WO2013166991A1 - 一种零时备电系统和零时备电方法 - Google Patents

一种零时备电系统和零时备电方法 Download PDF

Info

Publication number
WO2013166991A1
WO2013166991A1 PCT/CN2013/075477 CN2013075477W WO2013166991A1 WO 2013166991 A1 WO2013166991 A1 WO 2013166991A1 CN 2013075477 W CN2013075477 W CN 2013075477W WO 2013166991 A1 WO2013166991 A1 WO 2013166991A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
power supply
control system
main
main battery
Prior art date
Application number
PCT/CN2013/075477
Other languages
English (en)
French (fr)
Inventor
刘新宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13787283.4A priority Critical patent/EP2790292B1/en
Priority to JP2014555071A priority patent/JP2015510750A/ja
Publication of WO2013166991A1 publication Critical patent/WO2013166991A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of battery power supply, and in particular, to a zero-time backup power system and a zero-time backup power method. Background technique
  • zero-time backup power refers to uninterrupted backup power, which has become an important indicator for users to measure the power supply system.
  • the main power source is a non-battery power supply system, such as a commercial power, an oil machine, a wind power, a solar energy, etc.
  • the backup power source is a backup battery without a control circuit
  • the battery-powered system has a rectifier module, so the output voltage and current are controllable. Under normal circumstances, the output voltage is constant.
  • the non-battery-powered system is powered down, causing the voltage to drop, the battery without the control circuit can Automatic zero time power supply.
  • the main power source is a non-battery power supply system
  • the backup power source includes a control circuit and a backup battery, and the discharge switch of the control circuit is turned on by default.
  • the non-battery power supply system is provided with a rectification module, so that its output voltage and current are controllable, and its output voltage is normally regarded as constant.
  • the discharge switch of the control circuit of the backup power supply is turned on by default.
  • the backup power supply is powered by zero time, and the zero-hour power supply means uninterrupted power supply, that is, through the battery pack.
  • Positive pole one load one battery pack negative pole - charging M0S internal parasitic diode - discharge M0S - battery pack negative pole forms a loop.
  • the control circuit immediately turns on the charging M0S after detecting the discharge current, and supplies the main battery for a long time.
  • the prior art has at least the following problems: In the prior art 1, since there is no control circuit, the power supply of the non-battery power supply system is unstable. In the prior art 2, since only one backup battery is used for power supply, once the standby battery is powered off, the load device is powered off. Summary of the invention
  • the embodiment of the invention provides a zero-time standby power system and a zero-time backup power method.
  • the technical solution is as follows:
  • Embodiments of the present invention provide a zero-time backup power system, where the system includes: a load, a main battery Electrical system and auxiliary battery power supply system;
  • the main battery power supply system includes a main battery pack and a first control system
  • the auxiliary battery power supply system includes a secondary battery pack and a second control system
  • the first control system controls the main battery pack to supply power to the load
  • the second control system controls the auxiliary battery pack to supply power to the load;
  • the first control system and the second control system form an interlock control to control that only the main battery pack or only the auxiliary battery pack supplies power to the load at a certain time;
  • the main battery power supply system and the auxiliary battery power supply system supply power to the load.
  • the embodiment of the invention further provides a zero-hour backup power method, the method comprising:
  • the main battery power supply system supplies power to the load, and triggers the auxiliary battery power supply system to be inoperative.
  • the main battery power supply system includes a main battery pack and a first control system connected to the main battery pack, and the auxiliary battery power supply system includes a auxiliary battery. a second control system coupled to the auxiliary battery pack and a second one-way discharge circuit in parallel with the second control system;
  • the auxiliary battery power supply system supplies power to the load, and triggers the main battery pack to stop supplying power.
  • the technical solution provided by the embodiment of the present invention provides the beneficial effect that the first control system in the main battery power supply system and the second control system in the auxiliary battery power supply system are set as an interlock control structure, thereby being powered by the main battery.
  • the auxiliary battery power supply system does not work, and when the auxiliary battery power supply system works, the main battery power supply system will not be charged, and the main battery pack and the auxiliary battery pack will not be charged and discharged, and the battery pack is avoided.
  • FIG. 1 is a schematic diagram of a zero-time standby power in the prior art 1;
  • FIG. 2 is a schematic diagram of a zero-hour standby power in the second prior art
  • FIG. 3 is a schematic diagram of a control system of a backup power source in the second prior art
  • FIG. 4 is a schematic diagram of a zero-hour backup power system provided in Embodiment 1 of the present invention.
  • 5 is a schematic diagram of a zero-time standby power principle provided in Embodiment 2 of the present invention
  • 6 is a schematic diagram of a zero-hour standby power system provided in Embodiment 2 of the present invention
  • FIG. 7 is another schematic diagram of a zero-hour standby power system provided in Embodiment 2 of the present invention.
  • FIG. 8 is still another schematic diagram of a zero-hour standby power system provided in Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of a zero-hour standby power supply method provided in Embodiment 3 of the present invention. detailed description
  • an embodiment of the present invention provides a zero-time standby power system, where the system includes a load.
  • main battery power supply system 102 main battery power supply system 101, main battery power supply system 102 and auxiliary battery power supply system 103;
  • the main battery power supply system 102 includes a main battery pack and a first control system.
  • the auxiliary battery power supply system 103 includes a secondary battery pack and a second control system.
