WO2013168194A1 - Airtight compressor and heat pump device - Google Patents

Airtight compressor and heat pump device Download PDF

Info

Publication number
WO2013168194A1
WO2013168194A1 PCT/JP2012/003022 JP2012003022W WO2013168194A1 WO 2013168194 A1 WO2013168194 A1 WO 2013168194A1 JP 2012003022 W JP2012003022 W JP 2012003022W WO 2013168194 A1 WO2013168194 A1 WO 2013168194A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
discharge
discharge port
refrigerant
muffler
Prior art date
Application number
PCT/JP2012/003022
Other languages
French (fr)
Japanese (ja)
Inventor
哲英 横山
雷人 河村
関屋 慎
白藤 好範
英明 前山
谷 真男
高橋 真一
宏樹 長澤
勝巳 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014514229A priority Critical patent/JP5866004B2/en
Priority to PCT/JP2012/003022 priority patent/WO2013168194A1/en
Priority to CN201280073850.3A priority patent/CN104379937B/en
Publication of WO2013168194A1 publication Critical patent/WO2013168194A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a hermetic compressor and a heat pump device, and more particularly to a hermetic compressor that compresses refrigerant and a heat pump device using the hermetic compressor.
  • a refrigerant compressor that drives a vapor compression refrigeration cycle is used in heat pump devices such as a refrigerator-freezer, an air conditioner, and a heat pump water heater. From the viewpoint of preventing global warming, it is necessary to save energy and improve efficiency of the vapor compression refrigeration cycle.
  • regulations that suppress GWP (global warming potential) of refrigerants have been strengthened, and use of natural refrigerants such as HC (isobutane, propane), low GWP refrigerants such as HFO1234yf, and the like has been studied.
  • the refrigerant compressed by the compression unit is discharged from the cylinder chamber of the compression unit through the discharge port to the discharge muffler chamber.
  • the discharged refrigerant is reduced in pressure pulsation and silenced in the discharge muffler chamber, and then flows into the internal space of the sealed container from the communication port through the discharge flow path.
  • a pressure loss occurs between the discharge from the cylinder chamber and the flow into the internal space of the sealed container, and a pressure pulsation occurs due to a phase shift between the pressure change in the cylinder chamber and the valve opening / closing. .
  • Such pressure pulsation causes a decrease in compressor efficiency and a decrease in the refrigeration cycle COP due to an overcompression (overshoot) loss in the cylinder chamber.
  • the pressure pulsation of the primary component of the operating frequency generates a vibration in the thrust direction in the compression mechanism such as the motor rotor portion and the drive shaft in the hermetic container, which causes a decrease in reliability.
  • the pressure pulsation of the high-frequency component occurs due to high-speed discharge jet, valve nonlinear behavior, resonance in the discharge muffler chamber, and the like, and causes noise.
  • Patent Document 1 conventionally, an electric motor in a hermetically sealed container, a drive shaft that is rotated by the electric motor, a main bearing and a sub bearing that support the drive shaft, and a piston that is operated by the drive shaft in a single cylinder cylinder are used as a refrigerant.
  • a hermetic refrigerant compressor comprising a compression element that sucks and compresses the first discharge muffler chamber (front muffler) on the main bearing side so as to cover the first discharge mechanism for discharging the refrigerant compressed in the cylinder chamber
  • a second discharge muffler chamber (rear muffler chamber) is formed on the auxiliary bearing side so as to cover the second discharge mechanism for discharging the refrigerant compressed in the cylinder chamber.
  • the internal pressure on the rear muffler side rises and the temperature of the rear muffler chamber becomes higher than that of the front muffler chamber, and is close to the rear muffler chamber.
  • the first discharge flow path for guiding the compressed refrigerant discharged into the front muffler chamber into the sealed container and the compressed refrigerant discharged into the rear muffler chamber are guided into the sealed container.
  • a second discharge channel is provided, and a through hole (communication channel) for communicating the front muffler chamber and the rear muffler chamber is formed.
  • the flow area flowing out from the second discharge mechanism through the rear muffler chamber into the sealed container is increased, the flow rate flowing out from the second discharge mechanism is increased instead of the first discharge mechanism, and the pressure and temperature of the rear muffler chamber are increased. It has been shown that the rise in the pressure becomes small, and problems such as abnormal wear and seizure of the sliding portion adjacent to the rear muffler can be prevented.
  • Non-Patent Document 1 (p. 180-181) describes that a silencing function is performed at a frequency lower than the limit frequency fc (usually several kHz level) of a typical one-stage expansion silencer.
  • the discharge muffler of the conventional rotary compressor has a short cylindrical shape in the axial direction, there is a side surface that does not function as an expansion silencer.
  • Patent Document 1 since the refrigerant discharged from the second discharge mechanism is expanded in two stages in the rear muffler chamber and the front muffler chamber, it is also a problem that the sound deadening effect is great but the pressure loss is also increased.
  • the invention described in Patent Document 1 is only a case of a single cylinder compressor (synonymous with a single compressor) that compresses by one cylinder, and a two-cylinder compressor (twin compression) that compresses by two cylinders. In this case, the optimal discharge path configuration is not disclosed.
  • the front muffler chamber has a substantially coaxial cylindrical shape (radius a, coaxial length L, with inlet / outlet pipes on the upper and lower surfaces), and has a side surface that is insufficiently functioning as an expansion silencer because the coaxial length L is short. There was a problem to improve this.
  • the present invention solves the above-mentioned problem, and in a sealed two-cylinder compressor, a hermetic compressor capable of achieving both reduction in pressure pulsation and reduction in pressure loss in a discharge section, and said sealed type A heat pump apparatus using a compressor is provided.
  • a hermetic compressor includes a hermetic container, An electric motor installed in the sealed container; A drive shaft that is rotationally driven by the electric motor and rotatably supported by the first support member and the second support member; an intermediate partition plate disposed between the first support member and the second support member; A first cylinder coupled to the drive shaft is movably accommodated, and a first cylinder that forms a first compression chamber between the first support member and the intermediate partition plate; and A first discharge port formed in the first support member that discharges the compressed refrigerant, and is installed in the first support member so as to cover the first discharge port, and is discharged from the first discharge port.
  • a first muffler container that forms a first muffler space into which refrigerant flows;
  • a second piston that is movably accommodated in the second drive shaft and that forms a second compression chamber between the second support member and the intermediate partition plate; and
  • a second discharge port formed in the second support member that discharges the compressed refrigerant, and is installed in the second support member so as to cover the second discharge port, and is discharged from the second discharge port.
  • a second muffler container that forms a second muffler space into which the refrigerant flows;
  • a first discharge channel that directly guides the compressed refrigerant from the first muffler space to the inner space of the sealed container, and a second discharge channel that directly guides the compressed refrigerant from the second muffler space to the inner space of the sealed container
  • a communication channel through which a refrigerant flows through the first muffler space and the second muffler space;
  • the hermetic compressor according to the present invention can reduce the pressure pulsation and pressure loss of the compressor discharge section, and can improve efficiency, reduce vibration noise, and improve reliability.
  • FIG. 11 is a cross-sectional view taken along the line A-A ′ of the hermetic twin compressor shown in FIG. 10. Sectional drawing of the B-B 'cross section of the hermetic twin compressor shown in FIG. The block diagram of the heat pump apparatus which concerns on Embodiment 5 of this invention.
  • Embodiment 1 a closed twin compressor (same as a closed two-cylinder compressor) having a first compression section and a second compression section will be described.
  • Embodiment 2 the closed twin compressor is used.
  • a vapor compression refrigeration cycle will be described.
  • the flow of the refrigerant is indicated by thick arrows.
  • the same or corresponding parts are denoted by the same reference numerals, and a part of the description is omitted.
  • Each figure is drawn typically, and the present invention is not limited to the illustrated form.
  • FIG. 1 explains the configuration of a hermetic twin compressor according to Embodiment 1 of the present invention.
  • FIG. 1 is a longitudinal sectional view
  • FIG. 2 is a transverse sectional view (AA ′ section shown in FIG. 1).
  • 3 is a transverse cross-sectional view (BB ′ cross section shown in FIG. 1).
  • a hermetic twin compressor (same as a hermetic two-cylinder compressor) 100 is installed in a hermetic container 8 and an inner space of the hermetic container 8 (hereinafter referred to as “hermetic container inner space”) 3.
  • a first compression unit 10, a second compression unit 20, a compression mechanism 99 including a drive shaft 6 that drives them, and an electric motor 9 that rotates the drive shaft 6 are provided.
  • the compression mechanism 99 includes a first compression unit 10 and a second compression unit 20, each of which is sequentially stacked along the drive shaft 6 from the lower side to the upper side in the axial direction.
  • the cylinder 21, a second support member (corresponding to a main bearing) 70, and a second discharge muffler 40 are configured.
  • An electric motor 9 is installed above the compression mechanism 99 with the electric motor lower space 3b interposed therebetween, and the drive shaft 6 is connected to the electric motor 9 (more precisely, a motor shaft). Further, in the sealed container internal space 3, a lubricating oil storage portion 3 a for lubricating oil for lubricating the compression mechanism 99 is provided on the lowest side in the axial direction of the drive shaft 6.
  • the 1st compression part 10 is provided with the 1st cylinder 11 which consists of a parallel plate.
  • the first cylinder 11 has a cylindrical shape and is sandwiched between the first support member 60 and the intermediate partition plate 5, and a first cylinder chamber 11a, which is a compression space, is formed on the inner periphery.
  • a first rotary piston 12 that rotates eccentrically by the rotation of the drive shaft 6 is movably disposed.
  • a first cylinder suction port 15 communicating with the suction muffler 7 and a first discharge port 16 for discharging the compressed refrigerant to the first discharge muffler 30 are provided (see FIG. 2).
  • the 2nd compression part 20 is provided with the 2nd cylinder 11 which consists of a parallel plate.
  • the second cylinder 21 has a cylindrical shape and is sandwiched between the second support member 70 and the intermediate partition plate 5, and a second cylinder chamber 21 a that is a compression space is formed in the inner peripheral portion.
  • a second rotary piston 22 that rotates eccentrically with the rotation of the drive shaft 6 is movably disposed.
  • a second cylinder suction port 25 communicating with the suction muffler 7 and a second discharge port 16 for discharging the compressed refrigerant to the second discharge muffler 40 are provided (see FIG. 3).
  • the first discharge muffler container 31 is installed on a first support member (corresponding to a secondary bearing) 60 that also serves as the first bearing portion 61 so as to cover the first discharge port 16, and the first support member 60 and the first support member 60.
  • a first discharge muffler space 32 is formed by the discharge muffler container 31 (hereinafter, the first discharge muffler container 31 and the first discharge muffler space 32 are collectively referred to as “first discharge muffler 30”).
  • a second discharge muffler container 41 is installed on a second support member (corresponding to a main bearing) 70 that also serves as the second bearing portion 71 so as to cover the second discharge port 26, and the second support member 70 and the second support member 70.
  • the second discharge muffler container 41 forms a second muffler space 42 (hereinafter, the second discharge muffler container 41 and the second muffler space 42 are collectively referred to as “second discharge muffler 40”).
  • An electric motor lower space 3 b is formed between the electric motor 9 and the second discharge muffler container 41.
  • a first discharge valve concave installation portion 18 that is a keyhole-shaped groove is formed around the first discharge port 16 on the first discharge port side surface 62 of the first support member 60 (corresponding to the auxiliary bearing).
  • a first discharge mechanism 17 (here, a first reed valve 17a and a first stopper 17b for setting a lift amount) that opens and closes the first discharge port 16 is attached to the first discharge valve concave installation portion 18.
  • the second discharge valve concave side which is a keyhole-shaped groove formed around the second discharge port 26 is provided on the second discharge port side surface 72 of the second support member 70 (corresponding to the main bearing).
  • the second discharge mechanism 27 (here, the second reed valve 27a and the second stopper 27b for setting the lift amount) for opening and closing the second discharge port 26 is attached to the second discharge valve concave installation portion 28. It has been.
  • the discharge flow path 34 is provided with a compression mechanism 99 (first support member 60, first cylinder 11, intermediate partition plate 5, second cylinder 21 and A second support member 70) is provided. At this time, both ends of the discharge channel 34 are formed on the discharge port 34 a formed on the first discharge port side surface 62 of the first support member 60 and on the second discharge port side surface 72 of the second support member 70. It becomes the discharge port 34b.
  • a first discharge port inflow guide 36 is provided to flow the annular flow in the first discharge muffler space 32 from the discharge port 34a to the discharge flow path 34 while smoothly changing the direction of the flow upward in the drive shaft.
  • a discharge flow path 44 is provided in the second discharge muffler container 41 in order to directly discharge the refrigerant from the second discharge muffler space 42 to the motor lower space 3b.
  • a plurality of communication channels 51, 52, and 53 are provided for communicating the first discharge muffler space 32 and the second discharge muffler space 42. At this time, both ends of the communication channels 51, 52, 53 are connected to the communication ports 51 a, 52 a, 53 a formed on the first discharge port side surface 62 of the first support member 60, respectively, and the second of the second support member 70.
  • the communication ports 51b, 52b, and 53b are formed in the discharge port side surface 72.
  • the communication port 52 a on the first discharge muffler space 32 side is arranged in a phase close to the first discharge port 16 of the first compression unit 10 and is surrounded by the first discharge port inflow guide 36 and the first discharge port rear surface guide 37.
  • the first resonance small space 39 is arranged.
  • the communication port 51a on the first discharge muffler space 32 side is disposed in a phase close to the first discharge port 16 of the first compression unit 10 and is disposed outside the first resonance small space 39 (see FIG. 2). ).
  • the communication port 51 b on the second discharge muffler space 42 side is arranged in a phase close to the second discharge port 26 of the second compression unit 20 and is surrounded by the second discharge port inflow guide 46 and the second discharge port rear surface guide 47.
  • the second resonance small space 49 is disposed.
  • the communication port 52b on the second discharge muffler space 42 side is disposed in a phase close to the second discharge port 26 of the second compression unit 20, and is disposed outside the second resonance small space 49 (see FIG. 3). ). Further, the communication port 53a and the communication port 53b of the communication channel 53 are respectively disposed outside the first resonance small space 39 and the second resonance small space 49, and the first discharge muffler space 32 and the second discharge muffler space 42 are provided. Are communicated directly (without passing through the first resonance small space 39 or the second resonance small space 49), and the refrigerant is designed to easily flow and pressure fluctuation is easily transmitted.
  • the first discharge port inflow guide 36 and the first discharge port rear surface guide 37 are formed of a plate material or a net material having a predetermined opening with a number of gaps and holes, and from the inside of the first resonance small space 39.
  • the refrigerant is designed so that it can pass from the outside to the inside (from the outside, a predetermined resistance is applied).
  • the second discharge port inflow guide 46 and the second discharge port rear surface guide 47 are formed of a plate material or a net material having a predetermined opening with a large number of gaps and holes, and are formed in the second resonance small space 49.
  • the refrigerant is designed to pass freely from the outside to the inside or from the outside to the inside (received a predetermined resistance when passing).
  • the volume V and the dimensions of the communication channels 52 and 51 are matched to the Helmholtz resonance frequency. It is possible to design. If designed in accordance with the problematic operating frequency generated in the second discharge muffler space 42 and the first discharge muffler space 32, the problematic medium speed frequency band component (usually the secondary component of the operational frequency, 100 Hz or more) It can be removed.
  • the volume of the first resonance small space 39 or the volume of the second resonance small space 49 has a length d and a diameter D of the communication flow path 52 so as to resonate with the primary component f of the operating frequency.
  • c refrigerant gas sound speed
  • V Buffer container volume Correction factor: k (approximately 1.57 ⁇ 0.5, ie, in the range of 7.5 to 0.8) Can be determined to satisfy.
  • the discharge muffler is discharged from the discharge ports 16 and 26. Considering it as a circulation channel with a rectangular cross-section leading to the outlet, we decided to increase the limit frequency by making it longer in the circulation direction.
  • the refrigerant discharged from the first discharge port 16 flows in the counterclockwise direction (direction A) in FIG.
  • a first discharge port rear surface guide 37 is arranged on the back side (clockwise direction) of the first discharge port 16 so as to flow into the discharge channel 34, and the distance from the first discharge port 16 to the first discharge port 34a is as much as possible. It is long. Since the first discharge port inflow guide 36 and the first discharge port rear surface guide 37 are designed such that the refrigerant can pass therethrough, a part of the refrigerant circulates in the counterclockwise direction (direction A).
  • the refrigerant flows in the clockwise direction (B direction) in FIG. 3 from the second discharge port 26 and flows into the second discharge flow path 44.
  • a second discharge port rear surface guide 47 is arranged on the rear surface side (counterclockwise direction) of the second discharge port 36, and the distance from the second discharge port 26 to the second discharge channel 44 is made as long as possible. For this reason, it is designed so that it can respond to a low frequency region (primary component and secondary component of the operating frequency) as an expansion silencer.
  • the 2nd discharge port inflow guide 46 and the 2nd discharge port back surface guide 47 are designed so that a refrigerant
  • the refrigerant flow in the hermetic twin compressor 100 will be described.
  • the low-pressure refrigerant flows into the suction muffler 7 (arrow II in FIG. 1) via the compressor suction pipe 1 (arrow I in FIG. 1).
  • the refrigerant flowing into the suction muffler 7 is separated into a gas refrigerant and a liquid refrigerant in the suction muffler 7.
  • the gas refrigerant passes through the suction muffler connecting pipe 4 and is distributed and sucked into the first cylinder 11 of the first compression section 10 and the second cylinder 21 of the second compression section 20 (arrow III, arrow in FIG. 1). IV).
  • the refrigerant sucked into the first cylinder 11 is compressed, becomes a high-pressure refrigerant, and is discharged from the first discharge port 16 to the first discharge muffler space 32 (arrow V in FIG. 1), and the first discharge port 34a. From the second discharge port 34b to the motor lower space 3b (arrow VII in FIG. 1). Furthermore, it rises through the gap of the electric motor 9 and is discharged from the electric motor upper space 3c through the compressor discharge pipe 2 to the external refrigerant circuit (arrow VII in FIG. 1).
  • the refrigerant sucked into the second cylinder 21 and compressed is compressed to become a high-pressure refrigerant, and is discharged from the second discharge port 26 to the second discharge muffler space 42 (arrow VI in FIG. 1) to be discharged second. It is discharged to the electric motor lower space 3b through the flow path 44 (arrow VIII in FIG. 1). Furthermore, it rises through the gap of the electric motor 9 and is discharged from the electric motor upper space 3c through the compressor discharge pipe 2 to the external refrigerant circuit (arrow IX in FIG. 1).
  • the 2nd compression part 20 suck
  • the 1st compression part 10 suck
  • the 2nd compression part 20 discharges a refrigerant
  • the pressure pulsation includes a high-order component, a secondary component or a higher-order component remains.
  • the respective volumes of the first resonance small space 39 and the second resonance small space 49 are used.
  • the Helmholtz resonance frequency may be designed by matching V and the communication channel dimension (length L, channel cross section S) with the frequency band to be absorbed and silenced.
  • the energy level of the pressure amplitude is designed so as to remove the secondary component having the second highest operating frequency primary component by Helmholtz resonance.
  • the operating frequency of the refrigerant compressor can be varied in a range of 10 Hz to 120 Hz by an inverter, but the first resonance small space 3 and the second resonance frequency are set so that Helmholtz resonance is achieved with a secondary component with a rated operating frequency of 60 Hz as a target.
  • the volume V of each of the two resonance small spaces 49 and the communication channel dimensions are designed, the pipe diameter is 8 mm, the length is 60 mm, and the resonance port is small with one resonance channel.
  • the resonance frequency is 120 Hz.
  • the discharge muffler of a rotary compressor needs to be designed to be larger than the inner diameter of the cylinder in order to cover the compression part, and since it functions as an expansion silencer, the volume is required to be about 200 cc, and a small space of about 54 cc is separately configured. To do.
  • the first discharge port 16 is configured such that the refrigerant flows in an arc shape from the first discharge port 16 (partially circulates in an annular shape) and is discharged from the first discharge port 34a.
  • To the first discharge port 34a can be designed as long as possible.
  • the second discharge muffler space 42 discharges the refrigerant from the second discharge passage 44 by flowing in a circular arc shape from the second discharge port 26 (partially circulating in the annular shape).
  • the distance from the outlet 26 to the second discharge channel 44 can be designed as long as possible. For this reason, the frequency region of the kHz band which causes a noise problem can be included as the expansion silencer. Further, the primary component and the secondary component of the operating frequency which are problematic in efficiency can reduce pressure pulsation loss by the communication channel 53 and the Helmfortz resonance channels 51 and 52.
  • the plurality of communication channels 51, 52, 53 are merged, and in particular, the third communication channel 53 having a low resistance is added, so that the space between the first discharge muffler space 32 and the second discharge muffler space 42 is added.
  • the pressure loss is reduced. It is a structure that is difficult to stick.
  • hermetic twin compressor 100 of the first embodiment it is possible to achieve both reduction of pressure loss and reduction of pressure pulsation, improvement of compressor efficiency, reduction of vibration noise, and improvement of reliability. Effect can be obtained.
  • FIG. 4 explains the configuration of a hermetic twin compressor according to Embodiment 2 of the present invention.
  • FIG. 4 is a longitudinal sectional view
  • FIG. 5 is a transverse sectional view (AA ′ section shown in FIG. 4).
  • 6 is a cross-sectional view (BB 'cross section shown in FIG. 4).
  • symbol is attached
  • the walls of the first small space 39 and the second small space 49 are formed of a porous material, and the refrigerant gas can flow between the first discharge muffler 30 and the second discharge muffler 40. The point is different.
  • the communication channel 53 that cancels the pressure fluctuation in the opposite phase between the first discharge muffler 30 and the second discharge muffler 40 is eliminated.
  • the first resonance channel 51 and the second resonance channel 52 are different from each other in the first discharge muffler.
  • 30 and the second discharge muffler 40 also serve as a communication channel that cancels out the pressure fluctuation in the opposite phase.
  • Other configurations are the same as in the first embodiment, but the silencing effect due to Helmholtz resonance in the first small space 39 and the second small space 49 is somewhat reduced (about 10%). Further, because of the resistance passing through the first small space 39 and the second small space 49, the pressure pulsation reducing effect is reduced as compared with the communication flow path of the first embodiment.
  • the hermetic twin compressor 100 of the second embodiment although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation.
  • the effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
  • FIG. 7 is a longitudinal sectional view
  • FIG. 8 is a transverse sectional view (AA ′ section shown in FIG. 7).
  • 9 is a cross-sectional view (BB ′ cross section shown in FIG. 7).
  • symbol is attached
  • the third embodiment is different from the second embodiment in that the first small space 39 and the second small space 49 are eliminated.
  • the first discharge muffler 30 and the second discharge muffler 40 also function as the resonance buffer space of the first small space 39 and the second small space 49. If the frequency for Helmholtz resonance is the operating frequency level (20 to 100 Hz), the normal discharge muffler volume level (200 cc or more) is established.
  • the energy level of pressure amplitude is It is designed to remove the second highest secondary component of the operating frequency primary component by Helmholtz resonance.
  • the operating frequency of the refrigerant compressor can be varied in the range of 10 Hz to 120 Hz by an inverter, but the first resonance is small so that the primary component and the secondary component become Helmholtz resonance with the rated operating frequency of 60 Hz as a target.
  • the volume V of each of the space 3 and the second resonance small space 49 and the communication channel dimensions (length L, channel cross section S) are designed.
  • the resonance frequency is 60 Hz.
  • the pipe diameter is 14 mm
  • the length is 60 mm
  • the volume V of the small space surrounding the resonance port is 150 cc with one second resonance channel
  • the resonance frequency is 120 Hz. Since the first discharge muffler and the resonance flow path 51 are designed to have a secondary component of 120 Hz, and the second discharge muffler and the resonance flow path 52 are set to have a primary component of 60 Hz, it is possible to cover two types of frequency components. .
  • the hermetic twin compressor 100 of the second embodiment although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation.
  • the effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
  • FIG. 10 explains the configuration of a hermetic twin compressor according to Embodiment 4 of the present invention.
  • FIG. 10 is a longitudinal sectional view
  • FIG. 11 is a transverse sectional view (AA ′ section shown in FIG. 10).
  • FIG. 12 is a transverse sectional view (BB ′ section shown in FIG. 10).
  • symbol is attached
  • the point covered with the second small space 49 of the textured wall is different from the first embodiment.
  • the functions of the resonance channels 51 and 52 and the function of the communication channel 53 of the first embodiment are performed by a single resonance channel 54.
  • it is possible to cover two types of frequency components by making the volume of the first discharge muffler and the second discharge muffler about twice as large.
  • the operating frequency of the refrigerant compressor can be varied in the range of 10 Hz to 120 Hz by an inverter, but the first resonance is small so that the primary component and the secondary component become Helmholtz resonance with the rated operating frequency of 60 Hz as a target.
  • the volume V of each of the space 3 and the second resonance small space 49 and the communication channel dimensions are designed.
  • the resonance frequency is 120 Hz.
  • the discharge muffler of a rotary compressor needs to be designed to be larger than the inner diameter of the cylinder so as to cover the compression portion, and since it functions as an expansion silencer, the volume is required to be about 200 cc, the first small space of 54 cc and 87 cc
  • the second small space of the degree is configured separately.
  • the first discharge muffler and the resonance flow path 51 are designed to have a secondary component of 120 Hz
  • the second discharge muffler and the resonance flow path 52 are set to a primary component of 60 Hz, so that two types of frequency components can be covered. Is possible.
  • Other configurations are the same as those of the first embodiment, but only one resonance channel 54 is provided, and the resonance ports 54a and 54b pass through a small space. Compared to the three configurations, the effect of reducing pressure pulsation is reduced.
  • the hermetic twin compressor 100 of the second embodiment although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation.
  • the effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
  • the compressor efficiency improvement effect obtained by the hermetic twin compressor 100 shown in Embodiments 1 to 3 varies depending on the type of refrigerant used in the vapor compression refrigeration cycle. That is, as the refrigerant operating at the hermetic twin compressor 100 has lower pressure and density, the ratio of power loss due to the generated pressure loss to the compressor input is larger, so the effect of improving the compressor efficiency is greater.
  • Low GWP (low global warming potential) refrigerants such as HC refrigerants (isobutane, propane, propylene) and HFO1234yf, are lower in pressure and lower than CFC refrigerants (R410A, R22) that are currently used in the global market for air conditioning equipment. Since it operates at a density, it is particularly effective to improve compressor efficiency, reduce vibration noise, and improve reliability.
  • the first to third embodiments have described the hermetic twin compressor 100 assuming the rotary piston type rotary compressor.
  • the present invention is not limited to this, and the swing piston type is another rotary compressor.
  • a reciprocating type or scroll type which is a compressor type other than the rotary type, sliding vane type, etc.
  • an accumulator is provided on the suction side, the effect of improving the compressor efficiency as in the first embodiment is achieved. can get.
  • FIG. 13 is a configuration diagram of a heat pump device according to Embodiment 5 of the present invention.
  • symbol is attached
  • the heat pump device (vapor compression refrigeration cycle device) 200 includes the hermetic twin compressor 100 shown in the first embodiment, the radiator 102, the expansion mechanism 103, and the evaporator 104, and ranks them. And a refrigerant pipe 105 that circulates the refrigerant by being connected. Therefore, the heat pump device 200 can improve energy saving efficiency, reduce vibration noise, and improve reliability by using the hermetic twin compressor 100.

