WO2013168715A1 - Gas barrier film and method for producing gas barrier film - Google Patents

Gas barrier film and method for producing gas barrier film Download PDF

Info

Publication number
WO2013168715A1
WO2013168715A1 PCT/JP2013/062857 JP2013062857W WO2013168715A1 WO 2013168715 A1 WO2013168715 A1 WO 2013168715A1 JP 2013062857 W JP2013062857 W JP 2013062857W WO 2013168715 A1 WO2013168715 A1 WO 2013168715A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic layer
gas barrier
barrier film
vapor deposition
crucible
Prior art date
Application number
PCT/JP2013/062857
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 杉田
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2013168715A1 publication Critical patent/WO2013168715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a gas barrier film mainly used as packaging materials for foods and pharmaceuticals, packaging materials for electronic devices, electronic paper, materials for solar cells, and the like, and a method for producing the same.
  • the gas barrier film generally has a configuration in which a gas barrier layer is formed on one or both sides of a plastic film as a base material.
  • the gas barrier film includes a plastic film formed with a SiOx vapor deposition film.
  • Vapor deposition material that can form a SiOx vapor deposition film that exhibits high gas barrier properties is obtained by heating a mixture of Si and SiO 2 and depositing sublimated SiO gas on a deposition substrate, or crushing or polishing the obtained deposited SiO After that, what is molded (precipitation type SiO) is used. Further, there is a case where the precipitated SiO is powdered and sintered (powder sintered mold type SiO) is used.
  • Precipitation type SiO has a high density and has a very dense structure. For this reason, when this evaporation material is evaporated to form a SiOx evaporation film, the evaporation material which is not vaporized due to the thermal shock caused by heating during evaporation or the pressure of gas generated from the inside is high temperature. There is a problem that a phenomenon (splash phenomenon) in which fine particles are scattered is likely to occur. When such high-temperature fine particles collide with the SiOx vapor-deposited film, pinholes are generated in the SiOx vapor-deposited film, and the gas barrier property and transparency of the gas barrier film having the SiOx vapor-deposited film are reduced. When the gas barrier film is wound around the roll after being formed, the fine particles are wound between the gas barrier films as foreign matters and finally mixed into the product. Moreover, the problem that a through-hole is produced in a gas barrier film base material also arises.
  • Powder-sintered molding type SiO has an advantage that it is easy to control density and shape from its manufacturing method, and is widely used.
  • the powder sintered mold type SiO has a lower density than the precipitation type SiO and becomes brittle in strength, so that a part of it collapses during evaporation in a high temperature atmosphere, and high temperature fine particles are scattered ( (Splash phenomenon) may occur.
  • Patent Document 1 attempts to reduce the splash phenomenon depending on the particle diameter, the mixing ratio, and the sintering conditions in the production of powder sintered type SiO.
  • the heating means is an electron beam, and the level of thermal shock received by the vapor deposition material is much higher than, for example, conventional heating means such as resistance heating.
  • Patent Document 1 the local thermal gradient of the vapor deposition material is increased, the vapor deposition material is liable to crack or collapse, and a splash phenomenon may occur when the vapor deposition material collapses.
  • Patent Document 1 does not describe the relationship between the splash phenomenon and the performance of the gas barrier film.
  • the problem to be solved by the present invention is to provide a gas barrier film having a sufficient gas barrier property, excellent optical properties and excellent productivity, and a method for producing the film.
  • the present invention has an inorganic layer formed by a vacuum deposition method (hereinafter sometimes referred to as “PVD”) on at least one surface of a substrate, and the inorganic layer formed by the vacuum deposition method (PVD) Heating a vapor deposition material obtained by sintering and molding an inorganic powder having a median diameter of 3 to 100 ⁇ m into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. It is related with the gas-barrier film which is formed by vaporizing.
  • PVD vacuum deposition method
  • the present invention also provides an inorganic layer formed by vacuum deposition (PVD), an inorganic layer formed by chemical vapor deposition (hereinafter sometimes referred to as “CVD”), and vacuum deposition on at least one surface of a substrate.
  • PVD vacuum deposition
  • CVD chemical vapor deposition
  • PVD has an inorganic layer formed in this order, and at least one of the inorganic layers formed by the vacuum deposition method (PVD) is an inorganic powder having a median diameter of 3 to 100 ⁇ m and a diameter of the bottom inner diameter of the crucible.
  • the present invention relates to a gas barrier film, which is formed by vaporizing by heating a vapor deposition material formed by sintering into a cylindrical shape having a height of 10 to 45% and a height of 45% or less of the internal height of the crucible. .
  • an inorganic powder having a median diameter of 3 to 100 ⁇ m is applied to at least one surface of the substrate, the diameter is 10 to 45% of the bottom inner diameter of the crucible, and the height is 45% or less of the inner height of the crucible.
  • the present invention relates to a method for producing a gas barrier film, in which an inorganic layer is formed by a vacuum vapor deposition method in which a vapor deposition material formed by sintering in a cylindrical shape is vaporized by heating.
  • an inorganic layer formed by vacuum deposition, an inorganic layer formed by chemical vapor deposition, and an inorganic layer formed by vacuum vapor deposition are formed in this order on at least one surface of the substrate.
  • a vacuum deposition method in which at least one vapor deposition material is sintered and molded into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the internal height of the crucible.
  • the present invention relates to a method for producing a gas barrier film.
  • the present invention provides a gas barrier film having high gas barrier properties, excellent optical characteristics, and excellent productivity, and a method for producing the film.
  • the first embodiment of the gas barrier film of the present invention (hereinafter sometimes referred to as “first embodiment”) has an inorganic layer formed by vacuum deposition (PVD) on at least one surface of a substrate.
  • the inorganic layer formed by the vacuum deposition method (PVD) (hereinafter sometimes referred to as “PVD inorganic layer”) is an inorganic powder having a median diameter of 3 to 100 ⁇ m and a diameter of 10 to 45 that is the bottom inner diameter of the crucible.
  • a vapor deposition material formed by sintering and molding into a cylindrical shape whose height is 45% or less of the internal height of the crucible, and is formed by vaporizing by heating (hereinafter referred to as “specific PVD inorganic layer”) There is a thing).
  • ⁇ Gas barrier film B> In the second embodiment of the gas barrier film of the present invention (hereinafter sometimes referred to as “second embodiment”), an inorganic layer formed by PVD and an inorganic layer formed by CVD on at least one surface of the substrate. (Hereinafter sometimes referred to as “CVD inorganic layer”) and an inorganic layer formed by PVD in this order, and one or more of the inorganic layers formed by the vacuum deposition method is an inorganic powder having a median diameter of 3 to 100 ⁇ m.
  • the “gas barrier film of the present invention” includes both the gas barrier films A (first form) and B (second form).
  • the substrate of the gas barrier film of the present invention is preferably a plastic film.
  • the raw material can be used without particular limitation as long as it is a resin that can be used for ordinary packaging materials, electronic paper, and solar cell materials.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene; amorphous polyolefins such as cyclic polyolefins; polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalate; nylon 6, nylon 66, polyamides such as nylon 12 and copolymer nylon; polyvinyl alcohol, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, Examples include polyvinyl butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin.
  • polyesters, polyamides, polyolefins, and biodegradable resins are preferable from the viewpoint of film strength, cost, and the like, and particularly, polyethylene terephthalate (PET) and polyethylene from the viewpoint of surface smoothness, film strength, heat resistance, and the like. Polyesters such as -2,6-naphthalate (PEN) are particularly preferred.
  • the resin content in the plastic film is preferably 50 to 100% by mass.
  • the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent.
  • An inhibitor or the like can be contained.
  • the plastic film as the substrate is formed by using the above raw materials, but when used as the substrate, it may be unstretched or stretched. Moreover, a single layer or a multilayer may be sufficient.
  • a substrate can be produced by a conventionally known method. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented.
  • a stretched film can be produced.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto.
  • the thickness of the substrate is usually in the range of 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, depending on its use from the viewpoints of mechanical strength, flexibility, transparency and the like of the gas barrier film of the present invention. Also included are sheets that are selected and have a large thickness. Moreover, there is no restriction
  • the gas barrier film of the present invention has a PVD inorganic layer on at least one surface of the substrate in the first form, and a PVD inorganic layer and CVD on at least one surface of the substrate in the second form. It has an inorganic layer and a PVD inorganic layer in this order.
  • the PVD inorganic layer of the first form and the PVD inorganic layer of at least one of the second form are specific PVD inorganic layers.
  • it is preferable that two or more PVD inorganic layers are specific PVD inorganic layers, and it is more preferable that all are specific PVD inorganic layers.
  • the specific PVD inorganic layer is formed by a vacuum deposition method. More specifically, an inorganic powder having a median diameter of 3 to 100 ⁇ m is formed with a diameter of 10 to 45% of the inner diameter of the crucible and a height of the inner height of the crucible. A vapor deposition material formed by sintering and molding into a columnar shape of 45% or less is formed on a substrate by vaporizing by heating. Since the splash phenomenon is suppressed in such a specific PVD inorganic layer, a PVD inorganic layer having excellent gas barrier properties and transparency and having the above performance can be obtained while maintaining a high vapor deposition rate. The reason is considered as (1) and (2) below.
  • the median diameter of the inorganic powder constituting the vapor deposition material if the median diameter of the powder is large, the strength of the sintered molded body does not come out, so the handling is bad and the splash phenomenon due to heat collapse occurs. Likely to happen. Even when the median diameter of the powder is large, the sintering temperature can be raised to increase the density and strength. For example, when the inorganic powder is SiO, Si produced by decomposition of the SiO in the sintering process, It causes the occurrence of a splash phenomenon and reduces the strength of the molded body.
  • the particle size of the inorganic powder when the particle size of the inorganic powder is small, the strength of the sintered molded body can be exhibited at a lower temperature than when the particle size is large, and the surface area of the molded body is increased, and the transpiration rate from the viewpoint of heating efficiency. Can be high.
  • the particle diameter when the particle diameter is small, the generation of vapor deposition residue due to heat evaporation increases. Vapor deposition residue is debris remaining in the crucible after vapor deposition, and when the residue is generated, the vapor deposition rate is reduced.
  • the vapor deposition residue is a reaction product with silicon dioxide (SiO 2 ) or a material constituting the crucible.
  • the oxidized amount (SiO 2 ) on the grain surface of the SiO powder as a raw material becomes a residue, so that the amount of residue inevitably increases, and at the same time, the oxide film on the grain surface Since this hinders vapor deposition, the vapor deposition rate decreases.
  • the inorganic powder having a median diameter of 3 to 100 ⁇ m is used as the inorganic powder constituting the vapor deposition material, there is no occurrence of a splash phenomenon due to the excellent strength of the sintered compact, and the generation of a residue. Since the deposition rate can be suppressed, the deposition rate can be made sufficient and the film can be formed for a long time.
  • the specific PVD layer exhibits a remarkable effect when another PVD layer, a CVD layer described later, or a coating layer (a protective layer described later) in the barrier film manufacturing process is laminated on the layer. That is, when another layer is laminated on the PVD layer on which high-temperature fine particles have collided due to the splash phenomenon, the surface shape of the PVD layer is affected, and a defective portion is also generated in the layer laminated there. In this case, the problem does not occur, and the gas barrier property and transparency of the multilayer laminated product can be improved.
  • the inorganic powder constituting the vapor deposition material one having a median diameter of 3 to 100 ⁇ m is used.
  • the median diameter of the inorganic powder is less than 3 ⁇ m, the deposition rate cannot be made sufficient due to the generation of residues, and long-time film formation becomes difficult.
  • the median diameter exceeds 100 ⁇ m, the strength of the sintered molded body is lowered and it becomes difficult to suppress the splash phenomenon.
  • the median diameter of the inorganic powder is preferably 3 to 10 ⁇ m.
  • the median diameter means a diameter in which the large side and the small side are equal when the powder is divided into two from a certain particle diameter. In the present invention, the median diameter is calculated based on the laser diffraction scattering method.
  • the percentage of [the diameter of the vapor deposition material] / [the inner diameter of the bottom of the crucible] is preferably 10 to 45%, more preferably 15 to 30%.
  • the percentage of [height] / [inner height of crucible] is preferably 45% or less, more preferably 15 to 30%.
  • the opening inner diameter is the same as or larger than the bottom inner diameter from the viewpoint of deposition residue deposition and deposition rate on the opening. Is preferred. As shown in FIG.
  • the bottom inner diameter a of the crucible is the diameter of the bottom excluding the thick portion of the crucible material, and refers to the diameter when the bottom is circular, and the bottom is polygonal, elliptical, etc.
  • the shape is other than a circle, the length of the longest straight line among the straight lines connecting arbitrary points on the outer periphery of the bottom is indicated.
  • the crucible internal height b indicates the distance from the bottom to the opening excluding the thick portion of the crucible material.
  • the vapor deposition material sintered and molded into a cylindrical shape can be obtained by pressure-molding inorganic powder into a cylindrical shape and then sintering, or by simultaneously performing molding and sintering into a cylindrical shape with a hot press or the like.
  • the sintering temperature varies depending on the inorganic material, for example, in the case of silicon monoxide powder, it is about 700 to 1000 ° C.
  • a binder may be used to improve moldability.
  • the atmosphere and pressure at the time of pressurization and sintering may be an inert atmosphere and atmospheric pressure, and particularly fine control is unnecessary.
  • the inorganic powder examples include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, carbon, and the like, or oxides, carbides, nitrides, or mixtures thereof. From the viewpoint of gas barrier properties, it is preferably oxidized. Silicon, aluminum oxide, and carbon (for example, a substance mainly composed of carbon such as diamond-like carbon). In particular, silicon monoxide or a mixture of silicon and silicon dioxide or silicon oxide is preferable in that a specific PVD inorganic layer having high gas barrier properties and excellent optical characteristics can be formed at a sufficient deposition rate. Although the said inorganic substance may be used individually by 1 type, you may use it in combination of 2 or more type.
  • the specific PVD layer formed from such inorganic powder is preferably composed of SiOx. In this case, the range of x is preferably 1.20 to 1.90 in terms of barrier properties, more preferably 1.20 to 1.70, and preferably 1.20 to 1.45. Further preferred.
  • the specific PVD inorganic layer is formed by a vacuum deposition method.
  • the vacuum evaporation method is preferable in that a uniform thin film having a high gas barrier property can be obtained as compared with the sputtering-based physical evaporation method.
  • the heating means used in the vacuum deposition method include direct heating with a heater, induction heating, and electron beam heating. Among these heating means, since electron beam heating is liable to cause cracking or collapse of the deposited material due to local overheating, direct heating or induction heating with a heater or the like is preferable.
  • the heating temperature of the vapor deposition material is usually 900 to 1600 ° C., preferably 1200 to 1400 ° C. In the present invention, even if heated to a high temperature, the splash phenomenon does not occur, so that high-speed production is possible.
  • the vapor deposition material When heating the vapor deposition material, the vapor deposition material is preferably placed in the crucible.
  • the crucible may be made of graphite, but is preferably made of a material that is inert to the gas generated when the inner surface of the storage portion vaporizes the vapor deposition material.
  • the inorganic powder includes silicon powder and / or silicon monoxide powder
  • the deposition material is silicon
  • the following reaction occurs between the natural oxide film (SiO 2 ) generated on the surface of the silicon powder and the silicon powder (Si), and silicon monoxide gas is generated.
  • the silicon monoxide gas causes a reaction similar to that described above with the graphite member constituting the crucible, the same performance deterioration as described above occurs even when the vapor deposition material is silicon.
  • the vapor deposition material is a mixture of silicon and silicon dioxide.
  • SiO 2 (s) + Si (s) ⁇ 2SiO (g) Therefore, by using the crucible made of a material that is inert to the gas generated when the inner surface of the storage portion vaporizes the vapor deposition material, there is no impurity or crystal defect in the PVD inorganic layer.
  • a gas barrier film having further excellent gas barrier properties and transparency can be obtained.
  • the basic configuration of the crucible includes a storage portion 11 in which a vapor deposition material is installed, and an opening 12 through which the vaporized vapor deposition material is discharged to the vapor deposition target (FIG. 1).
  • a crucible made of a material that is inert to the gas generated when the inner surface 111 of the container vaporizes the vapor deposition material and the entire surface of the container (the inner surface 111 and the outer surface 112). It is more preferable to use a crucible made of a material that is inert to the gas generated when the vapor deposition material is vaporized.
  • the inner surface or the entire surface of the storage portion made of a base material such as graphite is coated with an inert material, and the storage portion made of an inert material is fitted inside the storage portion that becomes the base material.
  • the whole crucible made of the inactive material is preferably made of an inactive material. Elements related to the shape and size of the crucible such as the shape and volume of the storage portion and the area of the opening can be appropriately selected within a known range in accordance with the size of the non-deposited material.
  • Inactive materials include metals belonging to Group 4 such as titanium, zirconium and hafnium, metals belonging to Group 5 such as vanadium, niobium and tantalum, metals belonging to Group 6 such as chromium, molybdenum and tungsten, and rhenium.
  • High melting point metals such as osmium, iridium, ruthenium, rhodium, metal compounds (carbides, nitrides, oxides) of these refractory metals, carbides such as silicon carbide and boron carbide, silicon nitride, boron nitride, aluminum nitride, etc.
  • One or more selected from nitrides can be used.
  • silicon carbide and silicon nitride are preferable from the viewpoints of stability and handleability. Since the inert material is exposed to a high temperature during vapor deposition, the melting point is preferably 1600 ° C. or higher.
  • the thickness of the coating layer is preferably 10 to 1000 nm.
  • a method for coating the base material with an inert material include a chemical vapor deposition method.
  • a means for uniformly reacting a graphite material and a silicon monoxide gas in a controlled atmosphere a method of pressure-impregnating silicon, a thermal CVD or a plasma CVD method
  • a method of providing a coating layer In order to obtain a uniform surface coating, a method of providing a coating by a CVD method is preferable.
  • inert refers to a substance that hardly causes a chemical reaction to a gas generated from a vapor deposition material.
  • the gas generated from the vapor deposition material is silicon monoxide gas
  • the degree of inertness can be measured by the concentration of carbon monoxide gas in the vapor deposition apparatus.
  • a quadrupole mass spectrometer is provided in a vacuum deposition apparatus, and a specific PVD layer having a thickness of 250 nm is formed on a biaxially stretched polyethylene naphthalate film under a vacuum of 2 ⁇ 10 ⁇ 3 Pa in the vacuum deposition apparatus.
  • the forming step is performed, and the gas partial pressure of mass number 28 is measured before starting the film forming process and during the film forming process. At that time, if the gas partial pressure during the film formation step is twice or less that before the start of the step, it can be said that the inner surface of the crucible used in the step is an inert material.
  • the lower limit of the thickness of the specific PVD inorganic layer is generally 0.1 nm, preferably 0.5 nm, more preferably 1 nm, still more preferably 10 nm, and the upper limit is generally 500 nm, preferably 100 nm, more preferably. Is 50 nm.
  • the thickness of the specific PVD inorganic layer is preferably 0.1 nm or more and 500 nm or less, more preferably 10 nm or more and 500 nm or less, further preferably 10 nm or more and 100 nm or less, and particularly preferably 10 nm, from the viewpoint of gas barrier properties and film productivity. It is 50 nm or less.
  • the thickness of the specific PVD inorganic layer can be measured using fluorescent X-rays, and can be specifically performed by the method described in the examples.
  • Both the first form and the second form may have a PVD inorganic layer other than the specific PVD inorganic layer (hereinafter sometimes referred to as “general PVD inorganic layer”).
  • general PVD inorganic layer examples include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, diamond-like carbon, or oxides, carbides, and nitrides alone or a mixture thereof.
  • silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon oxycarbonitride, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum oxycarbide, diamond-like carbon, etc. are preferable. is there.
  • silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbonitride, and aluminum oxide are more preferable in that high gas barrier properties can be stably maintained, and silicon oxide (SiOx) is particularly preferable.
  • the PVD inorganic layer may contain one kind of the inorganic substance or two or more kinds.
  • various conditions such as the thickness of a general PVD inorganic layer, the shape of vapor deposition material, and a pressure, can be made the same as that of a specific PVD inorganic layer, and the suitable conditions of various conditions can also be made the same.
  • a CVD inorganic layer is formed on the PVD inorganic layer.
  • the CVD inorganic layer defects of the general PVD inorganic layer and slight defects of the specific PVD layer are considered to improve gas barrier properties and interlayer adhesion.
  • the PVD inorganic layer itself, the CVD inorganic layer, and the PVD inorganic layer are laminated in this order, so that the CVD inorganic layer itself hardly contributes directly to the gas barrier property.
  • a PVD layer is a specific PVD layer.
  • the CVD inorganic layer and the PVD inorganic layer are formed after the PVD inorganic layer is formed. The formation of the CVD inorganic layer and the PVD inorganic layer is further repeated once or more. Can be done.
  • the PVD inorganic layer, the CVD inorganic layer, and the PVD inorganic layer further have one or more structural units composed of the CVD inorganic layer and the PVD inorganic layer.
  • the number of units is more preferably 1 to 3, and further preferably 1 to 2.
  • the plasma CVD method is preferable because it is necessary to increase the film formation rate to achieve high productivity and to avoid thermal damage to the film substrate.
  • the CVD inorganic layer has a carbon content measured by X-ray photoelectron spectroscopy (XPS method) of 20 at. %, Preferably 10 at. %, More preferably 5 at. %.
  • XPS method X-ray photoelectron spectroscopy
  • the carbon content of the CVD inorganic layer is 0.5 at. % Or more, preferably 1 at. % Or more, more preferably 2 at. % Or more is more preferable.
  • the carbon content in the CVD inorganic layer is preferably 0.5 at. % Or more and 20 at. %, More preferably 0.5 at. % Or more and 10 at. %, More preferably 0.5 at. % Or more and 5 at. %, More preferably 1 at. % Or more and 5 at. %, More preferably 2 at. % Or more and 5 at. It is in the range of less than%.
  • “at.%” Indicates an atomic composition percentage (atomic%).
  • XPS method X-ray photoelectron spectroscopy
  • the method achieved by selecting the raw material in CVD, a raw material, and reaction gas examples thereof include a method of adjusting by the flow rate and ratio of (oxygen, nitrogen, etc.), a method of adjusting by the pressure during film formation and input power, and the like.
  • a specific method for measuring the carbon content by X-ray photoelectron spectroscopy (XPS method) is as described later.
  • Examples of the inorganic substance constituting the CVD inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, diamond-like carbon, and the like, oxides, carbides, nitrides, or mixtures thereof.
  • silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbonitride, and aluminum oxide are more preferable because high gas barrier properties can be stably maintained.
  • the CVD inorganic layer may contain one kind of the inorganic substance or two or more kinds.
  • An example of a raw material for forming a CVD inorganic layer made of silicon oxide or the like is a silicon compound.
  • a titanium compound is mentioned as a raw material for CVD inorganic layer formation which consists of titanium oxide etc. If it is a compound such as a silicon compound or a titanium compound, it can be used in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
  • the solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane, or a mixed solvent thereof may be used as the solvent.
  • silicon compound examples include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diethyldimethoxy.