  • the first control system controls the main battery pack to supply power to the load, and the second control system controls the auxiliary battery.
  • the group supplies power to the load;
  • the first control system and the second control system form an interlock control to control whether only the primary battery pack or only the secondary battery pack supplies power to the load at a time.
  • the zero-time standby power supply system sets the second control system in the first control system and the auxiliary battery power supply system of the main battery power supply system as an interlock control structure, thereby working in the main battery power supply system
  • the main battery power supply system will not be charged, and the mutual charge and discharge will not occur between the main battery pack and the auxiliary battery pack, and the parallel use of the battery pack is avoided. Circulation problems between groups.
  • Example 2
  • an embodiment of the present invention provides a zero-time standby power system, where the zero-time backup power system includes: a load 201, a main battery power supply system 202, and a secondary battery power supply system 203.
  • the main battery power supply system 202 includes a main battery pack 2021 and a first control system 2022.
  • the auxiliary battery power supply system 203 includes a secondary battery pack 2031 and a second control system 2032.
  • the first control system controls the main battery pack to supply power to the load, and the second control
  • the system controls the auxiliary battery pack to supply power to the load, and the first control system and the second control system form an interlock control to control whether only the main battery pack supplies power to the load or only the auxiliary battery pack supplies power to the load at a certain time.
  • the main battery power supply system further includes a first one-way discharge circuit 2023
  • the auxiliary battery power supply system further includes a second one-way discharge circuit 2033
  • the first control system 2022 is connected in parallel with the first one-way discharge circuit 2023
  • second The control system 2032 is connected in parallel with the second one-way discharge circuit 2033
  • the first one-way discharge circuit 2023 and the second one-way discharge circuit 2033 are each provided with a one-way discharge device.
  • An output end of the main battery pack 2021 is connected to an input end of the first one-way discharge circuit 2023, and an output end of the first one-way discharge circuit 2023 is connected to one end of the load 201 and an output end of the second one-way discharge circuit 2033, and the second one-way
  • the input end of the discharge circuit 2033 is connected to the output end of the auxiliary battery pack 2031; the other output end of the main battery pack 2021 is connected to the other end of the load 201 and the other output end of the auxiliary battery pack 2031.
  • the discharge cutoff voltage requirement of the main battery pack is greater than the discharge start voltage of the auxiliary battery pack.
  • the main battery power supply system may be set.
  • the main battery is connected in series with N batteries.
  • the auxiliary battery pack in the auxiliary battery power supply system is N-1 or N-2 or M battery is connected in series.
  • the number of series of auxiliary battery packs is less than the main battery pack.
  • N and M are natural numbers, and N is greater than M, so that the discharge cutoff voltage of the main battery pack is greater than the discharge start voltage of the auxiliary battery pack.
  • the number of series connection sections of the main battery pack and the auxiliary battery pack may be the same, but the number of the one-way discharge devices provided in the first one-way discharge circuit is smaller than the one-way provided in the second one-way discharge circuit.
  • the number of discharge devices is such that the discharge cutoff voltage of the main battery pack is greater than the discharge start voltage of the auxiliary battery pack.
  • the unidirectional discharge device in the embodiment of the present invention may be a diode or an SCR (Silior Gate Controlled Rectifier) or an IGBT (Insulated Gate Bipolar Transistor), etc., which is not correct in the embodiment of the present invention.
  • SCR Silicon Gate Controlled Rectifier
  • IGBT Insulated Gate Bipolar Transistor
  • the first control system includes at least a first controller, the first controller includes a coil, a main contact, and a secondary contact, the second control system includes at least a second controller, and the second controller also includes a coil,
  • the main contact and the auxiliary contact are three parts. When the coil is powered on, the main contact and the auxiliary contact change from the normally open state to the normally closed state, and the normally closed state becomes the normally open state.
  • the specific connection manner of each part of the first controller and the second controller is that the main contact of the first controller is correspondingly set with the coil of the first controller, and the auxiliary contact of the first controller is connected to the second control
  • the coil of the first controller is disposed corresponding to the coil of the second controller, and the auxiliary contact of the second controller is connected to the coil of the first controller.
  • the main contact of the first controller and the main contact of the second controller are set to a normally open state
  • the auxiliary contacts of the first control system and the auxiliary contacts of the second control system are set to a normally closed state.
  • the first control system controls the working state of the first controller, the main contact of the first controller is disconnected during initialization, the auxiliary contact of the first controller is closed, the one-way discharge device of the first controller is opened, and the second control The system controls the working state of the second controller.
  • the initialization the main contact of the second controller is disconnected, the auxiliary contact of the second controller is closed, and the one-way discharge device of the second controller is turned on, when the power supply of the load is broken.
  • the first control system automatically realizes zero-time power supply to the load through the one-way discharge device of the first control system, and then the first control system controls the first controller to be powered on, and controls the main contact of the first controller to be normally opened.
  • the voltage of the main battery pack gradually decreases within the normal range, but since the discharge cutoff voltage of the main battery pack is greater than the auxiliary battery The group discharges the starting voltage, so the auxiliary battery pack does not work.
