WO2021203442A1 - 一种功率控制方法及装置 - Google Patents

一种功率控制方法及装置 Download PDF

Info

Publication number
WO2021203442A1
WO2021203442A1 PCT/CN2020/084312 CN2020084312W WO2021203442A1 WO 2021203442 A1 WO2021203442 A1 WO 2021203442A1 CN 2020084312 W CN2020084312 W CN 2020084312W WO 2021203442 A1 WO2021203442 A1 WO 2021203442A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
power control
power
control process
network device
Prior art date
Application number
PCT/CN2020/084312
Other languages
English (en)
French (fr)
Inventor
纪刘榴
杭海存
毕晓艳
施弘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080098785.4A priority Critical patent/CN115299157A/zh
Priority to EP20929851.2A priority patent/EP4117372A4/en
Priority to PCT/CN2020/084312 priority patent/WO2021203442A1/zh
Publication of WO2021203442A1 publication Critical patent/WO2021203442A1/zh
Priority to US17/961,928 priority patent/US20230030483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method and device.
  • the physical uplink shared channel is an uplink signal sent by a user equipment (UE), and the transmission power of the PUSCH can be controlled by the base station.
  • the base station can instruct the UE to reduce the transmission power when the PUSCH power sent by the UE is high, and vice versa, it can instruct the UE to increase the transmission power when the PUSCH power sent by the UE is low.
  • the behavior of the base station to control the transmission power of the terminal device can be referred to as closed-loop power control.
  • the closed-loop power control may be dynamically indicated based on downlink control information (DCI), and the DCI carries a power offset.
  • DCI downlink control information
  • a transmission reception point when a UE transmits a PUSCH, it can add the power offset indicated in the DCI corresponding to this PUSCH to the latest transmission power, thereby Determine the transmit power of PUSCH.
  • the most recent transmission power is P
  • the DCI indicates that the power offset when the UE transmits the PUSCH in slot i+2 is +1
  • the transmission power corresponding to the PUSCH is P+1.
  • two or more TRPs are independently scheduled at any time sequence, there is currently no good solution for how the UE determines the transmit power.
  • the embodiments of the present application provide a power control method and device, a chip, a computer-readable storage medium, a computer program product, etc., which can improve the accuracy of a terminal device in determining the transmission power in a multi-TRP cooperative transmission scenario.
  • an embodiment of the present application provides a power control method.
  • the method can be applied to a terminal side, such as a terminal device, or a chip or chipset in a terminal device, where the terminal has support to be configured with multiple control resource sets
  • the method includes: receiving a first physical downlink control channel (PDCCH) sent by a network device, where the first PDCCH carries a power offset corresponding to the PUSCH.
  • the transmission power is determined according to the power control process corresponding to the network device.
  • the power control process is used to accumulate the power offset carried by the PDCCH from the network device, and determine the transmission power of the PUSCH according to the accumulation result. Use the transmit power to send the PUSCH to the network device.
  • PDCCH physical downlink control channel
  • the power control process can accumulate the power offset from the same network device, so that the transmission power of the PUSCH can be consistent with the indication of the network device, and then Can improve the reliability of uplink transmission.
  • the power control process may have a corresponding relationship with the CORESET group corresponding to the first PDCCH.
  • the above design can realize independent accumulation of power offsets scheduled by the same CORESET group by associating the power control process with the CORESET group corresponding to the PDCCH.
  • the second PDCCH sent by the network device may be received before the transmission power is determined according to the power control process corresponding to the network device.
  • the second PDCCH carries indication information of the power control process, and the indication information is used to indicate power control.
  • the association relationship between the power control process and the network device may be instructed by the network device, so that the accuracy of the transmission power can be further improved.
  • the indication information of the power control process may be a sounding reference signal resource indicator (SRS resource indicator, SRI), and the value of the SRI has a corresponding relationship with the index of the power control process.
  • SRS resource indicator SRI
  • the indication information of the power control process may be an index of the power control process.
  • the value of SRI has a corresponding relationship with the set of power control parameters used by the power control process.
  • the terminal device before determining the transmission power according to the power control process corresponding to the network device, it may be determined to send the PDSCH feedback information from different network devices on different physical uplink control channels PUCCH.
  • the terminal device can implement the power control method provided in this application when the feedback mode is independent feedback.
  • this application provides a power control device, which may be a terminal device, or a chip or chipset in the terminal device.
  • the device may include a processing module and a transceiver module.
  • the processing module may be a processor, and the transceiver module may be a transceiver;
  • the device may also include a storage module, and the storage module may be a memory; the storage module is used to store instructions, and the processing module The instructions stored in the storage module are executed, so that the terminal device executes the corresponding function in the first aspect described above.
  • the processing module may be a processor, a processing circuit or a logic circuit, etc.
  • the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module performs storage The instructions stored in the module to enable the terminal device to perform the corresponding function in the first aspect described above.
  • the storage module can be a storage module (for example, register, cache, etc.) in the chip or chipset, or a storage module (for example, read-only memory, random access memory, etc.) located outside the chip or chipset in the base station. Memory, etc.).
  • a power control device which includes a processor.
  • a processor also includes a communication interface and/or memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes the method as described in the first aspect or any one of the first aspects. .
  • a computer storage medium provided by an embodiment of the present application.
  • the computer storage medium stores program instructions.
  • the program instructions run on a communication device, the communication device executes the first aspect of the embodiments of the present application and any one of them. It is possible to design the described method.
  • a computer program product provided by an embodiment of the present application, when the computer program product runs on a communication device, enables the communication device to use the method described in the first aspect of the embodiment of the present application and any possible design thereof.
  • a chip provided by an embodiment of the present application is coupled with a memory to execute the method described in the first aspect of the embodiment of the present application and any possible design thereof.
  • an embodiment of the present application provides a chip including a communication interface and at least one processor, and the processor runs to execute the method described in the first aspect or any one of the first aspects of the embodiments of the present application.
  • Coupled in the embodiments of the present application means that two components are directly or indirectly combined with each other.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a multi-TRP cooperation provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a PDCCH scheduling time sequence provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of power control in a multi-TRP cooperation scenario provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a power control method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a power control device provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a power control device provided by an embodiment of the application.
  • the network device can configure one or more resource sets for the terminal device to send the PDCCH.
  • the network device can send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the network device also needs to notify the terminal device of other related configurations of the control resource set, such as search space set.
  • the control resource set in this application may be a CORESET or control region defined by the 5G mobile communication system or an enhanced-physical downlink control channel (ePDCCH) set.
  • the time-frequency position occupied by the PDCCH can be referred to as the downlink control region.
  • the PDCCH is always located in the first m (m possible values are 1, 2, 3, and 4) symbols in a subframe.
  • the downlink control area can be flexibly configured by RRC signaling through CORESET and search space set:
  • the control resource set can be configured with PDCCH or control channel element (control channel element, CCE) frequency domain position, time domain continuous symbol number and other information;
  • the search space set can be configured with PDCCH detection period and offset, starting symbol in a time slot and other information.
  • the search space set can be configured with a PDCCH period as 1 time slot, and the time domain start symbol is symbol 0, then the terminal device can detect the PDCCH at the start position of each time slot.
  • the search space defines the possibility of detecting the PDCCH in the time domain.
  • the base station can configure the identification of the search space, the identification of the associated CORESET, the detection time unit period and time unit offset of the PDCCH, the time domain detection pattern (pattern), and the possible PDCCH candidates (PDCCH candidates) for each aggregation level.
  • the number can include 0
  • the type of search space indicating whether it is public or UE-specific, and public means that there are other users who can detect this search space
  • the configuration related to the DCI format such as the DCI to be detected) Format possibility
  • the time domain detection pattern is used to indicate the possible position of the UE to detect the PDCCH symbol in a time slot.
  • the time domain detection pattern can indicate one or more symbol positions. These symbol positions correspond to the first symbol position where possible PDCCH starts. If the time domain detection pattern can indicate the symbol positions 11, 12, and 13, the UE may detect the PDCCH at positions starting with 11, 12, and 13 respectively.
  • the number of possible PDCCH candidates for each aggregation level (which can include 0) means that the base station can configure the UE for a search space, if it corresponds to different aggregation levels 1, 2, 4, 8, 16 respectively The number of possible PDCCH candidates.
