WO2013166811A1 - 以太网性能测量方法及设备 - Google Patents

以太网性能测量方法及设备 Download PDF

Info

Publication number
WO2013166811A1
WO2013166811A1 PCT/CN2012/083466 CN2012083466W WO2013166811A1 WO 2013166811 A1 WO2013166811 A1 WO 2013166811A1 CN 2012083466 W CN2012083466 W CN 2012083466W WO 2013166811 A1 WO2013166811 A1 WO 2013166811A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
peer
network device
statistical information
measurement object
Prior art date
Application number
PCT/CN2012/083466
Other languages
English (en)
French (fr)
Inventor
包鹏程
彭东红
刘宏明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12876428.9A priority Critical patent/EP2833574A4/en
Publication of WO2013166811A1 publication Critical patent/WO2013166811A1/zh
Priority to US14/519,786 priority patent/US20150036510A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]

Definitions

  • the present application claims priority to Chinese Patent Application No. 201210141998.8, entitled “Ethernet Performance Measurement Method and Apparatus”, filed on May 09, 2012, the entire contents of which is incorporated herein by reference. .
  • TECHNICAL FIELD The present invention relates to measurement techniques, and more particularly to an Ethernet performance measurement method and apparatus.
  • OAM Operation Administration and Maintenance
  • the Operation Administration and Maintenance (OAM) model defined in Ethernet includes a Maintenance Entity Group (MGE) endpoint (MEG End Point, MEP).
  • MEP Maintenance Entity Group
  • the MEP is the endpoint of the MEG and is capable of initiating and terminating OAM protocol frames for network performance measurements.
  • Network performance measurements measure network performance such as frame loss rate, frame delay, frame jitter, or throughput.
  • the local network device may send a Lost Measurement Message (LMM) frame to the peer network device, where the local network device includes the local network device when transmitting the LMM frame.
  • the statistic value of the service packet is sent, and the peer network device returns a frame loss measurement response (LMR) frame to the local network device, where the LMR frame includes the service report of the peer network device when receiving the LMM frame this time.
  • LMR frame loss measurement response
  • the local network device can obtain the statistics of the service packets included in the received LMR frame. Value, the measurement of the frame loss rate.
  • Embodiments of the present invention provide an Ethernet performance measurement method and device, which are used to solve the performance measurement problem of a P2MP topology network, and improve network performance measurement capability.
  • an Ethernet performance measurement method includes: The local network device obtains a measurement object indication corresponding to the target flow according to the target flow to be measured; the local network device sends a first OAM protocol frame to the peer network device, where the first OAM protocol frame includes The measurement object indicates that the peer network device obtains the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information; the local network device receives a second OAM protocol frame sent by the peer network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information; the local network device according to the measurement object indication and The peer measures statistical information, and performs Ethernet performance measurement of the target stream.
  • an Ethernet performance measurement method includes: receiving, by a peer network device, a first OAM protocol frame sent by a local network device, where the first OAM protocol frame includes a measurement object indication, where the measurement object indication is The local network device is obtained according to the target flow to be measured; the peer network device obtains the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information; The peer network device sends a second OAM protocol frame to the local network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information, so that the local network device And performing Ethernet performance measurement of the target stream according to the measurement object indication and the peer measurement statistical information.
  • an Ethernet performance measurement device includes: an obtaining unit, configured to obtain, according to a target flow to be measured, a measurement object indication corresponding to the target flow; and a transmitter, configured to send, to the peer network device An OAM protocol frame, where the first OAM protocol frame includes the measurement object indication, so that the peer network device obtains a correspondence with the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information. Pair And receiving, by the receiver, a second OAM protocol frame sent by the peer network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information; And performing, according to the measurement object indication and the peer measurement statistical information, performing Ethernet performance measurement of the target stream.
  • an Ethernet performance measurement device includes: a receiver, configured to receive a first OAM protocol frame sent by a local network device, where the first OAM protocol frame includes a measurement object indication, and the measurement object indication Obtaining, for the local network device, the target flow according to the target to be measured; the obtaining unit, configured to obtain the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information; And the second OAM protocol frame is configured to send the second OAM protocol frame to the local network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information, so that the local network device is configured according to The measurement object indication and the peer measurement statistical information perform Ethernet performance measurement of the target stream.
  • the method and the device carry the measurement object indication in the first OAM protocol frame sent by the local network device to the peer network device, so that the peer network device can correspond to the measurement information of the peer end according to the measurement object indication
  • Obtaining the peer measurement statistical information corresponding to the measurement object indication, and the different measurement object indications can correspond to different peer measurement statistics information can implement flow-based measurement, and solve the topology in the prior art in P2MP Problems that cannot be measured in the network, thereby improving the ability of network performance measurements.
  • FIG. 1 is a schematic flowchart of a method for measuring an Ethernet performance according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an LMM frame in the embodiment corresponding to FIG. 1
  • FIG. 3 is a structure of an LMR frame in the embodiment corresponding to FIG.
  • FIG. 4 is a schematic structural diagram of an LMM frame in the embodiment corresponding to FIG. 1.
  • FIG. 5 is a schematic flowchart of a method for measuring an Ethernet performance according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an Ethernet performance measuring device according to another embodiment of the present invention.
  • the local network device or the peer network device involved in the present invention may be an (Optical Network Terminal, ONT), a Customer Premises Equipment (CPE), or a Digital Subscriber Line Access Multiplexer (DSLAM).
  • ONT Optical Network Terminal
  • CPE Customer Premises Equipment
  • DSLAM Digital Subscriber Line Access Multiplexer
  • the router or the switch, the local network device or the peer network device involved in the present invention may also be other network devices.
  • FIG. 1 is a schematic flowchart of a method for measuring an Ethernet performance according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • the local network device obtains a measurement object indication corresponding to the target flow according to the target flow to be measured.
  • the quaternary group (Destination Address, DA), Source Address (SA), and the source address (SA) may be configured according to fields in the Ethernet service packet header.
  • the service priority and the virtual local area network (VLAN) identifier are used to define the target flow to be measured.
  • the target flow to be measured may be defined according to the subset of the above four groups. This is not limited. For example: If multiple services of a user use different VLANs, you can select the ⁇ SA, VLAN: ⁇ > binary group to define the target flow of a certain service of the user to be measured.
  • the VLAN ID refers to the VLAN ID. It can be understood that the local network device can identify the target flow to be measured according to an Access Control List (ACL) determined by the selected tuple before performing measurement.
  • ACL is a list of commands for the router or switch interface, which is used to control the data packets entering and leaving the port. Generally, it includes a control list and a specified action.
  • the rule of the ACL uses the control list to compare with the data packet, and uses certain actions for the data packet conforming to the control list, such as permission, prohibition, message mirroring, traffic statistics, and the like.
  • the local network device may obtain, according to feature information of the target flow to be measured, a measurement object indication corresponding to the target flow.
  • the feature information may include one or more of a DA, an SA, a service priority, and a VLAN ID.
  • the local network device sends a first OAM protocol frame to the peer network device, where the first OAM protocol frame includes the measurement object indication, so that the peer network device indicates the peer end according to the measurement object.
  • the corresponding relationship of the statistical information is measured, and the peer measurement statistical information corresponding to the measurement object indication is obtained.
  • the local network device receives the second OAM protocol frame sent by the peer network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistics information.
  • the local network device performs Ethernet performance measurement of the target flow according to the measurement object indication and the peer measurement statistical information.
  • the local network may further obtain the local measurement statistics information of the target flow; correspondingly, in 102, the first OAM protocol frame sent by the local network device to the peer network device may further include the The local end measures the statistics information. Then, in the third OAM protocol frame received by the local network device, the local end measurement statistical information may be further included.
  • the local network device may perform Ethernet performance measurement of the target flow according to the measurement object indication, the local measurement statistical information, and the peer measurement statistical information.
  • the measurement object indication obtained by the local network device may include, but is not limited to, a field included in a frame header of the first OAM protocol frame or A field included in a frame payload of the first OAM protocol frame.
  • the MEP configuration in the prior art may be used, that is, the peer network device includes one MEP, and specifically, the MEP in the prior art may be extended, so that each MEP can monitor the object (ie, the target stream).
  • the first OAM protocol frame may use a field (ie, a new field) included in the frame payload as a measurement object indication, indicating a target flow, for example, a frame of the first OAM protocol frame.
  • the field included in the load may be the flow ID corresponding to the target stream; correspondingly, after 102, after the peer network device receives the first OAM protocol frame, the peer network device includes The OAM control layer entity sends the first OAM protocol frame to one MEP included in the peer network device, and then the MEP included in the peer network device can measure statistics according to the flow ID and the peer end. Corresponding relationship, obtaining peer measurement statistics corresponding to the flow ID.
  • the flow ID in the embodiment of the present invention may use a type length value (Type The Length Value, TLV form, that is, the flow ID includes: the type of the flow ID, the length of the flow ID, and the value of the flow ID.
  • the local network device may send an LMM frame to the peer network device, where the LMM frame carries a flow ID, where the embodiment may specifically represent the TLV format.
  • Flow ID the structure of the LMM frame can be seen in FIG. 2. The meanings of the fields in Figure 2 are as follows:
  • MEL Refers to the MEG level, which is used to identify the MEG level of the LMM frame. Values range from 0 to 7. Version: The version used to identify the OAM protocol. The version in the prior art (such as the International Telecommunications Union's protocol numbered Y.1731) is always 0. Operation Code (OpCode): Used to identify the type of LMM frame used to identify the rest of the LMM frame. The OpCode of the LMM frame is 43 and the OpCode of the LMR frame is 42. Tag: The use of each bit in this field depends on the type of LMM frame.
  • TLV Offset Value Contains the number of offsets of the first TLV in the LMM frame relative to the TLV Offset Value field. The value of this field is associated with the type of LMM frame. When the TLV offset value is 0, it points to the first byte after the TLV offset value field.
  • TxFcf Used to record the statistics of the transmission of the service when the LMM frame is sent. Reserved for RxFCf in the LMR: Used by the peer network device to record the received statistics of the service packets when the LMM frame is received in the LMR frame. Reserved for TxFCb in the LMR: Used by the peer network device to record the transmission statistics of the service packets when the LMR frame is sent in the LMR frame. End TLV: Used for padding, can be a value of all zero bytes.