  • Silane diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane, bis (Dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, diethyla Notrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetraki
  • titanium compounds include titanium inorganic compounds such as titanium oxide and titanium chloride, titanium alkoxides such as titanium tetrabutoxide, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate and tetramethyl titanate,
  • titanium organic compounds such as titanium chelates such as titanium lactate, titanium acetylacetonate, titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium ethylacetoacetate and titanium triethanolaminate.
  • the CVD inorganic layer is preferably composed of two or more layers, more preferably 2 to 5 layers, in order to ensure the sealing effect on the PVD inorganic layer.
  • the thickness of the CVD inorganic layer is less than 20 nm as measured by a cross-sectional TEM method. By being in the above range, the intermolecular force between the PVD inorganic layers acts effectively, thereby improving the adhesion.
  • the production rate by the chemical vapor deposition method can be increased to the same level as that of the vacuum vapor deposition method, so that the production efficiency can be improved and the production equipment can be miniaturized and simplified, and an inexpensive barrier film can be produced.
  • the thickness of the CVD inorganic layer is preferably less than 10 nm, more preferably less than 5 nm, and even more preferably less than 3 nm.
  • the lower limit value of the thickness of the CVD inorganic layer is preferably 0.01 nm, more preferably 0.1 nm, as a minimum film thickness for exhibiting a sealing effect on the PVD inorganic layer. Preferably, it is 0.5 nm. If the thickness is within the above range, the adhesion and gas barrier properties are good, which is preferable.
  • the thickness of the CVD inorganic layer is 0.1 nm or more, the effect of sealing the open pores of the lower PVD inorganic layer described above is exhibited at the same time that the surface becomes smooth and the upper PVD inorganic layer is deposited. Since the surface diffusion of the vapor deposition particles becomes good and the particles are deposited more densely, the barrier property is further improved.
  • the thickness of the CVD inorganic layer is preferably 0.01 nm or more and less than 20 nm, more preferably 0.1 nm or more and less than 20 nm, further preferably 0.1 nm or more and less than 10 nm, It is particularly preferably 0.1 nm or more and less than 5 nm, and particularly preferably 0.1 nm or more and less than 3 nm.
  • the thickness ratio [CVD inorganic layer thickness / PVD inorganic layer thickness] is preferably 0.0001 to 0.2, It is more preferably 0.0005 to 0.1, and further preferably 0.001 to 0.1.
  • [CVD inorganic layer thickness / PVD inorganic layer thickness] is 0.0001 or more, effects such as a sealing effect and stress relaxation by the CVD inorganic layer can be obtained.
  • [CVD inorganic layer thickness / PVD inorganic layer thickness] to 0.2 or less, the base material is formed when the PVD inorganic layer and the CVD inorganic layer are continuously formed by the Roll to Roll process. Therefore, it is not necessary to greatly reduce the transfer speed in accordance with the CVD inorganic layer having a low film formation rate, and the productivity can be prevented from being lowered.
  • the surface roughness (measured by an atomic force microscope (AFM)) of the PVD inorganic layer is preferably about 5 nm or less, because vapor deposition particles are densely deposited, which is preferable for exhibiting barrier properties.
  • AFM atomic force microscope
  • the thickness of the CVD inorganic layer can be measured by a cross-sectional TEM method using a transmission electron microscope (TEM), specifically by the method described in the examples.
  • the CVD inorganic layer is formed by evaporating the raw material compound and introducing it into a vacuum apparatus as a raw material gas, and direct current (DC) plasma, low frequency plasma, high frequency (RF) plasma, pulse wave plasma, tripolar structure.
  • DC direct current
  • RF radio frequency
  • Plasma microwave plasma, downstream plasma, columnar plasma, plasma assisted epitaxy, remote plasma, etc. can be used to generate plasma.
  • a radio frequency (RF) plasma apparatus is preferable from the viewpoint of plasma stability, and a remote plasma apparatus capable of obtaining a dense inorganic layer with a small surface roughness is preferable.
  • thermal CVD method a thermal CVD method
  • Cat-CVD method catalytic chemical vapor deposition
  • photo CVD method a photo CVD method
  • MOCVD method an MOCVD method
  • thermal CVD method and the Cat-CVD method are preferable because they are excellent in mass productivity and film formation quality.
  • an anchor coat layer is preferably provided between the substrate and the PVD inorganic layer in order to improve the adhesion between the substrate and the PVD inorganic layer.
  • Resin, isocyanate group-containing resin, carbodiimide resin, alkoxyl group-containing resin, epoxy resin, oxazoline group-containing resin, styrene resin, polyparaxylylene resin, etc. may be used alone or in combination of two or more. it can.
  • polyester resin From the group consisting of polyester resin, urethane resin, acrylic resin, nitrocellulose resin, silicone resin and isocyanate group-containing resin, from the viewpoint of gas barrier properties and adhesion when used as a gas barrier film as the resin. It is preferable to use at least one selected resin. Among these, at least one resin selected from the group consisting of polyester resins, urethane resins, acrylic resins, and isocyanate group-containing resins is more preferable, and polyester resins and acrylic resins are more preferable.
  • the molecular weight of the polymer constituting the resin is preferably a number average molecular weight of 3,000 to 50,000, more preferably 4,000 to 40,000, and even more preferably from the viewpoint of gas barrier properties and adhesion. 5,000 to 30,000.
  • the curing agent include isocyanate compounds.
  • the isocyanate compound include aliphatic polyisocyanates such as hexamethylene diisocyanate and dicyclohexylmethane diisocyanate, and aromatic polyisocyanates such as xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylene diisocyanate, tolidine diisocyanate, and naphthalene diisocyanate.
  • a polyisocyanate having two or more isocyanate groups is preferable, and a polyisocyanate having three or more isocyanate groups is more preferable.
  • various known additives can be blended in the anchor coat layer. Examples of such additives include aqueous epoxy resins, alkyl titanates, antioxidants, weathering stabilizers, UV absorbers, antistatic agents, pigments, dyes, antibacterial agents, lubricants, inorganic fillers, antiblocking agents, and the like. be able to.
  • the thickness of the anchor coat layer provided on the substrate is usually 0.1 to 5000 nm, preferably 1 to 2000 nm, more preferably 1 to 1000 nm. If it is within the above range, the slipperiness is good, there is almost no peeling from the base material due to the internal stress of the anchor coat layer itself, and a uniform thickness can be maintained, and also in the adhesion between layers Are better. Moreover, in order to improve the applicability
  • the gas barrier film of this invention forms a protective layer in the uppermost layer in the side in which each said inorganic layer was formed.
  • the protective layer include polyester resins, urethane resins, acrylic resins, vinyl alcohol resins such as polyvinyl alcohol resins and ethylene vinyl alcohol resins, ethylene-unsaturated carboxylic acid copolymers,
  • the resin layer include vinyl ester resins, nitrocellulose resins, silicone resins, epoxy resins, styrene resins, isocyanate group-containing resins, carbodiimide group-containing resins, alkoxyl group-containing resins, and oxazoline group-containing resins.
  • a resin layer of a water-soluble resin is preferable, and examples of the water-soluble resin include polyvinyl alcohol resins, ethylene vinyl alcohol resins, and ethylene-unsaturated carboxylic acid copolymer. At least one selected from coalescence is preferred.
  • Resin used for the said protective layer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the protective layer contains one or more inorganic particles selected from particulate inorganic fillers and layered inorganic fillers such as silica sol, alumina sol and other inorganic oxide sols in order to improve gas barrier properties, abrasion resistance, and slipperiness. can do.
  • the thickness of the protective layer is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m, from the viewpoints of printability and processability.
  • a known coating method is appropriately adopted as the formation method. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a bar coater, or a coating method using a spray can be used.
  • a uniform protective layer is formed by evaporating the solvent using heat drying such as hot air drying and hot roll drying at a temperature of about 80 to 200 ° C., or using a known drying method such as infrared drying.
  • the following embodiments can be preferably used from the viewpoint of gas barrier properties and adhesion.
  • Base material / AC / specific PVD inorganic layer / protective layer (2) Base material / AC / specific PVD inorganic layer / specific PVD inorganic layer / protective layer (3) Base material / specific PVD inorganic layer / protective layer (4 ) Base material / specific PVD inorganic layer / specific PVD inorganic layer (5) base material / specific PVD inorganic layer (6) base material / AC / specific PVD inorganic layer / general PVD inorganic layer / protective layer “AC” refers to the anchor coat layer and “/” refers to the interface of the layers.
  • the following embodiments can be preferably used from the viewpoint of gas barrier properties and adhesion.
  • Base material / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (2) Base material / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic Layer (3) Base material / AC / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer (4) Base material / AC / Specific PVD Inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (5) substrate / AC / specific PVD inorganic layer / CVD inorganic layer / CVD inorganic layer
  • Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (8) Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (9) Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (10) base material / specific PVD inorganic layer / CVD inorganic layer / protective layer (11) substrate / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (12) substrate / specific PVD inorganic layer / CVD inorganic Layer / specific PVD inorganic layer / specific PVD inorganic layer / protective layer (12) substrate / specific PVD inorganic layer / CV
  • stacked the additional structural layer further on the said structural layer as needed can be used according to a use.
  • a gas barrier laminate film in which a plastic film is provided on the inorganic layer or protective layer is used for various applications.
  • the thickness of the plastic film is usually selected in the range of 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, depending on the application, from the viewpoints of mechanical strength, flexibility, transparency as a substrate of the laminated structure. .
  • the plastic film on the protective layer the same film as exemplified for the substrate can be used.
  • the width and length of the film are preferably longer.
  • the film width is preferably 0.6 m or more, more preferably 0.8 m or more, further preferably 1.0 m or more, and the film length is preferably 1000 m or more, more preferably 3000 m or more, and further preferably 5000 m or more.
  • the gas barrier laminate film can be heat sealed by using a resin capable of heat sealing on the surface of the inorganic layer or the protective layer, and can be used as various containers.
  • heat-sealable resins include known resins such as polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ionomer resins, acrylic resins, and biodegradable resins.
  • the gas barrier laminate film there may be mentioned one in which a printing layer is formed on the coated surface of the inorganic layer or the protective layer, and further a heat seal layer is laminated thereon.
  • a printing ink for forming the printing layer aqueous and solvent-based resin-containing printing inks can be used.
  • the resin used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof.
  • antistatic agents for printing inks, antistatic agents, light shielding agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc.
  • plasticizers for printing inks, antistatic agents, light shielding agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc.
  • lubricants for printing inks, antistatic agents, light shielding agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc.
  • a printing method for providing a printing layer can be used.
  • Well-known printing methods such as an offset printing method, a gravure printing method, and a screen printing method
  • a known drying method such as hot air drying, hot roll drying, or infrared drying can be used.
  • a plastic film the thing similar to the base material used for the gas barrier film of this invention can be used.
  • paper, polyester resin, polyamide resin or biodegradable resin is preferable from the viewpoint of obtaining sufficient rigidity and strength of the laminate.
  • the total light transmittance (JIS K7361-1) of the gas barrier film is preferably 85% or more, and more preferably 90% or more.
  • the L * value in the L * a * b * color system of the gas barrier film is preferably 90 or more, and more preferably 95 or more.
  • the b * value is preferably ⁇ 2 or more, more preferably ⁇ 1 or more, preferably less than 3, more preferably 2.5 or less, and preferably 2 or less. Further preferred.
  • the L * value, a * value and b * values, L * a * b * color system of L * value of JIS Z8729 means that the a * and b * values, these values JIS It can be measured based on Z8722.
  • the gas barrier film according to the first aspect of the present invention comprises an inorganic powder having a median diameter of 3 to 100 ⁇ m on at least one surface of a substrate, having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of the crucible. It can be manufactured by forming an inorganic layer by a vacuum vapor deposition method in which a vapor deposition material formed by sintering and molding into a cylindrical shape having an inner height of 45% or less is vaporized by heating.
  • the PVD inorganic layer is formed under reduced pressure, preferably while transporting the film, in order to form a dense thin film.
  • the pressure at the time of forming the PVD inorganic layer is preferably 1 ⁇ 10 ⁇ 7 to 1 Pa, more preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 1 Pa, from the viewpoints of vacuum exhaust capability and barrier properties. It is preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 2 Pa. If it is in the said range, sufficient gas-barrier property will be acquired, and it is excellent also in transparency, without generating a crack and peeling in a PVD inorganic layer.
  • the pressure conditions are the same for the specific PVD layer and the general PVD layer.
  • the conveyance speed of the base material at the time of forming a PVD inorganic layer shall be 100 m / min.
  • the specific PVD layer can suppress the splash phenomenon even at a high temperature, and thus can be manufactured at a high speed.
  • an inorganic layer by vacuum deposition, an inorganic layer by chemical vapor deposition, and an inorganic layer by vacuum deposition are formed in this order on at least one surface of the substrate.
  • One or more of the inorganic layers formed by the vacuum deposition method an inorganic powder having a median diameter of 3 to 100 ⁇ m, a circle having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. It can be manufactured by forming a vapor deposition material formed by sintering in a columnar shape by a vacuum vapor deposition method that vaporizes by heating.
  • the formation of the CVD inorganic layer is preferably performed under reduced pressure in order to form a dense thin film, and is preferably 10 Pa or less, more preferably 1 ⁇ 10 ⁇ 2 to 10 Pa, and further preferably from the viewpoint of film formation speed and barrier properties. Is 1 ⁇ 10 ⁇ 1 to 1 Pa.
  • the conveyance speed of the base material at the time of forming a CVD inorganic layer is 100 m / min or more from a viewpoint of productivity improvement, and it is more preferable that it is 200 m / min or more.
  • the said conveyance speed 1000 m / min or less is preferable from a viewpoint of stability of film conveyance.
  • the CVD inorganic layer can be subjected to a crosslinking treatment by electron beam irradiation.
  • the PVD inorganic layer it is preferable to continuously form the PVD inorganic layer, the CVD inorganic layer, and the PVD inorganic layer under reduced pressure. Further, from the same viewpoint, it is preferable to perform the formation of the CVD inorganic layer at a transport speed of the substrate of 100 m / min or more, particularly while transporting the film, preferably transporting the film. That is, in the present invention, after the formation of each thin film, the pressure in the vacuum chamber is returned to the vicinity of the atmospheric pressure, and the subsequent process is not performed again by evacuation. Preferably it is done. In addition, when repeating formation of each said inorganic layer, it is preferable to carry out continuously under reduced pressure. Similarly, when repeatedly laminating the PVD inorganic layer itself in the first embodiment of the present invention, it is preferably carried out continuously under reduced pressure in the same apparatus.
  • X to Y (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified.
  • ⁇ Water vapor transmission rate> Using two gas barrier laminated films with a moisture permeable area of 10.0 cm x 10.0 cm square, making a bag with about 20 g of anhydrous calcium chloride as a hygroscopic agent with the vapor deposition layer side facing outside, and sealing all sides Place the bag in a constant humidity device at a temperature of 40 ° C. and a relative humidity of 90% RH, measure the mass from the 14th day when the moisture permeability is stable to the 30th day at intervals of 72 hours or more, and the elapsed time and bag weight after the 14th day The moisture permeability (g / m 2 / day) was calculated from the slope of the regression line.
  • Total light transmittance> In accordance with JIS K7361-1, the total light transmittance of the gas barrier film was measured with an integrating sphere turbidimeter “ND-2000” manufactured by Nippon Denshoku Industries Co., Ltd.
  • ⁇ Film thickness of PVD inorganic layer Measurement of the film thickness of the inorganic layer was performed using fluorescent X-rays.
  • This method uses the phenomenon of emitting fluorescent X-rays peculiar to atoms when they are irradiated with X-rays, and knowing the number (amount) of atoms by measuring the intensity of emitted fluorescent X-rays. Can do. Specifically, a thin film having two known thicknesses is formed on the film, the specific fluorescent X-ray intensity emitted for each is measured, and a calibration curve is created from this information. Similarly, the fluorescent X-ray intensity was measured for the measurement sample, and the film thickness was measured from the calibration curve.
  • ⁇ Film thickness of CVD inorganic layer> A sample was prepared by an epoxy resin-embedded ultrathin section method, and measured with a cross-sectional TEM apparatus “JEM-1200EXII” manufactured by JEOL Ltd. under an acceleration voltage of 120 KV.
  • a relatively thick CVD inorganic layer of 20 nm or more formed under the same film forming conditions is used.
  • the film forming rate per unit transport speed is calculated by measuring by the cross-sectional TEM method, and the thickness when the film is formed at the transport speed described in the examples is the calculated value.
  • Example 1 Production of Vapor Deposition Material
  • Precipitated SiO was produced with a vacuum aggregator, and the deposited SiO was pulverized with a pulverizer and then classified to obtain SiO powder having a median diameter of 3 ⁇ m. Next, it is pressure-molded in a mold, the breaking strength at the time of pressurization is 5 MPa or more, the diameter is 20% of the inner diameter of the heating cylindrical crucible described later, and the height is the internal height of the heating cylindrical crucible. A 10% cylindrical molded body was obtained. Next, the obtained molded body was sintered at about 1000 ° C. under the conditions of an inert atmosphere and atmospheric pressure to obtain a vapor deposition material (powdered SiO sintered body).
  • the above evaporation material is placed in a cylindrical tantalum crucible (bulk density: 16.7 Mg / m 3 , thermal conductivity: 57.5 W / (m ⁇ K), bottom inner diameter: 100 mm, internal height: 100 mm).
  • the SiO 2 is evaporated by heating under a vacuum of 2 ⁇ 10 ⁇ 3 Pa using a vacuum deposition apparatus, and a 25.4 nm thick SiOx vacuum deposition film (specific PVD inorganic layer) is formed on the anchor coat layer. And a gas barrier film was obtained.
  • the conveyance speed of the base material was 100 m / min.
  • a urethane-based adhesive (“AD900” and “CAT-RT85” manufactured by Toyo Morton Co., Ltd. at a ratio of 10: 1.5) was applied to the inorganic layer surface side of the obtained gas barrier film and dried.
  • An adhesive resin layer having a thickness of about 3 ⁇ m was formed, and an unstretched polypropylene film having a thickness of 60 ⁇ m (“Pyrene Film-CT P1146” manufactured by Toyobo Co., Ltd.) was laminated on the adhesive resin layer, and a gas barrier laminate film Got.
  • Example 2 In Example 1, a gas barrier film and a gas barrier laminated film were produced in the same manner except that a SiO 2 powder having a median diameter of 10 ⁇ m was used and the thickness of the specific PVD inorganic layer was 25.9 nm.
  • Example 3 In Example 2, the gas barrier film and the gas barrier laminate film were similarly prepared except that the diameter of the cylindrical molded body was 10% of the inner diameter of the above-described heating cylindrical crucible and the thickness of the specific PVD inorganic layer was 25.3 nm. Was made.
  • Example 4 In Example 1, a gas barrier film and a gas barrier laminated film were prepared in the same manner except that the SiO powder having a median diameter of 100 ⁇ m was used and the thickness of the specific PVD inorganic layer was 26.8 nm.
  • Example 5 the diameter of the cylindrical molded body is 45% of the bottom inner diameter of the heating cylindrical crucible described above, the height is 45% of the internal height of the heating cylindrical crucible, and the thickness of the specific PVD inorganic layer is A gas barrier film and a gas barrier laminated film were produced in the same manner except that the thickness was 26.0 nm.
  • Example 6 the specific PVD inorganic layer was provided with a thickness of 25.0 nm, and then the molar ratio of HMDSN (hexamethyldisilazane), nitrogen gas, and Ar gas was 1 without returning the pressure to atmospheric pressure.
  • HMDSN hexamethyldisilazane
  • Ar gas Ar gas
  • plasma was formed under a vacuum of 0.4 Pa to form a CVD inorganic layer (SiOCN (silicon oxycarbonitride)) on the surface of the inorganic layer (thickness 4 nm).
  • the carbon content of the CVD inorganic layer was 4%.
  • the conveyance speed of the base material in forming the PVD layer and the CVD inorganic layer was 100 m / min.
  • the vapor deposition material is placed in the crucible under a vacuum of 2 ⁇ 10 ⁇ 3 Pa, SiO is evaporated by heating, and SiOx having a thickness of 35 nm is formed on the CVD inorganic layer.
  • the specific PVD inorganic layer was formed to obtain a gas barrier film. Further, using this gas barrier film, a gas barrier laminated film was obtained in the same manner as in Example 1.
  • Example 1 a gas barrier film and a gas barrier laminated film were produced in the same manner except that the SiO powder having a median diameter of 1 ⁇ m was used and the thickness of the specific PVD inorganic layer was 24.0 nm.
  • Example 2 a gas barrier film and a gas barrier laminated film were produced in the same manner except that the SiO powder having a median diameter of 500 ⁇ m was used and the thickness of the specific PVD inorganic layer was 28.0 nm.
  • Example 2 the height is the same as that of the molded body of Example 2, except that the diameter of the molded body of Example 2 is a square column with one side, and the thickness of the specific PVD inorganic layer is 25.3 nm. In the same manner, a gas barrier film and a gas barrier laminated film were produced.
  • Example 4 In Example 1, a SiO powder having a median diameter of 15 ⁇ m was used, the diameter of the cylindrical molded body was 7% of the bottom inner diameter of the heating cylindrical crucible, and the thickness of the specific PVD layer was 25.7 ⁇ m. Similarly, a gas barrier film and a gas barrier laminated film were produced.
  • Example 1 a SiO powder having a median diameter of 15 ⁇ m was used, the diameter of the cylindrical molded body was set to 75% of the inner diameter of the bottom of the above-described heating cylindrical crucible, and the thickness of the specific PVD layer was set to 25.9 ⁇ m. Similarly, a gas barrier film and a gas barrier laminated film were produced.
  • Example 6 SiO powder having a median diameter of 15 ⁇ m is used, the diameter of the cylindrical molded body is 10% of the inner diameter of the bottom of the heating cylindrical crucible described above, and the height is 80% of the internal height of the heating cylindrical crucible. %, And a gas barrier film and a gas barrier laminate film were produced in the same manner except that the thickness of the specific PVD layer was 25.3 ⁇ m.
  • the conveyance speed of the base material when forming the PVD layer and the CVD inorganic layer was 100 m / min.
  • Each of Examples 1 to 6 has a low water vapor transmission rate, a high total light transmittance, and a large amount of evaporation during heating. Therefore, it can be confirmed that the gas barrier properties, optical properties, and productivity are excellent.
  • Comparative Example 1 had a small median diameter of the vapor deposition material
  • Comparative Example 4 had a small diameter of the molded material of the vapor deposition material, so that the amount of evaporation during heating was small and the productivity was poor.
  • Comparative Examples 2, 3, 5 and 6 all had a splash phenomenon, water vapor transmission rate was high, and total light transmittance was also low.
  • the cause of the splash phenomenon in these comparative examples is that the comparative example 2 has a large median diameter of the vapor deposition material, so that the strength of the molded body is not sufficient.
  • the shape is a quadrangular prism, the apex tends to be locally high, the comparative example 5 has a large diameter of the molded body of the vapor deposition material, and the heat distribution per molded body is large, comparative example 6
  • the height of the molded body of the vapor deposition material is high, and the area away from the bottom surface of the crucible increases, and it is considered that heat unevenness occurs in the molded body.
  • the gas barrier film of the present invention can be used for packaging articles that require blocking of various gases such as water vapor and oxygen, for example, packaging materials for food and pharmaceuticals, materials for solar cells and electronic paper, and packaging materials for electronic devices. Can be suitably used. Moreover, the gas barrier laminated film of the present invention has good productivity and can be industrially produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a laminated gas barrier film which has outstanding optical characteristics while having adequate gas barrier properties, and has excellent producibility. The gas barrier film comprises on at least one surface of a base material an inorganic layer which is formed by means of vacuum deposition, the inorganic layer which is formed by means of vacuum deposition being formed by using heat to vaporize a vaporization material that is formed by sintering and moulding an inorganic powder having a median diameter of 3-100 µm into a cylindrical shape whereof the diameter is 10-45% of the inner diameter at the bottom part of a crucible and the height is no greater than 45% of the internal height of the crucible.