  • the continuous length refers to the duration of this search space in the time domain time unit. Take the time slot as an example. If the configured period is k and the duration is d, it means that starting from a slot that satisfies the search space period and offset, all d continuous slots can be in This search space detects PDCCH.
  • the communication method provided in this application can be applied to various communication systems, for example, the Internet of Things (IoT), the narrowband Internet of Things (NB-IoT), and the long term evolution (long term evolution).
  • LTE can also be a fifth-generation (5G) communication system
  • 5G fifth-generation
  • the 5G communication system described in this application may include at least one of a non-standalone (NSA) 5G communication system and a standalone (SA) 5G communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Fig. 1 shows a communication system 100 to which an embodiment of the present application is applied.
  • the communication system 100 is in a scenario of dual connectivity (DC) or coordinated multi-point transmission (CoMP).
  • the communication system 100 includes a network device 110, a network device 120, and a terminal device 130, and the network device 110 It may be a network device when the terminal device 130 initially accesses, and is responsible for RRC communication with the terminal device 130.
  • the network device 120 is added during RRC reconfiguration to provide additional wireless resources.
  • the terminal device 130 configured with carrier aggregation (CA) is connected to the network device 110 and the network device 120.
  • the link between the network device 110 and the terminal device 130 may be called the first link, and the network device 120 and The link between the terminal devices 130 may be referred to as a second link.
  • CA carrier aggregation
  • the above-mentioned communication system to which the embodiment of the application is applied is only an example, and the communication system to which the embodiment of the application is applied is not limited to this.
  • the number of network devices and terminal devices included in the communication system may also be other numbers, or a single number may be used.
  • Base station multi-carrier aggregation scenario, dual link scenario or D2D communication scenario, CoMP scenario.
  • the CoMP can be one or more scenarios of non-coherent joint transmission (NCJT), coherent joint transmission (CJT), and joint transmission (JT).
  • the terminal device involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals.
  • the terminal device may be a device that provides users with voice and data connectivity, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • Terminal devices can also be called wireless terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, and access points , Remote terminal, access terminal, user terminal, user agent, user device, or user equipment, etc.
  • the terminal equipment can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal.
  • the access network exchanges language and data.
  • the terminal device may also be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Common terminal devices include, for example, mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc., but this application is implemented Examples are not limited to this.
  • the terminal device involved in the embodiment of the present application may also be a terminal device that appears in the future evolved PLMN, etc., which is not limited in the embodiment of the present application.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize man-machine Interconnection, an intelligent network of interconnection of things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device involved in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device in the embodiment of the present application may be a device in a wireless network, for example, a RAN node that connects a terminal to the wireless network.
  • the network equipment can be an evolved Node B (eNB or e-NodeB) in LTE, a new radio controller (NR controller), or a gNode B (gNB) in a 5G system.
  • eNB evolved Node B
  • NR controller new radio controller
  • gNB gNode B
  • DU distributed unit , which may be a home base station, may be a transmission reception point (TRP) or a transmission point (TP) or any other wireless access device, but the embodiment of the application is not limited thereto.
  • Network equipment can cover one or more cells.
  • the network equipment cooperates by exchanging information, which can effectively avoid interference and increase the rate.
  • Multiple TRPs can cooperate to serve the terminal equipment downlink or can cooperate to receive the uplink signal of the terminal equipment.
  • Collaboration technologies mainly include JT, dynamic cell/point selection (DCS/DPS), coordinated beamforming/scheduling (CB/CS), etc.
  • the arrow in the solid line is the interference generated on the terminal device
  • the arrow in the dashed line is the useful data generated on the terminal device.
  • the edge terminal device receives the signal of the cell and is interfered by the neighboring cell; in the JT technology, multiple cells jointly send data to this terminal device, and the terminal device receives multiple copies of useful data, so the transmission efficiency can be improved.
  • the interference of neighboring cells is coordinated.
  • neighboring cells can adjust the transmission signal to avoid sending signals to terminal equipment in the direction of strong interference, thus reducing terminal equipment
  • the network dynamically selects a better transmission point to serve the terminal equipment, so that the terminal equipment can ensure that it is in a stronger cell signal, and the weaker cell signal becomes interference. This difference in the channels of multiple TRPs can improve the signal-to-interference-to-noise ratio of the terminal equipment.
  • multiple TRPs can independently schedule users.
  • HARQ hybrid automatic repeat request
  • the UE if the first PUSCH is scheduled by the first PDCCH, the UE cannot be delayed after the first PUSCH.
  • the second PDCCH of the PDCCH is scheduled to transmit the second PUSCH earlier than the first PUSCH, for example, as shown in FIG. 3.
  • the second PUSCH scheduled by the second PDCCH must not be earlier than the first PUSCH scheduled by the first PDCCH.
  • the timing relationship K2 between the PUSCH scheduled by the PDCCH and the PDCCH may be indicated by the base station. This timing relationship K2 refers to the time offset from the UE receiving the PDCCH to sending the PUSCH.
  • the second PDCCH is sent in slot 2
  • the scheduled second PUSCH must be later than the last symbol of the first PUSCH, so the base station must ensure that the K2 value of the second PDCCH cannot be less than the K2 value of the first PDCCH, for example, the second PDCCH K2 can be equal to 2, so that the second PUSCH is sent in slot 4.
  • the two TRPs need to communicate very closely, for example, they know each other's K2 when scheduling UEs. What is the indication to ensure that the UE can handle it. This requires very high delays in communication between TRPs.
  • TRPs may not always be able to communicate in real time.
  • the interaction delay between TRPs may be 0-5 ms or 15-20 ms. So for some actual deployment scenarios, great scheduling constraints will be encountered.
  • the UE can meet the aforementioned timing restriction when identifying that the DCI is from the same TRP, that is, if the first PDCCH and the second PDCCH are from the same TRP, the second PDCCH of the UE is in the first PDCCH in time. If received later, then the second PUSCH scheduled by the second PDCCH must not be earlier than the first PUSCH scheduled by the first PDCCH. If the DCI comes from different TRPs, the aforementioned timing restrictions may not be met.
  • the second PUSCH scheduled by the second PDCCH may be earlier than the first PDCCH.
  • the scheduled first PUSCH and the second PUSCH may also be later than the first PUSCH, and the second PUSCH and the first PUSCH may also be in the same time slot.
  • two TRPs can be freely scheduled without real-time communication.
  • time slot is only an example of the time concept, and it should be understood that the time concept in this application may also be a symbol, a frame, and the like.
  • the transmission power of PUSCH is controllable by the base station.
  • the base station can instruct the UE to reduce the transmission power when the PUSCH power sent by the UE is high, and vice versa, it can instruct the UE to increase the transmission power when the PUSCH power sent by the UE is low.
  • the behavior of the base station to control the transmission power of the terminal device can be referred to as closed-loop power control.
  • the closed-loop power control may be dynamically indicated based on the DCI, and the DCI carries the power offset.
  • the TRP when the UE transmits the PUSCH, it can add the power offset indicated in the DCI corresponding to the PUSCH to the latest transmission power to determine the transmission power of the PUSCH. For example, the most recent transmission power is P, and assuming that the DCI indicates that the power offset when the UE transmits the PUSCH in slot i+2 is +1, the transmission power corresponding to the PUSCH is P+1.
  • the transmission power corresponding to the PUSCH is P+1.
  • the UE determines the PUSCH transmission power according to the transmission power and the base station.
  • the transmission power may be different.
  • the transmit power of the UE in solt n to transmit PUSCH 0 is f(n).
  • the UE receives PDCCH 1 on solt n+1, and the PDCCH 1 is used to instruct to transmit PUSCH 1 on solt n+4, and the power offset indicated by the PDCCH 1 is +3.
  • the UE receives PDCCH 2 on solt n+2, and the PDCCH 2 is used to instruct to transmit PUSCH 2 on solt n+3, and the power offset indicated by the PDCCH 2 is +1.
  • the UE transmits PUSCH 2 on solt n+3, and the transmit power of PUSCH 2 is the transmit power of the last PUSCH transmitted (i.e. PUSCH 0) plus the power offset indicated by PDCCH 2, that is, the transmit power of PUSCH 2 is f( n)+1.
  • the UE transmits PUSCH 1 on solt n+4, and the transmit power of PUSCH 1 is the transmit power of the last PUSCH transmitted (i.e.
  • the transmit power of PUSCH 1 is f( n)+1+3.
