WO2013165116A1 - Solar collector and heat collecting system comprising same - Google Patents

Solar collector and heat collecting system comprising same Download PDF

Info

Publication number
WO2013165116A1
WO2013165116A1 PCT/KR2013/003482 KR2013003482W WO2013165116A1 WO 2013165116 A1 WO2013165116 A1 WO 2013165116A1 KR 2013003482 W KR2013003482 W KR 2013003482W WO 2013165116 A1 WO2013165116 A1 WO 2013165116A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
collector
solar
medium
collecting tube
Prior art date
Application number
PCT/KR2013/003482
Other languages
French (fr)
Korean (ko)
Inventor
안익로
Original Assignee
Ahn Ik-Ro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahn Ik-Ro filed Critical Ahn Ik-Ro
Priority to CN201380026935.0A priority Critical patent/CN104350337A/en
Publication of WO2013165116A1 publication Critical patent/WO2013165116A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • F24D11/007Central heating systems using heat accumulated in storage masses air heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0015Domestic hot-water supply systems using solar energy
    • F24D17/0021Domestic hot-water supply systems using solar energy with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/20Solar heat collectors using working fluids having circuits for two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • F24S80/525Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a solar heat collector and a heat collecting system including the same, and more particularly, to a solar heat collector and a heat collecting system including the same, the structure of which is simple, inexpensive and easy to install.
  • FIG. 1 is a schematic diagram of a conventional pneumatic solar collector.
  • the collector is a device that converts direct sunlight or scattered light of the sun into thermal energy, which can be said to be the most essential part in constructing a solar heat collecting system.
  • the pneumatic solar collector 100 has a case 110, which is usually made of a flat box of a hexahedron, and has a heat collecting duct 120 configured to collect heat by flowing air that is a heat medium therein, and an inlet and an inlet for entering and exiting air. An outlet is provided.
  • the collecting surface of the pneumatic solar collector is covered with transparent glass or polycarbonate, and the other surfaces except the collecting surface are usually insulated using a support to prevent heat loss.
  • the heat collecting duct 120 is bent and zigzag formed in the case 110 using a material having good heat transfer efficiency such as aluminum.
  • Pneumatic solar collectors are usually installed at an angle with respect to the ground, but may be installed to be perpendicular to the ground when the reflecting plate 130 is placed as shown in FIG.
  • Direct sunlight, reflected light, or scattered light from the sun passes through the glass cover to reach the heat collecting duct and is converted into thermal energy.
  • some sunlight heats the air inside the collector due to the greenhouse effect, and heat is transferred to the collecting duct by convection and conduction of the heated air. This heat heats the air entering the collecting duct through the inlet. The heated air exits the collector through the outlet and, if necessary, is used for heating or hot water production.
  • the conventional solar collector has a problem that the manufacturing cost is expensive using glass, metal, wood and the like.
  • the shape since the shape is fixed, it is installed in a limited place such as a roof of a building, which has a problem in that the amount of heat is limited.
  • the structure of the collector in which the structure of the collector is simple, the structure is not as complicated as that of the other embodiments, but there is a problem in that the collecting performance as desired is not obtained.
  • Still another object of the present invention is to provide a collector that is easy to move, install and store.
  • Solar collector for achieving the above object, and a heat collecting medium that is a heat transfer medium therein and a heat collecting tube of a flexible material for receiving solar heat;
  • the length of the protective film is relatively long compared to the width, it is preferable that both ends of the protective film in the longitudinal direction is open.
  • the protective film is preferably made of a transparent or translucent material so that light can pass through.
  • a portion of the protective film is preferably attached to one side of the insulating film is fixed or detachably connected.
  • the solar collector may further include a second reflecting film installed at a bottom of one side of the heat insulating film and reflecting sunlight to the heat collecting tube or the first reflecting film.
  • the solar collector further includes a base film installed on the ground to prevent moisture penetration from the ground and to reduce heat loss, and the second reflective film is provided on a portion of the base film.
  • the solar collector preferably further includes a fixed membrane provided on both sides of the base membrane so as to pull the protective film taut.
  • the heat collecting medium is water or air
  • the insulating gas is air.
  • a device for injecting water at a pressure higher than atmospheric pressure into the collecting tube may be connected to the collecting tube.
  • At least one end of the heat collecting tube is provided with a heat collecting medium inlet
  • at least one end of the heat insulating film is preferably provided with a heat insulating gas inlet.
  • the other end of the heat collecting tube may be made to be clogged.
  • the protective film may be formed to surround a lower portion of the heat insulating film together with a ground that is connected to an outer surface of the heat insulating film.
  • the solar collector may further include a closure member connected to the heat collecting tube and the heat insulating film and having a heat collecting medium inlet and a heat insulating gas inlet at one side thereof.
  • the solar collector according to another embodiment of the present invention includes a heat collecting tube of a flexible material that receives solar heat by collecting a heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas therein; Is provided on a portion of the heat insulating film, and includes a first reflective film of a flexible material for reflecting the sunlight around the heat collecting tube to the heat collecting tube, air is used as the heat collecting medium, one side of the heat collecting tube into the heat collecting tube A vent is formed to allow the air introduced to flow into the space between the heat collecting tube and the heat insulating film.
  • the vent is preferably installed with a check valve to prevent the air introduced into the thermal insulation film to flow out again.
  • Solar collector according to another embodiment of the present invention, a heat collecting tube that receives the heat from the heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas; A first reflecting film provided on a portion of the insulating film and reflecting sunlight around the collecting tube to the collecting tube; A base membrane installed on the ground to prevent moisture penetration from the ground and to reduce heat loss; A second reflection film provided on a portion of the base film to reflect sunlight to the heat collecting tube or the first reflection film.
  • the solar heat collecting system includes a solar heat collector which collects heat by receiving solar heat using a heat collecting medium; A heat storage device connected to the solar heat collector and configured to heat-exchange the heat collecting medium of the heat collector to heat the heat collecting medium to the heat storage medium; And a connection device for circulating the heat collecting medium of the heat collector to the heat storage device, wherein the solar heat collecting device includes a heat collecting tube made of a flexible material that receives heat from the heat collecting medium, which is a heat transfer medium, and the heat collecting tube.
  • connection device includes: a first flow path connected to a lower portion of the heat storage device to supply a relatively low temperature liquid; A second flow passage connected to an upper portion of the heat storage device and configured to collect liquid in the heat collector to supply relatively high temperature liquid to the heat storage device; A third flow passage connected to a collecting tube of the collector to supply a liquid supplied from the first passage to the collecting tube; A three-way valve installed at a place where the first flow passage, the second flow passage, and the third flow passage meet to control a flow direction of the liquid; It is preferable to include a pump for collecting the collected heat collecting medium in the heat collecting tube to the upper portion of the heat storage device via the third flow path
  • the solar collector includes a first collector using water as a collecting medium and a second collector using air as a collecting medium, and the air in the heat collecting tube of the second collector is air in the insulating film of the first collector.
  • Can be circulated in conjunction with The solar collector uses air as a heat collecting medium
  • the heat storage device uses water as a heat storage medium
  • the air in the heat collecting tube of the solar heat collector may be heat-exchanged with water circulating in the heat storage device.
  • the solar heat collector for collecting heat by receiving solar heat using a heat collecting medium;
  • a heat storage device connected to the solar heat collector and configured to circulate and heat-exchange the heat collecting medium of the heat collector to heat the heat of the heat collecting medium to a heat storage medium in a liquid state;
  • a connection device for connecting the heat collecting medium of the heat collector to circulate the heat storage device, wherein the heat storage medium is injected into the lower portion and the heat collecting medium flows to the upper portion thereof by direct contact with the heat storage medium.
  • It includes a heat storage tube of a flexible material configured to heat exchange.
  • the heat storage device may further include a heat storage heat insulating film made of a flexible material connected to surround at least an upper portion of the heat storage tube to receive a heat insulating gas therein.
  • the heat storage device may further include a support formed to surround the bottom of the heat storage tube so that the heat storage tube is seated.
  • Solar collector according to another embodiment of the present invention, a heat collecting tube of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein, and a flexible material surrounding the heat collecting tube, the heat insulating gas contained therein
  • a first collector comprising a heat insulating film of a flexible material and a reflective film of a flexible material provided on a portion of the heat insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube;
  • a second collector including a reflective film made of a flexible material for reflecting the sunlight around the collector tube to the collector tube, wherein the collector medium in the collector tube of the second collector is in communication with the inside of the heat collector membrane of the first collector.
  • FIG. 1 is a schematic view of a solar collector according to the prior art.
  • Figure 2 is a perspective view showing a solar collector according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view separately showing each part constituting the solar collector of FIG.
  • FIG. 4 is a cross-sectional view of the solar collector of FIG.
  • FIG. 5 is a schematic view showing a solar heat collecting method using a modification of the solar heat collector of FIG.
  • Figure 6 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a second embodiment of the present invention.
  • FIG. 7 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a third embodiment of the present invention.
  • FIG. 8 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a solar collector according to a fifth embodiment of the present invention.
  • Figure 10 is a perspective view showing the end cap member that can be mounted to the solar collector according to the sixth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a solar collector according to a seventh embodiment of the present invention.
  • FIG. 12 is a schematic view of a plurality of solar collectors according to the present invention.
  • FIG. 13 is a schematic view showing a solar heat collecting system according to a first embodiment of the present invention.
  • FIG. 14 is a schematic view showing a solar heat collecting system according to a second embodiment of the present invention.
  • FIG. 15 is a schematic view showing a solar heat collecting system according to a third embodiment of the present invention.
  • FIG. 16 is a schematic view showing a solar heat collecting system according to a fourth embodiment of the present invention.