Description

ガスバリア性フィルム及びガスバリア性フィルムの製造方法Gas barrier film and method for producing gas barrier film
 本発明は、食品や医薬品等の包装材料や電子デバイス等のパッケージ材料、電子ペーパー、太陽電池用の材料等として主に用いられるガスバリア性フィルム及びその製造方法に関する。 The present invention relates to a gas barrier film mainly used as packaging materials for foods and pharmaceuticals, packaging materials for electronic devices, electronic paper, materials for solar cells, and the like, and a method for producing the same.
 ガスバリアフィルムは、プラスチックフィルムを基材として、その片面または両面にガスバリア層を形成する構成をとるのが一般的である。例えば当該ガスバリアフィルムはプラスチックフィルムにSiOx蒸着膜を成膜したものが挙げられる。
 高いガスバリア性を発現するSiOx蒸着膜を成膜できる蒸着材料は、SiとSiO2の混合物を加熱し、昇華したSiOガスを析出基体に析出させたもの、若しくは得られた析出SiOを破砕や研磨した後に成型するもの(析出タイプSiO)が用いられる。また、析出SiOを粉末にし、焼結成型を行なったもの(粉末焼結成型タイプSiO)を用いる場合もある。
The gas barrier film generally has a configuration in which a gas barrier layer is formed on one or both sides of a plastic film as a base material. For example, the gas barrier film includes a plastic film formed with a SiOx vapor deposition film.
Vapor deposition material that can form a SiOx vapor deposition film that exhibits high gas barrier properties is obtained by heating a mixture of Si and SiO 2 and depositing sublimated SiO gas on a deposition substrate, or crushing or polishing the obtained deposited SiO After that, what is molded (precipitation type SiO) is used. Further, there is a case where the precipitated SiO is powdered and sintered (powder sintered mold type SiO) is used.
 析出タイプSiOは高い密度を有し、非常に緻密な構造となっている。このため、この蒸着材料を蒸発させてSiOx蒸着膜を成膜した場合には、蒸発の際の加熱による熱衝撃や内部から発生するガスの圧力などにより、気化していない蒸着材料が、高温の微細な粒のまま飛散する現象(スプラッシュ現象)が生じやすいという問題がある。このような高温の微細粒がSiOx蒸着膜に衝突した場合には、SiOx蒸着膜にピンホールが生じて、そのSiOx蒸着膜を有するガスバリアフィルムのガスバリア性や透明性が低下するという問題や、蒸着させた後にガスバリアフィルムをロールに巻き取る際に、その微細粒が異物としてガスバリアフィルムの間に巻取られ、最終的に製品中に混入するという問題もある。また、ガスバリアフィルム基材に貫通孔を生じさせるという問題も生じる。 Precipitation type SiO has a high density and has a very dense structure. For this reason, when this evaporation material is evaporated to form a SiOx evaporation film, the evaporation material which is not vaporized due to the thermal shock caused by heating during evaporation or the pressure of gas generated from the inside is high temperature. There is a problem that a phenomenon (splash phenomenon) in which fine particles are scattered is likely to occur. When such high-temperature fine particles collide with the SiOx vapor-deposited film, pinholes are generated in the SiOx vapor-deposited film, and the gas barrier property and transparency of the gas barrier film having the SiOx vapor-deposited film are reduced. When the gas barrier film is wound around the roll after being formed, the fine particles are wound between the gas barrier films as foreign matters and finally mixed into the product. Moreover, the problem that a through-hole is produced in a gas barrier film base material also arises.
 粉末焼結成型タイプSiOはその製造方法から密度や形状をコンロトールしやすい利点があり、広く用いられている。しかし、粉末焼結成型タイプSiOは、析出タイプSiOよりも低密度となり、強度的に脆くなるため、高温雰囲気中での蒸散の際に一部が崩壊し、高温の微細粒が飛散する現象(スプラッシュ現象)が起こる場合がある。 Powder-sintered molding type SiO has an advantage that it is easy to control density and shape from its manufacturing method, and is widely used. However, the powder sintered mold type SiO has a lower density than the precipitation type SiO and becomes brittle in strength, so that a part of it collapses during evaporation in a high temperature atmosphere, and high temperature fine particles are scattered ( (Splash phenomenon) may occur.
特開2008-133157号公報JP 2008-133157 A
 上記のようなスプラッシュ現象に伴う問題は、ガスバリア性能のみならず、ガスバリア性フィルムを表示パネルや光学用途などの高精細が求められる用途に用いる場合、致命的な問題になり得る。 The problems associated with the splash phenomenon as described above can be fatal when the gas barrier film is used not only for gas barrier performance but also for applications requiring high definition such as display panels and optical applications.
 加熱蒸着でのガスバリアフィルム製造において、析出タイプSiOを用いスプラッシュ現象を抑えながら成膜する為には加熱量を制限することが最も効果がある。しかし、加熱量を制限した場合、スプラッシュ現象による異物の発生が低減して、光学用途に適した透明性や外観を有するガスバリア性フィルムが得られるが、加熱量の減少により蒸着速度低下と共にガスバリア性の低下が起こるという問題があった。
 特許文献1は粉体焼結タイプSiOの製造において粒径とその混合比、焼結条件によってスプラッシュ現象の低減を図っている。しかし、特許文献1では加熱手段が電子ビームであり、例えば、抵抗加熱のような従来の加熱手段に比べ蒸着材料が受ける熱衝撃のレベルが格段に高い。このため特許文献1では蒸着材料の局所的な熱勾配が大きくなり、蒸着材料のクラックや崩壊等が起きやすく、蒸着材料が崩れる際にスプラッシュ現象が発生することがある。また、特許文献1はスプラッシュ現象とガスバリアフィルムの性能との関係については記載がない。
 本発明が解決しようとする課題は、十分なガスバリア性を有しつつ光学的特性に優れ、かつ生産性に優れたガスバリアフィルム、及び該フィルムを製造する方法を提供することにある。
In the production of a gas barrier film by heating vapor deposition, it is most effective to limit the amount of heating in order to form a film while using a deposition type SiO while suppressing the splash phenomenon. However, when the amount of heating is limited, the generation of foreign matters due to the splash phenomenon is reduced, and a gas barrier film having transparency and appearance suitable for optical applications can be obtained. There was a problem that the decrease of the.
Patent Document 1 attempts to reduce the splash phenomenon depending on the particle diameter, the mixing ratio, and the sintering conditions in the production of powder sintered type SiO. However, in Patent Document 1, the heating means is an electron beam, and the level of thermal shock received by the vapor deposition material is much higher than, for example, conventional heating means such as resistance heating. For this reason, in Patent Document 1, the local thermal gradient of the vapor deposition material is increased, the vapor deposition material is liable to crack or collapse, and a splash phenomenon may occur when the vapor deposition material collapses. In addition, Patent Document 1 does not describe the relationship between the splash phenomenon and the performance of the gas barrier film.
The problem to be solved by the present invention is to provide a gas barrier film having a sufficient gas barrier property, excellent optical properties and excellent productivity, and a method for producing the film.
 本発明は、基材の少なくとも一方の面に、真空蒸着法(以下、「PVD」ということがある)により形成した無機層を有し、前記真空蒸着法(PVD)により形成した無機層が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなるものである、ガスバリア性フィルム、に関する。 The present invention has an inorganic layer formed by a vacuum deposition method (hereinafter sometimes referred to as “PVD”) on at least one surface of a substrate, and the inorganic layer formed by the vacuum deposition method (PVD) Heating a vapor deposition material obtained by sintering and molding an inorganic powder having a median diameter of 3 to 100 μm into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. It is related with the gas-barrier film which is formed by vaporizing.
 また、本発明は、基材の少なくとも一方の面に、真空蒸着法(PVD)により形成した無機層、化学蒸着法(以下、「CVD」ということがある)により形成した無機層及び真空蒸着法(PVD)により形成した無機層をこの順で有し、前記真空蒸着法(PVD)により形成した無機層の一以上が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなるものである、ガスバリア性フィルム、に関する。 The present invention also provides an inorganic layer formed by vacuum deposition (PVD), an inorganic layer formed by chemical vapor deposition (hereinafter sometimes referred to as “CVD”), and vacuum deposition on at least one surface of a substrate. (PVD) has an inorganic layer formed in this order, and at least one of the inorganic layers formed by the vacuum deposition method (PVD) is an inorganic powder having a median diameter of 3 to 100 μm and a diameter of the bottom inner diameter of the crucible. The present invention relates to a gas barrier film, which is formed by vaporizing by heating a vapor deposition material formed by sintering into a cylindrical shape having a height of 10 to 45% and a height of 45% or less of the internal height of the crucible. .
 また、本発明は、基材の少なくとも一方の面に、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により無機層を形成する、ガスバリア性フィルムの製造方法、に関する。 In the present invention, an inorganic powder having a median diameter of 3 to 100 μm is applied to at least one surface of the substrate, the diameter is 10 to 45% of the bottom inner diameter of the crucible, and the height is 45% or less of the inner height of the crucible. The present invention relates to a method for producing a gas barrier film, in which an inorganic layer is formed by a vacuum vapor deposition method in which a vapor deposition material formed by sintering in a cylindrical shape is vaporized by heating.
 また、本発明は、基材の少なくとも一方の面に、真空蒸着法による無機層、化学蒸着法による無機層及び真空蒸着法による無機層をこの順で形成し、前記真空蒸着法による無機層の一以上を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により形成する、ガスバリア性フィルムの製造方法、に関する。 In the present invention, an inorganic layer formed by vacuum deposition, an inorganic layer formed by chemical vapor deposition, and an inorganic layer formed by vacuum vapor deposition are formed in this order on at least one surface of the substrate. A vacuum deposition method in which at least one vapor deposition material is sintered and molded into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the internal height of the crucible. The present invention relates to a method for producing a gas barrier film.
 本発明は、高いガスバリア性を有し、光学的特性に優れ、かつ生産性に優れるガスバリアフィルム、及び該フィルムを製造する方法を提供する。 The present invention provides a gas barrier film having high gas barrier properties, excellent optical characteristics, and excellent productivity, and a method for producing the film.
ルツボ断面模式図。Crucible cross-sectional schematic diagram.
 以下、本発明を詳細に説明する。
<ガスバリア性フィルムA>
 本発明のガスバリア性フィルムの第一の実施形態(以下、「第一の形態」ということがある)は、基材の少なくとも一方の面に、真空蒸着法(PVD)により形成した無機層を有し、前記真空蒸着法(PVD)により形成した無機層(以下、「PVD無機層」ということがある)が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなる無機層(以下、「特定PVD無機層」ということがある)であるものである。
Hereinafter, the present invention will be described in detail.
<Gas barrier film A>
The first embodiment of the gas barrier film of the present invention (hereinafter sometimes referred to as “first embodiment”) has an inorganic layer formed by vacuum deposition (PVD) on at least one surface of a substrate. The inorganic layer formed by the vacuum deposition method (PVD) (hereinafter sometimes referred to as “PVD inorganic layer”) is an inorganic powder having a median diameter of 3 to 100 μm and a diameter of 10 to 45 that is the bottom inner diameter of the crucible. %, A vapor deposition material formed by sintering and molding into a cylindrical shape whose height is 45% or less of the internal height of the crucible, and is formed by vaporizing by heating (hereinafter referred to as “specific PVD inorganic layer”) There is a thing).
<ガスバリア性フィルムB>
 本発明のガスバリア性フィルムの第二の実施形態(以下、「第二の形態」ということがある)は,基材の少なくとも一方の面に、PVDにより形成した無機層、CVDにより形成した無機層(以下、「CVD無機層」ということがある)及びPVDにより形成した無機層をこの順で有し、前記真空蒸着法により形成した無機層の一以上が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなる無機層(特定PVD無機層)であるものである。
<Gas barrier film B>
In the second embodiment of the gas barrier film of the present invention (hereinafter sometimes referred to as “second embodiment”), an inorganic layer formed by PVD and an inorganic layer formed by CVD on at least one surface of the substrate. (Hereinafter sometimes referred to as “CVD inorganic layer”) and an inorganic layer formed by PVD in this order, and one or more of the inorganic layers formed by the vacuum deposition method is an inorganic powder having a median diameter of 3 to 100 μm. Is vapor-deposited by heating to form a vapor-deposited material that is sintered and molded into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the internal height of the crucible. It is an inorganic layer (specific PVD inorganic layer).
 以下、特に断りのない限り、「本発明のガスバリア性フィルム」とは、ガスバリア性フィルムA(第一の形態)及びB(第二の形態)の双方を含むものとする。 Hereinafter, unless otherwise specified, the “gas barrier film of the present invention” includes both the gas barrier films A (first form) and B (second form).
[基材]
 本発明のガスバリア性フィルムの基材としては、プラスチックフィルムであることが好ましい。その原料としては、通常の包装材料や電子ペーパー、太陽電池の材料に使用しうる樹脂であれば特に制限なく用いることができる。具体的には、エチレン、プロピレン、ブテン等の単独重合体または共重合体などのポリオレフィン;環状ポリオレフィン等の非晶質ポリオレフィン;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド;ポリビニルアルコール、エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリル樹脂、生分解性樹脂などが挙げられる。これらの中では、フィルム強度、コストなどの点から、ポリエステル、ポリアミド、ポリオレフィン、生分解性樹脂が好ましく、特に、表面平滑性、フィルム強度、耐熱性等の点から、ポリエチレンテレフタレート(PET)及びポリエチレン-2,6-ナフタレート(PEN)等のポリエステルが特に好ましい。
 プラスチックフィルム中の樹脂の含有量は50~100質量%であることが好ましい。
 また、上記基材は、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。
[Base material]
The substrate of the gas barrier film of the present invention is preferably a plastic film. The raw material can be used without particular limitation as long as it is a resin that can be used for ordinary packaging materials, electronic paper, and solar cell materials. Specifically, polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene; amorphous polyolefins such as cyclic polyolefins; polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalate; nylon 6, nylon 66, polyamides such as nylon 12 and copolymer nylon; polyvinyl alcohol, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, Examples include polyvinyl butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin. Among these, polyesters, polyamides, polyolefins, and biodegradable resins are preferable from the viewpoint of film strength, cost, and the like, and particularly, polyethylene terephthalate (PET) and polyethylene from the viewpoint of surface smoothness, film strength, heat resistance, and the like. Polyesters such as -2,6-naphthalate (PEN) are particularly preferred.
The resin content in the plastic film is preferably 50 to 100% by mass.
In addition, the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent. An inhibitor or the like can be contained.
 上記基材としてのプラスチックフィルムは、上記の原料を用いて成型してなるものであるが、基材として用いる際は、未延伸であってもよいし延伸したものであってもよい。また、単層でも多層でもよい。かかる基材は、従来公知の方法により製造することができ、例えば、原料を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、一軸方向または二軸方向に延伸したフィルムを製造することができる。 The plastic film as the substrate is formed by using the above raw materials, but when used as the substrate, it may be unstretched or stretched. Moreover, a single layer or a multilayer may be sufficient. Such a substrate can be produced by a conventionally known method. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented. A stretched film can be produced. The unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. A film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto.
 基材の厚さは、本発明のガスバリア性フィルムの基材としての機械強度、可撓性、透明性等の点から、その用途に応じ、通常5~500μm、好ましくは10~200μmの範囲で選択され、厚さが大きいシート状のものも含む。また、基材の幅や長さについては特に制限はなく、適宜用途に応じて選択することができる。 The thickness of the substrate is usually in the range of 5 to 500 μm, preferably 10 to 200 μm, depending on its use from the viewpoints of mechanical strength, flexibility, transparency and the like of the gas barrier film of the present invention. Also included are sheets that are selected and have a large thickness. Moreover, there is no restriction | limiting in particular about the width | variety and length of a base material, According to a use, it can select suitably.
[真空蒸着法(PVD)により形成した無機層]
 本発明のガスバリア性フィルムは、第一の形態では、上記基材の少なくとも一方の面にPVD無機層を有し、第二の形態では、上記基材の少なくとも一方の面にPVD無機層、CVD無機層及びPVD無機層をこの順で有する。ここで、第一の形態のPVD無機層、第二の形態の少なくとも一方のPVD無機層は、特定PVD無機層である。なお、PVD無機層を複数有する場合、二以上のPVD無機層が特定PVD無機層であることが好ましく、すべてが特定PVD無機層であることがより好ましい。
[Inorganic layer formed by vacuum vapor deposition (PVD)]
The gas barrier film of the present invention has a PVD inorganic layer on at least one surface of the substrate in the first form, and a PVD inorganic layer and CVD on at least one surface of the substrate in the second form. It has an inorganic layer and a PVD inorganic layer in this order. Here, the PVD inorganic layer of the first form and the PVD inorganic layer of at least one of the second form are specific PVD inorganic layers. In addition, when it has two or more PVD inorganic layers, it is preferable that two or more PVD inorganic layers are specific PVD inorganic layers, and it is more preferable that all are specific PVD inorganic layers.
[特定PVD無機層]
 特定PVD無機層は、真空蒸着法により形成され、より具体的には、メジアン径3~100μmの無機物粉体を、直径がルツボの内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより、基材上に形成される。このような特定PVD無機層は、スプラッシュ現象が抑制されるため、ガスバリア性と透明性に優れ、かつ前記性能を有するPVD無機層を速い蒸着速度を維持したまま得ることができる。この理由は以下(1)、(2)のように考えられる。
[Specific PVD inorganic layer]
The specific PVD inorganic layer is formed by a vacuum deposition method. More specifically, an inorganic powder having a median diameter of 3 to 100 μm is formed with a diameter of 10 to 45% of the inner diameter of the crucible and a height of the inner height of the crucible. A vapor deposition material formed by sintering and molding into a columnar shape of 45% or less is formed on a substrate by vaporizing by heating. Since the splash phenomenon is suppressed in such a specific PVD inorganic layer, a PVD inorganic layer having excellent gas barrier properties and transparency and having the above performance can be obtained while maintaining a high vapor deposition rate. The reason is considered as (1) and (2) below.
(1)まず、蒸着材料を構成する無機物粉体のメジアン径について、粉体のメジアン径が大きい場合は、焼結成型体の強度が出ないため、ハンドリングが悪く、かつ加熱崩壊によるスプラッシュ現象が発生しやすい。粉体のメジアン径が大きい場合でも、焼結温度を上げて緻密性や強度を出すこともできるが、たとえば無機物粉体がSiOの場合、焼結プロセスでSiOが分解して生じたSiが、スプラッシュ現象発生の原因となるとともに成型体の強度を低下させてしまう。
 一方、無機物粉体の粒径が小さい場合は、粒径が大きい場合に比べて低温にて焼結成型体の強度が発揮できるとともに、成型体の表面積が大きくなり、加熱効率の点から蒸散速度を高くすることができる。しかし、その反面、粒径が小さい場合、加熱蒸散での蒸着残渣の発生が多くなる。蒸着残渣とは蒸着後にルツボ内に残るカスのことであり、残渣が発生すると蒸着速度の低下を招く。
 たとえば無機物粉体がSiOの場合、蒸着残渣は、二酸化珪素(SiO2 )やルツボを構成する材料との反応物などからなる。すなわち、SiO粉末焼結型の蒸着材料では、原料であるSiO粉末の粒表面の酸化分(SiO2 )が残渣になるため、残渣量が必然的に多くなり、また同時に、粒表面の酸化膜が蒸着の障害となるため、蒸着速度が低下する。
 本発明では、蒸着材料を構成する無機物粉体として、メジアン径3~100μmの無機物粉体を用いていることから、焼結成型体の強度が優れることによりスプラッシュ現象の発生もなく、残渣の発生を抑制できることにより、蒸着速度を十分なものとすることができ、かつ長時間の成膜も可能となる。
(1) First, regarding the median diameter of the inorganic powder constituting the vapor deposition material, if the median diameter of the powder is large, the strength of the sintered molded body does not come out, so the handling is bad and the splash phenomenon due to heat collapse occurs. Likely to happen. Even when the median diameter of the powder is large, the sintering temperature can be raised to increase the density and strength. For example, when the inorganic powder is SiO, Si produced by decomposition of the SiO in the sintering process, It causes the occurrence of a splash phenomenon and reduces the strength of the molded body.
On the other hand, when the particle size of the inorganic powder is small, the strength of the sintered molded body can be exhibited at a lower temperature than when the particle size is large, and the surface area of the molded body is increased, and the transpiration rate from the viewpoint of heating efficiency. Can be high. However, on the other hand, when the particle diameter is small, the generation of vapor deposition residue due to heat evaporation increases. Vapor deposition residue is debris remaining in the crucible after vapor deposition, and when the residue is generated, the vapor deposition rate is reduced.
For example, in the case where the inorganic powder is SiO, the vapor deposition residue is a reaction product with silicon dioxide (SiO 2 ) or a material constituting the crucible. That is, in the SiO powder sintered vapor deposition material, the oxidized amount (SiO 2 ) on the grain surface of the SiO powder as a raw material becomes a residue, so that the amount of residue inevitably increases, and at the same time, the oxide film on the grain surface Since this hinders vapor deposition, the vapor deposition rate decreases.
In the present invention, since the inorganic powder having a median diameter of 3 to 100 μm is used as the inorganic powder constituting the vapor deposition material, there is no occurrence of a splash phenomenon due to the excellent strength of the sintered compact, and the generation of a residue. Since the deposition rate can be suppressed, the deposition rate can be made sufficient and the film can be formed for a long time.
(2)次に、蒸着材料(成型体)の形状については、蒸着材料が角(頂点)を有する場合は、当該角が周辺部より高温になりやすいため、スプラッシュ現象が生じやすい。本発明では、蒸着材料の形状を円柱状としていることから、局部的な高温を原因とするスプラッシュ現象を抑制することができる。 (2) Next, regarding the shape of the vapor deposition material (molded body), when the vapor deposition material has corners (vertices), the corners are likely to be hotter than the peripheral portion, so that a splash phenomenon is likely to occur. In this invention, since the shape of vapor deposition material is made into the column shape, the splash phenomenon caused by local high temperature can be suppressed.
 また、特定PVD層は、当該層上に他のPVD層や、後述するCVD層、あるいは、バリアフィルム製造加工におけるコーティング層(後述の保護層等)を積層する際に顕著な効果を発揮する。すなわち、スプラッシュ現象により高温の微細粒が衝突したPVD層上に他の層を積層する場合、当該PVD層の表面形状が影響し、そこに積層する層にも欠陥部分が生じるが、特定PVD層の場合は当該問題が生じず、多層積層品のガスバリア性や透明性を良好なものとすることができる。 In addition, the specific PVD layer exhibits a remarkable effect when another PVD layer, a CVD layer described later, or a coating layer (a protective layer described later) in the barrier film manufacturing process is laminated on the layer. That is, when another layer is laminated on the PVD layer on which high-temperature fine particles have collided due to the splash phenomenon, the surface shape of the PVD layer is affected, and a defective portion is also generated in the layer laminated there. In this case, the problem does not occur, and the gas barrier property and transparency of the multilayer laminated product can be improved.
 蒸着材料を構成する無機物粉体としては、メジアン径3~100μmのものを用いる。無機物粉体のメジアン径が3μm未満であると、残渣の発生により、蒸着速度を十分なものとすることができず、また長時間の成膜も困難となる。また、メジアン径が100μmを超えると、焼結成型体の強度が低下してスプラッシュ現象を抑制することが困難となる。
 無機物粉体のメジアン径は3~10μmとすることが好ましい。なお、メジアン径とは、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となる径のことをいう。本発明ではレーザー回折散乱法に基づきメジアン径を算出している。
As the inorganic powder constituting the vapor deposition material, one having a median diameter of 3 to 100 μm is used. When the median diameter of the inorganic powder is less than 3 μm, the deposition rate cannot be made sufficient due to the generation of residues, and long-time film formation becomes difficult. On the other hand, when the median diameter exceeds 100 μm, the strength of the sintered molded body is lowered and it becomes difficult to suppress the splash phenomenon.
The median diameter of the inorganic powder is preferably 3 to 10 μm. The median diameter means a diameter in which the large side and the small side are equal when the powder is divided into two from a certain particle diameter. In the present invention, the median diameter is calculated based on the laser diffraction scattering method.
 蒸着材料はルツボとの関係において、[蒸着材料の直径]/[ルツボの底部内径]の百分率を10~45%とすることが好ましく、15~30%とすることがより好ましく、[蒸着材料の高さ]/[ルツボの内部高さ]の百分率を45%以下とすることが好ましく、15~30%とすることがより好ましい。またルツボの底部内径に対してルツボの開口部内径が異なる形状のルツボの場合、開口部分への蒸着残渣付着や蒸着速度の観点から、開口部内径が底部内径と同じか又は底部内径よりも大きいほうが好ましい。
 なお、図1に示すように、ルツボの底部内径aとは、ルツボ素材の肉厚部分を除いた底部の径であり、底部が円形であるときは直径を指し、底部が多角形や楕円等の円形以外の形状であるときは、底部の外周上の任意の点を結ぶ直線の中で最も長い直線の長さを指す。また、ルツボの内部高さbとは、ルツボ素材の肉厚部分を除いた底部から開口部までの距離を示す。
In terms of the relationship between the vapor deposition material and the crucible, the percentage of [the diameter of the vapor deposition material] / [the inner diameter of the bottom of the crucible] is preferably 10 to 45%, more preferably 15 to 30%. The percentage of [height] / [inner height of crucible] is preferably 45% or less, more preferably 15 to 30%. Also, in the case of a crucible with a crucible opening inner diameter different from the bottom inner diameter of the crucible, the opening inner diameter is the same as or larger than the bottom inner diameter from the viewpoint of deposition residue deposition and deposition rate on the opening. Is preferred.
As shown in FIG. 1, the bottom inner diameter a of the crucible is the diameter of the bottom excluding the thick portion of the crucible material, and refers to the diameter when the bottom is circular, and the bottom is polygonal, elliptical, etc. When the shape is other than a circle, the length of the longest straight line among the straight lines connecting arbitrary points on the outer periphery of the bottom is indicated. The crucible internal height b indicates the distance from the bottom to the opening excluding the thick portion of the crucible material.