  • the second control system automatically realizes zero-time power supply to the load through the one-way discharge device of the second control system, and then disconnects the main controller of the first controller first. The contact, and then open the main contact of the second controller, realizes the auxiliary battery pack zero-time backup power.
  • the auxiliary battery pack does not Charge the main battery pack.
  • the main battery pack performs power supply first.
  • the second control system controls the auxiliary battery pack to discharge, and the main battery The group stops discharging and realizes zero-time power supply, and mutual charging between the battery packs does not occur.
  • an external power supply is arranged in parallel on the load, and the main battery pack is charged by the external power source, after a preset period of time,
  • the second controller of the second controller system is disconnected, that is, the main contact of the second controller is controlled to be disconnected, and the auxiliary contact of the first controller that controls the connection of the second control circuit is changed from the off state to the closed state,
  • the battery pack stops supplying power. Due to the interlock, the secondary contact of the second controller changes from the closed state to the open state, and the main battery pack supplies power, thereby prolonging the standby time.
  • the first control system when the unidirectional discharge device is an SCR or an IGBT, the first control system also sends a control signal to the SCR or the IGBT in the main battery power supply system to turn on the SCR or the IGBT.
  • the second The control loop also sends control to the SCR or IGBT in the auxiliary battery supply system. The signal turns the SCR or IGBT on.
  • the current lithium-ion battery is being used in large-scale applications such as energy storage, zero-time backup power, and hybrid electric-oil hybrid applications due to its unique advantages.
  • the battery cells are first connected in series to form a battery pack to increase the supply voltage, and then the battery packs are connected in parallel to increase the supply current.
  • Each series battery pack is monitored and managed by a Battery Management System (BMS).
  • BMS Battery Management System
  • the lithium battery pack and the BMS together form a lithium battery module.
  • Each of the main battery cells in the embodiment of the present invention is connected to a BMS, and each BMS is used to control the opening or closing of a switch connected in series with the main battery.
  • the BMS collects information such as voltage, current, and temperature of the single battery pack, and reports the information to the first control system.
  • the first control system sends a command to the BMS according to the received information to control the main management of the BMS.
  • the battery is disconnected or closed.
  • the attributes of the respective main batteries in the main battery group may be the same or different. If the properties of each main battery in the main battery pack are different, at the same time, each main battery is connected
  • the information reported by the BMS to the main control loop is different.
  • the main control loop sends commands according to the information reported by each BMS, and the switches connected to the main batteries are closed one by one. If the attributes of the main batteries in the main battery pack are the same, at the same time, the information reported by each BMS of each main battery to the main control loop is the same, and the main control loop sends commands to the BMSs according to the information reported by each BMS. , the switches that connect the main batteries are closed at the same time.
  • the zero-time standby power supply system sets the second control system in the first control system and the auxiliary battery power supply system of the main battery power supply system as an interlock control structure, thereby working in the main battery power supply system
  • the main battery power supply system will not be charged, and the mutual charge and discharge will not occur between the main battery pack and the auxiliary battery pack, and the parallel use of the battery pack is avoided. Circulation problems between groups.
  • Example 3
  • an embodiment of the present invention further provides a zero-time backup power supply method, where the method includes: Step 301: A main battery power supply system supplies power to a load, and triggers an auxiliary battery power supply system to not work, and the main battery power supply system includes a main battery pack and a first control system connected to the main battery pack, the auxiliary battery power supply system comprising a secondary battery pack, a second control system connected to the auxiliary battery pack, and a second unidirectional discharge circuit connected in parallel with the second control system;
  • Step 302 When the discharge cutoff voltage of the main battery pack is less than the discharge start voltage of the auxiliary battery pack, the auxiliary battery pack supplies power to the load, and triggers the main battery power supply system to stop supplying power.
  • the auxiliary battery pack supplies power to the load, and triggers the main battery pack to stop supplying power, specifically: the auxiliary battery group in the auxiliary battery power supply system supplies power to the load through the second one-way discharge circuit, and supplies power to the main battery power supply system.
  • the first control system sends a command to disconnect the controller in the first control system, triggering the main battery pack to stop supplying power.
  • the method further includes: after triggering the main battery pack to stop supplying power, the method further includes:
  • the second control system in the auxiliary battery power supply system controls the controller in the second control system to be closed, so that the auxiliary battery pack in the auxiliary battery power supply system directly supplies power to the load.
  • the method provided by the embodiment of the present invention provides a second control system in the main battery power supply system and the second control system in the auxiliary battery power supply system as an interlock control structure, so that when the main battery power supply system works, the auxiliary battery power supply When the system is not working, and the auxiliary battery power supply system is working, the main battery power supply system will not be charged, and the phenomenon of charging and discharging between the main battery pack and the auxiliary battery pack will not occur, and the problem of circulation between groups in parallel with the battery pack is avoided. .
  • the method provided in this embodiment may be the same as the device embodiment.
  • the method provided in this embodiment may be the same as the device embodiment.