Abstract

According to the present invention, a compression mechanism (99) of an airtight twin compressor (100) is configured from a sequential stack of a first discharge muffler (30), a first support member (60), a first cylinder (11), an intermediate dividing plate (5), a second cylinder (21), a second support member (70), and a second discharge muffler (40); the first cylinder (11) and the second cylinder (21) being provided with a first discharge port (16) and a second discharge port (26) for discharging compressed refrigerant to a first discharge muffler space (32) and a second discharge muffler space (42). Also provided are a first expelling flow channel (34) for communicating the first discharge muffler space (32) and the interior of an airtight container (8), a second expelling flow channel (44) for communicating the second discharge muffler space (42) and the interior of the airtight container (8), and communication flow channels (51, 52, 53) for communicating the first discharge muffler space (32) and the second discharge muffler space (42).

Description

密閉形圧縮機及びヒートポンプ装置Hermetic compressor and heat pump device
 本発明は密閉形圧縮機及びヒートポンプ装置、特に、冷媒を圧縮する密閉形圧縮機、及び該密閉形圧縮機を用いたヒートポンプ装置に関する。 The present invention relates to a hermetic compressor and a heat pump device, and more particularly to a hermetic compressor that compresses refrigerant and a heat pump device using the hermetic compressor.
 冷凍冷蔵庫、空気調和機、ヒートポンプ式給湯器等のヒートポンプ装置には、蒸気圧縮式冷凍サイクルを駆動する冷媒圧縮機が用いられる。地球温暖化防止を図る観点等から、蒸気圧縮式冷凍サイクルの省エネルギー化と効率化とが必要である。
 また、冷媒のGWP(地球温暖化係数)を抑制する規制も強化され、HC(イソブタン、プロパン)などの自然冷媒や、HFO1234yfなどの低GWP冷媒等を用いることが検討されている。
 しかし、これらの冷媒は、従来のフロン冷媒に比べて低圧低密度で動作するため、冷媒圧縮機の内部で生じる圧力損失による動力損失が圧縮機入力に占める割合が大きくなる。そのため、これらの低圧の代替冷媒を用いた圧縮機の高効率化には、圧力損失の低減が必要である。
A refrigerant compressor that drives a vapor compression refrigeration cycle is used in heat pump devices such as a refrigerator-freezer, an air conditioner, and a heat pump water heater. From the viewpoint of preventing global warming, it is necessary to save energy and improve efficiency of the vapor compression refrigeration cycle.
In addition, regulations that suppress GWP (global warming potential) of refrigerants have been strengthened, and use of natural refrigerants such as HC (isobutane, propane), low GWP refrigerants such as HFO1234yf, and the like has been studied.
However, since these refrigerants operate at a low pressure and low density as compared with conventional chlorofluorocarbon refrigerants, the ratio of power loss due to pressure loss generated inside the refrigerant compressor to the compressor input increases. For this reason, it is necessary to reduce the pressure loss in order to increase the efficiency of the compressor using these low-pressure alternative refrigerants.
 従来の冷媒圧縮機では、圧縮部で圧縮された冷媒は、吐出口の開閉を制御する吐出弁が開くと、圧縮部のシリンダ室から吐出口を通って、吐出マフラ室へ吐出される。吐出冷媒は、吐出マフラ室で圧力脈動を低減し消音した後、連通口から吐出流路を通って密閉容器の内部空間へ流入する。
 ここで、シリンダ室から吐出された後、密閉容器の内部空間へ流入するまでの間に生じる圧力損失が生じると共に、シリンダ室の圧力変化とバルブ開閉との間に生じる位相ずれによって圧力脈動が生じる。かかる圧力脈動が、シリンダ室で過圧縮(オーバシュート)損失により圧縮機効率の低下と冷凍サイクルCOPの低下との原因となる。
 また、運転周波数の1次成分の圧力脈動は、密閉容器内のモータロータ部、駆動軸などの圧縮機構にスラスト方向の振動を発生し、信頼性低下の要因となる。さらに、高周波成分の圧力脈動は、高速の吐出噴流、バルブ非線形挙動、吐出マフラ室内の共鳴などにより発生し、騒音の原因となる。
In the conventional refrigerant compressor, when the discharge valve that controls the opening and closing of the discharge port is opened, the refrigerant compressed by the compression unit is discharged from the cylinder chamber of the compression unit through the discharge port to the discharge muffler chamber. The discharged refrigerant is reduced in pressure pulsation and silenced in the discharge muffler chamber, and then flows into the internal space of the sealed container from the communication port through the discharge flow path.
Here, a pressure loss occurs between the discharge from the cylinder chamber and the flow into the internal space of the sealed container, and a pressure pulsation occurs due to a phase shift between the pressure change in the cylinder chamber and the valve opening / closing. . Such pressure pulsation causes a decrease in compressor efficiency and a decrease in the refrigeration cycle COP due to an overcompression (overshoot) loss in the cylinder chamber.
Further, the pressure pulsation of the primary component of the operating frequency generates a vibration in the thrust direction in the compression mechanism such as the motor rotor portion and the drive shaft in the hermetic container, which causes a decrease in reliability. Further, the pressure pulsation of the high-frequency component occurs due to high-speed discharge jet, valve nonlinear behavior, resonance in the discharge muffler chamber, and the like, and causes noise.
 特許文献1によると、従来は、密閉容器内に電動機と、電動機で回転させる駆動軸と、駆動軸を支持する主軸受及び副軸受と、駆動軸でピストンを単気筒シリンダ内で動作させて冷媒を吸入し圧縮する圧縮要素とから構成する密閉形冷媒圧縮機において、シリンダ室で圧縮された冷媒を吐出させるための第1吐出機構を覆うように主軸受側に第1吐出マフラ室(フロントマフラ室)が形成され、同様に、シリンダ室で圧縮された冷媒を吐出させるための第2吐出機構を覆うように副軸受側に第2吐出マフラ室(リアマフラ室)が形成された、単気筒シリンダの2箇所の吐出孔から吐出する単気筒圧縮機においては、リヤマフラ側の内部圧力が上昇して前記リヤマフラ室の温度が前記フロントマフラ室より高温となり、前記リヤマフラ室に近接する摺動部分(例えば、ローリングピストンやベーンなど)が高温になって異常摩耗や焼付きなどが発生する問題があった。
 そこで、特許文献1に記載された発明では、フロントマフラ室に吐出される圧縮冷媒を密閉容器内に案内する第1排出流路と、リヤマフラ室に吐出される圧縮冷媒を密閉容器内に案内する第2排出流路とを設けると共に、フロントマフラ室とリヤマフラ室とを連通する貫通穴(連通流路)が形成されている。
 第2吐出機構からリヤマフラ室を経由してから密閉容器内に流出する流路面積が増加し、第1吐出機構に替わって第2吐出機構から流出する流量が増加し、リヤマフラ室の圧力と温度の上昇が小さくなり、リヤマフラに近接する摺動部分の異常摩耗や焼付きなどを問題が防止できることが示されている。
According to Patent Document 1, conventionally, an electric motor in a hermetically sealed container, a drive shaft that is rotated by the electric motor, a main bearing and a sub bearing that support the drive shaft, and a piston that is operated by the drive shaft in a single cylinder cylinder are used as a refrigerant. In a hermetic refrigerant compressor comprising a compression element that sucks and compresses the first discharge muffler chamber (front muffler) on the main bearing side so as to cover the first discharge mechanism for discharging the refrigerant compressed in the cylinder chamber Single cylinder cylinder in which a second discharge muffler chamber (rear muffler chamber) is formed on the auxiliary bearing side so as to cover the second discharge mechanism for discharging the refrigerant compressed in the cylinder chamber. In the single-cylinder compressor that discharges from these two discharge holes, the internal pressure on the rear muffler side rises and the temperature of the rear muffler chamber becomes higher than that of the front muffler chamber, and is close to the rear muffler chamber. Sliding parts (e.g., a rolling piston and vanes) that include abnormal wear or seizure is a problem that occurs very hot.
Therefore, in the invention described in Patent Document 1, the first discharge flow path for guiding the compressed refrigerant discharged into the front muffler chamber into the sealed container and the compressed refrigerant discharged into the rear muffler chamber are guided into the sealed container. A second discharge channel is provided, and a through hole (communication channel) for communicating the front muffler chamber and the rear muffler chamber is formed.
The flow area flowing out from the second discharge mechanism through the rear muffler chamber into the sealed container is increased, the flow rate flowing out from the second discharge mechanism is increased instead of the first discharge mechanism, and the pressure and temperature of the rear muffler chamber are increased. It has been shown that the rise in the pressure becomes small, and problems such as abnormal wear and seizure of the sliding portion adjacent to the rear muffler can be prevented.
 代表的な消音マフラとして、(1)ヘルムホルツ共鳴形消音器と、(2)膨張形消音器とが一般的に用いられている(例えば、非特許文献1参照)。
 (1)非特許文献1(p.267)によると、開口部を有するバッファ容器で構成したヘルムホルツ共鳴器は、
  共鳴周波数:f=(c/2π)×(S/(L×V))0.5
      L:開口部有効長さ(=d+k×D)
      c:音速、
S:開口部面積(=πD/4)、
      V:バッファ容器容積
      D:開口部代表直径、
      d:開口部実寸長さ、
   補正係数:k
で共鳴して吸音する機能を有する。
 (2)非特許文献1(p.180-181)に、代表的な1段膨張形消音器の限界周波数fc(通常は数kHzレベル)より低い周波数で消音機能することが説明されている。
 同軸円筒形状(半径a、同軸長さL、上下面に出入口管あり)のものは、同軸方向の共振周波数f1(=0.5×音速/L)が、半径方向の共振周波数f2(=0.6×音速/a)より大きい場合(f1>f2)には、膨張形消音器としては十分機能しないことが示されている。
As typical silencer mufflers, (1) Helmholtz resonance silencers and (2) expansion silencers are generally used (see, for example, Non-Patent Document 1).
(1) According to Non-Patent Document 1 (p. 267), a Helmholtz resonator composed of a buffer container having an opening is
Resonance frequency: f = (c / 2π) × (S / (L × V)) 0.5
L: Opening effective length (= d + k × D)
c: speed of sound,
S: opening area (= πD 2/4),
V: Buffer container volume D: Opening representative diameter,
d: actual size of the opening,
Correction coefficient: k
It has a function to absorb sound by resonating.
(2) Non-Patent Document 1 (p. 180-181) describes that a silencing function is performed at a frequency lower than the limit frequency fc (usually several kHz level) of a typical one-stage expansion silencer.
In the case of a coaxial cylindrical shape (radius a, coaxial length L, inlet and outlet pipes on the upper and lower surfaces), the resonance frequency f1 in the coaxial direction (= 0.5 × sonic velocity / L) is the resonance frequency f2 in the radial direction (= 0). .6 × sound speed / a) (f1> f2), it is shown that the expansion silencer does not function sufficiently.
 従来のロータリ圧縮機の吐出マフラは、軸方向に短い円筒形状のため、膨張形消音器として機能が不十分な側面があるので、これを補うことも課題として残っている。 Since the discharge muffler of the conventional rotary compressor has a short cylindrical shape in the axial direction, there is a side surface that does not function as an expansion silencer.
特開平5-195976号公報(第3-4頁、図2)Japanese Unexamined Patent Publication No. 5-195976 (page 3-4, FIG. 2)
 特許文献1に開示された発明では、1個のシリンダで圧縮し2箇所から吐出する構造なので、フロントマフラ室及びリアマフラ室それぞれで発生する圧力脈動が同位相で同期しており貫通穴またはフロントマフラ室で合成した圧力脈動の一次成分はより大きくなるという問題があった。
 また、リアマフラ室から貫通穴を通ってフロントマフラ室に合流させることでフロントマフラ室内の流れが乱れて圧力損失が増加する問題があった。
 また、第2吐出機構から吐出された冷媒は、リアマフラ室とフロントマフラ室で2段膨張されるので、消音効果は大きいが圧力損失も大きくなることも課題であった。
 なお、特許文献1に記載された発明は、あくまで、1個のシリンダで圧縮する単気筒圧縮機(シングル圧縮機と同義)の場合であって、2シリンダで圧縮する二気筒圧縮機(ツイン圧縮機と同義)の場合に最適な吐出経路の構成は開示されていない。
 また、フロントマフラ室の形状は概略同軸円筒形状(半径a、同軸長さL、上下面に出入口管あり)で、同軸長さLが短いため、膨張形消音器として機能が不十分な側面があるので、これを改良することも課題であった。
In the invention disclosed in Patent Document 1, since the structure is such that one cylinder compresses and discharges from two locations, the pressure pulsations generated in the front muffler chamber and the rear muffler chamber are synchronized in the same phase, and the through hole or the front muffler There was a problem that the primary component of pressure pulsation synthesized in the chamber became larger.
Further, there is a problem in that the flow in the front muffler chamber is disturbed and pressure loss is increased by joining the rear muffler chamber through the through hole to the front muffler chamber.
In addition, since the refrigerant discharged from the second discharge mechanism is expanded in two stages in the rear muffler chamber and the front muffler chamber, it is also a problem that the sound deadening effect is great but the pressure loss is also increased.
The invention described in Patent Document 1 is only a case of a single cylinder compressor (synonymous with a single compressor) that compresses by one cylinder, and a two-cylinder compressor (twin compression) that compresses by two cylinders. In this case, the optimal discharge path configuration is not disclosed.
Further, the front muffler chamber has a substantially coaxial cylindrical shape (radius a, coaxial length L, with inlet / outlet pipes on the upper and lower surfaces), and has a side surface that is insufficiently functioning as an expansion silencer because the coaxial length L is short. There was a problem to improve this.
 本発明は、前記問題を解決するものであって、密閉形の二気筒圧縮機において、吐出部の圧力脈動低減と圧力損失低減との両立を図ることができる密閉形圧縮機および、該密閉形圧縮機を用いたヒートポンプ装置を提供するものである。 The present invention solves the above-mentioned problem, and in a sealed two-cylinder compressor, a hermetic compressor capable of achieving both reduction in pressure pulsation and reduction in pressure loss in a discharge section, and said sealed type A heat pump apparatus using a compressor is provided.
 本発明に係る密閉形圧縮機は、密閉容器と、
 該密閉容器内に設置された電動機と、
 該電動機によって回転駆動され、第1支持部材および第2支持部材によって回転自在に支持された駆動軸と、前記第1支持部材と前記第2支持部材との間に配置された中間仕切板と、
 前記駆動軸に連結された第1ピストンを移動自在に収納し、前記第1支持部材および前記中間仕切板との間に、第1圧縮室を形成する第1シリンダと、前記第1圧縮室において圧縮された冷媒を吐出する、前記第1支持部材に形成された第1吐出口と、該第1吐出口を覆うように前記第1支持部材に設置され、前記第1吐出口から吐出された冷媒が流入する第1マフラ空間を形成する第1マフラ容器と、