  • FIG 17 is a schematic view showing a solar heat collecting system according to a fifth embodiment of the present invention.
  • FIG. 18 is a perspective view of a heat storage device according to a fifth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of a heat storage device according to a fifth embodiment of the present invention.
  • the solar collector 200 includes a heat collecting tube 210 of a flexible material for receiving solar heat by collecting a heat collecting medium that is a heat transfer medium therein; A heat insulating film 220 surrounding the heat collecting tube and accommodating a heat insulating gas therein; A first reflective film 230 of a flexible material provided on a portion of the heat insulating film and reflecting sunlight around the heat collecting tube to the heat collecting tube; A protective film 240 made of a flexible material surrounds the thermal insulation film with the ground to be installed and accommodates the thermal insulation gas between the thermal insulation film and the ground.
  • the heat collecting tube 210 accommodates a heat collecting medium that receives solar heat therein.
  • the collecting tube 210 is preferably made of a black material so as to absorb the solar heat well.
  • a heat collecting medium which is a heat transfer medium accommodated in the heat collecting tube 210 it is preferable to use water or air which can be easily obtained from the surroundings.
  • the collecting tube 210 is preferably made of a flexible material to swell when the collecting medium is put.
  • the flexible collecting tube 210 may swell according to the pressure of the air injected into the collecting tube 210, and may have a desired shape. Pressing the collecting tube 210 from the outside or by generating a negative pressure with a blower or the like can extract the air.
  • Even in the case of using water as a collecting medium when the water is raised by solar heat in the collecting tube 210 to be replaced with cold water, the water may be pressed out from the outside or a negative pressure may be generated by a pump or the like.
  • the heat insulating film 220 surrounds the heat collecting tube 210 and accommodates the heat insulating gas between the heat collecting tube 210 and the inside.
  • the thermal insulation film 220 is made of a transparent material to allow sunlight to pass through, and preferably made of a flexible material so as to be inflated by a heat insulating gas. Examples of such materials include vinyl resin or rubber. have. Both ends of the thermal insulation film 220 are blocked to form an enclosed space surrounding the heat collecting tube 210. Filling or flowing the insulating gas in the heat insulating film 220 may increase the heat insulating film 220 surrounding the heat collecting tube 210 to swell, thereby reducing the loss of heat of the heat collecting tube 210 toward the cold outside air. .
  • the heat collecting tube 210 disposed inside the heat insulating film 220 is in contact with an inner surface of the heat insulating film 220 placed on the ground by gravity.
  • the outer surface of the heat collecting tube 210 is preferably not in contact with the inner surface of the heat insulating film 220, but if there is no component fixing the heat collecting tube 210, the heat collecting tube 210 is the heat insulating film 220 will be in contact with the thermal insulation film 220 at the site in contact with the ground.
  • the heat collecting tube 210 is surrounded by the insulating film 220.
  • the first reflecting film 230 is provided on a portion of the insulating film 220 to reflect the sunlight around the heat collecting tube 210 to the heat collecting tube.
  • the first reflection film 230 is provided on the approximately left half surface of the insulation film 220 and is formed on the outer surface of the insulation film 220 when the insulation film 220 has a cylindrical shape.
  • the first reflective film 230 may be coated with a reflective paint on the insulating film 220, or may be coated, laminated or attached with a reflective material such as an aluminum sheet, or may deposit a reflective material such as aluminum. As illustrated in FIG.
  • the first reflective film 230 may be formed on the inner surface of the insulating film 220.
  • the heat insulating film 220 is preferably made of a semi-finished product in which the first reflecting film 230 is attached, laminated, painted, or deposited, because it is easy to install a collector.
  • the protective film 240 surrounds the insulating film 220 together with the ground on which the protective film 240 is installed, and accommodates the insulating gas in a space formed by the protective film 240, the insulating film 220, and the ground.
  • the protective film 240 is also preferably made of a transparent or translucent flexible material. As shown in FIG. 4, a portion of the passivation layer 240 may be in contact with the insulating layer 220.
  • the protective film 240 may be made to be spaced a predetermined distance without being in contact with the insulating film 220. To this end, it may be installed using a separate fixing member (not shown) for fixing the upper end of the protective film 240, so that the protective film 240 is spaced apart from the insulating film 220 by the air pressure injected therein.
  • a separate fixing member not shown
  • the protective film 240 may cover an upper portion of the insulating film 220, and may be installed to form an inclined surface that is inclined downward in both sides.
  • the passivation layer 240 mainly keeps a role of keeping warm because it is spaced apart from the side of the heat insulating film 220 to form a heat insulating space.
  • an inclined surface surrounding the thermal insulation film 220 is formed to allow snow or rain to flow along the inclined surface.
  • 240 also serves to "protect" the thermal insulation film 220, so the name is "protective film”.
  • the protective film 240 may be installed in a form in which both ends in the longitudinal direction is open. Some heat loss may occur through the open portions near both ends of the passivation layer 240.
  • a portion of the passivation layer 240 may be attached to one side of the insulation layer 220 to be fixed or detachably connected.
  • the insulating film is simply placed in contact with the upper portion of the insulating film 220.
  • the protective film 240 is disposed at an upper end of the insulating film 220. It is preferred to be attached or connected.
  • the collector 200 preferably further includes a base film 250 that is installed on the ground to prevent moisture penetration from the ground and reduce heat loss. As shown in FIGS. 2 and 4, the base layer 250 may have a width corresponding to a width between both ends of the passivation layer 240.
  • the base film 250 is laid on the ground on which the collector is installed, and does not need to be made of a transparent or flexible material.
  • the base film 250 is preferably made of a material capable of blocking moisture and cold air from the ground.
  • the base film 250 may also be made of the same material as the heat insulating film or the protective film.
  • the solar collector 200 may further include a second reflective film 260 provided on a portion of the base film 250 to reflect sunlight to the heat collecting tube 210 or the first reflective film 230. Do.
  • the second reflective film 260 may be coated with a reflective paint on a portion of the base film 250, as in the first reflective film 230, or may be coated, laminated, or adhered to a reflective material such as an aluminum sheet. It is also possible to deposit reflective materials.
  • the second reflective film 260 may be configured so that the second reflective film 260 itself may be made of a material capable of reflecting sunlight without the base film 250.
  • the second reflective film 260 is provided on a part of the right side of the base film 250.
  • the altitude is the highest and the solar heat is strongest so that the heat collecting tube 210 is installed in the east and west so as to efficiently receive the solar heat, and the second reflecting film 260 is located on the right bottom of the heat collecting tube 210. That is, it is preferable to be installed in the south.
  • the solar collector 200 may further include a fixed membrane 270 that is provided on both sides of the base layer 250 so as to pull the protective layer 240 tightly and is fixed to the ground.
  • the fixed membrane 270 may be buried in the ground or placed on a fixed object by placing a heavy object on the fixed membrane 270.
  • the pinned layer 270 may be connected to both ends of the passivation layer 240 so as to be pulled tight when the passivation layer 240 is inflated.
  • the fixed layer 270 may be integrally formed with the protective layer 240 so that both ends of the protective layer 240 may be fixed to the ground.
  • the base film 250 may be formed of a transparent or translucent film, and may further include a reflective film attaching film (not shown) formed under the base film 250 to be substantially the same size as the base film 250 and laid on the ground. have. It will be appreciated that a portion of the reflective film attaching film may be provided with the second reflective film 260 to reflect the sunlight to reflect toward the heat collecting tube 210.
  • the heat collecting tube 210 and the base film 250 is preferably made of a black material so as to absorb the solar heat well. Referring to Fig. 5 will be described the heat collecting action using the solar heat collector of the present invention. In the solar collector according to the first embodiment of the present invention, it is shown that the sunlight reaches the collecting tube directly or by reflection. In FIG.
  • Sunlight A is a direct sunlight that passes directly through the passivation layer 240 and the insulation layer 220 to directly shine the heat collecting tube 210.
  • the sunlight B passes through the passivation layer 240 and the insulating layer 220 and is reflected by the first reflecting layer 230 and directed toward the heat collecting tube 210.
  • the sunlight C passes through the passivation layer 240, is reflected by the second reflecting layer 260, passes through the insulating layer 220, and is directed toward the heat collecting tube 210.
  • the sunlight D passes through the passivation layer 240, is reflected by the second reflecting layer 260, passes through the insulating layer 220, and is reflected by the first reflecting layer 230, and then directed to the heat collecting tube 210.
  • the solar collector of the present invention it is possible to allow the sunlight of a relatively wide width to reach the collector tube 210 by the two reflective films. Since the heat collecting tube 210 is made of a black material, the solar energy reaching the heat collecting tube 210 may be absorbed by the heat collecting tube 210. Further, it is preferable that one end of the heat collecting tube 210 is provided with a heat collecting medium inlet 212, and one end of the heat insulating film 220 is provided with a heat insulating gas inlet 222.
  • the heat collecting medium access part 212 may be connected to a connection tube provided at both ends of the heat collecting tube 210 and connected to a heat storage device, which will be described later, of the heat collecting tube 210. It may be provided only at one end (see Fig. 8).
  • the collecting medium access part 212 may be formed to be screwed or fastened with a clamp or the like by using a rubber band to facilitate coupling with the connection tube. Of course, not all of the sunlight passing through the passivation layer 240 and incident to the collector may reach the collector tube 210.
  • the solar collector according to the present invention not only the direct light and the scattered light but also the reflection by the planar second reflecting film 260 located on the front of the collecting tube and the concave curved first reflecting film 230 located on the back By the reflected light through the reflected light can also be collected.
