WO2018186357A1 - Closed-type compressor and refrigeration cycle device - Google Patents

Closed-type compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2018186357A1
WO2018186357A1 PCT/JP2018/014139 JP2018014139W WO2018186357A1 WO 2018186357 A1 WO2018186357 A1 WO 2018186357A1 JP 2018014139 W JP2018014139 W JP 2018014139W WO 2018186357 A1 WO2018186357 A1 WO 2018186357A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition plate
chamber
muffler
cylinder
space
Prior art date
Application number
PCT/JP2018/014139
Other languages
French (fr)
Japanese (ja)
Inventor
勝吾 志田
青木 俊公
昌宏 畑山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201880023663.1A priority Critical patent/CN110520625B/en
Priority to KR1020197028980A priority patent/KR102222539B1/en
Publication of WO2018186357A1 publication Critical patent/WO2018186357A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/962Preventing, counteracting or reducing vibration or noise by means creating "anti-noise"

Definitions

  • Embodiments of the present invention relate to a hermetic compressor having two cylinder chambers and a refrigeration cycle apparatus that includes this hermetic compressor and constitutes a refrigeration cycle.
  • a hermetic compressor in which an electric motor part and a compression mechanism part connected via a rotating shaft are accommodated in a sealed container, and the compression mechanism part includes two cylinder chambers via an intermediate partition plate is often used.
  • the rollers are eccentrically moved in the respective cylinder chambers to compress the gas refrigerant as the working fluid, and the compressed gas refrigerant is discharged into the sealed container through a bearing muffler attached to the cylinder. .
  • Patent Document 1 an intermediate partition plate interposed between two cylinders is divided into two along the axial direction to form a partition plate space in which the two intermediate partition plates communicate with each other in the sealed container.
  • Patent Document 1 discloses a technology that can cope with an increase in capacity by discharging a gas refrigerant compressed in a cylinder chamber into a bearing muffler chamber and a partition plate space of an intermediate partition plate divided into two.
  • the thickness of the partition plate is increased in order to prevent a decrease in the rigidity of the partition plate, the distance between the main bearing and the sub-bearing increases. If it does so, it will become easy to bend a rotating shaft, and there exists a possibility that the reliability as a compressor may be impaired after all.
  • the present invention provides a hermetic seal that can secure a sufficient flow channel area of the discharge flow channel for discharging the gas refrigerant from the partition plate discharge space, while suppressing a decrease in rigidity of the partition plate and improving compression performance and reliability.
  • a mold compressor and a refrigeration cycle apparatus including the hermetic compressor are provided.
  • a hermetic compressor of the present embodiment includes a hermetic container, and an electric motor unit and a compression mechanism unit that are housed in the hermetic container and connected via a rotating shaft
  • the compression mechanism section includes a first muffler, a main bearing, a first cylinder having a first cylinder chamber, a first partition plate, which form a first muffler chamber provided in order along the rotation axis.
  • a second partition plate that forms a partition plate space with the first partition plate, a second cylinder having a second cylinder chamber, a secondary bearing, and a second muffler that forms a second muffler chamber are provided.
  • the compression mechanism section is provided in the main bearing, and discharges the working fluid compressed in the first cylinder chamber into the first muffler chamber; and the first bearing discharge mechanism.
  • a first partition plate discharge valve mechanism that discharges the working fluid into the partition plate space, and a working fluid that is provided in the auxiliary bearing and compressed in the second cylinder chamber is discharged into the second muffler chamber.
  • a second partition plate that is provided with the sub-bearing and the second partition plate, and discharges the working fluid compressed in the second cylinder chamber to the partition plate space.
  • a discharge valve mechanism and a merging passage that joins the working fluid in the second muffler chamber and the working fluid in the partition plate space to lead to the first muffler chamber, the merging passage in the partition plate space
  • the dimension in the direction orthogonal to the axis of the rotation axis of the connection flow path connected to is larger than the dimension along the axial direction of the rotation axis of the connection flow path.
  • the cross-sectional shape of the connection flow path of the hermetic compressor according to the present embodiment is preferably a square shape.
  • the hermetic compressor of the present embodiment includes an independent partition plate fluid passage that guides the working fluid discharged to the partition plate space to the first muffler chamber, and the partition plate fluid passage is formed from the junction passage. Is preferably provided at a position near the discharge port of the first partition plate discharge valve mechanism.
  • the hermetic compressor of the present embodiment preferably includes an independent muffler chamber fluid passage that guides the working fluid discharged to the second muffler chamber to the first muffler chamber.
  • the total discharge flow rate of the working fluid discharged from the first cylinder chamber and the second cylinder chamber to the partition plate space is from the second cylinder chamber to the first cylinder chamber.
  • the discharge flow rate is preferably larger than the discharge flow rate discharged to the second muffler chamber.
  • the flow passage area of the connection flow passage is larger than the flow passage area of the confluence passage on the second muffler chamber side.
  • the refrigeration cycle apparatus of the present embodiment includes the hermetic compressor, a radiator connected to the hermetic compressor, an expansion device connected to the radiator, and the expansion. And a heat absorber connected between the device and the hermetic compressor.
  • the longitudinal cross-sectional view of the hermetic compressor by 1st Embodiment, and the refrigerating-cycle block diagram of a refrigerating-cycle apparatus is a top view of the 1st partition plate by the same embodiment
  • (B) is explanatory drawing which shows the flow of the refrigerant
  • (A) is a top view of the 1st partition plate by 2nd Embodiment
  • (B) is a top view of a 2nd partition plate
  • C) is explanatory drawing which shows the flow of the refrigerant
  • FIG. 1 is a longitudinal sectional view of a hermetic compressor 1 according to a first embodiment and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus R that is an air conditioner, for example.
  • a hermetic compressor 1 hereinafter simply referred to as “compressor 1” is connected to a refrigeration cycle apparatus R.
  • a refrigerant pipe P is connected to the compressor 1.
  • a condenser 2 that is a radiator, an expansion valve (expansion device) 3, an evaporator 4 that is a heat absorber, and an accumulator 5 are sequentially connected to the refrigerant pipe P. Further, the refrigerant pipe P is branched into two from the accumulator 5 and connected to the side portion of the compressor 1.
  • the compressor 1, the condenser 2, the expansion valve 3, the evaporator 4, the accumulator 5, and the refrigerant pipe P constitute a refrigeration cycle of the refrigeration cycle apparatus R.
  • the compressor 1 includes a sealed container 10.
  • An electric motor unit 11 is accommodated on the upper side in the sealed container 10, and a compression mechanism unit 12 is accommodated on the lower side.
  • the electric motor unit 11 and the compression mechanism unit 12 are connected via a rotating shaft 13.
  • Lubricating oil is stored in the inner bottom portion of the sealed container 10.
  • the remaining part (other part) of the internal space of the sealed container 10 is filled with a high-pressure gas refrigerant that is a working fluid compressed by the compression mechanism unit 12.
  • a discharge pipe 1 a is provided on the upper surface of the sealed container 10.
  • a refrigerant pipe P communicating with the condenser 2 is connected to the discharge pipe 1a.
  • two suction pipes 1 b and 1 b are provided on the lower peripheral wall of the sealed container 10. The suction pipes 1b and 1b communicate with the accumulator 5.
  • the electric motor unit 11 has a rotor (rotor) 15 fixed by being fitted to the rotary shaft 13, and an inner peripheral surface facing the outer peripheral surface of the rotor 15 with a narrow gap. And a stator (stator) 16 that is fixed by being fitted to the inner peripheral wall.
  • the rotary shaft 13 is provided with two columnar eccentric portions a and b projecting toward the outer peripheral side of the rotary shaft 13 (direction orthogonal to the shaft center). These eccentric portions a and b are provided at positions spaced apart by a predetermined dimension along the axial direction of the rotating shaft 13 and displaced by 180 ° along the rotating direction of the rotating shaft 13. These eccentric portions a and b are provided eccentric to the axis center of the rotating shaft 13. A portion between the eccentric portions a and b in the rotating shaft 13 is referred to as an intermediate shaft portion c.
  • the compression mechanism unit 12 includes a main bearing 17, a first cylinder 18, an intermediate partition plate 20, a second cylinder 22, and a sub-bearing 23 provided in order along the axial direction of the rotary shaft 13. I have.
  • Each of the main bearing 17 and the sub bearing 23 has a boss portion that rotatably supports the rotating shaft 13.
  • the flange part of the main bearing 17 is attached with a first muffler 25 which is a hollow case surrounding the periphery.
  • a first muffler chamber 25 a is formed inside the first muffler 25.
  • the first muffler 25 is provided with a plurality of communication holes that allow the inside of the muffler chamber 25a and the space in the sealed container 10 to communicate with each other.
  • a second muffler 26 that is a hollow case surrounding the periphery is attached to the flange portion of the auxiliary bearing 23. Inside the second muffler 26, a second muffler chamber 26a is formed.
  • the intermediate partition plate 20 is interposed between the first cylinder 18 and the second cylinder 22.
  • the intermediate partition plate 20 surrounds the periphery of the intermediate shaft portion c formed between the two eccentric portions a and b of the rotating shaft 23.
  • the intermediate partition plate 20 is divided into two parts along the axial direction of the rotary shaft 13 into a first partition plate 20a and a second partition plate 20b.
  • the upper end portion of the inner diameter hole of the first cylinder 18 is closed by the main bearing 17, and the lower end side of the inner diameter hole of the first cylinder 18 is closed by the first partition plate 20 a of the intermediate partition plate 20.
  • a first cylinder chamber 18A is formed by the inner diameter hole of the first cylinder 18 closed by the main bearing 17 and the first partition plate 20a.
  • the upper end side of the inner diameter hole of the second cylinder 22 is closed by the second partition plate 20 b of the intermediate partition plate 20, and the lower end side of the inner diameter hole of the second cylinder 22 is closed by the auxiliary bearing 23.
  • a second cylinder chamber 22 ⁇ / b> A is formed by the inner diameter hole of the second cylinder 22 closed by the second partition plate 20 b and the auxiliary bearing 23.
  • Rotating shaft 13 is inserted through first cylinder chamber 18A and second cylinder chamber 22A.
  • One eccentric portion a formed on the rotating shaft 13 is located in the first cylinder chamber 18A, and the other eccentric portion b formed on the rotating shaft 13 is located in the second cylinder chamber 22A.
  • the roller 27 is fitted to one eccentric part a, and the roller 28 is fitted to the other eccentric part b.
  • the roller 27 rolls while a part of the outer peripheral wall is in contact with the inner peripheral wall of the first cylinder chamber 18A as the rotary shaft 13 rotates.
  • the roller 28 rolls while a part of the outer peripheral wall is in contact with the inner peripheral wall of the second cylinder chamber 22A as the rotary shaft 13 rotates.
  • a blade (not shown) is slidably provided in each of the first cylinder chamber 18A and the second cylinder chamber 22A.
  • the tips of the blades are in contact with the outer peripheral walls of the rollers 27 and 28 by a force acting from an elastic body such as a spring.
  • a part of the outer peripheral wall of the roller 27 is in contact with a part of the inner peripheral wall of the first cylinder chamber 18A, and the tip of the blade is elastically in contact with the outer peripheral wall of the roller 27, whereby the inside of the first cylinder chamber 18A is
  • the roller 27 is partitioned into two spaces whose volume varies as the roller 27 rolls.
  • a part of the outer peripheral wall of the roller 28 is in contact with a part of the inner peripheral wall of the second cylinder chamber 22A, and the tip of the blade is elastically in contact with the outer peripheral wall of the roller 28, whereby the inside of the second cylinder chamber 22A is
  • the roller 28 is partitioned into two spaces whose volume varies as the roller 28 rolls.
  • the first cylinder 18 is connected to a suction pipe 1b for sucking low-pressure gas refrigerant into the first cylinder chamber 18A.
  • the second cylinder 22 is connected to a suction pipe 1b for sucking a low-pressure gas refrigerant into the second cylinder chamber 22A.
  • FIG. 2A is a plan view of the first partition plate 20a
  • FIG. 2B is an explanatory view showing the flow of refrigerant in the compression mechanism section 12.
  • FIG. 2A a mark with cross hatching in a circle is a bolt hole d.
  • the first cylinder 18, the divided intermediate partition plate 20, the second cylinder 22, and the auxiliary bearing 23 are connected to the main bearing.
  • a bolt that is fastened to 17 is inserted.
  • a discharge port for discharging the gas refrigerant compressed by the eccentric motion of the roller 27 from the first cylinder chamber 18 ⁇ / b> A is provided in the flange portion of the main bearing 17.