Abstract

本发明公开了一种零时备电系统和零时备电方法,属于电池供电领域。所述系统包括负载、主电池供电系统和辅电池供电系统,所述主电池供电系统包括主电池组和第一控制系统,所述辅电池供电系统包括辅电池组和第二控制系统,所述第一控制系统和所述第二控制系统形成互锁控制;所述主电池供电系统和所述辅电池供电系统对所述负载进行供电。本发明通过将主电池供电系统中的第一控制系统和辅电池供电系统中的第二控制系统设置为互锁控制结构,因而在主电池供电系统工作时,辅电池供电系统不工作,且辅电池供电系统工作时,主电池供电系统不会充电,主电池组和辅电池组之间不会发生相互充放电的现象,且避免了电池组并联使用的组间环流问题。

Description

一种零时备电系统和零时备电方法 技术领域
本发明涉及电池供电领域, 特别涉及一种零时备电系统和零时备电方法。 背景技术
随着供电系统的广泛应用, 重要的场景如基站、 机场、 医院等都要求供电系统具有零 时备电功能, 零时备电是指不间断备电, 这已经成为用户衡量供电系统的重要指标。
现有技术一的零时备电方案, 如图 1所示, 主电电源为非电池供电系统, 如市电、 油机、 风能、 太阳能等, 备电电源为无控制电路的备电池, 非电池供 电系统中设有整流模块, 因而其输出电压、 电流可控, 正常情况下视为其输出 电压恒定不变, 当非电池供电系统掉电, 导致电压跌落时, 没有控制电路的备 电池能够自动零时供电。
现有技术二的零时备电方案, 如图 2和图 3所示, 主电电源为非电池供电 系统, 备电电源包括控制电路和备电池, 控制电路的放电开关默认打开。 非电 池供电系统中设有整流模块, 因而其输出电压、 电流可控, 正常情况下视为其 输出电压恒定不变。 当非电池供电系统掉电, 电压跌落时, 由于备电电源的控 制电路的放电开关默认打开, 此时, 备电电源进行零时供电, 零时供电是不间 断供电的意思, 即通过电池组正极一负载一电池组负极 -充电 M0S内部寄生二 极管一放电 M0S—电池组负极形成回路。 另外, 控制电路检测到有放电电流后 立即打开充电 M0S , 对主电池进行长时间的供电。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 现有技术一中, 由于没有控制电路, 非电池供电系统的供电存在不稳定的 问题。 而现有技术二中, 由于只有一个备电池进行备电, 一旦该备电池断电, 负载设备就会断电。 发明内容
为了解决主电电源和备电电源都是电池时的零时备电问题,本发明实施例 提供了一种零时备电系统和零时备电方法。 所述技术方案如下:
本发明实施例提供了一种零时备电系统, 所述系统包括: 负载、 主电池供 电系统和辅电池供电系统;
所述主电池供电系统包括主电池组和第一控制系统,所述辅电池供电系统 包括辅电池组和第二控制系统,所述第一控制系统控制所述主电池组对所述负 载进行供电, 所述第二控制系统控制所述辅电池组对所述负载进行供电;
所述第一控制系统和所述第二控制系统形成互锁控制,以控制某一时刻只 有所述主电池组或只有所述辅电池组对所述负载进行供电;
所述主电池供电系统和所述辅电池供电系统对所述负载进行供电。
本发明实施例还提供了一种零时备电方法, 所述方法包括:
主电池供电系统对负载供电, 并触发辅电池供电系统不工作,所述主电池 供电系统包括主电池组和与所述主电池组连接的第一控制系统,所述辅电池供 电系统包括辅电池组、与所述辅电池组连接的第二控制系统和与所述第二控制 系统并联的第二单向放电电路;
当所述主电池组的放电截止电压小于辅电池组的放电启动电压时,辅电池 供电系统对所述负载进行供电, 并触发所述主电池组停止供电。
本发明实施例提供的技术方案带来的有益效果是:通过将主电池供电系统 中的第一控制系统和辅电池供电系统中的第二控制系统设置为互锁控制结构, 因而在主电池供电系统工作时, 辅电池供电系统不工作, 且辅电池供电系统工 作时, 主电池供电系统不会充电, 主电池组和辅电池组之间不会发生相互充放 电的现象, 且避免了电池组并联使用的组间环流问题。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术一中的零时备电示意图;
图 2是现有技术二中的零时备电示意图;
图 3是现有技术二中的备电电源的控制系统示意图;
图 4是本发明实施例 1中提供的零时备电系统示意图;
图 5是本发明实施例 2中提供的零时备电原理的示意图; 图 6是本发明实施例 2中提供的零时备电系统的示意图;
图 7是本发明实施例 2中提供的零时备电系统的另一示意图;
图 8是本发明实施例 2中提供的零时备电系统的又一示意图
图 9是本发明实施例 3中提供的零时备电方法的流程图。 具体实施方式