  • the insulating film 220, the protective film 240, the base film 205, the fixed film 207 of each component constituting the collector 200 may be permanently bonded to each other by thermal bonding or adhesive, It is also possible to manufacture by detachable coupling using a velcro or zipper. The advantage of the detachable manufacturing is not only to replace a damaged component during use with a new product, but also to accumulate snow accumulated on the collector 200, for example.
  • FIG. 6 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a second embodiment of the present invention.
  • the same air as the warming gas is used as the heat collecting medium injected into the heat collecting tube 210, and water is introduced into the heat collecting tube 210 on one side of the heat collecting tube 210.
  • Ventilation holes 214 are formed to allow air to be discharged into the space between the heat collecting tube 210 and the heat insulating film 220.
  • the heat collecting medium enters at both ends of the heat collecting tube 210.
  • FIG. 7 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a third embodiment of the present invention.
  • a check valve 216 is additionally installed in the solar collector shown in FIG. 6 to prevent the air introduced into the thermal insulation film 220 from flowing out again. According to the check valve 216, even if the air pressure inside the heat collecting tube 210 drops, it is possible to prevent the air once injected into the thermal insulation film 220 is released. On the other hand, when it is necessary to remove the air, which is the thermal insulation gas injected into the thermal insulation film 220, it is possible to push the straw or the like into the check valve 216 to allow the air to escape.
  • 8 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a fourth embodiment of the present invention.
  • the collecting medium entrance part 212 is provided only at one end of the collecting tube 210, and the other end 218 is blocked.
  • the insulating gas inlet 222 is provided at one end of the thermal insulation film 220. Therefore, when water or air is injected into the collecting medium through the collecting medium inlet 212, and when the collecting medium is extracted, if the negative pressure is formed on the collecting medium inlet 212, the collecting tube 210 is made of a flexible material. Since it is compressed so that the heat collecting medium therein is pulled out. The heat insulating gas is injected through the heat insulating gas inlet 222 separately from the heat collecting medium.
  • 9 is a cross-sectional view showing a solar collector according to a fifth embodiment of the present invention.
  • the protective layer 240 is not provided to cover the upper portion of the insulating layer 220 and covers the upper side of the insulating layer 220.
  • the first reflective film 230 is provided on the inner surface of the insulating film 220 rather than the outer surface of the heat insulating film 220 to avoid interference with the protective film 240.
  • the protective film 240 is installed to heat the heat collecting tube 210 while protecting the heat insulating film 220, the heat collecting tube 210 is disposed on the inner bottom of the heat insulating film 220. Since the upper part of the heat collecting tube 210 is installed to have a sufficient distance from the heat insulating film 220, the protective film 240 is sufficient to achieve the upper heat insulating function of the heat collecting tube even if it does not cover the top surface of the heat insulating film 220 can do. Therefore, in the present exemplary embodiment, the protective film 240 may be connected to the side surface of the heat insulating film 220 to protect the heat insulating film 220 while keeping the side and the bottom of the heat collecting tube 210 warm. .
  • FIG. 10 is a perspective view showing a distal end cap member that can be mounted to the solar collector according to the sixth embodiment of the present invention.
  • a stopper member 290 having a heat collecting medium access part 292 and a heat insulating gas access part 294 is coupled to one end of the heat collecting tube 210 and the heat insulating film 220. do.
  • the stopper member 290 is provided with a stopper body 291 inserted into one end of the heat insulating film 220 and a collecting tube coupling part 293 inserted into one end of the collecting tube 210.
  • a clogging end portion of the plug body 291 is provided with a collecting medium access part 292 formed to communicate with the collecting tube coupler 293, and may be connected to a connection tube (not shown) forming a flow path of the collecting medium.
  • the insulating gas inlet 294 may be provided, and thus, insulating gas such as air may be injected.
  • the heat collecting tube and the heat insulating film can be manufactured to a considerable length in a constant cross-sectional shape consisting of a thin film. Therefore, productivity can be improved, and the efficiency of installation work can be improved because the heat collecting tube, the heat insulating film, etc. can be cut to the required length according to the conditions of the installation site.
  • the stopper member 290 should be connected to the airtight tube and the heat insulating film to be hermetically described.
  • the method of connecting the stopper member 290 is as follows. First, the collection tube coupling portion 293 is inserted into one end of the collection tube 210 and tightened with a clamp or bundled using a rubber band or the like on the outer side of the collection tube 210.
  • FIG. 11 is a cross-sectional view showing a solar collector according to a seventh embodiment of the present invention.
  • the solar collector of the present embodiment two or more insulating films 2201 and 2202 and heat collecting tubes 2101 and 2102 are provided in one protective film 240.
  • each of the insulating films 2201 and 2202 is provided with first reflecting films 2301 and 2302, and a portion of the upper surface of one base film 250 is provided with a second reflecting film 2601 and 2602 on the right side of the insulating films 2201 and 2202, respectively.
  • FIG. 12 is a schematic diagram of a plurality of solar collectors according to the present invention.
  • a plurality of solar collectors 201, 202, 203, 204, 205, and 206 are connected in parallel or in series to be installed over a large area, thereby collecting a large amount of solar energy even when the incident density of sunlight is low.
  • four solar collectors 201, 202, 203, and 204 are connected in parallel to each other, and two solar collectors 205 and 206 are connected in series to each other.
  • the lines connected between the plurality of solar collectors represent the connection tubes 2000 of the collecting medium.
  • the number and connection method of these solar collectors may be appropriately selected in consideration of the amount of solar energy to be collected and the state of the installation site. .
  • the solar collector including the insulation film 220 and the protection film 240 is described at the same time.
  • the solar collector may include a solar heat collector having only the insulation film 220 without the protection film 240.
  • the second reflective film 260 is preferably provided in addition to the first reflective film 230, and the insulating gas is injected only into the insulating film 220.
  • the protective film 240 is not provided. Because of this it can be more affected by rain or snow and can not receive the warming effect of the protective film, but if it does not require high heat collection performance can be useful because it can be installed in a simple configuration.
  • FIG. 13 is a schematic view showing a solar heat collecting system according to a first embodiment of the present invention.
  • a solar heat collector 200 that collects heat by receiving solar heat using a heat collecting medium and a heat collecting medium connected to the heat collector and circulating and heat-exchanging the heat collecting medium of the heat collector
  • a heat storage device 500 for accumulating the heat in the heat storage medium a connection device 600 for connecting the heat collecting medium of the heat collector to the heat storage device, and a control device for controlling the supply and circulation of the heat collecting medium ( 700).
  • embodiments related to the above-described solar heat collector may be applied.
  • the solar collector 200 may be configured in the same manner as the solar collector according to the first embodiment shown in FIGS. 2 to 5, but strictly the fourth end of FIG. 8 in which the other ends of the collector tube and the heat insulating film are blocked.
  • the solar collector according to the embodiment is schematically shown. Since the solar collector 200 is as described above, a redundant description thereof will be omitted.
  • the heat storage device 500 uses water as a heat storage medium to sequentially heat the water heated by the solar heat collector 200 to gradually increase the temperature of the water. To this end, the heat storage device 500 and the solar heat collector 200 are connected by a connection device 600 for moving water by forming a flow path through which water, which is a heat collecting medium and a heat storage medium, can move.
  • connection device 600 is connected to circulate the heat collecting medium of the heat collector to the heat storage device, and the "circulation" is injected by collecting the heat storage medium in the heat storage device as a heat collecting medium to the heat collector, and then extracts the heat storage again.
  • the concept involves storing on a device.
  • connection device 600 is connected to a lower portion of the heat storage device and has a relatively low temperature liquid.
  • a third passage 630 connected to a collecting tube 210 to supply a liquid supplied from the first passage to the collecting tube, and a place where the first passage, the second passage, and the third passage meet;
  • Three-way valve 640 for controlling the flow direction of the pump, and the pump 650 to raise the heat collecting medium collected in the heat collecting tube 210 to the upper portion of the heat storage device 500 through the third and second flow paths It is preferable to include).
  • the control device 700 controls the supply and circulation of the heat collecting medium.
  • Temperature sensors 710 and 720 for measuring the water temperature inside the solar heat collector 200 and the water temperature inside the heat storage device 500. It is preferable that each be provided.
  • the controller 700 may control the supply and circulation of water by controlling the operation of the three-way valve 640 and the pump 650 according to the difference in temperature values measured by the temperature sensors 710 and 720. have.
  • the operation of the solar heat collecting system according to the present invention will be described.
  • the liquid used as the collecting medium will be described as being limited to water.
  • the second flow path 610 connected to the top of the heat storage device 500 by operating the three-way valve 640 is closed, and the first flow path 610 and the bottom connected to the bottom of the heat storage device 500.
  • the third flow passage 630 connected to the heat collecting tube of the solar heat collector 200 is connected, the water is supplied into the heat collecting tube 210 of the solar heat collector 200 by the pressure of the water stored in the heat storage device 500. do.
  • the three-way valve 640 By changing the flow path, the first flow path 610 is closed and the second flow path 620 and the third flow path 630 connected to the upper portion of the heat storage device 500 communicate with each other.
  • the pump 650 is operated to draw up the water in the heat collecting tube and send the water to the heat storage device 500.
  • the flow path of the three-way valve 640 is changed again to collect the heat collecting tube of the solar heat collector 200 (
  • the water is supplied to 210 again to repeat the collection process.
  • the temperature of the water stored in the heat storage device 500 is gradually increased. Since the higher the temperature, the lower the density of the water when the water is higher than 4 °C, the water of the lower temperature is lowered inside the heat storage device 500 and the water of the higher temperature is raised.
  • the water supplied to the solar collector 200 for collecting heat from the heat storage device 500 may be supplied with water of a relatively low temperature.
  • the controller 700 controls the operation of the three-way valve 640 and the pump 650 according to the difference between the two temperature sensors 710 and 720, but the temperature of the water in the heat storage device 500 is gradually increased.