 前記駆動軸に連結された第2ピストンを移動自在に収納し、前記第2支持部材および前記中間仕切板との間に、第2圧縮室を形成する第2シリンダと、前記第2圧縮室において圧縮された冷媒を吐出する、前記第2支持部材に形成された第2吐出口と、該第2吐出口を覆うように前記第2支持部材に設置され、前記第2吐出口から吐出された冷媒が流入する第2マフラ空間を形成する第2マフラ容器と、
 前記第1マフラ空間から前記密閉容器の内部空間へ圧縮した冷媒を直接導く第1排出流路と、前記第2マフラ空間から前記密閉容器の内部空間へ圧縮した冷媒を直接導く第2排出流路と、前記第1マフラ空間と前記第2マフラ空間とを冷媒が流れる連通流路と、
を備え、
 前記第1ピストンと前記第2ピストンとが逆位相で駆動し、前記連通流路内を冷媒が流れて圧力振幅が伝播することで圧力脈動を低減する消音機能を有することを特徴とする。
A hermetic compressor according to the present invention includes a hermetic container,
An electric motor installed in the sealed container;
A drive shaft that is rotationally driven by the electric motor and rotatably supported by the first support member and the second support member; an intermediate partition plate disposed between the first support member and the second support member;
A first cylinder coupled to the drive shaft is movably accommodated, and a first cylinder that forms a first compression chamber between the first support member and the intermediate partition plate; and A first discharge port formed in the first support member that discharges the compressed refrigerant, and is installed in the first support member so as to cover the first discharge port, and is discharged from the first discharge port. A first muffler container that forms a first muffler space into which refrigerant flows;
A second piston that is movably accommodated in the second drive shaft and that forms a second compression chamber between the second support member and the intermediate partition plate; and A second discharge port formed in the second support member that discharges the compressed refrigerant, and is installed in the second support member so as to cover the second discharge port, and is discharged from the second discharge port. A second muffler container that forms a second muffler space into which the refrigerant flows;
A first discharge channel that directly guides the compressed refrigerant from the first muffler space to the inner space of the sealed container, and a second discharge channel that directly guides the compressed refrigerant from the second muffler space to the inner space of the sealed container A communication channel through which a refrigerant flows through the first muffler space and the second muffler space;
With
The first piston and the second piston are driven in opposite phases, and have a silencing function for reducing pressure pulsation by allowing a refrigerant to flow through the communication flow path and propagating a pressure amplitude.
 本発明に係る密閉形圧縮機は、圧縮機吐出部の圧力脈動と圧力損失を低減し、高効率化と振動騒音低減、信頼性向上を図ることができる。 The hermetic compressor according to the present invention can reduce the pressure pulsation and pressure loss of the compressor discharge section, and can improve efficiency, reduce vibration noise, and improve reliability.
本発明の実施の形態1に係る密閉形ツイン圧縮機の構成を説明する縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view explaining the structure of the hermetic twin compressor which concerns on Embodiment 1 of this invention. 図1に示す密閉形ツイン圧縮機のA-A’断面の断面図。Sectional drawing of the A-A 'cross section of the hermetic twin compressor shown in FIG. 図1に示す密閉形ツイン圧縮機のB-B’断面の断面図。Sectional drawing of the B-B 'cross section of the hermetic twin compressor shown in FIG. 本発明の実施の形態2に係る密閉形ツイン圧縮機の構成を説明する縦断面図。The longitudinal cross-sectional view explaining the structure of the hermetic twin compressor which concerns on Embodiment 2 of this invention. 図4に示す密閉形ツイン圧縮機のA-A’断面の断面図。Sectional drawing of the A-A 'cross section of the hermetic twin compressor shown in FIG. 図4に示す密閉形ツイン圧縮機のB-B’断面の断面図。Sectional drawing of the B-B 'cross section of the hermetic twin compressor shown in FIG. 本発明の実施の形態3に係る密閉形ツイン圧縮機の構成を説明する縦断面図。The longitudinal cross-sectional view explaining the structure of the hermetic twin compressor which concerns on Embodiment 3 of this invention. 図7に示す密閉形ツイン圧縮機のA-A’断面の断面図。Sectional drawing of the A-A 'cross section of the hermetic twin compressor shown in FIG. 図7に示す密閉形ツイン圧縮機のB-B’断面の断面図。Sectional drawing of the B-B 'cross section of the hermetic twin compressor shown in FIG. 本発明の実施の形態4に係る密閉形ツイン圧縮機の構成を説明する縦断面図。The longitudinal cross-sectional view explaining the structure of the hermetic twin compressor which concerns on Embodiment 4 of this invention. 図10に示す密閉形ツイン圧縮機のA-A’断面の断面図。FIG. 11 is a cross-sectional view taken along the line A-A ′ of the hermetic twin compressor shown in FIG. 10. 図10に示す密閉形ツイン圧縮機のB-B’断面の断面図。Sectional drawing of the B-B 'cross section of the hermetic twin compressor shown in FIG. 本発明の実施の形態5に係るヒートポンプ装置の構成図。The block diagram of the heat pump apparatus which concerns on Embodiment 5 of this invention.
 以下、図面に基づき、実施の形態1、2を説明する。実施の形態1では、第1圧縮部と第2圧縮部を有する密閉形ツイン圧縮機(密閉形二気筒圧縮機に同じ)について説明し、実施の形態2では前記密閉形ツイン圧縮機を用いた蒸気圧縮式冷凍サイクルを説明する。図中において冷媒の流れを太線矢印で示す。なお、各図において同じ部分または対応する部分には同じ符号を付し、一部の説明を省略する。また、各図は模式的に描かれたものであって、本発明は図示された形態に限定するものではない。 Hereinafter, the first and second embodiments will be described with reference to the drawings. In Embodiment 1, a closed twin compressor (same as a closed two-cylinder compressor) having a first compression section and a second compression section will be described. In Embodiment 2, the closed twin compressor is used. A vapor compression refrigeration cycle will be described. In the figure, the flow of the refrigerant is indicated by thick arrows. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and a part of the description is omitted. Each figure is drawn typically, and the present invention is not limited to the illustrated form.
 [実施の形態1]
 図1は本発明の実施の形態1に係る密閉形ツイン圧縮機の構成を説明するものであって、図1は縦断面図、図2は横断面図(図1に示すA-A’断面)、図3は横断面図(図1に示すB-B’断面)である。
 図1において、密閉形ツイン圧縮機(密閉形二気筒圧縮機に同じ)100は、密閉容器8と、密閉容器8の内部空間(以下、「密閉容器内部空間」と称す)3に設置された第1圧縮部10と、第2圧縮部20と、これらを駆動する駆動軸6を具備する圧縮機構99と、駆動軸6を回転する電動機9とを備える。
[Embodiment 1]
FIG. 1 explains the configuration of a hermetic twin compressor according to Embodiment 1 of the present invention. FIG. 1 is a longitudinal sectional view, and FIG. 2 is a transverse sectional view (AA ′ section shown in FIG. 1). 3 is a transverse cross-sectional view (BB ′ cross section shown in FIG. 1).
In FIG. 1, a hermetic twin compressor (same as a hermetic two-cylinder compressor) 100 is installed in a hermetic container 8 and an inner space of the hermetic container 8 (hereinafter referred to as “hermetic container inner space”) 3. A first compression unit 10, a second compression unit 20, a compression mechanism 99 including a drive shaft 6 that drives them, and an electric motor 9 that rotates the drive shaft 6 are provided.
 (圧縮機構)
 圧縮機構99は、第1圧縮部10と第2圧縮部20とを具備するものであって、それぞれ駆動軸6に沿って、その軸方向の下側から上側に向かって順次積層された、第1吐出マフラ30と、第1支持部材(副軸受に相当する)60と、第1圧縮部10を構成する第1シリンダ11と、中間仕切板5と、第2圧縮部20を構成する第2シリンダ21と、第2支持部材(主軸受に相当する)70と、第2吐出マフラ40と、から構成されている。
 そして、圧縮機構99の上方には、電動機下部空間3bを挟んで、電動機9が設置され、電動機9(正確には、モータ軸)に駆動軸6が連結されている。
 また、密閉容器内部空間3において、駆動軸6の軸方向の最も下側には、圧縮機構99を潤滑する潤滑油の潤滑油貯蔵部3aが設けられている。
(Compression mechanism)
The compression mechanism 99 includes a first compression unit 10 and a second compression unit 20, each of which is sequentially stacked along the drive shaft 6 from the lower side to the upper side in the axial direction. One discharge muffler 30, a first support member (corresponding to a secondary bearing) 60, a first cylinder 11 that constitutes the first compression unit 10, an intermediate partition plate 5, and a second that constitutes the second compression unit 20 The cylinder 21, a second support member (corresponding to a main bearing) 70, and a second discharge muffler 40 are configured.
An electric motor 9 is installed above the compression mechanism 99 with the electric motor lower space 3b interposed therebetween, and the drive shaft 6 is connected to the electric motor 9 (more precisely, a motor shaft).
Further, in the sealed container internal space 3, a lubricating oil storage portion 3 a for lubricating oil for lubricating the compression mechanism 99 is provided on the lowest side in the axial direction of the drive shaft 6.
 (圧縮部)
 第1圧縮部10は、平行平板からなる第1シリンダ11を備える。第1シリンダ11は円筒形状であって、第1支持部材60と中間仕切板5とによって挾持され、内周部に圧縮空間である第1シリンダ室11aが形成されている。
 第1シリンダ11の中には、駆動軸6の回転により偏心回転する第1回転ピストン12が移動自在に配置されている。また、吸入マフラ7に連通する第1シリンダ吸入口15と、圧縮した冷媒を第1吐出マフラ30とに吐出する第1吐出口16が設けられている(図2参照)。
 同様に、第2圧縮部20は、平行平板からなる第2シリンダ11を備える。第2シリンダ21は円筒形状であって、第2支持部材70と中間仕切板5とによって挾持され、内周部に圧縮空間である第2シリンダ室21aが形成されている。
 第2シリンダ21の中には、駆動軸6の回転により偏心回転する第2回転ピストン22が移動自在に配置されている。また、吸入マフラ7に連通する第2シリンダ吸入口25と、圧縮した冷媒を第2吐出マフラ40に吐出する第2吐出口16が設けられている(図3参照)。
(Compression part)
The 1st compression part 10 is provided with the 1st cylinder 11 which consists of a parallel plate. The first cylinder 11 has a cylindrical shape and is sandwiched between the first support member 60 and the intermediate partition plate 5, and a first cylinder chamber 11a, which is a compression space, is formed on the inner periphery.
In the first cylinder 11, a first rotary piston 12 that rotates eccentrically by the rotation of the drive shaft 6 is movably disposed. Further, a first cylinder suction port 15 communicating with the suction muffler 7 and a first discharge port 16 for discharging the compressed refrigerant to the first discharge muffler 30 are provided (see FIG. 2).
Similarly, the 2nd compression part 20 is provided with the 2nd cylinder 11 which consists of a parallel plate. The second cylinder 21 has a cylindrical shape and is sandwiched between the second support member 70 and the intermediate partition plate 5, and a second cylinder chamber 21 a that is a compression space is formed in the inner peripheral portion.
In the second cylinder 21, a second rotary piston 22 that rotates eccentrically with the rotation of the drive shaft 6 is movably disposed. Also, a second cylinder suction port 25 communicating with the suction muffler 7 and a second discharge port 16 for discharging the compressed refrigerant to the second discharge muffler 40 are provided (see FIG. 3).
 すなわち、第1吐出口16を覆うように、第1軸受部61を兼ねる第1支持部材(副軸受に相当する)60に第1吐出マフラ容器31が設置され、第1支持部材60と第1吐出マフラ容器31とによって第1吐出マフラ空間32が形成されている(以下、第1吐出マフラ容器31と第1吐出マフラ空間32とをまとめて「第1吐出マフラ30」と称す)。
 同様に、第2吐出口26を覆うように、第2軸受部71を兼ねる第2支持部材(主軸受に相当する)70に第2吐出マフラ容器41が設置され、第2支持部材70と第2吐出マフラ容器41とによって第2マフラ空間42が形成されている(以下、第2吐出マフラ容器41と第2マフラ空間42とをまとめて「第2吐出マフラ40」と称す)。
 そして、電動機9と第2吐出マフラ容器41との間に電動機下部空間3bが形成されている。
That is, the first discharge muffler container 31 is installed on a first support member (corresponding to a secondary bearing) 60 that also serves as the first bearing portion 61 so as to cover the first discharge port 16, and the first support member 60 and the first support member 60. A first discharge muffler space 32 is formed by the discharge muffler container 31 (hereinafter, the first discharge muffler container 31 and the first discharge muffler space 32 are collectively referred to as “first discharge muffler 30”).
Similarly, a second discharge muffler container 41 is installed on a second support member (corresponding to a main bearing) 70 that also serves as the second bearing portion 71 so as to cover the second discharge port 26, and the second support member 70 and the second support member 70. The second discharge muffler container 41 forms a second muffler space 42 (hereinafter, the second discharge muffler container 41 and the second muffler space 42 are collectively referred to as “second discharge muffler 40”).
An electric motor lower space 3 b is formed between the electric motor 9 and the second discharge muffler container 41.
 さらに、第1支持部材(副軸受に相当する)60の第1吐出口側側面62には、第1吐出口16の周囲にカギ穴形状の溝である第1吐出バルブ凹型設置部18が形成され、第1吐出バルブ凹型設置部18に、第1吐出口16を開閉する第1吐出機構17(ここでは第1リードバルブ17aおよびリフト量を設定する第1ストッパ17b)が取り付けられている。
 同様に、第2支持部材(主軸受に相当する)70の第2吐出口側側面72には、第2吐出口26の周囲に形成されたカギ穴形状の溝である第2吐出バルブ凹型設置部28が形成され、第2吐出バルブ凹型設置部28に、第2吐出口26を開閉する第2吐出機構27(ここでは第2リードバルブ27aおよびリフト量を設定する第2ストッパ27b)が取り付けられている。
Further, a first discharge valve concave installation portion 18 that is a keyhole-shaped groove is formed around the first discharge port 16 on the first discharge port side surface 62 of the first support member 60 (corresponding to the auxiliary bearing). In addition, a first discharge mechanism 17 (here, a first reed valve 17a and a first stopper 17b for setting a lift amount) that opens and closes the first discharge port 16 is attached to the first discharge valve concave installation portion 18.