  • the LMM frame in this embodiment further includes a flow identifier (Flow ID TLV) (ie, a flow identifier in the form of a TLV), and the Flow ID TLV includes: a flow identifier type (Flow type) The length of the stream identifier ( Length ) and the value of the stream ID ( Flow ID ).
  • Flow ID TLV flow identifier type
  • Length The length of the stream identifier
  • Flow ID The value of the stream ID
  • Flow type 1 byte, indicating the TLV value type Length: 2 bytes, indicating the length of the Flow ID;
  • Flow ID 4 bytes, occupying the number of bytes indicated by "Length”, indicating the flow ID assigned to the MEP (specifically the peer network device).
  • the flow identifier is carried in the frame, and the flow identifier may be specifically represented by the TLV in the embodiment, and the structure of the LMR frame may be referred to FIG. 3.
  • the peer network device copies the TxFCf value in the LMM frame to the TxFCf field of the LMR frame, and performs the peer measurement corresponding to the flow identifier according to the correspondence between the flow identifier and the peer measurement statistical information.
  • the statistic value of the statistic information is carried in the TxFCb field, and the received statistic value in the peer measurement statistic information corresponding to the flow identifier obtained by the corresponding relationship between the flow identifier and the peer measurement statistic information is carried.
  • the RxFCf field In the RxFCf field.
  • the first OAM protocol frame may also use a field (ie, an existing field) included in the frame header as a measurement object indication, indicating a target flow, for example, a frame header of the first OAM protocol frame.
  • a field ie, an existing field
  • the fields included in the field may include one or more of DA, SA, business priority, and VLAN ID.
  • ⁇ SA, Service Priority> Binary group as an example, correspondingly, after 102, after the peer network device receives the first OAM protocol frame, the OAM control layer entity included in the peer network device Sending the first OAM protocol frame to one MEP included in the peer network device, and then, the MEP included in the peer network device may be based on ⁇ 8, service priority> binary group and pair The corresponding relationship between the measured statistical information is obtained, and the peer measurement statistical information corresponding to the ⁇ SA, service priority> binary group is obtained.
  • the MEP configuration in the prior art may be extended, that is, the peer network device may include two MEPs or more than two MEPs, so that each MEP still monitors an object according to the solution in the prior art ( That is, the target stream).
  • Each MEP is configured with a respective set of measurement resources (ie, may include but not limited to a MEP ID (MEP ID), a counter, and a state machine), and each target flow is monitored, that is, by identifying the ACL of the target flow to the service.
  • the packets are matched, and the measured resources of the MEP are used to perform statistics on the matched services.
  • the peer measurement statistics are generated, so that the MEP is monitored based on the flow.
  • the first OAM protocol frame may use a field (ie, a new field) included in the frame header as a measurement object indication, indicating a target flow, for example, in a frame header of the first OAM protocol frame.
  • the included field may be the MEP ID corresponding to the target stream; correspondingly, after 102, after the peer network device receives the first OAM protocol frame, the OAM control included in the peer network device
  • the layer entity sends the first OAM protocol frame to the MEP corresponding to the MEP ID in the plurality of MEPs included in the peer network device according to the MEP ID, and then the MEP can obtain the MEP corresponding to the MEP.
  • the peer measures statistics.
  • the local network device may send an LMM frame to the peer network device, where the LMM frame carries the MEP ID, where the embodiment may specifically represent the TLV format in the TLV format.
  • the MEP ID TLV (that is, the MEP ID in the form of TLV) in this embodiment can be seen in FIG. 4.
  • the MEP ID TLV includes: a MEP ID type (MEP type), a MEP ID length (Length), and a MEP ID value (MEP ID).
  • MEP ID type MEP ID type
  • Length MEP ID length
  • MEP ID MEP ID value
  • MEP type 1 byte, indicating the TLV value type.
  • the reserved TLV type value 50 can be used to represent the MEP ID TLV.
  • Length 2 bytes, indicating the length of the Flow ID
  • the near-end measurement measures the number of lost packets received by the peer end and the local end, that is, the peer network. The number of lost packets received by the device and the local network device.
  • the peer measurement measures the number of lost packets received by the local end and the peer, that is, the number of lost packets received by the local network device and the peer network device.
  • R ⁇ C/[tJ is the received statistics value of the service packet received by the peer network device when receiving the LMM frame this time
  • rxFC/ [tj The statistical value of the service packet sent by the local network device when the LMM frame was last sent
  • 3 ⁇ 4cFC/[tj is the received statistical value of the service packet of the peer network device when receiving the LMM frame this time
  • 73 ⁇ 4FO) [tJ is the statistical value of the service packet sent by the peer network device when the LMR frame is sent this time.
  • R FC/[tJ The received statistics value of the service packet of the local network device when receiving the LMR frame this time, rxFCWtj The statistical value of the service packet sent by the peer network device when the LMR frame was last sent. 3 ⁇ 4cFC/[tj The received statistics value of the service packet when the network device last received the LMR frame.
  • the local network device carries the measurement object indication in the first OAM protocol frame sent to the peer network device, so that the peer network device can correspond to the measurement information of the peer end according to the measurement object indication.
  • Obtaining the peer measurement statistical information corresponding to the measurement object indication, and the different measurement object indications can correspond to different peer measurement statistics information, can implement flow-based measurement, and solve the topology in the prior art in P2MP Problems that cannot be measured in the network, thereby improving the ability of network performance measurements.
  • FIG. 5 is a schematic flowchart of a method for measuring an Ethernet performance according to another embodiment of the present invention. As shown in FIG. 5, the method includes:
  • the peer network device receives the first OAM protocol frame sent by the local network device, where the first OAM protocol frame includes a measurement object indication, where the measurement object indication is that the local network device is configured according to the target flow to be measured.
  • the quaternary group [Destination Address (DA), Source Address (SA), service priority, and virtual local area network (Virtual Local Area Network) may be formed according to fields in the header of the Ethernet service packet.
  • the VLAN is identified by the identifier > to define the target flow to be measured; or the target flow to be measured can be defined according to the subset of the above-mentioned quads, which is not limited in this embodiment.
  • the local network device can determine the access control according to the selected tuple before performing measurement.
  • the Access Control List identifies the target stream to be measured.
  • the ACL is a list of commands for the router or switch interface, which is used to control the data packets entering and leaving the port. Generally, it includes a control list and a specified action.
  • the rule of the ACL uses the control list to compare with the data packet, and uses certain actions for the data packet conforming to the control list, such as permission, prohibition, message mirroring, traffic statistics, and the like.
  • the local network device may obtain, according to the feature information of the target flow to be measured, a measurement object indication corresponding to the target flow.
  • the feature information may include one or more of a DA, an SA, a service priority, and a VLAN ID.
  • the peer network device 4 obtains the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information.
  • the peer network device sends a second OAM protocol frame to the local network device, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information, so that the The end network device performs Ethernet performance measurement of the target stream according to the measurement object indication and the peer measurement statistical information.
  • the local network device may further obtain local measurement statistics information of the target flow; and correspondingly, in 501, the opposite end
  • the first OAM protocol frame sent by the local network device that is received by the network device may further include the local measurement statistics information.
  • the peer network device sends the local network device to the local network device.
  • the local measurement information may be further included in the second OAM protocol frame. In this way, the local network device may perform Ethernet performance measurement of the target flow according to the measurement object indication, the local measurement statistical information, and the peer measurement statistical information.
  • the first OAM protocol frame received by the peer network device may further include other fields in the prior art, and details are not described herein again.
  • the measurement object indication included in the first OAM protocol frame may include, but is not limited to, a field included in a frame header of the first OAM protocol frame or the The field contained in the frame payload of the first OAM protocol frame.
  • the MEP configuration in the prior art may be used, that is, the peer network device includes one MEP, and specifically, the MEP in the prior art may be extended, so that each MEP can monitor the object (ie, the target stream).
  • a set of measurement resources ie, including but not limited to flow identifiers (IDs), counters, and state machines
  • IDs flow identifiers
  • counters counters
  • state machines state machines
  • the The first OAM protocol frame may use a field included in the frame payload (ie, a new field) as a measurement object indication, indicating a target flow, for example, the field included in the frame payload of the first OAM protocol frame may be a stream identifier corresponding to the target stream; correspondingly, in 502, after the peer network device receives the first OAM protocol frame, the peer network device includes The OAM control layer entity sends the first OAM protocol frame to a MEP included in the peer network device, and then the MEP included in the peer network device can be measured according to the flow identifier and the peer end. For the corresponding relationship of the information, the peer measurement statistics information corresponding to the flow identifier is obtained.
  • the first OAM The protocol frame may also use the field included in the frame header (ie, the existing field) as the measurement object indication, indicating the target flow, for example, the field included in the frame header of the first OAM protocol frame may include DA, SA, One or more of the service priority and the VLAN ID; the ⁇ SA, the service priority> the binary group is taken as an example, and in 502, after the peer network device receives the first OAM protocol frame, The OAM control layer entity included in the peer network device sends the first OAM protocol frame to one MEP included in the peer network device, and then the peer network device includes one The MEPs can obtain the peer measurement statistics corresponding to the ⁇ SA, service priority> binary group according to the correspondence between the ⁇ 8, the service priority> and the peer measurement statistics.
  • the field included in the frame header of the first OAM protocol frame may include DA, SA, One or more of the service priority and the VLAN ID; the ⁇ SA, the service priority> the binary group is taken as an example, and in 502, after the peer network device
  • the MEP configuration in the prior art may be extended, that is, the peer network device may include two MEPs or more than two MEPs, so that each MEP still follows
  • the prior art solution monitors an object (ie, a target stream), where each MEP is configured with a respective set of measurement resources (ie, may include but not limited
  • the MEP identifier (MEP ID), the counter, and the state machine are used to monitor each target flow, that is, the service object is matched by the ACL of the target flow, and the matched service packets are matched by using the measurement resources configured by the respective ones.
  • Statistics are generated to generate peer measurement statistics, so that monitoring based on streams is implemented.
  • the first frame protocol frame may use a field (ie, a new field) included in the frame header as a measurement object indication, indicating a target stream, for example, in a frame header of the first frame protocol frame.
  • the included field may be the MEP ID corresponding to the target stream; correspondingly, in 502, after the peer network device receives the first OAM protocol frame, the OAM control included in the peer network device.