  • the difference will be smaller. Therefore, it may be desirable to gradually set the difference value, which is a reference value applied to the control, according to the temperature of the water in the heat storage device 500.
  • the operation of the heat collecting system may be controlled based on the temperature of the water in the heat storage device 500, not a difference value between the water temperature in the heat collector 200 and the water temperature in the heat storage device 500. Of course. In this case, the heat collecting system may be operated until the temperature of the water in the heat storage device 500 is higher than or equal to a predetermined temperature, and then stopped when the predetermined temperature is reached.
  • the collector tube 210 of the solar collector 200 is made of a flexible material, when a liquid such as water is used as the collector medium, a device for injecting water at a pressure higher than atmospheric pressure into the collector tube 210 to be connected. There is a need.
  • the three-way valve 640 is operated to connect only the first flow path 610 and the third flow path 630, and automatically the pressure of the water inside the heat storage device 500. Water is injected into the collecting tube 210 to inflate the collecting tube. Accordingly, the heat storage device 500 serves to inject water into the collecting tube 210 at a pressure higher than atmospheric pressure.
  • FIG 14 is a schematic view showing a solar heat collecting system according to a second embodiment of the present invention.
  • the present embodiment differs from the first embodiment in that the solar collector is composed of two of the first collector and the second collector.
  • the solar heat collector has a heat collecting medium that is a heat transfer medium therein, a heat collecting tube 310 made of a flexible material that receives solar heat, and surrounds the heat collecting tube and has a heat insulating gas therein.
  • a first collector 300 provided at a part of the insulating film for accommodating a flexible material, and a reflective film made of a flexible material provided on a portion of the insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube;
  • a second collector 400 is provided on a portion of the film and includes a reflective film of a flexible material that reflects the sunlight around the collection tube to the collection tube.
  • the collecting medium in the collecting tube 410 of the second collector 400 is circulated in communication with the inside of the insulating film 320 of the first collector 300. That is, as the heat collecting medium of the second collector 400, the same material as that of the warming gas of the first collector 300 is used. For example, it is preferable to use air common in the surroundings. Water or air may be used as the heat collecting medium of the first collector 300. In the illustrated embodiment, when liquid water is used as the heat storage medium of the heat storage device 500 and the heat collecting medium of the first collector 300. It is shown. As shown in FIG. 14, one end of the collecting tube of the first collector 300 is connected to the third passage 630, and the other end thereof is blocked.
  • Both ends of the insulating film 320 of the first collector 300 are connected to the circulation passage 350.
  • air in the heat insulating film 320 of the first collector 300 is used as a collecting medium, so that the first collector 300 is disposed through the circulation passage 350. Circulates into the thermal insulation film 320.
  • a blower 360 is installed at one side of the circulation passage 350 to circulate the air.
  • the heat insulating film of the first collector 300 serves to insulate the heat collecting tube containing water, and the first collector 300 using air collected in the second collector 400 instead of air at room temperature as a heat insulating medium. Heat-collecting the heat collecting tube (310).
  • the heat collecting tube 310 of the first collector 300 contains water having a larger specific heat than air, and is slowly heated. The water receives heat from the air heated in the second collector 400 and is further heated. Can be heated.
  • reference numerals 340 and 440 not described with reference to FIG. 14 denote a protective film of the first collector 300 and a protective film of the second collector 400, respectively, as described above.
  • 15 is a schematic view showing a solar heat collecting system according to a third embodiment of the present invention
  • FIG. 16 is a schematic view showing a solar heat collecting system according to a fourth embodiment of the present invention.
  • the solar heat collector 200 uses air as a heat collecting medium
  • the heat storage device 500 uses water as a heat storage medium
  • the solar heat collector Air in the collecting tube of 200 is made to exchange heat with water circulating in the heat storage device.
  • the heat storage device 500 connects the water circulation passage 510 and installs a pump 520 thereto to draw water stored therein from the bottom to the top, and then to the injection device 530. Spray water through.
  • a porous material 540 is disposed under the injector 530 to facilitate heat exchange by inducing contact with air.
  • the heat collecting tube of the solar collector 200 is connected to the connection channel 370.
  • the side of the heat storage device 500 is connected to a position slightly higher than the highest water level.
  • the circulation passage 350 is connected to an upper portion of the heat storage device 500 so that air passing through the heat storage device 500 is supplied back to the solar heat collector 200.
  • One side of the circulation passage 350 is provided with a blower 360 to circulate air.
  • the air warmed by the solar collector 200 enters into the heat storage device 500 through the connection flow path 370 by the blower 360 and heats up with water sprayed from the injector 530 while going up. The temperature of the water is raised.
  • the air heat-exchanged with water enters the solar collector 200 again through the circulation passage 350 connected to the upper portion of the heat storage device 500 to collect solar heat.
  • the solar heat collecting system according to the fourth embodiment of FIG. 16 differs from that of the third embodiment in the configuration of the heat storage device 500. That is, the heat storage device 500 is connected to the water circulation passage 510 to the side to pump the water of the lower portion and the pump 520 is installed in the same as the third embodiment, but the pumped water There is no injector to inject and the water simply flows from top to bottom.
  • FIG. 17 is a schematic view showing a solar heat collecting system according to a fifth embodiment of the present invention
  • FIG. 18 is a perspective view of a heat storage device according to a fifth embodiment of the present invention
  • FIG. A cross-sectional view of the heat storage device according to the fifth embodiment is shown.
  • the solar heat collecting system includes a solar heat collector 200 that collects heat by receiving solar heat using a heat collecting medium, and is connected to the solar heat collector and circulates and heat-exchanges the heat collecting medium of the heat collector to heat the heat of the heat collecting medium.
  • the heat storage insulating film 570 is made of a material.
  • the solar heat collector 200 uses air as a heat collecting medium
  • the heat storage device 500 uses water as a heat storage medium
  • a heat collecting tube of the solar heat collector 200 uses The heated air is made to heat exchange by direct contact with water while flowing the upper portion of the water in the heat storage device (500). As shown in FIG.
  • air which is a heat collecting medium, is circulated continuously while collecting and storing heat between the heat collector 200 and the heat storage device 500 by the blower 360.
  • the heat storage device 500 fills water, which is a heat storage medium, in the lower portion of the heat storage tube 560 disposed on a horizontal plane, and is heated in the heat collector 200 to provide the circulation flow path (
  • the air introduced into the heat storage device 500 through 350 allows the upper portion of the water to flow to exchange heat by direct contact with the water.
  • the heat storage insulation film 570 is installed on the heat storage tube 560 to insulate the water, which is the heat storage medium, and in the space between the heat storage tube 560 and the heat storage insulation film 570, air as a heat insulating gas.
  • the method of filling the air may include a hole (564) in one end of the heat storage tube (560) or a heat insulating gas inlet (not shown) at one end of the heat storage insulation film (570) and the heat storage tube (560) and the It is possible by a method of filling air into the space between the heat storage insulation film 570.
  • the heat storage device 500 may further include a support part 580 formed to surround the bottom of the heat storage tube 560 so that the heat storage tube is seated. The purpose of the support portion 580 is to reduce the heat loss to the ground of the water, which is the heat collecting medium, as well as to maintain a stable cross-sectional shape of the heat collecting tube containing water and to contact the air flowing over the top of the water.
  • the heat storage device 500 may be implemented using a flexible and inexpensive material such as rubber.
  • a heat collecting system in the form of passing the air between the collector 200 and the heat storage device 500 without circulating. In this case, the outside air sucked by the blower 360 is collected. It is heated in the) to be introduced into the heat storage device 500, the heat storage device 500 may be configured to exchange heat with water that is a heat storage medium while passing through the heat storage device 500 and then discharged to the outside of the heat storage device (500).
  • the solar collector of the present invention it can be easily manufactured and installed in a desired length using a low-cost material, and according to the situation, a plurality of collectors are connected in parallel or in series to be installed over a large area, thereby providing low incidence density. Even solar light can collect large amounts of solar energy.
  • the conventional collector is not free to move to another place after being installed in a specific place
  • the solar collector according to the present invention is made of a flexible material and to add or subtract the volume by injecting or extracting the insulating gas and the collecting medium in the collector It is easy to move, install and store where you want.
  • check valve 218 the other end of the collecting tube
  • plug member 300 first collector
  • connection euro 400 second collector
  • controller 710 first temperature sensor

Abstract

The present invention relates to a solar collector and a heat collecting system comprising same, and more specifically, to a solar collector which has a simple structure, is affordable, and is easy to install, and to a heat system comprising same. The solar collector, according to the present invention, comprises: a heat collection tube made from a flexible material for accommodating a heat collection medium therein, which is a heat transfer material, so as to receive solar heat; an insulation film made from a flexible material for surrounding the heat collection tube and accommodating an insulation gas therein; a first reflection film, which is made from a flexible material and is provided on one portion of the insulation film, for reflecting sunlight around the heat collection tube to the heat collection tube; and a protection film made from a flexible material for accommodating the insulation gas between the insulation film and the ground, wherein the heat collection medium and the insulation gas can be selectively inserted during usage.

Description

태양열 집열기 및 이를 포함하는 집열시스템Solar collector and collection system including same
본 발명은 태양열 집열기 및 이를 포함하는 집열시스템에 관한 것으로서, 더욱 상세하게는 구조가 간단하고 저렴하며 설치가 용이한 태양열 집열기 및 이를 포함하는 집열시스템에 관한 것이다.The present invention relates to a solar heat collector and a heat collecting system including the same, and more particularly, to a solar heat collector and a heat collecting system including the same, the structure of which is simple, inexpensive and easy to install.