  • the base station uses the power offset indicated by the transmit power f(n) of PUSCH 0, which is the PUSCH 1 indicated by the base station.
  • the transmission power of is f(n)+3. Because the transmission power used by the UE when determining the transmission power of the PUSCH is different from the transmission power when the base station indicates the transmission power of the PUSCH through the DCI, the transmission power when the UE transmits PUSCH 1 does not match the transmission power indicated by the base station.
  • the UE transmit power is too high, it will cause interference to other users. If the transmit power is too low, it will lead to insufficient received signal-to-noise ratio (SNR), data modulation and coding
  • SNR signal-to-noise ratio
  • MCS modulation and coding scheme
  • the embodiments of the present application provide a power control method and device, which can improve the accuracy of PUSCH power control in a multi-TRP transmission scenario.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the time domain/time unit may be a frame, a radio frame, a system frame, a subframe, a half frame, a time slot, a mini time slot, a symbol, and the like.
  • Data can refer to codewords, transmission blocks, code blocks, and code block groups.
  • At least one refers to one or more, and “multiple” refers to two or more than two.
  • “And/or” describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one (item) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c It can be single or multiple.
  • FIG. 5 a flow chart of a power control method provided by this application.
  • the method can be applied to a terminal device or a chip in a terminal device or a chip set in a terminal device, etc., wherein the terminal device has support for being configured with multiple The ability of CORESET group indexing, or, the terminal device is configured with multiple CORESET group indexes, or the terminal device has the ability to support multiple CORESET group indexes and is configured with multiple CORESET group indexes.
  • the terminal device has the ability to support the configuration of multiple CORESET group indexes. It can be understood that the terminal device supports at least 2 CORESET and supports at least one coreset configured as the same CORSET group index (CORESET Pool Index), for example, The terminal device supports 4 CORESETs, and the CORESET Pool Index of 2 CORESETs is the same.
  • CORESET Pool Index configured as the same CORSET group index
  • the terminal device is configured with multiple CORESET group indexes. It can be understood that the base station has at least one of the following configurations for the terminal device:
  • the base station is configured with at least 2 CORESET Pool Indexes with different values.
  • the base station is configured with 4 CORESETs, where the CORESET Pool Index corresponding to the first CORESET and the second CORESET is configured with a value of 0, and the CORESET Pool Index corresponding to the third and fourth CORESET is configured. Index is configured to the value 1;
  • the CORESET Pool Index of at least one CORSET configured in the base station is the default value, while the CORESET Pool Index of other CORESETs is different from the default value.
  • the base station is configured with 4 CORESETs.
  • the default value of the corresponding CORESET Pool Index is considered to be 0, and the CORESET Pool Index corresponding to the third and fourth CORESET is configured as a value of 1.
  • the CORESET Pool Index of part of the CORSET configuration of the base station is the default value
  • the CORESET Pool Index of the other part of the CORSET is equal to the default value
  • the CORESET Pool Index of the other part of the CORSET is different from the default value.
  • the base station is configured with 4 CORESETs
  • the first CORESET is not configured with CORESET.
  • the Pool Index parameter the default value of the corresponding CORESET Pool Index is considered to be 0, the CORESET Pool Index corresponding to the second CORESET is configured as 0, and the CORESET Pool Index corresponding to the third and fourth CORESET is configured as 1.
  • the terminal device can be configured with multiple CORESET group indexes for the currently activated bandwidth part (bandwidth part, BWP), or it can also be configured for all configured bandwidth parts in a serving cell. Multiple CORESET group indexes, or, may also be configured with multiple CORESET group indexes for any configured bandwidth part in a serving cell.
  • a terminal device For each network device in a plurality of network devices, a terminal device receives a first PDCCH sent by the network device, where the first PDCCH carries a power offset corresponding to the PUSCH.
  • the terminal device determines the corresponding transmit power according to the power control process corresponding to the network device, and the power control process corresponding to the network device is used to accumulate the power offset carried by the PDCCH from the network device, and determine according to the accumulation result PUSCH transmit power.
  • the terminal device does not need to identify whether the network device is network device 1 or network device 2, but can be distinguished by configuration information. Take the high-level parameter index as an example. Assume that CORESET1 and CORESET2 can be considered to be associated with CORESET1.
  • the transmission of the PDCCH is the same network device, and the transmission of the PDCCH associated with CORESET2 is the same network device, so as to realize the difference between the network devices.
  • the power control process has an association relationship with network equipment, or it can also be understood as an association relationship between the power control process and the configuration information of the PDCCH, for example, the power control process has an association relationship with the configuration information of the CORESET group corresponding to the PDCCH, or The control process is associated with the CORESET group corresponding to the PDCCH.
  • CORESET with the same configuration index (index) can belong to the same CORESET group.
  • the power control process corresponding to the network device may have a corresponding relationship with the CORESET group corresponding to the first PDCCH.
  • the terminal device may determine the power control process corresponding to the network device according to the CORESET group corresponding to the first PDCCH.
  • the transmission power determined by the power control process corresponding to the network device may satisfy the following formula, or it can also be understood that the power control process may also determine the transmission power through the following formula:
  • P is the transmission power
  • P CMAX is the maximum transmission power
  • P 0 is the reference power density, which can also be understood as the received power density level expected by the network device.
  • is a parameter related to a parameter set (numerology), and the numerology can include subcarrier spacing, cyclic prefix length, and so on.
  • M is the bandwidth of PUSCH.
  • is the path loss compensation factor.
  • PL is the path loss, where PL can be measured by the terminal device by receiving the downlink signal.
  • is the adjustment factor of the PUSCH code rate
  • f is the closed-loop power adjustment value, where, when the power adjustment mode is accumulation, then f is the accumulated value of the power offset indicated by the network device before the first PDCCH.
  • the terminal device may be configured with one or more sets of power control parameters, and the power control parameters may include at least one of the following parameters: maximum transmit power, reference power density, PUSCH bandwidth, path loss compensation factor, PUSCH The bit rate adjustment factor.
  • the power control processes corresponding to different network devices can use the same power control parameters, but the power control processes corresponding to each network device accumulate the power offset independently, for example, the network
  • the power control processes corresponding to devices 1 to 3 use the same power control parameters.
  • the power control process corresponding to network device 1 accumulates the power offset indicated by network device 1
  • the power control process corresponding to network device 2 affects the network device.
  • the power offset indicated by 2 is accumulated, and the power control process corresponding to the network device 3 accumulates the power offset indicated by the network device 3.
  • the terminal device can use one set of power control parameters in the multiple sets of power control parameters by default, and the power control processes corresponding to different network devices are all The default power control parameters can be used.
  • the association relationship between the network device and the power control process may be determined by the terminal device.
  • the terminal device determines the power control process 1 for the network device 1, and the power control process 1 indicates the power of the network device 1
  • the offset is accumulated, and the power control process 2 is determined for the network device 2, and the power control process 2 accumulates the power offset indicated by the network device 2, and so on.
  • the association relationship between the network device and the power control process may also be indicated by the network device.
  • the network device before sending the first PDCCH, the network device sends the second PDCCH to the terminal device.
  • One PDCCH corresponds to the same CORESET group, and the second PDCCH carries indication information of the power control process, so that the terminal device can indicate the power control process indicated by the indication information with the CORESET group corresponding to the second PDCCH (ie the CORESET group corresponding to the first PDCCH) ) To connect.
  • the indication information may directly indicate the power control process, for example, the indication information may be information such as the index and identification of the power control process.
  • the indication information may also indirectly indicate the power control process.
  • the indication information may be SRI, and the value of the SRI has a corresponding relationship with the index of the power control process.
  • the network devices can be coordinated to determine the value of the SRI that can be used by each.
  • the value of SRI can be one or more, for example, it can be a value range.
  • the SRI field of the DCI carried by the second PDCCH may carry the indication information.
  • the terminal device uses the transmit power to send the PUSCH to the network device.
  • the power control method provided in this application can be implemented in a specific feedback mode, for example, can be implemented in a separate feedback mode.
  • Separate feedback means that the terminal device will feed back the ACK/NACK feedback information of data scheduled by multiple network devices through different PUCCHs.
  • the feedback mode is joint feedback (Joint feedback)
  • the terminal device can accumulate the power offset across network devices.
  • Joint feedback means that the terminal device feeds back the ACK/NACK feedback information of data scheduled by multiple network devices in one PUCCH.