 円柱状に焼結成型した蒸着材料は、無機物粉体を円柱形状に加圧成型した後に焼結するか、ホットプレスなどで円柱形状への成型と焼結を同時に行うことにより得ることができる。焼結温度は無機物材料により異なるが、たとえば一酸化珪素粉体の場合、700~1000℃程度である。焼結の際は、成型性を向上させるためにバインダーを使用してもよい。加圧や焼結時の雰囲気、圧力は、不活性雰囲気、大気圧でよく、特に細かい制御は不要である。 The vapor deposition material sintered and molded into a cylindrical shape can be obtained by pressure-molding inorganic powder into a cylindrical shape and then sintering, or by simultaneously performing molding and sintering into a cylindrical shape with a hot press or the like. Although the sintering temperature varies depending on the inorganic material, for example, in the case of silicon monoxide powder, it is about 700 to 1000 ° C. During sintering, a binder may be used to improve moldability. The atmosphere and pressure at the time of pressurization and sintering may be an inert atmosphere and atmospheric pressure, and particularly fine control is unnecessary.
 無機物粉体は、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、炭素等、あるいはこれらの酸化物、炭化物、窒化物またはそれらの混合物が挙げられるが、ガスバリア性の点から、好ましくは酸化珪素、酸化アルミニウム、炭素(例えば、ダイアモンドライクカーボンなどの炭素を主体とした物質)である。特に、一酸化珪素または珪素と二酸化珪素との混合物や酸化珪素は、高いガスバリア性を有し、かつ光学的特性にも優れた特定PVD無機層を十分な蒸着速度で形成できる点で好ましい。上記無機物質は、1種単独で用いてもよいが、2種以上組み合わせて用いてもよい。
 このような無機物粉体から形成される特定PVD層は、SiOxから構成されることが好ましい。この場合、xの範囲はバリア性の点で1.20~1.90であることが好ましく、1.20~1.70であることがより好ましく、1.20~1.45であることがさらに好ましい。
Examples of the inorganic powder include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, carbon, and the like, or oxides, carbides, nitrides, or mixtures thereof. From the viewpoint of gas barrier properties, it is preferably oxidized. Silicon, aluminum oxide, and carbon (for example, a substance mainly composed of carbon such as diamond-like carbon). In particular, silicon monoxide or a mixture of silicon and silicon dioxide or silicon oxide is preferable in that a specific PVD inorganic layer having high gas barrier properties and excellent optical characteristics can be formed at a sufficient deposition rate. Although the said inorganic substance may be used individually by 1 type, you may use it in combination of 2 or more type.
The specific PVD layer formed from such inorganic powder is preferably composed of SiOx. In this case, the range of x is preferably 1.20 to 1.90 in terms of barrier properties, more preferably 1.20 to 1.70, and preferably 1.20 to 1.45. Further preferred.
 特定PVD無機層は真空蒸着法により形成される。真空蒸着法は、スパッタ系の物理蒸着法に比べ、ガスバリア性の高い均一な薄膜が得られるという点で好ましい。真空蒸着法で用いる加熱手段は、ヒーター等による直接加熱,誘導加熱,電子ビーム加熱が挙げられる。これら加熱手段の中でも、電子ビーム加熱は局所的な過熱による蒸着材料のクラックや崩壊等が起きやすいため、ヒーター等による直接加熱又は誘導加熱が好ましい。
 蒸着材料の加熱温度は、通常900~1600℃、好ましくは1200~1400℃である。本発明では高温に加熱してもスプラッシュ現象が生じないため高速での生産が可能となる。
The specific PVD inorganic layer is formed by a vacuum deposition method. The vacuum evaporation method is preferable in that a uniform thin film having a high gas barrier property can be obtained as compared with the sputtering-based physical evaporation method. Examples of the heating means used in the vacuum deposition method include direct heating with a heater, induction heating, and electron beam heating. Among these heating means, since electron beam heating is liable to cause cracking or collapse of the deposited material due to local overheating, direct heating or induction heating with a heater or the like is preferable.
The heating temperature of the vapor deposition material is usually 900 to 1600 ° C., preferably 1200 to 1400 ° C. In the present invention, even if heated to a high temperature, the splash phenomenon does not occur, so that high-speed production is possible.
 蒸着材料の加熱の際、蒸着材料はルツボ内に設置することが好ましい。ルツボは黒鉛からなるものでもよいが、収納部の内側表面が蒸着材料を気化した際に発生するガスに対し不活性な材料からなるものが好ましい。また、無機物粉体が珪素粉末及び/又は一酸化珪素粉末を含む場合、収納部の内側表面が一酸化珪素ガスに対し不活性な材料からなるルツボを用いることが好ましい。ルツボとして収納部の内側表面が蒸着材料を気化した際に発生するガスに対し不活性な材料を用いることにより、ガスバリア性および光学特性に優れ、かつ生産安定性を良好にすることができる。この理由は以下のように考えられる。
 たとえば、一酸化珪素を含む蒸着材料が加熱により気化すると、一酸化珪素ガスが発生する。この一酸化珪素ガスは非常に反応性が高く、ルツボを構成する黒鉛部材との間で下記のような反応が生じる。
 C(s)+SiO(g) → SiC(s)+CO(g)
 C(s)+SiO(g) → Si(s) + CO(g)
 上記反応により生じる一酸化炭素ガスは、PVD無機層の不純物となり得るだけでなく、蒸着装置内の真空度を低下させ、PVD無機層に構造欠陥を生じ得る。この結果、ガスバリア性フィルムの光学性能等の性能が低下することとなる。また、成膜したい面積や求める性能によってルツボを単体ではなく複数個用いることも可能であるが、その場合特に一酸化炭素ガス発生は多くなる。加えて上記反応は継続的に生じることから、同一製造工程内においても時間の経過により欠陥の発生頻度が変動し、たとえば製造開始段階と製造終了段階では、ガスバリア性や光学特性に差が生じ、生産安定性を良好にすることができない。
 蒸着材料が珪素の場合は、珪素粉末の表面に生成した自然酸化膜(SiO2)と珪素粉末(Si)との間で下記反応が生じ、一酸化珪素ガスが発生する。当該一酸化珪素ガスは、ルツボを構成する黒鉛部材と上記同様の反応を生じることから、蒸着材料が珪素の場合でも上記同様の性能低下が発生する。なお、蒸着材料が珪素と二酸化珪素との混合物の場合も同様のことがいえる。
 SiO2(s)+Si(s) → 2SiO(g)
 したがって、ルツボとして収納部の内側表面が蒸着材料を気化した際に発生するガスに対し不活性な材料からなるものを用いることにより、PVD無機層内に不純物や結晶欠陥を有することがなく、より一層ガスバリア性および透明性に優れたガスバリアフィルムを得ることができる。
When heating the vapor deposition material, the vapor deposition material is preferably placed in the crucible. The crucible may be made of graphite, but is preferably made of a material that is inert to the gas generated when the inner surface of the storage portion vaporizes the vapor deposition material. In addition, when the inorganic powder includes silicon powder and / or silicon monoxide powder, it is preferable to use a crucible made of a material in which the inner surface of the storage portion is inactive with respect to silicon monoxide gas. By using a material that is inert to the gas generated when the inner surface of the storage portion vaporizes the vapor deposition material as the crucible, the gas barrier property and the optical characteristics are excellent, and the production stability can be improved. The reason is considered as follows.
For example, when a vapor deposition material containing silicon monoxide is vaporized by heating, silicon monoxide gas is generated. This silicon monoxide gas is very reactive, and the following reaction occurs with the graphite member constituting the crucible.
C (s) + SiO (g) → SiC (s) + CO (g)
C (s) + SiO (g) → Si (s) + CO (g)
The carbon monoxide gas generated by the above reaction can not only become an impurity of the PVD inorganic layer, but also reduce the degree of vacuum in the vapor deposition apparatus and cause structural defects in the PVD inorganic layer. As a result, performance such as optical performance of the gas barrier film is deteriorated. Also, it is possible to use a plurality of crucibles instead of a single unit depending on the area to be formed and the required performance. In that case, the generation of carbon monoxide gas is particularly increased. In addition, since the above reaction occurs continuously, the frequency of occurrence of defects fluctuates over time even within the same manufacturing process, for example, there is a difference in gas barrier properties and optical characteristics between the manufacturing start stage and the manufacturing end stage, Production stability cannot be improved.
When the deposition material is silicon, the following reaction occurs between the natural oxide film (SiO 2 ) generated on the surface of the silicon powder and the silicon powder (Si), and silicon monoxide gas is generated. Since the silicon monoxide gas causes a reaction similar to that described above with the graphite member constituting the crucible, the same performance deterioration as described above occurs even when the vapor deposition material is silicon. The same applies to the case where the vapor deposition material is a mixture of silicon and silicon dioxide.
SiO 2 (s) + Si (s) → 2SiO (g)
Therefore, by using the crucible made of a material that is inert to the gas generated when the inner surface of the storage portion vaporizes the vapor deposition material, there is no impurity or crystal defect in the PVD inorganic layer. A gas barrier film having further excellent gas barrier properties and transparency can be obtained.
 ルツボの基本構成は、蒸着材料を設置する収納部11と、気化した蒸着材料が被蒸着物に放出されるための開口部12とからなる(図1)。本発明では、収納部の内側表面111が蒸着材料を気化した際に発生するガスに対し不活性な材料からなるルツボを用いることが好ましく、収納部の全体の表面(内側表面111及び外側表面112)が蒸着材料を気化した際に発生するガスに対し不活性な材料からなるルツボを用いることがより好ましい。
 上記ルツボとしては、黒鉛等のベース材料からなる収納部の内側表面若しくは全体表面を不活性な材料で被覆したもの、ベース材料となる収納部の内側に不活性な材料からなる収納部を勘合させたもの、ルツボ全体が当該不活性な材料からなるものが挙げられる。長期間の安定性の観点からは、ルツボ全体が不活性な材料から構成されていることが好ましい。
 収納部の形状や容積、開口部の面積等のルツボの形状や大きさに関係する要素は、非蒸着物の大きさなどに合わせて、公知の範囲で適宜選択することができる。
The basic configuration of the crucible includes a storage portion 11 in which a vapor deposition material is installed, and an opening 12 through which the vaporized vapor deposition material is discharged to the vapor deposition target (FIG. 1). In the present invention, it is preferable to use a crucible made of a material that is inert to the gas generated when the inner surface 111 of the container vaporizes the vapor deposition material, and the entire surface of the container (the inner surface 111 and the outer surface 112). It is more preferable to use a crucible made of a material that is inert to the gas generated when the vapor deposition material is vaporized.
As the crucible, the inner surface or the entire surface of the storage portion made of a base material such as graphite is coated with an inert material, and the storage portion made of an inert material is fitted inside the storage portion that becomes the base material. And the whole crucible made of the inactive material. From the viewpoint of long-term stability, the entire crucible is preferably made of an inactive material.
Elements related to the shape and size of the crucible such as the shape and volume of the storage portion and the area of the opening can be appropriately selected within a known range in accordance with the size of the non-deposited material.
 不活性な材料としては、チタン,ジルコニウム,ハフニウム等の第4族に属する金属、バナジウム,ニオブ,タンタル等の第5族に属する金属、クロム,モリブデン,タングステン等の第6族に属する金属、レニウム、オスミウム、イリジウム、ルテニウム、ロジウム等の高融点金属、これら高融点金属の金属化合物(炭化物,窒化物,酸化物)、炭化珪素,炭化ホウ素などの炭化物、窒化珪素,窒化ホウ素,窒化アルミニウム等の窒化物から選ばれる1種以上を用いることができる。これらの金属、金属化合物の中でも、安定性、取り扱い性の観点から、炭化珪素、窒化珪素が好適である。
 不活性な材料は、蒸着時に高温にさらされることから、その融点は1600℃以上であることが好ましい。
Inactive materials include metals belonging to Group 4 such as titanium, zirconium and hafnium, metals belonging to Group 5 such as vanadium, niobium and tantalum, metals belonging to Group 6 such as chromium, molybdenum and tungsten, and rhenium. , High melting point metals such as osmium, iridium, ruthenium, rhodium, metal compounds (carbides, nitrides, oxides) of these refractory metals, carbides such as silicon carbide and boron carbide, silicon nitride, boron nitride, aluminum nitride, etc. One or more selected from nitrides can be used. Among these metals and metal compounds, silicon carbide and silicon nitride are preferable from the viewpoints of stability and handleability.
Since the inert material is exposed to a high temperature during vapor deposition, the melting point is preferably 1600 ° C. or higher.
 ベース材料を不活性な材料で被覆する場合、被覆層の厚さは10~1000nmとすることが好ましい。ベース材料を不活性な材料で被覆する方法としては、化学蒸着法等が挙げられる。例えば、炭化珪素膜を黒鉛ベースの表面に形成するには、制御雰囲気中で黒鉛材と一酸化珪素ガスとを均一に反応させる手段や珪素を加圧含浸させる方法、熱CVDやプラズマCVD法にて被覆層を設ける方法等が挙げられる。均一な表面被膜を得るためには、CVD法での被膜を設ける方法が好ましい。 When the base material is coated with an inert material, the thickness of the coating layer is preferably 10 to 1000 nm. Examples of a method for coating the base material with an inert material include a chemical vapor deposition method. For example, in order to form a silicon carbide film on the surface of a graphite base, a means for uniformly reacting a graphite material and a silicon monoxide gas in a controlled atmosphere, a method of pressure-impregnating silicon, a thermal CVD or a plasma CVD method And a method of providing a coating layer. In order to obtain a uniform surface coating, a method of providing a coating by a CVD method is preferable.
 本発明でいう「不活性」とは、蒸着材料から発生するガスに対して化学反応を起こしにくいもののことをいう。不活性の程度は、たとえば蒸着材料から発生するガスが一酸化珪素ガスの場合、蒸着装置内の一酸化炭素ガスの濃度を尺度とすることができる。たとえば、真空蒸着装置内に四重極形質量分析計を設け、真空蒸着装置内が2×10-3Paの真空下で、二軸延伸ポリエチレンナフタレートフィルム上に厚さ250nmの特定PVD層を形成する工程を行い、成膜工程開始前と成膜工程中の質量数28のガス分圧を測定する。その際、成膜工程中の前記ガス分圧が工程開始前の2倍以下であれば、当該工程で用いたルツボの内側表面は不活性な材料であるといえる。 The term “inert” as used in the present invention refers to a substance that hardly causes a chemical reaction to a gas generated from a vapor deposition material. For example, when the gas generated from the vapor deposition material is silicon monoxide gas, the degree of inertness can be measured by the concentration of carbon monoxide gas in the vapor deposition apparatus. For example, a quadrupole mass spectrometer is provided in a vacuum deposition apparatus, and a specific PVD layer having a thickness of 250 nm is formed on a biaxially stretched polyethylene naphthalate film under a vacuum of 2 × 10 −3 Pa in the vacuum deposition apparatus. The forming step is performed, and the gas partial pressure of mass number 28 is measured before starting the film forming process and during the film forming process. At that time, if the gas partial pressure during the film formation step is twice or less that before the start of the step, it can be said that the inner surface of the crucible used in the step is an inert material.
 特定PVD無機層の厚さは、その下限値が、一般に0.1nm、好ましくは0.5nm、より好ましくは1nm、さらに好ましくは10nmであり、その上限値が一般に500nm、好ましくは100nm、より好ましくは50nmである。特定PVD無機層の厚さは、ガスバリア性、フィルムの生産性の点から、0.1nm以上、500nm以下が好ましく、10nm以上500nm以下がより好ましく、さらに好ましくは10nm以上100nm以下、特に好ましくは10nm以上50nm以下である。特定PVD無機層の厚さは蛍光X線を用いて測定することができ、具体的には実施例に記載の方法で行うことができる。 The lower limit of the thickness of the specific PVD inorganic layer is generally 0.1 nm, preferably 0.5 nm, more preferably 1 nm, still more preferably 10 nm, and the upper limit is generally 500 nm, preferably 100 nm, more preferably. Is 50 nm. The thickness of the specific PVD inorganic layer is preferably 0.1 nm or more and 500 nm or less, more preferably 10 nm or more and 500 nm or less, further preferably 10 nm or more and 100 nm or less, and particularly preferably 10 nm, from the viewpoint of gas barrier properties and film productivity. It is 50 nm or less. The thickness of the specific PVD inorganic layer can be measured using fluorescent X-rays, and can be specifically performed by the method described in the examples.
[特定PVD無機層以外のPVD無機層]
 第一の形態および第二の形態ともに、特定PVD無機層以外のPVD無機層(以下、「一般PVD無機層」ということがある)を有していてもよい。
 一般PVD無機層を構成する無機物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、ダイヤモンドライクカーボン、あるいはこれらの酸化物、炭化物、窒化物の単独又は混合物等が挙げられる。これらの中でも、ガスバリア性の点から、好ましくは酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化珪素、酸化炭化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、酸化炭化アルミニウム、ダイヤモンドライクカーボン等である。さらにこれらの中でも、酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化窒化珪素及び酸化アルミニウムは、高いガスバリア性が安定に維持できる点でより好ましく、特に酸化珪素(SiOx)が好ましい。PVD無機層は上記無機物質を1種単独で含んでいてもよく、2種以上含んでいてもよい。
 また、一般PVD無機層の厚さ、蒸着材料の形状、圧力等の各種条件は、特定PVD無機層と同様とすることができ、各種条件の好適条件も同様とすることができる。
[PVD inorganic layers other than specific PVD inorganic layers]
Both the first form and the second form may have a PVD inorganic layer other than the specific PVD inorganic layer (hereinafter sometimes referred to as “general PVD inorganic layer”).
Examples of the inorganic substance constituting the general PVD inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, diamond-like carbon, or oxides, carbides, and nitrides alone or a mixture thereof. Among these, from the viewpoint of gas barrier properties, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon oxycarbonitride, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum oxycarbide, diamond-like carbon, etc. are preferable. is there. Among these, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbonitride, and aluminum oxide are more preferable in that high gas barrier properties can be stably maintained, and silicon oxide (SiOx) is particularly preferable. The PVD inorganic layer may contain one kind of the inorganic substance or two or more kinds.
Moreover, various conditions, such as the thickness of a general PVD inorganic layer, the shape of vapor deposition material, and a pressure, can be made the same as that of a specific PVD inorganic layer, and the suitable conditions of various conditions can also be made the same.
[化学蒸着法(CVD)により形成した無機層]
 本発明の第二の実施形態においては、PVD無機層上に、CVD無機層を形成する。CVD無機層により、前記一般PVD無機層が有する欠陥や特定PVD層が有するわずかな欠陥の目止めが行われ、ガスバリア性や層間の密着性が向上するものと考えられる。
 また、本発明の第二の形態においては、PVD無機層、CVD無機層及びPVD無機層の順で積層構造とすることにより、CVD無機層自体はガスバリア性に直接殆ど寄与しないが、PVD無機層に対しては、下層には目止め効果および上層にはアンカー効果を発揮するため、単にPVD無機層を厚く成膜した場合やPVD無機層同士あるいはCVD無機層同士を積層した場合と比較して、飛躍的にガスバリア性が向上する。
 なお、上記効果をより有効にするためには、PVD層が特定PVD層であることが好ましい。
 また、本発明の第二の形態においては、PVD無機層を形成した後に、CVD無機層及びPVD無機層の形成を行うが、このCVD無機層及びPVD無機層の形成は、さらに1回以上繰り返して行うことができる。すなわち、本発明においては、品質安定性の点からPVD無機層、CVD無機層及びPVD無機層の上に、さらにCVD無機層及びPVD無機層からなる1以上の構成単位を有することが好ましく、構成単位の数が1~3であることがより好ましく、1~2であることがさらに好ましい。
[Inorganic layer formed by chemical vapor deposition (CVD)]
In the second embodiment of the present invention, a CVD inorganic layer is formed on the PVD inorganic layer. By the CVD inorganic layer, defects of the general PVD inorganic layer and slight defects of the specific PVD layer are considered to improve gas barrier properties and interlayer adhesion.
In the second embodiment of the present invention, the PVD inorganic layer itself, the CVD inorganic layer, and the PVD inorganic layer are laminated in this order, so that the CVD inorganic layer itself hardly contributes directly to the gas barrier property. On the other hand, in order to exert the sealing effect on the lower layer and the anchor effect on the upper layer, compared with the case where the PVD inorganic layer is simply formed thick or the PVD inorganic layers or the CVD inorganic layers are laminated. , Gas barrier properties are dramatically improved.
In addition, in order to make the said effect more effective, it is preferable that a PVD layer is a specific PVD layer.
In the second embodiment of the present invention, the CVD inorganic layer and the PVD inorganic layer are formed after the PVD inorganic layer is formed. The formation of the CVD inorganic layer and the PVD inorganic layer is further repeated once or more. Can be done. That is, in the present invention, from the viewpoint of quality stability, it is preferable that the PVD inorganic layer, the CVD inorganic layer, and the PVD inorganic layer further have one or more structural units composed of the CVD inorganic layer and the PVD inorganic layer. The number of units is more preferably 1 to 3, and further preferably 1 to 2.
 化学蒸着法としては、成膜速度を高くして高生産性を実現することや、フィルム基材への熱的ダメージを回避する必要があることから、プラズマCVD法が好ましい。 As the chemical vapor deposition method, the plasma CVD method is preferable because it is necessary to increase the film formation rate to achieve high productivity and to avoid thermal damage to the film substrate.
 本発明においては、CVD無機層は、X線光電子分光法(XPS法)により測定された炭素含有量が20at.%未満、好ましくは10at.%未満、より好ましくは5at.%未満である。炭素含有量をこのような値とすることにより、該無機層の表面エネルギーが大きくなり、無機層同士の間の密着性を妨げることがなくなる。そのためバリアフィルムの耐折曲げ性、耐剥離性が向上する。
 また、CVD無機層の炭素含有量は0.5at.%以上であることが好ましく、1at.%以上であることがより好ましく、2at.%以上であることが更に好ましい。中間層に炭素が僅かながら含まれることで、応力の緩和が効率よくなされ、本発明のガスバリア性フィルムのカールが低減される。
 以上の点から、上記CVD無機層における炭素含有量は、好ましくは0.5at.%以上20at.%未満の範囲にあり、より好ましくは0.5at.%以上10at.%未満の範囲にあり、より好ましくは0.5at.%以上5at.%未満の範囲にあり、より好ましくは1at.%以上5at.%未満の範囲にあり、さらに好ましくは2at.%以上5at.%未満の範囲にある。ここで、「at.%」とは、原子組成百分率(atomic %)を示す。
In the present invention, the CVD inorganic layer has a carbon content measured by X-ray photoelectron spectroscopy (XPS method) of 20 at. %, Preferably 10 at. %, More preferably 5 at. %. By setting the carbon content to such a value, the surface energy of the inorganic layer is increased, and the adhesion between the inorganic layers is not hindered. Therefore, the bending resistance and peel resistance of the barrier film are improved.
The carbon content of the CVD inorganic layer is 0.5 at. % Or more, preferably 1 at. % Or more, more preferably 2 at. % Or more is more preferable. Since the intermediate layer contains a small amount of carbon, the stress is efficiently relaxed and the curl of the gas barrier film of the present invention is reduced.
From the above points, the carbon content in the CVD inorganic layer is preferably 0.5 at. % Or more and 20 at. %, More preferably 0.5 at. % Or more and 10 at. %, More preferably 0.5 at. % Or more and 5 at. %, More preferably 1 at. % Or more and 5 at. %, More preferably 2 at. % Or more and 5 at. It is in the range of less than%. Here, “at.%” Indicates an atomic composition percentage (atomic%).
 本発明における上記X線光電子分光法(XPS法)により測定された炭素含有量を達成する方法としては、特に制限はなく、例えば、CVDにおける原料を選択することにより達成する方法、原料や反応ガス(酸素、窒素等)の流量や比率によって調整する方法、成膜時の圧力や投入電力によって調整する方法等が挙げられる。
 X線光電子分光法(XPS法)による炭素含有量の具体的な測定方法は後述の通りである。
There is no restriction | limiting in particular as a method of achieving the carbon content measured by the said X-ray photoelectron spectroscopy (XPS method) in this invention, For example, the method achieved by selecting the raw material in CVD, a raw material, and reaction gas Examples thereof include a method of adjusting by the flow rate and ratio of (oxygen, nitrogen, etc.), a method of adjusting by the pressure during film formation and input power, and the like.
A specific method for measuring the carbon content by X-ray photoelectron spectroscopy (XPS method) is as described later.
 CVD無機層を構成する無機物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、ダイヤモンドライクカーボン等、あるいはこれらの酸化物、炭化物、窒化物又はそれらの混合物等が挙げられるが、ガスバリア性、密着性の点から、好ましくは酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化珪素、酸化炭化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、酸化炭化アルミニウム、酸化チタン、ダイヤモンドライクカーボン等である。なかでも、酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化窒化珪素及び酸化アルミニウムは、高いガスバリア性が安定に維持できる点でより好ましい。CVD無機層は上記無機物質を1種単独で含んでいてもよく、2種以上含んでいてもよい。 Examples of the inorganic substance constituting the CVD inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, diamond-like carbon, and the like, oxides, carbides, nitrides, or mixtures thereof. In view of gas barrier properties and adhesion, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon oxycarbonitride, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum oxycarbide, titanium oxide, diamond-like carbon Etc. Among these, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbonitride, and aluminum oxide are more preferable because high gas barrier properties can be stably maintained. The CVD inorganic layer may contain one kind of the inorganic substance or two or more kinds.
 酸化珪素等からなるCVD無機層形成のための原料としては、例えば、珪素化合物が挙げられる。また、酸化チタン等からなるCVD無機層形成のための原料としては、チタン化合物が挙げられる。珪素化合物やチタン化合物等の化合物であれば、常温常圧下で気体、液体、固体いずれの状態であっても使用できる。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。また、溶媒によって希釈して使用してもよく、溶媒は、メタノール、エタノール、n-ヘキサン等の有機溶媒及びこれらの混合溶媒を使用することができる。 An example of a raw material for forming a CVD inorganic layer made of silicon oxide or the like is a silicon compound. Moreover, a titanium compound is mentioned as a raw material for CVD inorganic layer formation which consists of titanium oxide etc. If it is a compound such as a silicon compound or a titanium compound, it can be used in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. The solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane, or a mixed solvent thereof may be used as the solvent.
 上記珪素化合物としては、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルジシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。 Examples of the silicon compound include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diethyldimethoxy. Silane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane, bis (Dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, diethyla Notrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane, Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1 , 3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, propargy Trimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethylcyclotetra Examples include siloxane, hexamethyldisiloxane, hexamethylcyclotetrasiloxane, M silicate 51, and the like.
