WO2017024597A1 - 一种数据传输方法、装置和系统 - Google Patents

一种数据传输方法、装置和系统 Download PDF

Info

Publication number
WO2017024597A1
WO2017024597A1 PCT/CN2015/086969 CN2015086969W WO2017024597A1 WO 2017024597 A1 WO2017024597 A1 WO 2017024597A1 CN 2015086969 W CN2015086969 W CN 2015086969W WO 2017024597 A1 WO2017024597 A1 WO 2017024597A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
crs
transmitted
subframe
start symbol
Prior art date
Application number
PCT/CN2015/086969
Other languages
English (en)
French (fr)
Inventor
吴作敏
郑娟
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580071646.1A priority Critical patent/CN107113780A/zh
Publication of WO2017024597A1 publication Critical patent/WO2017024597A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method, apparatus, and system.
  • LAA-LTE Licensed Access-Assisted LTE
  • CA Carrier Aggregation
  • the coexistence specifications of the unlicensed band used by LAA-LTE include Transmit Power Control (TPC), Dynamic Frequency Selection (DFS), channel occupied bandwidth, and Listen before talk. LBT) and so on.
  • TPC is to prevent wireless communication devices from transmitting excessive power to interfere with the radar.
  • DFS is to enable the wireless communication device to actively detect the frequency used by the radar and actively select another frequency to avoid the radar frequency.
  • the channel occupied bandwidth requirement is that the channel bandwidth occupied by the wireless communication device when operating on the unlicensed band should reach 80% to 100% of its claimed channel bandwidth.
  • LBT is a coexistence strategy between systems. The wireless communication system needs to use the pre-detection and post-transmission rules when occupying the unlicensed band communication.
  • the LBT mechanism is further divided into an LBT mechanism based on Frame Based Equipment (FBE) and an LBT mechanism based on Load Based Equipment (LBE).
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • the subframe boundary of the carrier on the unlicensed spectrum and the subframe boundary of the carrier on the licensed spectrum should be aligned, but on the unlicensed spectrum, If an LBE-based LBT mechanism is employed, in theory the base station may obtain the right to use the channel on the unlicensed spectrum from any time.
  • the time length from the next subframe boundary is less than one subframe, in order to avoid resource waste, LAA
  • the system allows transmissions over this length of time, and the starting position of the transmission can be the starting position of any symbol other than the first symbol. From the perspective of the receiving end, the user equipment needs to demodulate the transmitted control channel and data channel.
  • the embodiment of the invention provides a data transmission method, device and system, which ensure the signal demodulation performance of the user equipment when any one of the subframes except the first symbol is the starting position for data transmission.
  • a data transmission method including:
  • the base station transmits all symbols in the subframe from the start of the start symbol to the end of the last symbol of the subframe.
  • the determining, by the base station, the CRS on the start symbol includes:
  • a frequency domain position of a CRS transmitted on the start symbol is the same as a frequency domain position of a CRS transmitted on a first symbol used for transmitting a CRS in a reference signal pattern; wherein, the time of the first symbol The domain location is pre-agreed, or the time domain location of the first symbol is determined according to a time domain location relationship between the first symbol and the start symbol.
  • the first symbol is a first symbol in a subframe
  • the first symbol is after the start symbol and is a symbol for transmitting a CRS that is closest to the start symbol;
  • the first symbol is before the start symbol and is the closest to the start symbol Transmit the symbol of the CRS;
  • the first symbol is a symbol for transmitting a CRS that is closest to the start symbol.
  • the sequence of the CRS transmitted on the start symbol, and the used for transmitting the CRS is the same;
  • the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the physical resource block PRB.
  • the start symbol is a predefined symbol One of the starting positions.
  • Control channel PDCCH where the PDCCH carries scheduling information of a physical downlink shared channel PDSCH transmitted by the subframe.
  • the determining is performed in the subframe
  • the position and sequence of the reference signal transmitted on the symbol starting from the beginning of the last symbol of the sub-frame including:
  • a position and a sequence of reference signals transmitted on the symbols following the start symbol are determined according to a predefined reference signal pattern.
  • the determining, by the base station, in the subframe Determining the position and sequence of the reference signal transmitted on the symbol from the start of the start symbol to the end of the last symbol of the subframe, comprising: determining whether transmission is required on the start symbol according to a predefined reference signal pattern The user-specific reference signal UERS; if the determination is yes, the transmission of the UERS on the start symbol is prohibited.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • a data transmission method including:
  • a reference signal is transmitted on a symbol from a start symbol to a last symbol of the subframe, and a CRS is transmitted on the start symbol in the subframe
  • the start symbol is the first symbol with data transmission
  • the user equipment demodulates a symbol in the subframe from the start symbol to the end of the last symbol of the subframe according to the reference signal.
  • the frequency domain location of the CRS transmitted on the start symbol and the CRS transmitted on the first symbol used for transmitting the CRS in the reference signal pattern The frequency domain location is the same; wherein the time domain location of the first symbol is pre-agreed, or the time domain location of the first symbol is based on a time domain between the first symbol and the start symbol The positional relationship is determined.
  • the first symbol is the first symbol in a subframe
  • the first symbol is after the start symbol and is a symbol for transmitting a CRS that is closest to the start symbol;
  • the first symbol is preceded by the start symbol and is the symbol closest to the start symbol for transmitting a CRS;
  • the first symbol is a symbol for transmitting a CRS that is closest to the start symbol.
  • the sequence of the CRS transmitted on the start symbol, and the used for transmitting the CRS is the same;
  • the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the physical resource block PRB.
  • the starting symbol is a pre One of the defined symbol start positions.
  • the starting symbol is further transmitted A physical downlink control channel PDCCH, where the PDCCH carries scheduling information of a physical downlink shared channel PDSCH transmitted by the subframe.
  • the symbol after the start symbol is determined based on a predefined reference signal pattern.
  • the spectrum resource occupied by the subframe To avoid licensing spectrum resources.
  • a base station including:
  • a first determining module configured to determine a start symbol in the subframe for performing data transmission, where the start symbol is a symbol other than the first symbol
  • a second determining module configured to determine a position and a sequence of a reference signal transmitted on a symbol from a start symbol to a end of a last symbol of the subframe in the subframe, where the base station determines Transmitting a cell-specific reference signal CRS on the start symbol;
  • a transmission module configured to transmit all symbols in the subframe from the start symbol to the end of the last symbol of the subframe.
  • the second determining module is specifically configured to:
  • a frequency domain position of a CRS transmitted on the start symbol is the same as a frequency domain position of a CRS transmitted on a first symbol used for transmitting a CRS in a reference signal pattern; wherein a time domain position of the first symbol is Pre-agreed, or the time domain position of the first symbol is determined according to a time domain positional relationship between the first symbol and the start symbol.
  • the first symbol is the first symbol in a subframe
  • the first symbol is after the start symbol and is a symbol for transmitting a CRS that is closest to the start symbol;
  • the first symbol is preceded by the start symbol and is the symbol closest to the start symbol for transmitting a CRS;
  • the first symbol is a symbol for transmitting a CRS that is closest to the start symbol.
  • the sequence of the CRS transmitted on the start symbol, and the used for transmitting the CRS is the same;
  • the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the physical resource block PRB.
  • the start symbol is predefined One of the starting positions of the symbol.
  • the starting symbol is further transmitted A physical downlink control channel PDCCH, where the PDCCH carries scheduling information of a physical downlink shared channel PDSCH transmitted by the subframe.
  • the second determining module is specifically used And determining a position and a sequence of the reference signal transmitted on the symbol after the start symbol according to a predefined reference signal pattern.
  • the second determining module is specifically used And: determining, according to the predefined reference signal pattern, whether the user-specific reference signal UERS needs to be transmitted on the start symbol; if the determination is yes, transmitting the UERS on the start symbol is prohibited.
  • the spectrum resource occupied by the subframe To avoid licensing spectrum resources.
  • a user equipment including:
  • a receiving module configured to receive a subframe, where a reference signal is transmitted on a symbol from the beginning of the start symbol to the end of the last symbol of the subframe, where the start symbol is in the subframe Transmitting a cell-specific reference signal CRS, the start symbol being the first symbol with data transmission;
  • a demodulation module configured to demodulate, according to the reference signal, a symbol in the subframe from a start symbol to an end of a last symbol of the subframe.
  • a frequency domain location of a CRS transmitted on the start symbol and a CRS transmitted on a first symbol used for transmitting a CRS in a reference signal pattern The frequency domain location is the same; wherein the time domain location of the first symbol is pre-agreed, or the time domain location of the first symbol is based on a time domain between the first symbol and the start symbol The positional relationship is determined.
  • the first symbol is a first symbol in a subframe
  • the first symbol is after the start symbol and is a symbol for transmitting a CRS that is closest to the start symbol;
  • the first symbol is preceded by the start symbol and is the symbol closest to the start symbol for transmitting a CRS;
  • the first symbol is a symbol for transmitting a CRS that is closest to the start symbol.
  • the sequence of the CRS transmitted on the start symbol, and the used for transmitting the CRS is the same;
  • the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the physical resource block PRB.
  • the starting symbol is One of the predefined symbol start positions.
  • a fifth possible implementation manner of the fourth aspect And transmitting a physical downlink control channel PDCCH, where the PDCCH carries scheduling information of a physical downlink shared channel PDSCH transmitted by the subframe.
  • a sixth possible implementation manner of the fourth aspect after the start symbol The position and sequence of the reference signal transmitted on the symbol are determined based on a predefined reference signal pattern.
  • Spectrum resources are unlicensed spectrum resources.
  • a base station including: a transceiver 701, a processing unit 702, and a memory 703.
  • Processing unit 702 is for controlling the operation of base station 700; memory 703 can include read only memory and random access memory for providing instructions and data to processing unit 702. A portion of the memory 703 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of the base station are coupled together by a bus system, wherein the bus system 709 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • Transceiver 701 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the data transmission process implemented by the base station side disclosed in the embodiment of the present invention may be applied to the processing unit 702 or implemented by the processing unit 702.
  • the steps of the data transmission process implemented by the base station side may be completed by the integrated logic circuit of the hardware in the processing unit 702 or the instruction in the form of software.
  • the processing unit 702 can be a general purpose processor, a digital signal processor, and a dedicated integrated circuit. Circuits, field programmable gate arrays or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, may implement or perform the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 703, and the processing unit 702 reads the information in the memory 703, and completes the steps of the data transmission process implemented by the base station side in combination with its hardware.
  • a user equipment including: a transceiver 901, a processing unit 902, and a memory 903.
  • Processing unit 902 is for controlling the operation of user equipment 900; memory 903 can include read only memory and random access memory for providing instructions and data to processing unit 902. A portion of the memory 903 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of the user equipment are coupled together by a bus system, wherein the bus system 909 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the data transmission process implemented by the user equipment side disclosed in the embodiment of the present invention may be applied to the processing unit 902 or implemented by the processing unit 902.
  • the steps of the data transmission process implemented by the user equipment side may be completed by the integrated logic circuit of the hardware in the processing unit 902 or the instruction in the form of software.
  • the processing unit 902 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 903, processed
  • the unit 902 reads the information in the memory 903, and completes the steps of the data transmission process implemented by the user equipment side in combination with its hardware.
  • the base station determines a start symbol for performing data transmission in the subframe, and determines that it is required to transmit on the symbol from the start symbol to the end of the last symbol of the subframe in the subframe.
  • the location and sequence of the reference signal and guarantee that the CRS needs to be transmitted on the start symbol, so that for the user equipment, the CRS transmitted on the start symbol and other symbols transmitted on the symbol following the start symbol can be used.
  • the reference signal is frequency offset detected to ensure demodulation performance of the transmitted data.
  • FIG. 1 is a schematic diagram of a reference signal pattern in the prior art
  • FIG. 2 is a schematic diagram of a data transmission process implemented on a base station side according to an embodiment of the present invention
  • 3A, 3B, and 3C are schematic diagrams of UERS patterns in the prior art
  • FIG. 4 is a schematic diagram of a data transmission process implemented on a terminal side according to an embodiment of the present invention.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are respectively schematic diagrams of resource mapping of reference signals of a partial subframe in various scenarios according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • the length of the symbol is 2208 ⁇ Ts, and the length of the other 12 OFDM symbols is 2192 ⁇ Ts; the OFDM symbols of the 0th to 6th are defined as odd time slots, and the OFDM symbols of the 7th to 13th are defined. It is an even time slot.
  • the other one is an Extended Cyclic Prefix (ECP) subframe format, and one ECP subframe includes 12 OFDM symbols; the length of each OFDM symbol is 2560 ⁇ Ts; the OFDM symbol is numbered from 0 to 11.
  • the 0th to 5th OFDM symbols are defined as odd time slots, and the 6th to 11th OFDM symbols are defined as even time slots.
  • the NCP subframe format is taken as an example, and the ECP subframe format can be derived.
  • partial subframe is composed of all symbols in a sub-frame starting from the start symbol for data transmission to the end of the last symbol of the sub-frame, wherein the start symbol for data transmission may be the first one Any symbol other than the symbol. That is, the length of a partial subframe in the time domain is the length of time from the start time of the start symbol for data transmission to the start time of the next subframe.
  • complete subframe with respect to "partial subframes”. A complete subframe is relative to a partial subframe, and the complete subframe contains all the symbols in one subframe defined by the system.
  • one method is to transmit a reference signal in a partial subframe according to a reference signal pattern of a DwPTS (Downlink Pilot Time Slot) defined by the LTE system.
  • DwPTS Downlink Pilot Time Slot
  • the number of symbols transmitted by the special subframe supported by the existing DwPTS format is 6, 9, 10, 11, 12, and correspondingly, the data transmission start allowed by the base station
  • the position is the 2nd, 3rd, 4th, 5th, and 8th symbols, wherein the odd-numbered time slots may have 4 symbol start positions, and the even-numbered time slots may have only 1 start position, and the odd-numbered time slots and even-numbered time slots allow
  • the number of symbols transmitted is asymmetrical.
  • the subframe structure of the DwPTS is multiplexed, and the starting position of the data transmission is allowed to be at least symbol 8. If the base station preempts the channel after the symbol 8, the current partial subframe cannot be transmitted, and the overhead is large.
  • the existing DwPTS has two sets of different user-specific reference signals (UE-specific reference signals, also called Demodulation Reference Signals), plus the UERS reference signal pattern of the complete sub-frame.
  • UE-specific reference signals also called Demodulation Reference Signals
  • the base station needs to prepare a data subframe mapping including at least three sets of different reference signal positions in advance, and the base station implementation complexity is high.
  • another method is that the pattern of the reference signal transmitted in the partial subframe is multiplexed from the first symbol of the reference signal pattern of the complete subframe defined by the LTE system.
  • FIG. 1 shows a CRS (Cell-specific Reference Signal) signal position when the antenna port is equal to 2.
  • CRS Cell-specific Reference Signal
  • one subframe contains 2 slots, each slot containing 7 OFDM symbols.
  • CRS Cell-specific Reference Signal
  • UERS on the 5th, 6th, 12th, and 13th symbols.
  • the reference signal pattern on the No. 9 symbol is the same as the reference signal pattern on the No. 0 symbol of the complete subframe, and accordingly, the tenth
  • the reference signal pattern on the symbols 11, 12, and 13 is also the same as the reference signal pattern on the symbols 1, 2, 3, and 4 of the complete sub-frame.
  • the data transmission start position of the base station should be at least the No. 7 symbol to transmit the UERS, but this indicates that the base station preempts the channel after the symbol 7 and cannot transmit in the current partial subframe. The cost is large.
  • the pattern position of the reference signal transmitted in the partial subframe is the same as the position of the reference signal pattern of the complete subframe defined by the LTE system.
  • the reference signal pattern on the 9th symbol is the same as the reference signal pattern on the 9th symbol of the complete subframe, and accordingly, 10th, 11th
  • the reference signal pattern on the 12th and 13th symbols is also the same as the reference signal pattern on the 10th, 11th, 12th, and 13th symbols of the complete sub-frame.
  • the time interval between two symbols used for frequency offset estimation should generally be not less than a fixed value, for example, 3 symbols.
  • some sub-frames only have reference signals on the 11th, 12th, and 13th symbols, which cannot guarantee the performance of the frequency offset estimation, and thus are not conducive to demodulating the data transmitted on the partial sub-frames.
  • the position of the CRS is adjusted along with the start time of the partial subframe to ensure the start of the partial subframe.
  • a CRS is transmitted on the start symbol.
  • the symbol mentioned in the technical solution of the embodiment of the present invention may be one OFDM symbol in the LAA-LTE system or the LTE system.
  • the OFDM symbol includes a Cyclic Prefix (CP) part and an information segment. Part, wherein the information segment portion includes all information of one OFDM symbol; the CP is a repetition of a portion of the information segment signal.
  • the symbols mentioned in the technical solutions of the embodiments of the present invention may also be symbols of other types of communications, which are not limited by the present invention.
  • the OFDM symbols mentioned in the embodiments of the present invention have attributes of a time dimension and a frequency dimension, wherein the attributes of the time dimension include the time length of the OFDM symbol, and the attributes of the frequency dimension include the number of subcarriers, the subcarrier bandwidth, and the like.
  • the communication system in which the base station and the user equipment mentioned in the embodiment of the present invention are located has a predefined, or fixed, subframe start time, a subframe end time, a symbol start time, and a symbol knot.
  • Such a communication system divides time by a fixed time unit, that is, when the granularity of the time unit, the start time and the end time of a time unit are determined, then the start time of the past and future time units can be known. End time.
  • a subframe boundary refers to a subframe start time or a subframe end time
  • a symbol boundary refers to a start time or an end time of a symbol
  • a start time of one subframe is equivalent to a previous subframe.
  • the start time of a symbol is equal to the end time of the previous symbol.
  • the carrier on the licensed spectrum is the primary carrier, and the carrier on the unlicensed spectrum is supplemented.
  • the carrier, the subframe boundary of the secondary carrier on the unlicensed spectrum is aligned with the subframe boundary of the primary carrier on the licensed spectrum.
  • the base station may obtain the right to use the unlicensed spectrum channel from any time.
  • the base station can perform normal transmission on the secondary carrier according to the existing LTE structure;
  • the time of the channel usage right of the secondary carrier on the licensed spectrum is less than one subframe from the next subframe boundary of the primary carrier, the LAA system allows partial subframe transmission within this time length in order to avoid resource waste.
  • the starting position of a partial subframe may be the starting position of any one of the symbols except the first one.
  • a user equipment may be referred to as a terminal (Mobile), a mobile station (Mobile Station, MS), a mobile terminal, and the like.
  • a radio access network (Radio Access Network, hereinafter referred to as RAN) communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example,
  • the user equipment can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange voice and/or data with the wireless access network.
  • the base station may be an evolved base station (Evolved Node B, referred to as an eNB or an e-NodeB), a macro base station, and a micro base station (also referred to as a "small base station") in the LTE system or the LAA-LTE system.
  • the present invention is not limited to the pico base station, the access point (AP), or the transmission point (TP). But for the convenience of description, The following embodiments will be described by taking a base station and a user equipment as an example.
  • FIG. 2 is a schematic diagram of a data transmission process implemented on a base station side according to an embodiment of the present invention. As shown, the process can include the following steps:
  • Step 201 The base station determines a start symbol for performing data transmission in the subframe, and the start symbol is a symbol other than the first symbol.
  • All the symbols in the subframe from the start symbol to the end of the last symbol of the subframe constitute a partial subframe, that is, the length of the partial subframe in the time domain is The length of time from the start of the start symbol to the start of the next subframe.
  • the starting symbol is that the base station starts to transmit a Physical Downlink Control Channel (PDCCH) and/or a Physical Downlink Shared Channel (PDSCH) and/or an enhanced physical downlink control.
  • the base station first acquires the usage right of the channel by using a contention method, and then determines the start symbol transmitted on the channel.
  • the starting symbol determined by the base station may be the first complete symbol after the base station obtains the usage right of the channel. For example, if the base station obtains the right to use the channel at the time between the start time and the end time of the symbol No. 7 of a complete subframe, the base station may determine that the partial subframe start symbol is the eighth symbol.
  • the partial subframe start symbol determined by the base station may be a second complete symbol after the base station obtains the usage right of the channel.
  • the base station may determine that the partial subframe start symbol is the No. 9 symbol, where The time when the channel usage right is obtained from the base station to the end time of the eighth symbol can be used to transmit the preamble sequence or only to transmit the padding signal, and is used for the UE (User Equipment, also called terminal) to adjust the AGC (Automatic Gain Control, Automatic gain control).
  • the UE User Equipment, also called terminal
  • the start symbol is one of a predefined symbol start position.
  • the base station determines that the start symbol of the partial subframe may be that the base station obtains The first one after the right to use the channel belongs to the symbol in the predefined set of symbol start positions. For example, if the predefined set of symbol start positions is the 0th, 3rd, 7th, and 10th symbols of a complete subframe, the base station is at the beginning of the 7th symbol of a complete subframe and The time between the end times is used to obtain the right to use the channel, and then the base station can determine that the partial subframe start symbol is the tenth symbol.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • the base station may acquire the use right of the channel of the unlicensed spectrum through a contention method based on the LBT criterion; or the base station may acquire the channel of the unlicensed spectrum by coordinating or scheduling with the adjacent communication device. Or; the base station can acquire the right to use the channel of the unlicensed spectrum through the pre-configured resource usage pattern.
  • the starting symbols on different carriers may be the same.
  • Step 202 The base station determines a location and a sequence of reference signals transmitted on a symbol from the start symbol to the end of the last symbol of the subframe in the subframe, where the base station determines the The CRS is transmitted on the start symbol.
  • the location of the reference signal includes a time domain and/or a frequency domain location.
  • the resource element (RE) to which the reference signal is mapped may be in a physical resource block (Physical Resource Block, PRB for short). s position. It can be understood that the position of the reference signal refers to the position of the RE occupied by the reference signal in one PRB.
  • the LTE system includes one PRB pair in one subframe in the time domain, where the length of each PRB is the length of one slot, may include 7 symbols, and may include 12 subcarriers in the frequency domain.
  • the initialization parameter generated by the CRS pseudo-random sequence of the LTE system is obtained by the time domain number scrambling code of the symbol in which the CRS sequence is located in the PRB, and therefore the sequence of the CRS transmitted on each symbol in one PRB is different.
  • the base station may determine the position and sequence of the reference signal transmitted on the symbol after the start symbol according to the predefined reference signal pattern.
  • the position and sequence of the reference signals transmitted on the symbols following the start symbol follow the existing protocol provisions, reducing system implementation complexity.
  • UERS wherein the UERS pattern is a pattern of UERS in a reference signal pattern.
  • 3A, 3B, and 3C show several existing UERS patterns, respectively, in which FIGS. 3A and 3B are UERS patterns of DwPTS special subframes, and FIG. 3C is UERS patterns of complete subframes.
  • the embodiment of the present invention can also be redefined for the position and sequence of the reference signal transmitted on the symbol following the start symbol.
  • the base station may determine, according to the predefined reference signal pattern, the first complete symbol after obtaining the channel usage right, that is, the start of the partial subframe. Whether UERS needs to be transmitted on the symbol), if it is judged as YES, it is prohibited to transmit UERS on the symbol. Further optionally, since the port of one UERS occupies two symbols adjacent to the time domain, if the first complete symbol after obtaining the channel usage right is the previous symbol of the adjacent two symbols occupied by the UERS, for example Symbol 5, then the UERS is prohibited from being transmitted on the adjacent two symbols (symbol 5 and symbol 6).
  • the base station determines, according to the predefined reference signal pattern, that the first complete symbol after obtaining the channel usage right (ie, the start symbol of the partial subframe) needs to transmit the UERS
  • the first symbol that does not transmit the UERS after obtaining the channel usage right may also be determined as the starting symbol for starting the data transmission, otherwise the first complete symbol after obtaining the channel usage right is determined as the start of the data transmission. symbol.
  • the CRS can be transmitted on the start symbol, but the UERS is not transmitted, and the resource conflict between the CRS and the UERS is avoided, which makes the system implementation simpler.
  • the frequency domain position of the CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the first symbol used for transmitting the CRS in the reference signal pattern. That is, it can be understood that the frequency domain position of the CRS transmitted on the start symbol is the same as the CRS frequency domain position on a certain symbol (ie, the first symbol above) in the symbol for transmitting the CRS in one complete subframe.
  • the sequence of CRSs transmitted on the start symbol is the same as the sequence of CRS transmitted on the first symbol used to transmit the CRS.
  • the initialization parameter generated by the sequence of CRSs transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the PRB.
  • two CRS antenna ports are taken as an example, unless otherwise specified.
  • the case of one CRS antenna port can be derived in the same way.
  • port 1 and port 3 of the CRS are transmitted on the second symbol due to the transmission of the CRS ports 0 and 1 on the first symbol in one of the existing complete subframes, optionally
  • port 0 and port 1 of the CRS are transmitted on the start symbol
  • port 2 and port 3 of the CRS are transmitted on the first symbol after the start symbol
  • the start symbol And/or an initialization parameter generated by the sequence of CRS transmitted on the first symbol after the start symbol is a time when the first symbol after the start symbol and/or the start symbol is in the PRB
  • the domain number is obtained by scrambling.
  • the time domain location of the "first symbol" in the subframe is pre-agreed.
  • the first symbol refers to a symbol in a subframe for transmitting a CRS.
  • one symbol transmitted with a CRS may be selected from the subframe as the above-mentioned "first symbol” according to the reference signal pattern.
  • the first symbol in the subframe may be referred to as the "first symbol” described above.
  • the OFDM symbols in one subframe are represented as symbols 0 to 13 in order from the front to the back, and in one PRB, the frequency is from low to high on one OFDM symbol.
  • the sequence contains RE 0 to RE 11.
  • the CRS is transmitted on the symbol 2, and the RE occupied by the CRS transmitted on the symbol 2 is the same as the RE occupied by the CRS transmitted on the symbol 0, that is, at the symbol 0.
  • CSN port 0 is mapped to RE 0 and RE 6 transmission, then on symbol 2, CRS port 0 is also mapped to RE 0 and RE 6 transmission; on symbol 0, CRS port 1 is mapped to RE 3 And on RE 9 transmission, then on symbol 2, port 1 of CRS is also mapped to RE3 and RE 9 for transmission.
  • the CRS is originally required to be transmitted on the start symbol, in which case the transmission is performed on the start symbol.
  • the RE occupied by the CRS may be the same as the RE occupied by the CRS originally to be transmitted; or, the RE occupied by the CRS transmitted on the start symbol and the RE occupied by the CRS transmitted on the symbol 0 are the same.
  • the sequence used by the CRS transmitted on the start symbol and the CRS originally intended to be transmitted The sequences used are the same; alternatively, the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 0.
  • start symbol is a symbol other than this, such as symbol 3, it may be determined according to the above principle that the position of the CRS transmitted on the start symbol is the same as the position of the CRS transmitted on symbol 0; the transmission on the start symbol
  • the sequence of the CRS is the same as the sequence of the CRS transmitted on symbol 0, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain number of the start symbol in the PRB.
  • the symbol 4, the symbol 7 or the symbol 11 in FIG. 1 may be selected as the above-mentioned “first symbol”.
  • the embodiment of the present invention does not limit the position of the selected “first symbol”, as long as it is selected according to the reference signal pattern.
  • the CRS is transmitted on the "first symbol”.
  • the time domain position of the “first symbol” in the subframe may also be determined according to a time domain position relationship between the first symbol and the start symbol.
  • Case 1 The first symbol is after the start symbol and is the symbol for transmitting the CRS closest to the start symbol.
  • the position of the CRS transmitted on the start symbol is the same as the position of the CRS transmitted on the symbol for transmitting the CRS after the start symbol and closest to the start symbol.
  • the OFDM symbols in one subframe are represented as symbols 0 to 13 in order from the front to the back, and in one PRB, the frequency is from low to high on one OFDM symbol.
  • the sequence contains RE 0 to RE 11.
  • the start symbol of a partial subframe is symbol 1
  • the symbol 4 is after the symbol 1 and is the symbol closest to the symbol 1 among all the symbols used for transmitting the CRS
  • the RE and the symbol occupied by the CRS transmitted on the symbol 1 The RE positions occupied by the CRS transmitted on 4 are the same, that is, on the symbol 4, the port 0 of the CRS is mapped to the transmission on RE 3 and RE 9, and on the symbol 1, the port 0 of the CRS is also mapped to the RE 3 and the RE. 9 is transmitted; on symbol 4, port 1 of the CRS is mapped to RE 0 and RE 6 for transmission, then on symbol 1, port 1 of the CRS is also mapped to RE 0 and RE 6 for transmission.
  • the start symbol of a partial subframe is symbol 2 or symbol 3
  • symbol 4 since symbol 4 is after the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS, the start symbol is on the start symbol
  • the RE occupied by the transmitted CRS is the same as the RE occupied by the CRS transmitted on symbol 4.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 4, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling.
  • the start symbol of a partial subframe is symbol 5 or symbol 6, since symbol 7 is after the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS, then
  • the RE occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 7.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 7, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling. Further, if the start symbol of the partial subframe is the symbol 5, the transmission of the UERS may be prohibited on the symbol 5 or the symbols 5 and 6; if the start symbol of the partial subframe is the symbol 6, the transmission of the UERS may be prohibited on the symbol 6.
  • the start symbol of a partial subframe is symbol 8, symbol 9, or symbol 10, since symbol 11 is after the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS, Then, the RE occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 11.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on the symbol 11, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is the PRB through the start symbol.
  • the time domain sequence number is obtained by scrambling.
  • the symbol 0 of the next complete subframe is after the start symbol and is the closest to the start symbol in all symbols used to transmit the CRS.
  • the symbol occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 0 of the next complete subframe.
  • the CRS transmitted on the start symbol The sequence used is the same as the sequence used by the CRS transmitted on symbol 0 of the next complete subframe, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is the time domain number in the PRB through the start symbol. Scrambled code obtained. Further, if the start symbol of the partial subframe is the symbol 12, the transmission of the UERS may be prohibited on the symbol 12 or the symbols 12 and 13; if the start symbol of the partial subframe is the symbol 13, the transmission of the UERS may be prohibited on the symbol 13.
  • the start symbol of a partial subframe is symbol 0, symbol 4, symbol 7, or symbol 11, since these symbols should be transmitted with CRS according to the reference signal pattern, these symbols are used as the start of the partial subframe.
  • the symbols themselves are regarded as "symbols after the start symbol and closest to the start symbol among all symbols used to transmit the CRS", so that when these symbols are used as the start symbols of the partial subframes
  • the CRS transmitted on the start symbol coincides with the location and sequence of the CRS that should have been transmitted on the symbol.
  • Case 2 The first symbol is before the start symbol and is the symbol for transmitting the CRS closest to the start symbol.
  • the position of the CRS transmitted on the start symbol is the same as the position of the CRS transmitted on the symbol for transmitting the CRS before the start symbol and before the start symbol in the subframe.
  • the OFDM symbols in one subframe are represented as symbols 0 to 13 in order from the front to the back, and in one PRB, the frequency is from low to high on one OFDM symbol.
  • the sequence contains RE 0 to RE 11.
  • the start symbol of a partial subframe is symbol 1
  • the RE and the symbol occupied by the CRS transmitted on the symbol 1 are the same, that is, on the symbol 0, the port 0 of the CRS is mapped to the transmission on RE 0 and RE 6, then on the symbol 1, the port 0 of the CRS is also mapped to RE 0 and RE.
  • the port 1 of the CRS is mapped to the transmission on RE 3 and RE 9, then on symbol 1, the port 1 of the CRS is also mapped to the transmission on RE 3 and RE 9.
  • the start symbol of a partial subframe is symbol 2 or symbol 3
  • symbol 0 precedes the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS
  • the start symbol is on the start symbol
  • the RE occupied by the transmitted CRS is the same as the RE occupied by the CRS transmitted on symbol 0.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 0, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling.
  • the start symbol of a partial subframe is symbol 5 or symbol 6, then since symbol 4 precedes the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS, then The RE occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 4.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 4, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling. Further, if the start symbol of the partial subframe is the symbol 5, the transmission of the UERS may be prohibited on the symbol 5 or the symbols 5 and 6; if the start symbol of the partial subframe is the symbol 6, the transmission of the UERS may be prohibited on the symbol 6.
  • the start symbol of a partial subframe is symbol 8, symbol 9, or symbol 10
  • symbol 7 is preceded by the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS.
  • the RE occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 7.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 7, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling.
  • the start symbol of a partial subframe is symbol 12 or symbol 13
  • symbol 11 precedes the start symbol and is the symbol closest to the start symbol among all symbols used to transmit the CRS
  • the RE occupied by the CRS transmitted on the start symbol is the same as the RE occupied by the CRS transmitted on the symbol 11.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on the symbol 11, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is the PRB through the start symbol.
  • the time domain sequence number is obtained by scrambling.
  • the start symbol of the partial subframe is the symbol 12, the transmission of the UERS may be prohibited on the symbol 12 or the symbols 12 and 13; If the start symbol of a partial subframe is symbol 13, the transmission of UERS may be prohibited on symbol 13.
  • the start symbol of a partial subframe is symbol 0, symbol 4, symbol 7, or symbol 11, since these symbols should be transmitted with CRS according to the reference signal pattern, these symbols are used as the start of the partial subframe.
  • the symbols themselves are regarded as "symbols before the start symbol and closest to the start symbol among all symbols used to transmit the CRS", so that when these symbols are used as the start symbol of the partial subframe,
  • the CRS transmitted on the start symbol coincides with the location and sequence of the CRS that should have been transmitted on the symbol.
  • the first symbol is a symbol in the subframe that is closest to the start symbol for transmitting a CRS.
  • the position and sequence of the CRS transmitted on the start symbol are the same as the position and sequence of the CRS transmitted on the symbol for transmitting the CRS closest to the start symbol in the subframe.
  • the OFDM symbols in one subframe are represented as symbols 0 to 13 in order from the front to the back, and in one PRB, the frequency is from low to high on one OFDM symbol.
  • the sequence contains RE 0 to RE 11.
  • the start symbol of a partial subframe is symbol 1 or symbol 2
  • symbol 0 is the symbol closest to the start symbol among all symbols used for transmitting the CRS
  • the RE occupied by the CRS transmitted on the start symbol Same as the RE position occupied by the CRS transmitted on symbol 0.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 0, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling.
  • the distance between symbol 2 and symbol 4 is equal to the distance between symbol 2 and symbol 0, so if symbol 2 is the starting symbol, the position of the CRS transmitted on symbol 2 can be transmitted with symbol 0.
  • the CRS is the same and can also be the same as the CRS transmitted on symbol 4.
  • the CRS transmitted on the start symbol is symbol 2, symbol 3 or symbol 5, since symbol 4 is the symbol closest to the start symbol among all symbols used for transmitting the CRS, the CRS transmitted on the start symbol
  • the occupied RE is the same as the RE occupied by the CRS transmitted on symbol 4.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 4, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol
  • the time domain number in the PRB is obtained by scrambling.
  • the symbol 4 is regarded as "the symbol closest to the start symbol among all symbols for transmitting the CRS", the symbol The position and pattern of the CRS transmitted on 4 coincide with the CRS transmitted on the symbol 4 specified in the reference signal pattern. Further, if the start symbol of a partial subframe is the symbol 5, the transmission of the UERS may be prohibited at the symbol 5 or the symbols 5 and 6.
  • the start symbol of a partial subframe is symbol 6, symbol 7, symbol 8, or symbol 9, since symbol 7 is the symbol closest to the start symbol among all symbols used to transmit the CRS, the start The RE occupied by the CRS transmitted on the symbol is the same as the RE occupied by the CRS transmitted on the symbol 7.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on symbol 7, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is through the start symbol in the PRB.
  • the time domain sequence number is obtained by scrambling.
  • the distance between the symbol 9 and the symbol 7 is equal to the distance between the symbol 9 and the symbol 11, so if the symbol 9 is the start symbol, the position of the CRS transmitted on the symbol 9 can be transmitted with the symbol 7
  • the CRS is the same, and can also be the same as the CRS transmitted on the symbol 11. Further, if the start symbol of a partial subframe is the symbol 6, the transmission of the UERS may be prohibited on the symbol 6.
  • the start symbol of the partial subframe is symbol 10, symbol 11, symbol 12 or symbol 13, since the symbol 11 is the symbol closest to the start symbol among all symbols used for transmitting the CRS, the start The RE occupied by the CRS transmitted on the symbol is the same as the RE occupied by the CRS transmitted on the symbol 11.
  • the sequence used by the CRS transmitted on the start symbol is the same as the sequence used by the CRS transmitted on the symbol 11, or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is the PRB through the start symbol.
  • the time domain sequence number is obtained by scrambling.
  • the symbol 11 is regarded as "the symbol closest to the start symbol among all symbols for transmitting the CRS", the symbol The position and pattern of the CRS transmitted on 11 coincide with the CRS transmitted on the prescribed symbol 11 in the reference signal pattern. Further, if the start symbol of the partial subframe is the symbol 12, the transmission of the UERS may be prohibited on the symbol 12 or the symbols 12 and 13; if the start symbol of the partial subframe is the symbol 13, the transmission of the UERS may be prohibited on the symbol 13.
  • the frequency domain position of the CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the "first symbol” defined above, if the "first symbol" is located after the start symbol The CRS may or may not be transmitted on the “first symbol”. In principle, it is ensured that at least two symbols in a partial subframe transmit CRS, and the symbols for transmitting the CRS are dispersed as much as possible in the time domain. For example, in the above example, if the start symbol of a partial subframe is symbol 2, the frequency domain position and sequence of the CRS transmitted on symbol 2 are the same as the CRS transmitted on symbol 4, since symbol 4 is distance symbol 2 in the time domain.
  • the CRS may no longer be transmitted on the symbol 4 of the partial subframe, but the CRS may be transmitted on the symbol 7 and the symbol 11; if the starting symbol of the partial subframe is the symbol 4, the frequency domain of the CRS transmitted on the symbol 4 The position and sequence are the same as the CRS transmitted on symbol 7, and the CRS may no longer be transmitted on the symbol 7 of the partial subframe, and the CRS may be transmitted on the symbol 11; for example, if the starting symbol of the partial subframe is the symbol 6, The frequency domain position and sequence of the CRS transmitted on the symbol 6 are the same as the CRS transmitted on the symbol 7, and the CRS may no longer be transmitted on the symbol 7 of the partial subframe, but the CRS may be transmitted on the symbol 11; if the partial subframe starts from The start symbol is symbol 7, the frequency domain position and sequence of the CRS transmitted on symbol 7 are the same as the CRS transmitted on symbol 11, and the CRS still needs to be transmitted on symbol 11 to ensure that there are 2 symbols in the partial subframe to transmit CRS. .
  • Step 203 The base station transmits all symbols in the subframe from the start symbol to the end of the last symbol of the subframe. That is, the base station transmits the partial subframe.
  • the reference signal may be transmitted on the symbol of the partial subframe according to the position and sequence of the reference signal transmitted on the symbol in the partial subframe determined in step 202.
  • a control channel and/or a data channel can also be transmitted on the partial subframe.
  • the control channel can be transmitted on the start symbol.
  • the control channel may be a PDCCH, where the PDCCH carries scheduling information of a PDSCH, where the PDSCH may be a PDSCH transmitted on the subframe, or may be a first after the subframe and the subframe PDSCH transmitted on subframes.
  • the PDCCH always carries the CRS sequence.
  • the transmission of PDCCH and CRS on the same symbol facilitates fast demodulation of the PDCCH. Especially in the case that the CRS transmitted on the start symbol of the partial subframe is consistent with the CRS transmitted on the pre-agreed symbol, it can be further lowered.
  • FIG. 4 is a schematic diagram of a partial subframe transmission process implemented on a user equipment side according to an embodiment of the present invention. As shown, the process can include the following steps:
  • Step 401 The user equipment receives the subframe.
  • the reference signal is transmitted on the symbol from the start symbol to the end of the last symbol of the subframe in the subframe, and the start symbol is transmitted on the start symbol in the subframe, the start symbol The first symbol with data transfer.
  • the reference signal transmitted in the subframe includes a CRS, and may also include a UERS.
  • the start symbol is a symbol other than the first symbol in a complete subframe, and all symbols in the complete subframe from the start symbol to the end of the last symbol of the complete subframe Part of the sub-frame.
  • the start symbol is the first symbol that the base station starts transmitting PDCCH and/or PDSCH and/or EPDCCH.
  • the PDCCH carries scheduling information of a PDSCH, where the PDSCH may be a PDSCH transmitted on the subframe, or may be in the subframe and the The PDSCH transmitted on the first complete subframe after the subframe.
  • the base station first transmits the PDCCH after obtaining the channel usage right on the unlicensed spectrum, the PDCCH always carries the CRS sequence.
  • the transmission of PDCCH and CRS on the same symbol facilitates fast demodulation of the PDCCH.
  • the complexity of PDCCH demodulation can be further reduced.
  • the start symbol is one of a predefined symbol start position.
  • the starting symbol determined by the base station may be a symbol in the first set of predefined symbol start positions after the base station obtains the usage right of the channel. For example, if the predefined set of symbol start positions is the 0th, 3rd, 7th, and 10th symbols of a complete subframe, the base station is at the beginning of the 7th symbol of a complete subframe and The time between the end times is used to obtain the right to use the channel, and then the base station can determine that the partial subframe start symbol is the tenth symbol.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • the base station may acquire the right to use the channel of the unlicensed spectrum through a contention method based on the LBT criterion;
  • the base station may acquire the right to use the channel of the unlicensed spectrum by coordinating or scheduling with the neighboring communication device; or the base station may acquire the right to use the channel of the unlicensed spectrum through the pre-configured resource usage pattern.
  • the starting symbols on different carriers may be the same.
  • the location of the reference signal refers to the time domain and/or frequency domain location of the reference signal. It can be understood that the position of the reference signal refers to the position of the RE occupied by the reference signal in one PRB.
  • the location of the frequency domain CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the first symbol used to transmit the CRS in the reference signal pattern.
  • the sequence of CRS transmitted on the start symbol is the same as the sequence of the CRS transmitted on the first symbol used to transmit the CRS.
  • the initialization parameter generated by the sequence of CRSs transmitted on the start symbol is obtained by scrambling the time domain sequence number of the start symbol in the PRB.
  • the time domain location of the "first symbol" in the subframe is pre-agreed.
  • the first symbol refers to a symbol in a subframe for transmitting a CRS.
  • one symbol transmitted with a CRS may be selected from the subframe as the above-mentioned "first symbol” according to the reference signal pattern.
  • the first symbol in the subframe may be referred to as the "first symbol” described above.
  • the symbol 4, the symbol 7 or the symbol 11 in FIG. 1 may be selected as the above-mentioned “first symbol”.
  • the embodiment of the present invention does not limit the position of the selected “first symbol”, as long as it is selected according to the reference signal pattern.
  • the CRS is transmitted on the "first symbol”.
  • the time domain position of the “first symbol” in the subframe may also be determined according to a time domain position relationship between the first symbol and the start symbol. For example, according to the time domain positional relationship between the “first symbol” and the start symbol, the following situations may be included:
  • Case 1 The first symbol is followed by the start symbol, and is the symbol for transmitting the CRS closest to the start symbol.
  • the position of the CRS transmitted on the start symbol is the same as the position of the CRS transmitted on the symbol for transmitting the CRS after the start symbol in the complete subframe and closest to the start symbol.
  • Case 2 The first symbol is before the start symbol and is the symbol for transmitting the CRS closest to the start symbol.
  • the position of the CRS transmitted on the start symbol, and the complete subframe The position of the CRS transmitted on the symbol for transmitting the CRS before the start symbol and closest to the start symbol is the same.
  • the first symbol is a symbol for transmitting a CRS that is closest to the start symbol.
  • the position and sequence of the CRS transmitted on the start symbol is the same as the position and sequence of the CRS transmitted on the symbol for transmitting the CRS closest to the start symbol in the complete subframe.
  • the position and sequence of the reference signal transmitted on the symbol following the start symbol are determined according to a predefined reference signal pattern.
  • Step 402 The user equipment demodulates a symbol in the subframe from the start symbol to the end of the last symbol of the subframe according to the reference signal. That is, the user equipment demodulates the partial subframe according to the reference signal.
  • the user equipment may perform timing and frequency offset estimation according to the reference signal transmitted on the partial subframe, and demodulate data transmitted in the partial subframe according to the estimated synchronization information.
  • the subframe received by the user equipment may be sent by the base station according to the data transmission process implemented on the base station side according to the foregoing embodiment. Therefore, for more related content, refer to the foregoing embodiment.
  • the base station determines the start symbol for data transmission in the subframe and determines the position of the reference signal that needs to be transmitted on the symbol from the start symbol to the end of the last symbol of the subframe. And sequence, and guarantee to transmit the CRS on the start symbol, so that for the user equipment, timing and frequency can be performed according to the CRS transmitted on the start symbol and other reference signals transmitted on the symbol after the start symbol Partial estimation to ensure demodulation performance of data transmitted in this partial sub-frame.
  • the position of the CRS is adjusted along with the start time of the partial subframe, so that the first symbol always has a column of CRS, and other reference signal positions can remain unchanged.
  • the LAA eNB may map part of the subframe by means of data puncture (puncture in English), thereby reducing implementation complexity. From the perspective of the user equipment, the time-frequency synchronization performance of some sub-frames can be guaranteed to ensure demodulation performance.
  • FIG. 5D details the implementation process in a specific scenario.
  • 5A, 5B, 5C, and 5D respectively show a PRB diagram of a partial subframe.
  • the reference signal pattern in the LTE system may be as shown in FIG. 1 , and 7 time slots include 7 OFDM symbols.
  • the location and sequence of the CRS of symbol 0 are always carried on the PDCCH.
  • the PDCCH is transmitted on the symbol 4, and the PDCCH carries the CRS sequence and location of the symbol 0.
  • the user equipment may detect the PDCCH information of the user equipment when performing PDCCH blind detection on the symbol 4 according to the location and sequence of the CRS on the symbol 0, so that the PDSCH transmitted by the user equipment in the partial subframe according to the PDCCH detection result. Perform demodulation.
  • the location and sequence of the CRS on the symbol of the previous one used to transmit the CRS is always carried on the PDCCH.
  • the PDCCH is transmitted on the symbol 8, and the PDCCH carries the CRS sequence and location of the symbol 7.
  • the user equipment may detect the PDCCH information of the user equipment when performing PDCCH blind detection on the symbol 8 according to the location and sequence of the CRS on the symbol 7, so that the PDSCH transmitted by the user equipment in the partial subframe according to the PDCCH detection result. Perform demodulation.
  • the location and sequence of the CRS on the symbol for transmitting the CRS is always the last one carried on the PDCCH.
  • the PDCCH is transmitted on symbol 3
  • the PDCCH carries the CRS sequence and location of symbol 4.
  • the user equipment may detect the PDCCH information of the user equipment when performing PDCCH blind detection on the symbol 3 according to the location and sequence of the CRS on the symbol 4, so that the PDSCH transmitted by the user equipment in the partial subframe according to the PDCCH detection result. Perform demodulation.
  • the location and sequence of the CRS on the symbol used to transmit the CRS is always carried on the PDCCH.
  • the PDCCH is transmitted on the symbol 10, and the PDCCH carries the CRS sequence and location of the symbol 11.
  • the user equipment may detect the PDCCH information of the user equipment when performing PDCCH blind detection on the symbol 10 according to the location and sequence of the CRS on the symbol 11, thereby The PDCCH detection result demodulates the PDSCH transmitted by the user equipment in the partial subframe.
  • the transmission location of the PDCCH should avoid collisions with the location of the UERS. If the starting symbol of a partial subframe is a symbol in which the UERS is located, such as symbol 5 or symbol 6, the user equipment adopting the UERS demodulation based transmission mode is not scheduled in the partial subframe, that is, the partial subframe is not transmitted. UERS signal. Optionally, if the starting symbol of the partial subframe is a symbol in which the UERS is located, such as symbol 5 or symbol 6, the PDCCH is transmitted at symbol 7.
  • the embodiment of the present invention further provides a base station and a user equipment that can implement the foregoing process.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 600 can implement the flow shown in FIG. 2.
  • the base station 600 can include: a first determining module 601, a second determining module 602, and a transmitting module 603, where:
  • a first determining module 601 configured to determine a start symbol in the subframe for performing data transmission, where the start symbol is a symbol other than the first symbol;
  • a second determining module 602 configured to determine a location and a sequence of reference signals transmitted on a symbol in the subframe from a start symbol to a symbol ending with a last symbol of the subframe, where the base station Determining a transmission cell-specific reference signal CRS on the start symbol;
  • the transmission module 603 is configured to transmit all symbols in the subframe from the start symbol to the end of the last symbol of the subframe.
  • the second determining module 602 is specifically configured to: determine that a frequency domain position of the CRS transmitted on the start symbol is the same as a frequency domain position of a CRS transmitted on a first symbol used for transmitting a CRS in a reference signal pattern; The time domain location of the first symbol is pre-agreed, or the time domain location of the first symbol is determined according to a time domain location relationship between the first symbol and the start symbol.
  • the first symbol is a first symbol in one subframe; or the first symbol is after the start symbol, and is a symbol for transmitting a CRS closest to the start symbol Or the first symbol is before the start symbol, and is the symbol for transmitting the CRS closest to the start symbol; or the first symbol is the closest to the start symbol Yu Chuan The symbol for the CRS.
  • the sequence of the CRS transmitted on the start symbol is the same as the sequence of the CRS transmitted on the first symbol used for transmitting the CRS; or the sequence of the CRS transmitted on the start symbol is generated.
  • the initialization parameter is obtained by scrambling the time domain number of the start symbol in the physical resource block PRB.
  • the start symbol is one of a predefined symbol start position.
  • a PDCCH is further transmitted on the start symbol, where the PDCCH carries scheduling information of a PDSCH transmitted by the subframe.
  • the second determining module 602 is specifically configured to: determine a position and a sequence of the reference signal transmitted on the symbol after the start symbol according to the predefined reference signal pattern.
  • the second determining module 602 is specifically configured to: determine, according to the predefined reference signal pattern, whether the UERS needs to be transmitted on the start symbol; if the determination is yes, prohibit transmitting the UERS on the start symbol.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown, the base station 700 can implement the flow shown in FIG. 2.
  • the base station 700 can include a transceiver 701, a processing unit 702, and a memory 703.
  • Processing unit 702 is for controlling the operation of base station 700;
  • memory 703 can include read only memory and random access memory for providing instructions and data to processing unit 702.
  • a portion of the memory 703 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of base station 700 are coupled together by a bus system, wherein bus system 709 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 709 in the figure.
  • Transceiver 701 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the data transmission process implemented by the base station side disclosed in the embodiment of the present invention may be applied to the processing unit 702 or implemented by the processing unit 702.
  • the data transmission stream implemented by the base station side The various steps of the process may be accomplished by integrated logic circuitry of the hardware in processing unit 702 or by instructions in software.
  • the processing unit 702 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 703, and the processing unit 702 reads the information in the memory 703, and completes the steps of the data transmission process implemented by the base station side in combination with its hardware.
  • processing unit 702 can be configured to perform the following processes:
  • Determining a start symbol for performing data transmission in a subframe the start symbol being a symbol other than the first symbol; determining, in the subframe, from the start symbol to the subframe a position and a sequence of reference signals transmitted on a symbol up to the end of the last symbol, wherein the base station determines to transmit a CRS on the start symbol; transmitting, by the transceiver 701, the subframe starts from the start symbol All symbols up to the end of the last symbol of the sub-frame.
  • the frequency domain position of the CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the first symbol used to transmit the CRS in the reference signal pattern; wherein the time domain of the first symbol The location is pre-agreed, or the time domain location of the first symbol is determined according to a time domain location relationship between the first symbol and the start symbol.
  • the first symbol is a first symbol in one subframe; or the first symbol is after the start symbol, and is a symbol for transmitting a CRS closest to the start symbol Or the first symbol is before the start symbol, and is the symbol for transmitting the CRS closest to the start symbol; or the first symbol is the closest to the start symbol The symbol for transmitting CRS.
  • the sequence of CRSs transmitted on the start symbol, and the first part for transmitting CRS is the same; or the initialization parameter generated by the sequence of CRS transmitted on the start symbol is obtained by scrambling the time domain number of the start symbol in the PRB.
  • the start symbol is one of a predefined symbol start position.
  • a PDCCH is further transmitted on the start symbol, where the PDCCH carries scheduling information of a PDSCH transmitted by the subframe.
  • the processing unit 702 may determine the position and sequence of the reference signal transmitted on the symbol from the start symbol to the end of the last symbol of the subframe in the subframe, according to a predefined
  • the reference signal pattern determines the position and sequence of the reference signal transmitted on the symbol following the start symbol.
  • the processing unit 702 determines the position and sequence of the reference signal transmitted on the symbol from the start symbol to the end of the last symbol of the subframe in the subframe, according to a predefined reference.
  • the signal pattern determines whether UERS needs to be transmitted on the start symbol. If the determination is yes, transmission of the UERS on the start symbol is prohibited.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • user device 800 can implement the process illustrated in FIG.
  • the user equipment 800 can include a receiving module 801 and a demodulation module 802, where:
  • the receiving module 801 is configured to receive a subframe, where a reference signal is transmitted on a symbol from the start symbol to the end of the last symbol of the subframe, and the start symbol in the subframe There is a CRS transmitted, and the start symbol is the first symbol with data transmission;
  • the demodulation module 802 is configured to demodulate a symbol in the subframe from the start symbol to the end of the last symbol of the subframe according to the reference signal.
  • the frequency domain position of the CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the first symbol used to transmit the CRS in the reference signal pattern; wherein the time domain of the first symbol The location is pre-agreed, or the time domain location of the first symbol is determined according to a time domain location relationship between the first symbol and the start symbol.
  • the first symbol is a first symbol in one subframe; or the first symbol is after the start symbol, and is a symbol for transmitting a CRS closest to the start symbol Or the first symbol is before the start symbol, and is the symbol for transmitting the CRS closest to the start symbol; or the first symbol is the closest to the start symbol The symbol for transmitting CRS.
  • the sequence of the CRS transmitted on the start symbol is the same as the sequence of the CRS transmitted on the first symbol used for transmitting the CRS; or the sequence of the CRS transmitted on the start symbol is generated.
  • the initialization parameters are obtained by scrambling the time domain number of the start symbol in the PRB.
  • the start symbol is one of a predefined symbol start position.
  • a PDCCH is further transmitted on the start symbol, where the PDCCH carries scheduling information of a PDSCH transmitted by the subframe.
  • the position and sequence of the reference signal transmitted on the symbol following the start symbol are determined according to a predefined reference signal pattern.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user device 900 can implement the process shown in FIG.
  • the user equipment 900 can include:
  • the user equipment 900 can include a transceiver 901, a processing unit 902, and a memory 903.
  • Processing unit 902 is for controlling the operation of user equipment 900;
  • memory 903 can include read only memory and random access memory for providing instructions and data to processing unit 902.
  • a portion of the memory 903 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of user device 900 are coupled together by a bus system, wherein bus system 909 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 909 in the figure.
  • the data transmission process implemented by the user equipment side disclosed in the embodiment of the present invention may be applied to the processing unit 902 or implemented by the processing unit 902.
  • each step of the data transmission process implemented by the user equipment side may be through the integrated logic circuit of the hardware in the processing unit 902 or soft.
  • the instructions in the form of pieces are completed.
  • the processing unit 902 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 903, and the processing unit 902 reads the information in the memory 903, and completes the steps of the data transmission process implemented by the user equipment side in combination with the hardware thereof.
  • processing unit 902 can be configured to perform the following processes:
  • a reference signal is transmitted on a symbol from a start symbol to a end of a last symbol of the subframe, and a cell-specific reference is transmitted on the start symbol in the subframe a signal CRS, the start symbol being the first symbol with data transmission;
  • the frequency domain position of the CRS transmitted on the start symbol is the same as the frequency domain position of the CRS transmitted on the first symbol used to transmit the CRS in the reference signal pattern; wherein the time domain of the first symbol The location is pre-agreed, or the time domain location of the first symbol is determined according to a time domain location relationship between the first symbol and the start symbol.
  • the first symbol is a first symbol in one subframe; or the first symbol is after the start symbol, and is a symbol for transmitting a CRS closest to the start symbol Or the first symbol is before the start symbol, and is the symbol for transmitting the CRS closest to the start symbol; or the first symbol is the closest to the start symbol The symbol for transmitting CRS.
  • the sequence of the CRS transmitted on the start symbol is the same as the sequence of the CRS transmitted on the first symbol used for transmitting the CRS; or the sequence of the CRS transmitted on the start symbol
  • the initialization parameters generated by the column are obtained by scrambling the time domain number of the start symbol in the physical resource block PRB.
  • the start symbol is one of a predefined symbol start position.
  • a PDCCH is further transmitted on the start symbol, where the PDCCH carries scheduling information of a PDSCH transmitted by the subframe.
  • the position and sequence of the reference signal transmitted on the symbol following the start symbol are determined according to a predefined reference signal pattern.
  • the spectrum resource occupied by the subframe is an unlicensed spectrum resource.
  • Another embodiment provides a data transmission system, which may include the base station and the user equipment in the foregoing embodiments.
  • the implementation of the specific base station and user equipment may refer to the description of the foregoing embodiment.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • the computer program instructions can be provided to a general purpose computer, a special purpose computer, an embedded processor, or a processor of other programmable data processing device such that instructions executed by a processor of the computer or other programmable data processing device can be implemented in a flowchart
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device. Having a series of operational steps performed on a computer or other programmable device to produce computer-implemented processing, such that instructions executed on a computer or other programmable device are provided for implementing one or more processes and/or processes in the flowchart The steps of a function in a box or multiple blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、装置和系统。基站确定子帧中用于进行数据传输的起始符号,并确定需要在该子帧中自该起始符号到该子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,并保证在该起始符号上需要传输CRS,这样,对于用户设备来说,可以根据该起始符号上传输的CRS以及该起始符号之后的符号上传输的其他参考信号进行频偏检测,以保证对传输的数据的解调性能。

Description

一种数据传输方法、装置和系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种数据传输方法、装置和系统。
背景技术
许可辅助接入LTE(Licensed-Assisted Access Using LTE,简称LAA-LTE)系统致力于利用现有LTE系统中的载波聚合(Carrier Aggregation,简称CA)的配置和结构,以配置运营商许可频谱上的载波进行通信为基础,配置多个免许可频谱上的载波并以许可载波为辅助进行免许可载波上通信,通过利用免许可频谱资源达到网络容量分流的目的,从而减小许可载波的负载。
LAA-LTE使用的免许可频段的共存规范包括传输功率控制(Transmit Power Control,简称TPC)、动态频率选择(Dynamic Frequency Selection,简称DFS)、信道占用带宽和先听后说(Listen before talk,简称LBT)等等。TPC是为了防止无线通信设备发射过大的功率来干扰雷达。DFS是为了使无线通信设备主动探测雷达使用的频率,并主动选择另一个频率,以避开雷达频率。信道占用带宽的要求是当无线通信设备在免许可频段上工作时所占用的信道带宽,应达到其声称的信道带宽的80%~100%。LBT是系统间的共存策略,无线通信系统在占用免许可频段通信时需使用先检测后发送规则。
LBT机制又分为基于帧的设备(Frame based equipment,简称FBE)的LBT机制和基于负载的设备(Load based equipment,简称LBE)的LBT机制。在LAA-LTE系统中,遵循现有LTE系统中的载波聚合机制,免许可频谱上的载波的子帧边界和许可频谱上的载波的子帧边界应是对齐的,但是在免许可频谱上,如果采用基于LBE的LBT机制,理论上基站可能从任意时刻获得免许可频谱上的信道的使用权。当基站获取免许可频谱上的信道的使用权的时刻距离下一个子帧边界的时间长度小于一个子帧时,为了避免资源浪费,LAA 系统允许在这个时间长度内进行传输,传输的起始位置可以为除第一个符号外的任意一个符号的起始位置。从接收端来看,用户设备需要对传输的控制信道和数据信道进行解调。
发明内容
本发明实施例提供了一种数据传输方法、装置和系统,当子帧中除第一个符号外的任意一个符号为起始位置进行数据传输时,保证用户设备的信号解调性能。
第一方面,提供一种数据传输方法,包括:
基站确定子帧中用于进行数据传输的起始符号,所述起始符号为除第一个符号以外的一个符号;
所述基站确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输小区专用参考信号CRS;
所述基站传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
结合第一方面,在第一方面的第一种可能的实现方式中,所述基站确定所述起始符号上传输CRS,包括:
所述基站确定所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一符号为一个子帧中的第一个符号;或者
所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于 传输CRS的符号;或者
所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
结合第一方面或者第一方面的第一种至第三种可能的实现方式中的任意一种,在第一方面的第四种可能的实现方式中,所述起始符号为预定义的符号起始位置中的一个。
结合第一方面或者第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
结合第一方面或者第一方面的第一种至第五种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式,所述确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,包括:
根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
结合第一方面或者第一方面的第一种至第六种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,所述基站确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,包括:根据预先定义的参考信号图案,判断所述起始符号上是否需要传输用户专属参考信号UERS;若判断为是,则禁止在所述起始符号上传输UERS。
结合第一方面或者第一方面的第一种至第七种可能的实现方式中的任意 一种,在第一方面的第八种可能的实现方式中,所述子帧占用的频谱资源为免许可频谱资源。
第二方面,提供一种数据传输方法,包括:
用户设备接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有CRS,所述起始符号为第一个有数据传输的符号;
所述用户设备根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
结合第二方面,在第二方面的第一种可能的实现方式中,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
结合第而方面的第一种可能的实现方式,在第二方面的第二种可能的时隙方式中,所述第一符号为一个子帧中的第一个符号;或者
所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
结合第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
结合第二方面或者第二方面的第一种至第三种可能的实现方式中的任意一种实现方式,在第二方面的第四种可能的实现方式中,所述起始符号为预 定义的符号起始位置中的一个。
结合第二方面或者第二方面的第一种至第四种可能的实现方式中的任意一种实现方式,在第二方面的第五种可能的实现方式中,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
结合第二方面或者第二方面的第一种至第五种可能的实现方式中的任意一种实现方式,在第二方面的第六种可能的实现方式中,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
结合第二方面或者第二方面的第一种至第六种可能的实现方式中的任意一种实现方式,在第二方面的第七种可能的实现方式中,所述子帧占用的频谱资源为免许可频谱资源。
第三方面,提供一种基站,包括:
第一确定模块,用于确定子帧中用于进行数据传输的起始符号,所述起始符号为除第一个符号以外的一个符号;
第二确定模块,用于确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输小区专用参考信号CRS;
传输模块,用于传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第二确定模块具体用于:
确定所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实 现方式中,所述第一符号为一个子帧中的第一个符号;或者
所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
结合第三方面或者第三方面的第一种至第三种可能的实现方式中的任意一种实现方式,在第三方面的第四种可能的实现方式中,所述起始符号为预定义的符号起始位置中的一个。
结合第三方面或者第三方面的第一种至第四种可能的实现方式中的任意一种实现方式,在第三方面的第五种可能的实现方式中,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
结合第三方面或者第三方面的第一种至第五种可能的实现方式中的任意一种实现方式,在第三方面的第六种可能的实现方式中,所述第二确定模块具体用于:根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
结合第三方面或者第三方面的第一种至第六种可能的实现方式中的任意一种实现方式,在第三方面的第七种可能的实现方式中,所述第二确定模块具体用于:根据预先定义的参考信号图案,判断所述起始符号上是否需要传输用户专属参考信号UERS;若判断为是,则禁止在所述起始符号上传输UERS。
结合第三方面或者第三方面的第一种至第七种可能的实现方式中的任意一种实现方式,在第三方面的第八种可能的实现方式中,所述子帧占用的频谱资源为免许可频谱资源。
第四方面,提供一种用户设备,包括:
接收模块,用于接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有小区专用参考信号CRS,所述起始符号为第一个有数据传输的符号;
解调模块,用于根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
结合第四方面,在第四方面的第一种可能的实现方式中,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第一符号为一个子帧中的第一个符号;或者
所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
结合第四方面的第一种或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
结合第四方面或者第四方面的第一种至第三种可能的实现方式中的任意一种可能的实现方式,在第四方面的第四种可能的实现方式中,所述起始符号为预定义的符号起始位置中的一个。
结合第四方面或者第四方面的第一种至第四种可能的实现方式中的任意一种可能的实现方式,在第四方面的第五种可能的实现方式中,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
结合第四方面或者第四方面的第一种至第五种可能的实现方式中的任意一种可能的实现方式,在第四方面的第六种可能的实现方式中,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
结合第四方面或者第四方面的第一种至第六种可能的实现方式中的任意一种可能的实现方式,在第四方面的第七种可能的实现方式中,所述子帧占用的频谱资源为免许可频谱资源。
第五方面,提供一种基站,包括:收发器701、处理单元702和存储器703。
处理单元702用于控制基站700的操作;存储器703可以包括只读存储器和随机存取存储器,用于向处理单元702提供指令和数据。存储器703的一部分还可以包括非易失行随机存取存储器(NVRAM)。基站的各个组件通过总线系统耦合在一起,其中总线系统709除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
收发器701可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。
本发明实施例揭示的基站侧实现的数据传输流程可以应用于处理单元702中,或者由处理单元702实现。在实现过程中,基站侧实现的数据传输流程的各步骤可以通过处理单元702中的硬件的集成逻辑电路或者软件形式的指令完成。处理单元702可以是通用处理器、数字信号处理器、专用集成电 路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器703,处理单元702读取存储器703中的信息,结合其硬件完成基站侧实现的数据传输流程的步骤。
第六方面,提供了一种用户设备,包括:收发器901、处理单元902和存储器903。
处理单元902用于控制用户设备900的操作;存储器903可以包括只读存储器和随机存取存储器,用于向处理单元902提供指令和数据。存储器903的一部分还可以包括非易失行随机存取存储器(NVRAM)。用户设备的各个组件通过总线系统耦合在一起,其中总线系统909除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本发明实施例揭示的用户设备侧实现的数据传输流程可以应用于处理单元902中,或者由处理单元902实现。在实现过程中,用户设备侧实现的数据传输流程的各步骤可以通过处理单元902中的硬件的集成逻辑电路或者软件形式的指令完成。处理单元902可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器903,处理 单元902读取存储器903中的信息,结合其硬件完成用户设备侧实现的数据传输流程的步骤。
本发明的上述实施例中,基站确定子帧中用于进行数据传输的起始符号,并确定需要在该子帧中自该起始符号到该子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,并保证在该起始符号上需要传输CRS,这样,对于用户设备来说,可以根据该起始符号上传输的CRS以及该起始符号之后的符号上传输的其他参考信号进行频偏检测,以保证对传输的数据的解调性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种参考信号图案示意图;
图2为本发明实施例提供的在基站侧实现的数据传输流程示意图;
图3A、图3B和图3C分别为现有技术中的UERS图案示意图;
图4为本发明实施例提供的在终端侧实现的数据传输流程示意图;
图5A、图5B、图5C和图5D分别为本发明实施例中各种场景下的部分子帧的参考信号的资源映射示意图;
图6为本发明实施例提供的基站的结构示意图;
图7为本发明另一实施例提供的基站的结构示意图;
图8为本发明实施例提供的用户设备的结构示意图;
图9为本发明另一实施例提供的用户设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本 发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
应理解,在LTE或LAA-LTE系统中,从时间维度上来看,假设最小的时间单元为Ts,1Ts=1/(15000×2048)秒;1个不包括循环前缀部分的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号的时间长度为2048×Ts,约等于66.7微秒;一个子帧的时间长度为1ms,具体有两种子帧格式。一种是正常循环前缀(Normal Cyclic Prefix,简称为NCP)子帧格式,一个NCP子帧包括14个OFDM符号;将OFDM符号从0开始标号至13,则其中的第0号和第7号OFDM符号的时间长度为2208×Ts,其他的12个OFDM符号的时间长度为2192×Ts;将第0号至第6号OFDM符号定义为奇数时隙,将第7号至第13号OFDM符号定义为偶数时隙。另一种是长循环前缀(Extended Cyclic Prefix,简称为ECP)子帧格式,一个ECP子帧包括12个OFDM符号;每个OFDM符号的时间长度为2560×Ts;将OFDM符号从0开始标号至11,将第0号至第5号OFDM符号定义为奇数时隙,将第6号至第11号OFDM符号定义为偶数时隙。如果没有特殊说明,在本发明实施例中,都是以NCP子帧格式为例,ECP子帧格式可以推导得出。
首先,为描述方便,本申请文件引入“部分子帧”的概念。“部分子帧”是由一个子帧中自用于数据传输的起始符号开始到该子帧的最后一个符号结束为止的所有符号构成,其中,用于数据传输的起始符号可以是第一个符号以外的任意一个符号。也就是说,部分子帧在时域上的长度为从用于数据传输的起始符号的起始时刻到下一个子帧的起始时刻之间的时间长度。相对于“部分子帧”,本申请文件还引入了“完整子帧”的概念。一个完整子帧相对于一个部分子帧而言,完整子帧包含了系统定义的一个子帧中的所有符号。以下内容中出现的“部分子帧”和“完整子帧”,其含义与上述描述相同,不再赘述。
在部分子帧的传输技术中,一种方法是按照LTE系统定义的DwPTS(Downlink Pilot Time Slot,下行导频时隙)的参考信号图案,在部分子帧中传输参考信号。采用这种方法有很多缺点,首先,现有DwPTS格式支持的特殊子帧传输的符号个数为6个、9个、10个、11个、12个,相应地,基站允许的数据传输起始位置为第2、3、4、5、8号符号,其中奇数时隙可能的符号起始位置有4个,偶数时隙可能的符号起始位置只有1个,奇数时隙和偶数时隙允许传输的符号个数不对称。其次,复用DwPTS的子帧结构,允许数据传输的起始位置至少为符号8,如果基站在符号8以后抢占到信道则在当前的部分子帧不能传输,开销较大。再次,现有DwPTS有两套不同的用户专属参考信号(UE-specific reference signal,简称UERS,也叫,Demodulation Reference Signal,解调参考信号)图案,再加上完整子帧的UERS的参考信号图案,基站需要提前准备包含至少3套不同的参考信号位置的数据子帧映射,基站实现复杂度较高。
在部分子帧的传输技术中,另一种方法是在部分子帧中传输的参考信号的图案是从LTE系统定义的完整子帧的参考信号图案的第一个符号开始复用的。
图1示出了天线端口等于2时的CRS(Cell-specific Reference Signal,小区专用参考信号)信号位置。图1中,一个子帧包含2个时隙,每个时隙包含7个OFDM符号。其中,在第0,4,7,11号符号上有CRS,在第5,6,12,13号符号上有UERS。根据上述方法,假设基站的数据传输起始位置为第9号符号,那么第9号符号上的参考信号图案和完整子帧的第0号符号上的参考信号图案相同,相应地,第10、11、12、13号符号上的参考信号图案也和完整子帧的第1、2、3、4号符号上的参考信号图案相同。在这种情况下,没有UERS参考信号被传输,即部分子帧不能支持基于UERS解调的传输模式。为了保证能支持基于UERS解调的传输模式,基站的数据传输起始位置至少应为第7号符号才能传输UERS,但这说明基站在符号7以后抢占到信道也不能在当前的部分子帧传输,开销较大。