Similarly, the second discharge valve concave side which is a keyhole-shaped groove formed around the second discharge port 26 is provided on the second discharge port side surface 72 of the second support member 70 (corresponding to the main bearing). The second discharge mechanism 27 (here, the second reed valve 27a and the second stopper 27b for setting the lift amount) for opening and closing the second discharge port 26 is attached to the second discharge valve concave installation portion 28. It has been.
 (吐出マフラ空間)
 第1吐出マフラ空間32から電動機下部空間3bに冷媒を直接吐出するために排出流路34が、圧縮機構99(第1支持部材60、第1シリンダ11、中間仕切板5、第2シリンダ21および第2支持部材70)を貫通して設けられている。
 このとき、排出流路34の両端は、第1支持部材60の第1吐出口側側面62に形成された排出口34aと、第2支持部材70の第2吐出口側側面72に形成された排出口34bとになっている。また、第1吐出マフラ空間32内の環状流れを駆動軸上方向に滑らかに方向変換しながら排出口34aから排出流路34に流れ込むため第1排出口流入ガイド36が設けられている。
(Discharge muffler space)
In order to directly discharge the refrigerant from the first discharge muffler space 32 to the motor lower space 3b, the discharge flow path 34 is provided with a compression mechanism 99 (first support member 60, first cylinder 11, intermediate partition plate 5, second cylinder 21 and A second support member 70) is provided.
At this time, both ends of the discharge channel 34 are formed on the discharge port 34 a formed on the first discharge port side surface 62 of the first support member 60 and on the second discharge port side surface 72 of the second support member 70. It becomes the discharge port 34b. In addition, a first discharge port inflow guide 36 is provided to flow the annular flow in the first discharge muffler space 32 from the discharge port 34a to the discharge flow path 34 while smoothly changing the direction of the flow upward in the drive shaft.
 また、第2吐出マフラ空間42から電動機下部空間3bに冷媒を直接吐出するために排出流路44が、第2吐出マフラ容器41に設けられている。
 さらに、第1吐出マフラ空間32と第2吐出マフラ空間42を連通させる複数の連通流路51、52、53が設けられている。このとき、連通流路51、52、53の両端は、それぞれ第1支持部材60の第1吐出口側側面62に形成された連通口51a、52a、53aと、第2支持部材70の第2吐出口側側面72に形成された連通口51b、52b、53bになっている。
In addition, a discharge flow path 44 is provided in the second discharge muffler container 41 in order to directly discharge the refrigerant from the second discharge muffler space 42 to the motor lower space 3b.
In addition, a plurality of communication channels 51, 52, and 53 are provided for communicating the first discharge muffler space 32 and the second discharge muffler space 42. At this time, both ends of the communication channels 51, 52, 53 are connected to the communication ports 51 a, 52 a, 53 a formed on the first discharge port side surface 62 of the first support member 60, respectively, and the second of the second support member 70. The communication ports 51b, 52b, and 53b are formed in the discharge port side surface 72.
 (共鳴小空間)
 そして、第1吐出マフラ空間32側の連通口52aは、第1圧縮部10の第1吐出口16に近い位相に配置され、第1排出口流入ガイド36および第1吐出口背面ガイド37によって囲まれた第1共鳴小空間39内に配置されている。
 また、第1吐出マフラ空間32側の連通口51aは、第1圧縮部10の第1吐出口16に近い位相に配置され、第1共鳴小空間39の外に配置されている(図2参照)。
 一方、第2吐出マフラ空間42側の連通口51bは、第2圧縮部20の第2吐出口26に近い位相に配置され、第2排出口流入ガイド46および第2吐出口背面ガイド47によって囲まれた第2共鳴小空間49内に配置されている。
(Resonance small space)
The communication port 52 a on the first discharge muffler space 32 side is arranged in a phase close to the first discharge port 16 of the first compression unit 10 and is surrounded by the first discharge port inflow guide 36 and the first discharge port rear surface guide 37. The first resonance small space 39 is arranged.
In addition, the communication port 51a on the first discharge muffler space 32 side is disposed in a phase close to the first discharge port 16 of the first compression unit 10 and is disposed outside the first resonance small space 39 (see FIG. 2). ).
On the other hand, the communication port 51 b on the second discharge muffler space 42 side is arranged in a phase close to the second discharge port 26 of the second compression unit 20 and is surrounded by the second discharge port inflow guide 46 and the second discharge port rear surface guide 47. The second resonance small space 49 is disposed.
 また、第2吐出マフラ空間42側の連通口52bは、第2圧縮部20の第2吐出口26に近い位相に配置され、第2共鳴小空間49の外に配置されている(図3参照)。
 また、連通流路53の連通口53aおよび連通口53bは、それぞれは第1共鳴小空間39および第2共鳴小空間49の外に配置され、第1吐出マフラ空間32と第2吐出マフラ空間42とが直接(第1共鳴小空間39または第2共鳴小空間49を経由しないで)連通され、冷媒が流れ易く、圧力変動が伝わり易いように設計されている。これは、シリンダ内で逆位相に駆動される第1ピストンおよび第2ピストンによって、逆位相で圧縮し吐出された冷媒が連通流路を経由して混合しやすくなり、互いに逆位相の圧力脈動が打ち消しあう効果が得やすくするためである。
Further, the communication port 52b on the second discharge muffler space 42 side is disposed in a phase close to the second discharge port 26 of the second compression unit 20, and is disposed outside the second resonance small space 49 (see FIG. 3). ).
Further, the communication port 53a and the communication port 53b of the communication channel 53 are respectively disposed outside the first resonance small space 39 and the second resonance small space 49, and the first discharge muffler space 32 and the second discharge muffler space 42 are provided. Are communicated directly (without passing through the first resonance small space 39 or the second resonance small space 49), and the refrigerant is designed to easily flow and pressure fluctuation is easily transmitted. This is because the refrigerant compressed and discharged in the opposite phase by the first piston and the second piston driven in the opposite phases in the cylinder is easily mixed via the communication flow path, and the pressure pulsations in the opposite phases occur. This is to make it easier to obtain the effect of canceling each other.
 なお、第1排出口流入ガイド36および第1吐出口背面ガイド37は隙間や孔が多数設けられて板材や、所定の目開きを有する網材によって形成され、第1共鳴小空間39の内から外あるいは外から内に冷媒が通過自在に設計されている(通過の際、所定の抵抗を受ける)。同様に、第2排出口流入ガイド46および第2吐出口背面ガイド47は隙間や孔が多数設けられて板材や、所定の目開きを有する網材によって形成され、第2共鳴小空間49の内から外あるいは外から内に冷媒が通過自在に設計されている(通過の際、所定の抵抗を受ける)。
 このとき、第1共鳴小空間39および第2共鳴小空間49のそれぞれについて、容積Vと、連通流路52および51の寸法(長さL、流路断面S)を、ヘルムホルツ共鳴周波数に合せて設計することが可能である。第2吐出マフラ空間42および第1吐出マフラ空間32で発生した問題となる運転周波数に合せて設計すれば、問題となる中速周波数帯成分(通常は運転周波数の2次成分、100Hz以上)を取り除くことが可能である。
なお、第1共鳴小空間39の容積、または、第2共鳴小空間49の容積は、運転周波数の1次成分fで共鳴するように、連通流路52の長さdと直径Dを、
  共鳴周波数:f=(c/2π)×(S/(L×V))0.5
      L:開口部有効長さ(=d+k×D)
      c:冷媒ガス音速、
      S:開口部面積(=πD/4)、
      V:バッファ容器容積
   補正係数:k(約1.57×0.5、すなわち、7.5から0.8の範囲)
を満たすように定めることができる。
The first discharge port inflow guide 36 and the first discharge port rear surface guide 37 are formed of a plate material or a net material having a predetermined opening with a number of gaps and holes, and from the inside of the first resonance small space 39. The refrigerant is designed so that it can pass from the outside to the inside (from the outside, a predetermined resistance is applied). Similarly, the second discharge port inflow guide 46 and the second discharge port rear surface guide 47 are formed of a plate material or a net material having a predetermined opening with a large number of gaps and holes, and are formed in the second resonance small space 49. The refrigerant is designed to pass freely from the outside to the inside or from the outside to the inside (received a predetermined resistance when passing).
At this time, for each of the first resonance small space 39 and the second resonance small space 49, the volume V and the dimensions of the communication channels 52 and 51 (length L, channel cross section S) are matched to the Helmholtz resonance frequency. It is possible to design. If designed in accordance with the problematic operating frequency generated in the second discharge muffler space 42 and the first discharge muffler space 32, the problematic medium speed frequency band component (usually the secondary component of the operational frequency, 100 Hz or more) It can be removed.
The volume of the first resonance small space 39 or the volume of the second resonance small space 49 has a length d and a diameter D of the communication flow path 52 so as to resonate with the primary component f of the operating frequency.
Resonance frequency: f = (c / 2π) × (S / (L × V)) 0.5
L: Opening effective length (= d + k × D)
c: refrigerant gas sound speed,
S: opening area (= πD 2/4),
V: Buffer container volume Correction factor: k (approximately 1.57 × 0.5, ie, in the range of 7.5 to 0.8)
Can be determined to satisfy.
 また、通常の吐出マフラは扁平した円筒形状のため、軸方向長さが短く膨張形消音器として機能が不十分であったので、本実施の形態1では、吐出マフラを吐出口16、26から排出口にいたるまでの長方形断面の循環流路とみなして、循環方向に長くなるようにして、限界周波数をあげることにした。
 第1圧縮部10側の第1吐出マフラ空間32は、第1吐出口16から吐出された冷媒が、図2において反時計回りの方向(A方向)に流れて第1排出口34aから第1排出流路34に流れ込むように、第1吐出口16の背面側(時計回り方向)に第1吐出口背面ガイド37を配置し、第1吐出口16から第1排出口34aまでの距離をできるだけ長くしている。なお、第1排出口流入ガイド36および第1吐出口背面ガイド37は冷媒が通過自在に設計されているから、前記冷媒の一部は、反時計回りの方向に(A方向)に循環する。
Further, since a normal discharge muffler has a flat cylindrical shape, its axial length is short and its function as an expansion silencer is insufficient. In the first embodiment, the discharge muffler is discharged from the discharge ports 16 and 26. Considering it as a circulation channel with a rectangular cross-section leading to the outlet, we decided to increase the limit frequency by making it longer in the circulation direction.
In the first discharge muffler space 32 on the first compression unit 10 side, the refrigerant discharged from the first discharge port 16 flows in the counterclockwise direction (direction A) in FIG. A first discharge port rear surface guide 37 is arranged on the back side (clockwise direction) of the first discharge port 16 so as to flow into the discharge channel 34, and the distance from the first discharge port 16 to the first discharge port 34a is as much as possible. It is long. Since the first discharge port inflow guide 36 and the first discharge port rear surface guide 37 are designed such that the refrigerant can pass therethrough, a part of the refrigerant circulates in the counterclockwise direction (direction A).
 また、第2圧縮部20側の第2吐出マフラ空間42は、第2吐出口26から図3において時計回りの方向(B方向)に冷媒が流れて第2排出流路44に流れ込むように、第2吐出口36の背面側(反時計回りの方向)に第2吐出口背面ガイド47を配置し、第2吐出口26から第2排出流路44までの距離をできるだけ長くしている。このため、膨張形消音器として低い周波数領域(運転周波数の1次成分及び2次成分)に対応できるように設計されている。なお、第2排出口流入ガイド46および第2吐出口背面ガイド47は冷媒が通過自在に設計されているから、前記冷媒の一部は、時計回りの方向に(B方向)に循環する。 Further, in the second discharge muffler space 42 on the second compression section 20 side, the refrigerant flows in the clockwise direction (B direction) in FIG. 3 from the second discharge port 26 and flows into the second discharge flow path 44. A second discharge port rear surface guide 47 is arranged on the rear surface side (counterclockwise direction) of the second discharge port 36, and the distance from the second discharge port 26 to the second discharge channel 44 is made as long as possible. For this reason, it is designed so that it can respond to a low frequency region (primary component and secondary component of the operating frequency) as an expansion silencer. In addition, since the 2nd discharge port inflow guide 46 and the 2nd discharge port back surface guide 47 are designed so that a refrigerant | coolant can pass through, a part of said refrigerant | coolant circulates in the clockwise direction (B direction).
 (冷媒の流れ)
 次に、密閉形ツイン圧縮機100における冷媒流れを説明する。
 まず、低圧の冷媒は、圧縮機吸入管1を経由して(図1の矢印I)、吸入マフラ7へ流入する(図1の矢印II)。吸入マフラ7へ流入した冷媒は、吸入マフラ7の中でガス冷媒と液冷媒とに分離される。ガス冷媒は吸入マフラ連結管4を通って、第1圧縮部10の第1シリンダ11内と第2圧縮部20の第2シリンダ21内に分配され吸入される(図1の(矢印III、矢印IV)。
 そして、第1シリンダ11に吸入された冷媒は圧縮され、高圧の冷媒となって、第1吐出口16から第1吐出マフラ空間32へ吐出され(図1の矢印V)、第1排出口34aから第1排出流路34に流入し、第2排出口34bから、電動機下部空間3bへ排出される(図1の矢印VII)。さらに、電動機9の隙間を通って上昇し電動機上部空間3cから圧縮機吐出管2を経て外部冷媒回路へ吐出される(図1の矢印VII)。
(Refrigerant flow)
Next, the refrigerant flow in the hermetic twin compressor 100 will be described.
First, the low-pressure refrigerant flows into the suction muffler 7 (arrow II in FIG. 1) via the compressor suction pipe 1 (arrow I in FIG. 1). The refrigerant flowing into the suction muffler 7 is separated into a gas refrigerant and a liquid refrigerant in the suction muffler 7. The gas refrigerant passes through the suction muffler connecting pipe 4 and is distributed and sucked into the first cylinder 11 of the first compression section 10 and the second cylinder 21 of the second compression section 20 (arrow III, arrow in FIG. 1). IV).
Then, the refrigerant sucked into the first cylinder 11 is compressed, becomes a high-pressure refrigerant, and is discharged from the first discharge port 16 to the first discharge muffler space 32 (arrow V in FIG. 1), and the first discharge port 34a. From the second discharge port 34b to the motor lower space 3b (arrow VII in FIG. 1). Furthermore, it rises through the gap of the electric motor 9 and is discharged from the electric motor upper space 3c through the compressor discharge pipe 2 to the external refrigerant circuit (arrow VII in FIG. 1).