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一歩地详细描述。
实施例 1
参见图 4, 本发明实施例提供了一种零时备电系统, 所述系统包括负载
101、 主电池供电系统 102和辅电池供电系统 103 ;
主电池供电系统 102包括主电池组和第一控制系统, 辅电池供电系统 103 包括辅电池组和第二控制系统, 第一控制系统控制主电池组对负载进行供电, 第二控制系统控制辅电池组对所述负载进行供电;
第一控制系统和第二控制系统形成互锁控制,以控制某一时刻只有主电池 组或只有辅电池组对所述负载进行供电。
本发明实施例提供的零时备电系统,通过将主电池供电系统中的第一控制 系统和辅电池供电系统中的第二控制系统设置为互锁控制结构,因而在主电池 供电系统工作时, 辅电池供电系统不工作, 且辅电池供电系统工作时, 主电池 供电系统不会充电, 主电池组和辅电池组之间不会发生相互充放电的现象, 且 避免了电池组并联使用的组间环流问题。 实施例 2
参见图 5和图 6, 本发明实施例提供了一种零时备电系统, 所述零时备电 系统包括: 负载 201、 主电池供电系统 202和辅电池供电系统 203,
主电池供电系统 202包括主电池组 2021和第一控制系统 2022, 辅电池供 电系统 203包括辅电池组 2031和第二控制系统 2032, 第一控制系统控制主电 池组对负载进行供电,第二控制系统控制辅电池组对负载进行供电,第一控制 系统和第二控制系统形成互锁控制,以控制某一时刻只有主电池组对负载进行 供电或只有辅电池组对负载进行供电。 具体地, 主电池供电系统还包括第一单向放电电路 2023, 辅电池供电系 统还包括第二单向放电电路 2033, 且第一控制系统 2022与第一单向放电电路 2023并联连接, 第二控制系统 2032与第二单向放电电路 2033并联连接, 第 一单向放电电路 2023和第二单向放电电路 2033中均设有单向放电器件。
主电池组 2021的输出端连接第一单向放电电路 2023的输入端,第一单向 放电电路 2023的输出端连接负载 201的一端和第二单向放电电路 2033的输出 端,第二单向放电电路 2033的输入端连接辅电池组 2031的输出端; 主电池组 2021的另一输出端连接负载 201的另一端和辅电池组 2031的另一输出端。
本实施例中, 主电池组的放电截止电压要求大于辅电池组的放电启动电 压, 本发明实施例不对具体的实现方式进行限定, 实际应用中, 参见图 7, 可 以设置主电池供电系统中的主电池为 N支电芯串联,设置辅电池供电系统中的 辅电池组为 N-1或者 N-2或 M支电池串联,辅电池组串联节数比主电池组具体 少多少节根据电池规格和具体应用情况而定, N、 M为自然数, N大于 M, 以实 现主电池组的放电截止电压大于辅电池组的放电启动电压。 参见图 8, 也可以 设置主电池组和辅电池组串联节数相同,但是第一单向放电电路中设有的单向 放电器件的个数小于第二单向放电电路中设有的单向放电器件的个数,以实现 主电池组的放电截止电压大于辅电池组的放电启动电压。
其中, 本发明实施例中的单向放电器件可以为二极管或为 SCR ( Si l icon Control led Rectifier, 晶闸管 ) 或 IGBT ( Insulated Gate Bipolar Transistor , 绝缘栅双极型晶体管)等, 本发明实施例不对单向放电器件的实 现方式进行限定。
具体地, 第一控制系统至少包括第一控制器, 第一控制器包括线圈、 主触 点和辅触点三部分,第二控制系统至少包括第二控制器, 第二控制器同样包括 线圈、 主触点和辅触点三部分, 线圈一旦上电, 主触点和辅触点由常开状态变 为常闭状态, 常闭状态变为常开状态。
其中,第一控制器和第二控制器的各部分的具体连接方式为,第一控制器 的主触点与第一控制器的线圈对应设置,第一控制器的辅触点连接第二控制器 的线圈; 第二控制器的主触点与第二控制器的线圈对应设置,第二控制器的辅 触点连接第一控制器的线圈。 本发明实施例中第一控制器的主触点和第二控制器的主触点设置为常开 状态, 第一控制系统的辅触点和第二控制系统的辅触点设置为常闭状态。
第一控制系统控制第一控制器的工作状态,初始化时第一控制器的主触点 断开, 第一控制器的辅触点闭合, 第一控制器的单向放电器件打开, 第二控制 系统控制第二控制器的工作状态,初始化时第二控制器的主触点断开, 第二控 制器的辅触点闭合,第二控制器的单向放电器件打开,当负载的供电电源断电, 第一控制系统通过第一控制系统的单向放电器件自动实现对负载的零时供电, 然后第一控制系统控制第一控制器上电,控制第一控制器的主触点由常开状态 变为闭合状态, 主电池组开始放电, 给负载进行备电, 主电池组放电过程中, 主电池组的电压在正常范围内逐渐减小,但由于主电池组的放电截止电压大于 辅电池组的放电启动电压,所以辅电池组不工作。 当主电池组的电压减小到辅 电池组的放电启动电压时,第二控制系统通过第二控制系统的单向放电器件自 动实现对负载的零时供电, 然后先断开第一控制器的主触点, 再打开第二控制 器的主触点, 实现了辅电池组零时备电。
另外,在辅电池组放电的过程中, 由于主电池供电系统中设置了与主电池 组串联连接的第一单向放电电路, 且第一控制器的主触点断开, 辅电池组不会 对主电池组进行充电。
因此, 本方案在备电时, 首先由主电池组进行备电, 当主电池组的放电截 止电压值小于辅电池组的放电启动电压时,第二控制系统控制辅电池组进行放 电, 且主电池组停止放电, 实现零时供电的同时, 不会发生电池组之间的相互 充电。
作为上述实施方式的优选, 本发明实施例还可以在辅电池组放电的过程 中, 在负载上并联设置一个外接电源, 利用外接电源对主电池组进行充电, 在 预设的一段时间后,第二控制器系统第二控制器断开, 即控制第二控制器的主 触点断开,并控制第二控制电路连接的第一控制器的辅触点由断开状态变为闭 合状态, 辅电池组停止供电, 由于互锁, 第二控制器的辅触点由闭合状态变为 断开状态, 主电池组进行供电, 从而延长了备电时间。
作为上述实施方式的优选, 当单向放电器件为 SCR或 IGBT时, 第一控制 系统还会给主电池供电系统中的 SCR或 IGBT发送控制信号, 使 SCR或 IGBT 导通, 同理, 第二控制回路也会给辅电池供电系统中的 SCR或 IGBT发送控制 信号, 使 SCR或 IGBT导通。
另外, 当前锂动力电池凭借其自身特有优势正在储能、 零时备电、 油电混合循环应用 等场景中大规模应用开来。 在大功率应用中, 首先需要单体电芯串联组成电池组来提高供 电电压,然后电池组再并联来提高供电电流。由电池管理系统(Battery Management System, BMS) 对每一个串联电池组进行监控管理。 锂电池组和 BMS共同组成锂电模块。
本发明实施例中的主电池组中的每一个主电池连接一个 BMS, 每一个 BMS 用于控制与主电池串联连接的开关的断开或闭合。 具体地, BMS采集单支电池 组的电压、 电流和温度等信息, 并将该信息上报第一控制系统, 第一控制系统 根据接收到的信息向 BMS下发命令,以控制该 BMS管理的主电池的断开或闭合。
本发明实施例中,主电池组中的各个主电池的属性可以相同,也可以不同。 若主电池组中的各主电池的属性不同时,在同一时刻, 各个主电池连接的各个
BMS向主控制回路上报的信息不同, 主控制回路会根据各个 BMS上报的信息逐 个时间段下发命令, 使各个主电池连接的开关逐个闭合。若主电池组中各个主 电池的属性相同时,在同一时刻, 各个主电池连接的各个 BMS向主控制回路上 报的信息相同,主控制回路会根据各个 BMS上报的信息向各 BMS同时下发命令, 使各个主电池连接的开关同时闭合。
本发明实施例提供的零时备电系统,通过将主电池供电系统中的第一控制 系统和辅电池供电系统中的第二控制系统设置为互锁控制结构,因而在主电池 供电系统工作时, 辅电池供电系统不工作, 且辅电池供电系统工作时, 主电池 供电系统不会充电, 主电池组和辅电池组之间不会发生相互充放电的现象, 且 避免了电池组并联使用的组间环流问题。 实施例 3
参见图 9, 本发明实施例还提供了一种零时备电方法, 所述方法包括: 歩骤 301 : 主电池供电系统对负载供电, 并触发辅电池供电系统不工作, 主电池供电系统包括主电池组和与主电池组连接的第一控制系统,辅电池供电 系统包括辅电池组、与辅电池组连接的第二控制系统和与第二控制系统并联的 第二单向放电电路;
歩骤 302: 当主电池组的放电截止电压小于辅电池组的放电启动电压时, 辅电池组对负载进行供电, 并触发主电池供电系统停止供电。 其中, 辅电池组对负载进行供电, 并触发主电池组停止供电, 具体包括: 辅电池供电系统中的辅电池组通过第二单向放电电路对负载进行供电,并 向主电池供电系统中的第一控制系统发送命令,使第一控制系统中的控制器断 开, 触发主电池组停止供电。
其中, 触发主电池组停止供电之后, 方法还包括:
辅电池供电系统中的第二控制系统控制第二控制系统中的控制器闭合,使 辅电池供电系统中的辅电池组直接对负载进行供电。
本发明实施例提供的方法,通过将主电池供电系统中的第一控制系统和辅 电池供电系统中的第二控制系统设置为互锁控制结构,因而在主电池供电系统 工作时, 辅电池供电系统不工作, 且辅电池供电系统工作时, 主电池供电系统 不会充电, 主电池组和辅电池组之间不会发生相互充放电的现象, 且避免了电 池组并联使用的组间环流问题。