  • the feedback mode is Separate feedback, the power offset of each network device can be accumulated separately.
  • the terminal device can determine to send PDSCH feedback information from different network devices on different physical uplink control channels PUCCH before determining the transmission power according to the power control process corresponding to the network device.
  • the power control process can accumulate the power offset from the same network device, so that the transmission power of the PUSCH can be consistent with the indication of the network device, and then Improve the reliability of uplink transmission.
  • PDCCH 0 and PDCCH 1 are the information transmitted between the terminal device and network device 1
  • PDCCH 2 comes from network device 2
  • the terminal device determines the transmission power of PUSCH 1 when determining the transmission power of PUSCH 1
  • the transmission power of PUSCH 1 is f(n)+3
  • network device 1 is the power offset indicated on the basis of PUSCH 0, that is, the power offset indicated by network device 1
  • the transmission power of the PUSCH 1 is f(n)+3. It can be seen that through the method provided in the embodiment of the present application, the transmission power of the PUSCH is consistent with the indication of the network device.
  • the embodiment of the present application provides a communication device.
  • the structure of the communication device may be as shown in FIG. 6, including a processing unit 601 and a transceiver unit 602.
  • the communication device may be specifically used to implement the method executed by the terminal device in the embodiment of FIG. 5.
  • the device may be the terminal device itself, or a chip or a chip set in the terminal device or a part of the chip used to perform related method functions.
  • the transceiver unit 602 is configured to receive the first PDCCH sent by the network device, and the first PDCCH carries the power offset corresponding to the PUSCH.
  • the processing unit 601 is configured to determine the transmission power according to the power control process corresponding to the network device.
  • the power control process is configured to accumulate the power offset carried by the PDCCH from the network device, and determine the transmission power of the PUSCH according to the accumulation result.
  • the transceiver unit 602 is also configured to use the transmission power to send the PUSCH to the network device.
  • the power control process has a corresponding relationship with the CORESET group corresponding to the first PDCCH.
  • the transceiver unit 602 may also be used to: before the processing unit 601 determines the transmission power according to the power control process corresponding to the network device, receive a second PDCCH sent by the network device, and the second PDCCH carries an indication of the power control process Information, the indication information is used to indicate that there is a correspondence between the power control process and the CORESET group corresponding to the second PDCCH, and the second PDCCH and the first PDCCH correspond to the same CORESET group.
  • the indication information of the power control process may be SRI, and the value of the SRI has a corresponding relationship with the index of the power control process.
  • the value of SRI has a corresponding relationship with the power control parameter set used by the power control process.
  • the processing unit 601 may be further configured to: before determining the transmission power according to the power control process corresponding to the network device, determine to send PDSCH feedback information from different network devices on different physical uplink control channels PUCCH.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the communication device may be as shown in FIG. 7, and the communication device may be a terminal device or a chip in the terminal device.
  • the device may include a processor 701, a communication interface 702, and optionally may also include a memory 703, and the memory 703 may be provided on the processor 701.
  • the processing unit 601 may be a processor 701.
  • the transceiver unit 602 may be a communication interface 702.
  • the processor 701 may be a central processing unit (CPU), or a digital processing module, and so on.
  • the communication interface 702 may be a transceiver, an interface circuit such as a transceiver circuit, etc., or a transceiver chip, and so on.
  • the device also includes: a memory 703, which is used to store a program executed by the processor 701.
  • the memory 703 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory 703 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 701 is configured to execute the program code stored in the memory 703, and is specifically configured to execute the actions of the aforementioned processing unit 601, which will not be repeated in this application.
  • the communication interface 702 is specifically configured to perform the actions of the above-mentioned transceiver unit 602, which will not be repeated in this application.
  • the specific connection medium between the above-mentioned communication interface 702, the processor 701, and the memory 703 is not limited in the embodiment of the present application.
  • the memory 703, the processor 701, and the communication interface 702 are connected by a bus 704 in FIG. 7.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which contains a program required to execute the above-mentioned processor.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种功率控制方法及装置,可以提高多传输接收点协同传输场景下终端设备确定发送功率的准确性。该方法应用于具有支持被配置多个控制资源集合组索引的能力和/或被配置多个控制资源集合组索引的终端中。该方法包括:接收网络设备发送的第一物理下行控制信道(S501),第一物理下行控制信道携带物理下行控制信道对应的功率偏移量。根据网络设备对应的功控进程确定发送功率(S502),功控进程用于对该网络设备指示的功率偏移量进行累加,并根据累加结果确定物理下行控制信道的发送功率。使用发送功率向网络设备发送物理下行控制信道(S503)。通过对来自同一个网络设备的功率偏移量进行独立累加,从而可以使得PUSCH的发送功率和网络设备的指示一致。

Description

一种功率控制方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种功率控制方法及装置。
背景技术
物理上行共享信道(physical uplink shared channel,PUSCH)是用户设备(user equipment,UE)发送的上行信号,PUSCH的发送功率是基站可以控制的。例如,基站在UE发送的PUSCH功率较高时可以指示UE降低发送功率,反之,在UE发送的PUSCH功率较低时可以指示UE提高发送功率。基站控制终端设备的发送功率的行为可以称为闭环功率控制。闭环功率控制可以是基于下行控制信息(downlink control information,DCI)动态指示的,DCI中携带功率偏移量。
在一个传输接收点(transmission reception point,TRP)任意时序独立调度的场景下,UE发送PUSCH时,可以在最近的发送功率上加上这个PUSCH所对应的DCI里所指示的功率偏移量,从而确定PUSCH的发送功率。例如,最近的发送功率为P,假设DCI指示UE在slot i+2发送PUSCH时的功率偏移量为+1,则该PUSCH对应的发送功率为P+1。但是,在两个或两个以上TRP任意时序独立调度的场景下,UE如何确定发送功率,目前没有很好的解决方案。
发明内容
本申请实施例提供了一种功率控制方法及装置、芯片、计算机可读存储介质、计算机程序产品等,可以提高多TRP协同传输场景下终端设备确定发送功率的准确性。
第一方面,本申请实施例提供的一种功率控制方法,该方法可以应用于终端侧,如终端设备,或者终端设备中的芯片或芯片组,其中,终端具有支持被配置多个控制资源集合(control resource set,CORESET)组索引的能力,或者,终端被配置多个CORESET组索引,或者,终端具有支持被配置多个CORESET组索引的能力且被配置多个CORESET组索引。该方法包括:接收网络设备发送的第一物理下行控制信道(physical downlink control channel,PDCCH),第一PDCCH携带PUSCH对应的功率偏移量。根据网络设备对应的功控进程确定发送功率,功控进程用于对来自网络设备的PDCCH携带的功率偏移量进行累加,并根据累加结果确定PUSCH的发送功率。使用发送功率向网络设备发送PUSCH。
本申请实施例中通过将网络设备与功控进程进行关联,可以实现功控进程对来自同一个网络设备的功率偏移量进行累加,从而可以使得PUSCH的发送功率和网络设备的指示一致,进而可以提高上行传输的可靠性。
在一种可能的设计中,功控进程可以与第一PDCCH对应的CORESET组具有对应关系。上述设计通过将功控进程与PDCCH对应的CORESET组关联起来,可以实现同一个CORESET组调度的功率偏移量独立进行累加。
在一种可能的设计中,在根据网络设备对应的功控进程确定发送功率之前,可以接收网络设备发送的第二PDCCH,第二PDCCH携带功控进程的指示信息,指示信息用于指示功控进程与第二PDCCH对应的CORESET组之间具有对应关系,第二PDCCH与第一 PDCCH对应同一个CORESET组。上述设计中,功控进程与网络设备的关联关系可以是网络设备指示的,从而可以进一步提高发送功率的准确性。
在一种可能的设计中,功控进程的指示信息可以为探测参考信号资源指示(SRS resource indicator,SRI),SRI的取值与功控进程的索引具有对应关系。
在一种可能的设计中,功控进程的指示信息可以为功控进程的索引。
在一种可能的设计中,SRI的取值与功控进程使用的功控参数集合具有对应关系。
在一种可能的设计中,在根据网络设备对应的功控进程确定发送功率之前,可以确定在不同的物理上行控制信道PUCCH上发送来自不同网络设备的PDSCH的反馈信息。通过上述设计,终端设备可以在反馈模式为独立反馈时实施本申请提供的功率控制方法。
第二方面,本申请提供一种功率控制装置,该装置可以是终端设备,也可以是终端设备内的芯片或芯片组。该装置可以包括处理模块和收发模块。当该装置是终端设备时,该处理模块可以是处理器,该收发模块可以是收发器;该装置还可以包括存储模块,该存储模块可以是存储器;该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使终端设备执行上述第一方面中相应的功能。当该装置是终端设备内的芯片或芯片组时,该处理模块可以是处理器、处理电路或逻辑电路等,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使终端设备执行上述第一方面中相应的功能。该存储模块可以是该芯片或芯片组内的存储模块(例如,寄存器、缓存等),也可以是该基站内的位于该芯片或芯片组外部的存储模块(例如,只读存储器、随机存取存储器等)。
第三方面,提供了一种功率控制装置,包括:处理器。可选的,还包括通信接口和/或存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一设计所述的方法。
第四方面,本申请实施例提供的一种计算机存储介质,该计算机存储介质存储有程序指令,当程序指令在通信设备上运行时,使得通信设备执行本申请实施例第一方面及其任一可能的设计所述的方法。
第五方面,本申请实施例提供的一种计算机程序产品,当计算机程序产品在通信设备上运行时,使得通信设备本申请实施例第一方面及其任一可能的设计所述的方法。
第六方面,本申请实施例提供的一种芯片,所述芯片与存储器耦合,执行本申请实施例第一方面及其任一可能的设计所述的方法。
第七方面,本申请实施例提供一种芯片,包括通信接口和至少一个处理器,所述处理器运行以执行本申请实施例第一方面或第一方面中任一设计所述的方法。
需要说明的是,本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种多TRP协作的示意图;
图3为本申请实施例提供的一种PDCCH调度时序的示意图;
图4为本申请实施例提供的一种多TRP协作场景中功率控制的示意图;
图5为本申请实施例提供的一种功率控制方法的流程示意图;
图6为本申请实施例提供的一种功率控制装置的结构示意图;
图7为本申请实施例提供的一种功率控制装置的结构示意图。
具体实施方式
为了方便理解本申请实施例,下面介绍与本申请实施例相关的术语:
1、CORESET
为了提高终端设备盲检控制信道的效率,新无线(new radio,NR)标准制定过程中提出了控制资源集合的概念。网络设备可为终端设备配置一个或多个资源集合,用于发送PDCCH。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述控制资源集合的相关联的其他配置,例如搜索空间集合(search space set)等。每个控制资源集合的配置信息存在差异,例如频域宽度差异、时域长度差异等。可扩展地,本申请中的控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或增强物理下行控制信道(enhanced-physical downlink control channel,ePDCCH)集合(set)。
PDCCH所占用的时频位置可以称之为下行控制区域。在LTE中,PDCCH始终位于一个子帧的前m个(m可能的取值为1、2、3和4)符号。
在NR中,下行控制区域可以由RRC信令通过CORESET和search space set灵活配置:
控制资源集合可以配置PDCCH或控制信道单元(control channel element,CCE)的频域位置,时域的持续符号数等信息;
搜索空间集合可配置PDCCH的检测周期以及偏移量,在一个时隙内的起始符号等信息。
例如,搜索空间集合可配置PDCCH周期为1个时隙,而时域起始符号为符号0,则终端设备可以在每个时隙的起始位置检测PDCCH。
2、搜索空间(search space)
search space定义了检测PDCCH的时域上的可能性。基站可以给UE配置search space的标识、其关联的CORESET的标识、PDCCH的检测时间单元周期和时间单元偏移、时域检测图样(pattern)、对于各聚合级别可能的PDCCH候选(PDCCH candidate)的个数(可以包括0个)、search space的类型(表示是公共的还是UE特定的,公共的意思是还有其他用户可以检测这个search space)、与DCI格式相关的配置(如要检测的DCI的格式可能性),连续长度。
其中,时域检测pattern用于指示UE在一个时隙内可能的检测PDCCH的符号位置。如时域检测pattern可以指示一个或者多个符号位置。这些符号位置分别对应了可能的PDCCH所开始的第一个符号位置。如时域检测pattern可以指示符号位置l1、l2、l3,则UE可能分别在以l1、l2、l3为起始符号的位置检测到PDCCH。
其中,对于各聚合级别可能的PDCCH candidate的个数(可以包括0个)是指的基站可以给UE配置对于一个搜索空间内,如果是对应不同的聚合级别1,2,4,8,16各自可能的PDCCH的备选的个数。
其中,连续长度是指这个search space在时域时间单元的持续长度。以时隙为例,如配置的周期是k,持续长度是d,则意味着在满足search space的周期和偏移(offset)的一个时隙(slot)开始,持续的d个slot都可以在这个search space检测PDCCH。
需要说明的是,随着技术的不断发展,本申请实施例的术语有可能发生变化,但都在本申请的保护范围之内。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G NR系统以及未来通信发展中出现的新的通信系统等。本申请所述的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。
图1示出一种适用本申请实施例的通信系统100。该通信系统100处于双链接(dual connectivity,DC)或协作多点传输(coordinated multi-point,CoMP)的场景中,该通信系统100包括网络设备110、网络设备120和终端设备130,网络设备110可以为终端设备130初始接入时的网络设备,负责与终端设备130之间的RRC通信,网络设备120是在RRC重配置时添加的,用于提供额外的无线资源。配置了载波聚合(carrier aggregation,CA)的终端设备130与网络设备110和网络设备120相连,网络设备110和终端设备130之间的链路可以为称之为第一链路,网络设备120和终端设备130之间的链路可以称之为第二链路。