 また、第2シリンダ21に吸入され圧縮された冷媒は圧縮され、高圧の冷媒となって、第2吐出口26から第2吐出マフラ空間42へ吐出され(図1の矢印VI)、第2排出流路44を通って電動機下部空間3bへ排出される(図1の矢印VIII)。さらに、電動機9の隙間を通って上昇し電動機上部空間3cから圧縮機吐出管2を経て外部冷媒回路へ吐出される(図1の矢印IX)。
 なお、第1圧縮部10が冷媒を吐出するとき、第2圧縮部20は冷媒を吸入し、反対に、第1圧縮部10が冷媒を吸入するとき、第2圧縮部20は冷媒を吐出する(以下、「逆位相で動作する」と称す)。
In addition, the refrigerant sucked into the second cylinder 21 and compressed is compressed to become a high-pressure refrigerant, and is discharged from the second discharge port 26 to the second discharge muffler space 42 (arrow VI in FIG. 1) to be discharged second. It is discharged to the electric motor lower space 3b through the flow path 44 (arrow VIII in FIG. 1). Furthermore, it rises through the gap of the electric motor 9 and is discharged from the electric motor upper space 3c through the compressor discharge pipe 2 to the external refrigerant circuit (arrow IX in FIG. 1).
In addition, when the 1st compression part 10 discharges a refrigerant | coolant, the 2nd compression part 20 suck | inhales a refrigerant | coolant, and conversely, when the 1st compression part 10 suck | inhales a refrigerant | coolant, the 2nd compression part 20 discharges a refrigerant | coolant. (Hereinafter referred to as “operating in opposite phase”).
 (吐出マフラ空間における圧力脈動の低減機能)
 以上のように、本実施の形態1に係る密閉形ツイン圧縮機100では、第1圧縮部10と第2圧縮部20とが逆位相で動作するため、第1吐出マフラ30で発生する圧力脈動の1次成分と第2吐出マフラ40で発生する圧力脈動の1次成分とは逆位相になる。そのため、それぞれの一次成分を、連通流路53を使って合流させることで打ち消すことができる。
 したがって、圧力脈動の1次成分を低減することができるので、圧縮仕事入力増加への影響を低減することができ、圧縮機構99の内から外へ放出される振動騒音を低減することができる。さらに、圧力脈動の1次成分によって、密閉容器8内の電動機9の上下振動の発生も抑えることができる。
(Reduction function of pressure pulsation in the discharge muffler space)
As described above, in the hermetic twin compressor 100 according to the first embodiment, since the first compression unit 10 and the second compression unit 20 operate in opposite phases, the pressure pulsation generated in the first discharge muffler 30 And the primary component of pressure pulsation generated in the second discharge muffler 40 are in opposite phases. Therefore, each primary component can be canceled by joining using the communication channel 53.
Therefore, since the primary component of the pressure pulsation can be reduced, the influence on the increase in the compression work input can be reduced, and the vibration noise released from the inside of the compression mechanism 99 can be reduced. Furthermore, the occurrence of vertical vibration of the electric motor 9 in the sealed container 8 can be suppressed by the primary component of the pressure pulsation.
 しかしながら、圧力脈動は高次成分を含むため、2次成分や、より高次の成分が残ることになるが、本発明では、第1共鳴小空間39および第2共鳴小空間49のそれぞれの容積Vと、連通流路寸法(長さL、流路断面S)を、吸収消音したい周波数帯に合せてヘルムホルツ共鳴周波数を設計すればよい。
 本実施の形態1では、圧力振幅のエネルギーレベルが運転周波数1次成分の次に高い2次成分を、ヘルムホルツ共鳴により取り除くように設計する。
 例えば、R410A冷媒空調冷房定格条件で圧縮機運転条件をPd/Ps=1.2MPa/2.3MPa、Ts=35℃、運転周波数60Hz、2馬力クラス入力を仮定する。
However, since the pressure pulsation includes a high-order component, a secondary component or a higher-order component remains. In the present invention, the respective volumes of the first resonance small space 39 and the second resonance small space 49 are used. The Helmholtz resonance frequency may be designed by matching V and the communication channel dimension (length L, channel cross section S) with the frequency band to be absorbed and silenced.
In the first embodiment, the energy level of the pressure amplitude is designed so as to remove the secondary component having the second highest operating frequency primary component by Helmholtz resonance.
For example, it is assumed that the compressor operating condition is Pd / Ps = 1.2 MPa / 2.3 MPa, Ts = 35 ° C., operating frequency 60 Hz, and 2 horsepower class input under the R410A refrigerant air conditioning cooling rated condition.
 一般的に冷媒圧縮機の運転周波数はインバータにより10Hzから120Hzの範囲で可変可能であるが、定格運転周波数60Hzをターゲットに2次成分でヘルムホルツ共鳴となるように、第1共鳴小空間3および第2共鳴小空間49のそれぞれの容積Vと、連通流路寸法(長さL、流路断面S)を設計すると、共鳴流路1本で、配管径8mm、長さ60mm、共鳴口を囲う小空間の容積V=54ccのとき、共鳴周波数120Hzとなる。 通常、ロータリ圧縮機の吐出マフラは圧縮部を覆いこむためシリンダ内径より大きく設計する必要があり、膨張形消音器として機能するため、容積は200cc程度必要であり、54cc程度の小空間を別途構成する。 In general, the operating frequency of the refrigerant compressor can be varied in a range of 10 Hz to 120 Hz by an inverter, but the first resonance small space 3 and the second resonance frequency are set so that Helmholtz resonance is achieved with a secondary component with a rated operating frequency of 60 Hz as a target. When the volume V of each of the two resonance small spaces 49 and the communication channel dimensions (length L, channel cross section S) are designed, the pipe diameter is 8 mm, the length is 60 mm, and the resonance port is small with one resonance channel. When the volume V of the space is 54 cc, the resonance frequency is 120 Hz. Usually, the discharge muffler of a rotary compressor needs to be designed to be larger than the inner diameter of the cylinder in order to cover the compression part, and since it functions as an expansion silencer, the volume is required to be about 200 cc, and a small space of about 54 cc is separately configured. To do.
 さらに、第1吐出マフラ空間32では、冷媒を第1吐出口16から円弧状に流して(一部は円環状に循環させて)第1排出口34aから排出するように、第1吐出口16から第1排出口34aまでの距離をできるだけ長く設計することができる。
 同様に、第2吐出マフラ空間42では、冷媒を第2吐出口26から円弧状に流して(一部は円環状に循環させて)第2排出流路44から排出するように、第2吐出口26から第2排出流路44までの距離をできるだけ長く設計することができる。
 このため、膨張形消音器として騒音の問題となるkHz帯の周波数領域を含めることができる。また、効率で問題となる運転周波数の1次成分、2次成分は、連通流路53、ヘルムフォルツ共鳴流路51、52により圧力脈動損失を低減することができる。
Furthermore, in the first discharge muffler space 32, the first discharge port 16 is configured such that the refrigerant flows in an arc shape from the first discharge port 16 (partially circulates in an annular shape) and is discharged from the first discharge port 34a. To the first discharge port 34a can be designed as long as possible.
Similarly, in the second discharge muffler space 42, the second discharge muffler space 42 discharges the refrigerant from the second discharge passage 44 by flowing in a circular arc shape from the second discharge port 26 (partially circulating in the annular shape). The distance from the outlet 26 to the second discharge channel 44 can be designed as long as possible.
For this reason, the frequency region of the kHz band which causes a noise problem can be included as the expansion silencer. Further, the primary component and the secondary component of the operating frequency which are problematic in efficiency can reduce pressure pulsation loss by the communication channel 53 and the Helmfortz resonance channels 51 and 52.
 (圧力損失の低減)
 また、複数の連通流路51、52、53を使って合流させ、特に、抵抗の小さい3本目の連通流路53を追加したので、第1吐出マフラ空間32及び第2吐出マフラ空間42の間で差圧がつきにくい構造になっている。さらに、第1吐出マフラ空間32及び第2吐出マフラ空間42のそれぞれから直接、電動機下部空間3bに排出する第1排出流路34および第2排出流路44が設けられているため、圧力損失がつきにくい構造である。
(Reduction of pressure loss)
Further, the plurality of communication channels 51, 52, 53 are merged, and in particular, the third communication channel 53 having a low resistance is added, so that the space between the first discharge muffler space 32 and the second discharge muffler space 42 is added. With this structure, it is difficult to apply differential pressure. Furthermore, since the first discharge flow path 34 and the second discharge flow path 44 for discharging directly from the first discharge muffler space 32 and the second discharge muffler space 42 to the electric motor lower space 3b are provided, the pressure loss is reduced. It is a structure that is difficult to stick.
 以上、本実施の形態1の密閉形ツイン圧縮機100を用いることによって、圧力損失の低減と圧力脈動の低減とを両立させることができ、圧縮機効率の改善、振動騒音の低減、信頼性向上する効果を得ることができる。 As described above, by using the hermetic twin compressor 100 of the first embodiment, it is possible to achieve both reduction of pressure loss and reduction of pressure pulsation, improvement of compressor efficiency, reduction of vibration noise, and improvement of reliability. Effect can be obtained.
 [実施の形態2]
 図4は本発明の実施の形態2に係る密閉形ツイン圧縮機の構成を説明するものであって、図4は縦断面図、図5は横断面図(図4に示すA-A’断面)、図6は横断面図(図4に示すB-B’断面)である。なお、実施の形態1と同じ部分には同じ符号を付し、一部の説明を省略する。
 本実施の形態2では、第1小空間39と第2小空間49の壁を多孔質材料で形成し、第1吐出マフラ30と第2吐出マフラ40と間を冷媒ガスが流動可能になった点が異なる。第1吐出マフラ30と第2吐出マフラ40との間で逆位相の圧力変動を打ち消す連通流路53がなくなったが、第1共鳴流路51と第2共鳴流路52は、第1吐出マフラ30と第2吐出マフラ40との間で逆位相の圧力変動を打ち消す連通流路の機能を兼ねる。その他の構成は、本実施の形態1と同様であるが、第1小空間39と第2小空間49でのヘルムホルツ共鳴による消音効果が多少(10%程度)低下する。また、第1小空間39と第2小空間49を通過する抵抗のため、実施の形態1の連通流路にくらべると圧力脈動低減効果が低下する。
[Embodiment 2]
FIG. 4 explains the configuration of a hermetic twin compressor according to Embodiment 2 of the present invention. FIG. 4 is a longitudinal sectional view, and FIG. 5 is a transverse sectional view (AA ′ section shown in FIG. 4). 6 is a cross-sectional view (BB 'cross section shown in FIG. 4). In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, and one part description is abbreviate | omitted.
In the second embodiment, the walls of the first small space 39 and the second small space 49 are formed of a porous material, and the refrigerant gas can flow between the first discharge muffler 30 and the second discharge muffler 40. The point is different. The communication channel 53 that cancels the pressure fluctuation in the opposite phase between the first discharge muffler 30 and the second discharge muffler 40 is eliminated. However, the first resonance channel 51 and the second resonance channel 52 are different from each other in the first discharge muffler. 30 and the second discharge muffler 40 also serve as a communication channel that cancels out the pressure fluctuation in the opposite phase. Other configurations are the same as in the first embodiment, but the silencing effect due to Helmholtz resonance in the first small space 39 and the second small space 49 is somewhat reduced (about 10%). Further, because of the resistance passing through the first small space 39 and the second small space 49, the pressure pulsation reducing effect is reduced as compared with the communication flow path of the first embodiment.
 以上、本実施の形態2の密閉形ツイン圧縮機100を用いることによって、実施の形態1に比べて若干効果が劣るものの、圧力損失の低減と圧力脈動の低減とを両立させることができ、圧縮機効率の改善、振動騒音の低減、信頼性向上する効果を得ることができる。 As described above, by using the hermetic twin compressor 100 of the second embodiment, although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation. The effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
 [実施の形態3]
 図7は本発明の実施の形態3に係る密閉形ツイン圧縮機の構成を説明するものであって、図7は縦断面図、図8は横断面図(図7に示すA-A’断面)、図9は横断面図(図7に示すB-B’断面)である。なお、実施の形態1と同じ部分には同じ符号を付し、一部の説明を省略する。
 本実施の形態3では、第1小空間39と第2小空間49がなくなった点が実施の形態2と異なる。第1小空間39と第2小空間49の共鳴バッファ空間の機能を第1吐出マフラ30と第2吐出マフラ40が兼ねる。ヘルムホルツ共鳴させる周波数が運転周波数レベル(20~100Hz)であれば、通常の吐出マフラ容積レベル(200cc以上)であっても成立する。
[Embodiment 3]
7 explains the configuration of a hermetic twin compressor according to Embodiment 3 of the present invention. FIG. 7 is a longitudinal sectional view, and FIG. 8 is a transverse sectional view (AA ′ section shown in FIG. 7). 9 is a cross-sectional view (BB ′ cross section shown in FIG. 7). In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, and one part description is abbreviate | omitted.
The third embodiment is different from the second embodiment in that the first small space 39 and the second small space 49 are eliminated. The first discharge muffler 30 and the second discharge muffler 40 also function as the resonance buffer space of the first small space 39 and the second small space 49. If the frequency for Helmholtz resonance is the operating frequency level (20 to 100 Hz), the normal discharge muffler volume level (200 cc or more) is established.
 例えば、R410A冷媒空調冷房定格条件で圧縮機運転条件をPd/Ps=1.2MPa/2.3MPa、Ts=35℃、運転周波数60Hz、2馬力クラス入力を仮定して、圧力振幅のエネルギーレベルが運転周波数1次成分の次に高い2次成分を、ヘルムホルツ共鳴により取り除くように設計する。
 一般的に冷媒圧縮機の運転周波数はインバータにより10Hzから120Hzの範囲で可変可能であるが、定格運転周波数60Hzをターゲットに1次成分と2次成分でヘルムホルツ共鳴となるように、第1共鳴小空間3および第2共鳴小空間49のそれぞれの容積Vと、連通流路寸法(長さL、流路断面S)を設計する。
For example, assuming R410A refrigerant air conditioning cooling rated conditions, compressor operating conditions are Pd / Ps = 1.2 MPa / 2.3 MPa, Ts = 35 ° C., operating frequency 60 Hz, 2 horsepower class input, the energy level of pressure amplitude is It is designed to remove the second highest secondary component of the operating frequency primary component by Helmholtz resonance.