  • a first bearing discharge valve mechanism 30 including 30a, a reed valve 30b that opens and closes the discharge port 30a with a predetermined pressure, and a valve pressing plate 30c that regulates the maximum opening of the reed valve 30b.
  • the first muffler 25 in the first muffler 25 attached to the first cylinder chamber 18A and the main bearing 17 is provided.
  • the chamber 25a communicates with the chamber 25a.
  • the flange portion of the sub-bearing 23 has a discharge port 31a for discharging the gas refrigerant compressed by the eccentric motion of the roller 28 from the second cylinder chamber 22A, and a reed valve 31b for opening and closing the discharge port 31a with a predetermined pressure.
  • a second bearing discharge valve mechanism 31 including a valve pressing plate 31c that regulates the maximum opening of the reed valve 31b is provided.
  • the gas refrigerant discharged into the second muffler chamber 26a is guided to the first muffler chamber 25a through a merge passage S described later.
  • the first partition plate 20a includes a discharge port 33a for discharging the gas refrigerant compressed by the eccentric motion of the roller 27 from the first cylinder chamber 18A, and a reed valve 33b for opening and closing the discharge port 33a with a predetermined pressure.
  • a first partition plate discharge valve mechanism 33 provided with a valve pressing plate 33c that regulates the maximum opening of the reed valve 33b is provided.
  • the second partition plate 20b includes a discharge port 34a for discharging the gas refrigerant compressed by the eccentric motion of the roller 28 from the second cylinder chamber 22A, and a reed valve 34b for opening and closing the discharge port 34a with a predetermined pressure.
  • a second partition plate discharge valve mechanism 34 including a valve pressing plate 34c that restricts the maximum opening of the reed valve 34b is provided.
  • the total discharge flow rate of the gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 is larger than the discharge flow rate of the gas refrigerant discharged from the second bearing discharge valve mechanism 31.
  • the inner diameters of the discharge ports 30a, 31a, 33a and 34a are set so as to increase, and the spring constants of the reed valves 30b, 31b, 33b and 34b are set.
  • the compressed gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 is guided along a later-described flow path shown in FIGS. It has come to be.
  • the first partition plate 20a and the second partition plate 20b include a partition plate space 35 that receives the compressed gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34. Is partitioned.
  • the partition plate space 35 has a partition plate discharge space 35a and a connection flow path 35b.
  • a first partition plate discharge valve mechanism 33 and a second partition plate discharge valve mechanism 34 are provided in the partition plate discharge space 35a.
  • the connection flow path 35b is a long space continuously extending along the plane of the partition plate 20 from the partition plate discharge space 35a. Moreover, the height of the partition plate discharge space 35a is larger than the height of the connection flow path 35b.
  • FIG. 3 is an AA cross section of FIG. 2, and is an enlarged cross sectional view along the axial direction of the rotary shaft 13 of the connection flow path 35b formed in the intermediate partition plate 20.
  • FIG. 3 is an AA cross section of FIG. 2, and is an enlarged cross sectional view along the axial direction of the rotary shaft 13 of the connection flow path 35b formed in the intermediate partition plate 20.
  • the first partition plate 20a and the second partition plate 20b each have a thickness of 10 mm. That is, the first partition plate 20a and the second partition plate 20b form an intermediate partition plate 20 having a thickness of 20 mm.
  • the connection flow path 35b is formed by a groove having a depth of 5 mm and a width of 12 mm provided in the first partition plate 20a and the second partition plate 20b. That is, the connection flow path 35b has a rectangular shape in which the axial length (height) t of the rotary shaft 13 is 10 mm and the length (width) h in the direction orthogonal to the axial direction of the rotary shaft 13 is 12 mm.
  • the width h dimension of the connection channel 35b is formed larger than the height t dimension.
  • a passage S that guides the gas refrigerant discharged from the second cylinder chamber 22A to the second muffler chamber 26a in the second muffler 26 to the first muffler chamber 25a in the first muffler 25 is provided as a subsidiary.
  • the bearing 23, the second cylinder 22, the second partition plate 20 b, the first partition plate 20 a, the first cylinder 18, and the flange portion of the main bearing 17 are provided on the respective members.
  • This passage S is a merging passage S that communicates with the connection flow path 35b in the second partition plate 20b and the first partition plate 20a.
  • the discharge flow rate of the gas refrigerant discharged from the second cylinder chamber 22A to the partition plate space 35 is the second flow rate from the second cylinder chamber 22A. More than the discharge flow rate of the gas refrigerant discharged into the muffler chamber 26a. Therefore, the flow passage area of the connection flow passage 35b provided in the intermediate partition plate 20 is set to be larger than the flow passage area of the merge passage S on the second muffler chamber 26a side. Therefore, the gas refrigerant in the partition plate space 35 easily flows into the merge passage S.
  • Rollers 27 and 28 provided with a phase difference of 180 ° roll as the rotary shaft 13 rotates.
  • the gas refrigerant flowing into the first cylinder chamber 18A and the gas refrigerant flowing into the second cylinder chamber 22A are compressed by gradually reducing the volume of the discharge chamber, which is the other space partitioned by the blades. Is done.
  • the reed valve 30b of the first bearing discharge valve mechanism 30 When compressed to a predetermined pressure, the reed valve 30b of the first bearing discharge valve mechanism 30 is opened and the discharge port 30a is released. The compressed gas refrigerant is discharged from the first cylinder chamber 18A to the first muffler chamber 25a of the first muffler 25.
  • the reed valve 33b of the first partition plate discharge valve mechanism 33 is opened and the discharge port 33a is released.
  • the compressed gas refrigerant is discharged into the partition plate space 35 from the first cylinder chamber 18A.
  • the reed valve 31b of the second bearing discharge valve mechanism 31 is opened with a phase difference of 180 °, and the discharge port 31a is released.
  • the compressed gas refrigerant is discharged from the second cylinder chamber 22A to the second muffler chamber 26a of the second muffler 26.
  • the gas refrigerant in the second muffler chamber 26 a passes through the auxiliary bearing 23 and the second cylinder 22 through the merge passage S.
  • this gas refrigerant passes through the second partition plate 20b constituting the intermediate partition plate 20 and the first partition plate 20a, it merges with the gas refrigerant flowing in through the connection flow path 35b of the partition plate space 35. Then, it is led to a muffler chamber in the first muffler 25 via a merge passage S provided continuously in the first cylinder 18 and the main bearing 17 to 25a.
  • the reed valve 34b of the second partition plate discharge valve mechanism 34 is opened, and the discharge port 34a is released.
  • the compressed gas refrigerant is discharged into the partition plate space 35.
  • the gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 into the partition plate space 35 passes through the connection flow path 35b and flows into the first cylinder 18 and the main bearing 17. It is guided to the first muffler chamber 25a of the first muffler 25 through a merge passage S provided continuously in the flange portion.
  • the inside of the sealed container 10 is filled with high-temperature and high-pressure gas refrigerant, and flows into the refrigerant pipe P connected to the discharge pipe 1a and led to the condenser 2.
  • the refrigerant is condensed and liquefied by the condenser 2, decompressed by the expansion valve 3, and evaporated by the evaporator 4.
  • the ambient air is cooled by the evaporation of the refrigerant, and the refrigeration cycle apparatus R exhibits the refrigeration (cooling) capability.
  • the refrigerant exiting the evaporator 4 is separated into gas and liquid by the accumulator 5 and is introduced into the first cylinder chamber 18A and the second cylinder chamber 22A through the suction pipes 1b and 1b of the compressor 1 and compressed. Then, it is compressed again as described above and circulates in the above-mentioned path.
  • the gas refrigerant compressed in the first cylinder chamber 18A and discharged from the first partition plate discharge valve mechanism 33 to the partition plate space 35, and compressed in the second cylinder chamber 22A, is supplied to the second cylinder chamber 22A.
  • the gas refrigerant discharged from the partition plate discharge valve mechanism 34 into the partition plate space 35 is guided to the muffler chamber 25a of the first muffler 25 through the common flow path S.
  • connection flow path 35b of the partition plate space 35 By making the cross section of the connection flow path 35b of the partition plate space 35 into a square shape and making its width h dimension larger than the height t dimension, the flow area of the connection flow path 35b without increasing the thickness of the intermediate partition plate 20 Can be secured greatly. Therefore, the distance between the main bearing 17 and the auxiliary bearing 23 is prevented from increasing, and the reliability as a compressor is increased.
  • connection flow path 39a is reduced, and the pressure loss is improved.
  • the discharge of the gas refrigerant discharged into the partition plate space 35 The flow rate was made larger than the discharge flow rate of the gas refrigerant discharged into the second muffler chamber 26a. Therefore, noise is reduced by the sound insulation effect of the intermediate partition plate 20.
  • FIG. 4A is a plan view of the first partition plate 20a according to the second embodiment.
  • FIG. 4B is a plan view of the second partition plate 20b.
  • FIG. 4C is a diagram showing the refrigerant flow in the compression mechanism section 12.
  • the compressor 1A of the second embodiment includes a partition plate fluid passage 36 and a muffler chamber fluid passage 38 at positions different from the joining passage S in addition to the joining passage S.
  • the partition plate fluid passage 36 allows the gas refrigerant discharged from the first cylinder chamber 18 ⁇ / b> A and the second cylinder chamber 22 ⁇ / b> A to the partition plate space 35 to pass through the first cylinder 18 and the flange portion of the main bearing 17.
  • the muffler 25 is led to the muffler chamber 25a.
  • the partition plate fluid passage 36 is provided in each member of the first cylinder 18 and the main bearing 17.
  • the muffler chamber fluid passage 38 allows the gas refrigerant discharged from the second cylinder chamber 22A to the second muffler chamber 26a of the second muffler 26 to pass through the auxiliary bearing 23, the second cylinder 22, and the second partition plate 20b.
  • the first partition plate 20 a, the first cylinder 18, and the flange portion of the main bearing 17 are led to the first muffler chamber 25 a of the first muffler 25.
  • the muffler chamber fluid passage 38 is provided in each member of the auxiliary bearing 23, the second cylinder 22, the second partition plate 20 b, the first partition plate 20 a, the first cylinder 18, and the main bearing 17.
  • the discharge passage area for discharging the gas refrigerant compressed in the first cylinder chamber 18A and the second cylinder chamber 22A is expanded. Therefore, pressure loss is reduced and compression efficiency is improved.
  • the partition plate fluid passage 36 is provided at a position closer to the discharge port 33a of the first partition plate discharge valve mechanism 33 than the junction passage S.
  • the flow resistance of the connection flow path 35b is reduced by making the width h dimension larger than the height t dimension, and the flow of the connection flow path 35b is reduced.
  • a road area can be secured large without thickening the intermediate partition plate 20, and a highly efficient and reliable compressor can be provided.
  • the partition plate space 35 described above includes a partition plate discharge space 35a and a connection flow path 35b, and the heights of the spaces are different.
  • the height of each space may be the same, but by reducing the height of the connection flow path 35b, the partition without partitioning the amount of gas refrigerant discharged to the partition plate space 35.
  • the rigidity of the plate can be increased.
  • a space having an intermediate height may be provided between the partition plate discharge space 35a and the connection flow path 35b with respect to the partition plate discharge space 35a and the connection flow path 35b.
  • the partition plate fluid passage 36 may communicate with the connection channel 35b having the smallest space height, or may communicate with the intermediate height space. Thereby, the discharge amount of the gas refrigerant discharged to the partition plate space 35 can be increased.
  • SYMBOLS 1 Sealed compressor (compressor), 2 ... Condenser (radiator), 3 ... Expansion valve (expansion device), 4 ... Evaporator (heat absorber), 10 ... Sealed container, 13 ... Rotating shaft, 11 ... Electric motor part, 12 ... compression mechanism part, 17 ... main bearing, 18A ... first cylinder chamber, 18 ... first cylinder, 20a ... first partition plate, 20b ... second partition plate, 22A ... second Cylinder chamber, 22 ... second cylinder, 23 ... sub-bearing, 25 ... first muffler, 25a ... first muffler chamber, 26 ... second muffler, 26a ... second muffler chamber, 30 ...
  • first Discharge valve mechanism 31 ... second discharge valve mechanism, 33 ... first partition plate discharge valve mechanism, 33a ... discharge port (of the first partition plate discharge valve mechanism), 34 ... second partition plate discharge valve mechanism 35 ... Partition space, 35b ... Connection flow path, 36 ... Partition fluid passage, 38 ... Muffler chamber fluid communication , S ... merge path, h ... connecting channel width, t ... connecting channel height, R ... refrigeration cycle