本实施例提供的方法, 具体可以与装置实施例属于同一构思, 其具体实现 过程详见装置实施例, 这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分歩骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器,磁盘 或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求
1、 一种零时备电系统, 其特征在于, 所述系统包括负载、 主电池供电系 统和辅电池供电系统,
所述主电池供电系统包括主电池组和第一控制系统,所述辅电池供电系统 包括辅电池组和第二控制系统,所述第一控制系统控制所述主电池组对所述负 载进行供电, 所述第二控制系统控制所述辅电池组对所述负载进行供电; 所述第一控制系统和所述第二控制系统形成互锁控制,以控制某一时刻只 有所述主电池组或只有所述辅电池组对所述负载进行供电。
2、 如权利要求 1所述的系统, 其特征在于, 所述主电池供电系统还包括 第一单向放电电路,所述辅电池供电系统还包括第二单向放电电路; 所述主电 池组的放电截止电压大于所述辅电池组的放电启动电压;
所述主电池组的输出端连接所述第一单向放电电路的输入端,所述第一单 向放电电路的输出端连接所述负载的一端和所述第二单向放电电路的输出端, 所述第二单向放电电路的输入端连接所述辅电池组的输出端,所述主电池组的 另一输出端连接所述负载的另一端和所述辅电池组的另一输出端;
所述第一控制系统与所述第一单向放电电路并联连接,所述第二控制系统 与所述第二单向放电电路并联连接。
3、 如权利要求 2所述的系统, 其特征在于, 所述主电池组为 N支电芯串 联, 所述辅电池组为 M支电芯串联, 所述 N、 M为自然数, 所述 N大于 M。
4、 如权利要求 2所述的系统, 其特征在于, 所述主电池组和辅电池组均 为 N支电芯串联,所述第一单向放电电路中设有的单向放电器件的个数大于所 述第二单向放电电路中设有的单向放电器件的个数, 所述 N为自然数。
5、 如权利要求 4所述的系统, 其特征在于, 所述单向放电器件具体为二 极管、 晶闸管或绝缘栅双极型晶体管。
6、 如权利要求 1所述的系统, 其特征在于, 所述第一控制系统至少包括 第一控制器, 所述第一控制器的主触点与所述第一控制器的线圈对应设置; 所述第二控制系统至少包括第二控制器,所述第二控制器的主触点与所述 第二控制器的线圈对应设置,所述第一控制器的辅触点连接所述第二控制器的 线圈, 所述第二控制器的辅触点连接所述第一控制器的线圈。
7、 一种零时备电方法, 其特征在于, 所述方法包括:
主电池供电系统对负载供电, 并触发辅电池供电系统不工作,所述主电池 供电系统包括主电池组和与所述主电池组连接的第一控制系统,所述辅电池供 电系统包括辅电池组、与所述辅电池组连接的第二控制系统和与所述第二控制 系统并联的第二单向放电电路;
当所述主电池组的放电截止电压小于辅电池组的放电启动电压时,辅电池 组对所述负载进行供电, 并触发所述主电池组停止供电。
8、 如权利要求 7所述的方法, 其特征在于, 所述辅电池组对所述负载进 行供电, 并触发所述主电池组停止供电, 具体包括:
所述辅电池组通过所述第二单向放电电路对所述负载进行供电,并向所述 第一控制系统发送命令, 使所述第一控制系统中的控制器断开, 触发所述主电 池组停止供电。
9、 如权利要求 7所述的方法, 其特征在于, 所述触发所述主电池组停止 供电之后, 所述方法还包括:
所述第二控制系统控制所述第二控制系统中的控制器闭合,使与所述第二 控制系统连接的所述辅电池组直接对所述负载进行供电。
PCT/CN2013/075477 2012-05-10 2013-05-10 一种零时备电系统和零时备电方法 WO2013166991A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13787283.4A EP2790292B1 (en) 2012-05-10 2013-05-10 Temporary back-up power system and temporary back-up power method
JP2014555071A JP2015510750A (ja) 2012-05-10 2013-05-10 無停電電力供給システム及び無停電電力供給方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210143286.X 2012-05-10
CN201210143286.XA CN102651572B (zh) 2012-05-10 2012-05-10 一种零时备电系统和零时备电方法

Publications (1)

Publication Number Publication Date
WO2013166991A1 true WO2013166991A1 (zh) 2013-11-14

Family

ID=46693491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075477 WO2013166991A1 (zh) 2012-05-10 2013-05-10 一种零时备电系统和零时备电方法

Country Status (4)

Country Link
EP (1) EP2790292B1 (zh)
JP (1) JP2015510750A (zh)
CN (1) CN102651572B (zh)
WO (1) WO2013166991A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751407A (zh) * 2019-10-31 2021-05-04 阿里巴巴集团控股有限公司 一种数据中心供电系统及其控制方法
CN113224834A (zh) * 2021-05-28 2021-08-06 河北工业大学 一种auv用主备电源切换电路

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651572B (zh) * 2012-05-10 2014-07-09 华为技术有限公司 一种零时备电系统和零时备电方法
CN103647309A (zh) * 2013-11-20 2014-03-19 南京利维斯通自控科技有限公司 一种无环流的电池供电系统
CN105656185A (zh) * 2016-02-03 2016-06-08 深圳市中工巨能科技有限公司 一种不间断电源的切换装置及切换系统
CN110610556B (zh) * 2018-06-15 2023-01-31 北京京东乾石科技有限公司 机器人巡检管理方法及系统、电子设备、存储介质
CN109787313A (zh) * 2019-01-31 2019-05-21 欣旺达电子股份有限公司 基于锂电池的数据中心高压直流备份电源
JP7136855B2 (ja) * 2020-08-19 2022-09-13 矢崎総業株式会社 給電制御装置、給電システム、給電制御方法、及びプログラム
CN114172253A (zh) * 2021-12-21 2022-03-11 上海智汇电器有限公司 多电池包无缝切换电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD252929A1 (de) * 1986-09-18 1987-12-30 Berlin Treptow Veb K Schaltungsanordnung zur batteriepufferung von halbleiterspeichern
US5568038A (en) * 1993-11-26 1996-10-22 Nec Corporation Portable electric equipment and rechargeable built-in batteries
US20030233179A1 (en) * 2002-06-14 2003-12-18 Kenichiro Matsubara Electrically driven brake device and control apparatus thereof
CN102104274A (zh) * 2009-12-02 2011-06-22 技嘉科技股份有限公司 具有电池并联电路的电子装置
CN102255345A (zh) * 2010-05-21 2011-11-23 沈阳新邮通信设备有限公司 双电池供电电路
CN102651572A (zh) * 2012-05-10 2012-08-29 华为技术有限公司 一种零时备电系统和零时备电方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130129U (ja) * 1983-02-17 1984-09-01 株式会社日立国際電気 半導体記憶素子のバツクアツプ電源回路
JP2584738B2 (ja) * 1985-08-27 1997-02-26 松下電工株式会社 電磁接触器のインタ−ロツク装置
JPS6377335A (ja) * 1986-09-19 1988-04-07 フアナツク株式会社 バツクアツプ電源装置
JPH0261711A (ja) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd 電源回路およびそれを用いたicカード
JP3325299B2 (ja) * 1992-09-10 2002-09-17 株式会社ソキア 電源装置
JPH09213190A (ja) * 1996-02-07 1997-08-15 Fuji Electric Co Ltd 変流器付き電磁接触器および減電圧始動器
CN1300910C (zh) * 2003-07-23 2007-02-14 黄府能 一种电池供电装置
CN2845006Y (zh) * 2005-10-19 2006-12-06 深圳市顶星数码网络技术有限公司 笔记本电脑电源分配系统
CN101621569B (zh) * 2009-07-24 2012-01-25 上海华勤通讯技术有限公司 不间断供电的手机以及使用方法
CN102004538B (zh) * 2009-08-31 2014-03-26 鸿富锦精密工业(深圳)有限公司 笔记本电脑电源供应电路
CN102148531A (zh) * 2010-02-10 2011-08-10 西安锐信科技有限公司 一种蓄电池供电方法、装置及系统
EP2367260A1 (en) * 2010-03-17 2011-09-21 SCI Innovations Limited Portable communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD252929A1 (de) * 1986-09-18 1987-12-30 Berlin Treptow Veb K Schaltungsanordnung zur batteriepufferung von halbleiterspeichern
US5568038A (en) * 1993-11-26 1996-10-22 Nec Corporation Portable electric equipment and rechargeable built-in batteries
US20030233179A1 (en) * 2002-06-14 2003-12-18 Kenichiro Matsubara Electrically driven brake device and control apparatus thereof
CN102104274A (zh) * 2009-12-02 2011-06-22 技嘉科技股份有限公司 具有电池并联电路的电子装置
CN102255345A (zh) * 2010-05-21 2011-11-23 沈阳新邮通信设备有限公司 双电池供电电路
CN102651572A (zh) * 2012-05-10 2012-08-29 华为技术有限公司 一种零时备电系统和零时备电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790292A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751407A (zh) * 2019-10-31 2021-05-04 阿里巴巴集团控股有限公司 一种数据中心供电系统及其控制方法
CN113224834A (zh) * 2021-05-28 2021-08-06 河北工业大学 一种auv用主备电源切换电路
CN113224834B (zh) * 2021-05-28 2024-04-09 河北工业大学 一种auv用主备电源切换电路

Also Published As

Publication number Publication date
CN102651572A (zh) 2012-08-29
EP2790292A4 (en) 2015-01-28
JP2015510750A (ja) 2015-04-09
CN102651572B (zh) 2014-07-09
EP2790292B1 (en) 2021-10-20
EP2790292A1 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013166991A1 (zh) 一种零时备电系统和零时备电方法
CN104253469A (zh) 二次电池组充放电管理系统
US20140028103A1 (en) Control system, power supply system, and method for preventing a floating charge of a battery
KR101147205B1 (ko) 대전류 제어 장치 및 방법, 이를 이용한 전력 저장 장치
CN108282007B (zh) 通信电池模块充电限流策略
WO2012097594A1 (zh) 一种直流电源的电池保护装置和方法
CN102870311B (zh) 电池供电系统及其上电的控制方法
US20130134784A1 (en) Ping-Pong Type Battery Management system
JP2019106869A (ja) 高電圧電池管理及び平衡化回路並びにその応用
WO2023124502A1 (zh) 一种储能系统和储能系统的控制方法
CN204316150U (zh) 一种延长串联蓄电池组使用寿命的电路
WO2013120337A1 (zh) 用于通讯基站的储能系统及储能方法
CN103581938A (zh) 基站电源管理方法、装置和系统、开关电源
CN108306076B (zh) 数据中心电池室空调联动控制方法及系统
TWM414756U (en) Active balancing circuit for battery set having a plurality of battery units
CN116345622A (zh) 开关管保护方法、电池包及储能系统
CN203690903U (zh) 电池欠压保护电路
CN105699909A (zh) 用电信息采集终端的电池电量管理方法
CN103368235B (zh) 一种不间断电源内的镍氢电池充放电电路
CN202395475U (zh) 一种锂离子电池充放电监测控制装置
EP4002553A1 (en) Battery temperature control apparatus, battery system, energy storage system and battery temperature control method
CN103944179B (zh) 利用铅碳电池实施通信系统移峰填谷的供电系统
TW201818631A (zh) 電池組主動式平衡系統
TWI667863B (zh) High voltage battery dynamic balance method
CN103872696A (zh) 一种可变频型三相风力发电系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013787283

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014555071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE