WO2013166803A1 - 一种触屏手机红外接近传感器的检测算法 - Google Patents

一种触屏手机红外接近传感器的检测算法 Download PDF

Info

Publication number
WO2013166803A1
WO2013166803A1 PCT/CN2012/082461 CN2012082461W WO2013166803A1 WO 2013166803 A1 WO2013166803 A1 WO 2013166803A1 CN 2012082461 W CN2012082461 W CN 2012082461W WO 2013166803 A1 WO2013166803 A1 WO 2013166803A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
threshold
mobile phone
adc
infrared proximity
Prior art date
Application number
PCT/CN2012/082461
Other languages
English (en)
French (fr)
Inventor
曾元清
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to US13/979,645 priority Critical patent/US9459723B2/en
Publication of WO2013166803A1 publication Critical patent/WO2013166803A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the invention relates to an infrared detection algorithm for a mobile phone, in particular to a detection algorithm for an infrared proximity sensor of a touch screen mobile phone.
  • the infrared proximity sensor mainly utilizes the principle of emission and reception of infrared light pulses, and determines whether an object is close by the magnitude of the reflected infrared light energy received by the infrared light photodiode.
  • Touch screen mobile phones in the market are generally equipped with an infrared proximity sensor to control the opening and closing of the touch display screen during a call to avoid misoperation of the face to the touch screen during a call.
  • the proximity detection method currently used is to set the proximity and distance from the two thresholds.
  • the present invention provides a detection algorithm for an infrared proximity sensor of a touch screen mobile phone to overcome the device consistency, structural consistency and other external interference factors of the mobile phone.
  • the effect of infrared proximity detection is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, the present invention provides a detection algorithm for an infrared proximity sensor of a touch screen mobile phone to overcome the device consistency, structural consistency and other external interference factors of the mobile phone. The effect of infrared proximity detection.
  • the invention is realized by the following technical solutions: a detection algorithm of an infrared proximity sensor of a touch screen mobile phone, based on an infrared proximity sensing technology, the detection algorithm program is started after the mobile phone call function is turned on, and ends when the call function is cut off, The steps of the detection algorithm are as follows:
  • Step 1 initializing the approximate value a, giving the ADC full-scale value of the infrared proximity sensor, and setting the approach threshold f1 to the ADC full-scale value, away from the threshold f2 is 0;
  • Step 2 reading the instantaneous value of the ADC outputted by the infrared proximity sensor, and obtaining an average value to obtain an instantaneous average value b;
  • Step 3 If b ⁇ a+c and b ⁇ d, perform step 4, otherwise perform step 6, c is close to the trend value, d is the maximum close to the effective value, and c and d are system setting values;
  • Step 5 reading the ADC instant value, and determining whether the ADC immediate value is greater than the approach threshold f1, and if so, proceed to step 6, otherwise return to step 2;
  • Step 7 reading the ADC instantaneous value, and determining whether the instantaneous value of the ADC is less than the threshold value f2 set in step 6, if yes, proceed to step 8, otherwise repeat step 7;
  • Step 8. Report the remote event, open the screen, wake up the touch screen function, and go to step 2.
  • the approaching trend value c, the maximum approaching effective value d, the approaching compensation value x, and the distance compensation value y are all fixed values, and are adjusted according to the system.
  • the number of times the ADC instantaneous value is read in the steps 2, 5, and 7 is at least two consecutive times.
  • the present invention adopts an algorithm for real-time calibration of the approach threshold and the threshold value during the call.
  • the advantages are as follows: 1. To ensure that even if different mobile phones are used, the algorithm system is made for the same object. The judgment of approaching and moving away from the action can always be consistent; Second, even if the protective film on the screen of the mobile phone or the screen is covered with dirt such as oil, sweat, cosmetics, etc.
  • the normal operation can be used, and the algorithm system is the same
  • the object's approaching and far-moving judgments can always be consistent
  • third when black matter such as black hair is close to the screen, the algorithm can also operate normally; LED emitter tube aging and the user's use of the drop caused by the slight change of the screen mirror surface to the gap close to the upper surface of the IC, so that it can not be used normally;
  • Fifth the algorithm is widely applicable and does not need to be unique to each mobile phone Threshold.
  • 1 is a flow chart of an algorithm of the present invention.
  • the detection algorithm of the infrared proximity sensor of the touch screen mobile phone is based on the infrared proximity sensing technology, and the detection algorithm program is started after the mobile phone call function is turned on, and ends when the call function is cut off, and the detection algorithm is completed. Proceed as follows:
  • Step 1 the software initializes the value a, assigns the ADC full-scale value of the infrared proximity sensor to a, and sets the approach threshold f1 to the ADC full-scale value, away from the threshold f2 is 0;
  • Step 2 reading the instantaneous value of the ADC outputted by the infrared proximity sensor, and obtaining an average value, and assigning the average value to the instantaneous average value b;
  • Step 3 If it is determined that b ⁇ a+c and b ⁇ d, step 4 is performed; otherwise, step 6 is performed, c is a close trend value, d is a maximum close to the effective value, and c and d are system setting values;
  • Step 5 read the ADC immediate value, determine whether the ADC immediate value is greater than the approach threshold f1, and if so, proceed to step 6, otherwise return to step 2;
  • Step 7 reading the ADC instantaneous value, determining whether the instantaneous value of the ADC is less than the threshold value f2 set in step 6, if yes, proceed to step 8, otherwise repeat step 7;
  • Step 8. Report the remote event, open the screen, wake up the touch screen function, and go to step 2.
  • the approaching trend value c, the maximum approaching effective value d, the approaching compensation value x, and the distance compensation value y are all fixed values, and can be adjusted according to the system.
  • the approach trend value c the reference value of the difference between the value obtained by the current time of the sensor and the value obtained at the previous time.
  • the hand or object is easy to approach or block the proximity sensor. If the screen is turned off at this time, the user will feel a black screen when making a call, which is inconvenient to operate. This can be resolved by setting the maximum near valid value. In the moment of dialing the phone, if the distance between the hand or the object and the proximity sensor is sufficiently small, and the threshold value is close to the full scale value at this time, the screen will not be extinguished, and the process returns to step 2.
  • the original proximity threshold does not work and the screen cannot be turned off.
  • the two parameters close to the compensation value x and away from the compensation value y affect the approach threshold and the threshold value.
  • the setting of these two parameters must ensure good anti-interference characteristics (oily skin, oil stain, etc.) and Good solution to hair close to the problem.
  • the relationship between these two parameters and the approaching trend is: y ⁇ c ⁇ x.
  • x can't be too big, otherwise it will cause the hair to not close the screen when it is approaching the sensor.
  • y can't be too small, otherwise it may lead to contact with oily skin, so that the oil on the top of the screen corresponding to the proximity sensor will not be bright, and this value should not be too large.
  • the parameters are subject to extensive testing.
  • the number of times the ADC immediate value is read in the steps 2, 5 and 7 is at least two consecutive times. In this embodiment, the number of times the ADC immediate value is read in steps 2, 5, and 7 is three times.
  • Infrared proximity sensing is a non-contact gesture approaching roller technology that allows the user to quickly sense the user's proximity by simply manipulating with a simple gesture without the need for an actual touch.
  • the detection algorithm of the present invention uses the real-time change trend of the energy received by the photodiode as the basis for the proximity detection during the call, and detects the value received by the photodiode in real time, and determines whether there is a close or distant action according to the change trend. To control the screen and bright screen of the phone.
  • I2C is Inter-Integrated The abbreviation of Circuit is a bus structure. I2C is complementary to Inter-IC, a bus type used to connect microcontrollers and their peripherals. It is a bus standard widely used in the field of microelectronic communication control. I2C is a multi-directional control bus, which means that multiple chips can be connected to the same bus structure, and each chip can be used as a control source for data transmission. This simplifies the signal transmission bus.
  • ADC is Analog-to-Digital Abbreviation for Converter, which refers to an analog-to-digital converter or an analog/digital converter.
  • the ADC value corresponding to the output of the sensor is called the ADC full-scale value.
  • the algorithm of the invention adopts a method of real-time calibration of the call to approach and stay away from the threshold, and continuously adjusts the proximity and the threshold value during the call, and the set threshold can only function when certain conditions are met.
  • the algorithm can overcome the influence of device consistency, structural consistency and other external interference factors on the proximity detection, so that the algorithm system can always agree on the proximity and far-moving motion judgments made by the same object. Sexually wide and there is no need to set a unique proximity threshold for each phone and to stay away from the threshold.

Abstract

本发明提供了一种触屏手机红外接近传感器的检测算法,该算法的工作原理是在通话的过程中,实时检测红外接近传感器接收到的能量大小值,以该变化趋势作为判断是否有接近或者远离动作的依据,并在通话中实时校准接近、远离阀值,从而控制手机的熄屏和亮屏。所述算法能克服手机的器件一致性、结构一致性和其他外界干扰因素对手机通话时红外接近检测的影响,使算法系统针对同一物体作出的接近和远离动作判断能始终保持一致,能够解决IR LED发射管老化以及用户使用跌落引起间隙的微小变化而使其不能正常使用的问题;该算法适用性广且不需要对每台手机设置独有的阀值。

Description

一种触屏手机红外接近传感器的检测算法
技术领域
本发明涉及一种手机的红外检测算法,尤其涉及一种触屏手机红外接近传感器的检测算法。
背景技术
红外接近传感器主要利用红外光脉冲的发射和接收原理,通过红外光光敏二极管接收到的经反射的红外光能量大小来判断是否有物体接近。市面上的触屏手机普遍装有红外接近传感器来控制通话时触摸显示屏的开启和关闭,以避免通话时脸部对触摸屏的干扰造成误操作。目前使用的接近检测方法是通过设置接近、远离两个阀值,当光电二极管的接收值大于该接近限值时,判断为接近状态,熄灭触模屏;当光电二极管的接收值小于远离限值时,判断为远离状态,点亮触模屏。
目前市场上使用该接近检测方法的大部分机器都不能够解决如下问题:一、由于黑色物体的反射率低,当黑头发靠近或者紧贴的时候,红外接近传感器不能可靠识别是否有接近动作,因而不能可靠地熄掉屏幕;二、如果接近传感器对应的屏幕上方贴有保护膜或者有脏污(例如油污、汗液、化妆品等),则不能正常使用或者判断接近和远离动作的距离阀值与没有贴膜或者脏污时的不一样,红外接近传感器的灵敏度降低。
发明内容
为了克服上述所指的现有技术中的不足之处,本发明提供一种触屏手机红外接近传感器的检测算法,以克服手机的器件一致性、结构一致性和其他外界干扰因素对手机通话时红外接近检测的影响。
本发明是通过以下技术方案实现的:一种触屏手机红外接近传感器的检测算法,基于红外接近感应技术,所述检测算法程序于手机通话功能开启后即启动,于通话功能切断后即结束,该检测算法步骤如下:
步骤1,初始化接近值a,赋予红外接近传感器的ADC满量程值,同时设置接近阀值f1为ADC满量程值,远离阀值f2为0;
步骤2,读取红外接近传感器输出的ADC即时值,并求取平均值得到即时均值b;
步骤3,若b<a+c且b<d,则执行步骤4,否则执行步骤6,c为接近趋势值,d为最大接近有效值,c和d均为系统设定值;
步骤4,对a重新赋值,使a=b,调整系统的接近阀值f1=a+x,通过I2C操作寄存器写入接近阀值f1,x为系统设定的接近补偿值,且c≤x<2c;
步骤5,读取ADC即时值,同时判断ADC即时值是否均大于接近阀值f1,若是,进入步骤6,否则返回步骤2;
步骤6,上报接近事件,关闭屏幕,触屏功能休眠,调整系统的远离阀值f2=a+y,通过I2C操作寄存器写入远离阀值f2, y为系统设定的远离补偿值,且0<y≤c;
步骤7,读取ADC即时值,同时判断ADC即时值是否均小于步骤6设置的远离阀值f2,若是,进入步骤8,否则重复步骤7;
步骤8,上报远离事件,打开屏幕,唤醒触屏功能,并转入步骤2。
所述接近趋势值c、最大接近有效值d、接近补偿值x和远离补偿值y均为定值,且根据系统调整。
进一步地,所述步骤2、步骤5和步骤7中读取ADC即时值的次数均为至少连续两次。
与现有技术相比,本发明采用的是在通话的过程中实时校准接近阀值和远离阀值的算法,其优点如下:一、保证即使使用不同的手机,该算法系统针对同一物体作出的接近和远离动作判断能始终保持一致;二、即使手机屏幕上贴保护膜或者屏幕上覆盖例如油污、汗液、化妆品等脏污或存在其他外界干扰因素,也能够正常使用,并且该算法系统针对同一物体作出的接近和远离动作判断能始终保持一致;三、当比如黑头发等黑色物质紧贴屏幕的时候,该算法也能正常运行;四、能够解决IR LED发射管老化以及用户使用跌落引起屏幕镜面下表面至接近IC上表面的间隙的微小变化,而使其不能正常使用的问题;五、该算法适用性广且不需要对每台手机设置独有的阀值。
附图说明
附图1为本发明的算法流程图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述。
一种触屏手机红外接近传感器的检测算法,如附图1所示,基于红外接近感应技术,所述检测算法程序于手机通话功能开启后即启动,于通话功能切断后即结束,该检测算法步骤如下:
步骤1,软件初始化接近值a,将红外接近传感器的ADC满量程值赋予a,同时设置接近阀值f1为ADC满量程值,远离阀值f2为0;
步骤2,读取红外接近传感器输出的ADC即时值,并求取平均值,将该平均值赋予即时均值b;
步骤3,判断若b<a+c且b<d,则执行步骤4,否则执行步骤6,c为接近趋势值,d为最大接近有效值,c和d均为系统设定值;
步骤4,对a重新赋值,使a=b,调整系统的接近阀值f1=a+x,通过I2C操作寄存器写入接近阀值f1,x为系统设定的接近补偿值,且c≤x<2c;
步骤5,读取ADC即时值,判断ADC即时值是否均大于接近阀值f1,若是,进入步骤6,否则返回步骤2;
步骤6,上报接近事件,关闭屏幕,触屏功能休眠,调整系统的远离阀值f2=a+y,通过I2C操作寄存器写入远离阀值f2, y为系统设定的远离补偿值,且0<y≤c;
步骤7,读取ADC即时值,判断ADC即时值是否均小于步骤6设置的远离阀值f2,若是,进入步骤8,否则重复步骤7;
步骤8,上报远离事件,打开屏幕,唤醒触屏功能,并转入步骤2。
所述接近趋势值c、最大接近有效值d、接近补偿值x和远离补偿值y均为定值,且可根据系统调整。
物体在靠近手机的过程中,接近传感器当前时刻所得到的值与前一个时刻所得到的值之差的参照值,称作接近趋势值c。物体靠近过程中,只有当前值与前一个值之差大于接近趋势值c,表示有物体靠近,设置的接近阀值f1=a+x才能起作用,否则将进入步骤4,重新调整阀值。
本发明中的最大接近有效值d的意义在于:
1 )刚拨通电话瞬间,接近传感器所得到的值与最大接近有效值进行比较,如果该值比最大接近有效值大的话,则接近阀值f1=a+x不起作用,其作用在于防止用户在刚开始拔打电话的时候,手或者物体容易靠近或遮挡接近传感器,若屏幕此时熄掉,用户会感觉一拨打电话就黑屏,不便于操作。通过设置最大接近有效值则可解决此问题。在拨通电话瞬间,如果手或者物体在与接近传感器的距离足够小的情况下,此时接近阀值为满量程值,不会熄掉屏幕,返回步骤2。
2 )通话过程中,如果物体足够慢的靠近接近传感器,没有满足接近趋势,原有的接近阀值不起作用,无法熄掉屏幕。此时,只有当物体靠得足够近,接近传感器所得到的值大于最大接近有效值,已设的接近阀值f1=a+x才能起作用,才能熄掉屏幕,否则系统将重新调整阀值。
接近补偿值x、远离补偿值y这两个参数影响接近阀值和远离阀值,这两个参数的设置既要保证有很好的抗干扰特性(油性皮肤、油污等),又要能很好的解决头发接近问题。一般情况下,这两个参数和接近趋势的关系是:y≤c≤x。x不能太大否则会造成头发慢速接近传感器时不能熄屏的现象。y不能太小,否则有可能导致接触油性皮肤使接近传感器对应的屏幕上方粘有油污后出现不能亮屏的现象,同时这个值也不能偏大,偏大时不利于解决头发接近问题,这两个参数要经过大量测试得到。
所述步骤2、步骤5和步骤7中读取ADC即时值的次数均为至少连续两次。在本实施例中,步骤2、步骤5和步骤7中读取ADC即时值的次数均为三次。
红外接近感应是一种非接触式手势接近滚轴技术,让使用者无需实际触摸,只要利用简单的手势便能操纵,就能使电子装置快速感测到使用者的接近。本发明的检测算法通过通话的过程中,以光电二极管接收到能量大小的实时变化趋势作为接近检测的依据,实时检测光电二极管接收到的值,根据变化趋势作为判断是否有接近或者远离动作的依据,从而控制手机的熄屏和亮屏。
I2C 是Inter-Integrated Circuit的简称,是一种总线结构。I2C作为Inter-IC的互补,这种总线类型用于连接微控制器及其外围设备,是微电子通信控制领域广泛采用的一种总线标准。I2C是一种多向控制总线,也就是说多个芯片可以连接到同一总线结构下,同时每个芯片都可以作为实施数据传输的控制源,这种方式简化了信号传输总线。
ADC 是Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器。所述红外接近传感器的测量值达到最大极限值时,该传感器对应输出的ADC值就叫ADC满量程值。
本发明的算法采用通话实时校准接近、远离阀值的方法,在通话的过程中不断的调整接近、远离阀值,只有当满足一定的条件,设置的阀值才能起作用。同样结构设计的手机,本算法能够克服器件一致性,结构一致性和其他一些外界干扰因素对接近检测的影响,使算法系统针对同一物体作出的接近和远离动作判断能始终保持一致,该算法适用性广且不需要对每台手机设置独有的接近阀值和远离阀值。
上述实施例中提到的内容并非是对本发明的限定,在不脱离本发明构思的前提下,任何显而易见的替换均在本发明的保护范围之内。

Claims (3)

  1. 一种触屏手机红外接近传感器的检测算法,基于红外接近感应技术,所述检测算法程序随手机通话功能开启而启动,于通话功能切断后即结束,该检测算法步骤如下:
    步骤1,初始化接近值a,赋予红外接近传感器的ADC满量程值,同时设置接近阀值f1为ADC满量程值,远离阀值f2为0;
    步骤2,读取红外接近传感器输出的ADC即时值,并求取平均值得到即时均值b;
    步骤3,若b<a+c且b<d,则执行步骤4,否则执行步骤5,c为接近趋势值,d为最大接近有效值,c和d均为系统设定值;
    步骤4,对a重新赋值,使a=b,调整系统的接近阀值f1=a+x,通过I2C操作寄存器写入接近阀值f1,x为系统设定的接近补偿值,且c≤x<2c;
    步骤5,读取ADC即时值,同时判断ADC即时值是否均大于接近阀值f1,若是,进入步骤6,否则返回步骤2;
    步骤6,上报接近事件,关闭屏幕,触屏功能休眠,调整系统的远离阀值f2=a+y,通过I2C操作寄存器写入远离阀值f2, y为系统设定的远离补偿值,且0<y≤c;
    步骤7,读取ADC即时值,同时判断ADC即时值是否均小于步骤6设置的远离阀值f2,若是,进入步骤8,否则重复步骤7;
    步骤8,上报远离事件,打开屏幕,唤醒触屏功能,并转入步骤2。
  2. 根据权利要求1所述的触屏手机红外接近传感器的检测算法,其特征在于:所述接近趋势值c、最大接近有效值d、接近补偿值x和远离补偿值y均为定值,且根据系统调整。
  3. 根据权利要求2所述的触屏手机红外接近传感器的检测算法,其特征在于:所述步骤2、步骤5和步骤7中读取ADC即时值的次数均为至少连续两次。
PCT/CN2012/082461 2012-05-08 2012-09-29 一种触屏手机红外接近传感器的检测算法 WO2013166803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/979,645 US9459723B2 (en) 2012-05-08 2012-09-29 Detection algorithm for an infrared proximity sensor of a touch screen mobile phone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101399556A CN102665008B (zh) 2012-05-08 2012-05-08 一种触屏手机红外接近传感器的检测算法
CN201210139955.6 2012-05-08

Publications (1)

Publication Number Publication Date
WO2013166803A1 true WO2013166803A1 (zh) 2013-11-14

Family

ID=46774417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082461 WO2013166803A1 (zh) 2012-05-08 2012-09-29 一种触屏手机红外接近传感器的检测算法

Country Status (3)

Country Link
US (1) US9459723B2 (zh)
CN (1) CN102665008B (zh)
WO (1) WO2013166803A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108989489A (zh) * 2018-06-06 2018-12-11 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置、计算机存储介质及设备

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665008B (zh) * 2012-05-08 2013-11-13 广东欧珀移动通信有限公司 一种触屏手机红外接近传感器的检测算法
TWI503701B (zh) * 2012-07-20 2015-10-11 接近感測方法
WO2014042590A1 (en) * 2012-09-12 2014-03-20 Heptagon Micro Optics Pte. Ltd. Testing of optical devices
CN102932527B (zh) * 2012-09-24 2015-03-04 惠州Tcl移动通信有限公司 移动终端及其距离传感器的校准方法
CN103281439A (zh) * 2013-05-08 2013-09-04 上海鼎讯电子有限公司 一种利用tp器件在手机中模拟接近传感器的方法
CN103561165B (zh) * 2013-10-18 2015-06-17 广东欧珀移动通信有限公司 防止贴膜影响接近传感器正常工作的方法与装置
US9977521B2 (en) 2014-03-24 2018-05-22 Htc Corporation Method for controlling an electronic device equipped with sensing components, and associated apparatus
CN104183224B (zh) * 2014-08-13 2017-03-08 Tcl通讯(宁波)有限公司 Lcd屏亮灭状态的检测控制系统及其检测控制方法
JP6480706B2 (ja) * 2014-11-04 2019-03-13 キヤノン株式会社 画像形成装置及びその制御方法、並びにプログラム
TWI584630B (zh) * 2014-12-10 2017-05-21 昇佳電子股份有限公司 用來識別手機與遮蔽物距離之方法與系統
CN104457821B (zh) * 2014-12-30 2017-04-19 上海畅联智融通讯科技有限公司 接近传感器测试装置与测试方法
CN105445812B (zh) * 2015-11-12 2018-03-23 青岛海信电器股份有限公司 一种人体传感器检测方法及装置
CN105681553B (zh) * 2016-01-06 2020-07-10 惠州Tcl移动通信有限公司 手持终端及其防止误操作的方法
US10853089B2 (en) * 2016-03-30 2020-12-01 Lenovo Enterprise Solutions (Singapore) Pte. Ltd Dynamically loading firmware based on geographic location
CN107466470B (zh) 2016-04-05 2019-12-24 华为技术有限公司 控制显示屏背光的方法、装置、电子设备以及存储介质
CN105959461B (zh) * 2016-04-14 2020-01-17 Oppo广东移动通信有限公司 屏幕感应控制方法、装置及终端设备
CN105975090A (zh) * 2016-06-21 2016-09-28 广东欧珀移动通信有限公司 接近传感器上报事件的控制方法、装置和移动终端
CN106094055B (zh) * 2016-06-21 2018-07-03 广东欧珀移动通信有限公司 一种接近传感器的校准方法及终端
US10462545B2 (en) * 2016-07-27 2019-10-29 Amazon Technologies, Inc. Voice activated electronic device
CN106249897B (zh) * 2016-08-12 2019-04-05 Oppo广东移动通信有限公司 控制屏幕熄灭的方法及装置
CN106371548B (zh) * 2016-08-31 2019-03-05 深圳市创凯智能股份有限公司 显示屏节能控制方法及装置
CN106453960B (zh) * 2016-11-30 2020-05-08 惠州Tcl移动通信有限公司 一种加快移动终端接近传感器响应速度的方法及系统
CN106775137B (zh) * 2016-12-06 2019-10-25 Oppo广东移动通信有限公司 接近检测方法、装置及移动终端
CN106850943B (zh) * 2016-12-07 2019-10-08 努比亚技术有限公司 一种检测终端与遮挡物的距离的装置和方法
CN106708332B (zh) * 2016-12-19 2019-12-10 Oppo广东移动通信有限公司 一种接近传感器的阈值设置方法、装置及终端
CN106791108B (zh) * 2016-12-22 2020-03-10 Oppo广东移动通信有限公司 一种接近传感器的阈值更新方法、装置及终端
CN106850989B (zh) 2017-02-08 2019-08-06 Oppo广东移动通信有限公司 显示屏状态控制方法及装置
CN106973163B (zh) * 2017-03-30 2020-07-14 深圳市君利信达科技有限公司 一种红外接近传感器的动态校准方法及其装置
CN107102864A (zh) * 2017-05-16 2017-08-29 广东欧珀移动通信有限公司 一种熄屏控制方法、装置、存储介质和终端
CN107504994B (zh) * 2017-08-08 2019-08-16 Oppo广东移动通信有限公司 接近传感器的校准方法、装置、移动终端及可读存储介质
CN107764406B (zh) * 2017-10-26 2020-12-04 珠海市魅族科技有限公司 一种红外检测的管理方法和电子设备
CN107943345B (zh) * 2017-11-22 2020-10-02 Oppo广东移动通信有限公司 接近传感器的校准方法、装置、存储介质和电子设备
CN108304038B (zh) * 2018-02-08 2020-01-07 维沃移动通信有限公司 一种电子设备
CN108833695B (zh) * 2018-06-06 2020-07-31 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置、计算机存储介质及设备
NO346144B1 (en) * 2018-09-12 2022-03-21 Elliptic Laboratories As Proximity sensing
US11301665B2 (en) * 2019-02-20 2022-04-12 Novatek Microelectronics Corp. Fingerprint and proximity sensing apparatus and sensing process thereof
CN110275637B (zh) * 2019-06-24 2023-03-24 Oppo广东移动通信有限公司 接近传感器的校准方法、装置、存储介质和电子设备
US11430407B2 (en) * 2019-09-25 2022-08-30 Vishay Semiconductor Gmbh Under display sensors, systems and methods
CN111654773B (zh) * 2020-05-29 2022-04-22 歌尔科技有限公司 蓝牙耳机、蓝牙耳机的校准方法、设备及存储介质
CN115668902B (zh) * 2020-07-15 2024-04-02 ams国际有限公司 自适应接近度检测系统、方法、移动设备及存储介质
CN112162329B (zh) * 2020-10-12 2022-08-05 深圳市锐尔觅移动通信有限公司 接近感应检测方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246862B1 (en) * 1999-02-03 2001-06-12 Motorola, Inc. Sensor controlled user interface for portable communication device
US20100164479A1 (en) * 2008-12-29 2010-07-01 Motorola, Inc. Portable Electronic Device Having Self-Calibrating Proximity Sensors
CN102265252A (zh) * 2011-06-24 2011-11-30 华为终端有限公司 一种调整红外接近传感器的感知阈值的方法和装置
CN102301684A (zh) * 2011-06-24 2011-12-28 华为终端有限公司 一种终端确定物体接近的方法及装置
CN102411425A (zh) * 2011-07-22 2012-04-11 华为终端有限公司 控制触摸屏功能的方法和装置
CN102665008A (zh) * 2012-05-08 2012-09-12 广东欧珀移动通信有限公司 一种触屏手机红外接近传感器的检测算法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046147C1 (de) * 2000-09-15 2002-02-21 Balluff Gmbh Hochempfindlicher Näherungssensor sowie Verfahren zu seinem Abgleich
US9089270B2 (en) * 2011-06-29 2015-07-28 Lg Electronics Inc. Terminal and control method thereof
CN102271177B (zh) * 2011-07-18 2015-06-17 惠州Tcl移动通信有限公司 一种手机接近传感器的校准方法及系统
US9134852B2 (en) * 2012-02-22 2015-09-15 Guang Dong Oppo Mobile Telecommunications Corp., Ltd. Static elimination method for a touch screen
US9696337B2 (en) * 2013-05-30 2017-07-04 MCube Inc. MEMS-based proximity sensor device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246862B1 (en) * 1999-02-03 2001-06-12 Motorola, Inc. Sensor controlled user interface for portable communication device
US20100164479A1 (en) * 2008-12-29 2010-07-01 Motorola, Inc. Portable Electronic Device Having Self-Calibrating Proximity Sensors
CN102265252A (zh) * 2011-06-24 2011-11-30 华为终端有限公司 一种调整红外接近传感器的感知阈值的方法和装置
CN102301684A (zh) * 2011-06-24 2011-12-28 华为终端有限公司 一种终端确定物体接近的方法及装置
CN102411425A (zh) * 2011-07-22 2012-04-11 华为终端有限公司 控制触摸屏功能的方法和装置
CN102665008A (zh) * 2012-05-08 2012-09-12 广东欧珀移动通信有限公司 一种触屏手机红外接近传感器的检测算法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108989489A (zh) * 2018-06-06 2018-12-11 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置、计算机存储介质及设备
CN108989489B (zh) * 2018-06-06 2020-06-26 Oppo广东移动通信有限公司 控制方法、控制装置、电子装置、计算机存储介质及设备

Also Published As

Publication number Publication date
CN102665008A (zh) 2012-09-12
CN102665008B (zh) 2013-11-13
US20160179265A1 (en) 2016-06-23
US9459723B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
WO2013166803A1 (zh) 一种触屏手机红外接近传感器的检测算法
CN103607187B (zh) 一种检测电容触摸按键是否被触发的方法和装置
WO2013185495A1 (zh) 一种屏幕解锁方法、系统及移动终端
CN105554616B (zh) 一种耳机控制方法及耳机
CN103024197B (zh) 可防止通话时误操作的触摸屏手机及其使用方法
CN103401992B (zh) 结合触摸屏来处理手机通话过程中误操作的方法
CN103310719B (zh) 自动检测方法和使用该方法的便携式电子装置
CN203151603U (zh) 移动终端的距离传感器校准装置
CN201600668U (zh) 一种触摸系统
CN104516641B (zh) 自动校准方法及电子装置
CN102981766B (zh) 一种终端激活方法及终端
CN105025159A (zh) 接近传感器调节方法及装置
CN103017909A (zh) 一种温度测量装置、方法以及安装该装置的移动通信设备
CN103369144A (zh) 结合加速度传感器来处理手机通话过程中误操作的方法
WO2014101554A1 (zh) 一种电容式触摸屏的触摸检测方法及系统
CN204423528U (zh) 界面自动识别与切换的红外感应系统
CN201509229U (zh) 一种移动终端
CN103369145B (zh) 结合陀螺仪来处理手机通话过程中误操作的方法
CN109343066A (zh) 接近传感器的控制方法、装置、存储介质及移动终端
CN111538269A (zh) 一种非接触按钮传感器单元及触发的方法
CN109240541A (zh) 电子设备的屏幕防误触方法、装置和电子设备
CN104281256A (zh) 具有热感应器的导航装置
WO2014121501A1 (zh) 基于红外光敏的红外触摸屏的实现方法
EP4137431A1 (en) Hover button sensor unit and method for triggering hover button
CN106502819A (zh) 一种基于接近传感器的控制方法、装置及移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13979645

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876487

Country of ref document: EP

Kind code of ref document: A1