 チタン化合物としては、例えば、酸化チタン、塩化チタン等のチタン無機化合物や、チタンテトラブトキシド、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート及びテトラメチルチタネート等のチタンアルコキシド類や、チタンラクテート、チタンアセチルアセトナート、チタンテトラアセチルアセトナート、ポリチタンアセチルアセトナート、チタンオクチレングリコレート、チタンエチルアセトアセテート及びチタントリエタノールアミネート等のチタンキレート類等のチタン有機化合物が挙げられる。 Examples of titanium compounds include titanium inorganic compounds such as titanium oxide and titanium chloride, titanium alkoxides such as titanium tetrabutoxide, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate and tetramethyl titanate, Examples include titanium organic compounds such as titanium chelates such as titanium lactate, titanium acetylacetonate, titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium ethylacetoacetate and titanium triethanolaminate.
 上記CVD無機層は、PVD無機層への目止め効果を確実とするために、2層以上から構成されることが好ましく、より好ましくは2~5層から構成されることが好ましい。
 上記CVD無機層の厚さは、断面TEM法により測定した値が20nm未満である。上記範囲であることにより、PVD無機層同士の分子間力が有効に作用することで、密着性がより向上する。また同時に化学蒸着法による生産速度を真空蒸着法と同等程度に高めることができるため、生産効率が向上すると共に製造設備も小型化、簡素化でき、安価なバリアフィルムを製造することができる。上記観点から、CVD無機層の厚さは、10nm未満であることが好ましく、5nm未満であることがより好ましく、3nm未満であることがさらに好ましい。
The CVD inorganic layer is preferably composed of two or more layers, more preferably 2 to 5 layers, in order to ensure the sealing effect on the PVD inorganic layer.
The thickness of the CVD inorganic layer is less than 20 nm as measured by a cross-sectional TEM method. By being in the above range, the intermolecular force between the PVD inorganic layers acts effectively, thereby improving the adhesion. At the same time, the production rate by the chemical vapor deposition method can be increased to the same level as that of the vacuum vapor deposition method, so that the production efficiency can be improved and the production equipment can be miniaturized and simplified, and an inexpensive barrier film can be produced. From the above viewpoint, the thickness of the CVD inorganic layer is preferably less than 10 nm, more preferably less than 5 nm, and even more preferably less than 3 nm.
 また、CVD無機層の厚さの下限値は、PVD無機層への目止め効果が発現するための最低限の膜厚として、0.01nmであるのが好ましく、0.1nmであるのがより好ましく、0.5nmであるのがさらに好ましい。厚さが上記範囲内であれば、密着性、ガスバリア性などが良好であり好ましい。CVD無機層の厚みを0.1nm以上とすることで、上記した下層のPVD無機層の開放空孔の目止め効果が発現すると同時に表面が滑らかになり、上層のPVD無機層を蒸着した際に、蒸着粒子の表面拡散が良好となり、粒子同士がより密に堆積するため、バリア性がさらに向上する。
 上記観点から、CVD無機層の厚さは、0.01nm以上20nm未満であることが好ましく、0.1nm以上20nm未満であることがより好ましく、0.1nm以上10nm未満であることがさらに好ましく、0.1nm以上5nm未満であることが特に好ましく、0.1nm以上3nm未満であることがより特に好ましい。
Further, the lower limit value of the thickness of the CVD inorganic layer is preferably 0.01 nm, more preferably 0.1 nm, as a minimum film thickness for exhibiting a sealing effect on the PVD inorganic layer. Preferably, it is 0.5 nm. If the thickness is within the above range, the adhesion and gas barrier properties are good, which is preferable. When the thickness of the CVD inorganic layer is 0.1 nm or more, the effect of sealing the open pores of the lower PVD inorganic layer described above is exhibited at the same time that the surface becomes smooth and the upper PVD inorganic layer is deposited. Since the surface diffusion of the vapor deposition particles becomes good and the particles are deposited more densely, the barrier property is further improved.
From the above viewpoint, the thickness of the CVD inorganic layer is preferably 0.01 nm or more and less than 20 nm, more preferably 0.1 nm or more and less than 20 nm, further preferably 0.1 nm or more and less than 10 nm, It is particularly preferably 0.1 nm or more and less than 5 nm, and particularly preferably 0.1 nm or more and less than 3 nm.
 また、本発明においては、隣接するCVD無機層とPVD無機層において、その厚さの比[CVD無機層厚さ/PVD無機層厚さ]が0.0001~0.2であることが好ましく、0.0005~0.1であることがより好ましく、0.001~0.1であることがさらに好ましい。[CVD無機層厚さ/PVD無機層厚さ]を0.0001以上とすることにより、CVD無機層による目止め効果、応力緩和等の効果を得ることができる。また、[CVD無機層厚さ/PVD無機層厚さ]を0.2以下とすることにより、Roll to RollプロセスにてPVD無機層とCVD無機層を連続して成膜する際に、基材の搬送速度を成膜レートの低いCVD無機層に合わせて大きく低下させる必要がなくなり、生産性の低下を防止することができる。 In the present invention, in the adjacent CVD inorganic layer and PVD inorganic layer, the thickness ratio [CVD inorganic layer thickness / PVD inorganic layer thickness] is preferably 0.0001 to 0.2, It is more preferably 0.0005 to 0.1, and further preferably 0.001 to 0.1. By setting [CVD inorganic layer thickness / PVD inorganic layer thickness] to 0.0001 or more, effects such as a sealing effect and stress relaxation by the CVD inorganic layer can be obtained. Further, by setting [CVD inorganic layer thickness / PVD inorganic layer thickness] to 0.2 or less, the base material is formed when the PVD inorganic layer and the CVD inorganic layer are continuously formed by the Roll to Roll process. Therefore, it is not necessary to greatly reduce the transfer speed in accordance with the CVD inorganic layer having a low film formation rate, and the productivity can be prevented from being lowered.
 PVD無機層の表面粗さ(原子間力顕微鏡(AFM)により測定)は概ね5nm以下とすることが、蒸着粒子が密に堆積するため、バリア性発現のためには好ましい。この際にCVD無機層の厚みを上記値未満とすることで、蒸着粒子間の谷間の部分に存在する開放空孔を埋めながらも蒸着粒子の山の部分は極めて薄くしか被覆しない(もしくは部分的に露呈する)ため、PVD無機層間の密着性をさらに高めることができる。
 上記CVD無機層の厚さの断面TEM法による測定は、透過型電子顕微鏡(TEM)を用いて行い、具体的には、実施例に記載の方法により行うことができる。
The surface roughness (measured by an atomic force microscope (AFM)) of the PVD inorganic layer is preferably about 5 nm or less, because vapor deposition particles are densely deposited, which is preferable for exhibiting barrier properties. At this time, by setting the thickness of the CVD inorganic layer to be less than the above value, the crest portion of the vapor deposition particles is covered only very thinly while filling open vacancies in the valley portions between the vapor deposition particles (or partially). Therefore, the adhesion between the PVD inorganic layers can be further enhanced.
The thickness of the CVD inorganic layer can be measured by a cross-sectional TEM method using a transmission electron microscope (TEM), specifically by the method described in the examples.
 上記CVD無機層を形成する方法としては、前記原料化合物を蒸発させ、原料ガスとして真空装置に導入し、直流(DC)プラズマ、低周波プラズマ、高周波(RF)プラズマ、パルス波プラズマ、3極構造プラズマ、マイクロ波プラズマ、ダウンストリームプラズマ、カラムナープラズマ、プラズマアシスッテドエピタキシー、リモートプラズマ等の低温プラズマ発生装置でプラズマ化することにより行うことができる。このうち、プラズマの安定性の点から高周波(RF)プラズマ装置が好ましく、緻密かつ表面粗さが小さな無機層を得ることができるリモートプラズマ装置が好ましい。
 またプラズマCVD法以外でも、熱CVD法、Cat-CVD法(触媒化学気相成長)、光CVD法、MOCVD法等の公知の方法を用いることができる。このうち量産性や成膜品質に優れる点で熱CVD法、Cat-CVD法が好ましい。
The CVD inorganic layer is formed by evaporating the raw material compound and introducing it into a vacuum apparatus as a raw material gas, and direct current (DC) plasma, low frequency plasma, high frequency (RF) plasma, pulse wave plasma, tripolar structure. Plasma, microwave plasma, downstream plasma, columnar plasma, plasma assisted epitaxy, remote plasma, etc. can be used to generate plasma. Among these, a radio frequency (RF) plasma apparatus is preferable from the viewpoint of plasma stability, and a remote plasma apparatus capable of obtaining a dense inorganic layer with a small surface roughness is preferable.
In addition to the plasma CVD method, known methods such as a thermal CVD method, a Cat-CVD method (catalytic chemical vapor deposition), a photo CVD method, and an MOCVD method can be used. Of these, the thermal CVD method and the Cat-CVD method are preferable because they are excellent in mass productivity and film formation quality.
[アンカーコート層]
 本発明のガスバリア性フィルムにおいては、前記基材とPVD無機層との密着性を向上させるため、基材とPVD無機層の間に、アンカーコート層を設けることが好ましい。アンカーコート層の構成成分としては、生産性の点から、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、ニトロセルロース系樹脂、シリコーン系樹脂、ポリビニルアルコール系樹脂やエチレンビニルアルコール系樹脂等のビニルアルコール系樹脂、イソシアネート基含有樹脂、カルボジイミド系樹脂、アルコキシル基含有樹脂、エポキシ系樹脂、オキサゾリン基含有樹脂、スチレン系樹脂、ポリパラキシリレン系樹脂等を単独であるいは2種以上組み合わせて使用することができる。
 前記樹脂としては、ガスバリア性フィルムとした際のガスバリア性や密着性の点から、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、ニトロセルロース系樹脂、シリコーン系樹脂及びイソシアネート基含有樹脂からなる群から選択される少なくとも1種の樹脂を用いることが好ましい。なかでも、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂及びイソシアネート基含有樹脂からなる群から選択される少なくとも1種の樹脂がより好ましく、ポリエステル系樹脂、アクリル系樹脂が更に好ましい。
 上記樹脂を構成するポリマーの分子量は、ガスバリア性、密着性の点から、数平均分子量で、3,000~50,000が好ましく、より好ましくは4,000~40,000であり、さらに好ましくは5,000~30,000である。
 また、アンカーコート層には、硬化剤を配合し、架橋することが好ましい。該硬化剤としては、イソシアネート系化合物等が挙げられる。
 上記イソシアネート系化合物としては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の脂肪族ポリイソシアネートや、キシレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンジイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート等が挙げられる。ガスバリア性、密着性の点から、イソシアネート基を2つ以上有するポリイソシアネートが好ましく、より好ましくはイソシアネート基を3つ以上有するポリイソシアネートである。
 アンカーコート層には、その他、公知の各種添加剤を配合することができる。このような添加剤としては、水性エポキシ樹脂、アルキルチタネート、酸化防止剤、耐候安定剤、紫外線吸収剤、帯電防止剤、顔料、染料、抗菌剤、滑剤、無機充填剤、ブロッキング防止剤等を挙げることができる。
[Anchor coat layer]
In the gas barrier film of the present invention, an anchor coat layer is preferably provided between the substrate and the PVD inorganic layer in order to improve the adhesion between the substrate and the PVD inorganic layer. As a component of the anchor coat layer, from the viewpoint of productivity, polyester alcohol, urethane resin, acrylic resin, nitrocellulose resin, silicone resin, polyvinyl alcohol resin such as vinyl alcohol resin and ethylene vinyl alcohol resin, etc. Resin, isocyanate group-containing resin, carbodiimide resin, alkoxyl group-containing resin, epoxy resin, oxazoline group-containing resin, styrene resin, polyparaxylylene resin, etc. may be used alone or in combination of two or more. it can.
From the group consisting of polyester resin, urethane resin, acrylic resin, nitrocellulose resin, silicone resin and isocyanate group-containing resin, from the viewpoint of gas barrier properties and adhesion when used as a gas barrier film as the resin. It is preferable to use at least one selected resin. Among these, at least one resin selected from the group consisting of polyester resins, urethane resins, acrylic resins, and isocyanate group-containing resins is more preferable, and polyester resins and acrylic resins are more preferable.
The molecular weight of the polymer constituting the resin is preferably a number average molecular weight of 3,000 to 50,000, more preferably 4,000 to 40,000, and even more preferably from the viewpoint of gas barrier properties and adhesion. 5,000 to 30,000.
Moreover, it is preferable to mix | blend and harden | cure a hardening | curing agent to an anchor coat layer. Examples of the curing agent include isocyanate compounds.
Examples of the isocyanate compound include aliphatic polyisocyanates such as hexamethylene diisocyanate and dicyclohexylmethane diisocyanate, and aromatic polyisocyanates such as xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylene diisocyanate, tolidine diisocyanate, and naphthalene diisocyanate. Etc. From the viewpoint of gas barrier properties and adhesion, a polyisocyanate having two or more isocyanate groups is preferable, and a polyisocyanate having three or more isocyanate groups is more preferable.
In addition, various known additives can be blended in the anchor coat layer. Examples of such additives include aqueous epoxy resins, alkyl titanates, antioxidants, weathering stabilizers, UV absorbers, antistatic agents, pigments, dyes, antibacterial agents, lubricants, inorganic fillers, antiblocking agents, and the like. be able to.
 基材上に設けるアンカーコート層の厚さは通常0.1~5000nm、好ましくは1~2000nm、より好ましくは1~1000nmである。上記範囲内であれば、滑り性が良好であり、アンカーコート層自体の内部応力による基材からの剥離もほとんどなく、また、均一な厚さを保つことができ、更に層間の密着性においても優れている。
 また、基材へのアンカーコート剤の塗布性、接着性を改良するため、アンカーコート剤の塗布前に基材に通常の化学処理、放電処理などの表面処理を施してもよい。
The thickness of the anchor coat layer provided on the substrate is usually 0.1 to 5000 nm, preferably 1 to 2000 nm, more preferably 1 to 1000 nm. If it is within the above range, the slipperiness is good, there is almost no peeling from the base material due to the internal stress of the anchor coat layer itself, and a uniform thickness can be maintained, and also in the adhesion between layers Are better.
Moreover, in order to improve the applicability | paintability and adhesiveness of the anchor coating agent to a base material, you may perform surface treatments, such as a normal chemical treatment and electrical discharge treatment, to a base material before application | coating of an anchor coating agent.
[保護層]
 また、本発明のガスバリア性フィルムは、上記各無機層を形成した側の最上層に保護層を形成することが好ましい。
 上記保護層としては、具体的には、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂やエチレンビニルアルコール系樹脂等のビニルアルコール系樹脂、エチレン-不飽和カルボン酸共重合体、ビニルエステル系樹脂、ニトロセルロース系樹脂、シリコーン系樹脂、エポキシ系樹脂、スチレン系樹脂、イソシアネート基含有樹脂、カルボジイミド基含有樹脂、アルコキシル基含有樹脂、オキサゾリン基含有樹脂等の樹脂層が挙げられる。なかでも無機層のガスバリア性向上の点から上記のうち水溶性樹脂の樹脂層が好ましく、さらに該水溶性樹脂としては、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂及びエチレン-不飽和カルボン酸共重合体から選択される少なくとも1種が好ましい。上記保護層に用いられる樹脂は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 また、保護層には、ガスバリア性、耐摩耗性、滑り性向上のため、シリカゾル、アルミナゾル等の無機酸化物ゾル等、粒子状無機フィラー及び層状無機フィラーから選ばれる1種以上の無機粒子を配合することができる。
 保護層の厚さは、印刷性、加工性の点から、好ましくは0.05~10μm、より好ましくは0.1~3μmである。その形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、バーコーター、スプレイを用いたコーティング方法等の方法がいずれも使用できる。また、基材に無機層及び構成単位層等を形成した後、コート液に浸漬して保護層の形成を行ってもよい。コーティング後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥等の加熱乾燥や、赤外線乾燥等の公知の乾燥方法を用いて溶媒を蒸発させることにより、均一な保護層が形成される。
[Protective layer]
Moreover, it is preferable that the gas barrier film of this invention forms a protective layer in the uppermost layer in the side in which each said inorganic layer was formed.
Specific examples of the protective layer include polyester resins, urethane resins, acrylic resins, vinyl alcohol resins such as polyvinyl alcohol resins and ethylene vinyl alcohol resins, ethylene-unsaturated carboxylic acid copolymers, Examples of the resin layer include vinyl ester resins, nitrocellulose resins, silicone resins, epoxy resins, styrene resins, isocyanate group-containing resins, carbodiimide group-containing resins, alkoxyl group-containing resins, and oxazoline group-containing resins. Of these, from the viewpoint of improving the gas barrier property of the inorganic layer, a resin layer of a water-soluble resin is preferable, and examples of the water-soluble resin include polyvinyl alcohol resins, ethylene vinyl alcohol resins, and ethylene-unsaturated carboxylic acid copolymer. At least one selected from coalescence is preferred. Resin used for the said protective layer may be used individually by 1 type, and may be used in combination of 2 or more type.
The protective layer contains one or more inorganic particles selected from particulate inorganic fillers and layered inorganic fillers such as silica sol, alumina sol and other inorganic oxide sols in order to improve gas barrier properties, abrasion resistance, and slipperiness. can do.
The thickness of the protective layer is preferably 0.05 to 10 μm, more preferably 0.1 to 3 μm, from the viewpoints of printability and processability. A known coating method is appropriately adopted as the formation method. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a bar coater, or a coating method using a spray can be used. Moreover, after forming an inorganic layer, a structural unit layer, etc. in a base material, you may immerse in a coating liquid and may form a protective layer. After coating, a uniform protective layer is formed by evaporating the solvent using heat drying such as hot air drying and hot roll drying at a temperature of about 80 to 200 ° C., or using a known drying method such as infrared drying. The
[ガスバリア性フィルムA(第一の形態)の構成]
 本発明の第一の形態のガスバリア性フィルムとしては、ガスバリア性、密着性の点から、以下のような態様を好ましく用いることができる。
(1)基材/AC/特定PVD無機層/保護層
(2)基材/AC/特定PVD無機層/特定PVD無機層/保護層
(3)基材/特定PVD無機層/保護層
(4)基材/特定PVD無機層/特定PVD無機層
(5)基材/特定PVD無機層
(6)基材/AC/特定PVD無機層/一般PVD無機層/保護層
 なお、上記態様中、「AC」はアンカーコート層を指し、「/」は層の界面を指す。
[Configuration of Gas Barrier Film A (First Form)]
As the gas barrier film of the first aspect of the present invention, the following embodiments can be preferably used from the viewpoint of gas barrier properties and adhesion.
(1) Base material / AC / specific PVD inorganic layer / protective layer (2) Base material / AC / specific PVD inorganic layer / specific PVD inorganic layer / protective layer (3) Base material / specific PVD inorganic layer / protective layer (4 ) Base material / specific PVD inorganic layer / specific PVD inorganic layer (5) base material / specific PVD inorganic layer (6) base material / AC / specific PVD inorganic layer / general PVD inorganic layer / protective layer “AC” refers to the anchor coat layer and “/” refers to the interface of the layers.
[ガスバリア性フィルムB(第二の形態)の構成]
 本発明のガスバリア性フィルムとしては、ガスバリア性、密着性の点から、以下のような態様を好ましく用いることができる。
(1)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層
(2)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層
(3)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層
(4)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
(5)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
(6)基材/AC/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
[Configuration of Gas Barrier Film B (Second Embodiment)]
As the gas barrier film of the present invention, the following embodiments can be preferably used from the viewpoint of gas barrier properties and adhesion.
(1) Base material / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (2) Base material / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic Layer (3) Base material / AC / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer / CVD inorganic layer / Specific PVD inorganic layer (4) Base material / AC / Specific PVD Inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (5) substrate / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (6) Base material / AC / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer
(7)基材/特定PVD無機層/CVD無機層/特定PVD無機層
(8)基材/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層
(9)基材/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層
(10)基材/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
(11)基材/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
(12)基材/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/CVD無機層/特定PVD無機層/保護層
(13)基材/AC/特定PVD無機層/CVD無機層/一般PVD無機層/保護層
 なお、上記態様中、「AC」はアンカーコート層を指し、「/」は層の界面を指す。
(7) Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (8) Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (9) Base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer (10) base material / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (11) substrate / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (12) substrate / specific PVD inorganic layer / CVD inorganic Layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / CVD inorganic layer / specific PVD inorganic layer / protective layer (13) substrate / AC / specific PVD inorganic layer / CVD inorganic layer / general PVD inorganic layer / protection Layer In the embodiment, “AC” refers to the anchor coat layer, and “/” refers to the interface of the layers.
 本発明においては、上記構成層に必要に応じさらに追加の構成層を積層した各種ガスバリア性積層フィルムが用途に応じて使用できる。
 通常の実施態様としては、上記無機層あるいは保護層の上にプラスチックフィルムを設けたガスバリア性積層フィルムが各種用途に使用される。上記プラスチックフィルムの厚さは、積層構造体の基材としての機械強度、可撓性、透明性等の点から、通常5~500μm、好ましくは10~200μmの範囲で用途に応じて選択される。保護層の上のプラスチックフィルムは基材で例示したものと同様のものを用いることができる。
 ガスバリア性積層フィルムの幅や長さは特に制限はなく、適宜用途に応じて選択することができる。なお、バリアフィルムを用いて工業製品を製造する上では、長尺の製品を製造可能であること、一度のプロセスで多数の製品を製造可能であることなどの生産性、コスト優位性の点から、フィルムの幅、長さは長い方が望ましい。フィルム幅は0.6m以上が好ましく、0.8m以上がより好ましく、1.0m以上がさらに好ましく、フィルムの長さは1000m以上が好ましく、3000m以上がより好ましく、5000m以上がさらに好ましい。
 また、ガスバリア性積層フィルムは、例えば、無機層あるいは保護層の面上にヒートシールが可能な樹脂を使用することにより、ヒートシールが可能となり、種々の容器として使用できる。ヒートシールが可能な樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、アクリル系樹脂、生分解性樹脂等の公知の樹脂が例示される。
In this invention, the various gas-barrier laminated | multilayer film which laminated | stacked the additional structural layer further on the said structural layer as needed can be used according to a use.
As a normal embodiment, a gas barrier laminate film in which a plastic film is provided on the inorganic layer or protective layer is used for various applications. The thickness of the plastic film is usually selected in the range of 5 to 500 μm, preferably 10 to 200 μm, depending on the application, from the viewpoints of mechanical strength, flexibility, transparency as a substrate of the laminated structure. . As the plastic film on the protective layer, the same film as exemplified for the substrate can be used.
There is no restriction | limiting in particular in the width | variety and length of a gas-barrier laminated | multilayer film, According to a use, it can select suitably. In addition, when manufacturing industrial products using a barrier film, it is possible to manufacture long products, from the viewpoint of productivity and cost advantages such as being able to manufacture many products in a single process. The width and length of the film are preferably longer. The film width is preferably 0.6 m or more, more preferably 0.8 m or more, further preferably 1.0 m or more, and the film length is preferably 1000 m or more, more preferably 3000 m or more, and further preferably 5000 m or more.
Moreover, the gas barrier laminate film can be heat sealed by using a resin capable of heat sealing on the surface of the inorganic layer or the protective layer, and can be used as various containers. Examples of heat-sealable resins include known resins such as polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ionomer resins, acrylic resins, and biodegradable resins.
 また、別のガスバリア性積層フィルムの実施態様としては、無機層あるいは保護層の塗布面上に印刷層を形成し、更にその上にヒートシール層を積層するものが挙げられる。印刷層を形成する印刷インクとしては、水性及び溶媒系の樹脂含有印刷インクが使用できる。ここで、印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂又はこれらの混合物が例示される。更に、印刷インクには、帯電防止剤、光線遮光剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を添加してもよい。 Further, as another embodiment of the gas barrier laminate film, there may be mentioned one in which a printing layer is formed on the coated surface of the inorganic layer or the protective layer, and further a heat seal layer is laminated thereon. As the printing ink for forming the printing layer, aqueous and solvent-based resin-containing printing inks can be used. Here, examples of the resin used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof. Furthermore, for printing inks, antistatic agents, light shielding agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, antiblocking agents, antioxidants, etc. These known additives may be added.
 印刷層を設けるための印刷方法としては特に限定されないが、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等の公知の乾燥方法が使用できる。
 また、印刷層とヒートシール層との間に紙又はプラスチックフィルムを少なくとも1層積層することが可能である。プラスチックフィルムとしては、本発明のガスバリア性フィルムに用いられる基材と同様のものが使用できる。中でも、十分な積層体の剛性及び強度を得る観点から、紙、ポリエステル樹脂、ポリアミド樹脂又は生分解性樹脂が好ましい。
Although it does not specifically limit as a printing method for providing a printing layer, Well-known printing methods, such as an offset printing method, a gravure printing method, and a screen printing method, can be used. For drying the solvent after printing, a known drying method such as hot air drying, hot roll drying, or infrared drying can be used.
It is also possible to laminate at least one paper or plastic film between the printing layer and the heat seal layer. As a plastic film, the thing similar to the base material used for the gas barrier film of this invention can be used. Among these, paper, polyester resin, polyamide resin or biodegradable resin is preferable from the viewpoint of obtaining sufficient rigidity and strength of the laminate.
 ガスバリア性フィルムの全光線透過率(JIS K7361-1)は85%以上であることが好ましく、90%以上であることがより好ましい。 The total light transmittance (JIS K7361-1) of the gas barrier film is preferably 85% or more, and more preferably 90% or more.
 ガスバリア性フィルムのL***表色系におけるL*値は90以上であることが好ましく、95以上であることがより好ましい。また、同b*値は-2以上であることが好ましく、-1以上であることがより好ましく、3未満であることが好ましく2.5以下であることがより好ましく、2以下であることがさらに好ましい。
 なお、L*値、a*値及びb*値は、JIS Z8729のL***表色系のL*値、a*値及びb*値のことを意味し、これらの値はJIS Z8722に基づいて測定することができる。
The L * value in the L * a * b * color system of the gas barrier film is preferably 90 or more, and more preferably 95 or more. The b * value is preferably −2 or more, more preferably −1 or more, preferably less than 3, more preferably 2.5 or less, and preferably 2 or less. Further preferred.
Incidentally, the L * value, a * value and b * values, L * a * b * color system of L * value of JIS Z8729, means that the a * and b * values, these values JIS It can be measured based on Z8722.
<ガスバリア性フィルムAの製造方法>
 本発明の第一の形態のガスバリア性フィルムは、基材の少なくとも一方の面に、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により無機層を形成することにより製造できる。
<Method for producing gas barrier film A>
The gas barrier film according to the first aspect of the present invention comprises an inorganic powder having a median diameter of 3 to 100 μm on at least one surface of a substrate, having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of the crucible. It can be manufactured by forming an inorganic layer by a vacuum vapor deposition method in which a vapor deposition material formed by sintering and molding into a cylindrical shape having an inner height of 45% or less is vaporized by heating.
 PVD無機層の形成は、緻密な薄膜を形成するため減圧下で、好ましくはフィルムを搬送しながら行う。PVD無機層を形成する際の圧力は真空排気能力とバリア性の観点から、1×10-7~1Paであることが好ましく、1×10-6~1×10-1Paであることがより好ましく、1×10-4~1×10-2Paであることがさらに好ましい。上記範囲内であれば、十分なガスバリア性が得られ、また、PVD無機層に亀裂や剥離を発生させることなく、透明性にも優れている。圧力条件は、特定PVD層と一般PVD層で同様である。
 また、PVD無機層を形成する際の基材の搬送速度は、100m/分とすることが好ましい。特定PVD層では高温でもスプラッシュ現象を抑制できるため、高速での製造が可能である。
The PVD inorganic layer is formed under reduced pressure, preferably while transporting the film, in order to form a dense thin film. The pressure at the time of forming the PVD inorganic layer is preferably 1 × 10 −7 to 1 Pa, more preferably 1 × 10 −6 to 1 × 10 −1 Pa, from the viewpoints of vacuum exhaust capability and barrier properties. It is preferably 1 × 10 −4 to 1 × 10 −2 Pa. If it is in the said range, sufficient gas-barrier property will be acquired, and it is excellent also in transparency, without generating a crack and peeling in a PVD inorganic layer. The pressure conditions are the same for the specific PVD layer and the general PVD layer.
Moreover, it is preferable that the conveyance speed of the base material at the time of forming a PVD inorganic layer shall be 100 m / min. The specific PVD layer can suppress the splash phenomenon even at a high temperature, and thus can be manufactured at a high speed.
<ガスバリア性フィルムBの製造方法>
 また、本発明の第二の形態のガスバリア性フィルムは、基材の少なくとも一方の面に、真空蒸着法による無機層、化学蒸着法による無機層及び真空蒸着法による無機層をこの順で形成し、前記真空蒸着法による無機層の一以上を、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により形成することにより製造できる。
<Method for producing gas barrier film B>
In the gas barrier film of the second aspect of the present invention, an inorganic layer by vacuum deposition, an inorganic layer by chemical vapor deposition, and an inorganic layer by vacuum deposition are formed in this order on at least one surface of the substrate. One or more of the inorganic layers formed by the vacuum deposition method, an inorganic powder having a median diameter of 3 to 100 μm, a circle having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. It can be manufactured by forming a vapor deposition material formed by sintering in a columnar shape by a vacuum vapor deposition method that vaporizes by heating.
 CVD無機層の形成は、緻密な薄膜を形成するため減圧下で行うことが好ましく、成膜速度とバリア性の観点から、好ましくは10Pa以下、より好ましくは1×10-2~10Pa、さらに好ましくは1×10-1~1Paである。
 また、CVD無機層を形成する際の基材の搬送速度は、生産性向上の観点から、100m/分以上であることが好ましく、200m/分以上であることがより好ましい。上記搬送速度については、上限は特にないが、フィルム搬送の安定性の観点から1000m/分以下が好ましい。
 なお、CVD無機層には、耐水性、耐久性を高めるために、電子線照射による架橋処理を行うこともできる。
The formation of the CVD inorganic layer is preferably performed under reduced pressure in order to form a dense thin film, and is preferably 10 Pa or less, more preferably 1 × 10 −2 to 10 Pa, and further preferably from the viewpoint of film formation speed and barrier properties. Is 1 × 10 −1 to 1 Pa.
Moreover, it is preferable that the conveyance speed of the base material at the time of forming a CVD inorganic layer is 100 m / min or more from a viewpoint of productivity improvement, and it is more preferable that it is 200 m / min or more. Although there is no upper limit in particular regarding the said conveyance speed, 1000 m / min or less is preferable from a viewpoint of stability of film conveyance.
In addition, in order to improve water resistance and durability, the CVD inorganic layer can be subjected to a crosslinking treatment by electron beam irradiation.
 また、ガスバリア性、生産性の点から、上記PVD無機層、CVD無機層及びPVD無機層の形成を減圧下、連続して行うことが好ましい。また、同様の観点から、上記薄膜の形成の全てを、好ましくはフィルムを搬送させながら、特に、CVD無機層の形成を、基材の搬送速度100m/分以上として行うことが好ましい。すなわち、本発明においては、各薄膜の形成終了後に、真空槽内の圧力を大気圧近傍にまで戻して、再度真空にして後工程を行うものではなく、真空状態のまま連続的に成膜を行うことが好ましい。
 なお、上記各無機層の形成を繰り返す場合も、減圧下、連続して行うことが好ましい。本発明の第一の形態でPVD無機層自体を繰り返し積層する際も、同様に同一装置内にて、減圧下、連続して行うことが好ましい。
From the viewpoint of gas barrier properties and productivity, it is preferable to continuously form the PVD inorganic layer, the CVD inorganic layer, and the PVD inorganic layer under reduced pressure. Further, from the same viewpoint, it is preferable to perform the formation of the CVD inorganic layer at a transport speed of the substrate of 100 m / min or more, particularly while transporting the film, preferably transporting the film. That is, in the present invention, after the formation of each thin film, the pressure in the vacuum chamber is returned to the vicinity of the atmospheric pressure, and the subsequent process is not performed again by evacuation. Preferably it is done.
In addition, when repeating formation of each said inorganic layer, it is preferable to carry out continuously under reduced pressure. Similarly, when repeatedly laminating the PVD inorganic layer itself in the first embodiment of the present invention, it is preferably carried out continuously under reduced pressure in the same apparatus.
 本明細書において、「X~Y」(X,Yは任意の数字)と表現する場合は、特にことわらない限り「X以上Y以下」を意味する。 In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の例に限定されるものではない。
 なお、以下の実施例及び比較例で得られたガスバリア性フィルム及びガスバリア性積層フィルムについて下記の評価を行い、その結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following examples.
In addition, the following evaluation was performed about the gas barrier film and gas barrier laminated film obtained by the following Examples and Comparative Examples, and the results are shown in Table 1.
<落下時の破片数>
 蒸着材料(焼結体)を高さ30mmから厚さ7mmの透明ガラス上に落下させた際に、蒸着材料から飛散する150μm以上の大きさの破片の数を計測した。
<Number of pieces when dropped>
When the vapor deposition material (sintered body) was dropped onto a transparent glass having a height of 30 mm to a thickness of 7 mm, the number of fragments having a size of 150 μm or more scattered from the vapor deposition material was measured.
<加熱時蒸発量>
 蒸着装置に水晶振動子法の成膜モニタを設け、成膜速度を測定した。表には、実施例1の成膜速度を100%とした際の百分率を記載し、加熱時蒸発量とした。なお、全ての実施例および比較例において加熱熱量は同じとなるよう調整し、加熱時蒸発量を測定した。
<Evaporation during heating>
The deposition apparatus of the crystal oscillator method was provided in the vapor deposition apparatus, and the deposition rate was measured. In the table, the percentage when the film forming speed of Example 1 was set to 100% was described, and the evaporation amount during heating was used. In all of the examples and comparative examples, the amount of heating heat was adjusted to be the same, and the amount of evaporation during heating was measured.
<スプラッシュの微細粒子数>
 ガスバリア性積層フィルム1平方メートルあたりの微細粒子数を、目視にて検査を行い、数をカウントした。
<Number of fine particles in the splash>
The number of fine particles per square meter of the gas barrier laminate film was visually inspected, and the number was counted.
<水蒸気透過率>
 透湿面積10.0cm×10.0cm角のガスバリア性積層フィルムを2枚用い、蒸着層面を外側となるようにして吸湿剤として無水塩化カルシウム約20gを入れ四辺を封じた袋を作製し、その袋を温度40℃、相対湿度90%RHの恒湿装置に入れ、透湿度が安定した14日目から72時間以上間隔で30日目まで質量測定し、14日目以降の経過時間と袋重量との回帰直線の傾きから透湿度(g/m2/day)を算出した。
<Water vapor transmission rate>
Using two gas barrier laminated films with a moisture permeable area of 10.0 cm x 10.0 cm square, making a bag with about 20 g of anhydrous calcium chloride as a hygroscopic agent with the vapor deposition layer side facing outside, and sealing all sides Place the bag in a constant humidity device at a temperature of 40 ° C. and a relative humidity of 90% RH, measure the mass from the 14th day when the moisture permeability is stable to the 30th day at intervals of 72 hours or more, and the elapsed time and bag weight after the 14th day The moisture permeability (g / m 2 / day) was calculated from the slope of the regression line.
<全光線透過率>
 JIS K7361-1に準じ、日本電色工業社製の積分球式濁度計「ND-2000」によりガスバリア性フィルムの全光線透過率を測定した。
<Total light transmittance>
In accordance with JIS K7361-1, the total light transmittance of the gas barrier film was measured with an integrating sphere turbidimeter “ND-2000” manufactured by Nippon Denshoku Industries Co., Ltd.
<PVD無機層の膜厚>
 無機層の膜厚の測定は蛍光X線を用いて行った。この方法は、原子にX線を照射すると、その原子特有の蛍光X線を放射する現象を利用した方法で、放射される蛍光X線強度を測定することにより原子の数(量)を知ることができる。具体的には、フィルム上に既知の2種の厚みの薄膜を形成し、それぞれについて放射される特定の蛍光X線強度を測定し、この情報より検量線を作成する。測定試料について同様に蛍光X線強度を測定し、検量線からその膜厚を測定した。
<Film thickness of PVD inorganic layer>
Measurement of the film thickness of the inorganic layer was performed using fluorescent X-rays. This method uses the phenomenon of emitting fluorescent X-rays peculiar to atoms when they are irradiated with X-rays, and knowing the number (amount) of atoms by measuring the intensity of emitted fluorescent X-rays. Can do. Specifically, a thin film having two known thicknesses is formed on the film, the specific fluorescent X-ray intensity emitted for each is measured, and a calibration curve is created from this information. Similarly, the fluorescent X-ray intensity was measured for the measurement sample, and the film thickness was measured from the calibration curve.
<CVD無機層の膜厚>
 エポキシ樹脂包埋超薄切片法で試料を調整し、日本電子株式会社製の断面TEM装置「JEM-1200EXII」により加速電圧120KVの条件で測定した。なお、10nm以下のCVD無機層の厚みについては、断面TEM法による測定においても正確な値を得ることは難しいため、同様の製膜条件にて製膜した20nm以上の比較的厚いCVD無機層を、断面TEM法により測定して単位搬送速度当たりの製膜レートを算出し、実施例記載の搬送速度で製膜した場合の厚みを算出した値としている。
<CVD無機層の炭素含有量>
 サーモフィッシャーサイエンティフィック株式会社製のXPS分析装置K-Alphaを使用し、XPS(X線光電子分光法)により結合エネルギーを測定し、Si2P、C1S、N1S、O1S等に対応するピーク面積から換算することによって元素組成(at.%)を算出した。なお、CVD無機層の炭素含有量は、XPSチャートのCVD無機層の部分の値を読み取ることで評価した。
<Film thickness of CVD inorganic layer>
A sample was prepared by an epoxy resin-embedded ultrathin section method, and measured with a cross-sectional TEM apparatus “JEM-1200EXII” manufactured by JEOL Ltd. under an acceleration voltage of 120 KV. As for the thickness of the CVD inorganic layer of 10 nm or less, since it is difficult to obtain an accurate value even in the measurement by the cross-sectional TEM method, a relatively thick CVD inorganic layer of 20 nm or more formed under the same film forming conditions is used. The film forming rate per unit transport speed is calculated by measuring by the cross-sectional TEM method, and the thickness when the film is formed at the transport speed described in the examples is the calculated value.
<Carbon content of CVD inorganic layer>
Using an XPS analyzer K-Alpha manufactured by Thermo Fisher Scientific Co., Ltd., the binding energy is measured by XPS (X-ray photoelectron spectroscopy) and converted from the peak area corresponding to Si2P, C1S, N1S, O1S, etc. Thus, the elemental composition (at.%) Was calculated. The carbon content of the CVD inorganic layer was evaluated by reading the value of the CVD inorganic layer portion of the XPS chart.
実施例1
(1)蒸着材料の作製
 真空凝集装置で析出SiOを製造し、析出SiOを粉砕機で粉砕した後分級し、メジアン径3μmのSiO粉末を得た。次いで、金型中で加圧成型して、加圧時の破壊強度が5MPa以上、直径が後述の加熱用円筒形ルツボの内径の20%、高さが加熱用円筒形ルツボの内部高さの10%の円柱形状の成型体を得た。次いで、得られた成型体を、不活性雰囲気、大気圧の条件下で約1000℃で焼結し、蒸着材料(粉末SiO焼結体)を得た。
Example 1
(1) Production of Vapor Deposition Material Precipitated SiO was produced with a vacuum aggregator, and the deposited SiO was pulverized with a pulverizer and then classified to obtain SiO powder having a median diameter of 3 μm. Next, it is pressure-molded in a mold, the breaking strength at the time of pressurization is 5 MPa or more, the diameter is 20% of the inner diameter of the heating cylindrical crucible described later, and the height is the internal height of the heating cylindrical crucible. A 10% cylindrical molded body was obtained. Next, the obtained molded body was sintered at about 1000 ° C. under the conditions of an inert atmosphere and atmospheric pressure to obtain a vapor deposition material (powdered SiO sintered body).
(2)ガスバリア性フィルム及びガスバリア性積層フィルムの作製
 基材として、厚さ12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポン製、「Q51C12」)を用い、そのコロナ処理面に、イソシアネート化合物(日本ポリウレタン工業製「コロネートL」)と飽和ポリエステル(東洋紡績製「バイロン300」、数平均分子量23000)とを1:1質量比で配合した混合物を塗布乾燥して厚さ100nmのアンカーコート層を形成した。
 次いで、円筒形のタンタル製のルツボ(かさ密度:16.7Mg/m3,熱伝導率:57.5W/(m・K),底部内径:100mm,内部高さ:100mm)内に上記蒸着材料を設置し、真空蒸着装置を使用して2×10-3Paの真空下で加熱によりSiOを蒸発させ、アンカーコート層上に厚さ25.4nmのSiOxの真空蒸着膜(特定PVD無機層)を形成しガスバリア性フィルムを得た。基材の搬送速度は、100m/分であった。
(2) Production of Gas Barrier Film and Gas Barrier Laminate Film A biaxially stretched polyethylene naphthalate film (made by Teijin DuPont, “Q51C12”) having a thickness of 12 μm was used as a base material, and an isocyanate compound (Japan) An anchor coat layer having a thickness of 100 nm is formed by applying and drying a mixture of polyurethane industry "Coronate L") and saturated polyester (Toyobo "Byron 300", number average molecular weight 23000) in a 1: 1 mass ratio. did.
Next, the above evaporation material is placed in a cylindrical tantalum crucible (bulk density: 16.7 Mg / m 3 , thermal conductivity: 57.5 W / (m · K), bottom inner diameter: 100 mm, internal height: 100 mm). The SiO 2 is evaporated by heating under a vacuum of 2 × 10 −3 Pa using a vacuum deposition apparatus, and a 25.4 nm thick SiOx vacuum deposition film (specific PVD inorganic layer) is formed on the anchor coat layer. And a gas barrier film was obtained. The conveyance speed of the base material was 100 m / min.
 次いで、得られたガスバリア性フィルムの無機層面側に、ウレタン系接着剤(東洋モートン社製「AD900」と「CAT-RT85」とを10:1.5の割合で配合)を塗布、乾燥し、厚さ約3μmの接着樹脂層を形成し、この接着樹脂層上に、厚さ60μmの未延伸ポリプロピレンフィルム(東洋紡績(株)製「パイレンフィルム-CT P1146」)をラミネートし、ガスバリア性積層フィルムを得た。 Next, a urethane-based adhesive (“AD900” and “CAT-RT85” manufactured by Toyo Morton Co., Ltd. at a ratio of 10: 1.5) was applied to the inorganic layer surface side of the obtained gas barrier film and dried. An adhesive resin layer having a thickness of about 3 μm was formed, and an unstretched polypropylene film having a thickness of 60 μm (“Pyrene Film-CT P1146” manufactured by Toyobo Co., Ltd.) was laminated on the adhesive resin layer, and a gas barrier laminate film Got.
実施例2
 実施例1において、SiO粉末としてメジアン径10μmのものを用い、特定PVD無機層の厚さを25.9nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Example 2
In Example 1, a gas barrier film and a gas barrier laminated film were produced in the same manner except that a SiO 2 powder having a median diameter of 10 μm was used and the thickness of the specific PVD inorganic layer was 25.9 nm.
実施例3
 実施例2において、円柱成型体の直径を前述の加熱用円筒系ルツボの内径の10%、特定PVD無機層の厚さを25.3nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Example 3
In Example 2, the gas barrier film and the gas barrier laminate film were similarly prepared except that the diameter of the cylindrical molded body was 10% of the inner diameter of the above-described heating cylindrical crucible and the thickness of the specific PVD inorganic layer was 25.3 nm. Was made.
実施例4
 実施例1において、SiO粉末としてメジアン径100μmのものを用い、特定PVD無機層の厚さを26.8nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Example 4
In Example 1, a gas barrier film and a gas barrier laminated film were prepared in the same manner except that the SiO powder having a median diameter of 100 μm was used and the thickness of the specific PVD inorganic layer was 26.8 nm.
実施例5
 実施例2において、円柱成型体の直径を前述の加熱用円筒形ルツボの底部内径の45%、高さを加熱用円筒形ルツボの内部高さの45%とし、特定PVD無機層の厚さを26.0nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Example 5
In Example 2, the diameter of the cylindrical molded body is 45% of the bottom inner diameter of the heating cylindrical crucible described above, the height is 45% of the internal height of the heating cylindrical crucible, and the thickness of the specific PVD inorganic layer is A gas barrier film and a gas barrier laminated film were produced in the same manner except that the thickness was 26.0 nm.
実施例6
 実施例2において、特定PVD無機層の厚さを25.0nmとして設け、次いで、、圧力を大気圧に戻すことなく、HMDSN(ヘキサメチルジシラザン)と窒素ガスとArガスとを、モル比1:7:7の比率で導入し、0.4Paの真空下でプラズマとし無機層面上にCVD無機層(SiOCN(酸化炭化窒化珪素))を形成した(厚さ4nm)。CVD無機層の炭素含有率は4%であった。PVD層及びCVD無機層形成の際の基材の搬送速度は、100m/分であった。
 次いで、圧力を大気圧に戻すことなく、2×10-3Paの真空下で、上記ルツボ内に上記蒸着材料を設置し、SiOを加熱により蒸発させ、CVD無機層上に厚さ35nmのSiOxの特定PVD無機層を形成し、ガスバリア性フィルムを得た。更にこのガスバリア性フィルムを用いて実施例1と同様にしてガスバリア性積層フィルムを得た。
Example 6
In Example 2, the specific PVD inorganic layer was provided with a thickness of 25.0 nm, and then the molar ratio of HMDSN (hexamethyldisilazane), nitrogen gas, and Ar gas was 1 without returning the pressure to atmospheric pressure. Was introduced at a ratio of 7: 7, and plasma was formed under a vacuum of 0.4 Pa to form a CVD inorganic layer (SiOCN (silicon oxycarbonitride)) on the surface of the inorganic layer (thickness 4 nm). The carbon content of the CVD inorganic layer was 4%. The conveyance speed of the base material in forming the PVD layer and the CVD inorganic layer was 100 m / min.
Next, without returning the pressure to atmospheric pressure, the vapor deposition material is placed in the crucible under a vacuum of 2 × 10 −3 Pa, SiO is evaporated by heating, and SiOx having a thickness of 35 nm is formed on the CVD inorganic layer. The specific PVD inorganic layer was formed to obtain a gas barrier film. Further, using this gas barrier film, a gas barrier laminated film was obtained in the same manner as in Example 1.
比較例1
 実施例1において、SiO粉末としてメジアン径1μmのものを用い、特定PVD無機層の厚さを24.0nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 1
In Example 1, a gas barrier film and a gas barrier laminated film were produced in the same manner except that the SiO powder having a median diameter of 1 μm was used and the thickness of the specific PVD inorganic layer was 24.0 nm.
比較例2
 実施例1において、SiO粉末としてメジアン径500μmのものを用い、特定PVD無機層の厚さを28.0nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 2
In Example 1, a gas barrier film and a gas barrier laminated film were produced in the same manner except that the SiO powder having a median diameter of 500 μm was used and the thickness of the specific PVD inorganic layer was 28.0 nm.
比較例3
 実施例2において、実施例2の成型体と高さは同じであり、実施例2の成型体の直径寸法を一辺とした四角柱とし、特定PVD無機層の厚さを25.3nmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 3
In Example 2, the height is the same as that of the molded body of Example 2, except that the diameter of the molded body of Example 2 is a square column with one side, and the thickness of the specific PVD inorganic layer is 25.3 nm. In the same manner, a gas barrier film and a gas barrier laminated film were produced.
比較例4
 実施例1において、SiO粉末としてメジアン径15μmのものを用い、円柱成型体の直径を前述の加熱用円筒形ルツボの底部内径の7%とし、特定PVD層の厚みを25.7μmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 4
In Example 1, a SiO powder having a median diameter of 15 μm was used, the diameter of the cylindrical molded body was 7% of the bottom inner diameter of the heating cylindrical crucible, and the thickness of the specific PVD layer was 25.7 μm. Similarly, a gas barrier film and a gas barrier laminated film were produced.
比較例5
 実施例1において、SiO粉末としてメジアン径15μmのものを用い、円柱成型体の直径を前述の加熱用円筒形ルツボの底部内径の75%とし、特定PVD層の厚みを25.9μmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 5
In Example 1, a SiO powder having a median diameter of 15 μm was used, the diameter of the cylindrical molded body was set to 75% of the inner diameter of the bottom of the above-described heating cylindrical crucible, and the thickness of the specific PVD layer was set to 25.9 μm. Similarly, a gas barrier film and a gas barrier laminated film were produced.
比較例6
 実施例1において、SiO粉末としてメジアン径15μmのものを用い、円柱成型体の直径を前述の加熱用円筒形ルツボの底部内径の10%、高さを加熱用円筒形ルツボの内部高さの80%とし、特定PVD層の厚みを25.3μmとした以外は同様にしてガスバリア性フィルム及びガスバリア性積層フィルムを作製した。
Comparative Example 6
In Example 1, SiO powder having a median diameter of 15 μm is used, the diameter of the cylindrical molded body is 10% of the inner diameter of the bottom of the heating cylindrical crucible described above, and the height is 80% of the internal height of the heating cylindrical crucible. %, And a gas barrier film and a gas barrier laminate film were produced in the same manner except that the thickness of the specific PVD layer was 25.3 μm.
 なお、以上の実施例及び比較例において、PVD層及びCVD無機層形成の際の基材の搬送速度は、100m/分とした。 In the above examples and comparative examples, the conveyance speed of the base material when forming the PVD layer and the CVD inorganic layer was 100 m / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~6のものは、何れも水蒸気透過率が低く、全光線透過率が高く、加熱時蒸発量が多いことから、ガスバリア性、光学特性及び生産性に優れることが確認できる。
 一方、比較例1のものは蒸着材料のメジアン径が小さく、比較例4のものは蒸着材料の成型体の直径が小さいことから、加熱時蒸発量が少なく、生産性に劣るものであった。
 また、比較例2、3、5及び6のものは、何れもスプラッシュ現象が発生し、水蒸気透過率が高く、全光線透過率も低いものであった。これら比較例においてスプラッシュ現象が生じる原因は、比較例2のものは、蒸着材料のメジアン径が大きいため、成型体の強度が十分ではないこと、比較例3のものは、蒸着材料の成型体の形状が四角柱であり、頂点が局部的に高温になりやすいこと、比較例5のものは、蒸着材料の成型体の直径が大きく、成型体一個あたりの熱分布が大きくなること、比較例6のものは、蒸着材料の成型体の高さが高く、ルツボ底面から離れた領域が多くなり、成型体に熱ムラが生じること、と考えられる。
Each of Examples 1 to 6 has a low water vapor transmission rate, a high total light transmittance, and a large amount of evaporation during heating. Therefore, it can be confirmed that the gas barrier properties, optical properties, and productivity are excellent.
On the other hand, Comparative Example 1 had a small median diameter of the vapor deposition material, and Comparative Example 4 had a small diameter of the molded material of the vapor deposition material, so that the amount of evaporation during heating was small and the productivity was poor.
Further, in Comparative Examples 2, 3, 5 and 6, all had a splash phenomenon, water vapor transmission rate was high, and total light transmittance was also low. The cause of the splash phenomenon in these comparative examples is that the comparative example 2 has a large median diameter of the vapor deposition material, so that the strength of the molded body is not sufficient. The shape is a quadrangular prism, the apex tends to be locally high, the comparative example 5 has a large diameter of the molded body of the vapor deposition material, and the heat distribution per molded body is large, comparative example 6 In this case, the height of the molded body of the vapor deposition material is high, and the area away from the bottom surface of the crucible increases, and it is considered that heat unevenness occurs in the molded body.
 本発明のガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や医薬品等の包装材料や太陽電池や電子ペーパー等の材料、電子デバイス等のパッケージ材料として好適に使用できる。また、本発明のガスバリア性積層フィルムは、生産性がよく、工業生産が可能である。 The gas barrier film of the present invention can be used for packaging articles that require blocking of various gases such as water vapor and oxygen, for example, packaging materials for food and pharmaceuticals, materials for solar cells and electronic paper, and packaging materials for electronic devices. Can be suitably used. Moreover, the gas barrier laminated film of the present invention has good productivity and can be industrially produced.
1・・・・・ルツボ
11・・・・収納部
12・・・・開口部
111・・・収納部の内側表面
112・・・収納部の外側表面
DESCRIPTION OF SYMBOLS 1 ... Crucible 11 ... Storage part 12 ... Opening part 111 ... Inside surface 112 of a storage part ... Outer surface of a storage part

Claims (11)

  1.  基材の少なくとも一方の面に、真空蒸着法により形成した無機層を有し、前記真空蒸着法により形成した無機層が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなるものである、ガスバリア性フィルム。 At least one surface of the substrate has an inorganic layer formed by a vacuum vapor deposition method, the inorganic layer formed by the vacuum vapor deposition method is an inorganic powder having a median diameter of 3 to 100 μm, and a diameter of the bottom inner diameter of the crucible. A gas barrier film, which is formed by heating and vaporizing a vapor deposition material formed into a cylindrical shape having a height of 10 to 45% and a height of 45% or less of the inner height of the crucible.
  2.  基材の少なくとも一方の面に、真空蒸着法により形成した無機層、化学蒸着法により形成した無機層及び真空蒸着法により形成した無機層をこの順で有し、前記真空蒸着法により形成した無機層の一以上が、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化することにより形成されてなるものである、ガスバリア性フィルム。 An inorganic layer formed by a vacuum deposition method, an inorganic layer formed by a chemical vapor deposition method, and an inorganic layer formed by a vacuum deposition method in this order on at least one surface of the substrate, and formed by the vacuum deposition method. One or more layers are formed by sintering and molding an inorganic powder having a median diameter of 3 to 100 μm into a cylindrical shape having a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. A gas barrier film, which is formed by vaporizing a vapor deposition material by heating.
  3.  前記無機物粉体として、珪素粉体及び/又は一酸化珪素粉体を含む請求項1又は2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, comprising silicon powder and / or silicon monoxide powder as the inorganic powder.
  4.  前記蒸着材料を加熱で気化して形成されてなる無機層が2層以上積層されてなる請求項1~3のいずれかに記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 3, wherein two or more inorganic layers formed by vaporizing the vapor deposition material by heating are laminated.
  5.  JIS K7105に準拠する全光線透過率が85%以上である請求項1~4のいずれかに記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 4, wherein the total light transmittance according to JIS K7105 is 85% or more.
  6.  前記蒸着材料が、収納部の内側表面が一酸化珪素ガスに対し不活性な材料からなるルツボに設置されてなる請求項3~5のいずれかに記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 3 to 5, wherein the vapor deposition material is placed in a crucible made of a material that is inert to the silicon monoxide gas on the inner surface of the storage portion.
  7.  前記不活性な材料が、金属又は金属化合物である請求項6に記載のガスバリア性フィルム。 The gas barrier film according to claim 6, wherein the inert material is a metal or a metal compound.
  8.  前記金属又は金属化合物の融点が1600℃以上である請求項7に記載のガスバリア性フィルム。 The gas barrier film according to claim 7, wherein the melting point of the metal or metal compound is 1600 ° C or higher.
  9.  前記金属化合物が炭化珪素又は窒化珪素である請求項7に記載のガスバリア性フィルム。 The gas barrier film according to claim 7, wherein the metal compound is silicon carbide or silicon nitride.
  10.  基材の少なくとも一方の面に、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により無機層を形成する、ガスバリア性フィルムの製造方法。 On at least one surface of the base material, an inorganic powder having a median diameter of 3 to 100 μm is sintered into a cylindrical shape having a diameter of 10 to 45% of the bottom inner diameter of the crucible and a height of 45% or less of the inner height of the crucible. A method for producing a gas barrier film, wherein an inorganic layer is formed by a vacuum vapor deposition method in which a vapor deposition material formed by molding is vaporized by heating.
  11.  基材の少なくとも一方の面に、真空蒸着法による無機層、化学蒸着法による無機層及び真空蒸着法による無機層をこの順で形成し、前記真空蒸着法による無機層の一以上を、メジアン径3~100μmの無機物粉体を、直径がルツボの底部内径の10~45%、高さがルツボの内部高さの45%以下の円柱状に焼結成型してなる蒸着材料を、加熱で気化する真空蒸着法により形成する、ガスバリア性フィルムの製造方法。 An inorganic layer formed by vacuum deposition, an inorganic layer formed by chemical vapor deposition, and an inorganic layer formed by vacuum deposition are formed in this order on at least one surface of the substrate. Vapor-deposition material obtained by sintering and molding 3 to 100 μm inorganic powder into a cylindrical shape with a diameter of 10 to 45% of the inner diameter of the bottom of the crucible and a height of 45% or less of the inner height of the crucible. A method for producing a gas barrier film, which is formed by a vacuum evaporation method.
PCT/JP2013/062857 2012-05-09 2013-05-07 Gas barrier film and method for producing gas barrier film WO2013168715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108047 2012-05-09
JP2012-108047 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168715A1 true WO2013168715A1 (en) 2013-11-14

Family

ID=49550751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062857 WO2013168715A1 (en) 2012-05-09 2013-05-07 Gas barrier film and method for producing gas barrier film

Country Status (3)

Country Link
JP (1) JP6171542B2 (en)
TW (1) TW201402339A (en)
WO (1) WO2013168715A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088485A4 (en) * 2013-12-26 2017-09-06 LINTEC Corporation Sheet-like sealing material, sealing sheet, electronic-device sealing body, and organic electroluminescent element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141741A1 (en) * 2014-03-19 2015-09-24 コニカミノルタ株式会社 Electronic device
JP6710908B2 (en) * 2015-07-24 2020-06-17 凸版印刷株式会社 Gas barrier laminate, wavelength conversion sheet and backlight unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315367A (en) * 1998-04-30 1999-11-16 Toyobo Co Ltd Material for vacuum deposition and vacuum-deposited film
JP2006070309A (en) * 2004-08-31 2006-03-16 Hoya Corp Crucible for vapor deposition, and vapor deposition apparatus
JP2010018445A (en) * 2008-07-08 2010-01-28 Shin-Etsu Chemical Co Ltd Pellet body for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor-deposited film
WO2010093041A1 (en) * 2009-02-16 2010-08-19 三菱樹脂株式会社 Process for producing multilayered gas-barrier film
JP2012052154A (en) * 2010-08-31 2012-03-15 Toppan Printing Co Ltd Vapor deposition material, and gas barrier vapor deposition film
JP2012072456A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Vapor deposition material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165064A (en) * 1990-10-26 1992-06-10 Toray Ind Inc Production of transparent gas barrier film
JP2007046081A (en) * 2005-08-08 2007-02-22 Nitto Denko Corp Method for producing transparent gas barrier film, and transparent gas barrier film obtained thereby
JP4666184B2 (en) * 2008-03-12 2011-04-06 信越化学工業株式会社 Method for producing silicon oxide sintered body for film deposition, and method for producing silicon oxide deposited film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315367A (en) * 1998-04-30 1999-11-16 Toyobo Co Ltd Material for vacuum deposition and vacuum-deposited film
JP2006070309A (en) * 2004-08-31 2006-03-16 Hoya Corp Crucible for vapor deposition, and vapor deposition apparatus
JP2010018445A (en) * 2008-07-08 2010-01-28 Shin-Etsu Chemical Co Ltd Pellet body for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor-deposited film
WO2010093041A1 (en) * 2009-02-16 2010-08-19 三菱樹脂株式会社 Process for producing multilayered gas-barrier film
JP2012052154A (en) * 2010-08-31 2012-03-15 Toppan Printing Co Ltd Vapor deposition material, and gas barrier vapor deposition film
JP2012072456A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Vapor deposition material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088485A4 (en) * 2013-12-26 2017-09-06 LINTEC Corporation Sheet-like sealing material, sealing sheet, electronic-device sealing body, and organic electroluminescent element
TWI648892B (en) * 2013-12-26 2019-01-21 日商琳得科股份有限公司 Sheet-like sealing material, sealing sheet, electronic device sealing body, and organic EL element

Also Published As

Publication number Publication date
JP2013252700A (en) 2013-12-19
TW201402339A (en) 2014-01-16
JP6171542B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
KR101881622B1 (en) Vapor-deposited film having barrier performance
JP5899044B2 (en) Gas barrier film
EP1927465B1 (en) Laminated film having gas barrier characteristics
EP2832537B1 (en) Gas-barrier film and process for producing same, and gas-barrier laminate
JP2013234365A (en) Method for producing gas barrier film
JP2013253319A (en) Gas barrier film and method for producing the same
JP5948928B2 (en) Gas barrier laminated film
JP6171542B2 (en) Gas barrier film and method for producing gas barrier film
JPWO2012060424A1 (en) Gas barrier laminated film
JP5664341B2 (en) Gas barrier film
JP2013234364A (en) Method for producing gas barrier film
JP2013233744A (en) Gas barrier film and method of manufacturing the same
WO2013168739A1 (en) Gas barrier film and method for producing same
JP2013226773A (en) Gas barrier film
JP2013234366A (en) Method for producing gas barrier film
JP2013233746A (en) Gas barrier film and method for producing the same
JP2013233658A (en) Gas barrier film
JP5982904B2 (en) Gas barrier laminate film and method for producing gas barrier laminate film
JP2013233705A (en) Gas barrier film
JP2013233743A (en) Method of producing gas barrier film
JP2013176957A (en) Gas barrier film
JP6776528B2 (en) Manufacturing method of gas barrier film
JP2012057237A (en) Method for producing gas barrier film
JP2017144635A (en) Gas barrier film and production method of the same
JP2013233747A (en) Gas barrier type film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788372

Country of ref document: EP

Kind code of ref document: A1