Abstract

Provided are a closed-type compressor and a refrigeration cycle device equipped with the same, the closed-type compressor being capable of ensuring a sufficient flow passage area of a discharge flow passage for discharging a gas refrigerant from a partitioning plate discharge space, suppressing a degradation in the stiffness of a partitioning plate, and achieving improvements in compression performance and reliability. The partitioning plate is provided with a partitioning plate space. A compression mechanism part is provided with a merging passage which merges a working fluid in a muffler chamber on a sub bearing side and a working fluid in the partitioning plate space and guides the fluids to a muffler chamber on a main bearing side. The partitioning plate space has a connection flow passage connected to the merging passage. The dimension of the connection flow passage in a direction perpendicular to an axis of a rotary shaft is greater than the dimension of the connection flow passage in the axial direction.

Description

密閉型圧縮機および冷凍サイクル装置Hermetic compressor and refrigeration cycle apparatus
 本発明の実施形態は、2つのシリンダ室を有する密閉型圧縮機および、この密閉型圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。 Embodiments of the present invention relate to a hermetic compressor having two cylinder chambers and a refrigeration cycle apparatus that includes this hermetic compressor and constitutes a refrigeration cycle.
 従来、密閉容器内に、回転軸を介して連結する電動機部と圧縮機構部を収容し、圧縮機構部が中間仕切り板を介して2つのシリンダ室を備えた密閉型圧縮機が多用される。そして、それぞれのシリンダ室でローラが偏心移動して作動流体であるガス冷媒を圧縮し、シリンダに取り付けた軸受マフラを介して密閉容器内に圧縮されたガス冷媒が吐出されるようになっている。 Conventionally, a hermetic compressor in which an electric motor part and a compression mechanism part connected via a rotating shaft are accommodated in a sealed container, and the compression mechanism part includes two cylinder chambers via an intermediate partition plate is often used. The rollers are eccentrically moved in the respective cylinder chambers to compress the gas refrigerant as the working fluid, and the compressed gas refrigerant is discharged into the sealed container through a bearing muffler attached to the cylinder. .
 特許文献1では、2つのシリンダ間に介在する中間仕切り板が軸方向に沿って2分割され、2つの中間仕切り板が密閉容器内に連通する仕切り板空間を形成している。また、特許文献1では、シリンダ室で圧縮されたガス冷媒を、軸受マフラ室および2分割した中間仕切り板の仕切り板空間に吐出して、大容量化に対応可能な技術が開示されている。 In Patent Document 1, an intermediate partition plate interposed between two cylinders is divided into two along the axial direction to form a partition plate space in which the two intermediate partition plates communicate with each other in the sealed container. Patent Document 1 discloses a technology that can cope with an increase in capacity by discharging a gas refrigerant compressed in a cylinder chamber into a bearing muffler chamber and a partition plate space of an intermediate partition plate divided into two.
特許2013-83245号公報Japanese Patent No. 2013-83245
 ところで、2分割した中間仕切り板の仕切り板空間に吐出されたガス冷媒を密閉容器内に導くためには、仕切り板空間と密閉容器内とを繋ぐ吐出流路を確保しなければならない。特許文献1の技術では、仕切り板吐出空間と軸受マフラ室とから吐出ガス冷媒を、1本の吐出流路に合流させて軸受マフラに導くようにしている。 By the way, in order to guide the gas refrigerant discharged into the partition plate space of the intermediate partition plate divided into two into the sealed container, it is necessary to secure a discharge flow path that connects the partition plate space and the sealed container. In the technique of Patent Document 1, the discharge gas refrigerant is merged into one discharge flow path from the partition plate discharge space and the bearing muffler chamber and guided to the bearing muffler.
 圧縮機の圧縮性能を向上するためには、仕切り板吐出空間からガス冷媒を吐出させる吐出流路の流路面積を大きくすることが求められる。しかしながら、仕切り板吐出空間からのガス冷媒の吐出流路面積を大きくすると、部分的に仕切板の肉厚が薄くなる。そうすると、仕切り板の剛性が低下して、圧縮機としての信頼性が損なわれる虞がある。 In order to improve the compression performance of the compressor, it is required to increase the flow path area of the discharge flow path for discharging the gas refrigerant from the partition plate discharge space. However, if the discharge path area of the gas refrigerant from the partition plate discharge space is increased, the thickness of the partition plate is partially reduced. If it does so, there exists a possibility that the rigidity of a partition plate may fall and the reliability as a compressor may be impaired.
 また、仕切り板の剛性低下を防ぐために仕切り板の厚さを拡大すると、主軸受と副軸受との距離が大きくなる。そうすると、回転軸が撓み易くなり、結局のところ圧縮機としての信頼性が損なわれる虞がある。 Also, if the thickness of the partition plate is increased in order to prevent a decrease in the rigidity of the partition plate, the distance between the main bearing and the sub-bearing increases. If it does so, it will become easy to bend a rotating shaft, and there exists a possibility that the reliability as a compressor may be impaired after all.
 そこで、本発明は、仕切り板吐出空間からガス冷媒を吐出させる吐出流路の流路面積を十分に確保する一方で仕切り板の剛性低下を抑制し、圧縮性能および信頼性の向上を得られる密閉型圧縮機と、この密閉型圧縮機を備えた冷凍サイクル装置を提供する。 Therefore, the present invention provides a hermetic seal that can secure a sufficient flow channel area of the discharge flow channel for discharging the gas refrigerant from the partition plate discharge space, while suppressing a decrease in rigidity of the partition plate and improving compression performance and reliability. A mold compressor and a refrigeration cycle apparatus including the hermetic compressor are provided.
 上記課題を達成するために、本実施形態の密閉型圧縮機は、密閉容器と、前記密閉容器内に収容されて、回転軸を介して連結される電動機部および圧縮機構部と、を備え、前記圧縮機構部は、前記回転軸に沿って順に設けられた第1のマフラ室を形成する第1のマフラ、主軸受、第1のシリンダ室を有する第1のシリンダ、第1の仕切り板、前記第1の仕切り板とで仕切り板空間を形成する第2の仕切り板、第2のシリンダ室を有する第2のシリンダ、副軸受、および第2のマフラ室を形成する第2のマフラを備え、前記圧縮機構部は、前記主軸受に設けられて、前記第1のシリンダ室で圧縮された作動流体を、前記第1のマフラ室に吐出する第1の軸受吐出弁機構と、前記第1の仕切り板に設けられて、前記第1のシリンダ室で圧縮された作動流体を前記仕切り板空間に吐出する第1の仕切り板吐出弁機構と、前記副軸受に設けられて、前記第2のシリンダ室で圧縮された作動流体を、前記第2のマフラ室に吐出する第2の軸受吐出弁機構を前記副軸受と、前記第2の仕切り板に設けられて、前記第2のシリンダ室で圧縮された作動流体を前記仕切り板空間に吐出する第2の仕切り板吐出弁機構と、前記第2のマフラ室の作動流体と前記仕切り板空間の作動流体とを合流させて前記第1のマフラ室へ導く合流通路と、を備え、前記仕切り板空間の前記合流通路に繋がる接続流路の前記回転軸の軸と直交する方向の寸法は、接続流路の前記回転軸の軸方向に沿う寸法よりも大きい。 In order to achieve the above object, a hermetic compressor of the present embodiment includes a hermetic container, and an electric motor unit and a compression mechanism unit that are housed in the hermetic container and connected via a rotating shaft, The compression mechanism section includes a first muffler, a main bearing, a first cylinder having a first cylinder chamber, a first partition plate, which form a first muffler chamber provided in order along the rotation axis. A second partition plate that forms a partition plate space with the first partition plate, a second cylinder having a second cylinder chamber, a secondary bearing, and a second muffler that forms a second muffler chamber are provided. The compression mechanism section is provided in the main bearing, and discharges the working fluid compressed in the first cylinder chamber into the first muffler chamber; and the first bearing discharge mechanism. Provided in the partition plate and compressed in the first cylinder chamber. A first partition plate discharge valve mechanism that discharges the working fluid into the partition plate space, and a working fluid that is provided in the auxiliary bearing and compressed in the second cylinder chamber is discharged into the second muffler chamber. A second partition plate that is provided with the sub-bearing and the second partition plate, and discharges the working fluid compressed in the second cylinder chamber to the partition plate space. A discharge valve mechanism; and a merging passage that joins the working fluid in the second muffler chamber and the working fluid in the partition plate space to lead to the first muffler chamber, the merging passage in the partition plate space The dimension in the direction orthogonal to the axis of the rotation axis of the connection flow path connected to is larger than the dimension along the axial direction of the rotation axis of the connection flow path.
 本実施形態の密閉型圧縮機の前記接続流路の断面形状は四角形状であることが好ましい。 The cross-sectional shape of the connection flow path of the hermetic compressor according to the present embodiment is preferably a square shape.
 本実施形態の密閉型圧縮機は、前記仕切り板空間に吐出された作動流体を、前記第1のマフラ室に導く独立した仕切り板流体通路を備え、前記仕切り板流体通路は、前記合流通路よりも前記第1の仕切り板吐出弁機構の吐出ポートに近い位置に設けられることが好ましい。 The hermetic compressor of the present embodiment includes an independent partition plate fluid passage that guides the working fluid discharged to the partition plate space to the first muffler chamber, and the partition plate fluid passage is formed from the junction passage. Is preferably provided at a position near the discharge port of the first partition plate discharge valve mechanism.
 また、本実施形態の密閉型圧縮機は、前記第2のマフラ室に吐出された作動流体を前記第1のマフラ室に導く独立したマフラ室流体通路を備えることが好ましい。 In addition, the hermetic compressor of the present embodiment preferably includes an independent muffler chamber fluid passage that guides the working fluid discharged to the second muffler chamber to the first muffler chamber.
 本実施形態の密閉型圧縮機において、前記第1のシリンダ室と前記第2のシリンダ室とから前記仕切り板空間へ吐出される作動流体の合計吐出流量は、前記第2のシリンダ室から前記第2のマフラ室へ吐出される吐出流量よりも大きいことが好ましい。 In the hermetic compressor of the present embodiment, the total discharge flow rate of the working fluid discharged from the first cylinder chamber and the second cylinder chamber to the partition plate space is from the second cylinder chamber to the first cylinder chamber. The discharge flow rate is preferably larger than the discharge flow rate discharged to the second muffler chamber.
 また、本実施形態の密閉型圧縮機において、前記接続流路の流路面積は、前記合流通路の前記第2マフラ室側の流路面積よりも大きい。 Further, in the hermetic compressor of the present embodiment, the flow passage area of the connection flow passage is larger than the flow passage area of the confluence passage on the second muffler chamber side.
 上記課題を達成するために、本実施形態の冷凍サイクル装置は、前記密閉型圧縮機と、前記密閉型圧縮機に接続される放熱器と、前記放熱器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機の間に接続される吸熱器と、を備えている。 To achieve the above object, the refrigeration cycle apparatus of the present embodiment includes the hermetic compressor, a radiator connected to the hermetic compressor, an expansion device connected to the radiator, and the expansion. And a heat absorber connected between the device and the hermetic compressor.
第1の実施形態による密閉型圧縮機の縦断面図および冷凍サイクル装置の冷凍サイクル構成図。The longitudinal cross-sectional view of the hermetic compressor by 1st Embodiment, and the refrigerating-cycle block diagram of a refrigerating-cycle apparatus. (A)は同実施形態による第1の仕切り板の平面図、(B)は圧縮機構部の冷媒の流れを示す説明図。(A) is a top view of the 1st partition plate by the same embodiment, (B) is explanatory drawing which shows the flow of the refrigerant | coolant of a compression mechanism part. 同実施形態による仕切り板の接続通路の断面を示す図。The figure which shows the cross section of the connection channel | path of the partition plate by the same embodiment. (A)は第2の実施形態による第1の仕切り板の平面図、(B)は第2の仕切り板の平面図、(C)は圧縮機構部の冷媒の流れを示す説明図。(A) is a top view of the 1st partition plate by 2nd Embodiment, (B) is a top view of a 2nd partition plate, (C) is explanatory drawing which shows the flow of the refrigerant | coolant of a compression mechanism part.
 以下、発明を実施するための実施形態について説明する。 Hereinafter, embodiments for carrying out the invention will be described.
 (第1の実施形態)