在部分子帧的传输技术中,又一种方法是在部分子帧中传输的参考信号的图案位置是和LTE系统定义的完整子帧的参考信号图案的位置相同。例如,假设基站的数据传输起始位置为第9号符号,那么第9号符号上的参考信号图案和完整子帧的第9号符号上的参考信号图案相同,相应地,第10、11、12、13号符号上的参考信号图案也和完整子帧的第10、11、12、13号符号上的参考信号图案相同。在LTE系统中,为了保证估计精度,用于频偏估计的两个符号之间的时间间隔通常应不小于一个固定值,例如3个符号。但是在这种情况下,部分子帧仅在第11、12、13号符号上有参考信号,不能保证频偏估计的性能,因此不利于对该部分子帧上所传输的数据进行解调。
由此可见,在不增加基站实现复杂度和系统开销的情况下,如何通过传输的参考信号保证用户设备对部分子帧的解调性能,是目前亟需解决的问题。
为了实现免许可频谱上部分子帧的传输,保证用户设备对部分子帧的解调性能,本发明实施例中,将CRS的位置随着部分子帧的开始时间进行调整,保证部分子帧的起始符号上传输有CRS。
应理解,本发明实施例的技术方案可以应用于利用免许可频段的LAA-LTE系统,也可以应用于其他具有与之类似、固定的子帧边界或者符号边界、且具有资源竞争需求的通信系统。
应理解,本发明实施例的技术方案中提及的符号可以是LAA-LTE系统或者LTE系统中的一个OFDM符号,具体地,OFDM符号包括循环前缀(Cyclic Prefix,简称为CP)部分和信息段部分,其中信息段部分包括了一个OFDM符号的全部信息;CP是对一部分信息段信号的重复。本发明实施例的技术方案中提及的符号也可以是其他类型的通信的符号,本发明对此不作限定。
应理解,本发明实施例中提及的OFDM符号具有时间维度和频率维度的属性,其中时间维度的属性包括OFDM符号的时间长度,频率维度的属性包括子载波个数、子载波带宽等。
应理解,本发明实施例提及的基站和用户设备所处的通信系统是具有预定义、或者说固定的子帧起始时刻、子帧结束时刻、符号起始时刻、符号结 束时刻的通信系统。这种通信系统以固定的时间单元划分时间,也就是说,当确定了时间单元的粒度,一个时间单元的起始时刻、结束时刻,那么就可以知道过去和未来的时间单元的起始时刻与结束时刻。在本发明实施例中,子帧边界指代子帧起始时刻或者子帧结束时刻,符号边界指代符号的起始时刻或者结束时刻,一个子帧的起始时刻等同于上一个子帧的结束时刻,一个符号的起始时刻等同于上一个符号的结束时刻。
还应理解,在本发明实施例中,在一定区域范围内,由同一个运营商运营的通信系统,例如LAA-LTE系统,许可频谱上的载波为主载波,免许可频谱上的载波为辅载波,免许可频谱上的辅载波的子帧边界与许可频谱上的主载波的子帧边界是对齐的。在免许可频谱上,基站可能从任意时刻获得免许可频谱信道的使用权。当基站获取免许可频谱上的辅载波的信道使用权的时刻刚好和许可频谱上的主载波的子帧边界对齐时,基站在辅载波上可以按现有LTE结构正常进行传输;当基站获取免许可频谱上的辅载波的信道使用权的时刻距离主载波的下一个子帧边界的时间长度小于一个子帧时,为了避免资源浪费,LAA系统允许在这个时间长度内进行部分子帧的传输,部分子帧的起始位置可以为除第一个符号外的任意一个符号的起始位置。
在本发明实施例中,用户设备(User Equipment,简称为UE)可称之为终端(Terminal)、移动台(Mobile Station,简称为MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,简称为RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是LTE系统或者LAA-LTE系统中的演进型基站(Evolutional Node B,简称为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,简称为AP)或传输站点(Transmission Point,简称为TP)等,本发明对此并不限定。但为描述方便, 下述实施例将以基站和用户设备为例进行说明。
下面结合附图对本发明实施例进行详细描述。
参见图2,为本发明实施例提供的在基站侧实现的数据传输流程示意图。如图所示,该流程可包括以下步骤:
步骤201:基站确定子帧中用于进行数据传输的起始符号,所述起始符号是除第一个符号以外的一个符号。
其中,所述子帧中自所述起始符号开始到所述所述子帧的最后一个符号结束为止的所有符号构成部分子帧,也就是说,该部分子帧在时域上的长度为从所述起始符号的起始时刻到下一个子帧的起始时刻之间的时间长度。
应理解,所述起始符号是基站开始传输物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)和/或物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)和/或增强物理下行控制信道(Enhanced Physical Downlink Control Channel,简称为EPDCCH)的第一个符号。
在具体实施步骤201的过程中,可选地,基站先通过竞争的方法获取信道的使用权,然后再确定在所述信道上传输的起始符号。可选地,基站确定的起始符号可以是该基站获得信道的使用权后的第一个完整符号。例如,如果基站在一个完整子帧的第7号符号的起始时刻和结束时刻之间的时刻获得信道的使用权,那么该基站可以确定部分子帧起始符号为第8号符号。可选地,基站确定的部分子帧起始符号可以是该基站获得信道的使用权后的第二个完整符号。例如,如果基站在一个完整子帧的第7号符号的起始时刻和结束时刻之间的时刻获得信道的使用权,那么该基站可以确定部分子帧起始符号为第9号符号,其中,从基站获得信道使用权的时刻到第8号符号的结束时刻可用于传输前导序列或仅用于传输填充信号,用于UE(User Equipment,用户设备,也称终端)调整AGC(Automatic Gain Control,自动增益控制)。
在具体实施步骤201的过程中,可选地,所述起始符号为预定义的符号起始位置中的一个。可选地,基站确定部分子帧的起始符号可以是该基站获 得信道的使用权后的第一个属于预定义的符号起始位置集合中的符号。例如,如果预定义的符号起始位置集合为一个完整子帧的第0号、第3号、第7号、第10号符号,基站在一个完整子帧的第7号符号的起始时刻和结束时刻之间的时刻获得信道的使用权,那么该基站可以确定部分子帧起始符号为第10号符号。
在具体实施步骤201的过程中,可选地,所述子帧占用的频谱资源为免许可频谱资源。更具体可选地,基站可以基于LBT的准则,通过竞争的方法获取免许可频谱的信道的使用权;或者,基站可以通过与邻近的通信设备协调或者调度后,获取免许可频谱的信道的使用权;或者,基站可以通过预先配置的资源使用图案,获取免许可频谱的信道的使用权。
进一步地,在多个载波的情况下,不同载波上的起始符号可能相同。
步骤202:基站确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输CRS。
所述参考信号的位置包括时域和/或频域位置,具体地,可以是指参考信号所映射到的资源单元(Resource element,RE)在物理资源块(Physical Resource Block,简称为PRB)中的位置。可以理解为,参考信号的位置是指:在1个PRB中,参考信号所占用的RE的位置。LTE系统在时域上1个子帧中包含一个PRB对,其中每个PRB的长度是一个时隙的长度,可包含7个符号,在频域上可包含12个子载波。LTE系统的CRS伪随机序列生成的初始化参数是由该CRS序列所在符号在该PRB中的时域序号扰码获得的,因此1个PRB内每个符号上发送的CRS的序列都不同。
进一步地,图2所示的流程的步骤202中,基站可根据预先定义的参考信号图案,确定起始符号之后的符号上传输的参考信号的位置和序列。这样,使得起始符号之后的符号上传输的参考信号的位置和序列遵循现有协议规定,减少了系统实现复杂度。例如,如果部分子帧中需要传输UERS,则在该部分子帧中的起始符号之后的符号上,可按照现有的UERS图案来映射 UERS,其中,所述UERS图案是参考信号图案中UERS的图案。图3A、图3B和图3C分别示出了几种现有的UERS图案,其中,图3A和图3B为DwPTS特殊子帧的UERS图案,图3C为完整子帧的UERS图案。当然,对于起始符号之后的符号上传输的参考信号的位置和序列,本发明实施例也可以重新进行定义。
可选地,基站通过信道竞争获得信道使用权后,可在步骤202中,根据预先定义的参考信号图案,判断获得信道使用权后的第一个完整符号(即所述部分子帧的起始符号)上是否需要传输UERS,若判断为是,则禁止在该符号上传输UERS。进一步可选地,由于一个UERS的端口占用时域相邻的两个符号,如果所述获得信道使用权后的第一个完整符号是UERS所占用的相邻两个符号的前一个符号,例如符号5,那么禁止在该相邻的两个符号(符号5和符号6)上传输UERS。
可选地,在另一个实施例中,如果基站根据预先定义的参考信号图案,判断获得信道使用权后的第一个完整符号(即所述部分子帧的起始符号)上需要传输UERS,也可以将获得信道使用权后的第一个不传输UERS的符号确定为开始进行数据传输的起始符号,否则将获得信道使用权后的第一个完整符号确定为开始进行数据传输的起始符号。这样,可以使得起始符号上传输有CRS,但不会传输UERS,避免CRS和UERS的资源冲突,使得系统实现更为简单。
步骤202中,可选地,起始符号上传输的CRS的频域位置,与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同。即,可以理解为:起始符号上传输的CRS的频域位置,与一个完整子帧中用于传输CRS的符号中的某个符号(即上述第一符号)上的CRS频域位置相同。可选地,起始符号上传输的CRS的序列,与用于传输CRS的第一符号上所传输的CRS的序列相同。可选地,所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在PRB中的时域序号进行扰码获得的。
如果没有特殊说明,在本发明实施例中,都是以2个CRS天线端口为例, 对于1个CRS天线端口的情况可以同理推导得出。当基站传输4个CRS天线端口时,由于现有的一个完整子帧中的第1个符号上传输CRS的端口0和1,第2个符号上传输CRS的端口2和端口3,可选地,步骤202中,起始符号上传输CRS的端口0和端口1,起始符号之后的第1个符号上传输CRS的端口2和端口3;可选地,步骤202中,所述起始符号和/或所述起始符号之后的第1个符号上传输的CRS的序列生成的初始化参数是通过所述起始符号和/或所述起始符号之后的第1个符号在PRB中的时域序号进行扰码获得的。
在一种实施例中,所述“第一符号”在子帧中的时域位置是预先约定的。其中,所述第一符号是指子帧中用于传输CRS的一个符号。
例如,可根据参考信号图案,从子帧中选取传输有CRS的一个符号作为上述“第一符号”。优选地,可将子帧中的第一个符号作为上述“第一符号”。
以图1所示的参考信号图案为例,一个子帧中的OFDM符号按照时序从前到后表示为符号0至符号13,1个PRB中,在1个OFDM符号上按照频率从低到高的顺序包含RE 0至RE 11。
如果部分子帧的起始符号为符号2,则符号2上传输有CRS,且符号2上传输的CRS所占用的RE与符号0上传输的CRS所占用的RE位置相同,即,在符号0上,CRS的端口0映射到RE 0和RE 6上传输,那么在符号2上,CRS的端口0也映射到RE 0和RE 6上传输;在符号0上,CRS的端口1映射到RE 3和RE 9上传输,那么在符号2上,CRS的端口1也映射到RE3和RE 9上传输。符号2上传输的CRS所使用的序列可能与符号0上传输的CRS所使用的序列相同;或者,符号2上传输的CRS的序列生成的初始化参数是通过符号2在PRB中的时域序号l=2进行扰码获得的。
如果部分子帧的起始符号为符号4、符号7或符号11,按照图1所示的参考信号图案,该起始符号上原本需要传输CRS,此种情况下,该起始符号上传输的CRS所占用的RE可以与原本要传输的CRS所占用的RE相同;或者,该起始符号上传输的CRS所占用的RE与符号0上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与原本要传输的CRS 所使用的序列相同;或者,该起始符号上传输的CRS所使用的序列与符号0上传输的CRS所使用的序列相同。
如果起始符号为除此以外的其他符号,比如符号3,则可以按照上述原理确定该起始符号上传输的CRS的位置与符号0上传输的CRS的位置相同;该起始符号上传输的CRS的序列与符号0上传输的CRS的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。
当然,也可以选取图1中的符号4、符号7或符号11作为上述“第一符号”,本发明实施例对选取的“第一符号”的位置不作限制,只要根据参考信号图案所选取的“第一符号”上传输有CRS。
在另一种实施例中上述流程中,该“第一符号”在子帧中的时域位置也可以是根据该第一符号与起始符号之间的时域位置关系确定的。
举例来说,根据“第一符号”与起始符号之间的时域位置关系,可以包括以下几种情况:
情况1:所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置,与起始符号之后且距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置相同。
以图1所示的参考信号图案为例,一个子帧中的OFDM符号按照时序从前到后表示为符号0至符号13,1个PRB中,在1个OFDM符号上按照频率从低到高的顺序包含RE 0至RE 11。
如果部分子帧的起始符号为符号1,则因符号4在符号1之后且是用于传输CRS的所有符号中距离符号1最近的符号,则符号1上传输的CRS所占用的RE与符号4上传输的CRS所占用的RE位置相同,即,在符号4上,CRS的端口0映射到RE 3和RE 9上传输,那么在符号1上,CRS的端口0也映射到RE 3和RE 9上传输;在符号4上,CRS的端口1映射到RE 0和RE 6上传输,那么在符号1上,CRS的端口1也映射到RE 0和RE 6上传输。符 号1上传输的CRS所使用的序列可能与符号4上传输的CRS所使用的序列相同;或者,符号1上传输的CRS的序列生成的初始化参数是通过符号1在PRB中的时域序号l=1进行扰码获得的。
如果部分子帧的起始符号为符号2或符号3,则因符号4在该起始符号之后且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号4上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号4上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。
同理,如果部分子帧的起始符号为符号5或符号6,则因符号7在该起始符号之后且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号7上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号7上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。进一步地,如果部分子帧的起始符号为符号5,可在符号5或符号5和6上禁止传输UERS;如果部分子帧的起始符号为符号6,可在符号6上禁止传输UERS。
同理,如果部分子帧的起始符号为符号8、符号9或符号10,则因符号11在该起始符号之后且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号11上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号11上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。
同理,如果部分子帧的起始符号为符号12或符号13,则因下一个完整子帧的符号0在该起始符号之后且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与下一个完整子帧的符号0上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所 使用的序列与下一个完整子帧的符号0上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。进一步地,如果部分子帧的起始符号为符号12,可在符号12或符号12和13上禁止传输UERS;如果部分子帧的起始符号为符号13,可在符号13上禁止传输UERS。
特别地,如果部分子帧的起始符号为符号0、符号4、符号7或符号11,则由于按照参考信号图案,这些符号上应该传输有CRS,则以这些符号作为部分子帧的起始符号时,该将这些符号自己视为“用于传输CRS的所有符号中在该起始符号之后且距离该起始符号最近的符号”,从而使得以这些符号作为部分子帧的起始符号时,该起始符号上传输的CRS与本应在该符号上传输的CRS的位置和序列一致。
情况2:所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置,与该子帧中该起始符号之前且距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置相同。
以图1所示的参考信号图案为例,一个子帧中的OFDM符号按照时序从前到后表示为符号0至符号13,1个PRB中,在1个OFDM符号上按照频率从低到高的顺序包含RE 0至RE 11。
如果部分子帧的起始符号为符号1,则因符号0在符号1之前且是用于传输CRS的所有符号中距离符号1最近的符号,则符号1上传输的CRS所占用的RE与符号0上传输的CRS所占用的RE位置相同,即,在符号0上,CRS的端口0映射到RE 0和RE 6上传输,那么在符号1上,CRS的端口0也映射到RE 0和RE 6上传输;在符号0上,CRS的端口1映射到RE 3和RE 9上传输,那么在符号1上,CRS的端口1也映射到RE 3和RE 9上传输。符号1上传输的CRS所使用的序列可能与符号0上传输的CRS所使用的序列相同;或者,符号1上传输的CRS的序列生成的初始化参数是通过符号1在PRB中的时域序号l=1进行扰码获得的。
如果部分子帧的起始符号为符号2或符号3,则因符号0在该起始符号之前且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号0上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号0上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。
同理,如果部分子帧的起始符号为符号5或符号6,则因符号4在该起始符号之前且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号4上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号4上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。进一步地,如果部分子帧的起始符号为符号5,可在符号5或符号5和6上禁止传输UERS;如果部分子帧的起始符号为符号6,可在符号6上禁止传输UERS。
同理,如果部分子帧的起始符号为符号8、符号9或符号10,则因符号7在该起始符号之前且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号7上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号7上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。
同理,如果部分子帧的起始符号为符号12或符号13,则因符号11在该起始符号之前且是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号11上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号11上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。进一步地,如果部分子帧的起始符号为符号12,可在符号12或符号12和13上禁止传输UERS; 如果部分子帧的起始符号为符号13,可在符号13上禁止传输UERS。
特别地,如果部分子帧的起始符号为符号0、符号4、符号7或符号11,则由于按照参考信号图案,这些符号上应该传输有CRS,则以这些符号作为部分子帧的起始符号时,该将这些符号自己视为“用于传输CRS的所有符号中在起始符号之前且距离该起始符号最近的符号”,从而使得以这些符号作为部分子帧的起始符号时,该起始符号上传输的CRS与本应在该符号上传输的CRS的位置和序列一致。
情况3:所述第一符号为所述子帧中距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置和序列,与子帧中距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置和序列相同。
以图1所示的参考信号图案为例,一个子帧中的OFDM符号按照时序从前到后表示为符号0至符号13,1个PRB中,在1个OFDM符号上按照频率从低到高的顺序包含RE 0至RE 11。
如果部分子帧的起始符号为符号1或符号2,则因符号0是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号0上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号0上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。其中,符号2与符号4之间的距离,与符号2与符号0之间的距离相等,因此如果符号2为起始符号,则符号2上传输的CRS的位置既可以与符号0上传输的CRS相同,也可以与符号4上传输的CRS相同。
如果部分子帧的起始符号为符号2、符号3或符号5,则因符号4是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号4上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号4上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在 PRB中的时域序号进行扰码获得的。其中,起始符号为符号4时,由于根据参考信号图案,符号4上原本需要传输CRS,因此符号4被视为“用于传输CRS的所有符号中距离该起始符号最近的符号”,符号4上传输的CRS的位置和图案与参考信号图案中规定的符号4上传输的CRS一致。进一步地,如果部分子帧的起始符号为符号5,可在符号5或符号5和6上禁止传输UERS。
同理,如果部分子帧的起始符号为符号6、符号7、符号8或符号9,则因符号7是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号7上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号7上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。其中,符号9与符号7之间的距离,与符号9与符号11之间的距离相等,因此如果符号9为起始符号,则符号9上传输的CRS的位置既可以与符号7上传输的CRS相同,也可以与符号11上传输的CRS相同。进一步地,如果部分子帧的起始符号为符号6,可在符号6上禁止传输UERS。
同理,如果部分子帧的起始符号为符号10、符号11、符号12或符号13,则因符号11是用于传输CRS的所有符号中距离该起始符号最近的符号,则该起始符号上传输的CRS所占用的RE与符号11上传输的CRS所占用的RE位置相同。该起始符号上传输的CRS所使用的序列与符号11上传输的CRS所使用的序列相同,或者该起始符号上传输的CRS的序列生成的初始化参数是通过该起始符号在PRB中的时域序号进行扰码获得的。其中,起始符号为符号11时,由于根据参考信号图案,符号11上原本需要传输CRS,因此符号11被视为“用于传输CRS的所有符号中距离该起始符号最近的符号”,符号11上传输的CRS的位置和图案与参考信号图案中的规定符号11上传输的CRS一致。进一步地,如果部分子帧的起始符号为符号12,可在符号12或符号12和13上禁止传输UERS;如果部分子帧的起始符号为符号13,可在符号13上禁止传输UERS。
进一步地,由于起始符号上传输的CRS的频域位置与上述定义的“第一符号”上所传输的CRS的频域位置相同,那么如果该“第一符号”位于所述起始符号之后,则该“第一符号”上可以传输也可以不再传输CRS,原则上保证部分子帧中至少有2个符号传输CRS,且尽量保证传输CRS的符号在时域上分散排列。比如,上面的例子中,如果部分子帧的起始符号为符号2,符号2上传输的CRS的频域位置和序列与符号4上传输的CRS相同,则由于时域上符号4距离符号2较近,则在该部分子帧的符号4上可不再传输CRS,而在符号7和符号11上传输CRS;如果部分子帧的起始符号为符号4,符号4上传输的CRS的频域位置和序列与符号7上传输的CRS相同,则在该部分子帧的符号7上可不再传输CRS,而在符号11上传输CRS;再比如,如果部分子帧的起始符号为符号6,符号6上传输的CRS的频域位置和序列与符号7上传输的CRS相同,则在该部分子帧的符号7上可不再传输CRS,而在符号11上传输CRS;如果部分子帧的起始符号是符号7,符号7上传输的CRS的频域位置和序列与符号11上传输的CRS相同,则在符号11上仍需传输CRS,以保证该部分子帧中有2个符号传输CRS。
步骤203:基站传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。即,基站传输所述部分子帧。
该步骤中,可根据步骤202所确定出的该部分子帧中的符号上传输的参考信号的位置和序列,在该部分子帧的符号上传输参考信号。该部分子帧上还可传输控制信道和/或数据信道。
如前所述,起始符号上可传输控制信道。该控制信道可以是PDCCH,所述PDCCH中携带有PDSCH的调度信息,所述PDSCH可以是在所述子帧上传输的PDSCH,也可以是在所述子帧和所述子帧后的第一个子帧上传输的PDSCH。这样,图2所示的流程中,如果基站获得免许可频谱上的信道使用权后首先发送PDCCH,那么PDCCH上总是携带CRS序列。PDCCH和CRS在同一个符号上传输有利于PDCCH的快速解调。尤其在部分子帧的起始符号上传输的CRS与预先约定的符号上传输的CRS一致的情况下,可以进一步降 低PDCCH解调的复杂度。
参见图4,为本发明实施例提供的在用户设备侧实现的部分子帧传输流程示意图。如图所示,该流程可包括如下步骤:
步骤401:用户设备接收子帧。其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有CRS,所述起始符号为第一个有数据传输的符号。
其中,所述子帧中传输的参考信号包括CRS,还可包括UERS。所述起始符号为一个完整子帧中除第一个符号以外的一个符号,所述完整子帧中自所述起始符号开始到所述完整子帧的最后一个符号结束为止的所有符号构成部分子帧。
应理解,所述起始符号是基站开始传输PDCCH和/或PDSCH和/或EPDCCH的第一个符号。可选地,所述起始符号上传输PDCCH时,所述PDCCH中携带有PDSCH的调度信息,所述PDSCH可以是在所述子帧上传输的PDSCH,也可以是在所述子帧和所述子帧后的第一个完整子帧上传输的PDSCH。这样,如果基站获得免许可频谱上的信道使用权后首先发送PDCCH,那么PDCCH上总是携带CRS序列。PDCCH和CRS在同一个符号上传输有利于PDCCH的快速解调。尤其在部分子帧的起始符号上传输的CRS与预先约定的符号上传输的CRS一致的情况下,可以进一步降低PDCCH解调的复杂度。
可选地,所述起始符号为预定义的符号起始位置中的一个。可选地,基站确定的起始符号可以是该基站获得信道的使用权后的第一个属于预定义的符号起始位置集合中的符号。例如,如果预定义的符号起始位置集合为一个完整子帧的第0号、第3号、第7号、第10号符号,基站在一个完整子帧的第7号符号的起始时刻和结束时刻之间的时刻获得信道的使用权,那么该基站可以确定部分子帧起始符号为第10号符号。
可选地,所述子帧占用的频谱资源为免许可频谱资源。更具体可选地,基站可以基于LBT的准则,通过竞争的方法获取免许可频谱的信道的使用权; 或者,基站可以通过与邻近的通信设备协调或者调度后,获取免许可频谱的信道的使用权;或者,基站可以通过预先配置的资源使用图案,获取免许可频谱的信道的使用权。
进一步地,在多个载波的情况下,不同载波上的起始符号可能相同。
所述参考信号的位置是指参考信号的时域和/或频域位置。可以理解为,参考信号的位置是指:在1个PRB中,参考信号所占用的RE的位置。
可选地,起始符号上传输的频域CRS的位置,与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同。可选地,起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同。可选地,所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在PRB中的时域序号进行扰码获得的。
在一种实施例中,所述“第一符号”在该子帧中的时域位置是预先约定的。其中,所述第一符号是指子帧中用于传输CRS的一个符号。例如,可根据参考信号图案,从子帧中选取传输有CRS的一个符号作为上述“第一符号”。优选地,可将子帧中的第一个符号作为上述“第一符号”。当然,也可以选取图1中的符号4、符号7或符号11作为上述“第一符号”,本发明实施例对选取的“第一符号”的位置不作限制,只要根据参考信号图案所选取的“第一符号”上传输有CRS。
在另一种实施例中上述流程中,该“第一符号”在该子帧中的时域位置也可以是根据该第一符号与起始符号之间的时域位置关系确定的。举例来说,根据“第一符号”与起始符号之间的时域位置关系,可以包括以下几种情况:
情况1:所述第一符号所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置,与完整子帧中起始符号之后且距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置相同。
情况2:所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置,与完整子帧 中该起始符号之前且距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置相同。
情况3:所述第一符号为距离所述起始符号最近的用于传输CRS的符号。这样,起始符号上传输的CRS的位置和序列,与完整子帧中距离该起始符号最近的用于传输CRS的符号上所传输的CRS的位置和序列相同。
可选地,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
步骤402:所述用户设备根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。即,所述用户设备根据所述参考信号对所述部分子帧进行解调。
可选地,所述用户设备可以根据所述部分子帧上传输的参考信号进行定时和频偏估计,根据估计得到的同步信息对所述部分子帧中传输的数据进行解调。
上述流程中,用户设备所接收的子帧,可以是基站按照前述实施例描述的在基站侧实现的数据传输流程所发送的,因此更多相关内容可参见前述实施例。
通过以上描述可以看出,基站确定子帧中用于进行数据传输的起始符号,并确定需要在自该起始符号到该子帧的最后一个符号结束位置的符号上传输的参考信号的位置和序列,并保证在该起始符号上传输CRS,这样,对于用户设备来说,可以根据该起始符号上传输的CRS以及该起始符号之后的符号上传输的其他参考信号进行定时和频偏估计,以保证对该部分子帧中传输的数据的解调性能。本发明实施例将CRS的位置随着部分子帧的开始时间调整,保证第一个符号总是有一列CRS,其它的参考信号位置可以保持不变。根据本发明实施例提供的部分子帧映射方法,LAA eNB可以通过对数据穿刺(英文为puncture)的方式来映射部分子帧,从而降低实现复杂度。从用户设备的角度来看,部分子帧的时频同步性能可以被保证,从而保证解调性能。
为了更清楚地理解本发明的上述实施例,下面结合图5A、图5B、图5C 和图5D对具体场景下的实施过程进行详细描述。图5A、图5B、图5C和图5D分别示出了一种部分子帧的PRB示意图。
该具体场景中,LTE系统中的参考信号图案可如图1所示,1个时隙中包含7个OFDM符号。
图5A所示的实例中,PDCCH上携带的总是符号0的CRS的位置和序列。具体地,基站进行信道竞争,竞争到信道后,确定在符号4上开始数据传输,则在符号4上发送PDCCH,该PDCCH中携带符号0的CRS序列和位置。用户设备根据符号0上的CRS的位置和序列在符号4上进行PDCCH盲检测时可能能检测到该用户设备的PDCCH信息,从而根据PDCCH检测结果对该用户设备在该部分子帧上传输的PDSCH进行解调。
图5B所示的实例中,PDCCH上携带的总是最近的前一个用于传输CRS的符号上的CRS的位置和序列。具体地,基站进行信道竞争,竞争到信道后,确定在符号8上开始数据传输,则在符号8上发送PDCCH,该PDCCH中携带符号7的CRS序列和位置。用户设备根据符号7上的CRS的位置和序列在符号8上进行PDCCH盲检时可能能检测到该用户设备的PDCCH信息,从而根据PDCCH检测结果对该用户设备在该部分子帧上传输的PDSCH进行解调。
图5C所示的实例中,PDCCH上携带的总是最近的后一个用于传输CRS的符号上的CRS的位置和序列。具体地,基站进行信道竞争,竞争到信道后,确定在符号3上开始数据传输,则在符号3上发送PDCCH,该PDCCH中携带符号4的CRS序列和位置。用户设备根据符号4上的CRS的位置和序列在符号3上进行PDCCH盲检时可能能检测到该用户设备的PDCCH信息,从而根据PDCCH检测结果对该用户设备在该部分子帧上传输的PDSCH进行解调。
图5D所示的实例中,PDCCH上携带的总是最近的一个用于传输CRS的符号上的CRS的位置和序列。具体地,基站进行信道竞争,竞争到信道后,确定在符号10上开始数据传输,则在符号10上发送PDCCH,该PDCCH中携带符号11的CRS序列和位置。用户设备根据符号11上的CRS的位置和序列进行在符号10上进行PDCCH盲检时可能能检测到该用户设备的PDCCH信息,从而根据 PDCCH检测结果对该用户设备在该部分子帧上传输的PDSCH进行解调。
可选地,PDCCH的传输位置应避免和UERS的位置发生碰撞。如果部分子帧的起始符号为UERS所在的符号,比如符号5或符号6,则在该部分子帧不调度采用基于UERS解调的传输模式的用户设备,即,在该部分子帧不传输UERS信号。可选地,如果部分子帧的起始符号为UERS所在的符号,比如符号5或符号6,则在符号7传输PDCCH。
基于相同的技术构思,本发明实施例还提供了可实现上述流程的基站和用户设备。
参见图6,为本发明实施例提供的一种基站的结构示意图。如图所示,基站600可实现图2所示的流程。如图所示,该基站600可包括:第一确定模块601、第二确定模块602、传输模块603,其中:
第一确定模块601,用于确定子帧中用于进行数据传输的起始符号,所述起始符号为除第一个符号以外的一个符号;
第二确定模块602,用于确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输小区专用参考信号CRS;
传输模块603,用于传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
优选地,第二确定模块602具体用于:确定所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
优选地,所述第一符号为一个子帧中的第一个符号;或者,所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号为距离所述起始符号最近的用于传 输CRS的符号。
优选地,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者,所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
优选地,所述起始符号为预定义的符号起始位置中的一个。
优选地,所述起始符号上还传输PDCCH,所述PDCCH中携带有所述子帧传输的PDSCH的调度信息。
优选地,第二确定模块602具体用于:根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
优选地,第二确定模块602具体用于:根据预先定义的参考信号图案,判断所述起始符号上是否需要传输UERS;若判断为是,则禁止在所述起始符号上传输UERS。
优选地,所述子帧占用的频谱资源为免许可频谱资源。
参见图7,为本发明实施例提供的一种基站的结构示意图。如图所示,基站700可实现图2所示的流程。
如图所示,该基站700可包括:收发器701、处理单元702和存储器703。处理单元702用于控制基站700的操作;存储器703可以包括只读存储器和随机存取存储器,用于向处理单元702提供指令和数据。存储器703的一部分还可以包括非易失行随机存取存储器(NVRAM)。基站700的各个组件通过总线系统耦合在一起,其中总线系统709除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统709。
收发器701可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。
本发明实施例揭示的基站侧实现的数据传输流程可以应用于处理单元702中,或者由处理单元702实现。在实现过程中,基站侧实现的数据传输流 程的各步骤可以通过处理单元702中的硬件的集成逻辑电路或者软件形式的指令完成。处理单元702可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器703,处理单元702读取存储器703中的信息,结合其硬件完成基站侧实现的数据传输流程的步骤。
具体地,处理单元702可被配置以执行以下流程:
确定子帧中用于进行数据传输的起始符号,所述起始符号为除第一个符号以外的一个符号;确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输CRS;通过收发器701传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
优选地,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
优选地,所述第一符号为一个子帧中的第一个符号;或者,所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
优选地,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第 一符号上所传输的CRS的序列相同;或者,所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在PRB中的时域序号进行扰码获得的。
优选地,所述起始符号为预定义的符号起始位置中的一个。
优选地,所述起始符号上还传输PDCCH,所述PDCCH中携带有所述子帧传输的PDSCH的调度信息。
优选地,处理单元702在确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列时,可根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
优选地,处理单元702确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列时,可根据预先定义的参考信号图案,判断所述起始符号上是否需要传输UERS,若判断为是,则禁止在所述起始符号上传输UERS。
优选地,所述子帧占用的频谱资源为免许可频谱资源。
参见图8,为本发明实施例提供的一种用户设备的结构示意图。如图所示,用户设备800可实现图4所示的流程。如图所示,该用户设备800可包括:接收模块801、解调模块802,其中:
接收模块801,用于接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有CRS,所述起始符号为第一个有数据传输的符号;
解调模块802,用于根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
优选地,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
优选地,所述第一符号为一个子帧中的第一个符号;或者,所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
优选地,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者,所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在PRB中的时域序号进行扰码获得的。
优选地,所述起始符号为预定义的符号起始位置中的一个。
优选地,所述起始符号上还传输PDCCH,所述PDCCH中携带有所述子帧传输的PDSCH的调度信息。
优选地,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
优选地,所述子帧占用的频谱资源为免许可频谱资源。
参见图9,为本发明实施例提供的一种用户设备的结构示意图。如图所示,用户设备900可实现图4所示的流程。如图所示,该用户设备900可包括:
如图所示,该用户设备900可包括:收发器901、处理单元902和存储器903。处理单元902用于控制用户设备900的操作;存储器903可以包括只读存储器和随机存取存储器,用于向处理单元902提供指令和数据。存储器903的一部分还可以包括非易失行随机存取存储器(NVRAM)。用户设备900的各个组件通过总线系统耦合在一起,其中总线系统909除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统909。
本发明实施例揭示的用户设备侧实现的数据传输流程可以应用于处理单元902中,或者由处理单元902实现。在实现过程中,用户设备侧实现的数据传输流程的各步骤可以通过处理单元902中的硬件的集成逻辑电路或者软 件形式的指令完成。处理单元902可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器903,处理单元902读取存储器903中的信息,结合其硬件完成用户设备侧实现的数据传输流程的步骤。
具体地,处理单元902可被配置以执行以下流程:
接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有小区专用参考信号CRS,所述起始符号为第一个有数据传输的符号;
根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
优选地,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
优选地,所述第一符号为一个子帧中的第一个符号;或者,所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者,所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
优选地,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者,所述起始符号上传输的CRS的序 列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
优选地,所述起始符号为预定义的符号起始位置中的一个。
优选地,所述起始符号上还传输PDCCH,所述PDCCH中携带有所述子帧传输的PDSCH的调度信息。
优选地,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
优选地,所述子帧占用的频谱资源为免许可频谱资源。
另一个实施例提供一种数据传输系统,该系统可以包括上述实施例中的基站和用户设备,具体基站和用户设备的实现可以参考上述实施例的描述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器,使得通过该计算机或其他可编程数据处理设备的处理器执行的指令可实现流程图中的一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图的一个流程或多个流程和/或方框图的一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (35)

  1. 一种数据传输方法,其特征在于,包括:
    基站确定子帧中用于进行数据传输的起始符号,所述起始符号为除第一个符号以外的一个符号;
    所述基站确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输小区专用参考信号CRS;
    所述基站传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
  2. 如权利要求1所述的方法,其特征在于,所述基站确定所述起始符号上传输CRS,包括:
    所述基站确定所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
  3. 如权利要求2所述的方法,其特征在于,所述第一符号为一个子帧中的第一个符号;或者
    所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
  4. 如权利要求2或3所述的方法,其特征在于,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
    所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符 号在物理资源块PRB中的时域序号进行扰码获得的。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述起始符号为预定义的符号起始位置中的一个。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,包括:
    根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述基站确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,包括:
    根据预先定义的参考信号图案,判断所述起始符号上是否需要传输用户专属参考信号UERS;
    若判断为是,则禁止在所述起始符号上传输UERS。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述子帧占用的频谱资源为免许可频谱资源。
  10. 一种数据传输方法,其特征在于,包括:
    用户设备接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有CRS,所述起始符号为第一个有数据传输的符号;
    所述用户设备根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
  11. 如权利要求10所述的方法,其特征在于,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频 域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
  12. 如权利要求11所述的方法,其特征在于,所述第一符号为一个子帧中的第一个符号;或者
    所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
  13. 如权利要求11或12所述的方法,其特征在于,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
    所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
  14. 如权利要求10至13中任一项所述的方法,其特征在于,所述起始符号为预定义的符号起始位置中的一个。
  15. 如权利要求10至14中任一项所述的方法,其特征在于,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
  16. 如权利要求10至15中任一项所述的方法,其特征在于,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
  17. 如权利要求10至16中任一项所述的方法,其特征在于,所述子帧占用的频谱资源为免许可频谱资源。
  18. 一种基站,其特征在于,包括:
    第一确定模块,用于确定子帧中用于进行数据传输的起始符号,所述起 始符号为除第一个符号以外的一个符号;
    第二确定模块,用于确定在所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的符号上传输的参考信号的位置和序列,其中,所述基站确定所述起始符号上传输小区专用参考信号CRS;
    传输模块,用于传输所述子帧中自所述起始符号开始到所述子帧的最后一个符号结束为止的所有符号。
  19. 如权利要求18所述的基站,其特征在于,所述第二确定模块具体用于:
    确定所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
  20. 如权利要求19所述的基站,其特征在于,所述第一符号为一个子帧中的第一个符号;或者
    所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
  21. 如权利要求19或20所述的基站,其特征在于,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
    所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
  22. 如权利要求18至21中任一项所述的基站,其特征在于,所述起始符号为预定义的符号起始位置中的一个。
  23. 如权利要求18至22中任一项所述的基站,其特征在于,所述起始 符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
  24. 如权利要求18至23中任一项所述的基站,其特征在于,所述第二确定模块具体用于:
    根据预先定义的参考信号图案,确定所述起始符号之后的符号上传输的参考信号的位置和序列。
  25. 如权利要求18至24中任一项所述的基站,其特征在于,所述第二确定模块具体用于:
    根据预先定义的参考信号图案,判断所述起始符号上是否需要传输用户专属参考信号UERS;若判断为是,则禁止在所述起始符号上传输UERS。
  26. 如权利要求18至25中任一项所述的基站,其特征在于,所述子帧占用的频谱资源为免许可频谱资源。
  27. 一种用户设备,其特征在于,包括:
    接收模块,用于接收子帧;其中,所述子帧中自起始符号开始至所述子帧的最后一个符号结束为止的符号上传输有参考信号,所述子帧中的起始符号上传输有小区专用参考信号CRS,所述起始符号为第一个有数据传输的符号;
    解调模块,用于根据所述参考信号对所述子帧中自所述起始符号开始至所述子帧的最后一个符号结束为止的符号进行解调。
  28. 如权利要求27所述的用户设备,其特征在于,所述起始符号上传输的CRS的频域位置与参考信号图案中用于传输CRS的第一符号上所传输的CRS的频域位置相同;其中,所述第一符号的时域位置是预先约定的,或者所述第一符号的时域位置是根据所述第一符号与所述起始符号之间的时域位置关系确定的。
  29. 如权利要求28所述的用户设备,其特征在于,所述第一符号为一个子帧中的第一个符号;或者
    所述第一符号在所述起始符号之后,且是距离所述起始符号最近的用于 传输CRS的符号;或者
    所述第一符号在所述起始符号之前,且是距离所述起始符号最近的用于传输CRS的符号;或者
    所述第一符号为距离所述起始符号最近的用于传输CRS的符号。
  30. 如权利要求28或29所述的用户设备,其特征在于,所述起始符号上传输的CRS的序列,与所述用于传输CRS的第一符号上所传输的CRS的序列相同;或者
    所述起始符号上传输的CRS的序列生成的初始化参数是通过所述起始符号在物理资源块PRB中的时域序号进行扰码获得的。
  31. 如权利要求27至30中任一项所述的用户设备,其特征在于,所述起始符号为预定义的符号起始位置中的一个。
  32. 如权利要求27至31中任一项所述的用户设备,其特征在于,所述起始符号上还传输物理下行控制信道PDCCH,所述PDCCH中携带有所述子帧传输的物理下行共享信道PDSCH的调度信息。
  33. 如权利要求27至32中任一项所述的用户设备,其特征在于,所述起始符号之后的符号上传输的参考信号的位置和序列,是根据预先定义的参考信号图案确定的。
  34. 如权利要求27至33中任一项所述的用户设备,其特征在于,所述子帧占用的频谱资源为免许可频谱资源。
  35. 一种数据传输系统,包括如权利要求18至26中任一项所述的基站和如权利要求27至34中任一项所述的用户设备。
PCT/CN2015/086969 2015-08-10 2015-08-14 一种数据传输方法、装置和系统 WO2017024597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580071646.1A CN107113780A (zh) 2015-08-10 2015-08-14 一种数据传输方法、装置和系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015086539 2015-08-10
CNPCT/CN2015/086539 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017024597A1 true WO2017024597A1 (zh) 2017-02-16

Family

ID=57982840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086969 WO2017024597A1 (zh) 2015-08-10 2015-08-14 一种数据传输方法、装置和系统

Country Status (2)

Country Link
CN (1) CN107113780A (zh)
WO (1) WO2017024597A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753370B (zh) * 2019-09-12 2022-12-16 海能达通信股份有限公司 数据传输方法及其系统以及基站、终端和存储装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877865A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 发送测量参考信号的方法、系统以及基站和中继站
WO2013166655A1 (zh) * 2012-05-08 2013-11-14 华为技术有限公司 传输crs的子帧确定方法及设备
US20140321345A1 (en) * 2012-01-31 2014-10-30 Fujitsu Limited Signaling indication method for downlink power allocation, enb and user equipment
WO2015116789A1 (en) * 2014-01-31 2015-08-06 Intel IP Corporation Systems, methods and devices for channel reservation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877865A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 发送测量参考信号的方法、系统以及基站和中继站
US20140321345A1 (en) * 2012-01-31 2014-10-30 Fujitsu Limited Signaling indication method for downlink power allocation, enb and user equipment
WO2013166655A1 (zh) * 2012-05-08 2013-11-14 华为技术有限公司 传输crs的子帧确定方法及设备
WO2015116789A1 (en) * 2014-01-31 2015-08-06 Intel IP Corporation Systems, methods and devices for channel reservation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project: Technical Specification Group Radio Access Network Study on Licensed-Assisted Access to Unlicensed Spectrum; (Release 13", 3GPP TR 36.889 V13.0.0, 30 June 2015 (2015-06-30), XP055343851 *
RAN: "LS on Licensed-Assisted Access", 3GPP TSG-RAN MEETING #68, RP-151098, 18 June 2015 (2015-06-18), XP055350701 *

Also Published As

Publication number Publication date
CN107113780A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US11973701B2 (en) Method for uplink channel access to unlicensed band in wireless communication system, and device therefor
JP6783859B2 (ja) 共有通信媒体上のランダムアクセスチャネルパラメータのシグナリング
JP6888022B2 (ja) キャリアアグリゲーションに関するサウンディング基準信号送信
CN107534516B (zh) 用于接收控制信令的方法和设备
US11102817B2 (en) System and method for supporting bursty communications in wireless communications systems
CN107005960B (zh) 用于无授权频段中的lte操作的信道使用指示和同步
US10334627B2 (en) Method and apparatus for enhanced uplink reference signal in listen-before-talk systems
EP3146783B1 (en) Techniques for managing resources for uplink transmissions in a shared radio frequency spectrum band
JP6656407B2 (ja) 上りリンク情報送信方法および上りリンク情報送信装置ならびに上りリンク情報受信方法および上りリンク情報受信装置
US10637626B2 (en) Method for indicating uplink subframe on unlicensed spectrum and base station
KR101965945B1 (ko) 비허가된 라디오 주파수 스펙트럼 대역을 이용하는 송신들을 위해 프레임 구조 및 리슨-비포-토크 프로시저 (lbt) 를 향상시키는 기법들
CN105515741B (zh) 一种在非授权频段上的数据传输方法及装置
WO2018059412A1 (zh) 上行信号传输方法、装置、系统、通信设备及存储介质
WO2016070436A1 (zh) 数据传输方法和数据传输设备
TW202014037A (zh) 無線通訊裝置、無線通訊方法及電腦程式
CN109561496B (zh) 一种laa-lte系统数据传输方法、终端及基站
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
KR20170098891A (ko) 메시지 전송 방법 및 장치
CN107926042B (zh) 一种用于无线通信系统的发送器和接收器
KR20160139188A (ko) 비면허 대역의 상호공존 자원 할당 장치 및 방법
EP3357184B1 (en) Method, apparatus and computer program for transmitting physical layer signals
WO2020063482A1 (zh) 传输随机接入信号的方法和装置
WO2016180122A1 (zh) 一种利用非授权载波发送信号的方法和装置
EP3444988B1 (en) System information sending method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900795

Country of ref document: EP

Kind code of ref document: A1