Generally, the operating frequency of the refrigerant compressor can be varied in the range of 10 Hz to 120 Hz by an inverter, but the first resonance is small so that the primary component and the secondary component become Helmholtz resonance with the rated operating frequency of 60 Hz as a target. The volume V of each of the space 3 and the second resonance small space 49 and the communication channel dimensions (length L, channel cross section S) are designed.
 第1共鳴流路1本で、配管径8mm、長さ60mm、第2吐出マフラ容積V=215ccのとき、共鳴周波数60Hzとなる。また、第2共鳴流路1本で、配管径14mm、長さ60mm、共鳴口を囲う小空間の容積V=150ccのとき、共鳴周波数120Hzとなる。第1吐出マフラと共鳴流路51で2次成分120Hz、第2吐出マフラと共鳴流路52で1次成分60Hzとなるように設計したので、二種類の周波数成分をカバーすることが可能である。
 その他の構成は、実施の形態1と同様であるが、第1小空間39と第2小空間49でのヘルムホルツ共鳴による消音効果が低下する。また、ヘルムホルツ共鳴に必要な流路面積は小さいので、通過する圧力抵抗が大きくなり、実施の形態1の連通流路にくらべると圧力脈動低減効果が低下する。
With one first resonance flow path, when the pipe diameter is 8 mm, the length is 60 mm, and the second discharge muffler volume V = 215 cc, the resonance frequency is 60 Hz. Further, when the pipe diameter is 14 mm, the length is 60 mm, and the volume V of the small space surrounding the resonance port is 150 cc with one second resonance channel, the resonance frequency is 120 Hz. Since the first discharge muffler and the resonance flow path 51 are designed to have a secondary component of 120 Hz, and the second discharge muffler and the resonance flow path 52 are set to have a primary component of 60 Hz, it is possible to cover two types of frequency components. .
Other configurations are the same as those of the first embodiment, but the silencing effect by Helmholtz resonance in the first small space 39 and the second small space 49 is reduced. Further, since the flow path area necessary for Helmholtz resonance is small, the pressure resistance to pass through increases, and the pressure pulsation reduction effect is reduced as compared with the communication flow path of the first embodiment.
 以上、本実施の形態2の密閉形ツイン圧縮機100を用いることによって、実施の形態1に比べて若干効果が劣るものの、圧力損失の低減と圧力脈動の低減とを両立させることができ、圧縮機効率の改善、振動騒音の低減、信頼性向上する効果を得ることができる。 As described above, by using the hermetic twin compressor 100 of the second embodiment, although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation. The effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
 [実施の形態4]
 図10は本発明の実施の形態4に係る密閉形ツイン圧縮機の構成を説明するものであって、図10は縦断面図、図11は横断面図(図10に示すA-A’断面)、図12は横断面図(図10に示すB-B’断面)である。なお、実施の形態1と同じ部分には同じ符号を付し、一部の説明を省略する。
 本実施の形態4では、共鳴流路54が1本のみとなり、第1吐出マフラ側の共鳴口54aを多孔質壁の第1小空間39で覆い、第2吐出マフラ側の共鳴口54bを多孔質壁の第2小空間49で覆う点が、実施の形態1と異なる。実施の形態1の共鳴流路51、52の機能、連通流路53の機能を、共鳴流路54が1本のみで行う。ここでは、第1吐出マフラと第2吐出マフラの容積を2倍程度の差異をつけることで、二種類の周波数成分をカバーすることが可能である。
[Embodiment 4]
FIG. 10 explains the configuration of a hermetic twin compressor according to Embodiment 4 of the present invention. FIG. 10 is a longitudinal sectional view, and FIG. 11 is a transverse sectional view (AA ′ section shown in FIG. 10). FIG. 12 is a transverse sectional view (BB ′ section shown in FIG. 10). In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, and one part description is abbreviate | omitted.
In the fourth embodiment, there is only one resonance channel 54, the resonance port 54a on the first discharge muffler side is covered with the first small space 39 of the porous wall, and the resonance port 54b on the second discharge muffler side is porous. The point covered with the second small space 49 of the textured wall is different from the first embodiment. The functions of the resonance channels 51 and 52 and the function of the communication channel 53 of the first embodiment are performed by a single resonance channel 54. Here, it is possible to cover two types of frequency components by making the volume of the first discharge muffler and the second discharge muffler about twice as large.
 一般的に冷媒圧縮機の運転周波数はインバータにより10Hzから120Hzの範囲で可変可能であるが、定格運転周波数60Hzをターゲットに1次成分と2次成分でヘルムホルツ共鳴となるように、第1共鳴小空間3および第2共鳴小空間49のそれぞれの容積Vと、連通流路寸法(長さL、流路断面S)を設計する。
 共鳴流路54で、配管径5mm、長さ60mm、共鳴口を囲う第2小空間の容積V=22ccのとき、共鳴周波数120Hzとなる。また、共鳴口を囲う第1小空間の容積V=87ccのとき、共鳴周波数60Hzとなる。
 通常、ロータリ圧縮機の吐出マフラは圧縮部を覆いこむためシリンダ内径より大きく設計する必要があり、膨張形消音器として機能するため、容積は200cc程度必要であり、54ccの第1小空間と87cc程度の第2小空間とを別途構成する。ここでは、第1吐出マフラと共鳴流路51で2次成分120Hz、第2吐出マフラと共鳴流路52で1次成分60Hzとなるように設計したので、二種類の周波数成分をカバーすることが可能である。
 その他の構成は、本実施の形態1と同様であるが、共鳴流路54が1本のみとなり、共鳴口54aと54bは小空間を通過するため、圧力抵抗が大きくなり、実施の形態1の3本の構成にくらべると圧力脈動を低減する効果が低下する。
Generally, the operating frequency of the refrigerant compressor can be varied in the range of 10 Hz to 120 Hz by an inverter, but the first resonance is small so that the primary component and the secondary component become Helmholtz resonance with the rated operating frequency of 60 Hz as a target. The volume V of each of the space 3 and the second resonance small space 49 and the communication channel dimensions (length L, channel cross section S) are designed.
In the resonance flow path 54, when the pipe diameter is 5 mm, the length is 60 mm, and the volume V of the second small space surrounding the resonance port is V = 22 cc, the resonance frequency is 120 Hz. Further, when the volume V of the first small space surrounding the resonance port is V = 87 cc, the resonance frequency is 60 Hz.
Normally, the discharge muffler of a rotary compressor needs to be designed to be larger than the inner diameter of the cylinder so as to cover the compression portion, and since it functions as an expansion silencer, the volume is required to be about 200 cc, the first small space of 54 cc and 87 cc The second small space of the degree is configured separately. Here, the first discharge muffler and the resonance flow path 51 are designed to have a secondary component of 120 Hz, and the second discharge muffler and the resonance flow path 52 are set to a primary component of 60 Hz, so that two types of frequency components can be covered. Is possible.
Other configurations are the same as those of the first embodiment, but only one resonance channel 54 is provided, and the resonance ports 54a and 54b pass through a small space. Compared to the three configurations, the effect of reducing pressure pulsation is reduced.
 以上、本実施の形態2の密閉形ツイン圧縮機100を用いることによって、実施の形態1に比べて若干効果が劣るものの、圧力損失の低減と圧力脈動の低減とを両立させることができ、圧縮機効率の改善、振動騒音の低減、信頼性向上する効果を得ることができる。 As described above, by using the hermetic twin compressor 100 of the second embodiment, although the effect is slightly inferior to that of the first embodiment, it is possible to achieve both the reduction of pressure loss and the reduction of pressure pulsation. The effects of improving machine efficiency, reducing vibration noise, and improving reliability can be obtained.
 なお、実施の形態1~3に示す密閉形ツイン圧縮機100によって得られる圧縮機効率改善効果は、蒸気圧縮式冷凍サイクルに用いられる冷媒の種類によって異なる。すなわち、密閉形ツイン圧縮機100において動作する圧力と密度とが小さい冷媒ほど、発生する圧力損失による動力損失が圧縮機入力に占める割合が大きいことから、圧縮機効率改善効果が大きくなる。
 冷熱空調機器の世界市場で現状用いられるフロン冷媒(R410A、R22)に比べて、HC冷媒(イソブタン、プロパン、プロピレン)や、HFO1234yfなどの低GWP(低地球温暖化係数)冷媒は、低圧・低密度で動作するため、とくに、圧縮機効率の改善、振動騒音の低減、信頼性の向上を図る効果が大きい。
The compressor efficiency improvement effect obtained by the hermetic twin compressor 100 shown in Embodiments 1 to 3 varies depending on the type of refrigerant used in the vapor compression refrigeration cycle. That is, as the refrigerant operating at the hermetic twin compressor 100 has lower pressure and density, the ratio of power loss due to the generated pressure loss to the compressor input is larger, so the effect of improving the compressor efficiency is greater.
Low GWP (low global warming potential) refrigerants, such as HC refrigerants (isobutane, propane, propylene) and HFO1234yf, are lower in pressure and lower than CFC refrigerants (R410A, R22) that are currently used in the global market for air conditioning equipment. Since it operates at a density, it is particularly effective to improve compressor efficiency, reduce vibration noise, and improve reliability.
 以上、実施の形態1から3では回転ピストン式のロータリ圧縮機を想定した密閉形ツイン圧縮機100について説明したが、本発明はこれに限定するものではなく、その他ロータリ圧縮機であるスイングピストン式やスライディングベーン式や、ロータリ式以外の圧縮機方式であるレシプロ式やスクロール式などの場合にも、吸入側にアキュムレータを付設する場合は、実施の形態1と同様に圧縮機効率改善する効果が得られる。 As described above, the first to third embodiments have described the hermetic twin compressor 100 assuming the rotary piston type rotary compressor. However, the present invention is not limited to this, and the swing piston type is another rotary compressor. Even in the case of a reciprocating type or scroll type, which is a compressor type other than the rotary type, sliding vane type, etc., if an accumulator is provided on the suction side, the effect of improving the compressor efficiency as in the first embodiment is achieved. can get.
 [実施の形態5]
 図13は本発明の実施の形態5に係るヒートポンプ装置の構成図である。なお、実施の形態1と同じ部分には同じ符号を付し、一部の説明を省略する。
 図13において、ヒートポンプ装置(蒸気圧縮式冷凍サイクル装置)200は、実施の形態1に示した密閉形ツイン圧縮機100と、放熱器102と、膨張機構103と、蒸発器104と、これらを順位連結して冷媒を循環させる冷媒配管105と、を備えている。
 したがって、ヒートポンプ装置200は密閉形ツイン圧縮機100を用いることによって、省エネ効率の改善、振動騒音の低減、信頼性向上を図ることができる。
[Embodiment 5]
FIG. 13 is a configuration diagram of a heat pump device according to Embodiment 5 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, and one part description is abbreviate | omitted.
In FIG. 13, the heat pump device (vapor compression refrigeration cycle device) 200 includes the hermetic twin compressor 100 shown in the first embodiment, the radiator 102, the expansion mechanism 103, and the evaporator 104, and ranks them. And a refrigerant pipe 105 that circulates the refrigerant by being connected.
Therefore, the heat pump device 200 can improve energy saving efficiency, reduce vibration noise, and improve reliability by using the hermetic twin compressor 100.
 1:圧縮機吸入管、2:圧縮機吐出管、3:密閉容器内部空間、3a:潤滑油貯蔵部、3b:電動機下部空間、3c:電動機上部空間、4:吸入マフラ連結管、5:中間仕切板、6:駆動軸、7:吸入マフラ、8:密閉容器、9:電動機、10:圧縮部、11:第1シリンダ、11a:第1シリンダ室、12:第1回転ピストン、15:第1シリンダ吸入口、16:第1吐出口、17:第1吐出機構、17a:第1リードバルブ、17b:第1ストッパ、18:第1吐出バルブ凹型設置部、20:第2圧縮部、21:第2シリンダ、21a:第2シリンダ室、22:第2回転ピストン、25:第2シリンダ吸入口、26:第2吐出口、27:第2吐出機構、27a:第2リードバルブ、27b:第2ストッパ、28:第2吐出バルブ凹型設置部、30:第1吐出マフラ、31:第1吐出マフラ容器、32:第1吐出マフラ空間、34:第1排出流路、34a:排出口、34b:排出口、36:第1排出口流入ガイド、37:第1吐出口背面ガイド、39:共鳴小空間、40:第2吐出マフラ、41:第2吐出マフラ容器、42:第2吐出マフラ空間、44:第2排出流路、46:第2排出口流入ガイド、47:第2吐出口背面ガイド、49:第2共鳴小空間、51:共鳴流路、51a:共鳴口、51b:共鳴口、52:共鳴流路、52a:共鳴口、52b:共鳴口、54:共鳴流路、54a:共鳴口、54b:共鳴口、
53:連通流路、53a:連通口、53b:連通口、60:第1支持部材、61:第1軸受部、62:第1吐出口側側面、70:第2支持部材、71:第2軸受部、72:第2吐出口側側面、99:圧縮機構、100:密閉形ツイン圧縮機、102:放熱器、103:膨張機構、104:蒸発器、105:冷媒配管、110:室内機本体、200:ヒートポンプ装置。
1: Compressor suction pipe, 2: Compressor discharge pipe, 3: Sealed container inner space, 3a: Lubricating oil storage part, 3b: Motor lower space, 3c: Motor upper space, 4: Suction muffler connecting pipe, 5: Medium Partition plate, 6: drive shaft, 7: suction muffler, 8: airtight container, 9: electric motor, 10: compression unit, 11: first cylinder, 11a: first cylinder chamber, 12: first rotating piston, 15: first 1 cylinder suction port, 16: first discharge port, 17: first discharge mechanism, 17a: first reed valve, 17b: first stopper, 18: first discharge valve concave installation portion, 20: second compression portion, 21 : Second cylinder, 21a: second cylinder chamber, 22: second rotary piston, 25: second cylinder suction port, 26: second discharge port, 27: second discharge mechanism, 27a: second reed valve, 27b: 2nd stopper, 28: 2nd discharge valve concave installation , 30: first discharge muffler, 31: first discharge muffler container, 32: first discharge muffler space, 34: first discharge flow path, 34a: discharge port, 34b: discharge port, 36: first discharge port inflow guide 37: first discharge port rear surface guide, 39: resonance small space, 40: second discharge muffler, 41: second discharge muffler container, 42: second discharge muffler space, 44: second discharge flow path, 46: first 2 discharge port inflow guide, 47: second discharge port rear surface guide, 49: second resonance small space, 51: resonance channel, 51a: resonance port, 51b: resonance port, 52: resonance channel, 52a: resonance port, 52b: resonance port, 54: resonance channel, 54a: resonance port, 54b: resonance port,
53: communication channel, 53a: communication port, 53b: communication port, 60: first support member, 61: first bearing portion, 62: first discharge port side surface, 70: second support member, 71: second Bearing part, 72: Side surface on second discharge port side, 99: Compression mechanism, 100: Sealed twin compressor, 102: Radiator, 103: Expansion mechanism, 104: Evaporator, 105: Refrigerant pipe, 110: Main body of indoor unit , 200: a heat pump device.

Claims (11)

  1.  密閉容器と、
     該密閉容器の内部に設置された電動機と、
     該電動機によって回転駆動され、第1支持部材および第2支持部材によって回転自在に支持された駆動軸と、
    前記第1支持部材と前記第2支持部材との間に配置された中間仕切板と、
     前記駆動軸に連結された第1ピストンを移動自在に収納し、前記第1支持部材および前記中間仕切板との間に、第1圧縮室を形成する第1シリンダと、前記第1圧縮室において圧縮された冷媒を吐出する、前記第1支持部材に形成された第1吐出口と、該第1吐出口を覆うように前記第1支持部材に設置され、前記第1吐出口から吐出された冷媒が流入する第1マフラ空間を形成する第1マフラ容器と、
     前記駆動軸に連結された第2ピストンを移動自在に収納し、前記第2支持部材および前記中間仕切板との間に、第2圧縮室を形成する第2シリンダと、前記第2圧縮室において圧縮された冷媒を吐出する、前記第2支持部材に形成された第2吐出口と、該第2吐出口を覆うように前記第2支持部材に設置され、前記第2吐出口から吐出された冷媒が流入する第2マフラ空間を形成する第2マフラ容器と、
    前記第1マフラ空間から前記密閉容器の内部空間へ圧縮した冷媒を直接導く第1排出流路と、前記第2マフラ空間から前記密閉容器の内部空間へ圧縮した冷媒を直接導く第2排出流路と、前記第1マフラ空間と前記第2マフラ空間とを冷媒が流れる連通流路と、
    を備え、
     前記第1ピストンと前記第2ピストンとが逆位相で駆動し、前記連通流路内を冷媒が流れて圧力振幅が伝播することで圧力脈動を低減する消音機能を有することを特徴とする密閉形圧縮機。
    A sealed container;
    An electric motor installed inside the sealed container;
    A drive shaft that is rotationally driven by the electric motor and rotatably supported by the first support member and the second support member;
    An intermediate partition plate disposed between the first support member and the second support member;
    A first cylinder coupled to the drive shaft is movably accommodated, and a first cylinder that forms a first compression chamber between the first support member and the intermediate partition plate; and A first discharge port formed in the first support member that discharges the compressed refrigerant, and is installed in the first support member so as to cover the first discharge port, and is discharged from the first discharge port. A first muffler container that forms a first muffler space into which refrigerant flows;
    A second piston that is movably accommodated in the second drive shaft and that forms a second compression chamber between the second support member and the intermediate partition plate; and A second discharge port formed in the second support member that discharges the compressed refrigerant, and is installed in the second support member so as to cover the second discharge port, and is discharged from the second discharge port. A second muffler container that forms a second muffler space into which the refrigerant flows;
    A first discharge channel that directly guides the compressed refrigerant from the first muffler space to the inner space of the sealed container, and a second discharge channel that directly guides the compressed refrigerant from the second muffler space to the inner space of the sealed container A communication channel through which a refrigerant flows through the first muffler space and the second muffler space;
    With
    The hermetic function of reducing pressure pulsation by driving the first piston and the second piston in opposite phases and causing the refrigerant to flow through the communication flow path and the pressure amplitude to propagate. Compressor.
  2.  前記第1マフラ空間内に前記連通流路と繋がる前記第1連通口を覆うように第1マフラ空間より容積の小さな第1小空間を備える、あるいは、前記第2マフラ空間内に前記連通流路と繋がる前記第2連通口を覆うように第1マフラ空間より容積の小さな第2小空間を備えることを特徴とする請求項1に記載の密閉形圧縮機。 A first small space having a smaller volume than the first muffler space is provided in the first muffler space so as to cover the first communication port connected to the communication channel, or the communication channel is provided in the second muffler space. 2. The hermetic compressor according to claim 1, further comprising a second small space having a volume smaller than that of the first muffler space so as to cover the second communication port connected to the first muffler space.
  3.  前記第1小空間の容積、または、前記第2小空間の容積は、運転周波数の1次成分fで共鳴するように、前記連通流路の長さdと直径Dを、
      共鳴周波数:f=(c/2π)×(S/(L×V))0.5
          L:開口部有効長さ(=d+k×D)
          c:冷媒ガス音速、
          S:開口部面積(=πD/4)、
          V:バッファ容器容積
       補正係数:k(約1.57×0.5、すなわち、7.5から0.8の範囲)
    を満たすように定めたことを特徴とする請求項2に記載の多気筒圧縮機。
    The length d and the diameter D of the communication channel are set so that the volume of the first small space or the volume of the second small space resonates with the primary component f of the operating frequency.
    Resonance frequency: f = (c / 2π) × (S / (L × V)) 0.5
    L: Opening effective length (= d + k × D)
    c: refrigerant gas sound speed,
    S: opening area (= πD 2/4),
    V: Buffer container volume Correction factor: k (approximately 1.57 × 0.5, ie, in the range of 7.5 to 0.8)
    The multi-cylinder compressor according to claim 2, wherein the multi-cylinder compressor is defined so as to satisfy.
  4.  前記連通流路を2本以上備え、前記第1マフラ空間内の前記第1連通口側を前記第1小空間で覆って前記第2連通口側を前記第2小空間で覆わない第1連通流路と、前記第2マフラ空間内の前記第2連通口側を前記第2小空間で覆って前記第1連通口側を前記第1小空間で覆わない第2連通流路と、を設けたことを特徴とする請求項2に記載の密閉形圧縮機。 First communication not having two or more communication channels, and covering the first communication port side in the first muffler space with the first small space and not covering the second communication port side with the second small space. A flow path, and a second communication flow path that covers the second communication port side in the second muffler space with the second small space and does not cover the first communication port side with the first small space. The hermetic compressor according to claim 2, wherein
  5.  前記連通流路を3本以上備え、前記第1連通流路と前記第2連通流路とは別に、前記第1連通口も前記第2連通口ともに小空間で覆わない連通流路を設けたことを特徴とする請求項4に記載の密閉形圧縮機。 In addition to the first communication channel and the second communication channel, a communication channel that does not cover the first communication port and the second communication port in a small space is provided. The hermetic compressor according to claim 4.
  6.  前記第1吐出口から吐出された冷媒が前記第1排出流路から前記密閉容器の内部空間へ流出する圧力損失が、前記連通流路を通って前記密閉容器の内部空間へ流出する圧力損失より小さくて、さらに、前記第2吐出口から吐出された冷媒が前記第2排出流路から前記密閉容器の内部空間へ流出する圧力損失が、前記連通流路を通って前記密閉容器の内部空間へ流出する圧力損失より小さいことを特徴とする請求項1に記載の密閉形圧縮機。 The pressure loss at which the refrigerant discharged from the first discharge port flows out from the first discharge channel to the internal space of the sealed container is less than the pressure loss at which the refrigerant flows out to the internal space of the sealed container through the communication channel. Further, the pressure loss at which the refrigerant discharged from the second discharge port flows out from the second discharge channel to the inner space of the sealed container is reduced to the inner space of the sealed container through the communication channel. The hermetic compressor according to claim 1, wherein the hermetic compressor is smaller than the pressure loss flowing out.
  7.  気体の冷媒が管路に流入して流出するまでに生じる圧力損失を比べると、前記連通流路で生じる圧力損失が、前記第1排出流路で生じる圧力損失と前記第2排出流路で生じる圧力損失より小さいことを特徴とする請求項6に記載の密閉形圧縮機。 Comparing the pressure loss that occurs until the gaseous refrigerant flows into and out of the pipeline, the pressure loss that occurs in the communication channel is the pressure loss that occurs in the first discharge channel and the second discharge channel The hermetic compressor according to claim 6, wherein the hermetic compressor is smaller than the pressure loss.
  8.  前記第1マフラ空間は環状であって、前記第1マフラ空間を分断する第1吐出口背面ガイドが設置され、
     該第1吐出口背面ガイドは、冷媒が通過自在であって、前記第1吐出口と前記第1排出流路との間に配置され、
     前記第1吐出口から吐出された冷媒が、前記第1吐出口背面ガイドを経由しないで前記第1排出口へ向かう環状流路に沿って流れることによって、膨張形消音器が構成されることを特徴とする請求項1に記載の密閉形圧縮機。
    The first muffler space is annular, and a first discharge port rear surface guide that divides the first muffler space is installed,
    The first discharge port rear surface guide is free to pass a refrigerant, and is disposed between the first discharge port and the first discharge channel,
    The refrigerant discharged from the first discharge port flows along the annular flow path toward the first discharge port without passing through the first discharge port rear surface guide, thereby forming an expansion silencer. The hermetic compressor according to claim 1, wherein
  9.  前記第2マフラ空間は環状であって、前記第2マフラ空間を分断する第2吐出口背面ガイドが設置され、
     該第2吐出口背面ガイドは、冷媒が通過自在であって、前記第2吐出口と前記第2排出流路との間に配置され、
     前記第2吐出口から吐出された冷媒が、前記第2吐出口背面ガイドを経由しないで前記第2排出口へ向かう環状流路に沿って流れることによって、膨張形消音器が構成されることを特徴とする請求項1に記載の密閉形圧縮機。
    The second muffler space is annular, and a second discharge port rear surface guide that divides the second muffler space is installed,
    The second discharge port rear surface guide is free to pass the refrigerant, and is disposed between the second discharge port and the second discharge channel,
    The refrigerant discharged from the second discharge port flows along the annular flow path toward the second discharge port without passing through the second discharge port rear surface guide, thereby forming an expansion silencer. The hermetic compressor according to claim 1, wherein
  10.  前記第1マフラ空間の容積が前記第2マフラ空間の容積に対して、2倍以上に大きいか、あるいは1/2倍以下に小さいことを特徴とする請求項1に記載の密閉形圧縮機。 2. The hermetic compressor according to claim 1, wherein the volume of the first muffler space is greater than or equal to twice or less than ½ times the volume of the second muffler space.
  11.  請求項1乃至10の何れかに記載の密閉形圧縮機と、凝縮器と、減圧手段と、蒸発器と、これらを順次連結して冷媒を循環させる冷媒回路と、を有すこと特徴とする冷凍サイクル装置。 A hermetic compressor according to any one of claims 1 to 10, a condenser, a decompression unit, an evaporator, and a refrigerant circuit for sequentially circulating the refrigerant by connecting them together. Refrigeration cycle equipment.
PCT/JP2012/003022 2012-05-09 2012-05-09 Airtight compressor and heat pump device WO2013168194A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014514229A JP5866004B2 (en) 2012-05-09 2012-05-09 Hermetic compressor and heat pump device
PCT/JP2012/003022 WO2013168194A1 (en) 2012-05-09 2012-05-09 Airtight compressor and heat pump device
CN201280073850.3A CN104379937B (en) 2012-05-09 2012-05-09 Hermetic type compressor and heat pump assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003022 WO2013168194A1 (en) 2012-05-09 2012-05-09 Airtight compressor and heat pump device

Publications (1)

Publication Number Publication Date
WO2013168194A1 true WO2013168194A1 (en) 2013-11-14

Family

ID=49550281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003022 WO2013168194A1 (en) 2012-05-09 2012-05-09 Airtight compressor and heat pump device

Country Status (3)

Country Link
JP (1) JP5866004B2 (en)
CN (1) CN104379937B (en)
WO (1) WO2013168194A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389790A (en) * 2014-11-07 2015-03-04 广东美芝制冷设备有限公司 Low-backpressure compressor
EP3144536A1 (en) * 2015-09-11 2017-03-22 Fujitsu General Limited Rotary compressor
US20170335848A1 (en) * 2014-12-19 2017-11-23 Fujitsu General Limited Rotary compressor
WO2018037906A1 (en) * 2016-08-25 2018-03-01 三菱重工サーマルシステムズ株式会社 Compressor
WO2018186357A1 (en) * 2017-04-07 2018-10-11 東芝キヤリア株式会社 Closed-type compressor and refrigeration cycle device
EP3584445A1 (en) * 2018-06-18 2019-12-25 LG Electronics Inc. Compressor
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder
WO2023190051A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Compressor and air conditioner
EP4279742A1 (en) * 2022-05-16 2023-11-22 LG Electronics Inc. Rotary compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402962A (en) * 2015-10-10 2016-03-16 安徽美芝精密制造有限公司 Liquid accumulator and compressor with same
EP3557080A1 (en) * 2018-04-20 2019-10-23 Belenos Clean Power Holding AG Heat pump comprising a fluid compressor
CN110159617B (en) * 2019-05-20 2020-12-01 防城港澳加粮油工业有限公司 Automatic trigger control method for sensing dynamic fluctuation change of thermal field
CN112343823B (en) * 2019-08-08 2022-10-11 安徽美芝精密制造有限公司 Compression mechanism and compressor
CN113864197B (en) * 2021-10-25 2023-03-21 珠海格力电器股份有限公司 Pump body structure, compressor and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195976A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Rotary compressor
JPH08232877A (en) * 1994-12-28 1996-09-10 Toshiba Ave Corp Rotary compressor
JP2005120864A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Two-cylinder closed rotary compressor
JP2006083841A (en) * 2004-09-14 2006-03-30 Samsung Electronics Co Ltd Multi-cylinder compressor
JP2006083842A (en) * 2004-09-15 2006-03-30 Samsung Electronics Co Ltd Multi-cylinder compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195976A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Rotary compressor
JPH08232877A (en) * 1994-12-28 1996-09-10 Toshiba Ave Corp Rotary compressor
JP2005120864A (en) * 2003-10-15 2005-05-12 Matsushita Electric Ind Co Ltd Two-cylinder closed rotary compressor
JP2006083841A (en) * 2004-09-14 2006-03-30 Samsung Electronics Co Ltd Multi-cylinder compressor
JP2006083842A (en) * 2004-09-15 2006-03-30 Samsung Electronics Co Ltd Multi-cylinder compressor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389790A (en) * 2014-11-07 2015-03-04 广东美芝制冷设备有限公司 Low-backpressure compressor
US10458408B2 (en) * 2014-12-19 2019-10-29 Fujitsu General Limited Rotary compressor having communication path hole overlap with discharge chamber concave portion
US20170335848A1 (en) * 2014-12-19 2017-11-23 Fujitsu General Limited Rotary compressor
EP3144536A1 (en) * 2015-09-11 2017-03-22 Fujitsu General Limited Rotary compressor
US9951775B2 (en) 2015-09-11 2018-04-24 Fujitsu General Limited Rotary compressor
WO2018037906A1 (en) * 2016-08-25 2018-03-01 三菱重工サーマルシステムズ株式会社 Compressor
EP3447296A4 (en) * 2016-08-25 2019-03-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Compressor
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder
JP2018178793A (en) * 2017-04-07 2018-11-15 東芝キヤリア株式会社 Hermetic type compressor and refrigeration cycle device
WO2018186357A1 (en) * 2017-04-07 2018-10-11 東芝キヤリア株式会社 Closed-type compressor and refrigeration cycle device
EP3584445A1 (en) * 2018-06-18 2019-12-25 LG Electronics Inc. Compressor
US11306719B2 (en) 2018-06-18 2022-04-19 Lg Electronics Inc. Compressor
WO2023190051A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Compressor and air conditioner
JP7381975B2 (en) 2022-03-31 2023-11-16 ダイキン工業株式会社 Compressor and air conditioner
EP4279742A1 (en) * 2022-05-16 2023-11-22 LG Electronics Inc. Rotary compressor

Also Published As

Publication number Publication date
CN104379937A (en) 2015-02-25
CN104379937B (en) 2017-12-22
JP5866004B2 (en) 2016-02-17
JPWO2013168194A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5866004B2 (en) Hermetic compressor and heat pump device
JP5484463B2 (en) Refrigerant compressor and heat pump device
WO2013065706A1 (en) Sealed rotary compressor and refrigeration cycle device
US7578659B2 (en) Compressor discharge muffler
KR101208141B1 (en) Scroll compressor
WO2014118855A1 (en) Compressor
JP5228905B2 (en) Refrigeration equipment
US11333150B2 (en) Compressor
JPWO2011148453A1 (en) Two-stage rotary compressor and heat pump device
JP5338314B2 (en) Compressor and refrigeration equipment
US11698072B2 (en) Compressor
JP2016020657A (en) Rotary type compressor
JP2010048089A (en) Hermetic compressor
US10890188B2 (en) Compressor noise reduction
US20200109713A1 (en) Integrated rotary positive-displacement machinery
KR100646288B1 (en) Air conditioner
WO2016110982A1 (en) Multi-cylinder hermetic compressor
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
KR100814019B1 (en) Multi-Cylinder Type Rotary Compressor
JP5595324B2 (en) Compressor
WO2019017248A1 (en) Rotary compressor
WO2022259358A1 (en) Scroll compressor
JP5195497B2 (en) Rotary fluid machine
CN116241459A (en) Exhaust assembly, pump body assembly and scroll compressor
JPWO2019111461A1 (en) Twin rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876389

Country of ref document: EP

Kind code of ref document: A1