 本実施形態について、図面を参照して説明する。
(First embodiment)
The present embodiment will be described with reference to the drawings.
 図1は、第1の実施形態の密閉型圧縮機1の縦断面図および、たとえば空気調和機である冷凍サイクル装置Rの冷凍サイクル構成図である。
 図1に示すように、密閉型圧縮機1(以下、単に「圧縮機1」と呼ぶ)は冷凍サイクル装置Rに接続されている。
FIG. 1 is a longitudinal sectional view of a hermetic compressor 1 according to a first embodiment and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus R that is an air conditioner, for example.
As shown in FIG. 1, a hermetic compressor 1 (hereinafter simply referred to as “compressor 1”) is connected to a refrigeration cycle apparatus R.
 圧縮機1には冷媒管Pが接続されている。冷媒管Pには放熱器である凝縮器2と、膨張弁(膨張装置)3と、吸熱器である蒸発器4と、アキュームレータ5と、が順次に接続されている。さらに、冷媒管Pはアキュームレータ5から2本に分岐して圧縮機1の側部に接続されている。これら圧縮機1、凝縮器2、膨張弁3、蒸発器4、アキュームレータ5、および冷媒管Pで冷凍サイクル装置Rの冷凍サイクルが構成されている。 A refrigerant pipe P is connected to the compressor 1. A condenser 2 that is a radiator, an expansion valve (expansion device) 3, an evaporator 4 that is a heat absorber, and an accumulator 5 are sequentially connected to the refrigerant pipe P. Further, the refrigerant pipe P is branched into two from the accumulator 5 and connected to the side portion of the compressor 1. The compressor 1, the condenser 2, the expansion valve 3, the evaporator 4, the accumulator 5, and the refrigerant pipe P constitute a refrigeration cycle of the refrigeration cycle apparatus R.
 つぎに、圧縮機1について説明する。 Next, the compressor 1 will be described.
 圧縮機1は、密閉容器10を備えている。密閉容器10内の上部側には電動機部11が収容され、下部側には圧縮機構部12が収容されている。これら電動機部11と圧縮機構部12とは回転軸13を介して連結されている。密閉容器10の内底部には潤滑油が貯留されている。密閉容器10の内部空間の残りの部分(他の部分)は圧縮機構部12で圧縮された作動流体である高圧ガス冷媒で満たされる。 The compressor 1 includes a sealed container 10. An electric motor unit 11 is accommodated on the upper side in the sealed container 10, and a compression mechanism unit 12 is accommodated on the lower side. The electric motor unit 11 and the compression mechanism unit 12 are connected via a rotating shaft 13. Lubricating oil is stored in the inner bottom portion of the sealed container 10. The remaining part (other part) of the internal space of the sealed container 10 is filled with a high-pressure gas refrigerant that is a working fluid compressed by the compression mechanism unit 12.
 密閉容器10の上面部には、吐出管1aが設けられている。この吐出管1aには凝縮器2に連通する冷媒管Pが接続される。さらに、密閉容器10の下部周壁には2本の吸込み管1b、1bが設けられている。この吸込み管1b、1bはアキュームレータ5に連通されている。 A discharge pipe 1 a is provided on the upper surface of the sealed container 10. A refrigerant pipe P communicating with the condenser 2 is connected to the discharge pipe 1a. Further, two suction pipes 1 b and 1 b are provided on the lower peripheral wall of the sealed container 10. The suction pipes 1b and 1b communicate with the accumulator 5.
 電動機部11は、回転軸13に嵌めることによって固定される回転子(ロータ)15と、この回転子15の外周面と狭小の間隙を介して対向する内周面を有し、密閉容器10の内周壁に嵌めることによって固定される固定子(ステータ)16と、を備えている。 The electric motor unit 11 has a rotor (rotor) 15 fixed by being fitted to the rotary shaft 13, and an inner peripheral surface facing the outer peripheral surface of the rotor 15 with a narrow gap. And a stator (stator) 16 that is fixed by being fitted to the inner peripheral wall.
 回転軸13には、回転軸13の外周側(軸中心に直交する方向)に向けて張り出した二つの円柱状の偏心部a、bが設けられている。これら偏心部a、bは、回転軸13の軸方向に沿って所定寸法離間し、かつ回転軸13の回転方向に沿って180゜変位した位置に設けられている。これら偏心部a、bは、回転軸13の軸中心に対して偏心して設けられる。回転軸13における偏心部a、bの間の部分を、中間軸部cと呼ぶ。 The rotary shaft 13 is provided with two columnar eccentric portions a and b projecting toward the outer peripheral side of the rotary shaft 13 (direction orthogonal to the shaft center). These eccentric portions a and b are provided at positions spaced apart by a predetermined dimension along the axial direction of the rotating shaft 13 and displaced by 180 ° along the rotating direction of the rotating shaft 13. These eccentric portions a and b are provided eccentric to the axis center of the rotating shaft 13. A portion between the eccentric portions a and b in the rotating shaft 13 is referred to as an intermediate shaft portion c.
 圧縮機構部12は、回転軸13の軸方向に沿って順に設けられた主軸受17と、第1のシリンダ18と、中間仕切り板20と、第2のシリンダ22と、副軸受23と、を備えている。主軸受17と副軸受23とのそれぞれは、回転軸13を回転自在に軸支するボス部を有している。 The compression mechanism unit 12 includes a main bearing 17, a first cylinder 18, an intermediate partition plate 20, a second cylinder 22, and a sub-bearing 23 provided in order along the axial direction of the rotary shaft 13. I have. Each of the main bearing 17 and the sub bearing 23 has a boss portion that rotatably supports the rotating shaft 13.
 主軸受17のフランジ部には、この周囲を囲む中空のケースである第1のマフラ25が取り付けられている。第1のマフラ25の内部には第1のマフラ室25aが形成されている。さらに、第1のマフラ25には、マフラ室25a内と密閉容器10内の空間とを連通する複数の連通孔が設けられている。 The flange part of the main bearing 17 is attached with a first muffler 25 which is a hollow case surrounding the periphery. A first muffler chamber 25 a is formed inside the first muffler 25. Further, the first muffler 25 is provided with a plurality of communication holes that allow the inside of the muffler chamber 25a and the space in the sealed container 10 to communicate with each other.
 副軸受23のフランジ部には、この周囲を囲む中空のケースである第2のマフラ26が取り付けられている。第2のマフラ26の内部には第2のマフラ室26aが形成されている。 A second muffler 26 that is a hollow case surrounding the periphery is attached to the flange portion of the auxiliary bearing 23. Inside the second muffler 26, a second muffler chamber 26a is formed.
 中間仕切り板20は、第1のシリンダ18と第2のシリンダ22との間に介在されている。中間仕切り板20は、回転軸23の2つの偏心部a、bの間に形成される中間軸部cの周囲を囲む。そして、中間仕切り板20は回転軸13の軸方向に沿って、第1の仕切り板20aと第2の仕切り板20bとに2分割されている。 The intermediate partition plate 20 is interposed between the first cylinder 18 and the second cylinder 22. The intermediate partition plate 20 surrounds the periphery of the intermediate shaft portion c formed between the two eccentric portions a and b of the rotating shaft 23. The intermediate partition plate 20 is divided into two parts along the axial direction of the rotary shaft 13 into a first partition plate 20a and a second partition plate 20b.
 第1のシリンダ18の内径孔の上端部は主軸受17により閉じられ、第1のシリンダ18の内径孔の下端側は中間仕切り板20の第1の仕切り板20aにより閉じられている。主軸受17および第1の仕切り板20aで閉じられた第1のシリンダ18の内径孔によって、第1のシリンダ室18Aが形成される。
 第2のシリンダ22の内径孔の上端側は中間仕切り板20の第2の仕切り板20bに閉じられ、第2のシリンダ22の内径孔の下端側は副軸受23に閉じられている。第2の仕切り板20bおよび副軸受23で閉じられた第2のシリンダ22の内径孔によって、第2のシリンダ室22Aが形成される。
The upper end portion of the inner diameter hole of the first cylinder 18 is closed by the main bearing 17, and the lower end side of the inner diameter hole of the first cylinder 18 is closed by the first partition plate 20 a of the intermediate partition plate 20. A first cylinder chamber 18A is formed by the inner diameter hole of the first cylinder 18 closed by the main bearing 17 and the first partition plate 20a.
The upper end side of the inner diameter hole of the second cylinder 22 is closed by the second partition plate 20 b of the intermediate partition plate 20, and the lower end side of the inner diameter hole of the second cylinder 22 is closed by the auxiliary bearing 23. A second cylinder chamber 22 </ b> A is formed by the inner diameter hole of the second cylinder 22 closed by the second partition plate 20 b and the auxiliary bearing 23.
 第1のシリンダ室18Aおよび第2のシリンダ室22Aには回転軸13が挿通されている。回転軸13に形成される一方の偏心部aが第1のシリンダ室18A内に位置し、回転軸13に形成される他方の偏心部bが第2のシリンダ室22A内に位置する。 Rotating shaft 13 is inserted through first cylinder chamber 18A and second cylinder chamber 22A. One eccentric portion a formed on the rotating shaft 13 is located in the first cylinder chamber 18A, and the other eccentric portion b formed on the rotating shaft 13 is located in the second cylinder chamber 22A.
 一方の偏心部aにはローラ27が嵌合され、他方の偏心部bにはローラ28が嵌合される。ローラ27は、回転軸13の回転にともない外周壁の一部を第1のシリンダ室18Aの内周壁に接しながら転動する。ローラ28は、回転軸13の回転にともない外周壁の一部を第2のシリンダ室22Aの内周壁に接しながら転動する。 The roller 27 is fitted to one eccentric part a, and the roller 28 is fitted to the other eccentric part b. The roller 27 rolls while a part of the outer peripheral wall is in contact with the inner peripheral wall of the first cylinder chamber 18A as the rotary shaft 13 rotates. The roller 28 rolls while a part of the outer peripheral wall is in contact with the inner peripheral wall of the second cylinder chamber 22A as the rotary shaft 13 rotates.
 第1のシリンダ室18Aおよび第2のシリンダ室22Aそれぞれには、図示しないブレードがそれぞれスライド自在に設けられている。それぞれのブレードの先端部は、スプリング等の弾性体から作用する力によりそれぞれのローラ27、28の外周壁に接する。 A blade (not shown) is slidably provided in each of the first cylinder chamber 18A and the second cylinder chamber 22A. The tips of the blades are in contact with the outer peripheral walls of the rollers 27 and 28 by a force acting from an elastic body such as a spring.
 第1のシリンダ室18Aの内周壁の一部にローラ27の外周壁の一部が接し、ローラ27の外周壁にブレードの先端部が弾性的に接することにより、第1のシリンダ室18A内はローラ27の転動にともなって容積が変動する二つの空間に仕切られる。第2のシリンダ室22Aの内周壁の一部にローラ28の外周壁の一部が接し、ローラ28の外周壁にブレードの先端部が弾性的に接することにより、第2のシリンダ室22A内はローラ28の転動にともなって容積が変動する二つの空間に仕切られる。 A part of the outer peripheral wall of the roller 27 is in contact with a part of the inner peripheral wall of the first cylinder chamber 18A, and the tip of the blade is elastically in contact with the outer peripheral wall of the roller 27, whereby the inside of the first cylinder chamber 18A is The roller 27 is partitioned into two spaces whose volume varies as the roller 27 rolls. A part of the outer peripheral wall of the roller 28 is in contact with a part of the inner peripheral wall of the second cylinder chamber 22A, and the tip of the blade is elastically in contact with the outer peripheral wall of the roller 28, whereby the inside of the second cylinder chamber 22A is The roller 28 is partitioned into two spaces whose volume varies as the roller 28 rolls.
 第1のシリンダ18には、低圧のガス冷媒を第1のシリンダ室18A内に吸い込むための吸込み管1bが接続されている。第2のシリンダ22には、低圧のガス冷媒を第2のシリンダ室22A内に吸い込むための吸込み管1bが接続されている。 The first cylinder 18 is connected to a suction pipe 1b for sucking low-pressure gas refrigerant into the first cylinder chamber 18A. The second cylinder 22 is connected to a suction pipe 1b for sucking a low-pressure gas refrigerant into the second cylinder chamber 22A.
 図2Aは第1の仕切り板20aの平面図であり、図2Bは圧縮機構部12の冷媒の流れを示す説明図である。 FIG. 2A is a plan view of the first partition plate 20a, and FIG. 2B is an explanatory view showing the flow of refrigerant in the compression mechanism section 12. FIG.
 図2Aに示す、丸内に交差ハッチングを加えた印はボルト孔dであって、第1のシリンダ18、2分割された中間仕切り板20、第2のシリンダ22、および副軸受23を主軸受17に共止めするボルトが挿し通される。 In FIG. 2A, a mark with cross hatching in a circle is a bolt hole d. The first cylinder 18, the divided intermediate partition plate 20, the second cylinder 22, and the auxiliary bearing 23 are connected to the main bearing. A bolt that is fastened to 17 is inserted.
 図1に加えて図2Aおよび図2Bに概略的に示すように、主軸受17のフランジ部には、ローラ27の偏心運動によって圧縮されたガス冷媒を第1のシリンダ室18Aから吐出する吐出ポート30aと、この吐出ポート30aを所定の圧力で開閉するリード弁30bと、このリード弁30bの最大開度を規制する弁押さえ板30cと、を備える第1の軸受吐出弁機構30が設けられている。 As schematically shown in FIGS. 2A and 2B in addition to FIG. 1, a discharge port for discharging the gas refrigerant compressed by the eccentric motion of the roller 27 from the first cylinder chamber 18 </ b> A is provided in the flange portion of the main bearing 17. There is provided a first bearing discharge valve mechanism 30 including 30a, a reed valve 30b that opens and closes the discharge port 30a with a predetermined pressure, and a valve pressing plate 30c that regulates the maximum opening of the reed valve 30b. Yes.
