WO2013166872A1 - 一种数据边界确定方法、指示信息发送方法及其装置 - Google Patents

一种数据边界确定方法、指示信息发送方法及其装置 Download PDF

Info

Publication number
WO2013166872A1
WO2013166872A1 PCT/CN2013/071311 CN2013071311W WO2013166872A1 WO 2013166872 A1 WO2013166872 A1 WO 2013166872A1 CN 2013071311 W CN2013071311 W CN 2013071311W WO 2013166872 A1 WO2013166872 A1 WO 2013166872A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpcch
reference cell
drx
boundary
information
Prior art date
Application number
PCT/CN2013/071311
Other languages
English (en)
French (fr)
Inventor
陈君
徐文颖
郑潇潇
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2015510613A priority Critical patent/JP2015516129A/ja
Priority to EP13788314.6A priority patent/EP2840843A4/en
Publication of WO2013166872A1 publication Critical patent/WO2013166872A1/zh
Priority to US14/537,548 priority patent/US20150063344A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data boundary determining method, an indication information transmitting method, and an apparatus therefor.
  • DRX downlink discontinuous reception
  • Multiflow multi-flow transmission
  • HS-DPCCH High Speed-Dedicated Physial Control Channel
  • the cell needs to find the closest HS-DPCCH boundary from 1280 chips as the boundary according to the starting point of the High Speed-Shared Control Channel (HS-SCCH).
  • HS-SCCH High Speed-Shared Control Channel
  • SF-DC characteristics as an example. In the SF-DC characteristic, there are two serving cells with a certain timing difference between each other, and two cells can be in the same base station or in different base stations.
  • the uplink of the UE in the SF-DC needs to receive data in two cells, the uplink only needs to be in one The cell is transmitted, and the other cell needs to demodulate the data (for example, in the SF-DC scenario of the cross-base station), so that the user equipment UE (User Equipment) side needs to perform a specified pairing relationship on the subframe in which the downlink data is received.
  • UE User Equipment
  • the reference cell and the secondary cell of the UE may be defined, and the reference cell is a cell with a downlink physical channel HS-PDSCH and an uplink physical channel HS-DPCCH with a timing difference of 19200 chips or 7.5 slots, and another cell is a secondary cell. Or called a non-reference cell.
  • the reference cell is a cell with a downlink physical channel HS-PDSCH and an uplink physical channel HS-DPCCH with a timing difference of 19200 chips or 7.5 slots
  • another cell is a secondary cell.
  • the boundary of the HS-DPCCH is also searched according to the protocol specification.
  • HS-DPCCH boundary which reduces the performance of downlink data transmission.
  • the base station where the non-reference cell is located may not be able to find the correct HS-DPCCH boundary, thereby causing the UE and
  • the technical problem that the base station where the non-reference cell is located has an inconsistent understanding of the uplink HS-DPCCH transmitted by a certain downlink data, resulting in a decline in downlink data transmission performance.
  • the embodiment of the present invention provides a data boundary determination method, an indication data transmission method, and a device thereof, to solve the problem that the base station where the non-reference cell is located in the prior art cannot find the correct one.
  • an embodiment of the present invention provides a data boundary determining method, where the method includes: acquiring, by a base station where a non-reference cell is located, timing information of a reference cell, or acquiring a high-speed dedicated physical control channel HS. a parameter of the boundary information of the DPCCH; the base station determines boundary information of the HS-DPCCH according to the timing information of the reference cell or the parameter.
  • the embodiment of the present invention further provides a method for sending indication information, where the method includes: acquiring timing information of a reference cell, or determining a parameter of boundary information of a high-speed dedicated physical control channel HS-DPCCH; The timing information of the cell, or the parameter used to determine the boundary information of the high-speed dedicated physical control channel HS-DPCCH, is sent to the base station where the non-reference cell is located, so that the base station where the non-reference cell is located determines the boundary information of the HS-DPCCH. .
  • the embodiment of the present invention further provides a data boundary determining apparatus, where the apparatus includes: an acquiring unit, configured to acquire timing information of a reference cell, or a parameter used to determine boundary information of a high-speed dedicated physical control channel HS-DPCCH And a determining unit, configured to determine boundary information of the HS-DPCCH according to the timing information of the reference cell or the parameter.
  • An embodiment of the present invention further provides an indication information sending apparatus, where the apparatus includes: an acquiring unit, configured to acquire timing information of a reference cell, or a parameter used to determine boundary information of a high-speed dedicated physical control channel HS-DPCCH And a sending unit, configured to send timing information of the reference cell, or a parameter used to determine boundary information of the high-speed dedicated physical control channel HS-DPCCH, to the base station where the non-reference cell is located.
  • the base station where the non-reference cell is located can obtain the timing information of the reference cell, or can be used to determine the edge of the high-speed dedicated physical control channel HS-DPCCH.
  • the parameters of the boundary information can correctly locate the boundary information of the HS-DPCCH, thereby improving the downlink data transmission performance.
  • FIG. 1 is a flowchart of a method for determining a data boundary according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for sending indication information according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an application example of a method for determining a data boundary by using DRX timing information according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing another application example of a method for determining a data boundary by using DRX timing information according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a data boundary determining apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a second structure of a data boundary determining apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a third structure of a data boundary determining apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a fourth structure of a data boundary determining apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a fifth structure of a data boundary determining apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an indication information sending apparatus according to an embodiment of the present invention.
  • the reference cell in the embodiment of the present invention is a timing reference cell
  • the non-reference cell is a non-timed reference cell
  • the base station where the reference cell is located is the base station where the reference reference cell is located
  • the base station where the non-reference cell is located is the non-timed reference cell.
  • Base station The base station where the timing reference cell is located and the base station where the non-timed reference cell is located are different base stations.
  • system and “network” are used interchangeably herein.
  • the term “and/or,” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, while A and B exist, alone There are three cases of B.
  • the character " /,, in this article, generally means that the contextual object is an "or" relationship.
  • the cell (base station) serving the UE is defined as the base station where the reference cell is located and the base station where the non-reference cell is located (that is, the base station where the secondary cell is located;), where the reference cell is the UE.
  • the UE may be any one of the following, and may be static or mobile.
  • the static UE may specifically be a terminal, a mobile station, and a subscriber unit. Subscriber unit or station, etc., the mobile UE may specifically include a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a wireless communication device, a handheld device, A laptop computer, a cordless phone, or a wireless local loop (WLL) station, etc., may be distributed throughout the wireless network.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless local loop
  • FIG. 1 is a flowchart of a method for determining a data boundary according to an embodiment of the present invention
  • the base station where the non-reference cell is located acquires timing information of the reference cell, or is used to determine a parameter of the boundary information of the high-speed dedicated physical control channel HS-DPCCH;
  • the method can be used to determine the HS.
  • the base station where the non-reference cell is located receives the timing information of the reference cell sent by the network, or is used to determine the HS. a parameter of the boundary information of the DPCCH; or, the base station where the non-reference cell is located sends a request for acquiring the timing information of the reference cell or the boundary information for determining the HS-DPCCH to the network; and receiving the The timing information of the reference cell or the response of the parameter used to determine the boundary information of the HS-DPCCH.
  • Step 102 The base station where the non-reference cell is located determines the boundary information of the HS-DPCCH according to the timing information of the reference cell or the parameter.
  • the base station where the non-reference cell is located can obtain the timing information of the reference cell or the parameter used to determine the boundary information of the high-speed dedicated physical control channel HS-DPCCH, the HS can be correctly located. -DPCCH boundary information, thereby improving downlink data transmission performance.
  • the timing information of the reference cell includes: downlink discontinuous reception DRX timing information ( ⁇ RX! of the reference cell; the DRX timing information is a separate dedicated physical channel.
  • the timing deviation of the F-DPCH and the high-speed shared control channel HS-SCCH; the base station where the non-reference cell is located determines the boundary information of the HS-DPCCH according to the timing information of the reference cell, and specifically includes: where the non-reference cell is located
  • the base station searches for the boundary of the HS-SCCH according to the F-DPCH corresponding to the reference cell of the reference cell; and uses the found boundary of the HS-SCCH as a starting point, according to the protocol, the CFN corresponding to the HS-SCCH –
  • the nearest HS-DPCCH boundary information of 1280 chips after the start of the DRX n subframe is determined as the boundary information of the HS-DPCCH.
  • the specific search and determination methods are well known to those skilled in the art
  • the parameter used to determine the boundary information of the HS-DPCCH includes: a DRX timing information difference ⁇ of the reference cell and the non-reference cell.
  • the non-reference cell determines the boundary information of the HS-DPCCH according to the parameter, and specifically includes: the non-reference cell according to the ⁇ .
  • the close HS-DPCCH boundary information is determined as the boundary information of the HS-DPCCH.
  • the base station according to the formula 5* CFN-DRX+ S DRX+l , to obtain the boundary information of the HS-SCCH, where, ", the symbol is the direction
  • the CFN-DRX is a Connection Frame Number (Discontinuous Reception) in a discontinuous reception state
  • the S-DRX is a Sub Frame Number (Discontinuous Reception) in a discontinuous reception state.
  • the CFN_DRX and the S DRX are values before the non-reference cell HS-DPCCH and/or the HS-SCCH correction;
  • 1 - 2560 is the sub-frame offset for discontinuous reception.
  • the parameter used to determine the boundary information of the HS-DPCCH includes: a downlink discontinuous received offset DRX_OFFSET of the reference cell; then the non-reference cell
  • the base station where the base station is located determines the boundary information of the HS-DPCCH according to the parameter, and specifically includes: the base station where the non-reference cell is located according to the formula 5*CFN-DRX+S-DRX+DRX_OFFSET, and obtains the boundary information of the HS-DPCCH, where , CFN—DRX is: the connection frame number in the discontinuous reception state; S—DRX is: the subframe number in the discontinuous reception state; DRX—OFFSET is: the offset of the discontinuous reception.
  • the parameter used to determine the boundary information of the HS-DPCCH includes: a timing relationship (ie, an m value) of the uplink dedicated physical control channel DPCCH and the uplink HS-DPCCH of the reference cell.
  • the timing relationship between the uplink DPCCH and the uplink HS-DPCCH is: an uplink DPCCH transmission boundary corresponding to a specified downlink HS-SCCH subframe, and a timing between HS-DPCCH boundaries of feedback for the HS-SCCH Or the uplink DPCCH and the HS-DPCCH timing difference sent for one HS-SCCH data;
  • the base station where the non-reference cell is located determines the boundary information of the HS-DPCCH according to the parameter, and specifically includes: the non-reference cell
  • the parameter used to determine the boundary information of the HS-DPCCH includes: m difference information ⁇ of the reference cell and the non-reference cell; then the non-reference cell is located
  • the base station determines the boundary information of the HS-DPCCH according to the parameters, as shown below.
  • ⁇ RX non-reference cell RX2 - reference cell 3 ⁇ 4»0, obtain RX 1 of the reference cell ; then, the base station where the non-reference cell is located finds the boundary information of the HS-SCCH according to the F-DPCH corresponding to the ⁇ RXi of the reference cell And finally, the base station where the non-reference cell is located starts from the boundary of the HS-SCCH that is found, and the HS that is closest to the start of the CFN-DRX n subframe corresponding to the HS-SCCH is 1280 chips.
  • the -DPCCH boundary information is determined as the boundary information of the HS-DPCCH.
  • the parameter used to determine the discontinuous reception timing information may also include one or more of the foregoing, and is not limited in this embodiment.
  • the manner in which the DPCCH boundary information is corresponding is determined. For details, refer to the above, and details are not described herein again.
  • FIG. 2 is a flowchart of a method for sending indication information according to an embodiment of the present invention, where the method includes:
  • [0046] 201 acquiring timing information of the reference cell, or a parameter used to determine boundary information of the high-speed dedicated physical control channel HS-DPCCH;
  • the radio network controller (RNC) in the network acquires multiple ways. For example, when the RNC of the network configures multi-stream transmission for the user equipment, the RNC receives the parameters.
  • the timing information of the reference cell includes: non-continuously receiving DRX timing information; but is not limited thereto, and may include other timing information.
  • the parameter used to determine the boundary information of the high-speed dedicated physical control channel HS-DPCCH includes at least one of the following: a DRX timing information difference AT DRX of the reference cell and the non-reference cell; or discontinuous reception of the reference cell Offset DRX_OFFSET; or the timing relationship of the uplink dedicated physical control channel DPCCH and the uplink HS-DPCCH of the reference cell; or the m difference information ⁇ of the reference cell and the non-reference cell, but is not limited thereto, and may also include To determine other parameters of the boundary information of the high speed dedicated physical control channel HS-DPCCH.
  • the offset of the discontinuous reception of the reference cell DRX_OFFSET is a network passing formula
  • Ar DRX is a reference cell and a non-reference cell
  • the DRX timing information is poor.
  • [0051] 202 Send timing information of the reference cell, or a parameter used to determine boundary information of the high-speed dedicated physical control channel HS-DPCCH, to the base station where the non-reference cell is located, so that the non-reference cell is located.
  • the base station determines the boundary information of the HS-DPCCH.
  • the RNC acquires the DRX timing information of the reference cell as an example. [0055] First, the RNC first obtains the DRX timing information of the reference cell from the reference cell (ie,
  • the manner of obtaining it may be either an active request or a passive receiving, which is not limited in this embodiment.
  • the DRX timing information is defined as the timing offset of the F-DPCH and the HS-SCCH.
  • all units of D XI , T DRX2 ; ⁇ ⁇ ⁇ are chips .
  • the reference cell may report the DRX timing to the RNC for each time the RNC configures the multi-flow transmission (Multiflow) for the UE, which may be periodic reporting or real-time reporting;
  • Multiflow multi-flow transmission
  • the reference cell notifies the RNC of the DRX timing of the reference cell. This is because channel timing is maintained between the cell (base station) and the UE, along with cell clock drift, air interface transmission delay variation, and other factors, such DRX timing information may change over time, and thus, in this implementation In the example, the RNC side also needs to update the acquired DRX timing information in time.
  • the RNC notifies the DRX timing information of the reference cell to the base station where the non-reference cell is located.
  • the base station where the non-reference cell is located determines the boundary information of the HS-DPCCH according to the DRX timing information of the reference cell.
  • FIG. 3 An application example diagram of a method for determining a data boundary by using DRX timing information is provided in the embodiment of the present invention.
  • the "HS-SCCH boundary information" in this embodiment can be used for searching for the HS-DPCCH in the base station where the non-reference cell is located. It can also be used for downlink data transmission scheduling.
  • the base station where the non-reference cell is located finds the HS-DPCCH of the HS-DPCCH boundary information of the first time after the start of the HS-SCCH corresponding CFN-DRX n subframe starting point 1280 chips
  • the boundary so as to ensure that the reference cell and the base station find the same HS-DPCCH boundary, the specific search process is well known to those skilled in the art, and details are not described herein.
  • the network notifies the base station where the non-reference cell is located by notifying the DRX timing information difference AT drx of the reference cell and the non-reference cell.
  • the network will refer to the DRX timing information difference ⁇ of the cell.
  • ⁇ . ⁇ 2 — ⁇ . ⁇ (in chips) Notify the base station where the non-reference cell is located;
  • RX has positive and negative points, as shown in Figure 3, where DRXI is negative because F-DPCH is in the corresponding HS.
  • SCCH timing where DRX2 is positive because the F-DPCH is before the corresponding HS-SCCH timing.
  • the base station where the non-reference cell is located is calculated according to the A Rx and the self DRX timing information, and the DRX timing information DRX1 of the reference cell is obtained .
  • the base station where the non-reference cell is located finds the boundary of the HS-SCCH according to the F-DPCH corresponding to the DRXI of the reference cell.
  • the "HS-SCCH boundary" in this embodiment can be used for searching for HS-DPCCH timing by a base station in which a non-reference cell is located, and can also be used for downlink data transmission scheduling. Then, the base station where the non-reference cell is located finds the boundary of the HS-DPCCH by the rule "the HS-DPCCH boundary information closest to the time of the 1280 chips after the start of the HS-SCCH corresponding CFN-DRX n subframe" in the protocol, thereby ensuring the boundary of the HS-DPCCH. The reference cell and the base station where the non-reference cell is located find the same HS-DPCCH boundary.
  • the DRX timing information of the reference cell is a base where the non-reference cell is located.
  • the DRX timing information of the station is .
  • Both the base station where the non-reference cell is located can have the correct understanding of the correct HS-SCCH and HS-DPCCH pairing.
  • the RNC of the network is still the DRX timing information difference of the reference cell. - ⁇ RX! is notified to the base station where the non-reference cell is located, but the way in which the base station where the non-reference cell is located determines the boundary of the HS-DPCCH and/or the HS-SCCH is different, specifically: [0068] the base station where the non-reference cell is located passes Formula: 5*CFN—DRX+
  • the symbol II is rounded up, for example, the value in the symbol is 0.5, the calculation result is 1, the value in the symbol is 1.5, the calculation result is 2, and so on; a subframe offset that is discontinuously received;
  • the CFN_DRX indicates a connection frame number in a discontinuous reception state;
  • the S-DRX indicates a subframe number in a discontinuous reception state, and CFN_DRX and S—
  • the DRX is a value before the HS-DPCCH and/or HS-SCCH correction of the non-reference cell.
  • the above formula is mainly used to determine the boundary of the channel; and the following formula is mainly used for the NodeB to determine the UE feedback information (i.e., the location where the CQI is located).
  • the HS-DPCCH transmits a channel quality indicator (CQI, Channel Quality Indicator).
  • CQI Channel Quality Indicator
  • k' is the number of subframes corresponding to the DRX cycle;
  • CFN_DRX is the connection frame number in the discontinuous reception state;
  • UE_DTX_DRX_Offset is: the user equipment is discontinuously transmitted and discontinuously received. Shift;
  • S—DRX is the subframe number in the discontinuous reception state;
  • MOD is the modulo operation.
  • MIMO Multiple Input Multiple Output
  • the UE needs to send a TypeA CQI (typeA Channel Quality Indicator), otherwise, the UE sends a typeB CQI.
  • TypeA CQI typeA Channel Quality Indicator
  • typeB CQI typeB CQI
  • M_cqi and/or N_cqi_typeA are parameters that the network sends to the UE through signaling.
  • other parameters in the formula are as described above, and will not be described here.
  • the time at which the HS-SCCH receives the CQI is:
  • the network may notify the base station where the non-reference cell is located, where the non-referenced offset (DRX OFFSET) of the reference cell is located, where, but not limited to, DRX_OFFSET
  • the base station of the non-reference cell is obtained by the formula 5*CFN-DRX+S-DRX+DRX_OFFSET, and the boundary of the HS-DPCCH is obtained.
  • CFN_DRX and S-DRX are as shown above, and are values before the non-reference cell correction.
  • k' is the number of subframes corresponding to the DRX cycle, and other parameters in the formula are as shown above, and details are not described herein again.
  • the UE needs to send a typeA CQI, otherwise the UE sends a typeB CQI.
  • typeA CQI and typeB CQI are clearly defined in 3GPP Protocol 25.212.
  • the parameters M_cqi and / or N-cqi_typeA are sent by the network to the UE through signaling.
  • the RNC of the network notifies the base station where the non-reference cell is located by using the timing relationship (referred to as the m value) of the uplink DPCCH and the uplink HS-DPCCH of the reference cell, and then, the non-reference The base station where the cell is located generates boundary information of the HS-DPCCH according to the timing information.
  • the timing relationship referred to as the m value
  • the RNC first obtains the DRX timing information (ie, A RX ) of the reference cell from the reference cell, and the manner of obtaining the DRX may be either an active request or a passive receiving, which is not limited in this embodiment.
  • the DRX timing information is defined as the timing offset of the F-DPCH and the HS-SCCH.
  • all units of D XI , T DRX2 ; ⁇ ⁇ ⁇ are chips .
  • the m value is a timing difference between an uplink DPCCH transmission boundary corresponding to a downlink HS-SCCH subframe and a feedback HS-DPCCH boundary for the HS-SCCH, or may be understood as Uplink DPCCH and HS-DPCCH timing differences for one HS-SCCH data transmission.
  • the reference cell may find the boundary information of the HS-DPCCH according to the value of m, so as to detect the carried information, as shown in FIG. 4, FIG. 4 is another method for determining a data boundary by using DRX timing information according to an embodiment of the present invention.
  • the reference cell may find the DRXI according to the following, so that the association relationship between the HS-SCCH and the HS-DPCCH may be established, and the reference cell may notify the base station where the non-reference cell is located, and the m value is the uplink DPCCH and The timing deviation of the HS-DPCCH, after the base station where the non-reference cell is located knows the m value of the reference cell, the association relationship between the HS-SCCH and the HS-DPCCH can be directly derived.
  • the HS-DPCCH S_DRX 0
  • the m value of the base station where the non-reference cell is located is 5 S-DRXs
  • the base station where the non-reference cell is located can determine the S-DRX according to the acquired m value-5. At this time, it can be ensured that the base station where the non-reference cell is located and the base station where the reference cell is located understand the same.
  • FIG. 4 is different from the embodiment shown in FIG. 3 in that the DRX timing information acquired by the base station where the non-reference cell is located is different.
  • the RNC notifies the base station where the non-reference cell is located, so that the timing of the uplink DPCCH detected by the two cells is the same, and the base station where the non-reference cell is located can find the same.
  • HS-DPCCH boundary
  • the embodiment may be based on the foregoing embodiment, the RNC may also use the timing information of the F-DPCH and the HS-PDSCH of the reference cell, or the difference between the reference cell and the non-reference cell.
  • the value information informs the base station where the non-reference cell is located.
  • the timing information of the F-DPCH and the HS-PDSCH of the reference cell is notified to the base station where the non-reference cell is located, in this manner, due to the timing information and the m value of the F-DPCH and the HS-PDSCH There is a unique conversion relationship between them, and thus, the correct calculation for the HS-DPCCH boundary is finally calculated.
  • the m difference information of the reference cell and the non-reference cell is notified to the base station where the non-reference cell is located.
  • the embodiment of the present invention provides that the DRX timing information of the reference cell or the parameter for determining the boundary information of the HS-DPCCH is notified to the base station where the non-reference cell is located, so that the non-reference cell is located.
  • the base station determines the HS-DPCCH boundary according to the DRX timing information or the detection of the HS-DPCCH boundary by the parameter, thereby improving the performance of downlink data transmission.
  • the successful reception of uplink data by the base station where the non-reference cell is located in the multi-flow transmission (Multiflow) is also guaranteed.
  • an embodiment of the present invention further provides a data boundary determining apparatus, and a schematic structural diagram thereof is shown in FIG. 5, where the apparatus includes: an obtaining unit 51 and a determining unit 52.
  • the obtaining unit 51 is configured to acquire timing information of the reference cell, or a parameter used to determine boundary information of the high-speed dedicated physical control channel HS-DPCCH, and the determining unit 52 is configured to use, according to the reference
  • the timing information of the cell or the parameter determines the boundary information of the HS-DPCCH, where the boundary information of the HS-DPCCH can be used not only for searching for the HS-DPCCH timing of the base station where the non-reference cell is located, but also for downlink data transmission. Scheduling.
  • the obtaining unit 51 includes: a receiving unit 511 and a requesting unit 512.
  • the result is shown in FIG. 6.
  • FIG. 6 is a schematic diagram of a second structure of a data boundary determining apparatus according to an embodiment of the present invention.
  • the receiving unit 511 is configured to receive timing information of the reference cell that is sent by the network, or a parameter that is used to determine boundary information of the HS-DPCCH, where the requesting unit 512 is configured to send the obtained information to the network. a timing information of the reference cell or a request for determining boundary information of the HS-DPCCH; and receiving a response of the parameter transmitted by the network including the reference cell or a parameter used to determine boundary information of the HS-DPCCH.
  • the parameter used to determine the boundary information of the HS-DPCCH acquired by the acquiring unit includes: when the downlink non-continuous receiving DRX timing information of the reference cell is received;
  • the unit 52 includes: a first search unit 521 and a first boundary determining unit 522, which is shown in FIG. 7.
  • FIG. 7 is a schematic diagram of a third structure of a data boundary determining apparatus according to an embodiment of the present invention. Figure 7 is based on the embodiment of Figure 5.
  • the first searching unit 521 is configured to search for a boundary of the HS-SCCH according to the F-DPCH corresponding to the reference cell, where the first boundary determining unit 522 is configured to use the first searching unit. 521 finds the boundary of the HS-SCCH as a starting point, and the The HS-DPCCH boundary information closest to the time of the 1280 chips after the start of the CF-DRX n subframe corresponding to the HS-SCCH is determined as the boundary information of the HS-DPCCH.
  • the parameter that is used by the acquiring unit to determine the boundary information of the HS-DPCCH includes: a DRX timing information difference between the reference cell and the non-reference cell; 52 includes: a first calculating unit 523, a second searching unit 524 and a second boundary determining unit 525; and/or a third boundary unit 526 (shown by a broken line in the figure), and its structural schematic diagram is as shown in FIG.
  • FIG. 8 is a schematic diagram of a fourth structure of a data boundary determining apparatus according to an embodiment of the present invention. This embodiment is taken as an example on the basis of FIG. 5, wherein the first calculating unit 523 is configured to be based on the ⁇ .
  • the DRX timing information of the ⁇ and the non-reference cell is calculated to obtain the DRX timing information of the reference cell
  • the second searching unit 524 is configured to find the HS-SCCH according to the F-DPCH corresponding to the RXI of the reference cell.
  • the second boundary determining unit 525 is configured to start, by using a boundary of the HS-SCCH that is searched by the second searching unit, a starting point of the CFN-DRX n subframe corresponding to the HS-SCCH
  • the closest HS-DPCCH boundary information of the chips is determined as the boundary information of the HS-DPCCH;
  • the third boundary determining unit 526 is configured to
  • CFN—DRX and S—DRX are non-reference cells
  • the parameter that is used by the acquiring unit to determine the boundary information of the HS-DPCCH includes: a downlink discontinuous received offset DRX_OFFSET of the reference cell;
  • the determining unit is specifically configured to: according to the formula 5*CFN-DRX+ S-DRX+DRX_OFFSET, obtains the boundary information of HS-DPCCH, where CFN-DRX is: the connection frame number in the discontinuous reception state; S-DRX is: the subframe number in the discontinuous reception state; DRX— OFFSET is: Offset of discontinuous reception.
  • the parameter that is used by the acquiring unit to determine the boundary information of the HS-DPCCH includes: a timing relationship between an uplink dedicated physical control channel DPCCH and an uplink HS-DPCCH of the reference cell; wherein, the uplink The timing relationship between the DPCCH and the uplink HS-DPCCH is: the timing difference between the uplink DPCCH transmission boundary corresponding to the specified one downlink HS-SCCH subframe and the HS-DPCCH boundary of the feedback for the HS-SCCH; or The uplink DPCCH and the HS-DPCCH timing difference sent by the HS-SCCH data; the determining unit is specifically configured to send a boundary of the uplink DPCCH corresponding to the specified one downlink HS-SCCH subframe, and feedback for the HS-SCCH The timing difference between the HS-DPCCH boundaries; or the uplink DPCCH and HS-DPCCH timing differences transmitted for one HS-SCCH data, to obtain the boundary information of the HS-
  • the parameter used to determine the boundary information of the HS-DPCCH acquired by the acquiring unit includes: m difference information ⁇ of the reference cell and the non-reference cell; the determining unit includes: a second calculating unit 527, a third search unit 528 and a fourth boundary determining unit 529, a schematic structural diagram thereof is shown in FIG. 9.
  • FIG. 9 is a fifth schematic structural diagram of a data boundary determining apparatus according to an embodiment of the present invention.
  • the second calculating unit 527 is configured to obtain the reference cell's ⁇ RX!
  • the unit 528 is configured to search, according to the F-DPCH corresponding to the reference cell, the boundary information of the HS-SCCH, where the fourth boundary determining unit 529 is configured to search for the HS-SCCH by the third searching unit.
  • the boundary is the starting point, and the HS-DPCCH boundary information closest to the time of the 1280 chips after the start of the CFN-DRX n subframe corresponding to the HS-SCCH is determined as the boundary information of the HS-DPCCH.
  • the first computing unit and the second computing unit may be integrated in one
  • the first search unit, the second search unit, and the third search unit may be integrated or may be deployed in a single step, the first boundary determining unit, the second boundary determining unit, and the third boundary.
  • the determining unit and the fourth boundary determining unit may be integrated or deployed in a single step, which is not limited in this embodiment.
  • the data boundary determining apparatus may be integrated in the base station serving the user equipment, or may be deployed in the network independently, which is not limited in this embodiment.
  • the embodiment of the present invention further provides an indication information sending apparatus, and a schematic structural diagram thereof is shown in FIG. 10, where the apparatus includes: an obtaining unit 11 and a sending unit 12, where the acquiring unit 11 is used.
  • the apparatus includes: an obtaining unit 11 and a sending unit 12, where the acquiring unit 11 is used.
  • the parameter of the boundary information of the physical control channel HS-DPCCH is sent to the base station where the non-reference cell is located.
  • the acquiring unit includes: a receiving unit and/or a requesting unit, where the receiving unit is configured to receive timing information sent by a base station where a reference cell is located when configuring multi-stream transmission for the user equipment, Or the parameter used to determine the boundary information of the high-speed dedicated physical control channel HS-DPCCH; the requesting unit is configured to send timing information of the reference cell to the base station where the reference cell is located, or to determine the high-speed dedicated physical control channel HS- A request for a parameter of boundary information of the DPCCH; receiving a response of the reference cell to transmit timing information including the reference cell or a parameter used to determine boundary information of the high speed dedicated physical control channel HS-DPCCH.
  • the timing information of the reference cell acquired by the acquiring unit includes: a discontinuous reception DRX timing information of the reference cell and/or a timing relationship between an uplink dedicated physical control channel DPCCH and an uplink HS-DPCCH of the reference cell;
  • the parameter used by the acquiring unit to determine the boundary information of the high-speed dedicated physical control channel HS-DPCCH includes: discontinuous reception DRX timing information of the reference cell; wherein the DRX timing information is a separate dedicated physical channel Timing deviation of F-DPCH and high-speed shared control channel HS-SCCH, DRX timing information difference AT DRX of reference cell and non-reference cell, discontinuous received offset DRX_OFFSET of reference cell and/or reference cell and non-reference The m difference information ⁇ of the cell.
  • the discontinuous received offset DRX_OFFSET of the reference cell is calculated by the network by using Equation 1 - 2560, where ⁇ ⁇ ⁇ is a reference cell and a non-reference
  • the indication information sending apparatus may be integrated in the RNC in the network, or may be deployed in the network independently, which is not limited in this embodiment.
  • the disclosed systems, apparatus, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing order In the meta element, each unit may exist physically separately, or two or more units may be integrated in one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据边界确定方法、指示信息发送方法及其装置,所述边界确定方法包括:非参考小区所在的基站获取参考小区的定时信息,或者获取用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数;所述基站根据所述参考小区的定时信息或者所述参数确定HS-DPCCH的边界信息,其中,所述边界信息用于所述基站查找HS-DPCCH定时所用。本发明解决了现有技术中非参考小区所在的基站不能找到正确的HS-DPCCH边界,导致下行数据传输性能下降的技术问题。

Description

一种数据边界确定方法、 指示信息发送方法及其装置
[0001]本申请要求于 2012 年 05 月 10 日提交中国专利局、 申请号为 201210144267.9、 发明名称为"一种数据边界确定方法、 指示信息发送方法 及其装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域
[0002]本发明涉及通信技术领域, 特别涉及一种数据边界确定方法、 指示 信息发送方法及其装置。
背景技术
[0003] 随着移动通信技术的发展, 通用移动通讯系统 (UMTS , Universal Mobile Telecommunications System ) 中分别引入了下行非连续接收( DRX, Discontinuous Reception )和多流传输 ( Multiflow )特性, 但是, DRX 和 Multiflow的共存问题, 是目前有待解决的技术问题。
[0004] 目前, 由于不同的信道间存在固定的定时关系, 从小区侧来看, 需 要找到高速专用物理控制信道(HS-DPCCH, High Speed-Dedicated Physial Control Channel )的起点以便接收上行数据, 根据协议规范, 小区需要根据 高速共享控制信道( HS-SCCH, High Speed-Shared Control Channel )起点, 向后找到离 1280 chips的时间上最靠近的 HS-DPCCH边界作为边界。 这里 以 SF-DC特性为例。 在 SF-DC特性中, 有两个服务小区, 彼此间存在一定 的定时差, 并且两个小区可以在同一个基站内或在不同的基站内。
[0005] 由于 SF-DC中 UE下行需要在两个小区接收数据, 但上行只需在一 个小区发送, 另一个小区需要解调数据 (比如在跨基站的 SF-DC场景中 ), 这样需要用户设备 UE ( User Equipment )侧对下行数据接收的子帧进行指 定配对关系。
[0006]可定义 UE的参考小区和辅助小区,参考小区为 UE的下行物理信道 HS-PDSCH和上行物理信道 HS-DPCCH定时差为 19200 chips或 7.5 slot的 小区, 另一个小区则为辅助小区, 或称为非参考小区。 比如 UE参考小区中 的 HS-SCCH S_DRX=0与非参考小区的 HS-SCCH S_DRX=0配对,那么 UE 会在接收了这两个子帧的数据后, 在对应的 HS-DPCCH上同时反馈这两个 子帧的反馈信息, 其中 HS-DPCCH和 HS-SCCH有固定的定时关系。
[0007]但是, 对于参考小区而言, 对其调度的 HS-SCCH S—DRX=0数据子 帧,参考小区按照协议规范中的 "HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips 的时间上最靠近的 HS-DPCCH 边界"会找到 HS-DPCCH S— DRX=0的子帧为其边界。 需要注意的是, HS-DPCCH S— DRX=0子帧并 不承载 HS-SCCH S_DRX=0子帧的反馈,而要根据固定的定时来找其反馈, 比如下一个 HS-DPCCH S_DRX=0会承载 HS-SCCH S_DRX=0的反馈信息。
[0008] 而对于非参考小区所在的基站, 也会根据协议规范去寻找 HS-DPCCH的边界, 但是, 费参考小区就会找到 HS-DPCCH S—DRX=1 , 但 由于 UE侧是将两个小区的 HS-SCCH S_DRX=0做同时接收, 并且通过一 条 HS-DPCCH 反馈, 因而这样会导致 UE 和非参考小区所在的基站对 HS-DPCCH 信息理解不一致 (也即非参考小区所在的基站错误定位 HS-DPCCH边界 ), 降低了下行数据传输的性能。
[0009]在对现有技术的研究和实践过程中, 本发明的发明人发现, 现有的 实现方式中, 由于非参考小区所在的基站可能无法找到正确的 HS-DPCCH 边界, 从而导致 UE 和非参考小区所在的基站对某个下行数据发送的上行 HS-DPCCH理解不一致, 导致下行数据传输性能下降的技术问题。 发明内容
[0010]本发明实施例中提供了一种数据边界确定方法、 指示数据发送方法 及其装置, 以解决现有技术中非参考小区所在的基站不能找到正确的
HS-DPCCH边界, 导致下行数据传输性能下降的技术问题。
[0011]为解决上述技术问题, 本发明实施例提供一种数据边界确定方法, 所述方法包括: 非参考小区所在的基站获取参考小区的定时信息, 或者获 取用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数; 所述基 站根据所述参考小区的定时信息或者所述参数确定 HS-DPCCH 的边界信 息。
[0012]本发明实施例还提供一种指示信息发送方法, 所述方法包括: 获取 参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的 边界信息的参数; 将所述参考小区的定时信息, 或者用来确定高速专用物 理控制信道 HS-DPCCH的边界信息的参数发送给所述非参考小区所在的基 站, 以便于所述非参考小区所在的基站确定 HS-DPCCH的边界信息。
[0013]本发明实施例还提供一种数据边界确定装置, 所述装置包括: 获取 单元, 用于获取参考小区的定时信息, 或者用来确定高速专用物理控制信 道 HS-DPCCH的边界信息的参数; 确定单元, 用于根据所述参考小区的定 时信息或者所述参数确定 HS-DPCCH的边界信息。
[0014]本发明实施例还提供一种指示信息发送装置, 所述装置包括: 获取 单元, 用于获取参考小区的定时信息, 或者用来确定高速专用物理控制信 道 HS-DPCCH的边界信息的参数; 发送单元, 用于将所述参考小区的定时 信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数 发送给所述非参考小区所在的基站。
[0015] 由上述技术方案可知, 由于所述非参考小区所在的基站可以获得参 考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边 界信息的参数, 从而可以正确的定位 HS-DPCCH的边界信息, 从而提高了 下行数据传输性能。
附图说明
[0016]为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将 对实施例中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0017] 图 1为本发明实施例提供的一种数据边界确定方法的流程图;
[0018] 图 2为本发明实施例提供的为本发明实施例提供的一种指示信息发 送方法的流程图;
[0019] 图 3为本发明实施例中提供的一种通过 DRX定时信息进行数据边界 确定方法的应用实例图;
[0020] 图 4为本发明实施例中提供的另一种通过 DRX定时信息进行数据边 界确定方法的应用实例图;
[0021] 图 5为本发明实施例中提供的一种数据边界确定装置的结构示意图;
[0022] 图 6为本发明实施例提供的一种数据边界确定装置的第二结构示意 图;
[0023] 图 7为本发明实施例提供的一种数据边界确定装置的第三结构示意 图;
[0024] 图 8为本发明实施例提供的一种数据边界确定装置的第四结构示意 图;
[0025] 图 9为本发明实施例提供的一种数据边界确定装置的第五结构示意 图;
[0026] 图 10为本发明实施例提供的一种指示信息发送装置的结构示意图。
具体实施方式
[0027]下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整的描述, 显然, 所描述的实施例仅仅是本发明一部分实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保 护的范围。 其中, 本发明所有实施例中的参考小区为定时参考小区, 非 参考小区为非定时参考小区, 参考小区所在的基站为定时参考小区所在 的基站, 非参考小区所在的基站为非定时参考小区所在的基站。 其中, 定时参考小区所在的基站与非定时参考小区所在的基站为不同的基站。
[0028]另外, 本文中术语"系统"和"网络"在本文中常被可互换使用。 本 文中术语"和 /或,,, 仅仅是一种描述关联对象的关联关系, 表示可以存在 三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符" /,,, 一般表示前后关联对象 是一种 "或"的关系。
[0029]在本发明实施例中, 将为 UE服务的小区 (基站) 定义为参考小 区所在的基站和非参考小区所在的基站(即辅助小区所在的基站;),其中, 参考小区为 UE的下行物理信道 HS-PDSCH和上行物理信道 HS-DPCCH 定时差为 19200 chips或 7.5 slot的小区, 此处之外的其他小区可以为非 参考小区。 如果 UE参考小区中的 HS-SCCH S— DRX=0与非参考小区的 HS-SCCH S_DRX=0配对, UE会在接收了这两个子帧的数据后, 在对应 的 HS-DPCCH上同时反馈这两个子帧的反馈信息, 其中 HS-DPCCH和 HS-SCCH有固定的定时关系。 [0030]在该实施例中, UE可以为以下任意一种, 可以是静态的, 也可以 是移动的, 静止的 UE具体可以包括为终端(terminal ), 移动台 (mobile station )、 用户单元 ( subscriber unit ) 或站台 (station ) 等, 移动的 UE 具体可以包括蜂窝电话( cellular phone )、个人数字助理( PDA , personal digital assistant ), 无线调制解调器( modem ), 无线通信设备、 手持设备 ( handheld )、膝上型电脑 ( laptop computer )、 无绳电话 ( cordless phone ) 或无线本地环路(WLL, wireless local loop ) 台等, 上述 UE可以分布于 整个无线网络中。
[0031]请参阅图 1 , 图 1 为本发明实施例提供的一种数据边界确定方法 的流程图; 所述方法包括:
[0032] 101 : 非参考小区所在的基站获取参考小区的定时信息, 或者用来 确定高速专用物理控制信道 HS-DPCCH的边界信息的参数;
[0033]在该步骤中, 其获取的方式有多种, 可以主动请求, 也可以被动 接收, 比如, 非参考小区所在的基站接收网络发送的所述参考小区的定 时信息, 或者用来确定 HS-DPCCH的边界信息的参数; 或者, 所述非参 考小区所在的基站向网络发送获取所述参考小区的定时信息或者用来确 定 HS-DPCCH的边界信息的请求;接收所述网络发送的包括所述参考小 区的定时信息, 或者用来确定 HS-DPCCH的边界信息的参数的响应。
[0034] 102:所述非参考小区所在的基站根据所述参考小区的定时信息或 者所述参数确定 HS-DPCCH的边界信息。
[0035]本发明实施例中, 由于所述非参考小区所在的基站可以获得参考 小区的定时信息,或者用来确定高速专用物理控制信道 HS-DPCCH的边 界信息的参数, 从而可以正确的定位 HS-DPCCH的边界信息, 从而提高 了下行数据传输性能。
[0036]在上述实施例中, 在 101 中, 如果获取参考小区的定时信息, 或 者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数不同, 则所述非参考小区所在的基站确定 HS-DPCCH 的边界信息的方式也不 同, 具体如下实施例所述。
[0037]可选的, 在上述实施例中, 如果所述参考小区的定时信息包括: 参考小区的下行非连续接收 DRX定时信息( ^RX! ); 所述 DRX定时信息 为分离的专用物理信道 F-DPCH和高速共享控制信道 HS-SCCH的定时 偏差; 则所述非参考小区所在的基站根据所述参考小区的定时信息, 确 定 HS-DPCCH的边界信息, 具体包括: 所述非参考小区所在的基站根据 所述参考小区的 ^1对应的 F-DPCH查找 HS-SCCH的边界; 并以查找 到的所述 HS-SCCH 的边界为起点, 按照协议规定, 将所述 HS-SCCH 对应的 CFN— DRX n 子帧起点后 1280 chips 的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息。其中,具体的查找 和确定方法对于本领域技术人员已是熟知技术, 在此不再赘述。
[0038]可选的, 在上述实施例中, 如果所述用来确定 HS-DPCCH的边界 信息的参数包括: 参考小区与非参考小区的 DRX定时信息差 Δτ。κχ ; 则 所述非参考小区根据所述参数确定 HS-DPCCH的边界信息,具体包括: 非参考小区根据所述 Δτ。κχ与自身 DRX定时信息 ^进行计算, 得到参 考小区的 DRX定时信息 , 比如, 按照公式: Δ ΚΧ = RX2 - TDRXI等; 根 据参考小区的 drx1对应的 F-DPCH查找到 HS-SCCH的边界信息; 所述 非参考小区所在的基站按照协议规定, 即以查找到的所述 HS-SCCH 的 边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界 信息。
[0039]在本发明的另一实施例中, 基站根据公式 5* CFN— DRX+ S DRX+l , 得到 HS-SCCH的边界信息, 其中, 「,符号为向
Figure imgf000009_0001
上取整; 所述 CFN— DRX 为非连续接收状态下的连接帧号 ( Connection Frame Number— Discontinuous Reception ), S— DRX为非连续接收 态下的子 †贞号 ( Sub Frame Number— Discontinuous Reception ), 所述 CFN— DRX和 S DRX 均为非参考小区 HS-DPCCH和 /或 HS-SCCH修正前的值; 所述
+ 1.
1 - 2560 为非连续接收的子帧偏移量。
[0040]可选的, 在该实施例中, 如果所述用来确定 HS-DPCCH的边界信 息的参数包括: 参考小区的下行非连续接收的偏移量 DRX— OFFSET; 则 所述非参考小区所在的基站根据所述参数确定 HS-DPCCH的边界信息, 具体包括: 所述非参考小区所在的基站根据公式 5*CFN— DRX+ S—DRX+DRX— OFFSET,得到 HS-DPCCH的边界信息,其中, CFN— DRX 为: 非连续接收状态下的连接帧号; S— DRX为: 非连续接收状态下的子 帧号; DRX— OFFSET为: 非连续接收的偏移量。
[0041]可选的, 在该实施例中, 所述用来确定 HS-DPCCH的边界信息的 参数包括: 参考小区的上行专用物理控制信道 DPCCH 和上行 HS-DPCCH 的定时关系 (即 m 值); 其中, 所述上行 DPCCH 和上行 HS-DPCCH的定时关系为: 指定的一个下行 HS-SCCH子帧对应的上行 DPCCH发送边界, 和针对该 HS-SCCH的反馈的 HS-DPCCH边界之间 的定时差; 或者为针对一个 HS-SCCH 数据发送的上行 DPCCH 和 HS-DPCCH 定时差; 则所述非参考小区所在的基站根据所述参数确定 HS-DPCCH的边界信息, 具体包括: 所述非参考小区所在的基站对所述 指定的一个下行 HS-SCCH子帧对应的上行 DPCCH发送边界,和针对该 HS-SCCH 的反馈的 HS-DPCCH 边界之间的定时差; 或者针对一个 HS-SCCH数据发送的上行 DPCCH和 HS-DPCCH定时差进行检测, 得 到 HS-DPCCH的边界信息。
[0042]可选的, 在该实施例中, 如果所述用来确定 HS-DPCCH的边界信 息的参数包括: 参考小区和非参考小区的 m差值信息 Δηι ; 则所述非参 考小区所在的基站根据所述参数确定 HS-DPCCH 的边界信息, 如下所 示。
[0043]首先, 所述非参考小区所在的基站按照公式 256*Διη = Δτ。κχ , 以及
△ RX =非参考小区 RX2 -参考小区¾»0 , 得到参考小区的 RX1 ; 然后, 所 述非参考小区所在的基站根据参考小区的 ^RXi对应的 F-DPCH 查找到 HS-SCCH的边界信息; 最后, 所述非参考小区所在的基站以查找到的所 述 HS-SCCH的边界为起点,将所述 HS-SCCH对应的 CFN— DRX n子帧 起点后 1280 chips 的时间上最靠近的 HS-DPCCH 边界信息确定为 HS-DPCCH的边界信息。
[0044]当然, 在上述实施例中, 所述用来确定非连续接收定时信息的参 数也可以包括上述的一种, 或多种, 本实施例不作限制, 当包括多种中, 确定 HS-DPCCH边界信息的方式对应的方式来确定, 具体详见上述, 在 此不再赘述。
[0045]还请参阅图 2 , 为本发明实施例提供的一种指示信息发送方法的 流程图, 所述方法包括:
[0046] 201 : 获取参考小区的定时信息, 或者用来确定高速专用物理控制 信道 HS-DPCCH的边界信息的参数;
[0047]在该步骤中, 网络中的无线网络控制器 (RNC ) 获取的方式有多 种, 比如, 在网络的 RNC为用户设备配置多流传输时, RNC接收到参 考小区所在的基站发送的定时信息, 或者用来确定高速专用物理控制信 道 HS-DPCCH的边界信息的参数; 或者, 网络的 RNC向参考小区所在 的基站发送获取参考小区的定时信息, 或者用来确定高速专用物理控制 信道 HS-DPCCH的边界信息的参数的请求;以及接收所述参考小区发送 包括该参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数的响应。
[0048]其中, 在该实施例中, 所述参考小区的定时信息包括: 非连续接 收 DRX定时信息; 但并不限于此, 还可以包括其他的定时信息。
[0049]所述用来确定高速专用物理控制信道 HS-DPCCH 的边界信息的 参数至少包括下述一种: 参考小区与非参考小区的 DRX 定时信息差 A TDRX ; 或者参考小区的非连续接收的偏移量 DRX— OFFSET; 或者参考 小区的上行专用物理控制信道 DPCCH和上行 HS-DPCCH的定时关系; 或者参考小区和非参考小区的 m差值信息 Δηι , 但并不限于此, 还可以 包括用来确定高速专用物理控制信道 HS-DPCCH 的边界信息的其他参 数。
[0050]可选的, 所述参考小区的非连续接收的偏移量 DRX— OFFSET 是 网络通过公式
+ 1.
1 - 2560 计算得到的, 其中, ArDRX为参考小区与非参考小区的
DRX定时信息差。
[0051] 202: 将所述参考小区的定时信息, 或者用来确定高速专用物理控 制信道 HS-DPCCH 的边界信息的参数发送给所述非参考小区所在的基 站, 以便于所述非参考小区所在的基站确定 HS-DPCCH的边界信息。
[0052]其中, 该步骤中, RNC发送给所述非参考小区所在的基站的方式 有多种, 只要发送的消息中包括参考小区的定时信息或者用来确定高速 专用物理控制信道 HS-DPCCH的边界信息的参数即可。 [0053]为了便于本领域技术人员的理解,下面以具体的应用实例来说明,
[0054]在一种实施例中, 以 RNC获取参考小区的 DRX定时信息为例。 [0055]首先, RNC先从参考小区中获取该参考小区的 DRX定时信息(即
A TDRX ), 其获取的方式, 可以主动请求, 也可以是被动接收, 本实施例 不作限制。 其中, 该 DRX定时信息定义为 F-DPCH和 HS-SCCH的定时 偏差, 在该实施例中, 所有的 D XI , TDRX2 ; Δ κχ的单位都是 chip 。
[0056]其中, 在该实施例中, 参考小区可以在每次 RNC为 UE配置多流 传输(Multiflow ) 向 RNC上报该 DRX定时, 可以是周期性上报, 也可 以是实时上报; 当然, 也可以是 RNC要求上报时, 参考小区才将该参考 小区的 DRX定时通知给 RNC。 这是因为, 信道定时是在小区 (基站) 和 UE 间维护, 伴随小区时钟漂移、 空口传输时延变化以及其他因素, 这种 DRX定时信息会随时间的变化而可能改变, 因而, 在该实施例中, RNC侧还要及时更新获取到的 DRX定时信息。
[0057]其次, RNC将所述参考小区的 DRX定时信息通知给非参考小区 所在的基站。
[0058]最后,非参考小区所在的基站根据所述参考小区的 DRX定时信息 确定 HS-DPCCH的边界信息。
[0059]也就是说,当非参考小区所在的基站获知参考小区的 DRX定时信 息后, 首先根据参考小区的 DRXI对应的 F-DPCH找到 HS-SCCH的边界, 如图 3所示, 图 3为本发明实施例中提供的一种通过 DRX定时信息进 行数据边界确定方法的应用实例图。 需要说明的是, 该实施例中的 "HS-SCCH边界信息"可用于非参考小区所在的基站查找 HS-DPCCH定 时所用, 还可用于下行数据传输调度。
[0060]然后, 非参考小区所在的基站通过协议中的规则 "HS-SCCH对应 的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边 界信息"查找到 HS-DPCCH的边界, 从而就能保证参考小区和基站找到 相同的 HS-DPCCH边界, 其具体的查找过程对于本领域技术人员来说, 已是公知技术, 在此不再赘述。
[0061]在另一实施例中,网络以将参考小区与非参考小区的 DRX定时信 息差 ATdrx通知给非参考小区所在的基站为例。
[0062]首先, 网络将参考小区的 DRX定时信息差 Δτ。κχ = τ。κχ2τ。^ (以 码片为单位) 通知给非参考小区所在的基站; 需要注意的是, RX有正 负之分,如图 3所示,图中 DRXI为负值,因为 F-DPCH在对应的 HS-SCCH 定时之后, 其中 DRX2为正值, 因为 F-DPCH在对应的 HS-SCCH定时之 前。
[0063]然后,非参考小区所在的基站根据 A Rx和自身 DRX定时信息 进行计算, 得到参考小区的 DRX定时信息 DRX1
[0064]再后,非参考小区所在的基站根据参考小区的 DRXI对应的 F-DPCH 找到 HS-SCCH的边界。
[0065]如图 3所示, 本实施例中的 "HS-SCCH边界"可用于非参考小区所 在的基站找寻 HS-DPCCH定时所用, 还可用于下行数据传输调度。 然后 非参考小区所在的基站通过协议中的规则 "在 HS-SCCH 对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界 信息"找到 HS-DPCCH的边界, 从而保证了参考小区和非参考小区所在 的基站找到相同的 HS-DPCCH边界。
[0066]图 3中, 参考小区的 DRX定时信息为 非参考小区所在的基 站的 DRX定时信息为 。非参考小区所在的基站首先找到 S— DRX=0 , 然后找到对应的 F-DPCH的开始边界。 根据上述过程, 非参考小区所在 的基站可以根据^^2和^。^以获得参考小区的 DRX 定时信息 ^。 由 图可见, 非参考小区所在的基站根据协议中定义的 HS-SCCH 和 HS-DPCCH的定时规则, 可以找到 S— DRX=0对应的 HS-DPCCH子帧为 S_DRX=0, 这样可以保证参考小区和非参考小区所在的基站都能有正确 的 HS-SCCH和 HS-DPCCH配对有正确的理解。
[0067]在又一种实施例中, 网络的 RNC还是将参考小区的 DRX定时信 息差
Figure imgf000014_0001
- ^RX!通知给非参考小区所在的基站, 但是, 非参考小区 所在的基站确定 HS-DPCCH和 /或 HS-SCCH的边界的方式不同,具体为: [0068]非 参 考 小 区 所 在 的 基 站 通 过 公 式 : 5*CFN— DRX+
S DRX+ 1 , 来确定 HS-DPCCH的边界。
Figure imgf000014_0002
[0069]其中, 上述公式中 I I符号为向上取整, 比如符号内数值为 0.5则计 算结果为 1 , 符号内数值为 1.5 则计算结果为 2 , 以此类推; 所述
Figure imgf000014_0003
为非连续接收的子帧偏移量; 所述 CFN— DRX表示非连续接 收状态下的连接帧号; 所述 S— DRX表示非连续接收状态下的子帧号, 且 CFN— DRX和 S— DRX均为非参考小区的 HS-DPCCH和 /或 HS-SCCH修正 前的值。
[0070]在该实施例中, 上述公式主要用于判定信道的边界; 而下述公式主 要用于 NodeB判定 UE反馈信息 (即 CQI所在的位置)。
[0071]此时, HS-DPCCH发送信道质量指示 (CQI, Channel Quality Indicator) 的时刻为:
AT,
+ 1.
((5*CFN— DRX - UE—DTX—DRX— Offset + S DRX+l - 2560 ) MOD k')
0 with k' = kK2ms)
[0072]其中, k'为 DRX周期对应的子帧数; CFN— DRX为非连续接收状态 下的连接帧号; UE—DTX—DRX— Offset为: 用户设备非连续发射且非连续接 收的偏移量; S— DRX为非连续接收状态下的子帧号; MOD为求模运算。
[0073]进一步地 , 当网络又配置了多输入多输出( MIMO , Multi Input Multi Output ) 时, 在满足上面公式的前提下, 若还满足如下公式:
-^ + l.
5xCFN DRX-UE DTX DRX Offset + S DRX+1 - 2560
3
mod cqi < N_cqi_typeA
[0074]则 UE需要发送类型 A的信道质量指示 (typeA CQI, typeA Channel Quality Indicator ),否则, UE发送 typeB CQI。其中, typeA CQI和 typeB CQI 的定义具体详见 3GPP协议 25.212中的定义, 在此不再赘述; M— cqi和 /或 N— cqi— typeA为网络通过信令发送给 UE的参数。 另外, 该公式中其他的参 数详见上述, 在此不再赘述。
[0075] HS-SCCH接收 CQI的时刻为:
+ 1.
((5*CFN— DRX - UE—DTX—DRX— Offset + S— DRX +1 - 2560 ) MOD
3
UE— DRX cycle) = 0; [0076]其中, 该公式中各个的参数的定义, 具体详见上述对应的参数, 在 此不再赘述。
[0077] 在又一种实施例中, 网络可以将参考小区的非连续接收的偏移量 ( DRX OFFSET )通知给非参考小区所在的基站, 其中, DRX— OFFSET, 但并不限于此
Figure imgf000016_0001
[0078] 而 非 参 考 小 区 所 在 的 基 站 通 过公 式 5*CFN— DRX+ S—DRX+DRX— OFFSET, 得到 HS-DPCCH的边界。
[0079]其中, CFN— DRX和 S— DRX的定义如上所示, 且均为非参考小区修 正前的值。
[0080]那么 , HS-DPCCH发送 CQI的时刻为:
((5*CFN— DRX - UE—DTX—DRX—Offset+S—DRX+DRX— OFFSET) MOD k') = 0, with k' = kK2ms)
[0081]其中 k'为 DRX周期对应的子帧数, 该公式中的其他参数如上所示, 在此不再赘述。
[0082]进一步地, 当网络又配置了 MIMO时, 在满足上面公式的前提下, 若还满足如下公式:
5 X CFN—DRX - UE DTX DRX Offset + S—DRX + DRX _ OFFSET
mod _cqi < N_cqi_typeA k'
[0083]则 UE需要发送 typeA CQI,否则 UE发送 typeB CQI。其中 typeA CQI 和 typeB CQI 在 3GPP 协议 25.212 中有明确定义。 参数 M— cqi 和 /或 N—cqi— typeA为网络通过信令发送给 UE。
[0084] HS-SCCH接收 CQI时刻为: ((5*CFN— DRX - UE—DTX—DRX— Offset + S DRX + DRX— OFFSET) MOD UE DRX cycle) = 0
[0085]在又一种实施例中, 网络的 RNC以将参考小区的上行 DPCCH和上 行 HS-DPCCH的定时关系(称为 m值)通知给非参考小区所在的基站为例, 然后,非参考小区所在的基站根据该定时信息生成 HS-DPCCH的边界信息。
[0086]在该实施例中, RNC先从参考小区中获取该参考小区的 DRX定时 信息(即 A RX ), 其获取的方式, 可以主动请求, 也可以是被动接收, 本实 施例不作限制。 其中, 该 DRX定时信息定义为 F-DPCH和 HS-SCCH的定 时偏差, 在该实施例中, 所有的 D XI , TDRX2 ; Δ κχ的单位都是 chip 。
[0087]在该实施例中, m值为某个下行 HS-SCCH子帧对应的上行 DPCCH 发送边界, 和针对该 HS-SCCH的反馈的 HS-DPCCH边界之间的定时差, 或者可以理解为针对一个 HS-SCCH数据发送的上行 DPCCH和 HS-DPCCH 定时差。 参考小区可以根据 m值找到 HS-DPCCH的边界信息, 从而检测携 带的信息,具体如图 4所示,图 4为本发明实施例中提供的另一种通过 DRX 定时信息进行数据边界确定方法的应用实例图。
[0088] 图 4中, 参考小区可以根据来找到 DRXI , 从而可以建立 HS-SCCH和 HS-DPCCH的关联关系,参考小区可以将 m值通知给非参考小区所在的基 站, m值为上行 DPCCH和 HS-DPCCH的定时偏差, 非参考小区所在的基 站获知参考小区的 m值后, 可以直接推算出 HS-SCCH和 HS-DPCCH的关 联关系, 比如图 4中参考小区找到 HS-SCCH S_DRX=0对应的 HS-DPCCH S_DRX=0, 此时非参考小区所在的基站获知的 m值为 5个 S— DRX, 此时 非参考小区所在的基站可以根据(获取的 m值 -5 )来确定 S— DRX, 此时可 以保证非参考小区所在的基站和参考小区所在的基站理解一致。
[0089]其中, 图 4所述实施例与图 3所述实施例的不同之处在于, 非参考 小区所在的基站获取到的 DRX定时信息不同。 [0090]本实施例中, RNC将参考小区的 m值通知给非参考小区所在的基站, 这样由于两个小区检测到上行 DPCCH的定时是一样的,因而非参考小区所 在的基站可以找到相同的 HS-DPCCH边界。
[0091]在又一种实施例中, 该实施例在上述实施例的基础上, RNC还可 以将参考小区的 F-DPCH和 HS-PDSCH的定时信息、或参考小区和非参 考小区的 m差值信息通知非参考小区所在的基站。
[0092]其中, 将所述参考小区的 F-DPCH和 HS-PDSCH的定时信息通知 给非参考小区所在的基站, 这种方式中, 由于 F-DPCH和 HS-PDSCH的 定时信息和 m值之间有唯一的换算关系, 因而, 最终计算出正确的用于 检测 HS-DPCCH边界。
[0093]另外, 将所述参考小区和非参考小区的 m差值信息通知非参考小 区所在的基站, 这种方式中, 通过非参考小区所在的基站用自身的 m值 和 m差值的计算, 比如通过公式: 256 * Am = A DRX , 最终计算出正确的 用于检测 HS-DPCCH边界的 m值信息。
[0094]也就是说, 实施例六所述的两种方案, 与直接通过参考小区的 m 值判断的效果一样。
[0095]由上述实施例可知,本发明实施例提供将参考小区的 DRX定时信 息或者,用于确定 HS-DPCCH的边界信息的参数通知给非参考小区所在 的基站, 以便于非参考小区所在的基站根据该 DRX 定时信息或者所述 参数对 HS-DPCCH边界的检测, 从而确定 HS-DPCCH边界, 提高了下 行数据传输的性能。 同时也保证了多流传输 (Multiflow ) 中非参考小区 所在的基站对上行数据的成功接收。
[0096]此外, 上述所有实施例中, 可适用于 LTE-A中的跨基站的联合调 度特性中, 其实现过程与上述实施例类似, 具体详见上述。 [0097]基于上述方法的实现过程, 本发明实施例还提供一种数据边界确 定装置, 其结构示意图如图 5所示, 所述装置包括: 获取单元 51和确定 单元 52 ,
[0098]其中, 所述获取单元 51 , 用于获取参考小区的定时信息, 或者用 来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数;所述确定 单元 52 , 用于根据所述参考小区的定时信息或者所述参数确定 HS-DPCCH的边界信息,其中, 所述 HS-DPCCH的边界信息不但可以用 于非参考小区所在的基站查找 HS-DPCCH定时所用,还可以用于下行数 据传输调度。
[0099]其中, 所述获取单元 51包括: 接收单元 511和请求单元 512, 其 结果示意图如图 6所示, 图 6为本发明实施例提供的一种数据边界确定 装置的第二结构示意图。
[0100]所述接收单元 511 , 用于接收网络发送的所述参考小区的定时信 息, 或者用来确定 HS-DPCCH的边界信息的参数; 所述请求单元 512 , 用于向网络发送获取所述参考小区的定时信息或者用来确定 HS-DPCCH 的边界信息的请求; 以及接收所述网络发送的包括所述参考小区的定时 信息, 或者用来确定 HS-DPCCH的边界信息的参数的响应。
[0101]可选的, 在上述实施例的基础上, 在所述获取单元获取的用来确 定 HS-DPCCH的边界信息的参数包括:参考小区的下行非连续接收 DRX 定时信息时; 所述确定单元 52包括: 第一查找单元 521和第一边界确定 单元 522 , 其结构示意图如图 7所示, 图 7为本发明实施例提供的一种 数据边界确定装置的第三结构示意图。 图 7是以图 5实施例为基础。
[0102]其中, 所述第一查找单元 521 , 用于根据所述参考小区的 ^对应 的 F-DPCH查找 HS-SCCH的边界; 所述第一边界确定单元 522 , 用于以 第一查找单元 521 查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息。
[0103]可选的, 在上述实施例中, 在所述获取单元获取的用来确定 HS-DPCCH的边界信息的参数包括: 参考小区与非参考小区的 DRX定 时信息差 ^ ; 所述确定单元 52包括: 第一计算单元 523 , 第二查找 单元 524和第二边界确定单元 525; 和 /或, 第三边界单元 526(如图中虚 线所示), 其结构示意图如图 8所示, 图 8为本发明实施例提供的一种数 据边界确定装置的第四结构示意图。 该实施例以在图 5的基础上为例, 其中, 所述第一计算单元 523 , 用于根据所述 Δτ。κχ与非参考小区的 DRX 定时信息 ^进行计算, 得到参考小区的 DRX定时信息 ^ ; 所述第二 查找单元 524 , 用于根据所述参考小区的 ^RXI对应的 F-DPCH 查找到 HS-SCCH的边界信息; 所述第二边界确定单元 525 , 用于以第二查找单 元查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH 对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界 信息确定为 HS-DPCCH的边界信息; 所述第三边界确定单元 526 , 用于
+ 1.
根据公式 5*CFN DRX+ S DRX+ 1 2560 , 得到 HS-SCCH的边界
信息, 其中, Π符号为向上取整; CFN— DRX和 S— DRX均为非参考小区
+ 1.
HS-DPCCH和 /或 HS-SCCH修正前的值; 1 - 2560 为: 非连续接收的
子帧偏移量。
[0104]可选的, 在上述实施例的基础上, 在所述获取单元获取的用来确 定 HS-DPCCH的边界信息的参数包括:参考小区的下行非连续接收的偏 移量 DRX— OFFSET; 所述确定单元, 具体用于: 根据公式 5*CFN— DRX+ S— DRX+DRX— OFFSET,得到 HS-DPCCH的边界信息,其中, CFN— DRX 为: 非连续接收状态下的连接帧号; S— DRX为: 非连续接收状态下的子 帧号; DRX— OFFSET为: 非连续接收的偏移量。
[0105]可选的,在所述获取单元获取的用来确定 HS-DPCCH的边界信息 的参数包括: 参考小区的上行专用物理控制信道 DPCCH 和上行 HS-DPCCH的定时关系; 其中, 所述上行 DPCCH和上行 HS-DPCCH的 定时关系为:指定的一个下行 HS-SCCH子帧对应的上行 DPCCH发送边 界, 和针对该 HS-SCCH的反馈的 HS-DPCCH边界之间的定时差; 或者 为针对一个 HS-SCCH数据发送的上行 DPCCH和 HS-DPCCH定时差; 所述确定单元, 具体用于对所述指定的一个下行 HS-SCCH子帧对应的 上行 DPCCH发送边界, 和针对该 HS-SCCH的反馈的 HS-DPCCH边界 之间的定时差; 或者针对一个 HS-SCCH 数据发送的上行 DPCCH 和 HS-DPCCH定时差进行检测, 得到 HS-DPCCH的边界信息。
[0106]可选的,在所述获取单元获取的用来确定 HS-DPCCH的边界信息 的参数包括: 参考小区和非参考小区的 m差值信息 Δηι ; 所述确定单元 包括: 第二计算单元 527 , 第三查找单元 528和第四边界确定单元 529 , 其结构示意图如图 9所示, 图 9为本发明实施例提供的一种数据边界确 定装置的第五结构示意图。 其中, 所述第二计算单元 527 , 用于按照公 式256 *八0 = ¾^ , 以及 Δτοκχ =非参考小区 TDRX2 -参考小区 Tdrx1 , 得到参考 小区的 ^RX! ; 所述第三查找单元 528 , 用于根据参考小区的 ^RXI对应的 F-DPCH查找到 HS-SCCH的边界信息; 所述第四边界确定单元 529 , 用 于以第三查找单元查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息。
[0107]在该实施例中, 所述第一计算单元和第二计算单元可以集成在一 起, 也可以独步部分; 所述第一查找单元、 第二查找单元和第三查找单 元可以集成在一起, 也可以独步部署, 所述第一边界确定单元、 第二边 界确定单元、 第三边界确定单元和第四边界确定单元可以集成在一起, 也可以独步部署, 本实施例不作限制。
[0108]所述装置中各个单元的功能和作用的实现过程具体详见上述方法 中对应的实现过程, 在此不再赘述。
[0109]所述数据边界确定装置可以集成在为用户设备服务的基站中, 也 可以独立部署在网络, 本实施例不作限制。
[0110]相应的, 本发明实施例还提供一种指示信息发送装置, 其结构示 意图如图 10所示, 所述装置包括: 获取单元 11和发送单元 12 , 其中, 所述获取单元 11 , 用于获取参考小区的定时信息, 或者获取用来确定高 速专用物理控制信道 HS-DPCCH的边界信息的参数; 所述发送单元 12 , 用于将所述参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数发送给所述非参考小区所在的基站。
[0111]其中, 所述获取单元包括: 接收单元和 /或请求单元, 其中, 所述 接收单元, 用于在为用户设备配置多流传输时, 接收到参考小区所在的 基站发送的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH 的边界信息的参数; 所述请求单元, 用于向参考小区所在的基站发送获 取参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数的请求; 接收所述参考小区发送包括该参 考小区的定时信息,或者用来确定高速专用物理控制信道 HS-DPCCH的 边界信息的参数的响应。
[0112]其中, 所述获取单元获取的参考小区的定时信息包括: 参考小区 的非连续接收 DRX 定时信息和 /或参考小区的上行专用物理控制信道 DPCCH和上行 HS-DPCCH的定时关系; [0113]所述获取单元获取的用来确定高速专用物理控制信道 HS-DPCCH 的边界信息的参数包括: 参考小区的非连续接收 DRX定时信息; 其中, 所述 DRX定时信息为分离的专用物理信道 F-DPCH和高速共享控制信 道 HS-SCCH 的定时偏差、 参考小区与非参考小区的 DRX 定时信息差 A TDRX、 参考小区的非连续接收的偏移量 DRX— OFFSET和 /或参考小区和 非参考小区的 m差值信息 Δηι。
[0114]其中, 所述参考小区的非连续接收的偏移量 DRX— OFFSET 是网 络通过公式 1 - 2560 计算得到的, 其中, Δ κχ为参考小区与非参考
3 小区的 DRX定时信息差。
[0115]所述装置中各个单元的功能和作用的实现过程具体详见上述方法中 对应的实现过程, 在此不再赘述。
[0116]所述指示信息发送装置可以集成在为网路中的 RNC中,也可以独立 部署在网络, 本实施例不作限制。
[0117]需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅 用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或 者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术 语"包括"、 "包含,,或者其任何其他变体意在涵盖非排他性的包含,从而使得 包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还 包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品或 者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ... ...,, 限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者设备中还 存在另外的相同要素。
[0118]通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到 本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过 硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的 技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式 体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM、 磁 碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例或者实施例的某些部分 所述的方法。
[0119]所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅 以上述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将 上述功能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的 功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置 和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在此不 再赘述。
[0120]在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装 置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅 仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可 以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示 或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装 置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一 个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其 中的部分或者全部单元来实现本实施例方案的目的。
[0122]另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单 元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成 在一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用 软件功能单元的形式实现。
[0123]所述集成的单元如果以软件功能单元的形式实现并作为独立的产品 销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理 解, 本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技 术方案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品 存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是 个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请 各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、只读存储器( ROM, Read-Only Memory )、随机存取存储器( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
[0124] 以上所述, 以上实施例仅用以说明本申请的技术方案, 而非对其限 制; 尽管参照前述实施例对本申请进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种数据边界确定方法, 其特征在于, 包括:
非参考小区所在的基站获取参考小区的定时信息, 或者获取用来确 定高速专用物理控制信道 HS-DPCCH的边界信息的参数;
所述基站根据所述参考小区的定时信息或者所述参数确定 HS-DPCCH的边界信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述基站获取参考小 区的定时信息, 或者获取用来确定 HS-DPCCH的边界信息的参数, 具体 包括: 所述基站接收网络发送的所述参考小区的定时信息, 或者获取用来 确定 HS-DPCCH的边界信息的参数; 或者 所述基站向网络发送获取所述参考小区的定时信息, 或者接收网络 发送的用来确定 HS-DPCCH的边界信息的请求;接收所述网络发送的包 括所述参考小区的定时信息,或者用来确定 HS-DPCCH的边界信息的参 数的响应。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述参考小区的 定时信息包括: 参考小区的非连续接收 DRX定时信息 rDRX1; 其中, 所述 rDRX1为分离的专用物理信道 F-DPCH和高速共享控制信道 HS-SCCH的 定时偏差;
所述基站根据所述参考小区的定时信息,确定 HS-DPCCH的边界信 息, 具体包括:
所述基站根据所述参考小区的 DRX1对应的 F-DPCH 查找 HS-SCCH 的边界; 所述基站以查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息。
4、 根据权利要求 1 或 2所述的方法, 其特征在于, 所述用来确定 HS-DPCCH的边界信息的参数包括: 参考小区与非参考小区的 DRX定 时信息差 所述基站根据所述参数确定 HS-DPCCH的边界信息,具体包括: 所述基站根据所述 ArDRX与自身 DRX定时信息 rDRX2进行计算, 得到 参考小区的 DRX定时信息 DRX1;根据参考小区的 DRX1对应的 F-DPCH查 找到 HS-SCCH的边界信息;基站以查找到的所述 HS-SCCH的边界为起 点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时 间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息; 或者
ΔΓ,
+ 1.
所述基站根据公式 5*CFN DRX+ S DRX+ 1 2560 , 得到
3
HS-DPCCH 和 /或 HS-SCCH 的边界信息, 其中, 「,符号为向上取整; CFN— DRX和 S— DRX均为非参考小区 HS-DPCCH和 /或 HS-SCCH修正前 的值, CFN DRX为: 非连续接收状态下的连接帧号; S DRX为: 非连续
+ 1.
接收状态下的子帧号; 所述 1 - 2560 为非连续接收的子帧偏移量,
3
5、 根据权利要求 1 或 2所述的方法, 其特征在于, 所述用来确定 HS-DPCCH 的边界信息的参数包括: 参考小区的非连续接收的偏移量 DRX OFFSET, 所述基站根据所述参数确定 HS-DPCCH的边界信息, 具体包括: 所述基站根据公式 5*CFN— DRX+ S—DRX+DRX— OFFSET , 得到 HS-DPCCH的边界信息, 其中, CFN— DRX为: 非连续接收状态下的连接 帧号; S— DRX为: 非连续接收状态下的子帧号; DRX— OFFSET为: 非连 续接收的偏移量。
6、 根据权利要求 1或 2所述的方法, 其特征在于, 所述参考小区的 用来确定 HS-DPCCH的边界信息的参数包括: 包括: 参考小区的上行专 用物理控制信道 DPCCH和上行 HS-DPCCH的定时关系; 其中, 所述上 行 DPCCH和上行 HS-DPCCH的定时关系为:指定的一个下行 HS-SCCH 子帧对应的上行 DPCCH 发送边界, 和针对该 HS-SCCH 的反馈的 HS-DPCCH边界之间的定时差; 或者为针对一个 HS-SCCH数据发送的 上行 DPCCH和 HS-DPCCH定时差;
所述基站根据所述参数确定 HS-DPCCH的边界信息, 具体包括: 所述基站对所述指定的一个下行 HS-SCCH子帧对应的上行 DPCCH 发送边界,和针对该 HS-SCCH的反馈的 HS-DPCCH边界之间的定时差; 或者针对一个 HS-SCCH数据发送的上行 DPCCH和 HS-DPCCH定时差 进行检测, 得到 HS-DPCCH的边界信息。
7、 根据权利要求 1 或 2所述的方法, 其特征在于, 所述用来确定 HS-DPCCH的边界信息的参数包括:参考小区和非参考小区的 m差值信 息 Am;
所述基站根据所述参数确定 HS-DPCCH的边界信息, 具体包括: 所述基站按照公式 256 * Am = A DRX , 以及 A DRX =非参考小区 DRX2 -参考 小区 ^oo , 得到参考小区的 rDRX1
所述基站根据参考小区的 DRX1对应的 F-DPCH查找到 HS-SCCH的 边界信息;
所述基站以查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界信息。
8、 一种指示信息发送方法, 其特征在于, 包括:
获取参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数;
将所述参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数发送给所述非参考小区所在的基站, 以便 于所述非参考小区所在的基站确定 HS-DPCCH的边界信息。
9、 根据权利要求 8所述的方法, 其特征在于, 所述获取参考小区的 定时信息,或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息 的参数包括:
在网络为用户设备配置多流传输时, 网络接收到参考小区所在的基 站发送的定时信息,或者用来确定高速专用物理控制信道 HS-DPCCH的 边界信息的参数; 或者
网络向参考小区所在基站发送获取参考小区的定时信息, 或者用来 确定高速专用物理控制信道 HS-DPCCH的边界信息的参数的请求;接收 所述参考小区所在的基站发送包括该参考小区的定时信息, 或者用来确 定高速专用物理控制信道 HS-DPCCH的边界信息的参数的响应。
10、 根据权利要求 8或 9所述的方法, 其特征在于, 所述参考小区的定时信息包括: 非连续接收 DRX定时信息; 所述用来确定 HS-DPCCH的边界信息的参数至少包括下述一种:参 考小区与非参考小区的 DRX定时信息差 ArDRX; 或者参考小区的非连续 接收的偏移量 DRX— OFFSET; 或者参考小区的上行专用物理控制信道 DPCCH和上行 HS-DPCCH的定时关系; 或者参考小区和非参考小区的 m差值信息 Am。
11、 根据权利要求 8或 9所述的方法, 其特征在于, 所述参考小区 的非连续接收的偏移量 DRX OFFSET是网络通过公式 1 -
Figure imgf000030_0001
算得到的, 其中, ArDRX为参考小区与非参考小区的 DRX定时信息差。
12、 一种数据边界确定装置, 其特征在于, 包括: 获取单元, 用于获取参考小区的定时信息, 或者用来确定高速专用 物理控制信道 HS-DPCCH的边界信息的参数; 确定单元, 用于根据所述参考小区的定时信息或者所述参数确定 HS-DPCCH的边界信息。
13、根据权利要求 12所述的装置,其特征在于,所述获取单元包括: 所述接收单元, 用于接收网络发送的所述参考小区的定时信息, 或 者用来确定 HS-DPCCH的边界信息的参数;
所述请求单元, 用于向网络发送获取所述参考小区的定时信息或者 用来确定 HS-DPCCH的边界信息的请求;以及接收所述网络发送的包括 所述参考小区的定时信息,或者用来确定 HS-DPCCH的边界信息的参数 的响应。
14、 根据权利要求 12或 13所述的装置, 其特征在于, 在所述获取 单元获取的用来确定 HS-DPCCH的边界信息的参数包括:参考小区的下 行非连续接收 DRX定时信息时; 所述确定单元包括: 第一查找单元, 用于根据所述参考小区的 DRX1对应的 F-DPCH查找 HS-SCCH的边界; 第一边界确定单元, 用于以第一查找单元查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界 信息。
15、 根据权利要求 12或 13所述的装置, 其特征在于, 在所述获取 单元获取的用来确定 HS-DPCCH的边界信息的参数包括:参考小区与非 参考小区的 DRX定时信息差 A DRX; 所述确定单元包括: 第一计算单元, 第二查找单元和第二边界确定 单元; 和 /或第三边界单元, 其中,
所述第一计算单元, 用于根据所述 ArDRX与非参考小区的 DRX定时 信息 rDRX2进行计算, 得到参考小区的 DRX定时信息 rDRX1; 所述第二查找单元, 用于根据所述参考小区的 DRX1对应的 F-DPCH 查找到 HS-SCCH的边界信息;
所述第二边界确定单元, 用于以第二查找单元查找到的所述 HS-SCCH的边界为起点, 将所述 HS-SCCH对应的 CFN—DRX n子帧起 点后 1280 chips 的时间上最靠近的 HS-DPCCH 边界信息确定为 HS-DPCCH的边界信息; 或者
所述第 三边界确 定单元 , 用 于根据公式 5*CFN DRX+
S DRX+ 1 , 得到 HS-SCCH的边界信息, 其中, 「]符号为向
Figure imgf000031_0001
上取整; CFN— DRX 和 S— DRX 均为非参考小区 HS-DPCCH 和 /或 HS-SCCH 修正前的值; CFN— DRX 为非连续接收状态下的连接帧号; S DRX 为: 非连续接收状态下的子帧号; 1 - 为非连续接收的
Figure imgf000032_0001
子帧偏移量。
16、 根据权利要求 12或 13所述的装置, 其特征在于, 在所述获取 单元获取的用来确定 HS-DPCCH的边界信息的参数包括:参考小区的下 行非连续接收的偏移量 DRX— OFFSET; 所述确 定单 元 , 具体用 于 : 根据公式 5*CFN— DRX+ S—DRX+DRX— OFFSET,得到 HS-DPCCH的边界信息,其中, CFN— DRX 为: 非连续接收状态下的连接帧号; S— DRX为: 非连续接收状态下的子 帧号; DRX— OFFSET为: 非连续接收的偏移量。
17、 根据权利要求 12或 13所述的装置, 其特征在于, 在所述获取 单元获取的用来确定 HS-DPCCH的边界信息的参数包括:参考小区的上 行专用物理控制信道 DPCCH和上行 HS-DPCCH的定时关系; 其中, 所 述上行 DPCCH 和上行 HS-DPCCH 的定时关系为: 指定的一个下行 HS-SCCH子帧对应的上行 DPCCH发送边界, 和针对该 HS-SCCH的反 馈的 HS-DPCCH边界之间的定时差; 或者为针对一个 HS-SCCH数据发 送的上行 DPCCH和 HS-DPCCH定时差; 所述确定单元, 具体用于对所述指定的一个下行 HS-SCCH子帧对 应的上行 DPCCH发送边界, 和针对该 HS-SCCH的反馈的 HS-DPCCH 边界之间的定时差;或者针对一个 HS-SCCH数据发送的上行 DPCCH和 HS-DPCCH定时差进行检测, 得到 HS-DPCCH的边界信息。
18、 根据权利要求 12或 13所述的装置, 其特征在于, 在所述获取 单元获取的用来确定 HS-DPCCH的边界信息的参数包括:参考小区和非 参考小区的 m差值信息 Am ; 所述确定单元包括: 第二计算单元, 用于按照公式 256 * Am = A DRX , 以及 A DRX =非参考小 区 ¾χ2 -参考小区 ^οο, 得到参考小区的 DRX1
第三查找单元, 用于根据参考小区的 DRX1对应的 F-DPCH 查找到 HS-SCCH的边界信息;
第四边界确定单元, 用于以第三查找单元查找到的所述 HS-SCCH 的边界为起点, 将所述 HS-SCCH对应的 CFN— DRX n子帧起点后 1280 chips的时间上最靠近的 HS-DPCCH边界信息确定为 HS-DPCCH的边界 信息。
19、 一种指示信息发送装置, 其特征在于, 包括: 获取单元, 用于获取参考小区的定时信息, 或者用来确定高速专用 物理控制信道 HS-DPCCH的边界信息的参数; 发送单元, 用于将所述参考小区的定时信息, 或者用来确定高速专 用物理控制信道 HS-DPCCH 的边界信息的参数发送给所述非参考小区 所在的基站。
20、根据权利要求 19所述的装置,其特征在于,所述获取单元包括: 接收单元, 用于在为用户设备配置多流传输时, 接收到参考小区所 在的基站发送的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数; 和 /或 请求单元, 用于向参考小区所在的基站发送获取参考小区的定时信 息,或者用来确定高速专用物理控制信道 HS-DPCCH的边界信息的参数 的请求;接收所述参考小区所在的基站发送包括该参考小区的定时信息, 或者用来确定高速专用物理控制信道 HS-DPCCH 的边界信息的参数的 口向应。
21、 根据权利要求 19或 20所述的装置, 其特征在于, 所述获取单元获取的参考小区的定时信息包括: 参考小区的非连续 接收 DRX定时信息和 /或参考小区的上行专用物理控制信道 DPCCH和 上行 HS-DPCCH的定时关系; 所述获取单元获取的用来确定高速专用物理控制信道 HS-DPCCH的 边界信息的参数包括: 参考小区的非连续接收 DRX定时信息; 其中, 所 述 DRX定时信息为分离的专用物理信道 F-DPCH和高速共享控制信道
HS-SCCH的定时偏差、 参考小区与非参考小区的 DRX定时信息差 Δτ。κχ、 参考小区的非连续接收的偏移量 DRX— OFFSET和 /或参考小区和非参考 小区的 m差值信息 Δηι。
PCT/CN2013/071311 2012-05-10 2013-02-04 一种数据边界确定方法、指示信息发送方法及其装置 WO2013166872A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015510613A JP2015516129A (ja) 2012-05-10 2013-02-04 データの境界を決定する方法、指示情報を送信する方法、及びそれらの装置
EP13788314.6A EP2840843A4 (en) 2012-05-10 2013-02-04 DATA LIMIT DETERMINATION METHOD, INDICATION INFORMATION TRANSMISSION METHOD, AND DEVICE THEREOF
US14/537,548 US20150063344A1 (en) 2012-05-10 2014-11-10 Data boundary determining method, indication information sending method, and apparatuses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101442679A CN103391526A (zh) 2012-05-10 2012-05-10 一种数据边界确定方法、指示信息发送方法及其装置
CN201210144267.9 2012-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/537,548 Continuation US20150063344A1 (en) 2012-05-10 2014-11-10 Data boundary determining method, indication information sending method, and apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2013166872A1 true WO2013166872A1 (zh) 2013-11-14

Family

ID=49535667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071311 WO2013166872A1 (zh) 2012-05-10 2013-02-04 一种数据边界确定方法、指示信息发送方法及其装置

Country Status (5)

Country Link
US (1) US20150063344A1 (zh)
EP (1) EP2840843A4 (zh)
JP (1) JP2015516129A (zh)
CN (1) CN103391526A (zh)
WO (1) WO2013166872A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488791A (zh) * 2014-05-06 2017-03-08 华为技术有限公司 信道边界的定位方法、基站和用户设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2825931A1 (en) * 2012-07-31 2014-01-31 Huawei Technologies Co., Ltd. Method for positioning channel boundary, user terminal, and base station
US11296837B2 (en) * 2016-01-28 2022-04-05 Qualcomm Incorporated Physical broadcast channel (PBCH) transmission and reception on a shared communication medium
WO2019213940A1 (zh) * 2018-05-11 2019-11-14 Oppo广东移动通信有限公司 中继系统同步方法、装置、计算机设备及存储介质
CN110636598B (zh) * 2019-10-24 2022-10-28 高新兴物联科技股份有限公司 终端省电的控制方法、装置、移动终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057296A2 (en) * 2009-11-09 2011-05-12 Qualcomm Incorporated System and method for single frequency dual cell high speed downlink packet access
CN102118801A (zh) * 2011-03-31 2011-07-06 电信科学技术研究院 多载波聚合系统中的上行传输方法和设备
US20110243104A1 (en) * 2010-04-02 2011-10-06 Francis Swarts Method and system for tracking timing drift in multiple frequency hypothesis testing
US20120069798A1 (en) * 2010-08-16 2012-03-22 Qualcomm Incorporated Timing control in a multi-point high speed downlink packet access network
US20120076021A1 (en) * 2010-09-09 2012-03-29 Qualcomm Incorporated Dynamic switching between dc-hsdpa and sfdc-hsdpa
CN102984794A (zh) * 2011-09-05 2013-03-20 中兴通讯股份有限公司 一种多点传输系统数据发送的方法、系统、基站和终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260640B1 (ko) * 2008-04-25 2013-05-03 인터디지탈 패튼 홀딩스, 인크 2개의 캐리어 상에서 동시에 수신하고 듀얼 셀 고속 다운링크 액세스에서 불연속 송신 및 수신을 수행하기 위한 방법 및 장치
CN101877908B (zh) * 2009-04-28 2015-01-28 中兴通讯股份有限公司 基站之间同步进行资源调度的方法及相应的基站
CN102340861A (zh) * 2010-07-16 2012-02-01 鼎桥通信技术有限公司 一种Femto设备与宏站之间的空口同步方法
AU2011308916B2 (en) * 2010-10-01 2016-06-30 Interdigital Patent Holdings, Inc. Method for coordinating discontinuous reception, DRX
US8824307B2 (en) * 2010-10-13 2014-09-02 Qualcomm Incorporated Communicating between user equipment (UE) and independent serving sectors in a wireless communications system
EP2774430B1 (en) * 2011-11-04 2016-02-03 InterDigital Patent Holdings, Inc. Methods of multiple point hsdpa transmission in single or different frequencies
EP2777357A1 (en) * 2011-11-08 2014-09-17 Nokia Solutions and Networks Oy Power saving ul dtx and dl drx techniques for multi-flow operation in hspa
CN103313378B (zh) * 2012-03-16 2016-03-09 华为技术有限公司 定时方法、定时参考确定方法、设备及系统
US9007974B2 (en) * 2012-03-19 2015-04-14 Qualcomm Incorporated Method and apparatus for aligning downlink discontinuous reception patterns in multiflow HSDPA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057296A2 (en) * 2009-11-09 2011-05-12 Qualcomm Incorporated System and method for single frequency dual cell high speed downlink packet access
US20110243104A1 (en) * 2010-04-02 2011-10-06 Francis Swarts Method and system for tracking timing drift in multiple frequency hypothesis testing
US20120069798A1 (en) * 2010-08-16 2012-03-22 Qualcomm Incorporated Timing control in a multi-point high speed downlink packet access network
US20120076021A1 (en) * 2010-09-09 2012-03-29 Qualcomm Incorporated Dynamic switching between dc-hsdpa and sfdc-hsdpa
CN102118801A (zh) * 2011-03-31 2011-07-06 电信科学技术研究院 多载波聚合系统中的上行传输方法和设备
CN102984794A (zh) * 2011-09-05 2013-03-20 中兴通讯股份有限公司 一种多点传输系统数据发送的方法、系统、基站和终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488791A (zh) * 2014-05-06 2017-03-08 华为技术有限公司 信道边界的定位方法、基站和用户设备
US10212681B2 (en) 2014-05-06 2019-02-19 Huawei Technologies Co., Ltd. Channel boundary locating method, base station, and user equipment

Also Published As

Publication number Publication date
US20150063344A1 (en) 2015-03-05
JP2015516129A (ja) 2015-06-04
CN103391526A (zh) 2013-11-13
EP2840843A1 (en) 2015-02-25
EP2840843A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
KR102552231B1 (ko) 2차 셀 빔 실패 복구 동안 사용자 기기 수신기 공간 필터 구성
US20220321293A1 (en) Signal communication method and device
CN115103433B (zh) 一种实现网络同步的方法及装置
US10419259B1 (en) Time-domain table for PUSCH and Msg3
KR102358537B1 (ko) Ue 자율적인 라디오 자원 구성 확장
WO2020228589A1 (zh) 通信方法和通信装置
JP2019533924A (ja) Numerologyに基づく同期および非同期動作の間の適合化
WO2018028340A1 (zh) 低功耗模式下的ue的跟踪处理方法和设备
US10764848B2 (en) Inter-base-station synchronization method and device
US10932296B2 (en) Device and method of handling physical random access channel resources on a secondary cell in carrier aggregation
TWI754040B (zh) 處理量測間距的裝置及方法
US20220141885A1 (en) Random Access Procedure
WO2013166872A1 (zh) 一种数据边界确定方法、指示信息发送方法及其装置
US20230189344A1 (en) Content of CSI Report in RACH Process
EP4224765A1 (en) Method and apparatus for determining transmission mode, and communication device
US11864146B2 (en) Solutions to timing reference for detection and report of UL RSat asynch nodes or nodes without a time frame structure
EP3585124B1 (en) Methods of time-domain resource allocation for msg3 transmission in a random access procedure
KR20220047343A (ko) 통신-전-청취 파라미터들의 시그널링
CN114424666B (zh) 一种通信方法及装置
EP4055922A1 (en) User equipment positioning measurements under cell change
JP2010056740A (ja) 通信システム、通信装置、通信制御方法、及び通信制御プログラム
US20240056912A1 (en) Switching Delay Control in a Dual-Active Protocol Stack Handover
US20130107802A1 (en) Downlink time difference determination in frame asynchronous systems
WO2021203442A1 (zh) 一种功率控制方法及装置
US20240057004A1 (en) METHODS AND APPARATUSES FOR RECEIVER (Rx) - TRANSMITTER (Tx) ROUND TRIP TIME ESTIMATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013788314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013788314

Country of ref document: EP