上述适用本申请实施例的通信系统仅是举例说明,适用本申请实施例的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量,或者采用单基站、多载波聚合的场景、双链接的场景或D2D通信场景、CoMP场景。其中CoMP可以为非相干联合发送(non coherent joint transmission,NCJT)、相干联合发送(coherent joint transmission,CJT)、联合发送(joint transmission,JT)等中的一种或多种场景。
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是一种向用户提供语音、数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以称为无线终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)等等。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言、数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。本申请实施例中涉及的终端设备还可以是未来演进的PLMN中出现的终端设备等,本申请实施例对此并不限定。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中所涉及的网络设备,是网络侧的一种用于发射或接收信号的实体。本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的RAN节点。例如,网络设备可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit,CU),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit,DU),可以是家庭基站,可以是传输接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。网络设备可以覆盖1个或多个小区。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
现代通信系统,为了提高频谱利用率,往往以同频部署为主。也就是说网络中的多个小区可以部署在相同的频段。这样,终端设备可能会收到来自多个小区的信号,那么,当终端设备处于边缘地区时,可能会受到本小区以外的邻区信号的干扰,从而导致了信道状况比较差。为了更好地解决小区之间的干扰,提高用户速率,CoMP可以得到广泛的应用。
网络设备通过交互信息,进行协作,从而可以有效地避免干扰,提高速率,多个TRP可以通过协作为终端设备下行服务,或者可以协作接收终端设备的上行信号。协作技术主要包括JT、动态点/小区选择(dynamic cell/Point selection,DCS/DPS)、协调干扰/调度(coordinated beamforming/scheduling,CB/CS)等。如图2所示,实线的箭头为对该终端设备产生的干扰,虚线的箭头为对该终端设备产生的有用数据。在非协作场景,边缘终端设备接收本小区的信号,受到邻区的干扰;在JT技术中,多个小区联合给这个终端设备发送数据,终端设备收到多份有用数据,因此可以提高传输的速率;在协调调度协调波束成型(coordinated scheduling coordinated beamforming,CSCB)技术中,协调邻区的干扰,如邻区可以对发送信号进行调整,避免在强干扰方向给终端设备发送信号,这样减少终端设备的干扰水平;在DPS/DCS技术中,网络动态选择更好的传输点为终端设备服务,这样使得终端设备能够保证是在更强的小区信号下,而较弱的小区信号则成为干扰,利用这种多个TRP的信道的差异,可以提高终端设备的信号信干噪比。
在多TRP协作传输场景,多个TRP可以独立对用户进行调度。根据3GPP R15协议,对于一个调度小区内的两个混合自动重传请求(hybrid automatic repeat request,HARQ)进程,如果UE被第一PDCCH调度了第一PUSCH,那么,UE不能够被晚于第一PDCCH的第二PDCCH调度去发送早于第一PUSCH的第二PUSCH,例如,如图3所示。也就是 说,如果UE的第二PDCCH在时间上在第一PDCCH之后收到的,那么第二PDCCH所调度的第二PUSCH不得早于第一PDCCH所调度的第一PUSCH。
PDCCH调度的PUSCH和该PDCCH之间的时序关系K2,可以由基站指示。这个时序关系K2指从UE接收到PDCCH到发送PUSCH的时间偏移。
以图3为例,如果第一PDCCH在slot1发送,且K2=2,则第一PUSCH在slot3发送。如果第二PDCCH在slot2发送,则其调度的第二PUSCH必须晚于第一PUSCH的最后一个符号,因此基站要保证第二PDCCH的K2值不能小于第一PDCCH的K2值,例如第二PDCCH的K2可以等于2,这样第二PUSCH在slot4进行发送。在多TPR协作传输场景中,如果第一PDCCH和第二PDCCH分别来自于两个TRP,为了满足这个限制,两个TRP之间需要进行非常紧密的沟通,比如说互相知道其调度UE时的K2指示是多少,才能够保证UE能够处理。这对TRP之间沟通的时延要求非常高。
而实际网络中,往往TRP之间不一定能够实时沟通,比如说TRP之间的交互时延可能是0~5ms,也可能是15~20ms。那么对于一些实际部署的场景,就会遇到很大调度的限制。针对这个问题,UE可以在识别DCI来自同一TRP的时候,满足前面所说的时序限制,即,如果第一PDCCH和第二PDCCH来自同一个TRP,UE的第二PDCCH在时间上在第一PDCCH之后收到的,那么第二PDCCH所调度的第二PUSCH不得早于第一PDCCH所调度的第一PUSCH。若DCI来自不同TRP的时候,可以不满足前面所说的时序限制,UE的第二PDCCH在时间上在第一PDCCH之后收到的,第二PDCCH所调度的第二PUSCH可以早于第一PDCCH所调度的第一PUSCH,第二PUSCH也可以晚于第一PUSCH,第二PUSCH也可以与第一PUSCH在同一个时隙上。这样的话,两个TRP就不需要实时的沟通就可以进行自由的调度。
以上时隙仅为时间概念的示例,应理解本申请时间概念还可以是符号、帧等。
PUSCH的发送功率是基站可以控制的。例如,基站在UE发送的PUSCH功率较高时可以指示UE降低发送功率,反之,在UE发送的PUSCH功率较低时可以指示UE提高发送功率。基站控制终端设备的发送功率的行为可以称为闭环功率控制。闭环功率控制可以是基于DCI动态指示的,DCI中携带功率偏移量。
在一个TRP任意时序独立调度的场景下,UE发送PUSCH时,可以在最近的发送功率上加上这个PUSCH所对应的DCI里所指示的功率偏移量,从而确定PUSCH的发送功率。例如,最近的发送功率为P,假设DCI指示UE在slot i+2发送PUSCH时的功率偏移量为+1,则该PUSCH对应的发送功率为P+1。但是,在两个或两个以上TRP任意时序独立调度的场景下,UE如何确定发送功率,目前没有很好的解决方案。
在两个或两个以上TRP任意时序独立调度的时候,若UE依然采用一个TRP场景下的功率控制方法,会出现一些问题,例如,UE在确定PUSCH的发送功率时根据的发送功率与基站通过DCI指示该PUSCH的发送功率时根据的发送功率可能会不同。例如,如图4所示,UE在solt n发送PUSCH 0的发送功率为f(n)。UE在solt n+1上接收PDCCH 1,该PDCCH 1用于指示在solt n+4上发送PUSCH 1,且,该PDCCH 1指示的功率偏移量为+3。UE在solt n+2上接收PDCCH 2,该PDCCH 2用于指示在solt n+3上发送PUSCH 2,且,该PDCCH 2指示的功率偏移量为+1。UE在solt n+3上发送PUSCH 2,且PUSCH 2的发送功率为最近一次发送PUSCH(即PUSCH 0)的发送功率加上PDCCH 2指示的功率偏移量,即PUSCH 2的发送功率为f(n)+1。UE在solt n+4上发送PUSCH 1,且PUSCH 1的发送功率为最近一次发送PUSCH(即PUSCH 2)的发送功率加上PDCCH 1指示的功率偏移量,即PUSCH 1的发送功率为f(n)+1+3。但是,基站在发送PDCCH 1时UE最近一次发送的PUSCH是在solt n发送的PUSCH 0,因此基站是根据PUSCH 0的发送功率f(n)指示的功率偏移量,也就是基站指示的PUSCH 1的发送功率为f(n)+3。由于UE在确定PUSCH的发送功率时根据的发送功率与基站通过DCI指示该PUSCH的发送功率时根据的发送功率不同,导致UE发送PUSCH 1时的发送功率,和基站指示的发送功率不符合,从而到导致基站的功率管理出问题,比如说UE发送功率过高,会对其他用户造成干扰,如果发送功率过低,则会导致接收信噪比(signal noise ratio,SNR)不足,数据调制和编码方案(modulation and coding scheme,MCS)不匹配等等。
基于此,本申请实施例提供一种功率控制方法及装置,可以提高多TRP传输场景下PUSCH功率控制的准确性。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例中,时域/时间单元可以是帧、无线帧、系统帧、子帧、半帧、时隙、迷你时隙、符号等。数据可以是指码字、传输块、码块(code block)、码块组(code block group)。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序,也不代表个数。
下面结合附图对本申请实施例提供的方法进行具体说明。
参见图5,为本申请提供的一种功率控制方法的流程图,该方法可以应用于终端设备或者终端设备中的芯片或者终端设备中的芯片组等,其中,终端设备具有支持被配置多个CORESET组索引的能力,或者,终端设备被配置多个CORESET组索引,或者,终端设备具有支持被配置多个CORESET组索引的能力且被配置多个CORESET组索引。
其中,终端设备具有支持被配置多个CORESET组索引的能力,可以理解为,终端设备支持至少2个CORESET,且支持至少1个CORESEET被配置为相同的CORSET组索引(CORESET Pool Index),例如,终端设备支持4个CORESET,且其中2个CORESET的CORESET Pool Index相同。
终端设备被配置多个CORESET组索引,可以理解为,基站对终端设备有如下至少一项配置:
基站配置至少2个不同取值的CORESET Pool Index,如基站配置了4个CORESET,其中第一CORESET、第二CORESET对应的CORESET Pool Index配置为值0,第三CORESET、第四CORESET对应的CORESET Pool Index配置为值1;
基站配置至少一个CORSET的CORESET Pool Index是默认值,而其他CORESET的CORESET Pool Index不同于该默认值,如基站配置了4个CORESET,其中第一CORESET、 第二CORESET没有配置CORESET Pool Index参数,其对应的CORESET Pool Index默认值认为是0,第三CORESET、第四CORESET对应的CORESET Pool Index配置为值1;