  • the layer entity sends the first OAM protocol frame to the MEP corresponding to the MEP ID of the plurality of MEPs included in the peer network device according to the MEP ID, and then the MEP can obtain the MEP corresponding to the MEP.
  • the peer measures statistics. For details, refer to related content of the embodiment corresponding to FIG.
  • the local network device carries the measurement object indication in the first OAM protocol frame sent to the peer network device, so that the peer network device can correspond to the measurement information of the peer end according to the measurement object indication.
  • Obtaining the peer measurement statistical information corresponding to the measurement object indication, and the different measurement object indications can correspond to different peer measurement statistics information can implement flow-based measurement, and solve the topology in the prior art in P2MP Problems that cannot be measured in the network, thereby improving the ability of network performance measurements. It should be noted that, for the foregoing method embodiments, for the sake of simple description, they are all expressed as a series of action combinations, but those skilled in the art should understand that the present invention is not limited by the described action sequence.
  • FIG. 6 is a schematic structural diagram of an Ethernet performance measurement device according to another embodiment of the present invention.
  • the Ethernet performance measurement device of this embodiment may include an obtaining unit 61, a transmitter 62, a receiver 63, and detection. 64.
  • the obtaining unit 61 is configured to be based on the target to be measured a stream, obtaining a measurement object indication corresponding to the target stream;
  • the transmitter 62 is configured to send a first OAM protocol frame to the peer network device, where the first OAM protocol frame includes the measurement object indication, so that the The peer network device obtains the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information;
  • the receiver 63 is configured to receive the second OAM sent by the peer network device a protocol frame, where the second OAM protocol frame includes the measurement object indication and the peer measurement statistical information;
  • the detector 64 is configured to perform the target according to the measurement object indication and the peer measurement statistical information. Streaming Ethernet performance measurements.
  • the quaternary group (Destination Address, DA), Source Address (SA), and the source address (SA) may be configured according to fields in the Ethernet service packet header.
  • the service priority and the virtual local area network (VLAN) identifier are used to define the target flow to be measured.
  • the target flow to be measured may be defined according to the subset of the above four groups. This is not limited. For example: If multiple services of a user use different VLANs, you can select ⁇ SA, VLAN ID>: tuple to define the target flow of a certain service of the user to be measured.
  • the Ethernet performance measurement device can identify the target stream to be measured according to an Access Control List (ACL) determined by the selected tuple before performing measurement.
  • ACL Access Control List
  • the ACL is a list of commands for the router or switch interface, which is used to control the data packets entering and leaving the port. Generally, it includes a control list and a specified action.
  • the rule of the ACL uses the control list to compare with the data packet, and uses certain actions for the data packet conforming to the control list, such as permission, prohibition, message mirroring, traffic statistics, and the like.
  • the obtaining unit 61 may obtain, according to the feature information of the target stream to be measured, an indication of the measurement object corresponding to the target stream.
  • the feature information may include, but is not limited to, at least one of a DA, an SA, a service priority, and a VLAN ID.
  • the obtaining unit 61 may be further configured to obtain local measurement statistics information of the target flow; and correspondingly, the sending device 62 sends the information to the peer network device.
  • the first OAM protocol frame may further include the local measurement statistic information
  • the second OAM protocol frame received by the receiver 63 may further include the local measurement statistic information; thus, the detector 64 is specific.
  • the local measurement statistical information and the peer measurement statistical information perform Ethernet performance measurement of the target flow. It can be understood that: the first OAM protocol frame sent by the sender 62 to the peer network device may further include other fields in the prior art, and details are not described herein again.
  • the measurement object indication obtained by the obtaining unit 61 may include, but is not limited to, a field included in a frame header of the first OAM protocol frame or the first OAM protocol frame. The field contained in the frame payload.
  • the measurement object indication obtained by the obtaining unit is carried in the first OAM protocol frame sent by the transmitter to the peer network device, so that the peer network device can measure the statistical information according to the measurement object indication and the opposite end.
  • FIG. 7 is a schematic structural diagram of an Ethernet performance measurement device according to another embodiment of the present invention.
  • the Ethernet performance measurement device of this embodiment may include a receiver 71, an obtaining unit 72, and a transmitter 73.
  • the receiver 71 is configured to receive a first OAM protocol frame sent by the local network device, where the first OAM protocol frame includes a measurement object indication, where the measurement object indicates that the local network device is configured according to the target to be measured.
  • the obtaining unit 72 is configured to obtain the peer measurement statistical information corresponding to the measurement object indication according to the correspondence between the measurement object indication and the peer measurement statistical information; the transmitter 73 is configured to send the current measurement information to the local network device.
  • a second OAM protocol frame where the second OAM protocol frame includes the measurement object indication and the peer measurement statistics, so that the local network device performs measurement according to the measurement object indication and the peer end Information, performing Ethernet performance measurement of the target stream.
  • the quaternary group (Destination Address, DA), Source Address (SA), and the source address (SA) may be configured according to fields in the Ethernet service packet header.
  • the service priority and the virtual local area network (VLAN) identifier are used to define the target flow to be measured.
  • the target flow to be measured may be defined according to the subset of the above four groups. No limit on this Set. For example: If multiple services of a user use different VLANs, you can select ⁇ SA, VLAN ID>: tuple to define the target flow of a certain service of the user to be measured.
  • the local network device can identify the target flow to be measured according to an Access Control List (ACL) determined by the selected tuple before performing measurement.
  • ACL is a list of commands for the router or switch interface, which is used to control the data packets entering and leaving the port. Generally, it includes a control list and a specified action.
  • the rule of the ACL uses the control list to compare with the data packet, and uses certain actions for the data packet conforming to the control list, such as permission, prohibition, message mirroring, traffic statistics, and the like.
  • the local network device may obtain, according to the feature information of the target flow to be measured, a measurement object indication corresponding to the target flow.
  • the feature information may include one or more of a DA, an SA, a service priority, and a VLAN ID.
  • the measurement object indication included in the first OAM protocol frame received by the receiver 71 may include, but is not limited to, a field included in a frame header of the first OAM protocol frame.
  • the MEP configuration in the prior art may be used, that is, the obtaining unit 72 includes one MEP, and specifically, the MEP in the prior art may be extended, so that each MEP can monitor the object (ie, the target stream) by one.
  • the obtaining unit 72 is also configured to monitor each target stream, ie The service object is matched by the ACL of the target stream, and the matched measurement resources are used to collect statistics on the matched service, and the peer measurement statistics are generated, so that the MEP is monitored based on the flow.
  • the first OAM protocol frame may use a field (ie, a new field) included in the frame payload as a measurement object indication, indicating a target flow, for example, a frame of the first OAM protocol frame.
  • the field included in the load may be the stream identifier corresponding to the target stream.
  • the receiver 71 After receiving the first OAM protocol frame, the receiver 71 passes the OAM control layer entity included in the obtaining unit 72, and obtains the unit 72.
  • the included OAM control layer entity sends the first OAM protocol frame to one MEP included in the peer network device, and then obtains the unit 72.
  • the MEP included may obtain the peer measurement statistics corresponding to the flow identifier according to the correspondence between the flow identifier and the peer measurement statistics. For details, refer to related content of the corresponding embodiment in FIG. 1 , and details are not described herein again.
  • the first OAM protocol frame may also use a field (ie, an existing field) included in the frame header as a measurement object indication, indicating a target flow, for example, a frame header of the first OAM protocol frame.
  • the field included in the field may include one or more of DA, SA, service priority, and VLAN ID; ⁇ SA, Service Priority> Binary Group as an example, correspondingly, the receiver 71 receives the first OAM After the protocol frame is transmitted to the OAM control layer entity included in the obtaining unit 72, the OAM control layer entity included in the obtaining unit 72 sends the first OAM protocol frame to a MEP included in the peer network device, and then The MEP included in the obtaining unit 72 can obtain the peer corresponding to the ⁇ SA, service priority> binary group according to the correspondence between the ⁇ SA, service priority> binary group and the peer measurement statistical information. Measure statistics.
  • the MEP configuration in the prior art may be extended, that is, the obtaining unit 72 may include two MEPs or more than two MEPs, so that each MEP still monitors an object according to a solution in the prior art (ie, a target flow). ).
  • Each MEP is configured with a respective set of measurement resources (ie, may include but is not limited to a MEP ID (MEP ID), a counter, and a state machine), and the obtaining unit 72 is further configured to monitor each target stream, that is, By identifying the ACL of the target stream, the service is matched, and the measured resources configured by the MEP are used to collect statistics on the matched services, and the peer measurement statistics are generated, so that the MEP is monitored based on the flow.
  • MEP ID MEP ID
  • the obtaining unit 72 is further configured to monitor each target stream, that is, By identifying the ACL of the target stream, the service is matched, and the measured resources configured by the MEP are used to collect statistics on the matched services, and the peer measurement
  • the first OAM protocol frame may use a field (ie, a new field) included in the frame header as a measurement object indication, indicating a target flow, for example, in a frame header of the first OAM protocol frame.
  • the included field may be the MEP ID corresponding to the target stream; correspondingly, after receiving the first OAM protocol frame, the receiver 71 passes the OAM control layer entity included in the obtaining unit 72, and the obtaining unit 72 includes The OAM control layer entity sends the first OAM protocol frame to the MEP corresponding to the MEP ID among the plurality of MEPs included in the obtaining unit 72 according to the MEP ID, and then the MEP can obtain the MEP.
  • the first network device sends the first to the peer network device.
  • the measurement object indication is carried in the OAM protocol frame, so that the obtaining unit can perform the measurement according to the measurement object and the opposite end
  • the corresponding relationship between the quantity and the statistical information is obtained, and the peer measurement statistical information corresponding to the indication of the measurement object is obtained. Since different measurement object indications can correspond to different measurement statistics of the opposite end, the flow-based measurement can be realized, and the prior art is solved.
  • the problem that cannot be measured in the topology network of P2MP thereby improving the ability of network performance measurement.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the detector, the transmitter, the receiver, and the acquisition unit can all be implemented by a general-purpose CPU or an Application Specific Integrated Circuit (ASIC) or a Field-Programmable Gate Array (FPGA). .
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种以太网性能测量方法及设备,通过本端网络设备在向对端网络设备发送的第一OAM协议帧中携带测量对象指示,使得所述对端网络设备能够根据测量对象指示与对端测量统计信息的对应关系,获得与该测量对象指示对应的对端测量统计信息,由于不同的测量对象指示可以对应不同的对端测量统计信息,因此能够实现基于流的测量,解决了现有技术中在P2MP的拓扑网络中无法测量的问题,从而提高了网络性能测量的能力。

Description

以太网性能测量方法及设备
本申请要求于 2012 年 05 月 09 日提交中国专利局、 申请号为 201210141998.8、发明名称为"以太网性能测量方法及设备 "的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及测量技术, 尤其涉及以太网性能测量方法及设备。 背景技术 以太网中定义的操作管理维护 ( Operation Administration and Maintenance, OAM )模型包括维护实体群( Maintenance Entity Group, MGE ) 端点(MEG End Point, MEP ) 。 MEP是 MEG的端点, 能够发起并终结用 于网络性能测量的 OAM协议帧。 网络性能测量可以对测量帧丟失率、帧时 延、 帧抖动或吞吐量等网络性能进行测量。 以单端测量帧丟失率为例, 本 端网络设备可以向对端网络设备发送中贞丟失测量消息 ( Loss Measurement Message, LMM ) 帧, LMM帧中包含本端网络设备在本次发送 LMM帧时 的业务报文的发送统计值, 对端网络设备向本端网络设备返回帧丟失测量 响应( Loss Measurement Reply, LMR )帧, LMR帧中包含对端网络设备在 本次接收 LMM 帧时的业务报文的接收统计值和对端网络设备在本次发送 LMR帧时的业务报文的发送统计值; 然后, 本端网络设备则可以根据接收 到的所述 LMR帧中包含的业务报文的统计值, 进行帧丟失率的测量。 然而, 在点对多点(Point to Multi-Point, P2MP )的拓朴网络中, 即本 端网络设备与对端网络设备之间存在 P2MP的网络连接, 上述测量方法不 可用。 发明内容 本发明实施例提供以太网性能测量方法及设备, 用以解决 P2MP的拓 朴网络的性能测量问题, 提高网络性能测量的能力。 一方面, 一种以太网性能测量方法, 包括: 本端网络设备根据待测量的目标流, 获得与所述目标流对应的测量对 象指示; 所述本端网络设备向对端网络设备发送第一 OAM协议帧, 所述第一 OAM协议帧中包含所述测量对象指示, 以使得所述对端网络设备根据测量 对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应 的对端测量统计信息; 所述本端网络设备接收所述对端网络设备发送的第二 OAM协议帧,所 述第二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息; 所述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行所述目标流的以太网性能测量。 另一方面, 一种以太网性能测量方法, 包括: 对端网络设备接收本端网络设备发送的第一 OAM协议帧, 所述第一 OAM协议帧中包含测量对象指示, 所述测量对象指示为所述本端网络设备 根据待测量的目标流获得; 所述对端网络设备根据测量对象指示与对端测量统计信息的对应关 系, 获得与所述测量对象指示对应的对端测量统计信息; 所述对端网络设备向所述本端网络设备发送第二 OAM协议帧,所述第 二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息,以使得 所述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行 所述目标流的以太网性能测量。 另一方面, 一种以太网性能测量设备, 包括: 获得单元, 用于根据待测量的目标流, 获得与所述目标流对应的测量 对象指示; 发送器, 用于向对端网络设备发送第一 OAM协议帧, 所述第一 OAM 协议帧中包含所述测量对象指示, 以使得所述对端网络设备根据测量对象 指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对 端测量统计信息; 接收器,用于接收所述对端网络设备发送的第二 OAM协议帧,所述第 二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息; 检测器, 用于根据所述测量对象指示和所述对端测量统计信息, 进行 所述目标流的以太网性能测量。 另一方面, 一种以太网性能测量设备, 包括: 接收器, 用于接收本端网络设备发送的第一 OAM协议帧, 所述第一 OAM协议帧中包含测量对象指示, 所述测量对象指示为所述本端网络设备 根据待测量的目标流获得; 获得单元, 用于根据测量对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端测量统计信息; 发送器, 用于向所述本端网络设备发送第二 OAM协议帧, 所述第二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息, 以使得所 述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行所 述目标流的以太网性能测量。 该方法和设备, 通过本端网络设备在向对端网络设备发送的第一 OAM 协议帧中携带测量对象指示 , 使得所述对端网络设备能够根据测量对象指 示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端 测量统计信息, 由于不同的测量对象指示可以对应不同的对端测量统计信 息, 能够实现基于流的测量, 解决了现有技术中在 P2MP的拓朴网络中无 法测量的问题, 从而提高了网络性能测量的能力。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明一实施例的以太网性能测量方法的流程示意图; 图 2为图 1对应的实施例中的 LMM帧的结构示意图; 图 3为图 1对应的实施例中的 LMR帧的结构示意图; 图 4为图 1对应的实施例中的 LMM帧的结构示意图; 图 5为本发明另一实施例的以太网性能测量方法的流程示意图; 图 6为本发明另一实施例的以太网性能测量设备的结构示意图; 图 7为本发明另一实施例的以太网性能测量设备的结构示意图。
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行描述, 显然, 所 描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明 中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例, 都属于本发明保护的范围。 本发明的技术方案, 可以应用于以太网各种网络性能的测量, 例如: 对帧丟失率、 帧时延、 帧抖动或吞吐量等的测量。 本发明涉及的本端网络设备或对端网络设备可以是(Optical Network Terminal, ONT ) 、 用户驻地设备 ( Customer Premises Equipment, CPE ) 、 数字用户线接入复用器 (Digital Subscriber Line Access Multiplexer , DSLAM ) 、 路由器或交换机, 本发明涉及的本端网络设备或对端网络设备 也可能是其他网络设备。 图 1 为本发明一实施例的以太网性能测量方法的流程示意图, 如图 1 所示, 该方法包括:
101、 本端网络设备根据待测量的目标流, 获得与所述目标流对应的测 量对象指示。 可选地, 在本实施例的可选实施方式中, 可以根据以太网业务报文头 中的字段组成的四元组<目的地址 (Destination Address , DA ) 、 源地址 ( Source Address, SA ) 、 业务优先级和虚拟局域网 (Virtual Local Area Network, VLAN )标识 >来定义待测量的目标流(target flow ) ; 或者还可 以根据上述四元组的子集来定义待测量的目标流, 本实施例对此不进行限 定。 例如: 如果某用户的多个业务使用不同的 VLAN, 那么, 则可以选择 <SA、 VLAN:©>二元组来定义用户的某个业务的待测量的目标流。 VLAN ID指的是 VLAN标识。 可以理解的是, 本端网络设备在进行测量之前, 可以根据选择的元组 所确定的访问控制列表( Access Control List , ACL )识别待测量的目标流。 其中, ACL是路由器或交换机接口的指令列表, 用来控制进出端口的数据 包。 一般包括一个控制列表和规定动作, ACL釆用控制列表的规则与数据 包进行对比, 对于符合控制列表的数据包釆用一定的动作, 如允许通过、 禁止通过、 报文镜像、 流量统计等。 可选地, 本实施例的一个可选实施方式中, 在 101 中, 所述本端网络 设备具体可以根据待测量的目标流的特征信息, 获得与所述目标流对应的 测量对象指示。其中,所述特征信息可以包括 DA、 SA、业务优先级和 VLAN ID中的一个或多个。
102、 所述本端网络设备向对端网络设备发送第一 OAM协议帧, 所述 第一 OAM协议帧中包含所述测量对象指示,以使得所述对端网络设备根据 测量对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示 对应的对端测量统计信息。
103、 所述本端网络设备接收所述对端网络设备发送的第二 OAM协议 帧,所述第二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信 息。
104、 所述本端网络设备根据所述测量对象指示和所述对端测量统计信 息, 进行所述目标流的以太网性能测量。 可选地, 本实施例的一个可选实施方式中, 在 101 之后, 所述本端网 络设备还可以获得所述目标流的本端测量统计信息; 相应地, 在 102 中, 所述本端网络设备向所述对端网络设备发送的第一 OAM协议帧中还可以 进一步包含所述本端测量统计信息, 那么, 在 103 中, 所述本端网络设备 接收的第二 OAM协议帧中则还可以进一步包含所述本端测量统计信息。这 样, 在 104 中, 所述本端网络设备具体可以根据所述测量对象指示、 所述 本端测量统计信息和所述对端测量统计信息, 进行所述目标流的以太网性 能测量。
OAM协议帧中还可以进一步包括现有技术中的其他字段, 此处不再赘述。 可选地, 本实施例的一个可选实施方式中, 在 101 中, 所述本端网络 设备获得的测量对象指示可以包括但不限于所述第一 OAM协议帧的帧头 中包含的字段或者所述第一 OAM协议帧的帧净荷中包含的字段。 具体地, 可以釆用现有技术中的 MEP配置, 即所述对端网络设备中包 含一个 MEP, 具体可以对现有技术中的 MEP进行扩展, 使得每个 MEP可 以监控的对象(即目标流) 由一个扩展为多个, 并为每个目标流配置一组 测量资源 (即可以包括但不限于流标识 (flow ID ) 、 计数器和状态机) , 对每个目标流进行监控, 即通过识别目标流的 ACL对业务 文进行匹配, 利用配置的测量资源, 对匹配出的业务 ^艮文进行统计, 生成对端测量统计 信息, 从而实现了 MEP基于流进行监控。 那么,可选地,所述第一 OAM协议帧可以利用帧净荷中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧净荷中包含的字段则可以为所述目标流对应的 flow ID; 相应地, 在 102之后, 所述对端网络设备接收到所述第一 OAM协议帧之后, 所述对端 网络设备所包含的 OAM控制层实体将所述第一 OAM协议帧发送给所述对 端网络设备所包含的一个 MEP, 然后, 所述对端网络设备所包含的一个 MEP则可以根据 flow ID与对端测量统计信息的对应关系,获得与所述 flow ID对应的对端测量统计信息。 进一步地, 本发明实施例中的 flow ID 可以釆用类型长度值 (Type Length Value, TLV )形式, 即 flow ID包括: flow ID的类型、 flow ID的长 度和 flow ID的值。 以单端测量帧丟失率为例, 本端网络设备可以向对端网络设备发送 LMM帧 , 所述 LMM帧中携带 flow ID, 其中, 所述本实施例中具体可以 釆用 TLV形式表示所述 flow ID, 所述 LMM帧的结构可以参见图 2。 图 2 中的各字段的含义如下:
MEL: 指 MEG等级, 用于标识 LMM帧的 MEG等级。 数值范围从 0 到 7。 版本: 用于标识 OAM协议的版本。 现有技术(如国际电信联盟的编号 为 Y.1731的协议) 中版本总是为 0。 操作码( Operation Code, OpCode ): 用于标识 LMM帧的类型, 用于 识别 LMM帧中其余部分的内容。 其中 LMM帧的 OpCode为 43 , LMR帧 的 OpCode为 42。 标记: 这一字段中各比特的使用取决于 LMM帧的类型。
TLV偏置值: 包含 LMM帧中第一个 TLV相对于 TLV偏置值字段的 偏置数量。 这一字段的数值与 LMM帧的类型相联系。 当 TLV偏置值为 0 时, 它指向 TLV偏置值字段后的第一个字节。
TxFcf: 用于记录发送 LMM帧时的业务 ^艮文的发送统计值。 保留用于 LMR中的 RxFCf: 用于对端网络设备在 LMR帧中记录接收 LMM帧时的业务报文的接收统计值。 保留用于 LMR中的 TxFCb: 用于对端网络设备在 LMR帧中记录发送 LMR帧时的业务报文的发送统计值。 终了 TLV: 用于填充, 可以为全零字节的值。 与现有 LMM帧不同的是,本实施例中的 LMM帧中还进一步包含流标 识( Flow ID TLV ) (即 TLV形式的流标识 ) , 该 Flow ID TLV包括: 流 标识的类型( Flow type )、流标识的长度 ( Length )和流标识的值 ( Flow ID )。 各字段的说明如下:
Flow type: 1字节, 表示 TLV值类型 Length: 2字节, 表示 Flow ID的长度;
Flow ID: 4字节, 占用 "Length"指示的字节数, 表示分配给 MEP (具 体为对端网络设备)统计的流 ID。
帧中携带流标识, 其中, 所述本实施例中具体可以釆用 TLV形式表示所述 流标识, 所述 LMR帧的结构可以参见图 3。具体地,对端网络设备将 LMM 帧中的 TxFCf值复制到 LMR帧的 TxFCf字段中, 并且将根据流标识与对 端测量统计信息的对应关系, 获得的与所述流标识对应的对端测量统计信 息中的发送统计值携带在 TxFCb字段中, 以及将根据流标识与对端测量统 计信息的对应关系, 获得的与所述流标识对应的对端测量统计信息中的中 的接收统计值携带在 RxFCf字段中。 那么,可选地,所述第一 OAM协议帧还可以利用帧头中包含的字段(即 现有字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧头中包含的字段则可以包括 DA、 SA、 业务优先级和 VLAN ID中的 一个或多个。 <SA、 业务优先级 >二元组作为举例, 相应地, 在 102之后, 所述对端网络设备接收到所述第一 OAM协议帧之后,所述对端网络设备所 包含的 OAM控制层实体将所述第一 OAM协议帧发送给所述对端网络设备 所包含的一个 MEP , 然后,所述对端网络设备所包含的一个 MEP则可以根 据<8 、 业务优先级 >二元组与对端测量统计信息的对应关系, 获得与所述 <SA、 业务优先级 >二元组对应的对端测量统计信息。 具体地, 可以对现有技术中的 MEP配置进行扩展, 即所述对端网络设 备中可以包含两个 MEP或者两个以上 MEP, 使得每个 MEP仍然按照现有 技术中的方案监控一个对象(即目标流) 。 其中, 每个 MEP配置有各自的 一组测量资源 (即可以包括但不限于 MEP标识(MEP ID ) 、 计数器和状 态机 ) , 对每个目标流进行监控, 即通过识别目标流的 ACL对业务报文进 行匹配, 利用 MEP各自配置的测量资源, 对匹配出的业务 ^艮文进行统计, 生成对端测量统计信息, 从而实现了 MEP基于流进行监控。 那么, 可选地, 所述第一 OAM协议帧可以利用帧头中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧头中包含的字段则可以为所述目标流对应的 MEP ID;相应地,在 102 之后, 所述对端网络设备接收到所述第一 OAM协议帧之后,所述对端网络 设备所包含的 OAM控制层实体根据 MEP ID, 将所述第一 OAM协议帧发 送给所述对端网络设备所包含的多个 MEP中与所述 MEP ID对应的 MEP, 然后, 该 MEP则可以获得与该 MEP对应的对端测量统计信息。 以单端测量帧丟失率为例, 本端网络设备可以向对端网络设备发送 LMM帧, 所述 LMM帧中携带 MEP ID, 其中, 所述本实施例中具体可以 釆用 TLV形式表示所述 MEP ID, 本实施例中的 MEP ID TLV (即 TLV形 式的 MEP ID ) 的格式可以参见图 4。 所述 MEP ID TLV包括: MEP ID的 类型( MEP type ) 、 MEP ID的长度( Length )和 MEP ID的值( MEP ID ) 。 各字段的说明如下:
MEP type: 1字节, 表示 TLV值类型, 此处可以用保留的 TLV类型值 50, 代表 MEP ID TLV;
Length: 2字节, 表示 Flow ID的长度;
MEP ID: 2字节, 占用 "Length"指示的字节数,表示目的 MEP的 ID, 其格式可以釆用如国际电信联盟的编号为 Y.1731的协议标准要求的格式。 可选地, 本实施例的一个可选实施方式中, 以单端测量帧丟失率为例, 所述本端网络设备具体可以根据接收到的所述 LMR 帧中包含的测量对象 指示、 本端测量统计信息和对端测量统计信息, 从 LMR 帧中获取 TxFCf 字段、 RxFCf字段和 TxFCb字段, 并与本端网络设备本地的接收计数器的 当前统计值 RxFCl进行暂存。 再次釆用 LMM帧重复上述测试过程, 通过 两次的 LMM/LMR测量过程可以釆用如下的公式进行丟包计算: 帧丢失率远端 =
帧丢失率近端 =
Figure imgf000011_0001
其中, 近端测量是测量对端发送的与本端接收的丟包数, 即对端网络 设备发送的与本端网络设备接收的丟包数; 对端测量是测量本端发送的与 对端接收的丟包数, 即本端网络设备发送的与对端网络设备接收的丟包数。
为本端网络设备在本次发送 LMM帧时的业务报文的发送统计值, R^C/[tJ为对端网络设备在本次接收 LMM帧时的业务报文的接收统计值, rxFC/[tj为本端网络设备在上次发送 LMM帧时的业务报文的发送统计值, ¾cFC/[tj为对端网络设备在本次接收 LMM帧时的业务报文的接收统计值; 7¾FO)[tJ为对端网络设备在本次发送 LMR帧时的业务报文的发送统计值, R FC/[tJ为本端网络设备在本次接收 LMR帧时的业务报文的接收统计值, rxFCWtj为对端网络设备在上次发送 LMR帧时的业务报文的发送统计值, ¾cFC/[tj为本端网络设备在上次接收 LMR帧时的业务报文的接收统计值。
本实施例中,通过本端网络设备在向对端网络设备发送的第一 OAM协 议帧中携带测量对象指示 , 使得所述对端网络设备能够根据测量对象指示 与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端测 量统计信息, 由于不同的测量对象指示可以对应不同的对端测量统计信息, 能够实现基于流的测量, 解决了现有技术中在 P2MP的拓朴网络中无法测 量的问题, 从而提高了网络性能测量的能力。 图 5为本发明另一实施例的以太网性能测量方法的流程示意图,如图 5 所示, 该方法包括:
501、 对端网络设备接收本端网络设备发送的第一 OAM协议帧, 所述 第一 OAM协议帧中包含测量对象指示,所述测量对象指示为所述本端网络 设备根据待测量的目标流获得。 具体地, 可以根据以太网业务报文头中的字段组成的四元组<目的地址 ( Destination Address, DA ) 、 源地址( Source Address, SA ) 、 业务优先 级和虚拟局域网 ( Virtual Local Area Network, VLAN )标识 >来定义待测量 的目标流( target flow ) ; 或者还可以根据上述四元组的子集来定义待测量 的目标流, 本实施例对此不进行限定。 例如: 如果某用户的多个业务使用 不同的 VLAN, 那么, 则可以选择 <SA、 VLAN:©>二元组来定义用户的某 个业务的待测量的目标流。 本端网络设备在进行测量之前, 可以根据选择的元组所确定的访问控 制列表 ( Access Control List, ACL )识别待测量的目标流。 其中, ACL是 路由器或交换机接口的指令列表, 用来控制进出端口的数据包。 一般包括 一个控制列表和规定动作, ACL釆用控制列表的规则与数据包进行对比, 对于符合控制列表的数据包釆用一定的动作, 如允许通过、 禁止通过、 报 文镜像、 流量统计等。 可选地, 本实施例的一个可选实施方式中, 所述本端网络设备具体可 以根据待测量的目标流的特征信息, 获得与所述目标流对应的测量对象指 示。 其中, 所述特征信息可以包括 DA、 SA、 业务优先级和 VLAN ID中的 一个或多个。
502、 所述对端网络设备 4艮据测量对象指示与对端测量统计信息的对应 关系, 获得与所述测量对象指示对应的对端测量统计信息。
503、 所述对端网络设备向所述本端网络设备发送第二 OAM协议帧, 所述第二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息, 以使得所述本端网络设备根据所述测量对象指示和所述对端测量统计信 息, 进行所述目标流的以太网性能测量。
可选地, 本实施例的一个可选实施方式中, 在 501 之前, 所述本端网 络设备还可以获得所述目标流的本端测量统计信息; 相应地, 在 501 中, 所述对端网络设备接收的所述本端网络设备发送的第一 OAM协议帧中还 可以进一步包含所述本端测量统计信息, 那么, 在 503 中, 所述对端网络 设备向所述本端网络设备发送的第二 OAM协议帧中则还可以进一步包含 所述本端测量统计信息。 这样, 所述本端网络设备具体可以根据所述测量 对象指示、 所述本端测量统计信息和所述对端测量统计信息, 进行所述目 标流的以太网性能测量。
可以理解的是:所述对端网络设备接收的第一 OAM协议帧中还可以进 一步包括现有技术中的其他字段, 此处不再赘述。 可选地,本实施例的一个可选实施方式中,所述第一 OAM协议帧中包 含的测量对象指示可以包括但不限于所述第一 OAM协议帧的帧头中包含 的字段或者所述第一 OAM协议帧的帧净荷中包含的字段。 具体地, 可以釆用现有技术中的 MEP配置, 即所述对端网络设备中包 含一个 MEP, 具体可以对现有技术中的 MEP进行扩展, 使得每个 MEP可 以监控的对象(即目标流) 由一个扩展为多个, 并为每个目标流配置一组 测量资源 (即可以包括但不限于流标识(ID ) 、 计数器和状态机) , 对每 个目标流进行监控, 即通过识别目标流的 ACL对业务 文进行匹配, 利用 配置的测量资源, 对匹配出的业务"¾文进行统计, 生成对端测量统计信息, 从而实现了 MEP基于流进行监控。 那么,可选地,所述第一 OAM协议帧可以利用帧净荷中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧净荷中包含的字段则可以为所述目标流对应的流标识; 相应地, 在 502中, 所述对端网络设备接收到所述第一 OAM协议帧之后, 所述对端网 络设备所包含的 OAM控制层实体将所述第一 OAM协议帧发送给所述对端 网络设备所包含的一个 MEP , 然后, 所述对端网络设备所包含的一个 MEP 则可以根据流标识与对端测量统计信息的对应关系, 获得与所述流标识对 应的对端测量统计信息。 详细描述可以参见图 1对应的实施例的相关内容, 此处不再赘述。 那么,可选地,所述第一 OAM协议帧还可以利用帧头中包含的字段(即 现有字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧头中包含的字段则可以包括 DA、 SA、 业务优先级和 VLAN ID中的 一个或多个; <SA、 业务优先级 >二元组作为举例, 相应地, 在 502中, 所述对端网络设备接收到所述第一 OAM协议帧之后,所述对端网络设备所 包含的 OAM控制层实体将所述第一 OAM协议帧发送给所述对端网络设备 所包含的一个 MEP , 然后,所述对端网络设备所包含的一个 MEP则可以根 据<8 、 业务优先级 >二元组与对端测量统计信息的对应关系, 获得与所述 <SA、 业务优先级 >二元组对应的对端测量统计信息。 具体地, 可以对现有技术中的 MEP配置(即所述对端网络设备中包含 一个 MEP )进行扩展, 即所述对端网络设备中可以包含两个 MEP或者两个 以上 MEP,使得每个 MEP仍然按照现有技术中的方案监控一个对象(即目 标流) 。 其中, 每个 MEP配置有各自的一组测量资源 (即可以包括但不限 于 MEP标识 (MEP ID ) 、 计数器和状态机) , 对每个目标流进行监控, 即通过识别目标流的 ACL对业务 文进行匹配, 利用 ΜΕΡ各自配置的测 量资源, 对匹配出的业务报文进行统计, 生成对端测量统计信息, 从而实 现了 ΜΕΡ基于流进行监控。 那么, 可选地, 所述第一 ΟΑΜ协议帧可以利用帧头中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 ΟΑΜ协议 帧的帧头中包含的字段则可以为所述目标流对应的 MEP ID;相应地,在 502 中,所述对端网络设备接收到所述第一 OAM协议帧之后,所述对端网络设 备所包含的 OAM控制层实体根据 MEP ID, 将所述第一 OAM协议帧发送 给所述对端网络设备所包含的多个 MEP中与所述 MEP ID对应的 MEP,然 后, 该 MEP则可以获得与该 MEP对应的对端测量统计信息。 详细描述可 以参见图 1对应的实施例的相关内容, 此处不再赘述。 本实施例中,通过本端网络设备在向对端网络设备发送的第一 OAM协 议帧中携带测量对象指示 , 使得所述对端网络设备能够根据测量对象指示 与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端测 量统计信息, 由于不同的测量对象指示可以对应不同的对端测量统计信息, 能够实现基于流的测量, 解决了现有技术中在 P2MP的拓朴网络中无法测 量的问题, 从而提高了网络性能测量的能力。 需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都 表述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受 所描述的动作顺序的限制, 因为依据本发明, 某些步骤可以釆用其他顺序 或者同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实 施例均属于优选实施例, 所涉及的动作和模块并不一定是本发明所必需的。 在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没 有详述的部分, 可以参见其他实施例的相关描述。 图 6为本发明另一实施例提供的以太网性能测量设备的结构示意图, 如图 6所示, 本实施例的以太网性能测量设备可以包括获得单元 61、 发送 器 62、 接收器 63和检测器 64。 其中, 获得单元 61用于根据待测量的目标 流, 获得与所述目标流对应的测量对象指示; 发送器 62用于向对端网络设 备发送第一 OAM协议帧,所述第一 OAM协议帧中包含所述测量对象指示, 以使得所述对端网络设备根据测量对象指示与对端测量统计信息的对应关 系, 获得与所述测量对象指示对应的对端测量统计信息; 接收器 63用于接 收所述对端网络设备发送的第二 OAM协议帧,所述第二 OAM协议帧中包 含所述测量对象指示和所述对端测量统计信息; 检测器 64用于根据所述测 量对象指示和所述对端测量统计信息, 进行所述目标流的以太网性能测量。 可选地, 在本实施例的可选实施方式中, 可以根据以太网业务报文头 中的字段组成的四元组<目的地址 (Destination Address , DA ) 、 源地址 ( Source Address, SA ) 、 业务优先级和虚拟局域网 (Virtual Local Area Network, VLAN )标识 >来定义待测量的目标流(target flow ) ; 或者还可 以根据上述四元组的子集来定义待测量的目标流, 本实施例对此不进行限 定。 例如: 如果某用户的多个业务使用不同的 VLAN, 那么, 则可以选择 <SA、 VLAN ID>:元组来定义用户的某个业务的待测量的目标流。 以太网性能测量设备在进行测量之前, 可以根据选择的元组所确定的 访问控制列表 ( Access Control List, ACL )识别待测量的目标流。 其中, ACL是路由器或交换机接口的指令列表, 用来控制进出端口的数据包。 一 般包括一个控制列表和规定动作, ACL釆用控制列表的规则与数据包进行 对比, 对于符合控制列表的数据包釆用一定的动作, 如允许通过、 禁止通 过、 报文镜像、 流量统计等。 可选地, 本实施例的一个可选实施方式中, 获得单元 61具体可以根据 待测量的目标流的特征信息, 获得与所述目标流对应的测量对象指示。 其 中, 所述特征信息可以包括但不限于 DA、 SA、 业务优先级和 VLAN ID中 的至少一项。 可选地, 本实施例的一个可选实施方式中, 获得单元 61还可以进一步 用于获得所述目标流的本端测量统计信息; 相应地, 发送器 62向所述对端 网络设备发送的第一 OAM协议帧中还可以进一步包含所述本端测量统计 信息, 那么, 接收器 63接收的第二 OAM协议帧中还可以进一步包含所述 本端测量统计信息; 这样, 检测器 64则具体可以根据所述测量对象指示、 所述本端测量统计信息和所述对端测量统计信息, 进行所述目标流的以太 网性能测量。 可以理解的是: 发送器 62向所述对端网络设备发送的第一 OAM协议 帧中还可以进一步包括现有技术中的其他字段, 此处不再赘述。 可选地, 本实施例的一个可选实施方式中, 获得单元 61获得的测量对 象指示可以包括但不限于所述第一 OAM协议帧的帧头中包含的字段或者 所述第一 OAM协议帧的帧净荷中包含的字段。 本实施例中,通过发送器在向对端网络设备发送的第一 OAM协议帧中 携带获得单元获得的测量对象指示, 使得所述对端网络设备能够根据测量 对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应 的对端测量统计信息, 由于不同的测量对象指示可以对应不同的对端测量 统计信息, 能够实现基于流的测量, 解决了现有技术中在 P2MP的拓朴网 络中无法测量的问题, 从而提高了网络性能测量的能力。 图 7为本发明另一实施例的以太网性能测量设备的结构示意图,如图 7 所示, 本实施例的以太网性能测量设备可以包括接收器 71、 获得单元 72和 发送器 73。 其中, 接收器 71用于接收本端网络设备发送的第一 OAM协议 帧,所述第一 OAM协议帧中包含测量对象指示,所述测量对象指示为所述 本端网络设备根据待测量的目标流获得; 获得单元 72用于根据测量对象指 示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端 测量统计信息;发送器 73用于向所述本端网络设备发送第二 OAM协议帧, 所述第二 OAM协议帧中包含所述测量对象指示和所述对端测量统计信息, 以使得所述本端网络设备根据所述测量对象指示和所述对端测量统计信 息, 进行所述目标流的以太网性能测量。 可选地, 在本实施例的可选实施方式中, 可以根据以太网业务报文头 中的字段组成的四元组<目的地址 (Destination Address , DA ) 、 源地址 ( Source Address, SA ) 、 业务优先级和虚拟局域网 (Virtual Local Area Network, VLAN )标识 >来定义待测量的目标流(target flow ) ; 或者还可 以根据上述四元组的子集来定义待测量的目标流, 本实施例对此不进行限 定。 例如: 如果某用户的多个业务使用不同的 VLAN, 那么, 则可以选择 <SA、 VLAN ID>:元组来定义用户的某个业务的待测量的目标流。 本端网络设备在进行测量之前, 可以根据选择的元组所确定的访问控 制列表 ( Access Control List, ACL )识别待测量的目标流。 其中, ACL是 路由器或交换机接口的指令列表, 用来控制进出端口的数据包。 一般包括 一个控制列表和规定动作, ACL釆用控制列表的规则与数据包进行对比, 对于符合控制列表的数据包釆用一定的动作, 如允许通过、 禁止通过、 报 文镜像、 流量统计等。 可选地, 本实施例的一个可选实施方式中, 所述本端网络设备具体可 以根据待测量的目标流的特征信息, 获得与所述目标流对应的测量对象指 示。 其中, 所述特征信息可以包括 DA、 SA、 业务优先级和 VLAN ID中的 一个或多个。 可选地,本实施例的一个可选实施方式中,接收器 71接收的第一 OAM 协议帧中包含的测量对象指示可以包括但不限于所述第一 OAM协议帧的 帧头中包含的字段或者所述第一 OAM协议帧的帧净荷中包含的字段。 具体地, 可以釆用现有技术中的 MEP配置, 即获得单元 72中包含一 个 MEP, 具体可以对现有技术中的 MEP进行扩展, 使得每个 MEP可以监 控的对象(即目标流) 由一个扩展为多个, 并为每个目标流配置一组测量 资源 (即可以包括但不限于流标识 (ID ) 、 计数器和状态机) , 获得单元 72还用于对每个目标流进行监控,即通过识别目标流的 ACL对业务 文进 行匹配, 利用配置的测量资源, 对匹配出的业务 ^艮文进行统计, 生成对端 测量统计信息, 从而实现了 MEP基于流进行监控。 那么,可选地,所述第一 OAM协议帧可以利用帧净荷中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧净荷中包含的字段则可以为所述目标流对应的流标识; 相应地, 接 收器 71接收到所述第一 OAM协议帧之后, 传递给获得单元 72所包含的 OAM控制层实体,获得单元 72所包含的 OAM控制层实体将所述第一 OAM 协议帧发送给所述对端网络设备所包含的一个 MEP, 然后, 获得单元 72 所包含的一个 MEP则可以根据流标识与对端测量统计信息的对应关系, 获 得与所述流标识对应的对端测量统计信息。 详细描述可以参见图 1 对应的 实施例的相关内容, 此处不再赘述。 那么,可选地,所述第一 OAM协议帧还可以利用帧头中包含的字段(即 现有字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧头中包含的字段则可以包括 DA、 SA、 业务优先级和 VLAN ID中的 一个或多个; <SA、 业务优先级 >二元组作为举例, 相应地, 接收器 71 接收到所述第一 OAM协议帧之后, 传递给获得单元 72所包含的 OAM控 制层实体, 获得单元 72所包含的 OAM控制层实体将所述第一 OAM协议 帧发送给所述对端网络设备所包含的一个 MEP, 然后, 获得单元 72所包含 的一个 MEP则可以根据 <SA、 业务优先级 >二元组与对端测量统计信息的 对应关系,获得与所述 <SA、业务优先级 >二元组对应的对端测量统计信息。 具体地, 可以对现有技术中的 MEP配置进行扩展, 即获得单元 72中 可以包含两个 MEP或者两个以上 MEP , 使得每个 MEP仍然按照现有技术 中的方案监控一个对象(即目标流) 。 其中, 每个 MEP配置有各自的一组 测量资源(即可以包括但不限于 MEP标识( MEP ID )、计数器和状态机 ) , 所述获得单元 72还用于对每个目标流进行监控,即通过识别目标流的 ACL 对业务 "^艮文进行匹配, 利用 MEP各自配置的测量资源, 对匹配出的业务才艮 文进行统计, 生成对端测量统计信息, 从而实现了 MEP基于流进行监控。 那么, 可选地, 所述第一 OAM协议帧可以利用帧头中包含的字段(即 新的字段), 作为测量对象指示, 指示目标流, 例如: 所述第一 OAM协议 帧的帧头中包含的字段则可以为所述目标流对应的 MEP ID; 相应地, 接收 器 71接收到所述第一 OAM协议帧之后,传递给获得单元 72所包含的 OAM 控制层实体, 获得单元 72所包含的 OAM控制层实体根据 MEP ID, 将所 述第一 OAM协议帧发送给获得单元 72所包含的多个 MEP中与所述 MEP ID对应的 MEP , 然后 , 该 MEP则可以获得与该 MEP对应的对端测量统计 信息。 详细描述可以参见图 1对应的实施例的相关内容, 此处不再赘述。 本实施例中,通过本端网络设备在向对端网络设备发送的第一 OAM协 议帧中携带测量对象指示, 使得获得单元能够根据测量对象指示与对端测 量统计信息的对应关系, 获得与所述测量对象指示对应的对端测量统计信 息, 由于不同的测量对象指示可以对应不同的对端测量统计信息, 能够实 现基于流的测量, 解决了现有技术中在 P2MP的拓朴网络中无法测量的问 题, 从而提高了网络性能测量的能力。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赘述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬 件加软件功能单元的形式实现。 比如, 检测器、 发送器、 接收器、 获得单 元都可以通过通用中央处理器 CPU或专用集成电路(Application Specific Integrated Circuit, ASIC )或现场可编程门阵列 ( Field - Programmable Gate Array, FPGA )来实现。 上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算 机可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络 设备等)执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质 包括: U盘、 移动硬盘、 只读存储器(Read-Only Memory, 简称 ROM ) 、 随机存取存储器( Random Access Memory, 简称 RAM )、 磁碟或者光盘等 各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种以太网性能测量方法,其特征在于,包括: 本端网络设备根据待测量的目标流,获得与所述目标流对应的测量对 象指示;
所述本端网络设备向对端网络设备发送第一操作管理维护协议帧,所 述第一操作管理维护协议帧中包含所述测量对象指示,以使得所述对端网 络设备根据测量对象指示与对端测量统计信息的对应关系,获得与所述测 量对象指示对应的对端测量统计信息;
所述本端网络设备接收所述对端网络设备发送的第二操作管理维护协 议帧,所述第二操作管理维护协议帧中包含所述测量对象指示和所述对端 测量统计信息;
所述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行所述目标流的以太网性能测量。
2、 根据权利要求 1所述的方法,其特征在于,
所述本端网络设备根据待测量的目标流,获得与所述目标流对应的测 量对象指示之后,还包括:
所述本端网络设备获得所述目标流的本端测量统计信息;
所述第一操作管理维护协议帧中还包含所述本端测量统计信息; 所述第二操作管理维护协议帧中还包含所述本端测量统计信息; 所述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行所述目标流的以太网性能测量,包括:
所述本端网络设备根据所述测量对象指示、 所述本端测量统计信息和 所述对端测量统计信息,进行所述目标流的以太网性能测量。
3、 根据权利要求 1或 2所述的方法,其特征在于,所述对端网络设备 中包含一个维护实体群端点;所述测量对象指示为所述目标流对应的目的 地址、 源地址、 业务优先级和虚拟局域网标识中的一个或多个;所述对端 网络设备根据测量对象指示与对端测量统计信息的对应关系,获得与所述 测量对象指示对应的对端测量统计信息,包括:
所述对端网络设备所包含的维护实体群端点根据目的地址、 源地址、 业务优先级和虚拟局域网标识中的一个或多个与对端测量统计信息的对应 关系,获得与所述目的地址、 源地址、 业务优先级和虚拟局域网标识中的 一个或多个对应的对端测量统计信息。
4、 根据权利要求 1或 2所述的方法,其特征在于,所述对端网络设备 中包含一个维护实体群端点;所述测量对象指示为所述目标流对应的流标 识;所述对端网络设备根据测量对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端测量统计信息,包括:
所述对端网络设备所包含的维护实体群端点根据流标识与对端测量统 计信息的对应关系,获得与所述流标识对应的对端测量统计信息。
5、 根据权利要求 1或 2所述的方法,其特征在于,所述对端网络设备 中包含至少两个维护实体群端点;所述测量对象指示为所述目标流对应的 维护实体群端点标识;所述对端网络设备根据测量对象指示与对端测量统 计信息的对应关系,获得与所述测量对象指示对应的对端测量统计信息, 包括:
所述对端网络设备所包含的操作管理维护控制实体,将所述第一操作 管理维护协议帧发送给所述至少两个维护实体群端点中与所述维护实体群 端点标识对应的维护实体群端点,所述与所述维护实体群端点标识对应的 维护实体群端点获得与该维护实体群端点对应的对端测量统计信息。
6、 根据权利要求 1~5中任一权利要求所述的方法,其特征在于,所述 本端网络设备根据待测量的目标流,获得与所述目标流对应的测量对象指 示,包括:
所述本端网络设备根据待测量的目标流的特征信息,获得与所述目标 流对应的测量对象指示,所述特征信息包括目的地址、 源地址、 业务优先 级和虚拟局域网标识中的一个或多个。
7、 一种以太网性能测量方法,其特征在于,包括:
对端网络设备接收本端网络设备发送的第一操作管理维护协议帧,所 述第一操作管理维护协议帧中包含测量对象指示,所述测量对象指示为所 述本端网络设备根据待测量的目标流获得;
所述对端网络设备根据测量对象指示与对端测量统计信息的对应关 系,获得与所述测量对象指示对应的对端测量统计信息;
所述对端网络设备向所述本端网络设备发送第二操作管理维护协议 帧,所述第二操作管理维护协议帧中包含所述测量对象指示和所述对端测 量统计信息,以使得所述本端网络设备根据所述测量对象指示和所述对端 测量统计信息,进行所述目标流的以太网性能测量。
8、 根据权利要求 7所述的方法,其特征在于,所述对端网络设备接收 本端网络设备发送的第一操作管理维护协议帧之前,还包括:
所述本端网络设备获得所述目标流的本端测量统计信息;
所述第一操作管理维护协议帧中还包含所述本端测量统计信息; 所述第二操作管理维护协议帧中还包含所述本端测量统计信息; 所述本端网络设备根据所述测量对象指示和所述对端测量统计信息, 进行所述目标流的以太网性能测量,包括:
所述本端网络设备根据所述测量对象指示、 所述本端测量统计信息和 所述对端测量统计信息,进行所述目标流的以太网性能测量。
9、 根据权利要求 7或 8所述的方法,其特征在于,所述对端网络设备 中包含一个维护实体群端点;所述测量对象指示为所述目标流对应的目的 地址、 源地址、 业务优先级和虚拟局域网标识中的一个或多个;所述对端 网络设备根据测量对象指示与对端测量统计信息的对应关系,获得与所述 测量对象指示对应的对端测量统计信息,包括:
所述对端网络设备所包含的一个维护实体群端点根据目的地址、 源地 址、 业务优先级和虚拟局域网标识中的一个或多个与对端测量统计信息的 对应关系,获得与所述目的地址、 源地址、 业务优先级和虚拟局域网标识 中的一个或多个对应的对端测量统计信息。
10、 根据权利要求 7或 8所述的方法,其特征在于,所述对端网络设 备中包含一个维护实体群端点;所述测量对象指示为所述目标流对应的流 标识;所述对端网络设备根据测量对象指示与对端测量统计信息的对应关 系,获得与所述测量对象指示对应的对端测量统计信息,包括:
所述对端网络设备所包含的维护实体群端点根据流标识与对端测量统 计信息的对应关系,获得与所述流标识对应的对端测量统计信息。
11、根据权利要求 9或 10所述的方法,其特征在于,所述方法还包括: 所述对端网络设备对所述目标流进行监控,通过识别所述目标流的访 问控制列表访问控制列表对业务报文进行匹配,利用配置的测量资源,对 匹配出的业务报文进行统计,生成所述对端测量统计信息。
12、 根据权利要求 7或 8所述的方法,其特征在于,所述对端网络设 备中包含至少两个维护实体群端点;所述测量对象指示为所述目标流对应 的维护实体群端点标识;所述对端网络设备根据测量对象指示与对端测量 统计信息的对应关系,获得与所述测量对象指示对应的对端测量统计信息, 包括:
所述对端网络设备所包含的操作管理维护控制实体,将所述第一操作 管理维护协议帧发送给所述至少两个维护实体群端点中与所述维护实体群 端点标识对应的维护实体群端点,所述与所述维护实体群端点标识对应的 维护实体群端点获得与该维护实体群端点对应的对端测量统计信息。
13、 根据权利要求 12所述的方法,其特征在于,所述方法还包括: 所述对端网络设备对所述目标流进行监控,通过识别所述目标流的访 问控制列表对业务报文进行匹配,利用所述至少两个维护实体群端点配置 的测量资源,对匹配出的业务报文进行统计,生成所述对端测量统计信息。
14、 根据权利要求 7~13中任一权利要求所述的方法,其特征在于,所 述本端网络设备根据待测量的目标流,获得与所述目标流对应的测量对象 指示,包括:
所述本端网络设备根据待测量的目标流的特征信息,获得与所述目标 流对应的测量对象指示,所述特征信息包括目的地址、 源地址、 业务优先 级和 VLAN标识中的一个或多个。
15、 一种以太网性能测量设备,其特征在于,包括:
获得单元,用于根据待测量的目标流,获得与所述目标流对应的测量 对象指示;
发送器,用于向对端网络设备发送第一操作管理维护协议帧,所述第 一操作管理维护协议帧中包含所述测量对象指示,以使得所述对端网络设 备根据测量对象指示与对端测量统计信息的对应关系,获得与所述测量对 象指示对应的对端测量统计信息;
接收器,用于接收所述对端网络设备发送的第二操作管理维护协议帧, 所述第二操作管理维护协议帧中包含所述测量对象指示和所述对端测量统 计信息;
检测器,用于根据所述测量对象指示和所述对端测量统计信息,进行 所述目标流的以太网性能测量。
16、 根据权利要求 15所述的设备,其特征在于,所述获得单元还用于 获得所述目标流的本端测量统计信息;所述第一操作管理维护协议帧中还 包含所述本端测量统计信息;所述第二操作管理维护协议帧中还包含所述 本端测量统计信息;所述检测器具体用于
根据所述测量对象指示、 所述本端测量统计信息和所述对端测量统计 信息,进行所述目标流的以太网性能测量。
17、 根据权利要求 15或 16任一权利要求所述的设备,其特征在于, 所述获得单元具体用于
根据待测量的目标流的特征信息,获得与所述目标流对应的测量对象 指示,所述特征信息包括目的地址、 源地址、 业务优先级和虚拟局域网标 识中的的一个或多个。
18、 一种以太网性能测量设备,其特征在于,包括:
接收器,用于接收本端网络设备发送的第一操作管理维护协议帧,所 述第一操作管理维护协议帧中包含测量对象指示,所述测量对象指示为所 述本端网络设备根据待测量的目标流获得;
获得单元,用于根据测量对象指示与对端测量统计信息的对应关系, 获得与所述测量对象指示对应的对端测量统计信息;
发送器,用于向所述本端网络设备发送第二操作管理维护协议帧,所 述第二操作管理维护协议帧中包含所述测量对象指示和所述对端测量统计 信息,以使得所述本端网络设备根据所述测量对象指示和所述对端测量统 计信息,进行所述目标流的以太网性能测量。
19、 根据权利要求 18所述的设备,其特征在于,所述获得单元中包含 一个维护实体群端点;所述测量对象指示为所述目标流对应的目的地址、 源地址、 业务优先级和虚拟局域网标识中的一个或多个;所述获得单元具 体用于
所述获得单元所包含的维护实体群端点根据目的地址、 源地址、 业务 优先级和虚拟局域网标识中的一个或多个与对端测量统计信息的对应关 系,获得与所述目的地址、 源地址、 业务优先级和虚拟局域网标识中的一 个或多个对应的对端测量统计信息。
20、 根据权利要求 18所述的设备,其特征在于,所述获得单元中包含 一个维护实体群端点;所述测量对象指示为所述目标流对应的流标识;所 述获得单元具体用于
所述获得单元所包含的维护实体群端点根据流标识与对端测量统计信 息的对应关系,获得与所述流标识对应的对端测量统计信息。
21、 根据权利要求 19或 20所述的设备,其特征在于,所述获得单元 还用于
对所述目标流进行监控,通过识别所述目标流的访问控制列表访问控 制列表对业务报文进行匹配,利用配置的测量资源,对匹配出的业务报文 进行统计,生成所述对端测量统计信息。
22、 根据权利要求 18所述的设备,其特征在于,所述获得单元中包含 至少两个维护实体群端点;所述测量对象指示为所述目标流对应的维护实 体群端点标识;所述获得单元具体用于
所述获得单元所包含的操作管理维护控制实体,将所述第一操作管理 维护协议帧发送给所述至少两个维护实体群端点中与所述维护实体群端点 标识对应的维护实体群端点,所述与所述维护实体群端点标识对应的维护 实体群端点获得与该维护实体群端点对应的对端测量统计信息。
23、 根据权利要求 22所述的设备,其特征在于,所述获得单元还用于 对所述目标流进行监控,通过识别所述目标流的访问控制列表对业务 报文进行匹配,利用所述至少两个维护实体群端点配置的测量资源,对匹 配出的业务报文进行统计,生成所述对端测量统计信息。
PCT/CN2012/083466 2012-05-09 2012-10-25 以太网性能测量方法及设备 WO2013166811A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12876428.9A EP2833574A4 (en) 2012-05-09 2012-10-25 METHOD AND APPARATUS FOR ETHERNET PERFORMANCE MEASUREMENT
US14/519,786 US20150036510A1 (en) 2012-05-09 2014-10-21 Method and device for measuring ethernet performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210141998.8 2012-05-09
CN2012101419988A CN102651702A (zh) 2012-05-09 2012-05-09 以太网性能测量方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/519,786 Continuation US20150036510A1 (en) 2012-05-09 2014-10-21 Method and device for measuring ethernet performance

Publications (1)

Publication Number Publication Date
WO2013166811A1 true WO2013166811A1 (zh) 2013-11-14

Family

ID=46693598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083466 WO2013166811A1 (zh) 2012-05-09 2012-10-25 以太网性能测量方法及设备

Country Status (4)

Country Link
US (1) US20150036510A1 (zh)
EP (1) EP2833574A4 (zh)
CN (1) CN102651702A (zh)
WO (1) WO2013166811A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651702A (zh) * 2012-05-09 2012-08-29 华为技术有限公司 以太网性能测量方法及设备
CN102946330B (zh) 2012-09-29 2017-03-15 华为技术有限公司 网络丢包测量方法、装置和系统
WO2014094228A1 (en) * 2012-12-18 2014-06-26 Telefonaktiebolaget L M Ericsson(Publ) Method and device for handling dropped data packets
CN103227736B (zh) * 2013-04-08 2016-03-09 华为技术有限公司 一种以太网性能检测方法、系统及光网络终端
CN103401730A (zh) * 2013-07-31 2013-11-20 盛科网络(苏州)有限公司 链路的通量测量方法及待测设备
CN103401716B (zh) * 2013-08-06 2016-11-23 华为技术有限公司 网络性能测量的方法、网管设备和网元设备
WO2021169290A1 (zh) * 2020-02-27 2021-09-02 华为技术有限公司 配置性能探测指示信息的方法及相关设备
CN112911632B (zh) * 2021-02-04 2022-11-29 京信网络系统股份有限公司 点对多点网络测量方法、装置、通信系统和存储介质
CN114567574B (zh) * 2022-03-01 2023-11-10 烽火通信科技股份有限公司 一种基于时序控制实现lm免流量测试的方法与装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992651A (zh) * 2005-12-29 2007-07-04 华为技术有限公司 检测以太网多播性能的实现方法
CN101854268A (zh) * 2009-04-04 2010-10-06 华为技术有限公司 Ip网络性能测量、服务质量控制的方法、装置和系统
CN102651702A (zh) * 2012-05-09 2012-08-29 华为技术有限公司 以太网性能测量方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173325B1 (en) * 1998-07-31 2001-01-09 Microsoft Corporation Method computer program product, and system for assessing the performance of a packet schedule
US20050099955A1 (en) * 2003-11-10 2005-05-12 Nortel Networks Limited Ethernet OAM fault isolation
CN100550785C (zh) * 2006-08-30 2009-10-14 华为技术有限公司 一种以太网设备链路故障检测的方法及其系统
US7996559B2 (en) * 2007-10-12 2011-08-09 Nortel Networks Limited Automatic MEP provisioning in a link state controlled Ethernet network
CN101926154B (zh) * 2008-02-05 2013-07-10 富士通株式会社 帧丢失测定方法、系统以及装置
CN101729348B (zh) * 2009-06-01 2011-12-28 中兴通讯股份有限公司 一种点到多点环的保护方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992651A (zh) * 2005-12-29 2007-07-04 华为技术有限公司 检测以太网多播性能的实现方法
CN101854268A (zh) * 2009-04-04 2010-10-06 华为技术有限公司 Ip网络性能测量、服务质量控制的方法、装置和系统
CN102651702A (zh) * 2012-05-09 2012-08-29 华为技术有限公司 以太网性能测量方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833574A4 *

Also Published As

Publication number Publication date
CN102651702A (zh) 2012-08-29
EP2833574A1 (en) 2015-02-04
US20150036510A1 (en) 2015-02-05
EP2833574A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2013166811A1 (zh) 以太网性能测量方法及设备
WO2017000750A1 (zh) 测量终端上运行的业务的质量的方法、设备及系统
JP5462954B2 (ja) パケットロス検出方法及び装置、並びにルータ
US8885488B2 (en) Reachability detection in trill networks
US7706293B2 (en) Performance management system, apparatus and method between residential gateway and broadband remote access server
JP5265785B2 (ja) メッシュおよびハブアンドスポークネットワークのためのスケーリングされたイーサネット(登録商標)oam
WO2021057671A1 (zh) 一种网络的oam方法及装置
CN109428782B (zh) 网络监控的方法和设备
US11102273B2 (en) Uplink performance management
WO2007118396A1 (fr) Procédé et système de mesure de performances réseau
WO2015085748A1 (zh) 交换装置及丢包方法
WO2011020361A1 (zh) 一种光接入节点的管理方法及光接入节点
WO2012145886A1 (zh) 一种基于标签的测量方法,装置和系统
JP6332544B1 (ja) ネットワーク管理装置、ネットワークシステム、方法、及びプログラム
WO2014101185A1 (zh) 组播通道的性能检测方法、装置和系统
WO2019157802A1 (zh) 测量网络性能的方法、设备和网络系统
WO2021052280A1 (zh) 网络测量系统、方法、设备及存储介质
WO2013075476A1 (zh) 以太网链路检测方法及装置
JP2019195139A (ja) ネットワーク管理装置、ネットワークシステム、方法、及びプログラム
WO2014000509A1 (zh) 一种传输监控方法及装置
WO2021078061A1 (zh) 数据传输质量的测量方法、转发设备和可读存储介质
US11582156B2 (en) Traffic detection method, apparatus, and system
KR100943728B1 (ko) Ip 패킷 헤더의 총길이 필드를 이용한 링크별 가용대역폭 측정 방법 및 링크의 가용 대역폭 정보 관리 방법
US9203718B2 (en) Frame loss measurement device, communication device, communication system and performance measurement method
JP2010206691A (ja) フレームロスの計測方法及び計測システム、並びにネットワーク中継機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012876428

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE