WO2013166655A1 - 传输crs的子帧确定方法及设备 - Google Patents

传输crs的子帧确定方法及设备 Download PDF

Info

Publication number
WO2013166655A1
WO2013166655A1 PCT/CN2012/075186 CN2012075186W WO2013166655A1 WO 2013166655 A1 WO2013166655 A1 WO 2013166655A1 CN 2012075186 W CN2012075186 W CN 2012075186W WO 2013166655 A1 WO2013166655 A1 WO 2013166655A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
crs
cell
transmitting
transmission period
Prior art date
Application number
PCT/CN2012/075186
Other languages
English (en)
French (fr)
Inventor
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000842.6A priority Critical patent/CN103563461B/zh
Priority to PCT/CN2012/075186 priority patent/WO2013166655A1/zh
Publication of WO2013166655A1 publication Critical patent/WO2013166655A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to communications technologies, and in particular, to a subframe determining method and apparatus for transmitting a Cell-specific Reference Signal (CRS).
  • CRS Cell-specific Reference Signal
  • a new carrier type (NCT) is introduced, or it may also be referred to as an additional carrier type (ACT).
  • ACT additional carrier type
  • the NCT carrier cannot carry a Physical Downlink Control Channel (PDCCH) and can carry a Cell-specific Reference Signal (CRS), and the CRS cannot be transmitted on consecutive subframes.
  • PDCH Physical Downlink Control Channel
  • CRS Cell-specific Reference Signal
  • the present invention provides a subframe determining method and apparatus for transmitting CRS for determining a subframe for transmitting a CRS on an NCT carrier.
  • An aspect provides a method for determining a subframe for transmitting a CRS, which is applied to an NCT carrier, and the method includes:
  • the subframe in which the CRS is transmitted in the cell is determined according to the transmission period of the CRS and the cell identifier.
  • Another aspect provides a method for determining a subframe for transmitting a CRS, which is applied to an NCT carrier, and the method includes:
  • the base station sends the high-level signaling to the UE, where the high-layer signaling includes the determined subframe parameter of the subframe in which the CRS is transmitted in the cell served by the UE, so that the UE determines the subframe in which the CRS is transmitted in the cell according to the subframe parameter.
  • Another aspect provides a method for determining a subframe for transmitting a CRS, which is applied to an NCT carrier, and the method includes:
  • the UE receives the high layer signaling sent by the base station, and the high layer signaling includes the subframe parameter of the subframe in which the CRS is transmitted by the base station determined by the base station;
  • the UE determines a subframe in which the CRS is transmitted in the cell according to the subframe parameter.
  • Another aspect provides a subframe determining apparatus for transmitting a CRS, which is applied to an NCT carrier, and the device includes:
  • a receiver configured to obtain a cell identifier of a cell serving the UE
  • a processor configured to determine, according to a CRS transmission period and a cell identifier, a subframe in which the CRS is transmitted in the cell.
  • Another aspect provides a base station, which is applied to an NCT carrier, where the base station includes:
  • a processor configured to determine a subframe for transmitting a CRS in a cell served by the UE
  • a transmitter configured to send a high-level signaling to the UE, where the high-layer signaling includes the determined subframe parameter of the subframe in which the CRS is transmitted in the cell served by the UE, so that the UE determines the subframe in which the CRS is transmitted in the cell according to the subframe parameter.
  • a user equipment which is applied to an NCT carrier, and the user equipment includes: a receiver, configured to receive high layer signaling sent by the base station, where the high layer signaling includes the base station determining
  • a processor configured to determine, according to the subframe parameter, a subframe in which the CRS is transmitted in the cell.
  • the embodiment of the present invention can determine the subframe in which the CRS is transmitted on the NCT carrier.
  • BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, a brief description of the drawings used in the embodiments or the prior art description will be briefly described below.
  • the drawings are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any inventive labor.
  • FIG. 1 is a schematic flowchart of a method for determining a subframe for transmitting a CRS according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a subframe determining apparatus for transmitting a CRS according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a subframe determining apparatus for transmitting a CRS according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • CDMA2000 CDMA2000
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • WiMAX global microwave access interoperability World Interoperability for Microwave Access
  • the base station may be a base station controller (BSC) in the GSM system, the GPRS system or the CDMA system, or may be a radio network controller (RNC) in the CDMA2000 system or the WCDMA system. It may be an Evolved NodeB (eNB) in an LTE system, or may be a base station of an access service network in a WiMAX network (Access Service Network Base). Station, referred to as ASN BS) and other network elements.
  • BSC base station controller
  • RNC radio network controller
  • eNB Evolved NodeB
  • ASN BS Access Service Network Base
  • the term "and/or" in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate: A exists separately, and A and B exist simultaneously. There are three cases of B alone.
  • the character '7' in this paper generally means that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic flowchart of a method for determining a subframe for transmitting a CRS according to an embodiment of the present invention, which is applied to an NCT carrier, as shown in FIG. 1.
  • UE User Equipment
  • executor of the foregoing 101 and 102 may be a UE or a base station, which is not limited in this embodiment.
  • the technical solution provided in this embodiment can be applied to a Frequency Division Dual (FDD) mode system, and can also be applied to a Time Division Dual (TDD) mode system, or both an FDD mode and a TDD mode.
  • FDD Frequency Division Dual
  • TDD Time Division Dual
  • the system is not limited in this embodiment.
  • the subframe in which the CRS is transmitted in the cell is an FDD subframe, and a frame structure type 1 is adopted;
  • the subframe in which the CRS is transmitted in the cell is a TDD subframe, and the frame structure type 2 is adopted.
  • the subframe that can transmit the CRS is determined according to the uplink and downlink subframe configuration information and the transmission period of the CRS; and then, according to the transmission period of the CRS and the cell identifier, The subframe in which the CRS is transmitted in the cell is determined in the subframe capable of transmitting the CRS.
  • the subframe in which the CRS is transmitted in the cell may be determined according to N ⁇ modN zf.
  • N is the subframe number of the CRS transmitted in the cell
  • N is the transmission period of the CRS
  • K T e ⁇ K M is the determined M subframes capable of transmitting CRS
  • M is the sub-carrier capable of transmitting CRS
  • the value of ⁇ ranges from 0 to 503.
  • Seven different uplink and downlink subframe configurations are defined. For details, see Table 2.
  • the sub-frame 0 to the sub-frame 9 respectively include an uplink (U) subframe for transmitting uplink information, a downlink (D) subframe for transmitting downlink information, and an uplink (or downlink) information for transmitting uplink and/or downlink information.
  • Special (S) subframe The subframe capable of transmitting the CRS may be a downlink subframe, or It may also be a downlink subframe and a special subframe, or may also be a special subframe, which is not limited in this embodiment.
  • the transmission period of the CRS is 5 transmission time intervals (TTIs), that is, 5 TTIs
  • the subframes capable of transmitting CRSs include downlink subframes and special subframes, for example, each of the uplink and downlink sub-frames.
  • TTIs transmission time intervals
  • the subframes corresponding to the frame configuration capable of transmitting CRS can be seen in Table 3.
  • the uplink and downlink subframe configuration information of the configuration 1 and the CRS transmission period 5TTI that is, N is 5, it can be determined that the subframe number capable of transmitting the CRS is ⁇ 0, 1, 4 ⁇ . Then according to
  • the correspondence between the cell identifier and the subframe in which the CRS is transmitted in the cell can be obtained, as shown in Table 4.
  • Table 4 Correspondence between cell identity in the LTE system in the TDD mode and the subframe number of the CRS transmitted in the cell
  • the ePDCCH or PDSCH in the subframe in which the CRS is transmitted is not interfered by the subframe of the transmission CRS from the neighboring cell, which helps to transmit the CRS sub-frame.
  • the Enhanced Physical Downlink Control Channel (ePDCCH) or the Physical Downlink Shared Channel (PDSCH) in the frame performs interference coordination in the frequency domain.
  • the cell identifier of the cell serving the UE is obtained, and the subframe in which the CRS is transmitted in the cell is determined according to the transmission period of the CRS and the cell identifier, so that the UE and the base station can be determined on the NCT carrier.
  • the subframe in which the CRS is transmitted since the UE knows which subframes the CRS is received, thereby improving the reception performance and improving the reception performance.
  • FIG. 2 is a schematic flow chart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention, which is applied to an NCT carrier. Compared with the embodiment corresponding to FIG. 1, in this embodiment, the UE does not need to perform the embodiment corresponding to FIG. 1, as shown in FIG. 2.
  • the base station obtains a cell identifier of a cell served by the UE.
  • the base station determines, according to a CRS transmission period and the cell identifier, a subframe in which the CRS is transmitted in the cell.
  • the base station sends high layer signaling to the UE, where the high layer signaling includes the determined location. Decoding a subframe parameter of a subframe in which a CRS is transmitted in a cell, so that the UE determines a subframe in which the CRS is transmitted in the cell according to the received subframe parameter.
  • the high-level signaling may be a radio resource control (RRC) message, and may specifically pass an information element (IE) in the RRC message.
  • the RRC message may be an RRC message in the prior art, for example, a system information (SI), a paging message (Paging Information, PI) message, etc., this embodiment does not
  • SI system information
  • PI paging message
  • the acknowledgment is carried out by extending the IE of the existing RRC message, or the RRC message may also be an RRC message different from the existing ones in the prior art.
  • the high-level signaling may also be a Media Access Control (MAC) Control Element (CE) message, by adding a new MAC CE. Carrying the subframe parameters.
  • MAC Media Access Control
  • CE Control Element
  • the base station may send the high layer signaling to the UE on an NCT carrier.
  • multiplexing the CCT-bearing NCT carrier to send the high-layer signaling may cause the UE to perform CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error (time domain). Or frequency domain), which adversely affects reception performance.
  • the high-layer signaling such as an RRC message carrying a CRS transmission subframe (or a MAC CE message), an RRC message carrying a system message, or a PDSCH, an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH) should avoid transmission on the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) on which the CRS transmission time-frequency resource is located, to avoid the UE receiving the CRS.
  • RRC message carrying a CRS transmission subframe or a MAC CE message
  • an RRC message carrying a system message or a PDSCH
  • an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH should avoid transmission on the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) on which the CRS transmission time-frequency resource is located, to avoid the UE receiving the CRS.
  • the time-frequency resource where the CRS is located is used as the transmission resource of the PDSCH/ePDCCH/PBCH for resource demapping, and then demodulated, thereby causing the reception performance of the corresponding channel to be degraded.
  • the base station may send the high layer signaling to the UE on another non-NCT carrier (ie, a legacy carrier).
  • a legacy carrier ie, a legacy carrier
  • the high-level signaling is sent by using a legacy carrier, since the UE has accessed the legacy carrier before initially accessing the NCT carrier, and receives the inclusion sent by the base station on the legacy carrier.
  • High-level signaling of the subframe parameter so that the UE can determine a subframe for transmitting a CRS in the cell according to the received subframe parameter, thereby enabling the UE to initially access the NCT carrier.
  • Operations such as timing tracking based on CRS are performed, thereby reducing the error of the initial timing (time domain or frequency domain), and further improving the reception performance.
  • the UE de-maps the time-frequency resource in which the CRS is located as the transmission resource of the PDSCH/ePDCCH/PBCH before receiving the time-frequency resource information in which the CRS is located, and then performs demodulation, thereby causing degradation of the reception performance of the corresponding channel.
  • the high-layer signaling sent by the base station may further include an NCT carrier identifier carrying the CRS, for example: ServCelldex-r10.
  • the subframe parameter included in the high layer signaling may be a subframe number, so that the UE can directly determine the cell according to the subframe number.
  • the base station sends the high layer signaling to the UE by using the base station, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell determined by the base station, so that the UE according to the received sub
  • the frame parameter determines a subframe in which the CRS is transmitted in the cell, so that the subframe configuration for transmitting the CRS is more flexible, and the UE knows which subframes to receive the CRS, thereby improving the reception performance.
  • FIG. 3 is a schematic flow chart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention, for example, applied to an NCT carrier, as shown in FIG. 3.
  • the base station determines a subframe for transmitting a CRS in a cell served by the UE.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • a subframe for transmitting a CRS in a cell served by the UE for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the base station sends a high-level signaling to the UE, where the high-layer signaling includes a subframe parameter of a subframe in which a CRS is transmitted in a cell served by the UE, so that the UE is configured according to the sub-frame.
  • the frame parameter determines a subframe in which the CRS is transmitted within the cell.
  • the high-level signaling may be a radio resource control (RRC) message, and may specifically pass an information element (IE) in the RRC message.
  • the RRC message may be an RRC message in the prior art, for example, a system information (SI), a paging message (Paging Information, PI) message, etc., this embodiment does not
  • SI system information
  • PI paging message
  • the acknowledgment is carried out by extending the IE of the existing RRC message, or the RRC message may also be an RRC message different from the existing ones in the prior art.
  • the high-level signaling may also be a Media Access Control (MAC) Control Element (CE) message, by adding a new MAC CE. Carrying the subframe parameters.
  • MAC Media Access Control
  • CE Control Element
  • the base station may send the high layer signaling to the UE on an NCT carrier.
  • multiplexing the CCT-bearing NCT carrier to send the high-layer signaling may cause the UE to perform CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error (time domain). Or frequency domain), which adversely affects reception performance.
  • the high-layer signaling such as an RRC message carrying a CRS transmission subframe (or a MAC CE message), an RRC message carrying a system message, or a PDSCH, an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH) should avoid transmission on the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) on which the CRS transmission time-frequency resource is located, to avoid the UE receiving the CRS.
  • RRC message carrying a CRS transmission subframe or a MAC CE message
  • an RRC message carrying a system message or a PDSCH
  • an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH should avoid transmission on the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) on which the CRS transmission time-frequency resource is located, to avoid the UE receiving the CRS.
  • the time-frequency resource where the CRS is located is used as the transmission resource of the PDSCH/ePDCCH/PBCH for resource demapping, and then demodulated, thereby causing the reception performance of the corresponding channel to be degraded.
  • the base station may send the high layer signaling to the UE on other non-NCT carriers (ie, legacy carriers).
  • legacy carriers ie, legacy carriers
  • the high-level signaling is sent by using a legacy carrier, because the UE has accessed the legacy carrier before the initial access to the NCT carrier, and receives the high-level signaling that is sent by the base station and includes the subframe parameter on the legacy carrier.
  • the UE is configured to determine, according to the received subframe parameter, a subframe in which the CRS is transmitted in the cell, so that the UE can perform a CRS-based timing tracking operation when initially accessing the NCT carrier, Thereby reducing the error of the initial timing (time domain or Frequency domain), further improving reception performance.
  • the UE de-maps the time-frequency resource in which the CRS is located as the transmission resource of the PDSCH/ePDCCH/PBCH before receiving the time-frequency resource information in which the CRS is located, and then performs demodulation, thereby causing degradation of the reception performance of the corresponding channel.
  • the high-layer signaling sent by the base station may further include an NCT carrier identifier carrying the CRS, for example: ServCelldex-r10.
  • the subframe parameter included in the high-layer signaling may be a subframe number, for example, being represented in a bitmap manner, so that the UE can directly The subframe number determines a subframe in which the CRS is transmitted in the cell.
  • the base station sends the high layer signaling to the UE by using the base station, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell determined by the base station, so that the UE according to the received sub
  • the frame parameter determines a subframe in which the CRS is transmitted in the cell, so that the subframe configuration for transmitting the CRS is more flexible, and the UE knows which subframes to receive the CRS, thereby improving the reception performance.
  • FIG. 4 is a schematic flow chart of a method for determining a subframe for transmitting a CRS according to another embodiment of the present invention, which is applied to an NCT carrier, as shown in FIG. 4.
  • the UE receives the high layer signaling sent by the base station, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell served by the UE.
  • the base station may specifically determine the subframe in which the CRS is transmitted in the cell served by the UE by using any method. For example, the method provided by the embodiment corresponding to FIG. 1 and FIG. 2 is described in detail in the embodiment corresponding to FIG. 1 and FIG. Related content, no longer repeat here.
  • the high-level signaling may be a radio resource control (RRC) message, and may specifically pass an information element (IE) in the RRC message.
  • the RRC message may be an RRC message in the prior art, for example, a system information (SI), a paging message (Paging Information, PI) message, etc.
  • SI system information
  • PI paging message
  • the eNB may be an RRC message that is different from the existing ones in the prior art by extending the IE of the existing RRC message to carry the subframe parameter.
  • the high-level signaling may also be a Media Access Control (MAC) Control Element (CE) message, by adding a new MAC CE. Carrying the subframe parameters.
  • MAC Media Access Control
  • CE Control Element
  • the UE determines, according to the subframe parameter, a subframe in which the CRS is transmitted in the cell.
  • the UE may receive the high layer signaling sent by the base station on an NCT carrier.
  • multiplexing the CCT-bearing NCT carrier to send the high-layer signaling may cause the UE to perform CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error (time domain). Or frequency domain), which adversely affects reception performance.
  • the high-layer signaling such as an RRC message carrying a CRS transmission subframe (or a MAC CE message), an RRC message carrying a system message, or a PDSCH, an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH) should be avoided on the transmission of the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) of the CRS transmission time-frequency resource, to avoid the UE receiving the CRS.
  • RRC message carrying a CRS transmission subframe or a MAC CE message
  • an RRC message carrying a system message or a PDSCH
  • an ePDCCH/physical broadcast channel corresponding to an RRC message carrying a paging message (Physical broadcast) Channel, PBCH should be avoided on the transmission of the CRS subframe or the time-frequency resource of the CRS or the resource block (RB) of the CRS transmission time-frequency resource, to avoid the UE receiving the CRS.
  • the time-frequency resource where the CRS is located is used as the transmission resource of the PDSCH/ePDCCH/PBCH for resource demapping, and then demodulated, thereby causing the reception performance of the corresponding channel to be degraded.
  • the UE may receive the high layer signaling sent by the base station on other non-NCT carriers (ie, legacy carriers).
  • legacy carriers non-NCT carriers
  • the high-level signaling is sent by using a legacy carrier, because the UE has accessed the legacy carrier before initially accessing the NCT carrier, and receives the high-level signaling that is sent by the base station and includes the subframe parameter on the legacy carrier.
  • the UE is configured to determine, according to the received subframe parameter, a subframe in which the CRS is transmitted in the cell, so that the UE can perform a CRS-based timing tracking operation when initially accessing the NCT carrier, Thereby, the error of the initial timing (time domain or frequency domain) is reduced, and the reception performance is further improved. It is also avoided that the UE de-maps the time-frequency resource where the CRS is located as the transmission resource of the PDSCH/ePDCCH/PBCH before receiving the time-frequency resource information of the CRS, and then performs demodulation, thereby causing the reception performance of the corresponding channel to decrease.
  • the high layer signaling received by the UE may further include a bearer.
  • the NCT carrier identifier of the CRS is, for example: ServCelldex-r10.
  • the subframe parameter included in the high layer signaling may be a subframe number; and correspondingly, in 402, the UE can directly according to the subframe.
  • the frame number determines a subframe in which the CRS is transmitted within the cell.
  • the subframe parameter included in the high layer signaling may also be an integer value between 0 and N-1, where N is Correspondingly, in 402, the UE may determine, according to ⁇ ⁇ ⁇ ⁇ , a subframe in which the CRS is transmitted in the cell, where N is a subframe in which the CRS is transmitted in the cell. No. N is the transmission period of the CRS, and ⁇ is the subframe parameter.
  • the UE receives the high layer signaling sent by the base station, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell determined by the base station, so that the UE according to the received sub
  • the frame parameter determines a subframe in which the CRS is transmitted in the cell, so that the subframe configuration for transmitting the CRS is more flexible, and the UE knows which subframes to receive the CRS, thereby improving the reception performance.
  • FIG. 5 is a schematic diagram of a structure of a subframe determining apparatus for transmitting a CRS according to another embodiment of the present invention, which is applied to an NCT carrier, and the device may be a UE, or may be a base station, which is not limited in this embodiment.
  • the subframe determining apparatus for transmitting CRS of this embodiment may include a receiver 51 and a processor 52.
  • the receiver 51 is configured to obtain a cell identifier of a cell serving the UE.
  • the processor 52 is configured to determine, according to a CRS transmission period and the cell identifier, a subframe in which the CRS is transmitted in the cell.
  • the subframe in which the CRS is transmitted in the cell is an FDD subframe, and a frame structure type 1 is adopted;
  • the subframe in which the CRS is transmitted in the cell is a TDD subframe, and a frame structure type 2 is adopted;
  • the processor 52 may specifically determine, according to the uplink and downlink subframe configuration information and the CRS transmission period, a subframe capable of transmitting a CRS, and according to the CRS transmission period and the cell identifier, in the CSR capable of transmitting the CRS.
  • a subframe in which a CRS is transmitted in the cell is determined in a subframe.
  • the processor 52 may specifically determine, according to N ⁇ modN: a subframe in which the CRS is transmitted in the cell, where is a subframe number of the CRS transmitted in the cell, and N is a transmission period of the CRS, K T e ⁇ K M
  • M is the number of subframes capable of transmitting CRS
  • M is a subframe number of M subframes capable of transmitting CRS
  • the value ranges from 0 to M - 1
  • i N mod M
  • N is the value of the cell identity of the cell.
  • the subframe capable of transmitting the CRS determined by the processor 52 includes at least one of a downlink subframe and a special subframe.
  • the cell identifier of the cell serving the UE is obtained by the receiver, and the processor determines, according to the transmission period of the CRS and the cell identifier, a subframe in which the CRS is transmitted in the cell, so that the UE and the base station can The subframe in which the CRS is transmitted on the NCT carrier is determined, and since the UE knows which subframes the CRS is received, the reception performance is improved.
  • the device is a base station; correspondingly, as shown in FIG. 6, the device provided in this embodiment may further include a transmitter 61, configured to The UE sends a high-level signaling, where the high-layer signaling includes the determined subframe parameter of the subframe in which the CRS is transmitted in the cell, so that the UE determines the intra-cell transmission CRS according to the received subframe parameter. Subframe.
  • the transmitter 61 may specifically send the high layer signaling to the UE on an NCT carrier.
  • the transmitter 61 multiplexes the CCT-bearing NCT carrier to transmit the high-layer signaling, which may cause the UE to perform the CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error. (Time domain or frequency domain), which adversely affects reception performance.
  • the transmitter 61 multiplexes the NCT carrier carrying the CRS to send the high layer signaling, and the PDSCH or system message or the common control signal corresponding to the high layer signaling
  • the channel message or other channel or signal should be avoided to be transmitted on the resource block (Resource Block, RB) of the subframe in which the CRS is transmitted or the time-frequency resource of the CRS or the time-frequency resource in which the CRS is transmitted, to avoid the UE receiving the CRS.
  • the resource in which the CRS is located is used as a transmission resource of the channel or signal for resource demapping and channel or signal demodulation, thereby causing degradation of the reception performance of the channel or signal.
  • the transmitter 61 may specifically send the high layer signaling to the UE on other non-NCT carriers (ie, legacy carriers).
  • legacy carriers ie, legacy carriers
  • the transmitter 61 sends the high-layer signaling by using a legacy carrier, because the UE has already accessed the legacy carrier before initially accessing the NCT carrier, and receives the subframe-containing parameter sent by the base station on the legacy carrier.
  • High-level signaling so that the UE can determine a subframe for transmitting a CRS in the cell according to the received subframe parameter, so that the UE can perform CRS-based timing tracking when initially accessing the NCT carrier.
  • the operation is such that the error of the initial timing (time domain or frequency domain) is reduced, and the reception performance is further improved.
  • the UE performs resource demapping and channel or signal demodulation as the transmission resources of other channels or signals when receiving the resources including the CRS, thereby causing degradation of the reception performance of the channel or signal.
  • the high-layer signaling sent by the transmitter 61 may further include an NCT carrier identifier carrying the CRS, for example: ServCelldex-r10
  • the subframe parameter included in the high-layer signaling sent by the transmitter 61 may be a subframe number, so that the UE can directly according to the subframe.
  • the number determines a subframe in which the CRS is transmitted in the cell.
  • the subframe parameter included in the high-layer signaling sent by the transmitter 61 may be an integer value between 0 and N-1, where N is a transmission period of the CRS, so that the UE determines, according to N ⁇ mod N z A , a subframe in which the CRS is transmitted in the cell, where N is a subframe number of the CRS transmitted in the cell, where N is The transmission period of the CRS, ⁇ is the subframe parameter.
  • the base station sends the high layer signaling to the UE by using the transmitter, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted by the processor, so that the UE according to the received sub
  • the frame parameter determines a subframe in which the CRS is transmitted in the cell, thereby making the subframe configuration for transmitting the CRS more flexible.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present invention, which is applied to an NCT carrier.
  • the base station in this embodiment may include a processor 71 and a transmitter 72.
  • processing The device 71 is configured to determine a subframe for transmitting a CRS in a cell served by the UE, where the transmitter 72 is configured to send, to the UE, high layer signaling, where the high layer signaling includes the determined sub-cell transmission CRS for serving the UE. a subframe parameter of the frame, so that the UE determines a subframe in which the CRS is transmitted in the cell according to the subframe parameter.
  • the processor 71 may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the foregoing embodiment provided by FIG. 1 and FIG.
  • the processor 71 may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the foregoing embodiment provided by FIG. 1 and FIG.
  • FIG. 1 and FIG. 2 For a detailed description, refer to related content in the embodiment corresponding to FIG. 1 and FIG. 2, and details are not described herein again.
  • the transmitter 72 may specifically send the high layer signaling to the UE on an NCT carrier.
  • the transmitter 72 multiplexes the CCT-carrying NCT carrier to send the high-layer signaling, which may cause the UE to perform CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error. (Time domain or frequency domain), which adversely affects reception performance.
  • the transmitter 72 multiplexes the NCT carrier carrying the CRS to send the high layer signaling, and the PDSCH or system message or the common control channel message or other channel or signal corresponding to the high layer signaling should avoid the subframe or transmission in which the CRS is transmitted.
  • the time-frequency resource of the CRS or the resource block (RB) on which the time-frequency resource of the CRS is transmitted is transmitted, so as to prevent the UE from using the resource where the CRS is located as the channel or signal before receiving the resource information of the CRS.
  • the resource performs resource demapping and demodulation of the channel or signal, resulting in degradation of the reception performance of the channel or signal.
  • the transmitter 72 may specifically send the high layer signaling to the UE on other non-NCT carriers (ie, legacy carriers).
  • legacy carriers ie, legacy carriers
  • the transmitter 72 sends the high-layer signaling by using a legacy carrier, because the UE has already accessed the legacy carrier before initially accessing the NCT carrier, and receives the subframe-transmitted parameter of the subframe transmitted by the base station on the legacy carrier.
  • High-level signaling so that the UE can determine a subframe for transmitting CRS in the cell according to the received subframe parameter, so that the UE can perform CRS-based timing tracking when initially accessing the NCT carrier.
  • the operation is such that the error of the initial timing (time domain or frequency domain) is reduced, and the reception performance is further improved.
  • the UE performs resource demapping and channel or signal demodulation as transmission resources of other channels or signals when receiving resources including CRS, thereby causing degradation of reception performance of the channel or signal.
  • the high layer signaling sent by the transmitter 72 may further include an NCT carrier label carrying the CRS. For example: ServCelldex-r10.
  • the subframe parameter included in the high layer signaling sent by the transmitter 72 may be a subframe number, for example, represented by a bitmap,
  • the UE is enabled to directly determine the subframe in which the CRS is transmitted in the cell according to the subframe number.
  • the subframe parameter included in the high layer signaling sent by the transmitter 72 may also be an integer value between 0 and N-1.
  • N is a transmission period of the CRS, so that the UE is configured according to
  • N fs modN A , determining a subframe in which the CRS is transmitted in the cell, where N is a subframe number of the CRS transmitted in the cell, N is a transmission period of the CRS, and ⁇ is the subframe parameter.
  • the base station sends the high layer signaling to the UE by using the transmitter, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted by the processor, so that the UE is received according to the received
  • the subframe parameter determines a subframe in which the CRS is transmitted in the cell, so that the subframe configuration for transmitting the CRS is more flexible, and the UE knows which subframes to receive the CRS, thereby improving the receiving performance.
  • FIG. 8 is a schematic structural diagram of a user equipment according to another embodiment of the present invention, which is applied to an NCT carrier.
  • the user equipment in this embodiment may include a receiver 81 and a processor 82.
  • the receiver 81 is configured to receive the high layer signaling sent by the base station, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell served by the UE, and the processor 82 is used by the processor 82. Determining a subframe in which the CRS is transmitted in the cell according to the subframe parameter.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • a subframe for transmitting a CRS in a cell served by the UE for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the base station may specifically determine, by using any method, a subframe for transmitting a CRS in a cell served by the UE, for example, the method provided by the embodiment corresponding to FIG. 1 and FIG.
  • the UE may specifically receive the high layer signaling sent by the base station on an NCT carrier.
  • the base station multiplexes the CCT-bearing NCT carrier to send the high-layer signaling, which may cause the UE to perform CRS-based timing tracking and the like when initially accessing the NCT carrier, thereby increasing the initial timing error. Domain or frequency domain), which adversely affects reception performance.
  • the base station multiplexes the NCT carrier carrying the CRS to send the high layer signaling, and the PDSCH or system message or the common control channel message or other channel or signal corresponding to the high layer signaling should be avoided in the subframe in which the CRS is transmitted or the CRS is transmitted.
  • Time-frequency resource or transmission The resource block (RB) on which the time-frequency resource of the CRS is located is transmitted, so as to prevent the UE from using the resource where the CRS is located as the transmission resource of the channel or signal for resource demapping and channel before receiving the resource information of the CRS. Or demodulation of the signal, resulting in degradation of the reception performance of the channel or signal.
  • the UE may specifically receive the high layer signaling sent by the base station on other non-NCT carriers (ie, legacy carriers).
  • legacy carriers ie, legacy carriers
  • the base station sends the high layer signaling by using a legacy carrier, because the UE has accessed the legacy carrier before initially accessing the NCT carrier, and receives a high layer message including the subframe parameter sent by the base station on the legacy carrier. So, to enable the UE to determine a subframe in which the CRS is transmitted in the cell according to the received subframe parameter, so that the UE can perform CRS-based timing tracking and the like when initially accessing the NCT carrier. , thereby reducing the error of the initial timing (time domain or frequency domain), further improving the reception performance.
  • the UE performs resource demapping and channel or signal demodulation as the transmission resources of other channels or signals when receiving the resources including the CRS, thereby causing degradation of the reception performance of the channel or signal.
  • the high-layer signaling received by the UE may further include an NCT carrier identifier carrying the CRS, for example, ServCelldex-r10.
  • the subframe parameter included in the high layer signaling received by the receiver 81 may be a subframe number, for example, represented by a bitmap;
  • the processor 82 can directly determine the subframe in which the CRS is transmitted in the cell according to the subframe number.
  • the subframe parameter included in the high layer signaling received by the receiver 81 may also be an integer value between 0 and N-1.
  • N is a transmission period of the CRS
  • the UE receives the high layer signaling sent by the base station by using the receiver, where the high layer signaling includes a subframe parameter of the subframe in which the CRS is transmitted in the cell determined by the base station, so that the processor is configured according to the received
  • the subframe parameter determines a subframe in which the CRS is transmitted in the cell, thereby making the subframe configuration for transmitting the CRS more flexible, since the UE knows in which subframes the CRS is received, thereby improving the reception performance.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include a number of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供传输CRS的子帧确定方法及设备。一种方法通过获得为UE服务的小区的小区标识,并根据CRS的传输周期和所述小区标识,确定所述小区内传输CRS的子帧,从而使得UE和基站可以确定在NCT载波上传输CRS的子帧。

Description

传输 CRS的子帧确定方法及设备
技术领域 本发明涉及通信技术, 尤其涉及传输小区特定参考信号 (Cell-specific Reference Signal, CRS ) 的子帧确定方法及设备。 背景技术
在无线通信系统例如: 长期演进(Long Term Evolution, LTE )系统中, 引入了一种新的载波类型 (New Carrier Type, NCT ) , 或者还可以称为附 加的载波类型(Additional Carrier Type, ACT ) , 本实施例对此不进行限定。 NCT载波不能 载物理下行控制信道( Physical Downlink Control Channel, PDCCH ) , 能够承载小区特定参考信号 ( Cell-specific Reference Signal, CRS ) , 且 CRS不能在连续的子帧上传输。
然而,现有技术中针对 NCT载波,接收端不知道在哪些子帧上接收 CRS, 从而影响接收性能。 发明内容
本发明提供传输 CRS的子帧确定方法及设备, 用以确定在 NCT载波上 传输 CRS的子帧。
—方面提供了一种传输 CRS的子帧确定方法, 应用于 NCT载波, 方法 包括:
获得为 UE月良务的小区的小区标 i只;
根据 CRS的传输周期和小区标识, 确定小区内传输 CRS的子帧。
另一方面提供了一种传输 CRS的子帧确定方法, 应用于 NCT载波, 方 法包括:
基站确定为 UE服务的小区内传输 CRS的子帧;
基站向 UE发送高层信令, 高层信令中包含确定的为 UE服务的小区内 传输 CRS的子帧的子帧参数,以使得 UE根据子帧参数确定小区内传输 CRS 的子帧。 另一方面提供了一种传输 CRS的子帧确定方法, 应用于 NCT载波, 方 法包括:
UE接收基站发送的高层信令,高层信令中包含基站确定的为 UE服务的 小区内传输 CRS的子帧的子帧参数;
UE根据子帧参数, 确定小区内传输 CRS的子帧。
另一方面提供了一种传输 CRS的子帧确定设备, 应用于 NCT载波, 设 备包括:
接收器, 用于获得为 UE服务的小区的小区标识;
处理器, 用于根据 CRS的传输周期和小区标识, 确定小区内传输 CRS 的子帧。
另一方面提供了一种基站, 应用于 NCT载波, 基站包括:
处理器, 用于确定为 UE服务的小区内传输 CRS的子帧;
发送器, 用于向 UE发送高层信令, 高层信令中包含确定的为 UE服务 的小区内传输 CRS的子帧的子帧参数,以使得 UE根据子帧参数确定小区内 传输 CRS的子帧。
另一方面提供了一种用户设备, 应用于 NCT载波, 用户设备包括: 接收器, 用于接收基站发送的高层信令, 高层信令中包含基站确定的为
UE服务的小区内传输 CRS的子帧的子帧参数;
处理器, 用于根据子帧参数, 确定小区内传输 CRS的子帧。
由上述技术方案可知, 本发明实施例能够确定在 NCT载波上传输 CRS 的子帧。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的传输 CRS的子帧确定方法的流程示意图; 图 2为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图; 图 3为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图;
图 4为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图;
图 5为本发明另一实施例提供的传输 CRS的子帧确定设备的结构示意 图;
图 6为本发明另一实施例提供的传输 CRS的子帧确定设备的结构示意 图。
图 7为本发明另一实施例提供的基站的结构示意图;
图 8为本发明另一实施例提供的用户设备的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种无线通信系统, 例如: 全球移动通 信系统( Global System for Mobile Communications, 简称 GSM ) 、 通用分 组无线业务( General Packet Radio Service, 简称 GPRS ) 系统、 码分多址 ( Code Division Multiple Access, 简称 CDMA ) 系统、 CDMA2000系统、 宽带码分多址(Wideband Code Division Multiple Access, 简称 WCDMA ) 系统、 长期演进( Long Term Evolution, 简称 LTE ) 系统或全球微波接入互 操作性 ( World Interoperability for Microwave Access, 简称 WiMAX ) 系统 等。
基站, 可以是 GSM 系统、 GPRS 系统或 CDMA系统中的基站控制器 ( Base Station Controller, 简称 BSC ) , 还可以是 CDMA2000 系统或 WCDMA系统中的无线网络控制器( Radio Network Controller,简称 RNC ) , 还可以是 LTE系统中的演进型基站(Evolved NodeB, 简称 eNB ) , 还可以 是 WiMAX 网络中的接入服务网络的基站 (Access Service Network Base Station, 简称 ASN BS )等网元。
另外, 本文中术语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示 可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A , 同时存在 A 和 B, 单独存在 B这三种情况。 另外, 本文中字符' 7", —般表示前后关联对 象是一种"或"的关系。
图 1为本发明一实施例提供的传输 CRS的子帧确定方法的流程示意图, 应用于 NCT载波, 如图 1所示。
101、 获得为用户设备(User Equipment, UE )服务的小区的小区标识;
102、根据 CRS的传输周期和所述小区标识,确定所述小区内传输 CRS 的子帧。
需要说明的是: 上述 101和 102的执行主体可以为 UE或者基站, 本实 施例对此不进行限定。
本实施例提供的技术方案可以适用于频分双工 ( Frequency Division Dual, FDD )模式系统, 还可以适用于时分双工( Time Division Dual, TDD ) 模式系统, 或者既有 FDD模式又有 TDD模式的系统, 本实施例对此不进行 限定。
可选地, 在本实施例的一个可选实施方式中, 在 FDD模式系统中, 所述 小区内传输 CRS的子帧为 FDD子帧, 采用帧结构类型 1 ( frame structure type 1 ); 相应地, 在 102中, 具体可以根据 N s modN = N modN , 确定所述 小区内传输 CRS的子帧, 其中, N 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, N 为所述小区的小区标识的取值。
以 FDD模式的 LTE系统为例, 为时隙(slot )号, 其取值范围为 0至 19, 那么子帧号 =μ / 2」对应的范围为 0至 9; 小区的小区标识的取值 N 的取值范围为 0至 503。 4叚设所述 CRS 的传输周期为 5个传输时间间隔 ( Transmission Time Interval , ΤΤΙ ) 即 5ΤΤΙ , 即 N为 5 , 因此才艮据
L / 2」modN = Λ^" modN ,则可以得到小区标识与小区内传输 CRS的子帧之间 的对应关系, 可以参见表 1所示。
表 1 FDD模式的 LTE系统下的小区标识与小区内传输 CRS的子帧号之间的对应关系 小区标识(Cell ID ) 小区内传输 CRS的子帧号
0 0,5
1 1 ,6
2 2,7
3 3,8
4 4,9
5 0,5
6 1 ,6
7 2,7
501 1 ,6
502 2,7
503 3,8 可选地, 在本实施例的一个可选实施方式中, 在 TDD模式系统中, 所述 小区内传输 CRS的子帧为 TDD子帧, 采用帧结构类型 2 ( frame structure type 2 );相应地,在 102中,具体可以根据上下行子帧配置信息和所述 CRS 的传输周期, 确定能够传输 CRS的子帧; 然后, 根据所述 CRS的传输周期 和所述小区标识, 在所述能够传输 CRS的子帧中确定所述小区内传输 CRS 的子帧。 具体地, 可以根据 N^ modN z f, , 确定所述小区内传输 CRS的子帧。 其中, N 为所述小区内传输 CRS 的子帧号, N为 CRS 的传输周期, KT e 〜 KM ,为确定的 M个能够传输 CRS的子帧, M为所述能够传输 CRS 的子帧的个数, 为 M个能够传输 CRS的子帧的子帧编号, 其取值范围为 0 至 M - 1 , i = N^1 mod M , N^1为所述小区的小区标识的取值。
以 TDD模式的 LTE系统为例, 为时隙( slot )号, 其取值范围为 0至 19, 那么子帧号 = / 2」对应的范围为 0至 9; 小区的小区标识的取值 N^ 的取值范围为 0至 503。 定义了 7种不同的上下行子帧配置, 具体可以参见 表 2所示。 其中, 子帧 0到子帧 9中, 分别可以包括用于发送上行信息的上 行(U ) 子帧、 用于发送下行信息的下行(D ) 子帧和用于发送上行和 /或下 行信息的特殊(S )子帧。 所述能够传输 CRS的子帧可以为下行子帧, 或者 还可以为下行子帧和特殊子帧, 或者还可以为特殊子帧, 本实施例对此不进 行限定。
表 2 上下行子帧配置
Figure imgf000007_0001
那么, 4叚设所述 CRS的传输周期为 5个传输时间间隔(Transmission Time Interval, TTI) 即 5TTI, 以能够传输 CRS的子帧包括下行子帧和特殊 子帧为例, 每种上下行子帧配置对应的能够传输 CRS 的子帧可以参见表 3 所示。
表 3 上下行子帧配置
Figure imgf000007_0002
如果根据配置 1 的上下行子帧配置信息和所述 CRS的传输周期 5TTI, 即 N为 5, 则可以确定能够传输 CRS 的子帧号为 {0,1,4}。 然后根据
NfsmodN = Ki, 子帧号 N =L /2」, 则可以得到小区标识与小区内传输 CRS 的子帧之间的对应关系, 可以参见表 4所示。 表 4 TDD模式的 LTE系统下的小区标识与小区内传输 CRS的子帧号之间的对应关系
Figure imgf000008_0001
由于若干相邻小区的 CRS传输并不在同一个子帧, 因此, 传输 CRS的 子帧内的 ePDCCH或 PDSCH不会受到来自相邻小区的传输 CRS的子帧的 干扰, 这有助于传输 CRS的子帧内的增强的物理下行控制信道( Enhanced Physical Downlink Control Channel , ePDCCH ) 或物理下行共享信道 ( Physical Downlink Shared Channel, PDSCH )在频域进行干扰协调。
本实施例中, 通过获得为 UE服务的小区的小区标识, 并根据 CRS的传 输周期和所述小区标识, 确定所述小区内传输 CRS的子帧, 从而使得 UE和 基站可以确定在 NCT载波上传输 CRS的子帧, 由于 UE知道在哪些子帧上 接收 CRS, 从而提高了接收性能从而提高了接收性能。
图 2为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图, 应用于 NCT载波。 与图 1对应的实施例相比, 本实施例中, UE无需执 行图 1对应的实施例, 如图 2所示。
201、 基站获得为 UE服务的小区的小区标识;
202、 所述基站根据 CRS的传输周期和所述小区标识, 确定所述小区内 传输 CRS的子帧。
203、 所述基站向所述 UE发送高层信令, 所述高层信令中包含确定的所 述小区内传输 CRS的子帧的子帧参数,以使得所述 UE根据接收到的所述子 帧参数确定所述小区内传输 CRS的子帧。
可以理解的是: 基站执行 201和 202的详细描述具体可以参见图 1对应 的实施例中的相关内容, 此处不再赘述。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令可以是无线 资源控制( Radio Resource Control, RRC )消息, 具体可以通过 RRC消息 中的信息元素 ( Information Element, IE )携带所述子帧参数, 所述 RRC消 息可以为现有技术中的 RRC消息, 例如: 系统消息 ( System Information, SI ) 、 寻呼消息 ( Paging Information, PI ) 消息等, 本实施例对此不进行限 定,通过对已有的 RRC消息的 IE进行扩展携带所述子帧参数,或者所述 RRC 消息也可以为不同于现有技术中已有的 RRC消息。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令还可以是媒 体访问控制 ( Media Access Control, MAC )控制元素 ( Control Element, CE ) 消息, 通过增加新的 MAC CE携带所述子帧参数。
可选地, 在本实施例的一个可选实施方式中, 在 203中, 所述基站可以 在 NCT载波上向所述 UE发送所述高层信令。 这样, 复用承载 CRS的 NCT 载波发送所述高层信令,会导致所述 UE无法在初始接入 NCT载波时就能进 行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或频域), 对接收性能造成不利的影响。 此外, 所述高层信令如携带 CRS传输子帧的 RRC消息(或 MAC CE消息 ) /携带系统消息的 RRC消息 /携带寻呼消息 的 RRC 消息所对应的 PDSCH、 ePDCCH/物理广播信道 ( Physical broadcast channel , PBCH )应避免在传输 CRS的子帧或传输 CRS的时 频资源或传输 CRS的时频资源所在的资源块 ( Resource block, RB ) 上 进行传输, 以避免 UE在接收到 CRS所在的时频资源信息前将 CRS所在 的时频资源作为 PDSCH/ePDCCH/PBCH 的传输资源进行资源解映射, 然后进行解调, 从而导致相应信道的接收性能下降。
可选地, 在本实施例的一个可选实施方式中, 在 203中, 所述基站可以 在其他非 NCT载波(即 legacy载波)上向所述 UE发送所述高层信令。 这 样, 采用 legacy载波发送所述高层信令, 由于所述 UE在初始接入 NCT载 波之前已经接入了 legacy载波, 并在 legacy载波上接收到基站发送的包含 所述子帧参数的高层信令, 以使所述 UE能够根据接收到的所述子帧参数确 定所述小区内传输 CRS的子帧, 进而使得所述 UE在初始接入 NCT载波时 就能进行基于 CRS的定时跟踪等操作,从而减少了初始定时的误差(时域或 频域) , 进一步提高了接收性能。 也避免了 UE在接收到 CRS所在的时频 资源信息前将 CRS所在的时频资源作为 PDSCH/ePDCCH/PBCH的传输 资源进行资源解映射,然后进行解调,从而导致相应信道的接收性能下降。
那么相应地, 所述基站发送的所述高层信令中还可以进一步包含承载 CRS的 NCT载波标识例如: ServCelldex-r10。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中说包含的 所述子帧参数可以为子帧号, 以使得 UE能够直接根据该子帧号确定所述小 区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中包含的所 述子帧参数还可以为一个 0至 N- 1之间的整数值,其中, N为所述 CRS的传 输周期, 以使得所述 UE根据 L / 2」m0dN = A , 确定所述小区内传输 CRS的 子帧, 其中, μ / 2」为所述小区内传输 CRS的子帧号, N为 CRS的传输周 期, Δ为所述子帧参数。
本实施例中, 通过基站向 UE发送高层信令, 所述高层信令中包含基站 确定的所述小区内传输 CRS的子帧的子帧参数,以使得所述 UE根据接收到 的所述子帧参数确定所述小区内传输 CRS的子帧, 从而使得传输 CRS的子 帧配置更加灵活, 由于 UE知道在哪些子帧上接收 CRS, 从而提高了接收性 能。
图 3为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图, 例如, 应用于 NCT载波, 如图 3所示。
301、 基站确定为 UE服务的小区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 基站具体可以采用任何方 法确定为 UE服务的小区内传输 CRS的子帧,例如: 图 1和图 2对应的实施 例提供的方法, 详细描述可以参见图 1和图 2对应的实施例中的相关内容, 此处不再赘述。
302、 所述基站向所述 UE发送高层信令, 所述高层信令中包含确定的为 UE服务的小区内传输 CRS的子帧的子帧参数, 以使得所述 UE根据所述子 帧参数确定所述小区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令可以是无线 资源控制( Radio Resource Control, RRC )消息, 具体可以通过 RRC消息 中的信息元素 ( Information Element, IE )携带所述子帧参数, 所述 RRC消 息可以为现有技术中的 RRC消息 , 例如: 系统消息 ( System Information, SI ) 、 寻呼消息 ( Paging Information, PI ) 消息等, 本实施例对此不进行限 定,通过对已有的 RRC消息的 IE进行扩展携带所述子帧参数,或者所述 RRC 消息也可以为不同于现有技术中已有的 RRC消息。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令还可以是媒 体访问控制 ( Media Access Control, MAC )控制元素 ( Control Element, CE ) 消息, 通过增加新的 MAC CE携带所述子帧参数。
可选地, 在本实施例的一个可选实施方式中, 在 302中, 所述基站可以 在 NCT载波上向所述 UE发送所述高层信令。 这样, 复用承载 CRS的 NCT 载波发送所述高层信令,会导致所述 UE无法在初始接入 NCT载波时就能进 行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或频域), 对接收性能造成不利的影响。 此外, 所述高层信令如携带 CRS传输子帧的 RRC消息(或 MAC CE消息 ) /携带系统消息的 RRC消息 /携带寻呼消息 的 RRC 消息所对应的 PDSCH、 ePDCCH/物理广播信道 ( Physical broadcast channel , PBCH )应避免在传输 CRS的子帧或传输 CRS的时 频资源或传输 CRS的时频资源所在的资源块 ( Resource block, RB ) 上 进行传输, 以避免 UE在接收到 CRS所在的时频资源信息前将 CRS所在 的时频资源作为 PDSCH/ePDCCH/PBCH 的传输资源进行资源解映射, 然后进行解调, 从而导致相应信道的接收性能下降。
可选地, 在本实施例的一个可选实施方式中, 在 302中, 所述基站可以 在其他非 NCT载波(即 legacy载波)上向所述 UE发送所述高层信令。 这 样, 采用 legacy载波发送所述高层信令, 由于所述 UE在初始接入 NCT载 波之前已经接入了 legacy载波, 并在 legacy载波上接收到基站发送的包含 所述子帧参数的高层信令, 以使所述 UE能够根据接收到的所述子帧参数确 定所述小区内传输 CRS的子帧, 进而使得所述 UE在初始接入 NCT载波时 就能进行基于 CRS的定时跟踪等操作,从而减少了初始定时的误差(时域或 频域) , 进一步提高了接收性能。 也避免了 UE在接收到 CRS所在的时频 资源信息前将 CRS所在的时频资源作为 PDSCH/ePDCCH/PBCH的传输 资源进行资源解映射,然后进行解调,从而导致相应信道的接收性能下降。
那么相应地, 所述基站发送的所述高层信令中还可以进一步包含承载 CRS的 NCT载波标识例如: ServCelldex-r10。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中包含的所 述子帧参数可以为子帧号, 例如: 以位图形式进行表示, 以使得 UE能够直 接根据该子帧号确定所述小区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中说包含的 所述子帧参数还可以为一个 0至 N- 1之间的整数值,例如: 以 2进制数表示, 其中, N为所述 CRS的传输周期, 以使得所述 UE根据 ηκ ^ = Δ , 确定 所述小区内传输 CRS的子帧, 其中, N 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
本实施例中, 通过基站向 UE发送高层信令, 所述高层信令中包含基站 确定的所述小区内传输 CRS的子帧的子帧参数,以使得所述 UE根据接收到 的所述子帧参数确定所述小区内传输 CRS的子帧, 从而使得传输 CRS的子 帧配置更加灵活, 由于 UE知道在哪些子帧上接收 CRS, 从而提高了接收性 能。
图 4为本发明另一实施例提供的传输 CRS的子帧确定方法的流程示意 图, 应用于 NCT载波, 如图 4所示。
401、 UE接收基站发送的高层信令, 所述高层信令中包含所述基站确定 的为所述 UE服务的小区内传输 CRS的子帧的子帧参数。
其中,基站具体可以采用任何方法确定为 UE服务的小区内传输 CRS的 子帧, 例如: 图 1和图 2对应的实施例提供的方法, 详细描述可以参见图 1 和图 2对应的实施例中的相关内容, 此处不再赘述。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令可以是无线 资源控制( Radio Resource Control, RRC )消息, 具体可以通过 RRC消息 中的信息元素 ( Information Element, IE )携带所述子帧参数, 所述 RRC消 息可以为现有技术中的 RRC消息, 例如: 系统消息 ( System Information, SI ) 、 寻呼消息 ( Paging Information, PI ) 消息等, 本实施例对此不进行限 定,通过对已有的 RRC消息的 IE进行扩展携带所述子帧参数,或者所述 RRC 消息也可以为不同于现有技术中已有的 RRC消息。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令还可以是媒 体访问控制 ( Media Access Control, MAC )控制元素 ( Control Element, CE ) 消息, 通过增加新的 MAC CE携带所述子帧参数。
402、 所述 UE根据所述子帧参数, 确定所述小区内传输 CRS的子帧。 可选地, 在本实施例的一个可选实施方式中, 在 402中, 所述 UE可以 接收所述基站在 NCT载波上发送的所述高层信令。 这样, 复用承载 CRS的 NCT载波发送所述高层信令, 会导致所述 UE无法在初始接入 NCT载波时 就能进行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或 频域) , 对接收性能造成不利的影响。 此外, 所述高层信令如携带 CRS传 输子帧的 RRC消息(或 MAC CE消息 ) /携带系统消息的 RRC消息 /携带 寻呼消息的 RRC 消息所对应的 PDSCH、 ePDCCH/物理广播信道 ( Physical broadcast channel , PBCH )应避免在传输 CRS的子帧或传 输 CRS 的时频资源或传输 CRS 的时频资源所在的资源块 (Resource block, RB )上进行传输, 以避免 UE在接收到 CRS所在的时频资源信息 前将 CRS所在的时频资源作为 PDSCH/ePDCCH/PBCH的传输资源进行 资源解映射, 然后进行解调, 从而导致相应信道的接收性能下降。
可选地, 在本实施例的一个可选实施方式中, 在 402中, 所述 UE可以 接收所述基站在其他非 NCT载波(即 legacy载波)上发送的所述高层信令。 这样, 采用 legacy载波发送所述高层信令, 由于所述 UE在初始接入 NCT 载波之前已经接入了 legacy载波, 并在 legacy载波上接收到基站发送的包 含所述子帧参数的高层信令, 以使所述 UE能够根据接收到的所述子帧参数 确定所述小区内传输 CRS的子帧, 进而使得所述 UE在初始接入 NCT载波 时就能进行基于 CRS的定时跟踪等操作,从而减少了初始定时的误差(时域 或频域) , 进一步提高了接收性能。 也避免了 UE在接收到 CRS所在的时 频资源信息前将 CRS所在的时频资源作为 PDSCH/ePDCCH/PBCH的传 输资源进行资源解映射, 然后进行解调, 从而导致相应信道的接收性能下 降。
那么相应地, 所述 UE 接收的所述高层信令中还可以进一步包含承载 CRS的 NCT载波标识例如: ServCelldex-r10。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中说包含的 所述子帧参数可以为子帧号; 相应地, 在 402 中, UE则能够直接根据该子 帧号确定所述小区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 所述高层信令中说包含的 所述子帧参数还可以为一个 0至 N- 1之间的整数值,其中, N为所述 CRS的 传输周期; 相应地, 在 402中, 所述 UE则可以根据 ί ηκ ^ = Δ , 确定所述 小区内传输 CRS的子帧, 其中, N 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
本实施例中, 通过 UE接收基站发送的高层信令, 所述高层信令中包含 基站确定的所述小区内传输 CRS的子帧的子帧参数,使得所述 UE根据接收 到的所述子帧参数确定所述小区内传输 CRS的子帧, 从而使得传输 CRS的 子帧配置更加灵活, 由于 UE知道在哪些子帧上接收 CRS, 从而提高了接收 性能。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步骤可以采用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
图 5为本发明另一实施例提供的传输 CRS的子帧确定设备的结构示意 图, 应用于 NCT载波, 所述设备可以为 UE, 或者还可以为基站, 本实施例 对此不进行限定。如图 5所示,本实施例的传输 CRS的子帧确定设备可以包 括接收器 51和处理器 52。 其中, 接收器 51用于获得为 UE服务的小区的小 区标识; 处理器 52用于根据 CRS的传输周期和所述小区标识, 确定所述小 区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 在 FDD模式系统中, 所述 小区内传输 CRS的子帧为 FDD子帧, 采用帧结构类型 1 ( frame structure type 1 ) ; 相应地, 处理器 52具体可以根据 N s modN = A^" modN , 确定所述 小区内传输 CRS的子帧, 其中, N 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, N 为所述小区的小区标识的取值。
可选地, 在本实施例的一个可选实施方式中, 在 TDD模式系统中, 所述 小区内传输 CRS的子帧为 TDD子帧, 采用帧结构类型 2 ( frame structure type 2 ); 相应地, 处理器 52具体可以根据上下行子帧配置信息和所述 CRS 的传输周期, 确定能够传输 CRS的子帧, 并根据所述 CRS的传输周期和所 述小区标识, 在所述能够传输 CRS的子帧中确定所述小区内传输 CRS的子 帧。
例如: 处理器 52具体可以根据 N^ modN : 确定所述小区内传输 CRS 的子帧,其中, 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, KT e 〜 KM ,为确定的 M个能够传输 CRS的子帧, M为所述能够传输 CRS 的子帧的个数, 为 M个能够传输 CRS的子帧的子帧编号, 其取值范围为 0 至 M - 1 , i = N mod M , N 为所述小区的小区标识的取值。
其中, 处理器 52确定的所述能够传输 CRS的子帧包括下行子帧和特殊 子帧中的至少一个。
本实施例中, 通过接收器获得为 UE服务的小区的小区标识, 并由处理 器根据 CRS的传输周期和所述小区标识,确定所述小区内传输 CRS的子帧, 从而使得 UE和基站可以确定在 NCT载波上传输 CRS的子帧, , 由于 UE 知道在哪些子帧上接收 CRS, 从而提高了接收性能。
可选地, 在本实施例的一个可选实施方式中, 所述设备为基站; 相应地, 如图 6所示, 本实施例提供的设备还可以进一步包括发送器 61 , 用于向所述 UE发送高层信令, 所述高层信令中包含确定的所述小区内传输 CRS的子帧 的子帧参数, 以使得所述 UE根据接收到的所述子帧参数确定所述小区内传 输 CRS的子帧。
可选地,在本实施例的一个可选实施方式中,发送器 61具体可以在 NCT 载波上向所述 UE发送所述高层信令。这样,发送器 61复用承载 CRS的 NCT 载波发送所述高层信令,会导致所述 UE无法在初始接入 NCT载波时就能进 行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或频域), 对接收性能造成不利的影响。 此外, 发送器 61复用承载 CRS的 NCT载波 发送所述高层信令, 所述高层信令对应的 PDSCH或系统消息或公共控制信 道消息或其它信道或信号应避免在传输 CRS的子帧或传输 CRS的时频资源 或传输 CRS的时频资源所在的资源块( Resource block, RB )上进行传输, 以避免 UE在接收到 CRS所在的资源信息前将 CRS所在的资源作为该信道 或信号的传输资源进行资源解映射和信道或信号的解调, 从而导致该信道或 信号的接收性能下降。 可选地, 在本实施例的一个可选实施方式中, 发送器 61具体可以在其他非 NCT载波(即 legacy载波)上向所述 UE发送所述高 层信令。 这样, 发送器 61采用 legacy载波发送所述高层信令, 由于所述 UE 在初始接入 NCT载波之前已经接入了 legacy载波, 并在 legacy载波上接收 到基站发送的包含所述子帧参数的高层信令, 以使所述 UE能够根据接收到 的所述子帧参数确定所述小区内传输 CRS的子帧,进而使得所述 UE在初始 接入 NCT载波时就能进行基于 CRS的定时跟踪等操作, 从而减少了初始定 时的误差 (时域或频域) , 进一步提高了接收性能。 也避免了 UE在接收包 含 CRS的资源时将 CRS的传输资源也作为其它信道或信号的传输资源进行 资源解映射和信道或信号的解调, 从而导致该信道或信号的接收性能下降。 那么相应地, 发送器 61发送的所述高层信令中还可以进一步包含承载 CRS 的 NCT载波标识例如: ServCelldex-r10„
可选地,在本实施例的一个可选实施方式中,发送器 61发送的所述高层 信令中说包含的所述子帧参数可以为子帧号, 以使得 UE能够直接根据该子 帧号确定所述小区内传输 CRS的子帧。
可选地,在本实施例的一个可选实施方式中,发送器 61发送的所述高层 信令中说包含的所述子帧参数可以为 0至 N - 1之间的整数值, 其中, N为所 述 CRS的传输周期, 以使得所述 UE根据 N^ mod N z A , 确定所述小区内传 输 CRS的子帧, 其中, N 为所述小区内传输 CRS的子帧号, N为 CRS的 传输周期, Δ为所述子帧参数。
这样, 基站通过发送器向 UE发送高层信令, 所述高层信令中包含处理 器确定的所述小区内传输 CRS的子帧的子帧参数,以使得所述 UE根据接收 到的所述子帧参数确定所述小区内传输 CRS的子帧, 从而使得传输 CRS的 子帧配置更加灵活。
图 7为本发明另一实施例提供的基站的结构示意图, 应用于 NCT载波, 如图 7所示, 本实施例的基站可以包括处理器 71和发送器 72。 其中, 处理 器 71用于确定为 UE服务的小区内传输 CRS的子帧; 发送器 72用于向所 述 UE发送高层信令, 所述高层信令中包含确定的为 UE服务的小区内传输 CRS的子帧的子帧参数, 以使得所述 UE根据所述子帧参数确定所述小区内 传输 CRS的子帧。
可选地,在本实施例的一个可选实施方式中,处理器 71具体可以采用任 何方法确定为 UE服务的小区内传输 CRS的子帧,例如: 图 1和图 2对应的 实施例提供的方法, 详细描述可以参见图 1和图 2对应的实施例中的相关内 容, 此处不再赘述。
可选地,在本实施例的一个可选实施方式中,发送器 72具体可以在 NCT 载波上向所述 UE发送所述高层信令。这样,发送器 72复用承载 CRS的 NCT 载波发送所述高层信令,会导致所述 UE无法在初始接入 NCT载波时就能进 行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或频域), 对接收性能造成不利的影响。 此外, 发送器 72复用承载 CRS的 NCT载波 发送所述高层信令, 所述高层信令对应的 PDSCH或系统消息或公共控制信 道消息或其它信道或信号应避免在传输 CRS的子帧或传输 CRS的时频资源 或传输 CRS的时频资源所在的资源块( Resource block, RB )上进行传输, 以避免 UE在接收到 CRS所在的资源信息前将 CRS所在的资源作为该信道 或信号的传输资源进行资源解映射和信道或信号的解调, 从而导致该信道或 信号的接收性能下降。
可选地,在本实施例的一个可选实施方式中,发送器 72具体可以在其他 非 NCT载波(即 legacy载波)上向所述 UE发送所述高层信令。 这样, 发 送器 72采用 legacy载波发送所述高层信令, 由于所述 UE在初始接入 NCT 载波之前已经接入了 legacy载波, 并在 legacy载波上接收到基站发送的包 含所述子帧参数的高层信令, 以使所述 UE能够根据接收到的所述子帧参数 确定所述小区内传输 CRS的子帧, 进而使得所述 UE在初始接入 NCT载波 时就能进行基于 CRS的定时跟踪等操作,从而减少了初始定时的误差(时域 或频域), 进一步提高了接收性能。 也避免了 UE在接收包含 CRS的资源时 将 CRS 的传输资源也作为其它信道或信号的传输资源进行资源解映射和信 道或信号的解调, 从而导致该信道或信号的接收性能下降。 那么相应地, 发 送器 72发送的所述高层信令中还可以进一步包含承载 CRS的 NCT载波标 识例如: ServCelldex-r10。
可选地,在本实施例的一个可选实施方式中,发送器 72发送的所述高层 信令中包含的所述子帧参数可以为子帧号, 例如: 以位图形式进行表示, 以 使得 UE能够直接根据该子帧号确定所述小区内传输 CRS的子帧。
可选地,在本实施例的一个可选实施方式中,发送器 72发送的所述高层 信令中说包含的所述子帧参数还可以为一个 0至 N - 1之间的整数值, 例如: 以 2进制数表示, 其中, N为所述 CRS的传输周期, 以使得所述 UE根据
Nfs modN = A , 确定所述小区内传输 CRS的子帧, 其中, N 为所述小区内传 输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
本实施例中, 基站通过发送器向 UE发送高层信令, 所述高层信令中包 含处理器确定的所述小区内传输 CRS的子帧的子帧参数,以使得所述 UE根 据接收到的所述子帧参数确定所述小区内传输 CRS 的子帧, 从而使得传输 CRS的子帧配置更加灵活, 由于 UE知道在哪些子帧上接收 CRS,从而提高 了接收性能。
图 8为本发明另一实施例提供的用户设备的结构示意图,应用于 NCT载 波, 如图 8所示, 本实施例的用户设备可以包括接收器 81和处理器 82。 其 中,接收器 81用于接收基站发送的高层信令, 所述高层信令中包含所述基站 确定的为所述 UE服务的小区内传输 CRS的子帧的子帧参数; 处理器 82用 于根据所述子帧参数, 确定所述小区内传输 CRS的子帧。
可选地, 在本实施例的一个可选实施方式中, 基站具体可以采用任何方 法确定为 UE服务的小区内传输 CRS的子帧,例如: 图 1和图 2对应的实施 例提供的方法, 详细描述可以参见图 1和图 2对应的实施例中的相关内容, 此处不再赘述。
可选地, 在本实施例的一个可选实施方式中, 所述 UE具体可以接收所 述基站在 NCT载波上发送的所述高层信令。这样,基站复用承载 CRS的 NCT 载波发送所述高层信令,会导致所述 UE无法在初始接入 NCT载波时就能进 行基于 CRS的定时跟踪等操作,从而增加了初始定时的误差(时域或频域), 对接收性能造成不利的影响。 此外, 基站复用承载 CRS的 NCT载波发送所 述高层信令, 所述高层信令对应的 PDSCH或系统消息或公共控制信道消息 或其它信道或信号应避免在传输 CRS的子帧或传输 CRS的时频资源或传输 CRS的时频资源所在的资源块(Resource block, RB )上进行传输, 以避免 UE在接收到 CRS所在的资源信息前将 CRS所在的资源作为该信道或信号 的传输资源进行资源解映射和信道或信号的解调, 从而导致该信道或信号的 接收性能下降。
可选地, 在本实施例的一个可选实施方式中, 所述 UE具体可以接收所 述基站在其他非 NCT载波 (即 legacy载波)上发送的所述高层信令。 这样, 基站采用 legacy载波发送所述高层信令, 由于所述 UE在初始接入 NCT载 波之前已经接入了 legacy载波, 并在 legacy载波上接收到基站发送的包含 所述子帧参数的高层信令, 以使所述 UE能够根据接收到的所述子帧参数确 定所述小区内传输 CRS的子帧, 进而使得所述 UE在初始接入 NCT载波时 就能进行基于 CRS的定时跟踪等操作,从而减少了初始定时的误差(时域或 频域), 进一步提高了接收性能。 也避免了 UE在接收包含 CRS的资源时将 CRS 的传输资源也作为其它信道或信号的传输资源进行资源解映射和信道 或信号的解调, 从而导致该信道或信号的接收性能下降。 那么相应地, 所述 UE接收的所述高层信令中还可以进一步包含承载 CRS的 NCT载波标识例 如: ServCelldex-r10。
可选地,在本实施例的一个可选实施方式中,接收器 81接收的所述高层 信令中包含的所述子帧参数可以为子帧号, 例如: 以位图形式进行表示; 相 应地,处理器 82则能够直接根据该子帧号确定所述小区内传输 CRS的子帧。
可选地,在本实施例的一个可选实施方式中,接收器 81接收的所述高层 信令中说包含的所述子帧参数还可以为一个 0至 N-1之间的整数值, 例如: 以 2进制数表示, 其中, N为所述 CRS的传输周期; 相应地, 处理器 82则 可以根据 ηκ ^ = Δ , 确定所述小区内传输 CRS的子帧, 其中, N 为所述 小区内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
本实施例中, UE通过接收器接收基站发送的高层信令,所述高层信令中 包含基站确定的所述小区内传输 CRS的子帧的子帧参数,使得处理器根据接 收到的所述子帧参数确定所述小区内传输 CRS的子帧, 从而使得传输 CRS 的子帧配置更加灵活, 由于 UE知道在哪些子帧上接收 CRS, 从而提高了接 收性能。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外 ,在本发明各个实施例中的各功能单元可以集成在一个处理单元中 , 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (Read-Only Memory, ROM ) 、 随机存取存储器 ( Random Access Memory, RAM ) 、 磁碟或者光盘等各种可以存储程序代 码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求 书
1、 一种传输小区特定参考信号 CRS的子帧确定方法, 其特征在于, 所 述方法包括:
获得为用户设备 UE月良务的小区的小区标识;
根据 CRS的传输周期和所述小区标识, 确定所述小区内传输 CRS的子 帧。
2、 根据权利要求 1所述的方法, 其特征在于, 所述小区内传输 CRS的 子帧为频分双工 FDD子帧; 所述根据 CRS的传输周期和所述小区标识, 确 定所述小区内传输 CRS的子帧, 包括:
Nfs mod N = N^c ' mod N , 确定所述小区内传输 CRS的子帧, 其中, Nfs 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, N 为所述小区 的小区标识的取值。
3、 根据权利要求 1所述的方法, 其特征在于, 所述小区内传输 CRS的 子帧为时分双工 TDD子帧; 所述根据 CRS的传输周期和所述小区标识, 确 定所述小区内传输 CRS的子帧, 包括:
根据上下行子帧配置信息和所述 CRS的传输周期, 确定能够传输 CRS 的子帧;
根据所述 CRS的传输周期和所述小区标识, 在所述能够传输 CRS的子 帧中确定所述小区内传输 CRS的子帧。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述 CRS的传 输周期和所述小区标识,在所述能够传输 CRS的子帧中确定所述小区内传输 CRS的子帧, 包括:
^ Nfs mod N = Ki , 确定所述小区内传输 CRS的子帧, 其中, N s为所述 小区内传输 CRS的子帧号, N为 CRS的传输周期, κ κϋ 〜 κΜ— 为确定 的 Μ个能够传输 CRS的子帧, Μ为所述能够传输 CRS的子帧的个数, i为 Μ 个能够传输 CRS的子帧的子帧编号,其取值范围为 0至 M - 1 , = N mod M, NZ"为所述小区的小区标识的取值。
5、 根据权利要求 3或 4所述的方法, 其特征在于, 所述能够传输 CRS 的子帧包括下行子帧和特殊子帧中的至少一个。
6、 根据权利要求 1~5任一权利要求所述的方法, 其特征在于, 所述根 据 CRS的传输周期和所述小区标识,确定所述小区内传输 CRS的子帧之后, 还包括:
向所述 UE发送高层信令, 所述高层信令中包含确定的所述小区内传输 CRS的子帧的子帧参数, 以使得所述 UE根据接收到的所述子帧参数确定所 述小区内传输 CRS的子帧。
7、 根据权利要求 6所述的方法, 其特征在于, 所述高层信令中还包含承 载 CRS的新的载波类型 NCT载波标识。
8、根据权利要求 6或 7所述的方法, 其特征在于, 所述子帧参数为子帧 号。
9、 根据权利要求 6或 7所述的方法, 其特征在于, 所述子帧参数为 0 至 N- 1之间的整数值, 其中, N为所述 CRS的传输周期, 以使得所述 UE根 据 ηκ ^ = Δ , 确定所述小区内传输 CRS的子帧, 其中, N 为所述小区内 传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
10、 根据权利要求 1~9任一权利要求所述的方法, 其特征在于, 所述方 法应用于 NCT载波。
11、 一种传输小区特定参考信号 CRS 的子帧确定方法, 其特征在于, 所述方法包括:
基站确定为用户设备 U E服务的小区内传输 CRS的子帧;
所述基站向所述 UE发送高层信令, 所述高层信令中包含确定的为 UE 服务的小区内传输 CRS的子帧的子帧参数,以使得所述 UE根据所述子帧参 数确定所述小区内传输 CRS的子帧。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述高层信令中还包 含承载 CRS的新的载波类型 NCT载波标识。
13、 根据权利要求 1 1或 12所述的方法, 其特征在于, 所述子帧参数为 子帧号。
14、 根据权利要求 1 1或 12所述的方法, 其特征在于, 所述子帧参数为 0至 N- 1之间的整数值, 其中, N为所述 CRS的传输周期, 以使得所述 UE 根据 ηκ ^ = Δ , 确定所述小区内传输 CRS的子帧, 其中, N 为所述小区 内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
15、 根据权利要求 11 ~14任一权利要求所述的方法, 其特征在于, 所述 方法应用于 NCT载波。
16、 一种传输小区特定参考信号 CRS 的子帧确定方法, 其特征在于, 所述方法包括:
用户设备 UE接收基站发送的高层信令, 所述高层信令中包含所述基站 确定的为所述 UE服务的小区内传输 CRS的子帧的子帧参数;
所述 UE根据所述子帧参数, 确定所述小区内传输 CRS的子帧。
17、 根据权利要求 16 所述的方法, 其特征在于, 所述高层信令中还包 含承载 CRS的新的载波类型 NCT载波标识。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述子帧参数为 子帧号。
19、 根据权利要求 16或 17所述的方法, 其特征在于, 所述子帧参数为 0至 N- 1之间的整数值, 其中, N为所述 CRS的传输周期; 所述 UE根据所 述子帧参数, 确定所述小区内传输 CRS的子帧, 包括:
所述 UE根据 Nfs modN = Δ,确定所述小区内传输 CRS的子帧,其中, N s 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参 数。
20、 根据权利要求 16~19任一权利要求所述的方法, 其特征在于, 所述 方法应用于 NCT载波。
21、 一种传输小区特定参考信号 CRS 的子帧确定设备, 其特征在于, 所述设备包括:
接收器, 用于获得为用户设备 UE服务的小区的小区标识;
处理器, 用于根据 CRS的传输周期和所述小区标识,确定所述小区内传 输 CRS的子帧。
22、 根据权利要求 21所述的设备, 其特征在于, 所述小区内传输 CRS 的子帧为频分双工 FDD子帧; 所述处理器具体用于
Nfs mod N = mod N , 确定所述小区内传输 CRS的子帧, 其中, Nfs 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, N^为所述小区 的小区标识的取值。
23、 根据权利要求 21所述的设备, 其特征在于, 所述小区内传输 CRS 的子帧为时分双工 TDD子帧; 所述处理器具体用于 根据上下行子帧配置信息和所述 CRS的传输周期, 确定能够传输 CRS 的子帧,并根据所述 CRS的传输周期和所述小区标识,在所述能够传输 CRS 的子帧中确定所述小区内传输 CRS的子帧。
24、 根据权利要求 23所述的设备, 其特征在于, 所述处理器具体用于 ^ Nfs mod N = Ki , 确定所述小区内传输 CRS的子帧, 其中, N 为所述 小区内传输 CRS的子帧号, N为 CRS的传输周期, κ κϋ 〜 κΜ— 为确定 的 Μ个能够传输 CRS的子帧, Μ为所述能够传输 CRS的子帧的个数, i为 Μ 个能够传输 CRS的子帧的子帧编号,其取值范围为 0至 M - 1 , = N mod M,
NZ"为所述小区的小区标识的取值。
25、 根据权利要求 23或 24所述的设备, 其特征在于, 所述能够传输
CRS的子帧包括下行子帧和特殊子帧中的至少一个。
26、 根据权利要求 21 ~25任一权利要求所述的设备, 其特征在于, 所述 设备还包括发送器, 用于
向所述 UE发送高层信令, 所述高层信令中包含确定的所述小区内传输 CRS的子帧的子帧参数, 以使得所述 UE根据接收到的所述子帧参数确定所 述小区内传输 CRS的子帧。
27、 根据权利要求 26 所述的设备, 其特征在于, 所述高层信令中还包 含承载 CRS的新的载波类型 NCT载波标识。
28、 根据权利要求 26或 27所述的设备, 其特征在于, 所述子帧参数为 子帧号。
29、 根据权利要求 26或 27所述的设备, 其特征在于, 所述子帧参数为 0至 N- 1之间的整数值, 其中, N为所述 CRS的传输周期, 以使得所述 UE 根据 ηκ ^ = Δ , 确定所述小区内传输 CRS的子帧, 其中, N 为所述小区 内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
30、 一种基站, 其特征在于, 所述基站包括:
处理器, 用于确定为用户设备 UE服务的小区内传输小区特定参考信号 CRS的子帧;
发送器, 用于向所述 UE发送高层信令, 所述高层信令中包含确定的为 UE服务的小区内传输 CRS的子帧的子帧参数, 以使得所述 UE根据所述子 帧参数确定所述小区内传输 CRS的子帧。
31、 根据权利要求 30 所述的基站, 其特征在于, 所述高层信令中还包 含承载 CRS的新的载波类型 NCT载波标识。
32、 根据权利要求 30或 31所述的基站, 其特征在于, 所述子帧参数为 子帧号。
33、 根据权利要求 30或 31所述的基站, 其特征在于, 所述子帧参数为
0至 N- 1之间的整数值, 其中, N为所述 CRS的传输周期, 以使得所述 UE 根据 ηκ ^ = Δ , 确定所述小区内传输 CRS的子帧, 其中, 为所述小区 内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参数。
34、 一种用户设备 UE, 其特征在于, 所述用户设备包括:
接收器, 用于接收基站发送的高层信令, 所述高层信令中包含所述基站 确定的为所述 UE服务的小区内传输小区特定参考信号 CRS的子帧的子帧参 数;
处理器, 用于根据所述子帧参数, 确定所述小区内传输 CRS的子帧。
35、 根据权利要求 34 所述的用户设备, 其特征在于, 所述高层信令中 还包含 载 CRS的新的载波类型 NCT载波标识。
36、 根据权利要求 34或 35所述的用户设备, 其特征在于, 所述子帧参 数为子帧号。
37、 根据权利要求 34或 35所述的用户设备, 其特征在于, 所述子帧参 数为 0至 N-1之间的整数值, 其中, N为所述 CRS的传输周期; 所述处理器 具体用于
所述 UE根据 Nfs modN = Δ,确定所述小区内传输 CRS的子帧,其中, N s 为所述小区内传输 CRS的子帧号, N为 CRS的传输周期, Δ为所述子帧参 数。
PCT/CN2012/075186 2012-05-08 2012-05-08 传输crs的子帧确定方法及设备 WO2013166655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000842.6A CN103563461B (zh) 2012-05-08 2012-05-08 传输crs的子帧确定方法及设备
PCT/CN2012/075186 WO2013166655A1 (zh) 2012-05-08 2012-05-08 传输crs的子帧确定方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075186 WO2013166655A1 (zh) 2012-05-08 2012-05-08 传输crs的子帧确定方法及设备

Publications (1)

Publication Number Publication Date
WO2013166655A1 true WO2013166655A1 (zh) 2013-11-14

Family

ID=49550061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075186 WO2013166655A1 (zh) 2012-05-08 2012-05-08 传输crs的子帧确定方法及设备

Country Status (2)

Country Link
CN (1) CN103563461B (zh)
WO (1) WO2013166655A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024597A1 (zh) * 2015-08-10 2017-02-16 华为技术有限公司 一种数据传输方法、装置和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068047A2 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Method and apparatus for transmitting reference signal performed by relay station in wireless communication system
CN102202409A (zh) * 2010-03-26 2011-09-28 北京三星通信技术研究有限公司 一种参考符号的确定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378379A (zh) * 2010-08-13 2012-03-14 电信科学技术研究院 Csi-rs起始位置配置和指示方法、csi-rs接收方法、网络侧设备及终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068047A2 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Method and apparatus for transmitting reference signal performed by relay station in wireless communication system
CN102202409A (zh) * 2010-03-26 2011-09-28 北京三星通信技术研究有限公司 一种参考符号的确定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024597A1 (zh) * 2015-08-10 2017-02-16 华为技术有限公司 一种数据传输方法、装置和系统
CN107113780A (zh) * 2015-08-10 2017-08-29 华为技术有限公司 一种数据传输方法、装置和系统

Also Published As

Publication number Publication date
CN103563461A (zh) 2014-02-05
CN103563461B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6599529B2 (ja) 超低レイテンシlte(登録商標)制御データ通信
JP6689971B2 (ja) 低遅延lte(登録商標)ワイヤレス通信においてチャネルを提供するための技術
JP6342580B2 (ja) 超低レイテンシlteアップリンクフレーム構造
JP5855775B2 (ja) アクノレッジメント/否定的アクノレッジメント・フィードバックを改善するための方法および装置
JP6199500B2 (ja) Lte tddにおけるttiバンドリングおよび半永続的スケジューリング動作
JP5529336B2 (ja) ワイヤレス通信における非周期チャネル状態情報要求
AU2017264592B2 (en) Dynamic cyclic prefix (CP) length in wireless communication
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
CN110521163B (zh) 低时延系统中的物理下行链路控制信道结构
JP6530073B2 (ja) 低レイテンシlteダウンリンク通信におけるトラフィックデータ割り振り
WO2014021210A1 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP2017514366A (ja) Ul dm−rsオーバーヘッド低減のための方法および装置
JP6643457B2 (ja) 物理ダウンリンク制御チャネル送信方法および装置
JP5881914B2 (ja) ワイヤレスマルチキャストおよびブロードキャストに関する協調送信レートおよびチャネルスケジューリング
WO2013107214A1 (zh) 无线通信方法及装置
WO2013091414A1 (zh) 一种传输信息的方法、系统及设备
TWI745619B (zh) 用於無線通訊的方法、裝置、及電腦可讀取媒體
TW201225600A (en) Base station device, mobile terminal device, and communication control method
TW201225714A (en) Base station device, mobile terminal device, and communication control method
JP6400716B2 (ja) LTE−TDD eIMTAシステムのための非周期CQI報告
JP6466591B2 (ja) Fdd半二重ネットワークにおける電力制御コマンドを用いたアップリンクスケジューリング
WO2017166224A1 (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
WO2013113261A1 (zh) 通信方法、基站和用户设备
JP2018519745A (ja) ワイヤレス通信においてバッファステータスをレポートするための技法
TW201018151A (en) Method and apparatus for transmitting and receiving orthogonal frequency division multiplex-based transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876408

Country of ref document: EP

Kind code of ref document: A1