 第1の軸受吐出弁機構30のリード弁30bが開き、吐出ポート30aが解放されることで、第1のシリンダ室18Aと、主軸受17に取り付けられる第1のマフラ25内の第1のマフラ室25aとが連通するようになっている。 When the reed valve 30b of the first bearing discharge valve mechanism 30 is opened and the discharge port 30a is released, the first muffler 25 in the first muffler 25 attached to the first cylinder chamber 18A and the main bearing 17 is provided. The chamber 25a communicates with the chamber 25a.
 副軸受23のフランジ部には、ローラ28の偏心運動によって圧縮されたガス冷媒を第2のシリンダ室22Aから吐出する吐出ポート31aと、この吐出ポート31aを所定の圧力で開閉するリード弁31bと、このリード弁31bの最大開度を規制する弁押さえ板31cと、を備える第2の軸受吐出弁機構31が設けられている。 The flange portion of the sub-bearing 23 has a discharge port 31a for discharging the gas refrigerant compressed by the eccentric motion of the roller 28 from the second cylinder chamber 22A, and a reed valve 31b for opening and closing the discharge port 31a with a predetermined pressure. A second bearing discharge valve mechanism 31 including a valve pressing plate 31c that regulates the maximum opening of the reed valve 31b is provided.
 第2の軸受吐出弁機構31のリード弁31bが開き、吐出ポート31aが開閉されることで、第2のシリンダ室22Aと、副軸受23に取り付けられる第2の軸受マフラ26内のマフラ室26aとが連通するようになっている。 When the reed valve 31b of the second bearing discharge valve mechanism 31 is opened and the discharge port 31a is opened and closed, the second cylinder chamber 22A and the muffler chamber 26a in the second bearing muffler 26 attached to the sub bearing 23 are provided. And communicate with each other.
 第2のマフラ室26aに吐出されたガス冷媒は、後述する合流通路Sを介して第1のマフラ室25aに導かれる。 The gas refrigerant discharged into the second muffler chamber 26a is guided to the first muffler chamber 25a through a merge passage S described later.
 第1の仕切り板20aには、ローラ27の偏心運動によって圧縮されたガス冷媒を第1のシリンダ室18Aから吐出する吐出ポート33aと、この吐出ポート33aを所定の圧力で開閉するリード弁33bと、このリード弁33bの最大開度を規制する弁押さえ板33cと、を備える第1の仕切り板吐出弁機構33が設けられている。 The first partition plate 20a includes a discharge port 33a for discharging the gas refrigerant compressed by the eccentric motion of the roller 27 from the first cylinder chamber 18A, and a reed valve 33b for opening and closing the discharge port 33a with a predetermined pressure. A first partition plate discharge valve mechanism 33 provided with a valve pressing plate 33c that regulates the maximum opening of the reed valve 33b is provided.
 第2の仕切り板20bには、ローラ28の偏心運動によって圧縮されたガス冷媒を第2のシリンダ室22Aから吐出する吐出ポート34aと、この吐出ポート34aを所定の圧力で開閉するリード弁34bと、このリード弁34bの最大開度を規制する弁押さえ板34cと、を備える第2の仕切り板吐出弁機構34が設けられている。 The second partition plate 20b includes a discharge port 34a for discharging the gas refrigerant compressed by the eccentric motion of the roller 28 from the second cylinder chamber 22A, and a reed valve 34b for opening and closing the discharge port 34a with a predetermined pressure. A second partition plate discharge valve mechanism 34 including a valve pressing plate 34c that restricts the maximum opening of the reed valve 34b is provided.
 第1の仕切り板吐出弁機構33及び第2の仕切り板吐出弁機構34から吐出されるガス冷媒の合計吐出流量が、第2の軸受吐出弁機構31から吐出されるガス冷媒の吐出流量よりも大きくなるように、各吐出ポート30a、31a、33a及び34aの内径の大きさが設定され、かつ各リード弁30b、31b、33b及び34bのばね定数が設定されている。 The total discharge flow rate of the gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 is larger than the discharge flow rate of the gas refrigerant discharged from the second bearing discharge valve mechanism 31. The inner diameters of the discharge ports 30a, 31a, 33a and 34a are set so as to increase, and the spring constants of the reed valves 30b, 31b, 33b and 34b are set.
 第1の仕切り板吐出弁機構33と、第2の仕切り板吐出弁機構34から吐出される圧縮されたガス冷媒は、図2(A)、(B)で示す後述する流路に沿って導かれるようになっている。 The compressed gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 is guided along a later-described flow path shown in FIGS. It has come to be.
 第1の仕切り板20aと第2の仕切り板20bとは、第1の仕切り板吐出弁機構33および第2の仕切り板吐出弁機構34から吐出される圧縮されたガス冷媒を受け入れる仕切り板空間35を区画している。仕切り板空間35は、仕切り板吐出空間35aと、接続流路35bと、を有している。仕切り板吐出空間35aには、第1の仕切り板吐出弁機構33及び第2の仕切り板吐出弁機構34が設けられている。接続流路35bは、仕切り板吐出空間35aから仕切り板20の平面に沿って連続して延びる長い空間である。また、仕切り板吐出空間35aの高さは、接続流路35bの高さよりも大きい。 The first partition plate 20a and the second partition plate 20b include a partition plate space 35 that receives the compressed gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34. Is partitioned. The partition plate space 35 has a partition plate discharge space 35a and a connection flow path 35b. A first partition plate discharge valve mechanism 33 and a second partition plate discharge valve mechanism 34 are provided in the partition plate discharge space 35a. The connection flow path 35b is a long space continuously extending along the plane of the partition plate 20 from the partition plate discharge space 35a. Moreover, the height of the partition plate discharge space 35a is larger than the height of the connection flow path 35b.
 図3は、図2のA-A断面であり、中間仕切り板20に形成される接続流路35bの回転軸13の軸方向に沿う拡大断面図である。 FIG. 3 is an AA cross section of FIG. 2, and is an enlarged cross sectional view along the axial direction of the rotary shaft 13 of the connection flow path 35b formed in the intermediate partition plate 20. FIG.
 例えば、第1の仕切り板20a、および第2の仕切り板20bは、それぞれ厚さが10mmである。つまり、第1の仕切り板20a、および第2の仕切り板20bは、厚さ20mmの中間仕切り板20を形成している。接続流路35bは、第1の仕切り板20a、および第2の仕切り板20bに設けられた深さ5mm、幅12mmの溝により形成されている。つまり、接続流路35bは、回転軸13の軸方向の長さ(高さ)tが10mm、回転軸13の軸方向と直交する方向の長さ(幅)hが12mmの四角形状である。接続流路35bの幅h寸法が高さt寸法よりも大きく形成される。 For example, the first partition plate 20a and the second partition plate 20b each have a thickness of 10 mm. That is, the first partition plate 20a and the second partition plate 20b form an intermediate partition plate 20 having a thickness of 20 mm. The connection flow path 35b is formed by a groove having a depth of 5 mm and a width of 12 mm provided in the first partition plate 20a and the second partition plate 20b. That is, the connection flow path 35b has a rectangular shape in which the axial length (height) t of the rotary shaft 13 is 10 mm and the length (width) h in the direction orthogonal to the axial direction of the rotary shaft 13 is 12 mm. The width h dimension of the connection channel 35b is formed larger than the height t dimension.
 また、第2のシリンダ室22Aから第2のマフラ26内の第2のマフラ室26aに吐出されたガス冷媒を、第1のマフラ25内の第1のマフラ室25aに導く通路Sが、副軸受23、第2のシリンダ22、第2の仕切り板20b、第1の仕切り板20a、第1のシリンダ18、および主軸受17のフランジ部のそれぞれ部材に設けられている。この通路Sは第2の仕切り板20b、および第1の仕切り板20aにおいて、接続流路35bと連通した合流通路Sである。第2のシリンダ室22Aから吐出されるガス冷媒の吐出流量について、第2のシリンダ室22Aから仕切り板空間35に吐出されるガス冷媒の吐出流量の方が第2のシリンダ室22Aから第2のマフラ室26aに吐出されるガス冷媒の吐出流量よりも多い。そこで、中間仕切り板20に設けられた接続流路35bの流路面積は、合流通路Sの第2のマフラ室26a側の流路面積よりも大きく設定されている。そのため、仕切り板空間35内のガス冷媒が合流通路Sに流入し易い。 In addition, a passage S that guides the gas refrigerant discharged from the second cylinder chamber 22A to the second muffler chamber 26a in the second muffler 26 to the first muffler chamber 25a in the first muffler 25 is provided as a subsidiary. The bearing 23, the second cylinder 22, the second partition plate 20 b, the first partition plate 20 a, the first cylinder 18, and the flange portion of the main bearing 17 are provided on the respective members. This passage S is a merging passage S that communicates with the connection flow path 35b in the second partition plate 20b and the first partition plate 20a. Regarding the discharge flow rate of the gas refrigerant discharged from the second cylinder chamber 22A, the discharge flow rate of the gas refrigerant discharged from the second cylinder chamber 22A to the partition plate space 35 is the second flow rate from the second cylinder chamber 22A. More than the discharge flow rate of the gas refrigerant discharged into the muffler chamber 26a. Therefore, the flow passage area of the connection flow passage 35b provided in the intermediate partition plate 20 is set to be larger than the flow passage area of the merge passage S on the second muffler chamber 26a side. Therefore, the gas refrigerant in the partition plate space 35 easily flows into the merge passage S.
 このような構成において、電動機部11に通電すると回転軸13が回転し、圧縮機構部12が駆動される。そうすると、ブレードで仕切られた第1のシリンダ室18A内の一方の空間である吸込み室と第2のシリンダ室22A内の一方の空間である吸込み室とが負圧化され、作動流体であるガス冷媒がそれぞれの吸込み室に流入する。 In such a configuration, when the electric motor unit 11 is energized, the rotary shaft 13 rotates and the compression mechanism unit 12 is driven. As a result, the suction chamber, which is one space in the first cylinder chamber 18A partitioned by the blades, and the suction chamber, which is one space in the second cylinder chamber 22A, become negative pressure, and the gas that is the working fluid The refrigerant flows into each suction chamber.
 180゜の位相差で設けられたローラ27、28が回転軸13の回転にともなって転動する。第1のシリンダ室18A内に流入したガス冷媒と第2のシリンダ室22A内に流入したガス冷媒とは、ブレードで仕切られた他方の空間である吐出室の容積が徐々に小さくなることで圧縮される。 Rollers 27 and 28 provided with a phase difference of 180 ° roll as the rotary shaft 13 rotates. The gas refrigerant flowing into the first cylinder chamber 18A and the gas refrigerant flowing into the second cylinder chamber 22A are compressed by gradually reducing the volume of the discharge chamber, which is the other space partitioned by the blades. Is done.
 所定圧にまで圧縮されると第1の軸受吐出弁機構30のリード弁30bが開き、吐出ポート30aが解放される。圧縮されたガス冷媒は、第1のシリンダ室18Aから第1のマフラ25の第1のマフラ室25aに吐出される。 When compressed to a predetermined pressure, the reed valve 30b of the first bearing discharge valve mechanism 30 is opened and the discharge port 30a is released. The compressed gas refrigerant is discharged from the first cylinder chamber 18A to the first muffler chamber 25a of the first muffler 25.
 同時に、第1の仕切り板吐出弁機構33のリード弁33bが開き、吐出ポート33aが解放される。圧縮されたガス冷媒は第1のシリンダ室18Aから仕切り板空間35に吐出される。 At the same time, the reed valve 33b of the first partition plate discharge valve mechanism 33 is opened and the discharge port 33a is released. The compressed gas refrigerant is discharged into the partition plate space 35 from the first cylinder chamber 18A.
 180゜の位相差をもって第2の軸受吐出弁機構31のリード弁31bが開き、吐出ポート31aが解放される。圧縮されたガス冷媒は第2のシリンダ室22Aから第2のマフラ26の第2のマフラ室26aに吐出される The reed valve 31b of the second bearing discharge valve mechanism 31 is opened with a phase difference of 180 °, and the discharge port 31a is released. The compressed gas refrigerant is discharged from the second cylinder chamber 22A to the second muffler chamber 26a of the second muffler 26.
 第2のマフラ室26a内のガス冷媒は、合流通路Sを介して副軸受23と、第2のシリンダ22を通る。このガス冷媒は、中間仕切り板20を構成する第2の仕切り板20bおよび、第1の仕切り板20aを通過する際に、仕切り板空間35の接続流路35bを通って流入するガス冷媒と合流して、第1のシリンダ18および主軸受17に連続して設けられる合流通路Sを介して第1のマフラ25内のマフラ室に25aに導かれる。 The gas refrigerant in the second muffler chamber 26 a passes through the auxiliary bearing 23 and the second cylinder 22 through the merge passage S. When this gas refrigerant passes through the second partition plate 20b constituting the intermediate partition plate 20 and the first partition plate 20a, it merges with the gas refrigerant flowing in through the connection flow path 35b of the partition plate space 35. Then, it is led to a muffler chamber in the first muffler 25 via a merge passage S provided continuously in the first cylinder 18 and the main bearing 17 to 25a.
 同時に、第2の仕切り板吐出弁機構34のリード弁34bが開き、吐出ポート34aが解放される。圧縮されたガス冷媒は仕切り板空間35に吐出される。 At the same time, the reed valve 34b of the second partition plate discharge valve mechanism 34 is opened, and the discharge port 34a is released. The compressed gas refrigerant is discharged into the partition plate space 35.