基站配置一部分CORSET的CORESET Pool Index是默认值,另一部分CORSET的CORESET Pool Index配置等于默认值,再一部分CORSET的CORESET Pool Index不同于默认值,如基站配置4个CORESET,其中第一CORESET没有配置CORESET Pool Index参数,其对应的CORESET Pool Index默认值认为是0,第二CORESET对应的CORESET Pool Index配置为0,第三CORESET、第四CORESET对应的CORESET Pool Index配置为1。
其中,终端设备被配置多个CORESET组索引可以是针对当前激活的带宽部分(bandwidth part,BWP)被配置多个CORESET组索引,或,也可以是针对一个服务小区里所有配置的带宽部分被配置多个CORESET组索引,或,还可以是针对一个服务小区里任一配置的带宽部分被配置多个CORESET组索引。
下面以终端设备为例进行说明,该方法包括:
S501,针对多个网络设备中的每个网络设备,终端设备接收该网络设备发送的第一PDCCH,第一PDCCH携带PUSCH对应的功率偏移量。
S502,终端设备根据该网络设备对应的功控进程确定对应的发送功率,该网络设备对应的功控进程用于对来自该网络设备的PDCCH携带的功率偏移量进行累加,并根据累加结果确定PUSCH的发送功率。
需要说明的,终端设备针对网络设备可以不必识别该网络设备是网络设备1还是网络设备2,而是可以通过配置信息进行区分,以高层参数索引为例,假设对于CORESET1和CORESET2,可以认为关联CORESET1的PDCCH的传输均是同一网络设备,对于关联CORESET2的PDCCH的传输均是同一网络设备,以此来实现区别网络设备。
其中,功控进程与网络设备有关联关系,或者,也可以理解为功控进程与PDCCH的配置信息有关联关系,如功控进程与PDCCH对应的CORESET组的配置信息有关联关系,或者,功控进程与PDCCH对应的CORESET组有关联关系。其中,具有相同的配置索引(index)的CORESET可以属于同一个CORESET组。
一种示例性说明中,网络设备对应的功控进程可以与第一PDCCH对应的CORESET组具有对应关系。一种实现方式中,终端设备可以根据第一PDCCH对应的CORESET组确定该网络设备对应的功控进程。
示例性的,网络设备对应的功控进程确定的发送功率可以满足如下公式,或者,也可以理解为,功控进程也可以通过如下公式确定发送功率:
Figure PCTCN2020084312-appb-000001
其中,P为发送功率,P CMAX为最大发射功率。P 0为基准功率密度,也可以理解成为网络设备期望的接收功率密度水准。μ是和参数集(numerology)相关的参数,numerology可以包括子载波间隔、循环前缀长度等。M是PUSCH的带宽。α是路损补偿因子。PL是路损,其中,PL可以是终端设备通过接收下行信号测量得到的。Δ是PUSCH码率的调整因子,f是闭环功率调整值,其中,在功率调整模式为累加时,则f是网络设备在第一PDCCH之前指示的功率偏移量的累加值。
一种实施方式中,终端设备可以被配置一套或多套功控参数,功控参数可以包括如下 参数中至少一项:最大发射功率、基准功率密度、PUSCH的带宽、路损补偿因子、PUSCH码率的调整因子。
如果终端设备配置一套功控参数,则不同网络设备对应的功控进程可以使用相同的功控参数,但是各个网络设备对应的功控进程对功率偏移量各自独立的进行累加,例如,网络设备1~3对应的功控进程使用相同的功控参数,但是,网络设备1对应的功控进程对网络设备1指示的功率偏移量进行累加,网络设备2对应的功控进程对网络设备2指示的功率偏移量进行累加,网络设备3对应的功控进程对网络设备3指示的功率偏移量进行累加。
如果终端设备配置多套功控参数,在没有配置SRI与功控参数的关联关系时,终端设备可以默认使用多套功控参数中的一套功控参数,不同网络设备对应的功控进程均可以使用该默认的功控参数。
在配置了SRI与功控参数的关联关系时,终端设备可以根据网络设备指示的SRI取值确定对应功控进程使用的功控参数,例如,假设网络设备1指示的SRI取值为0,则该网络设备对应的功控进程可以使用SRI=0对应的功控参数。一种实现方式中,网络设备可以通过DCI的SRI域向终端设备指示SRI。
一种可能的实施方式中,网络设备与功控进程的关联关系可以是终端设备确定的,例如,终端设备针对网络设备1确定功控进程1,该功控进程1对网络设备1指示的功率偏移量进行累加,针对网络设备2确定功控进程2,该功控进程2对网络设备2指示的功率偏移量进行累加,以此类推。
另一种可能的实施方式中,网络设备与功控进程的关联关系也可以是网络设备指示的,例如,网络设备在发送第一PDCCH之前,向终端设备发送第二PDCCH,第二PDCCH与第一PDCCH对应同一个CORESET组,且第二PDCCH携带功控进程的指示信息,从而终端设备可以将该指示信息指示的功控进程与第二PDCCH对应的CORESET组(即第一PDCCH对应的CORESET组)关联起来。
示例性的,指示信息可以直接指示功控进程,例如,指示信息可以是功控进程的索引、标识等信息。
或者,指示信息也可以间接指示功控进程,例如,该指示信息可以是SRI,SRI的取值与功控进程的索引具有对应关系。一种实现方式中,网络设备之间可以经过协调,确定各自可以使用的SRI的取值。SRI的取值可以是一个也可以是多个,例如,可以是一个取值范围。
一种实现方式中,若指示信息为SRI,第二PDCCH所携带DCI的SRI域可以携带该指示信息。
S503,终端设备使用发送功率向网络设备发送PUSCH。
在一些实施例中,本申请提供的功率控制方法可以在特定的反馈模式下实施,例如,可以在独立反馈(Separate feedback)模式下实施。Separate feedback是指终端设备将对多个网络设备所调度数据的ACK/NACK反馈信息通过不同的PUCCH进行反馈。通过上述方式,在反馈模式为联合反馈(Joint feedback)时,终端设备可以对跨网络设备的功率偏移量进行累加。Joint feedback是指终端设备将对多个网络设备所调度数据的ACK/NACK反馈信息在一个PUCCH中反馈。在反馈模式为Separate feedback时,可以针对每个网络设备的功率偏移量进行单独累加。
因此,终端设备在根据网络设备对应的功控进程确定发送功率之前,可以确定在不同 的物理上行控制信道PUCCH上发送来自不同网络设备的PDSCH的反馈信息。
本申请实施例中通过将网络设备与功控进程进行关联,可以实现功控进程对来自同一个网络设备的功率偏移量进行累加,从而可以使得PUSCH的发送功率和网络设备的指示一致,进而提高上行传输的可靠性。例如,以图4为例,假设PDCCH 0和PDCCH 1为终端设备与网络设备1之间传输的信息,PDCCH 2来自网络设备2,终端设备在确定PUSCH1的发送功率时在PUSCH 0的发送功率上加上PDCCH 1指示的功率偏移量,可以确定PUSCH 1的发送功率为f(n)+3,而网络设备1是在PUSCH 0的基础上指示的功率偏移量,即网络设备1指示的PUSCH 1的发送功率为f(n)+3,可见,通过本申请实施例提供的方法,PUSCH的发送功率和网络设备的指示一致。
基于与方法实施例的同一技术构思,本申请实施例提供一种通信装置。该通信装置的结构可以如图6所示,包括处理单元601以及收发单元602。通信装置具体可以用于实现图5的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,收发单元602,用于接收网络设备发送的第一PDCCH,第一PDCCH携带PUSCH对应的功率偏移量。处理单元601,用于根据网络设备对应的功控进程确定发送功率,功控进程用于对来自网络设备的PDCCH携带的功率偏移量进行累加,并根据累加结果确定PUSCH的发送功率。收发单元602,还用于使用发送功率向网络设备发送PUSCH。
示例性的,功控进程与第一PDCCH对应的CORESET组具有对应关系。
一种实现方式中,收发单元602,还可以用于:在处理单元601根据网络设备对应的功控进程确定发送功率之前,接收网络设备发送的第二PDCCH,第二PDCCH携带功控进程的指示信息,指示信息用于指示功控进程与第二PDCCH对应的CORESET组之间具有对应关系,第二PDCCH与第一PDCCH对应同一个CORESET组。
示例性的,功控进程的指示信息可以为SRI,SRI的取值与功控进程的索引具有对应关系。
示例性的,SRI的取值与功控进程使用的功控参数集合具有对应关系。
处理单元601,还可以用于:在根据网络设备对应的功控进程确定发送功率之前,确定在不同的物理上行控制信道PUCCH上发送来自不同网络设备的PDSCH的反馈信息。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图7所示,该通信装置可以是终端设备或者终端设备中的芯片。该装置可以包括处理器701,通信接口702,可选的还可以包括存储器703,存储器703可以设置在处理器701上。其中,处理单元601可以为处理器701。收发单元602可以为通信接口702。
处理器701,可以是一个中央处理模块(central processing unit,CPU),或者为数字处理模块等等。通信接口702可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器703,用于存储处理器701执行的程序。存储器703可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive, SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器703是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器701用于执行存储器703存储的程序代码,具体用于执行上述处理单元601的动作,本申请在此不再赘述。通信接口702具体用于执行上述收发单元602的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口702、处理器701以及存储器703之间的具体连接介质。本申请实施例在图7中以存储器703、处理器701以及通信接口702之间通过总线704连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种功率控制方法,其特征在于,所述方法应用于终端侧,所述终端具有支持被配置多个控制资源集合CORESET组索引的能力,或者,终端被配置多个CORESET组索引,或者,终端具有支持被配置多个CORESET组索引的能力且被配置多个CORESET组索引,包括:
    接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH携带物理上行共享信道PUSCH对应的功率偏移量;
    根据所述网络设备对应的功控进程确定发送功率,所述功控进程用于对来自所述网络设备的PDCCH携带的功率偏移量进行累加,并根据累加结果确定所述PUSCH的发送功率;
    使用所述发送功率向所述网络设备发送所述PUSCH。
  2. 如权利要求1所述的方法,其特征在于,所述功控进程与所述第一PDCCH对应的CORESET组具有对应关系。
  3. 如权利要求1或2所述的方法,其特征在于,在根据所述网络设备对应的功控进程确定发送功率之前,所述方法还包括:
    接收所述网络设备发送的第二PDCCH,所述第二PDCCH携带所述功控进程的指示信息,所述指示信息用于指示所述功控进程与所述第二PDCCH对应的CORESET组之间具有对应关系,所述第二PDCCH与所述第一PDCCH对应同一个CORESET组。
  4. 如权利要求3所述的方法,其特征在于,所述功控进程的指示信息为探测参考信号资源指示SRI,所述SRI的取值与所述功控进程的索引具有对应关系。
  5. 如权利要求4所述的方法,其特征在于,所述SRI的取值与所述功控进程使用的功控参数集合具有对应关系。
  6. 如权利要求1-5任一项所述的方法,其特征在于,在根据所述网络设备对应的功控进程确定发送功率之前,所述方法还包括:
    确定在不同的物理上行控制信道PUCCH上发送来自不同网络设备的PDSCH的反馈信息。
  7. 一种功率控制装置,其特征在于,所述装置应用于终端侧,所述终端具有支持被配置多个控制资源集合CORESET组索引的能力,或者,终端被配置多个CORESET组索引,或者,终端具有支持被配置多个CORESET组索引的能力且被配置多个CORESET组索引,包括:
    收发单元,用于接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH携带物理上行共享信道PUSCH对应的功率偏移量;
    处理单元,用于根据所述网络设备对应的功控进程确定发送功率,所述功控进程用于对来自所述网络设备的PDCCH携带的功率偏移量进行累加,并根据累加结果确定所述PUSCH的发送功率;
    所述收发单元,还用于使用所述发送功率向所述网络设备发送所述PUSCH。
  8. 如权利要求7所述的装置,其特征在于,所述功控进程与所述第一PDCCH对应的CORESET组具有对应关系。
  9. 如权利要求7或8所述的装置,其特征在于,所述收发单元,还用于:
    在所述处理单元根据所述网络设备对应的功控进程确定发送功率之前,接收所述网络设备发送的第二PDCCH,所述第二PDCCH携带所述功控进程的指示信息,所述指示信息用于指示所述功控进程与所述第二PDCCH对应的CORESET组之间具有对应关系,所述第二PDCCH与所述第一PDCCH对应同一个CORESET组。
  10. 如权利要求9所述的装置,其特征在于,所述功控进程的指示信息为探测参考信号资源指示SRI,所述SRI的取值与所述功控进程的索引具有对应关系。
  11. 如权利要求10所述的装置,其特征在于,所述SRI的取值与所述功控进程使用的功控参数集合具有对应关系。
  12. 如权利要求7-11任一项所述的装置,其特征在于,所述处理单元,还用于:
    在根据所述网络设备对应的功控进程确定发送功率之前,确定在不同的物理上行控制信道PUCCH上发送来自不同网络设备的PDSCH的反馈信息。
  13. 如权利要求7-12任一项所述的装置,其特征在于,所述处理单元为处理器,所述收发单元为收发器。
  14. 如权利要求7-13任一项所述的装置,其特征在于,所述装置为终端设备。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序或指令,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求1至6任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行权利要求1至6任一所述的方法。
PCT/CN2020/084312 2020-04-10 2020-04-10 一种功率控制方法及装置 WO2021203442A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080098785.4A CN115299157A (zh) 2020-04-10 2020-04-10 一种功率控制方法及装置
EP20929851.2A EP4117372A4 (en) 2020-04-10 2020-04-10 POWER CONTROL METHOD AND APPARATUS
PCT/CN2020/084312 WO2021203442A1 (zh) 2020-04-10 2020-04-10 一种功率控制方法及装置
US17/961,928 US20230030483A1 (en) 2020-04-10 2022-10-07 Power control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084312 WO2021203442A1 (zh) 2020-04-10 2020-04-10 一种功率控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/961,928 Continuation US20230030483A1 (en) 2020-04-10 2022-10-07 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2021203442A1 true WO2021203442A1 (zh) 2021-10-14

Family

ID=78022347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084312 WO2021203442A1 (zh) 2020-04-10 2020-04-10 一种功率控制方法及装置

Country Status (4)

Country Link
US (1) US20230030483A1 (zh)
EP (1) EP4117372A4 (zh)
CN (1) CN115299157A (zh)
WO (1) WO2021203442A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825427B2 (en) * 2021-08-20 2023-11-21 Qualcomm Incorporated Techniques for performing physical layer security during full-duplex communications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308640A (zh) * 2009-02-09 2012-01-04 交互数字专利控股公司 利用多载波的无线发射/接收单元的上行链路功率控制的装置和方法
CN105379368A (zh) * 2013-08-08 2016-03-02 联发科技股份有限公司 自适应tdd系统中ue发送功率调整状态累积
CN108811138A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输控制信息的方法及设备
CN109600826A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 功率控制方法及装置
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质
CN110784917A (zh) * 2018-07-30 2020-02-11 中国移动通信有限公司研究院 一种功率控制方法及装置、终端、存储介质
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536394B (zh) * 2019-03-29 2024-04-05 中兴通讯股份有限公司 功率控制方法、装置和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308640A (zh) * 2009-02-09 2012-01-04 交互数字专利控股公司 利用多载波的无线发射/接收单元的上行链路功率控制的装置和方法
CN105379368A (zh) * 2013-08-08 2016-03-02 联发科技股份有限公司 自适应tdd系统中ue发送功率调整状态累积
CN108811138A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输控制信息的方法及设备
CN109600826A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 功率控制方法及装置
CN110784917A (zh) * 2018-07-30 2020-02-11 中国移动通信有限公司研究院 一种功率控制方法及装置、终端、存储介质
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117372A4 *

Also Published As

Publication number Publication date
US20230030483A1 (en) 2023-02-02
EP4117372A4 (en) 2023-04-26
EP4117372A1 (en) 2023-01-11
CN115299157A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN109219970B (zh) 移动通信中跨链路干扰测量方法及设备
US10602499B2 (en) Method and apparatus for receiving or transmitting downlink control signal in wireless communication system
JP6748649B2 (ja) 無線通信システムにおけるチャネル状態報告方法及びそのための装置
US11533150B2 (en) Feedback information transmission method and communication device
US20160323901A1 (en) Method for channel measurement and report in wireless communication system and apparatus therefor
US9774430B2 (en) Method and apparatus for channel estimation in wireless communication system
WO2020228589A1 (zh) 通信方法和通信装置
US9584273B2 (en) Method for supporting CoMP in wireless communication system and device therefor
JP2019528610A (ja) 無線通信システムにおけるチャネル態報告のための方法及びその装置
WO2021018066A1 (zh) 信息上报方法及装置
CN111757518B (zh) 信息传输的方法和通信装置
CN108809484B (zh) 一种信道状态的指示方法、装置及网络设备
JP6148691B2 (ja) タイミング基準情報を送信、受信、及び決定するための方法、装置、及びシステム
WO2014123386A1 (en) Method and apparatus for reporting downlink channel state
WO2018228395A1 (zh) 一种控制信息发送、接收方法及装置
WO2020207333A1 (zh) 链路失败恢复的方法和装置
CN111865515B (zh) 通信方法和通信装置
CN110798900B (zh) 一种通信失败恢复的方法和装置
US20230030483A1 (en) Power control method and apparatus
WO2021062689A1 (zh) 一种上行传输的方法及装置
US20220159767A1 (en) Communication Method And Communications Apparatus
WO2021062672A1 (zh) 一种发送波束失败恢复请求的方法及装置
WO2018018461A1 (zh) 一种上行数据传输方法及设备、系统
US20230116002A1 (en) Method And Apparatus For PUCCH Carrier Switching And PUCCH Repetition In Mobile Communications
WO2019157920A1 (zh) 传输反馈信息的方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020929851

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE