102の給紙台120からフィーダボード122に記録媒体114が送り出される。記録媒体114は、渡し胴124aを介して、浸透抑制剤付与部104の圧胴126aに保持され、用紙予熱ユニット128によって予備加熱され、浸透抑制剤吐出ヘッド130によって浸透抑制剤が打滴される。その後、圧胴126aに保持された記録媒体114は、浸透抑制剤乾燥ユニット132によって加熱され、浸透抑制剤の溶媒成分(液体成分)が蒸発し、乾燥する。
 こうして浸透抑制処理が行われた記録媒体114は、浸透抑制剤付与部104の圧胴126aから渡し胴124bを介して、処理液付与部106の圧胴126bに受け渡される。圧胴126bに保持された記録媒体114は、用紙予熱ユニット134によって予備加熱され、処理液吐出ヘッド136によって処理液が打滴される。その後、圧胴126bに保持された記録媒体114は、処理液乾燥ユニット138によって加熱され、処理液の溶媒成分(液体成分)が蒸発し、乾燥する。これにより、記録媒体114上には固体状又は半固溶状の凝集処理剤層が形成される。
 処理液が付与されて固体状又は半固溶状の凝集処理剤層が形成された記録媒体114は、処理液付与部106の圧胴126bから渡し胴124cを介して、インク打滴部108の圧胴126cに受け渡される。圧胴126cに保持された記録媒体114には、入力画像データに応じて、各インク打滴ヘッド140C、140M、140Y、140Kからそれぞれ対応する色インクが打滴される。
 凝集処理剤層上にインク液滴が着弾すると、飛翔エネルギーと表面エネルギーとのバランスに依存して、インク液滴と凝集処理剤層との接触面積が定まる。インク液滴が凝集処理剤上に着弾した直後に凝集反応が始まるが、凝集反応はインク液滴と凝集処理剤層との接触面から始まる。凝集反応は接触面近傍のみで起こり、インク着弾時における接触面積で付着力を得た状態でインク内の色材が凝集されるため、色材移動が抑止される。
 このインク液滴に隣接して他のインク液滴が着弾しても先に着弾したインクの色材は既に凝集化しているので後から着弾するインクとの間で色材同士が混合せず、ブリードが抑止される。なお、色材の凝集後には、分離されたインク溶媒が広がり、凝集処理剤が溶解した液体層が記録媒体114上に形成される。
 そして、圧胴126cに保持された記録媒体114は溶媒乾燥ユニット142a、142bによって加熱され、記録媒体114上でインク凝集体と分離した溶媒成分(液体成分)は蒸発し、乾燥する。この結果、記録媒体114のカールが防止されるとともに、溶媒成分に起因する画像品質の劣化を抑えることができる。
 インク打滴部108によって色インクが付与された記録媒体114は、インク打滴部108の圧胴126cから渡し胴124dを介して、定着部110の圧胴126dに受け渡される。圧胴126dに保持された記録媒体114は、印字検出部144によってインク打滴部108の印字結果が読み取られた後、加熱ローラ148a,148bによって加熱及び押圧処理が施される。
 さらに、その後、記録媒体114が圧胴126dから排紙胴150に受け渡され、排紙用チェーン154によって排紙台152まで搬送される。このようにして画像形成が行われた記録媒体114は、排紙用チェーン154によって排紙台152の上方に搬送され、排紙台152上に積載される。
 以上のように、本実施形態によれば、デュアルヘッドの不吐出ノズルの位置が重なった場合であっても、ずらし量を確定的に決定し、確実に不良記録要素の位置が一致しない状態を作り出すことができる。
 また、プリント制御部180やシステムコントローラ172の機能を、ホストコンピュータ186やその他のコンピュータに搭載し、不吐出補正処理を行わせる態様も可能である。また、これらの処理をコンピュータによって実現させるためのプログラムをCD-ROMや磁気ディスクその他の記録媒体に記録し、記録媒体を通じて当該プログラムを第三者に提供したり、インターネットなどの通信回線を通じて当該プログラムのダウンロードサービスを提供したりすることも可能である。
 また、上記の実施形態では、本発明をインクジェット記録装置に適用した場合について説明したが、本発明の適用範囲はこれに限定されるものではない。即ち、本発明は、インクジェット記録装置以外の形式の画像記録装置、例えば、サーマル素子を記録要素とする記録ヘッドを備えた熱転写記録装置、LED素子を記録要素とする記録ヘッドを備えたLED電子写真プリンタ、LEDライン露光ヘッドを有する銀塩写真方式プリンタについても適用可能である。
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
 10,100…インクジェット記録装置、20…ラインヘッド,30,40,250,250A,250B…ヘッド,140C,140M,140Y,140K…インク打滴ヘッド,172…システムコントローラ、180…プリント制御部、250’,250’’…サブヘッド、251…ノズル、201…不吐出ノズルデータ記憶部、202…不吐出ノズル座標変換部、203…差分算出部、204…ずらし量候補抽出部、205…ずらし量決定部、206…ヘッド制御部、207…データずらし部

Claims (10)

  1.  同一色の記録を行う複数の記録要素列を有する記録ヘッドと、
     前記記録ヘッド及び記録媒体のうち少なくとも一方を搬送して前記記録ヘッドと前記記録媒体とを搬送方向に相対移動させる搬送部と、
     前記記録ヘッドにおいて記録する画像データを取得するデータ取得部と、
     前記画像データを前記複数の記録要素列で相互に補完して記録するために、前記画像データを各ラスタラインに対応するそれぞれの記録要素に分配する分配部であって、不良記録要素に対応するデータを他の記録要素列の記録要素に分配する分配部と、
     前記分配された画像データを前記記録ヘッドによって記録する記録部と、
     前記複数の記録要素列の不良記録要素の位置の情報を取得する不良記録要素情報取得部と、
     前記取得した不良記録要素の位置の情報に基づいて、前記複数の記録要素列の前記搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定するずらし量決定部と、
     前記複数の記録要素列の相対位置を移動する移動部と、
     前記移動部により、前記決定したずらし量だけ前記複数の記録要素列を相対的にずらす制御部と、
     前記決定したずらし量だけ前記分配部が分配する画像データをずらすデータ移動部と、
     を備えた画像記録装置。
  2.  前記記録要素列の記録要素は、前記記録媒体の記録可能幅全幅に対応する長さにわたって配列され、
     前記搬送部は、前記記録ヘッド及び記録媒体のうち少なくとも一方を搬送して前記記録ヘッドと前記記録媒体とを1回だけ相対移動させる請求項1に記載の画像記録装置。
  3.  前記取得した複数の記録要素列の不良記録要素の位置の情報から各不良記録要素の位置を1つの座標系の位置に変換する変換部と、
     前記複数の記録要素列のうち一の記録要素列の不良記録要素の位置と他の記録要素列の不良記録要素の位置との差分をそれぞれ算出する算出部と、
     前記算出した差分からずらし量の候補を抽出する抽出部と、
     を備え、
     前記ずらし量決定部は、前記抽出されたずらし量の候補の中から0に最も近い値をずらし量として決定する請求項1又は2に記載の画像記録装置。
  4.  前記算出部は、前記移動部の移動可能な範囲において前記位置の差分を算出する請求項3に記載の画像記録装置。
  5.  前記ずらし量決定部は、前記抽出されたずらし量の候補の中から定期的に異なる値をずらし量として決定する請求項3又は4に記載の画像記録装置。
  6.  前記複数の記録要素列のうち少なくとも1つの記録要素列は、前記搬送方向に直交する方向に複数配置された副記録要素列から構成され、
     前記ずらし量決定部は、前記副記録要素列毎に前記ずらし量を決定し、
     前記移動部は、前記副記録要素列毎に設けられ、
     前記制御部は、前記決定したずらし量に基づいて前記副記録要素列をずらす請求項1から5のいずれか1項に記載の画像記録装置。
  7.  前記記録要素はインクを吐出するノズルであり、前記不良記録要素情報取得部は、インクを吐出できない不吐出ノズル、又は曲がりノズル、滴量の異なるノズル、スプラッシュノズルを含む欠陥ノズルを不吐出化したノズルの位置の情報を取得する請求項1から6のいずれか1項に記載の画像記録装置。
  8.  前記複数の記録要素列の不良記録要素の位置の情報を記憶する記憶部を備えた請求項1から7のいずれか1項に記載の画像記録装置。
  9.  前記複数の記録要素列のうち前記移動部により移動する記録要素列は、前記搬送方向に直交する方向に余剰な記録要素を有する請求項1から8のいずれか1項に記載の画像記録装置。
  10.  同一色の記録を行う複数の記録要素列を有する記録ヘッド及び記録媒体のうち少なくとも一方を搬送して前記記録ヘッドと前記記録媒体とを搬送方向に相対移動させる搬送工程と、
     前記記録ヘッドにおいて記録する画像データを取得するデータ取得工程と、
     前記画像データを前記複数の記録要素列で相互に補完して記録するために、前記画像データを各ラスタラインに対応するそれぞれの記録要素に分配する分配工程であって、不良記録要素に対応するデータを他の記録要素列の記録要素に分配する分配工程と、
     前記複数の記録要素列の不良記録要素の位置の情報を取得する不良記録要素情報取得工程と、
     前記取得した不良記録要素の位置の情報に基づいて、前記複数の記録要素列の前記搬送方向に直交する方向の相対的なずらし量であって、各ラスタラインに少なくとも1つは不良記録要素でない記録要素を対応させるためのずらし量を決定するずらし量決定工程と、
     前記複数の記録要素列の相対位置を移動する移動部により、前記決定したずらし量だけ前記複数の記録要素列を相対的にずらす制御工程と、
     前記決定したずらし量だけ前記分配工程が分配する画像データをずらすデータ移動工程と、
     前記分配された画像データを前記記録ヘッドに記録させる記録工程と、
     を備えた画像記録方法。
PCT/JP2013/063128 2012-05-11 2013-05-10 画像記録装置及び画像記録方法 WO2013168781A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109885 2012-05-11
JP2012109885A JP5901418B2 (ja) 2012-05-11 2012-05-11 画像記録装置及び画像記録方法

Publications (1)

Publication Number Publication Date
WO2013168781A1 true WO2013168781A1 (ja) 2013-11-14

Family

ID=49550813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063128 WO2013168781A1 (ja) 2012-05-11 2013-05-10 画像記録装置及び画像記録方法

Country Status (2)

Country Link
JP (1) JP5901418B2 (ja)
WO (1) WO2013168781A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935225B2 (ja) * 2016-05-23 2021-09-15 株式会社ミマキエンジニアリング 印刷装置
JP2021053803A (ja) * 2018-01-09 2021-04-08 富士フイルム株式会社 ヘッドモジュール位置調整方法、インクジェット記録装置、調整支援装置、プログラム並びに印刷物製造方法
JP7428541B2 (ja) * 2020-03-02 2024-02-06 住友重機械工業株式会社 インク塗布装置、インク塗布装置の制御装置、及びインク塗布方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192611A (ja) * 2005-01-11 2006-07-27 Konica Minolta Holdings Inc インクジェット記録装置
JP2007283731A (ja) * 2006-04-20 2007-11-01 Seiko Epson Corp 液体吐出装置、印刷装置、及び液体吐出方法
JP2008279767A (ja) * 2007-05-11 2008-11-20 Xerox Corp 可動なノズルアレイを付加したインクジェットプリントヘッド
JP2010069872A (ja) * 2008-08-21 2010-04-02 Brother Ind Ltd 液体吐出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192611A (ja) * 2005-01-11 2006-07-27 Konica Minolta Holdings Inc インクジェット記録装置
JP2007283731A (ja) * 2006-04-20 2007-11-01 Seiko Epson Corp 液体吐出装置、印刷装置、及び液体吐出方法
JP2008279767A (ja) * 2007-05-11 2008-11-20 Xerox Corp 可動なノズルアレイを付加したインクジェットプリントヘッド
JP2010069872A (ja) * 2008-08-21 2010-04-02 Brother Ind Ltd 液体吐出装置

Also Published As

Publication number Publication date
JP2013237166A (ja) 2013-11-28
JP5901418B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5832369B2 (ja) インクジェット記録装置
JP5425357B2 (ja) インクジェットプリンタとそれを用いたプリント方法
JP5776320B2 (ja) 画像形成装置、及び、画像形成方法
JP5473704B2 (ja) テストパターン印刷方法及びインクジェット記録装置
US8042905B2 (en) Inkjet recording apparatus, test image forming method, and computer-readable medium
JP5707784B2 (ja) 画像形成装置、及び、画像形成方法
JP4742811B2 (ja) 画像形成方法
JP5304517B2 (ja) 流体噴射装置、及び、流体噴射方法
JP2009208348A (ja) 画像形成装置及び画像形成方法
US8128200B2 (en) Fluid ejecting apparatus and method of ejecting fluid
WO2014057876A1 (ja) ヘッド駆動方法、ヘッド駆動装置およびインクジェット記録装置
JP5190998B2 (ja) インクジェット記録装置及び不吐出検知性能の検査方法
JP5668462B2 (ja) 印刷装置及び印刷方法
JP2009148904A (ja) 画像形成方法及び画像形成装置
JP2011126208A (ja) 画像記録装置、画像処理装置、画像処理方法及びプログラム
JP5775510B2 (ja) ヘッドモジュールの調整方法、インクジェットヘッドの製造方法
JP5901418B2 (ja) 画像記録装置及び画像記録方法
JP5304516B2 (ja) 流体噴射装置、及び、流体噴射方法
WO2017047446A1 (ja) インクジェット記録装置及びインクジェット記録方法
JP2012035573A (ja) 液体吐出ヘッド、画像記録装置及び方法
JP5936512B2 (ja) 液体吐出ヘッド及び画像記録装置
JP5629360B2 (ja) インクジェットプリンタとそれを用いたプリント方法
JP2011173279A (ja) 画像記録装置及び画像記録方法並びにドット形成位置評価方法
JP5560679B2 (ja) 流体噴射装置、及び、流体噴射方法
JP2010234551A (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787300

Country of ref document: EP

Kind code of ref document: A1