 第1の仕切り板吐出弁機構33と第2の仕切り板吐出弁機構34から仕切り板空間35に吐出されたガス冷媒は、接続流路35bを通って、第1のシリンダ18および主軸受17のフランジ部に連続して設けられる合流通路Sを介して第1のマフラ25の第1のマフラ室25aに導かれる。 The gas refrigerant discharged from the first partition plate discharge valve mechanism 33 and the second partition plate discharge valve mechanism 34 into the partition plate space 35 passes through the connection flow path 35b and flows into the first cylinder 18 and the main bearing 17. It is guided to the first muffler chamber 25a of the first muffler 25 through a merge passage S provided continuously in the flange portion.
 結局、第1のシリンダ室18Aで圧縮されたガス冷媒と第2のシリンダ室22Aで圧縮されたガス冷媒とが、第1のマフラ25の第1のマフラ室25aで合流して、密閉容器10内に放出される。 Eventually, the gas refrigerant compressed in the first cylinder chamber 18A and the gas refrigerant compressed in the second cylinder chamber 22A merge in the first muffler chamber 25a of the first muffler 25, and the sealed container 10 Is released inside.
 密閉容器10内には高温高圧のガス冷媒が充満し、吐出管1aに接続する冷媒管Pに流通して凝縮器2に導かれる。冷媒は、凝縮器2で凝縮液化して膨張弁3で減圧され、蒸発器4で蒸発する。この冷媒の蒸発によって周囲空気が冷却され、冷凍サイクル装置Rは冷凍(冷却)能力を発揮する。 The inside of the sealed container 10 is filled with high-temperature and high-pressure gas refrigerant, and flows into the refrigerant pipe P connected to the discharge pipe 1a and led to the condenser 2. The refrigerant is condensed and liquefied by the condenser 2, decompressed by the expansion valve 3, and evaporated by the evaporator 4. The ambient air is cooled by the evaporation of the refrigerant, and the refrigeration cycle apparatus R exhibits the refrigeration (cooling) capability.
 蒸発器4を出た冷媒は、アキュームレータ5で気液分離され、圧縮機1の吸込み管1b、1bを経て、第1のシリンダ室18Aと第2のシリンダ室22Aに導かれて圧縮される。そして、上述のように再び圧縮されて、上述の経路を循環する。 The refrigerant exiting the evaporator 4 is separated into gas and liquid by the accumulator 5 and is introduced into the first cylinder chamber 18A and the second cylinder chamber 22A through the suction pipes 1b and 1b of the compressor 1 and compressed. Then, it is compressed again as described above and circulates in the above-mentioned path.
 このようにして、第1のシリンダ室18Aで圧縮され、第1の仕切り板吐出弁機構33から仕切り板空間35に吐出されるガス冷媒と、第2のシリンダ室22Aで圧縮され、第2の仕切り板吐出弁機構34から仕切り板空間35に吐出されたガス冷媒とは、共通流路Sを介して第1のマフラ25のマフラ室25aに導かれる。 In this way, the gas refrigerant compressed in the first cylinder chamber 18A and discharged from the first partition plate discharge valve mechanism 33 to the partition plate space 35, and compressed in the second cylinder chamber 22A, is supplied to the second cylinder chamber 22A. The gas refrigerant discharged from the partition plate discharge valve mechanism 34 into the partition plate space 35 is guided to the muffler chamber 25a of the first muffler 25 through the common flow path S.
 仕切り板空間35の接続流路35bの断面を四角形状にし、その幅h寸法を高さt寸法よりも大きくすることで、中間仕切り板20を厚くすることなしに接続流路35bの流路面積を大きく確保することができる。そのため、主軸受17と副軸受23の間の距離が大きくなることが防止され、圧縮機としての信頼性が高まる。 By making the cross section of the connection flow path 35b of the partition plate space 35 into a square shape and making its width h dimension larger than the height t dimension, the flow area of the connection flow path 35b without increasing the thickness of the intermediate partition plate 20 Can be secured greatly. Therefore, the distance between the main bearing 17 and the auxiliary bearing 23 is prevented from increasing, and the reliability as a compressor is increased.
 また、接続流路39aの流路抵抗を低減し、圧力損失が改善される。 Also, the flow resistance of the connection flow path 39a is reduced, and the pressure loss is improved.
 さらに、吐出ポート30a、31a、33a及び34aの内径の大きさと、リード弁30b、31b、33b及び34cのばね定数等と、を調整することで、仕切り板空間35に吐出されるガス冷媒の吐出流量を、第2のマフラ室26aに吐出されるガス冷媒の吐出流量よりも大きくなるようにした。そのため、中間仕切り板20の遮音効果により、騒音が低減される。 Further, by adjusting the size of the inner diameter of the discharge ports 30a, 31a, 33a and 34a, the spring constant of the reed valves 30b, 31b, 33b and 34c, etc., the discharge of the gas refrigerant discharged into the partition plate space 35 The flow rate was made larger than the discharge flow rate of the gas refrigerant discharged into the second muffler chamber 26a. Therefore, noise is reduced by the sound insulation effect of the intermediate partition plate 20.
(第2の実施形態)
 第2の実施形態について図4に基づいて説明する。第1の実施形態と同一又は類似する要素には同一の符号を付し、重複する説明は適宜省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIG. Elements that are the same as or similar to those in the first embodiment are assigned the same reference numerals, and redundant descriptions are omitted as appropriate.
 図4(A)は、第2の実施形態に係る第1仕切り板20aの平面図である。図4(B)は第2の仕切り板20bの平面図である。図4(C)は圧縮機構部12の冷媒の流れを示す図である。 FIG. 4A is a plan view of the first partition plate 20a according to the second embodiment. FIG. 4B is a plan view of the second partition plate 20b. FIG. 4C is a diagram showing the refrigerant flow in the compression mechanism section 12.
 第2の実施形態の圧縮機1Aは、合流通路Sに加えて、合流通路Sと異なる位置に、仕切り板流体通路36と、マフラ室流体通路38と、を備えている。 The compressor 1A of the second embodiment includes a partition plate fluid passage 36 and a muffler chamber fluid passage 38 at positions different from the joining passage S in addition to the joining passage S.
 仕切り板流体通路36は、第1のシリンダ室18Aおよび第2のシリンダ室22Aから仕切り板空間35に吐出されるガス冷媒を、第1のシリンダ18および主軸受17のフランジ部を介して第1のマフラ25のマフラ室25aに導く。仕切り板流体通路36は、第1のシリンダ18および主軸受17のそれぞれの部材に設けられている。 The partition plate fluid passage 36 allows the gas refrigerant discharged from the first cylinder chamber 18 </ b> A and the second cylinder chamber 22 </ b> A to the partition plate space 35 to pass through the first cylinder 18 and the flange portion of the main bearing 17. The muffler 25 is led to the muffler chamber 25a. The partition plate fluid passage 36 is provided in each member of the first cylinder 18 and the main bearing 17.
 マフラ室流体通路38は、第2のシリンダ室22Aから第2のマフラ26の第2のマフラ室26aに吐出されるガス冷媒を、副軸受23、第2のシリンダ22、第2の仕切り板20b、第1の仕切り板20a、第1のシリンダ18、および主軸受17のフランジ部を介して第1のマフラ25の第1のマフラ室25aに導く。マフラ室流体通路38は、副軸受23、第2のシリンダ22、第2の仕切り板20b、第1の仕切り板20a、第1のシリンダ18、および主軸受17のそれぞれの部材に設けられる。 The muffler chamber fluid passage 38 allows the gas refrigerant discharged from the second cylinder chamber 22A to the second muffler chamber 26a of the second muffler 26 to pass through the auxiliary bearing 23, the second cylinder 22, and the second partition plate 20b. The first partition plate 20 a, the first cylinder 18, and the flange portion of the main bearing 17 are led to the first muffler chamber 25 a of the first muffler 25. The muffler chamber fluid passage 38 is provided in each member of the auxiliary bearing 23, the second cylinder 22, the second partition plate 20 b, the first partition plate 20 a, the first cylinder 18, and the main bearing 17.
 このように、仕切り板流体通路36とマフラ室流体通路38を形成したことにより、第1シリンダ室18Aおよび第2シリンダ室22Aで圧縮されたガス冷媒を吐出する吐出流路面積が拡大される。そのため、圧力損失が低減し、圧縮効率が向上する。 Thus, by forming the partition plate fluid passage 36 and the muffler chamber fluid passage 38, the discharge passage area for discharging the gas refrigerant compressed in the first cylinder chamber 18A and the second cylinder chamber 22A is expanded. Therefore, pressure loss is reduced and compression efficiency is improved.
 図4(A)で示すように、仕切り板流体通路36は、合流通路Sよりも第1の仕切り板吐出弁機構33の吐出ポート33aに近い位置に設けられている。 As shown in FIG. 4A, the partition plate fluid passage 36 is provided at a position closer to the discharge port 33a of the first partition plate discharge valve mechanism 33 than the junction passage S.
 このことにより、仕切り板流体通路36から吐出されるガス冷媒の圧力損失や、不要な熱交換が低減され、高効率の圧縮機1を提供できることとなる。 Thus, the pressure loss of the gas refrigerant discharged from the partition plate fluid passage 36 and unnecessary heat exchange are reduced, and the highly efficient compressor 1 can be provided.
 以上説明した少なくとも一つの実施形態の密閉型圧縮機1によれば、幅h寸法を高さt寸法よりも大きくすることで接続流路35bの流路抵抗が低減され、接続流路35bの流路面積が中間仕切り板20を厚くすることなしに大きく確保され、高効率でかつ信頼性の高い圧縮機を提供できる。 According to the hermetic compressor 1 of at least one embodiment described above, the flow resistance of the connection flow path 35b is reduced by making the width h dimension larger than the height t dimension, and the flow of the connection flow path 35b is reduced. A road area can be secured large without thickening the intermediate partition plate 20, and a highly efficient and reliable compressor can be provided.
 上述した仕切り板空間35は、仕切り板吐出空間35aと接続流路35bとからなり、それぞれの空間の高さが異なる。それぞれの空間の高さは同じ高さであってもよいが、接続流路35bの高さを小さくすることで、仕切り板空間35へ吐出されるガス冷媒の吐出量を減少させることなく、仕切り板の剛性を高めることができる。 The partition plate space 35 described above includes a partition plate discharge space 35a and a connection flow path 35b, and the heights of the spaces are different. The height of each space may be the same, but by reducing the height of the connection flow path 35b, the partition without partitioning the amount of gas refrigerant discharged to the partition plate space 35. The rigidity of the plate can be increased.
 また、仕切り板吐出空間35aと接続流路35bとの間に、仕切り板吐出空間35aおよび接続流路35bに対して中間高さの空間が設けられていても良い。この場合、仕切り板流体通路36は、空間の高さが最も小さい接続流路35bに連通していても良いし、中間高さの空間に連通していても良い。これにより、仕切り板空間35へ吐出されるガス冷媒の吐出量を増やすことができる。 Further, a space having an intermediate height may be provided between the partition plate discharge space 35a and the connection flow path 35b with respect to the partition plate discharge space 35a and the connection flow path 35b. In this case, the partition plate fluid passage 36 may communicate with the connection channel 35b having the smallest space height, or may communicate with the intermediate height space. Thereby, the discharge amount of the gas refrigerant discharged to the partition plate space 35 can be increased.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the invention described in the claims and their equivalents, as well as included in the scope and gist of the invention.
 1…密閉型圧縮機(圧縮機)、2…凝縮器(放熱器)、3…膨張弁(膨張装置)、4…蒸発器(吸熱器)、10…密閉容器、13…回転軸、11…電動機部、12…圧縮機構部、17…主軸受、18A…第1のシリンダ室、18…第1のシリンダ、20a…第1の仕切り板、20b…第2の仕切り板、22A…第2のシリンダ室、22…第2のシリンダ、23…副軸受、25…第1のマフラ、25a…第1のマフラ室、26…第2のマフラ、26a…第2のマフラ室、30…第1の吐出弁機構、31…第2の吐出弁機構、33…第1の仕切り板吐出弁機構、33a…(第1の仕切り板吐出弁機構の)吐出ポート、34…第2の仕切り板吐出弁機構、35…仕切り板空間、35b…接続流路、36…仕切り板流体通路、38…マフラ室流体通路、S…合流通路、h…接続流路幅、t…接続流路の高さ、R…冷凍サイクル DESCRIPTION OF SYMBOLS 1 ... Sealed compressor (compressor), 2 ... Condenser (radiator), 3 ... Expansion valve (expansion device), 4 ... Evaporator (heat absorber), 10 ... Sealed container, 13 ... Rotating shaft, 11 ... Electric motor part, 12 ... compression mechanism part, 17 ... main bearing, 18A ... first cylinder chamber, 18 ... first cylinder, 20a ... first partition plate, 20b ... second partition plate, 22A ... second Cylinder chamber, 22 ... second cylinder, 23 ... sub-bearing, 25 ... first muffler, 25a ... first muffler chamber, 26 ... second muffler, 26a ... second muffler chamber, 30 ... first Discharge valve mechanism, 31 ... second discharge valve mechanism, 33 ... first partition plate discharge valve mechanism, 33a ... discharge port (of the first partition plate discharge valve mechanism), 34 ... second partition plate discharge valve mechanism 35 ... Partition space, 35b ... Connection flow path, 36 ... Partition fluid passage, 38 ... Muffler chamber fluid communication , S ... merge path, h ... connecting channel width, t ... connecting channel height, R ... refrigeration cycle

Claims (7)

  1.  密閉容器と、
     前記密閉容器内に収容されて、回転軸を介して連結される電動機部および圧縮機構部と、を備え、
     前記圧縮機構部は、前記回転軸に沿って順に設けられた第1のマフラ室を形成する第1のマフラ、主軸受、第1のシリンダ室を有する第1のシリンダ、第1の仕切り板、前記第1の仕切り板とで仕切り板空間を形成する第2の仕切り板、第2のシリンダ室を有する第2のシリンダ、副軸受、および第2のマフラ室を形成する第2のマフラを備え、
     前記圧縮機構部は、
      前記主軸受に設けられて、前記第1のシリンダ室で圧縮された作動流体を、前記第1のマフラ室に吐出する第1の軸受吐出弁機構と、
      前記第1の仕切り板に設けられて、前記第1のシリンダ室で圧縮された作動流体を前記仕切り板空間に吐出する第1の仕切り板吐出弁機構と、
      前記副軸受に設けられて、前記第2のシリンダ室で圧縮された作動流体を、前記第2のマフラ室に吐出する第2の軸受吐出弁機構を前記副軸受と、
      前記第2の仕切り板に設けられて、前記第2のシリンダ室で圧縮された作動流体を前記仕切り板空間に吐出する第2の仕切り板吐出弁機構と、
      前記第2のマフラ室の作動流体と前記仕切り板空間の作動流体とを合流させて前記第1のマフラ室へ導く合流通路と、を備え、
     前記仕切り板空間の前記合流通路に繋がる接続流路の前記回転軸の軸と直交する方向の寸法は、接続流路の前記回転軸の軸方向に沿う寸法よりも大きい密閉型圧縮機。
    A sealed container;
    An electric motor unit and a compression mechanism unit housed in the sealed container and coupled via a rotating shaft;
    The compression mechanism section includes a first muffler, a main bearing, a first cylinder having a first cylinder chamber, a first partition plate, which form a first muffler chamber provided in order along the rotation axis. A second partition plate that forms a partition plate space with the first partition plate, a second cylinder having a second cylinder chamber, a secondary bearing, and a second muffler that forms a second muffler chamber are provided. ,
    The compression mechanism is
    A first bearing discharge valve mechanism that is provided in the main bearing and discharges the working fluid compressed in the first cylinder chamber to the first muffler chamber;
    A first partition plate discharge valve mechanism that is provided on the first partition plate and discharges the working fluid compressed in the first cylinder chamber to the partition plate space;
    A second bearing discharge valve mechanism provided in the sub-bearing for discharging the working fluid compressed in the second cylinder chamber into the second muffler chamber;
    A second partition plate discharge valve mechanism that is provided in the second partition plate and discharges the working fluid compressed in the second cylinder chamber to the partition plate space;
    A merging passage that joins the working fluid of the second muffler chamber and the working fluid of the partition plate space to lead to the first muffler chamber,
    The hermetic compressor, wherein a dimension of a connection channel that is connected to the junction passage in the partition space in a direction perpendicular to the axis of the rotation axis is larger than a dimension of the connection channel along the axis of the rotation axis.
  2.  前記接続流路の断面形状は四角形状である請求項1に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein a cross-sectional shape of the connection channel is a quadrangle.
  3.  前記仕切り板空間に吐出された作動流体を、前記第1のマフラ室に導く独立した仕切り板流体通路を備え、
     前記仕切り板流体通路は、前記合流通路よりも前記第1の仕切り板吐出弁機構の吐出ポートに近い位置に設けられる請求項1または請求項2に記載の密閉型圧縮機。
    An independent partition plate fluid passage that guides the working fluid discharged into the partition space to the first muffler chamber;
    The hermetic compressor according to claim 1, wherein the partition plate fluid passage is provided at a position closer to a discharge port of the first partition plate discharge valve mechanism than the merging passage.
  4.  前記第2のマフラ室に吐出された作動流体を前記第1のマフラ室に導く独立したマフラ室流体通路を備えた請求項1から請求項3のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 3, further comprising an independent muffler chamber fluid passage that guides the working fluid discharged to the second muffler chamber to the first muffler chamber.
  5.  前記第1のシリンダ室と前記第2のシリンダ室とから前記仕切り板空間へ吐出される作動流体の合計吐出流量は、前記第2のシリンダ室から前記第2のマフラ室へ吐出される吐出流量よりも大きい請求項1から請求項4のいずれか1項に記載の密閉型圧縮機。 The total discharge flow rate of the working fluid discharged from the first cylinder chamber and the second cylinder chamber to the partition plate space is the discharge flow rate discharged from the second cylinder chamber to the second muffler chamber. The hermetic compressor according to any one of claims 1 to 4, wherein the hermetic compressor is larger than the hermetic compressor.
  6.  前記接続流路の流路面積は、前記合流通路の前記第2マフラ室側の流路面積よりも大きい請求項5に記載の密閉型圧縮機。 The hermetic compressor according to claim 5, wherein a flow passage area of the connection flow passage is larger than a flow passage area on the second muffler chamber side of the merging passage.
  7.  請求項1から請求項6のいずれか1項に記載の密閉型圧縮機と、
     前記密閉型圧縮機に接続される放熱器と、
     前記放熱器に接続される膨張装置と、
     前記膨張装置と前記密閉型圧縮機の間に接続される吸熱器と、を備える冷凍サイクル装置。
    A hermetic compressor according to any one of claims 1 to 6,
    A radiator connected to the hermetic compressor;
    An expansion device connected to the radiator;
    A refrigeration cycle apparatus comprising: a heat absorber connected between the expansion device and the hermetic compressor.
PCT/JP2018/014139 2017-04-07 2018-04-02 Closed-type compressor and refrigeration cycle device WO2018186357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880023663.1A CN110520625B (en) 2017-04-07 2018-04-02 Hermetic compressor and refrigeration cycle device
KR1020197028980A KR102222539B1 (en) 2017-04-07 2018-04-02 Hermetic compressor and refrigeration cycle unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076329A JP6927731B2 (en) 2017-04-07 2017-04-07 Closed compressor and refrigeration cycle equipment
JP2017-076329 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186357A1 true WO2018186357A1 (en) 2018-10-11

Family

ID=63713482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014139 WO2018186357A1 (en) 2017-04-07 2018-04-02 Closed-type compressor and refrigeration cycle device

Country Status (4)

Country Link
JP (1) JP6927731B2 (en)
KR (1) KR102222539B1 (en)
CN (1) CN110520625B (en)
WO (1) WO2018186357A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170547B2 (en) * 2019-01-21 2022-11-14 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023983A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
WO2013168194A1 (en) * 2012-05-09 2013-11-14 三菱電機株式会社 Airtight compressor and heat pump device
JP2016023596A (en) * 2014-07-22 2016-02-08 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022247B2 (en) 2011-09-29 2016-11-09 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN202883380U (en) * 2012-09-21 2013-04-17 合肥凌达压缩机有限公司 Dual-cylinder compressor with middle baffle plates for sucking air
CN105736374B (en) * 2016-02-01 2019-02-26 珠海格力电器股份有限公司 Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023983A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
WO2013168194A1 (en) * 2012-05-09 2013-11-14 三菱電機株式会社 Airtight compressor and heat pump device
JP2016023596A (en) * 2014-07-22 2016-02-08 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device

Also Published As

Publication number Publication date
JP2018178793A (en) 2018-11-15
CN110520625B (en) 2021-06-08
KR20190119647A (en) 2019-10-22
CN110520625A (en) 2019-11-29
KR102222539B1 (en) 2021-03-05
JP6927731B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2009145232A1 (en) Enclosed compressor and refrigeration cycle device
JP5809852B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2011064183A (en) Multicylinder rotary compressor
JP6335057B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP7066495B2 (en) Sealed compressor and refrigeration cycle device
JP5564617B2 (en) Hermetic compressor and refrigeration cycle apparatus
WO2016027413A1 (en) Rotary compressor and refrigeration cycle device
WO2018186357A1 (en) Closed-type compressor and refrigeration cycle device
JP6267360B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2013140912A1 (en) Rotating compressor and freeze-cycle apparatus
JP6383599B2 (en) Hermetic compressor and refrigeration cycle apparatus
KR102182348B1 (en) Hermetic compressor and refrigeration cycle unit
WO2015025449A1 (en) Multi-stage compressor and refrigeration cycle device
JP6007030B2 (en) Rotary compressor and refrigeration cycle equipment
JP6743277B2 (en) Rotary compressor and refrigeration cycle device
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
JP7170547B2 (en) Rotary compressor and refrigeration cycle equipment
JP6430904B2 (en) Compressor and refrigeration cycle apparatus
JP2015055237A (en) Rotary compressor and refrigeration cycle device
WO2018066125A1 (en) Enclosed compressor
JP2007211672A (en) Rotary compressor
JP2017008878A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781941

Country of ref document: EP

Kind code of ref document: A1