도 1을 참조하여 종래의 집열기, 예를 들어 공기식 태양열 집열기의 구성을 설명하면 다음과 같다. 도 1은 종래의 공기식 태양열 집열기의 개략도이다. 일반적으로 집열기는 태양의 직사광 또는 산란광을 열에너지로 전환시키는 장치로서 태양열 집열시스템을 구성하는데 있어서 가장 핵심적인 부분이라고 할 수 있다. 상기 공기식 태양열 집열기(100)는 통상 육면체의 납작한 상자 형태로 이루어진 케이스(110)를 가지며, 내부에 열매체인 공기를 흐르게 하여 집열이 이루어지는 집열덕트(120)가 배열되고 공기의 출입을 위하여 유입구와 유출구가 마련된다.Referring to Figure 1, the configuration of a conventional collector, for example, a pneumatic solar collector, will be described. 1 is a schematic diagram of a conventional pneumatic solar collector. In general, the collector is a device that converts direct sunlight or scattered light of the sun into thermal energy, which can be said to be the most essential part in constructing a solar heat collecting system. The pneumatic solar collector 100 has a case 110, which is usually made of a flat box of a hexahedron, and has a heat collecting duct 120 configured to collect heat by flowing air that is a heat medium therein, and an inlet and an inlet for entering and exiting air. An outlet is provided.
공기식 태양열 집열기의 집열면은 투명한 유리 또는 폴리카보네이트 등으로 덮여 있으며 집열면을 제외한 나머지 면은 통상 열손실을 방지하기 위하여 지지부를 이용하여 보온을 한다.The collecting surface of the pneumatic solar collector is covered with transparent glass or polycarbonate, and the other surfaces except the collecting surface are usually insulated using a support to prevent heat loss.
상기 집열덕트(120)는 알루미늄과 같이 열전달 효율이 좋은 재질을 사용하여 상기 케이스(110) 내부에 지그재그로 절곡되어 형성되어 있다. The heat collecting duct 120 is bent and zigzag formed in the case 110 using a material having good heat transfer efficiency such as aluminum.
공기식 태양열 집열기는 지면에 대하여 일정각도로 기울여 설치되는 것이 보통이나 도 1과 같이 반사판(130)을 둘 경우 지면에 수직이 되도록 설치되기도 한다.Pneumatic solar collectors are usually installed at an angle with respect to the ground, but may be installed to be perpendicular to the ground when the reflecting plate 130 is placed as shown in FIG.
종래의 공기식 태양열 집열기를 이용한 집열과정을 설명하면 다음과 같다.Referring to the heat collecting process using a conventional pneumatic solar collector as follows.
태양의 직사광, 반사광 또는 산란광이 유리덮개를 통과하여 집열덕트에 닿으면 열에너지로 전환된다. 또한 일부의 태양광은 온실효과로 집열기 내부의 공기를 가열하고 가열된 공기의 대류와 전도에 의해 열이 집열덕트에 전달된다. 이 열은 유입구를 통하여 집열덕트에 들어온 공기를 가열한다. 가열된 공기는 유출구를 통하여 집열기를 빠져나가 필요에 따라 난방이나 온수제조의 용도로 사용되게 된다. Direct sunlight, reflected light, or scattered light from the sun passes through the glass cover to reach the heat collecting duct and is converted into thermal energy. In addition, some sunlight heats the air inside the collector due to the greenhouse effect, and heat is transferred to the collecting duct by convection and conduction of the heated air. This heat heats the air entering the collecting duct through the inlet. The heated air exits the collector through the outlet and, if necessary, is used for heating or hot water production.
그러나 상술한 종래의 태양열 집열기에는 다음과 같은 문제점이 있었다. However, the above-described conventional solar collectors have the following problems.
첫째, 종래의 태양열 집열기는 유리와 금속, 목재 등을 사용하여 제조비용이 고가인 문제점이 있었다. First, the conventional solar collector has a problem that the manufacturing cost is expensive using glass, metal, wood and the like.
둘째, 형상이 고정되어 있기 때문에 건물의 옥상 등 제한된 장소에 설치되어 집열량에 한계가 있는 문제점이 있었다. Second, since the shape is fixed, it is installed in a limited place such as a roof of a building, which has a problem in that the amount of heat is limited.
셋째, 집열기를 특정장소에 설치한 다음 다른 장소로 이동시키는 것이 자유롭지 못한 문제점이 있었다. 그래서, 본 출원인은 한국공개특허공보 제10-2008-0089954에 개시된 바와 같이, 집열막과 보온막 및 반사막을 유연한 재질로 형성하여 사용시에 입체적인 형태를 갖도록 연결된 집열기를 발명하여 출원한 바 있다.Third, there was a problem that it is not free to move the collector to another place after installing the collector. Thus, the present applicant has filed and applied a collector which has a three-dimensional shape in use by forming a heat collecting film, a heat insulating film, and a reflecting film with a flexible material, as disclosed in Korean Patent Publication No. 10-2008-0089954.
하지만, 상기 집열기는 집열막과 보온막이 격막을 통해 연결되고 이에 반사막도 연결되는 등 구조가 복잡하여 제조하기가 어려운 문제가 있고, 집열기의 보온 및 집열 성능 향상을 위해 반사막과 진공막을 추가할수록 집열기의 구조가 더욱 복잡해지는 문제가 있었다.However, there is a problem that the collector is difficult to manufacture due to the complicated structure, such that the heat collecting film and the heat insulating film are connected through the diaphragm and the reflecting film is also connected thereto. There was a problem that the structure is more complicated.
또한, 집열기의 구조가 간단한 제1실시예의 경우, 상대적으로 다른 실시예보다 그 구조가 복잡하지 않지만, 원하는 만큼의 집열 성능을 얻을 수 없는 문제가 있었다.In addition, in the case of the first embodiment, in which the structure of the collector is simple, the structure is not as complicated as that of the other embodiments, but there is a problem in that the collecting performance as desired is not obtained.
본 발명은 상기한 종래 문제점을 해결하기 위하여 안출된 것으로서, 설치하기 쉽고 저가이면서도 집열 성능이 우수한 태양열 집열기를 제공하는데 그 목적이 있다. 본 발명의 다른 목적은 넓은 지역에 설치하여 집열량을 높일 수 있는 집열기를 제공하는 것이다. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object thereof is to provide a solar heat collector which is easy to install and low in cost and excellent in heat collecting performance. Another object of the present invention is to provide a collector that can be installed in a large area to increase the amount of heat collected.
본 발명의 또 다른 목적은 이동, 설치와 보관이 용이한 집열기를 제공하는 것이다.Still another object of the present invention is to provide a collector that is easy to move, install and store.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 태양열 집열기는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와; 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 제1반사막과; 설치되는 지면과 함께 상기 보온막을 둘러싸며, 상기 보온막 및 상기 지면과의 사이에 보온기체를 수용하는 유연 재질의 보호막을 포함하고, 사용시에 집열매체 및 보온기체를 선택적으로 주입가능하다. 상기 보호막은 그 길이가 폭에 비해 상대적으로 길게 형성되고, 상기 보호막은 길이 방향의 양 단부가 개방된 것이 바람직하다. 상기 보호막은 설치되었을 때 경사면을 형성하는 것이 바람직하다. 상기 보호막은 빛이 통과할 수 있도록 투명 또는 반투명한 재질로 이루어진 것이 바람직하다. 상기 보호막의 일부는 상기 보온막의 일측에 부착되어 고정되거나 탈착가능하게 연결되는 것이 바람직하다. 상기 태양열 집열기는, 상기 보온막의 일측부 바닥에 설치되어 태양광을 상기 집열튜브 또는 상기 제1반사막으로 반사시키는 제2반사막을 더 포함하는 것이 바람직하다. 상기 태양열 집열기는, 지면에 설치되어 지면으로부터의 습기 침투를 막고 열손실을 줄이는 기저막을 더 포함하고, 상기 제2반사막은 상기 기저막의 일부에 마련되는 것이 바람직하다. 상기 태양열 집열기는, 상기 보호막을 팽팽하게 당기도록 상기 기저막의 양측에 마련되어 지면에 고정되는 고정막을 더 포함하는 것이 바람직하다. 상기 집열매체는 물 또는 공기이고, 상기 보온기체는 공기인 것이 바람직하다. 상기 집열매체로 물이 사용될 때, 상기 집열튜브에는 집열튜브 내로 대기압 이상의 압력으로 물을 주입하는 장치가 연결될 수 있다. 상기 집열튜브의 적어도 일단부에는 집열매체 출입부가 마련되고, 상기 보온막의 적어도 일단부에는 보온기체 출입부가 마련되는 것이 바람직하다. 상기 집열튜브의 타단부는 막히도록 이루어질 수 있다.상기 보호막은 상기 보온막의 외측면에 연결되어 설치되는 지면과 함께 상기 보온막의 하부를 둘러싸도록 이루어진 것이 바람직하다. 상기 태양열 집열기는, 상기 집열튜브 및 상기 보온막과 연결되고 일측에 집열매체 출입부와 보온기체 출입부가 구비되는 마개부재를 더 포함할 수 있다. 본 발명의 다른 실시예에 따른 태양열 집열기는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와; 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연재질의 제1반사막을 포함하고, 상기 집열매체로 공기가 사용되며, 상기 집열튜브의 일측에는 집열튜브 내부로 유입되는 공기가 상기 집열튜브와 보온막 사이의 공간으로 유출되도록 하는 통기공이 형성된다. 상기 통기공에는 보온막 내부로 유입된 공기가 다시 유출되지 않도록 하는 체크밸브가 설치된 것이 바람직하다. 본 발명의 또다른 실시예에 따른 태양열 집열기는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 집열튜브와; 상기 집열튜브를 둘러싸며, 보온기체를 수용하는 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 제1반사막과; 지면에 설치되어 지면으로부터의 습기 침투를 막고 열손실을 줄이는 기저막과; 상기 기저막의 일부에 마련되어, 태양광을 상기 집열튜브 또는 상기 제1반사막으로 반사시키는 제2반사막을 포함한다. 그리고, 본 발명의 일 실시예에 따른 태양열 집열시스템은, 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열 집열기와; 상기 태양열 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 축열매체에 축열하는 축열장치와; 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치를 포함하고, 상기 태양열 집열기는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 제1반사막을 포함한다. 상기 태양열 집열기의 집열매체와 상기 축열장치의 축열매체로 동일한 액체가 사용되고, 상기 연결장치는, 상기 축열장치의 하부와 연결되어 상대적으로 저온의 액체를 공급하는 제1유로와; 상기 축열장치의 상부와 연결되어 상기 집열기에서 집열되어 상대적으로 고온의 액체를 상기 축열장치로 공급하는 제2유로와; 상기 집열기의 집열튜브와 연결되어 상기 제1유로로부터 공급되는 액체를 상기 집열튜브로 공급하는 제3유로와; 상기 제1유로, 제2유로 및 제3유로가 만나는 곳에 설치되어 상기 액체의 유동 방향을 조절하는 삼방밸브와; 상기 집열튜브 내의 집열된 집열매체를 상기 제3유로 및 제2유로를 거쳐 상기 축열장치의 상부로 끌어올리는 펌프를 포함하는 것이 바람직하다. 상기 태양열 집열기는, 물을 집열매체로 사용하는 제1집열기와, 공기를 집열매체로 사용하는 제2집열기를 포함하고, 상기 제2집열기의 집열튜브 내 공기는 상기 제1집열기의 보온막 내 공기와 연결되어 순환될 수 있다. 상기 태양열 집열기는 집열매체로 공기를 사용하고, 상기 축열장치는 축열매체로 물을 사용하며, 상기 태양열집열기의 집열튜브 내 공기는 상기 축열장치 내에서 순환하는 물과 열교환하도록 이루어질 수 있다. 본 발명의 다른 실시예에 따른 태양열 집열시스템은, 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열 집열기와; 상기 태양열 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 액체 상태의 축열매체에 축열하는 축열장치와; 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치를 포함하고, 상기 축열장치는, 하부에 상기 축열매체가 주입되고 그 상부로 상기 집열매체가 흐르면서 축열매체와의 직접접촉에 의해 열교환하도록 이루어진 유연 재질의 축열튜브를 포함한다. 상기 축열장치는, 상기 축열튜브의 적어도 상부를 둘러싸도록 연결되어 내부에 보온기체를 수용하는 유연 재질의 축열보온막을 더 포함하는 것이 바람직하다. 상기 축열장치는 상기 축열튜브의 하부를 감싸서 상기 축열튜브가 안착되도록 형성된 지지부를 더 포함하는 것이 바람직하다. 본 발명의 또 다른 실시예에 따른 태양열 집열기는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제1집열기와; 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제2집열기를 포함하고, 상기 제2집열기의 집열튜브 내 집열매체는 상기 제1집열기의 보온막 내부와 연통되어 순환된다.Solar collector according to an embodiment of the present invention for achieving the above object, and a heat collecting medium that is a heat transfer medium therein and a heat collecting tube of a flexible material for receiving solar heat; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas therein; A first reflective film of a flexible material provided on a portion of the heat insulating film and reflecting sunlight around the heat collecting tube to the heat collecting tube; It includes a protective film of a flexible material surrounding the thermal insulation film with the ground to be installed, and accommodates the thermal insulation gas between the thermal insulation film and the ground, and the heat collecting medium and the insulating gas can be selectively injected during use. The length of the protective film is relatively long compared to the width, it is preferable that both ends of the protective film in the longitudinal direction is open. When the protective film is provided, it is preferable to form an inclined surface. The protective film is preferably made of a transparent or translucent material so that light can pass through. A portion of the protective film is preferably attached to one side of the insulating film is fixed or detachably connected. The solar collector may further include a second reflecting film installed at a bottom of one side of the heat insulating film and reflecting sunlight to the heat collecting tube or the first reflecting film. The solar collector further includes a base film installed on the ground to prevent moisture penetration from the ground and to reduce heat loss, and the second reflective film is provided on a portion of the base film. The solar collector preferably further includes a fixed membrane provided on both sides of the base membrane so as to pull the protective film taut. Preferably, the heat collecting medium is water or air, and the insulating gas is air. When water is used as the collecting medium, a device for injecting water at a pressure higher than atmospheric pressure into the collecting tube may be connected to the collecting tube. At least one end of the heat collecting tube is provided with a heat collecting medium inlet, and at least one end of the heat insulating film is preferably provided with a heat insulating gas inlet. The other end of the heat collecting tube may be made to be clogged. The protective film may be formed to surround a lower portion of the heat insulating film together with a ground that is connected to an outer surface of the heat insulating film. The solar collector may further include a closure member connected to the heat collecting tube and the heat insulating film and having a heat collecting medium inlet and a heat insulating gas inlet at one side thereof. The solar collector according to another embodiment of the present invention includes a heat collecting tube of a flexible material that receives solar heat by collecting a heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas therein; Is provided on a portion of the heat insulating film, and includes a first reflective film of a flexible material for reflecting the sunlight around the heat collecting tube to the heat collecting tube, air is used as the heat collecting medium, one side of the heat collecting tube into the heat collecting tube A vent is formed to allow the air introduced to flow into the space between the heat collecting tube and the heat insulating film. The vent is preferably installed with a check valve to prevent the air introduced into the thermal insulation film to flow out again. Solar collector according to another embodiment of the present invention, a heat collecting tube that receives the heat from the heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas; A first reflecting film provided on a portion of the insulating film and reflecting sunlight around the collecting tube to the collecting tube; A base membrane installed on the ground to prevent moisture penetration from the ground and to reduce heat loss; A second reflection film provided on a portion of the base film to reflect sunlight to the heat collecting tube or the first reflection film. In addition, the solar heat collecting system according to an embodiment of the present invention includes a solar heat collector which collects heat by receiving solar heat using a heat collecting medium; A heat storage device connected to the solar heat collector and configured to heat-exchange the heat collecting medium of the heat collector to heat the heat collecting medium to the heat storage medium; And a connection device for circulating the heat collecting medium of the heat collector to the heat storage device, wherein the solar heat collecting device includes a heat collecting tube made of a flexible material that receives heat from the heat collecting medium, which is a heat transfer medium, and the heat collecting tube. It surrounds, and includes a heat insulating film of a flexible material for accommodating a heat insulating gas therein, and a first reflecting film provided on a portion of the heat insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube. The same liquid is used as the heat collecting medium of the solar heat collector and the heat storage medium of the heat storage device, and the connection device includes: a first flow path connected to a lower portion of the heat storage device to supply a relatively low temperature liquid; A second flow passage connected to an upper portion of the heat storage device and configured to collect liquid in the heat collector to supply relatively high temperature liquid to the heat storage device; A third flow passage connected to a collecting tube of the collector to supply a liquid supplied from the first passage to the collecting tube; A three-way valve installed at a place where the first flow passage, the second flow passage, and the third flow passage meet to control a flow direction of the liquid; It is preferable to include a pump for collecting the collected heat collecting medium in the heat collecting tube to the upper portion of the heat storage device via the third flow path and the second flow path. The solar collector includes a first collector using water as a collecting medium and a second collector using air as a collecting medium, and the air in the heat collecting tube of the second collector is air in the insulating film of the first collector. Can be circulated in conjunction with The solar collector uses air as a heat collecting medium, the heat storage device uses water as a heat storage medium, and the air in the heat collecting tube of the solar heat collector may be heat-exchanged with water circulating in the heat storage device. Solar heat collecting system according to another embodiment of the present invention, the solar heat collector for collecting heat by receiving solar heat using a heat collecting medium; A heat storage device connected to the solar heat collector and configured to circulate and heat-exchange the heat collecting medium of the heat collector to heat the heat of the heat collecting medium to a heat storage medium in a liquid state; And a connection device for connecting the heat collecting medium of the heat collector to circulate the heat storage device, wherein the heat storage medium is injected into the lower portion and the heat collecting medium flows to the upper portion thereof by direct contact with the heat storage medium. It includes a heat storage tube of a flexible material configured to heat exchange. The heat storage device may further include a heat storage heat insulating film made of a flexible material connected to surround at least an upper portion of the heat storage tube to receive a heat insulating gas therein. The heat storage device may further include a support formed to surround the bottom of the heat storage tube so that the heat storage tube is seated. Solar collector according to another embodiment of the present invention, a heat collecting tube of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein, and a flexible material surrounding the heat collecting tube, the heat insulating gas contained therein A first collector comprising a heat insulating film of a flexible material and a reflective film of a flexible material provided on a portion of the heat insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube; A heat collecting tube made of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein, a heat insulating film made of a flexible material surrounding the heat collecting tube and accommodating a heat insulating gas therein, and provided in a part of the heat insulating film, And a second collector including a reflective film made of a flexible material for reflecting the sunlight around the collector tube to the collector tube, wherein the collector medium in the collector tube of the second collector is in communication with the inside of the heat collector membrane of the first collector. do.
상기한 본 발명의 태양열 집열기 및 이를 포함하는 집열시스템에 의하면, 다음과 같은 효과가 있다.According to the solar heat collector and the heat collecting system including the same of the present invention, the following effects are obtained.
첫째, 설치하기 쉽고 저가이면서도 집열 성능이 우수한 태양열 집열기를 얻을 수 있다.First, it is possible to obtain a solar collector which is easy to install and inexpensive and has excellent heat collecting performance.
둘째, 나대지 또는 농한기의 논밭 등 넓은 면적에 설치함으로써 태양광의 특성인 낮은 입사밀도를 극복하여 대량의 태양에너지를 집열할 수 있다. 이를 위해, 복수의 집열기를 병렬 또는 직렬로 연결하여 집열 효율을 더욱 높일 수 있다.Second, by installing in a large area such as paddy field or paddy field in the farming season, it is possible to collect a large amount of solar energy by overcoming low incident density, which is a characteristic of sunlight. To this end, a plurality of collectors may be connected in parallel or in series to further increase the collection efficiency.
셋째, 집열기 내에 보온기체와 집열매체를 선택적으로 주입 또는 추출할 수 있어 부피를 줄일 수 있으므로 집열기의 이동, 설치와 보관이 용이하다.Third, it is easy to move, install and store the collector because the volume can be reduced by selectively injecting or extracting the insulating gas and the collecting medium in the collector.
네째, 집열기와 축열기를 연결하여 저렴하며 설치가 용이하고 성능이 우수한 집열시스템을 얻을 수 있다.Fourth, it is possible to obtain a low-cost, easy installation and excellent heat collection system by connecting the collector and the heat accumulator.
도 1은 종래 기술에 의한 태양열 집열기의 개략도.1 is a schematic view of a solar collector according to the prior art.
도 2는 본 발명의 제1실시예에 의한 태양열 집열기를 나타낸 사시도.Figure 2 is a perspective view showing a solar collector according to the first embodiment of the present invention.
도 3은 도 2의 태양열 집열기를 구성하는 각 부분을 분리하여 나타낸 사시도.3 is a perspective view separately showing each part constituting the solar collector of FIG.
도 4는 도 2의 태양열 집열기의 단면도.4 is a cross-sectional view of the solar collector of FIG.
도 5는 도 4의 태양열 집열기의 변형례를 이용한 태양열 집열방법을 나타낸 개략도.5 is a schematic view showing a solar heat collecting method using a modification of the solar heat collector of FIG.
도 6은 본 발명의 제2실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도.Figure 6 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a second embodiment of the present invention.
도 7은 본 발명의 제3실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도.7 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a third embodiment of the present invention.
도 8은 본 발명의 제4실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도.8 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a fourth embodiment of the present invention.
도 9는 본 발명의 제5실시예에 의한 태양열 집열기를 나타낸 단면도.9 is a cross-sectional view showing a solar collector according to a fifth embodiment of the present invention.
도 10은 본 발명의 제6실시예에 의한 태양열 집열기에 장착될 수 있는 말단부 마개부재를 나타낸 사시도.Figure 10 is a perspective view showing the end cap member that can be mounted to the solar collector according to the sixth embodiment of the present invention.
도 11은 본 발명의 제7실시예에 의한 태양열 집열기를 나타낸 단면도.11 is a cross-sectional view showing a solar collector according to a seventh embodiment of the present invention.
도 12는 본 발명에 의한 태양열 집열기를 복수개 연결하여 구성한 개략도.12 is a schematic view of a plurality of solar collectors according to the present invention.
도 13은 본 발명의 제1실시예에 의한 태양열 집열시스템을 나타낸 개략도.13 is a schematic view showing a solar heat collecting system according to a first embodiment of the present invention.
도 14는 본 발명의 제2실시예에 의한 태양열 집열시스템을 나타낸 개략도.14 is a schematic view showing a solar heat collecting system according to a second embodiment of the present invention.
도 15는 본 발명의 제3실시예에 의한 태양열 집열시스템을 나타낸 개략도.15 is a schematic view showing a solar heat collecting system according to a third embodiment of the present invention.
도 16은 본 발명의 제4실시예에 의한 태양열 집열시스템을 나타낸 개략도.16 is a schematic view showing a solar heat collecting system according to a fourth embodiment of the present invention.
도 17은 본 발명의 제5실시예에 의한 태양열 집열시스템을 나타낸 개략도.17 is a schematic view showing a solar heat collecting system according to a fifth embodiment of the present invention.
도 18은 본 발명의 제5실시예에 의한 축열장치의 사시도.18 is a perspective view of a heat storage device according to a fifth embodiment of the present invention.
도 19는 본 발명의 제5실시예에 의한 축열장치의 단면도.19 is a cross-sectional view of a heat storage device according to a fifth embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 도 2 내지 도 5에는 본 발명의 제1실시예에 의한 태양열 집열기가 도시되어 있다. 도시된 바와 같이, 본 발명에 따른 태양열 집열기(200)는, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브(210)와; 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연재질의 보온막(220)과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 제1반사막(230)과; 설치되는 지면과 함께 상기 보온막을 둘러싸며, 상기 보온막 및 상기 지면과의 사이에 보온기체를 수용하는 유연 재질의 보호막(240)을 포함한다. 상기 집열튜브(210)는 내부에 태양열을 받아들이는 집열매체를 수용한다. 이 집열튜브(210)는 태양열을 잘 흡수할 수 있도록 검은색 재질로 이루어지는 것이 바람직하다. 이 집열튜브(210)에 수용되는 열전달매체인 집열매체로는 주위에서 쉽게 구할 수 있는 물 또는 공기를 이용하는 것이 바람직하다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 2 to 5 illustrate a solar collector according to a first embodiment of the present invention. As shown, the solar collector 200 according to the present invention includes a heat collecting tube 210 of a flexible material for receiving solar heat by collecting a heat collecting medium that is a heat transfer medium therein; A heat insulating film 220 surrounding the heat collecting tube and accommodating a heat insulating gas therein; A first reflective film 230 of a flexible material provided on a portion of the heat insulating film and reflecting sunlight around the heat collecting tube to the heat collecting tube; A protective film 240 made of a flexible material surrounds the thermal insulation film with the ground to be installed and accommodates the thermal insulation gas between the thermal insulation film and the ground. The heat collecting tube 210 accommodates a heat collecting medium that receives solar heat therein. The collecting tube 210 is preferably made of a black material so as to absorb the solar heat well. As a heat collecting medium which is a heat transfer medium accommodated in the heat collecting tube 210, it is preferable to use water or air which can be easily obtained from the surroundings.
또한, 상기 집열튜브(210)는 집열매체를 집어넣었을 때 부풀어 오를 수 있도록 유연한 재질로 이루어지는 것 이 바람직하다. 공기를 집열매체로 사용하는 경우, 상기 집열튜브(210)에 주입되는 공기의 압력에 따라 상기 유연한 집열튜브(210)가 부풀어 올라 원하는 형태가 될 수 있고, 집열매체인 공기를 빼내거나 교환하는 경우 상기 집열튜브(210)를 외부에서 누르거나 송풍기 등으로 부압을 발생시켜 공기를 빼낼 수 있다. 물을 집열매체로 사용하는 경우에도, 집열튜브(210) 내에서 태양열에 의해 온도가 상승된 물을 차가운 물로 교환하기 위해 빼낼 때 외부에서 누르거나 펌프 등으로 부압을 발생시켜 물을 빼낼 수 있다. 상기 보온막(220)은 상기 집열튜브(210)를 둘러싸며 내부에서 집열튜브(210)와의 사이에 보온기체를 수용한다.In addition, the collecting tube 210 is preferably made of a flexible material to swell when the collecting medium is put. In the case of using air as a collecting medium, the flexible collecting tube 210 may swell according to the pressure of the air injected into the collecting tube 210, and may have a desired shape. Pressing the collecting tube 210 from the outside or by generating a negative pressure with a blower or the like can extract the air. Even in the case of using water as a collecting medium, when the water is raised by solar heat in the collecting tube 210 to be replaced with cold water, the water may be pressed out from the outside or a negative pressure may be generated by a pump or the like. The heat insulating film 220 surrounds the heat collecting tube 210 and accommodates the heat insulating gas between the heat collecting tube 210 and the inside.
보온기체로는 주위에서 흔한 공기를 사용하는 것이 손쉽게 구할 수 있고 다루기 쉬우므로 바람직하다. 상기 보온막(220)은 태양광이 통과할 수 있도록 투명한 재질로 이루어지고, 보온기체에 의해 부풀려질 수 있도록 유연한 재질로 이루어지는 것이 바람직하다.그러한 재질의 예로는 비닐계 수지 또는 고무 등을 들 수 있다. 상기 보온막(220)은 양 단부가 막혀 있어서 그 내부는 상기 집열튜브(210)를 감싸는 밀폐된 공간을 이루게 된다. 상기 보온막(220) 내부에 보온기체를 채우거나 흐르게 하면 상기 집열튜브(210)를 감싸고 있는 보온막(220)이 부풀어 올라서 집열튜브(210)의 열기가 차가운 외기 쪽으로 손실되는 것을 감소시킬 수 있다. 상기 보온막(220) 내부에 배치되는 상기 집열튜브(210)는 중력에 의해 지면에 놓이는 상기 보온막(220)의 내면에 접촉된다. 상기 집열튜브(210)의 외면은 상기 보온막(220)의 내면과 접촉되지 않는 것이 보온을 위해 바람직하지만, 상기 집열튜브(210)를 고정하는 부품이 없다면 상기 집열튜브(210)는 상기 보온막(220)이 지면에 접촉하는 부위에서 상기 보온막(220)과 접촉할 것이다. 그래서, 지면으로부터의 냉기의 영향을 덜 받기 위해 상기 집열튜브(210)의 주위에는 상기 보온막(220)과의 It is preferable to use common air in the surrounding gas because it is easily available and easy to handle. The thermal insulation film 220 is made of a transparent material to allow sunlight to pass through, and preferably made of a flexible material so as to be inflated by a heat insulating gas. Examples of such materials include vinyl resin or rubber. have. Both ends of the thermal insulation film 220 are blocked to form an enclosed space surrounding the heat collecting tube 210. Filling or flowing the insulating gas in the heat insulating film 220 may increase the heat insulating film 220 surrounding the heat collecting tube 210 to swell, thereby reducing the loss of heat of the heat collecting tube 210 toward the cold outside air. . The heat collecting tube 210 disposed inside the heat insulating film 220 is in contact with an inner surface of the heat insulating film 220 placed on the ground by gravity. The outer surface of the heat collecting tube 210 is preferably not in contact with the inner surface of the heat insulating film 220, but if there is no component fixing the heat collecting tube 210, the heat collecting tube 210 is the heat insulating film 220 will be in contact with the thermal insulation film 220 at the site in contact with the ground. Thus, in order to be less affected by cold air from the ground, the heat collecting tube 210 is surrounded by the insulating film 220.
간격을 유지하도록 상기 집열튜브(210)를 고정하는 고정부재(미도시)를 더 포함할 수도 있다. 상기 제1반사막(230)은 상기 보온막(220)의 일부에 마련되어 상기 집열튜브(210) 주위의 태양광을 집열튜브로 향하도록 반사시킨다. 이 제1반사막(230)은 상기 보온막(220)이 원통형으로 이루어질 때, 도 4의 단면도에 도시된 바와 같이, 보온막(220)의 대략 좌반면에 마련되고 보온막(220)의 외면에 형성될 수 있다. 상기 제1반사막(230)은 상기 보온막(220)에 반사 도료를 칠하거나, 알루미늄 시트 등의 반사재를 코팅 또는 합지하거나 부착할 수도 있고, 알루미늄 등의 반사재료를 증착시킬 수도 있다.또한, 상기 제1반사막(230)은 도 5에 도시된 바와 같이, 보온막(220)의 내면에 형성될 수 있다. 상기 보온막(220)은 상기 제1반사막(230)이 부착 또는 합지되거나 도장되거나 증착된 상태의 반제품으로 제작되는 것이 집열기의 설치가 용이하기 때문에 바람직하다. 상기 보호막(240)은 설치되는 지면과 함께 보온막(220)을 둘러싸며, 이 보호막(240)과 상기 보온막(220) 및 상기 지면에 의해 이루어지는 공간에 보온기체를 수용한다. 이 보호막(240)도 투명 또는 반투명의 유연한 재질로 이루어지는 것이 바람직하다. 도 4에 도시된 바와 같이, 상기 보호막(240)은 그 일부가 상기 보온막(220)과 접촉되도록 이루어질 수 있다. 한편, 상기 보호막(240)은 상기 보온막(220)과 접촉되지 않고 소정 거리 이격되도록 이루어질 수도 있을 것이다. 이를 위해서 보호막(240)의 상단부를 고정하는 별도의 고정부재(미도시)를 사용하여 설치할 수도 있고, 그 내부에 주입되는 공기 압력에 의해 상기 보호막(240)이 보온막(220)과 이격되도록 할 수도 있을 것이다. 상기 보호막(240)은 도 4에 도시된 바와 같이, 지면에 설치되면 상기 보온막(220)의 상부를 덮되, 양측방으로 하향 경사지는 경사면을 형성하도록 설치되는 것이 바람직하다.It may further include a fixing member (not shown) for fixing the collecting tube 210 to maintain a gap. The first reflecting film 230 is provided on a portion of the insulating film 220 to reflect the sunlight around the heat collecting tube 210 to the heat collecting tube. When the insulation film 220 is formed in a cylindrical shape, the first reflection film 230 is provided on the approximately left half surface of the insulation film 220 and is formed on the outer surface of the insulation film 220 when the insulation film 220 has a cylindrical shape. Can be formed. The first reflective film 230 may be coated with a reflective paint on the insulating film 220, or may be coated, laminated or attached with a reflective material such as an aluminum sheet, or may deposit a reflective material such as aluminum. As illustrated in FIG. 5, the first reflective film 230 may be formed on the inner surface of the insulating film 220. The heat insulating film 220 is preferably made of a semi-finished product in which the first reflecting film 230 is attached, laminated, painted, or deposited, because it is easy to install a collector. The protective film 240 surrounds the insulating film 220 together with the ground on which the protective film 240 is installed, and accommodates the insulating gas in a space formed by the protective film 240, the insulating film 220, and the ground. The protective film 240 is also preferably made of a transparent or translucent flexible material. As shown in FIG. 4, a portion of the passivation layer 240 may be in contact with the insulating layer 220. On the other hand, the protective film 240 may be made to be spaced a predetermined distance without being in contact with the insulating film 220. To this end, it may be installed using a separate fixing member (not shown) for fixing the upper end of the protective film 240, so that the protective film 240 is spaced apart from the insulating film 220 by the air pressure injected therein. Could be As shown in FIG. 4, when the protective film 240 is installed on the ground, the protective film 240 may cover an upper portion of the insulating film 220, and may be installed to form an inclined surface that is inclined downward in both sides.
상기 보호막(240)은 주로 상기 보온막(220)의 측부와 이격되어 보온 공간을 형성하므로 보온 역할을 한다. 또한, 상기 보호막(240)이 상기 보온막(220)에 의해 들리게 되면 보온막(220)을 감싸는 경사면을 형성하게 되어 눈 또는 비가 이 경사면을 따라 흘러내릴 수 있게 된다.이러한 측면에서 보면 상기 보호막(240)은 상기 보온막(220)을 "보호"하는 역할도 하기 때문에 그 명칭을 "보호막"이라고 하였다. 아울러, 상기 보호막(240)의 경사면에 의해 상기 보온막(220)에 미치는 바람의 영향을 줄일 수 있다.상기 보호막(240)은 길이 방향의 양 단부가 개방된 형태로 설치될 수 있다.이때, 상기 보호막(240)의 양 단부 근처에서는 개방된 부분을 통해 일부 열 손실이 발생할 수 있다. 하지만, 상기 보호막(240)은 그 길이가 폭에 비해 상대적으로 매우 긴 형태이기 때문에, 상기 보호막(240)의 양 단부 근처를 제외하고는 대부분의 구역에서 상기 개방된 양 단부에 의한 열 손실의 영향은 미미하다. 상기 보호막(240)의 일부는 상기 보온막(220)의 일측에 부착되어 고정되거나 탈착가능하게 연결될 수 있다. 도 4에서는 상기 보온막(220)의 상부에 단순히 접촉되어 놓여 있는 것으로 도시되어 있으나, 설치 후에 상기 보호막(240)이 움직이는 것을 방지하기 위해 상기 보호막(240)이 상기 보온막(220)의 상단부에 부착되거나 연결되는 것이 바람직하다. 이때, 상기 보호막(240)의 일부가 상기 보온막(220)의 상단부에 접착제 또는 열접착에 의해 영구적으로 부착되어 고정될 수도 있고, 벨크로 테이프 등을 이용하여 탈착가능하게 부착될 수도 있다.상기 태양열 집열기(200)는, 지면에 설치되어 지면으로부터의 습기 침투를 막고 열손실을 줄이는 기저막(250)을 더 포함하는 것이 바람직하다. 상기 기저막(250)은, 도 2 및 도 4에 도시된 바와 같이, 상기 보호막(240)의 양 단부 사이의 폭에 해당하는 폭을 가지는 것이 바람직하다.The passivation layer 240 mainly keeps a role of keeping warm because it is spaced apart from the side of the heat insulating film 220 to form a heat insulating space. In addition, when the protective film 240 is lifted by the thermal insulation film 220, an inclined surface surrounding the thermal insulation film 220 is formed to allow snow or rain to flow along the inclined surface. 240 also serves to "protect" the thermal insulation film 220, so the name is "protective film". In addition, it is possible to reduce the influence of the wind on the thermal insulation film 220 by the inclined surface of the protective film 240. The protective film 240 may be installed in a form in which both ends in the longitudinal direction is open. Some heat loss may occur through the open portions near both ends of the passivation layer 240. However, since the length of the protective film 240 is very long relative to the width, the influence of the heat loss by the open both ends in most areas except near both ends of the protective film 240 Is insignificant. A portion of the passivation layer 240 may be attached to one side of the insulation layer 220 to be fixed or detachably connected. In FIG. 4, the insulating film is simply placed in contact with the upper portion of the insulating film 220. However, in order to prevent the protective film 240 from moving after installation, the protective film 240 is disposed at an upper end of the insulating film 220. It is preferred to be attached or connected. In this case, a part of the protective film 240 may be permanently attached and fixed to the upper end of the thermal insulation film 220 by adhesive or thermal bonding, or may be detachably attached using velcro tape or the like. The collector 200 preferably further includes a base film 250 that is installed on the ground to prevent moisture penetration from the ground and reduce heat loss. As shown in FIGS. 2 and 4, the base layer 250 may have a width corresponding to a width between both ends of the passivation layer 240.
이 기저막(250)은 집열기가 설치되는 지면에 깔리는 것으로서 투명하거나 유연한 재질로 만들 필요가 없으나, 지면으로부터의 습기와 냉기를 차단할 수 있는 재질로 이루어지는 것이 바람직하다. 다만, 이 기저막(250)도 상기 보온막 또는 상기 보호막과 동일한 재질로 제작할 수 있음은 물론이다. 상기 태양열 집열기(200)는, 상기 기저막(250)의 일부에 마련되어, 태양광을 상기 집열튜브(210) 또는 상기 제1반사막(230)으로 반사시키는 제2반사막(260)을 더 포함하는 것이 바람직하다. 이 제2반사막(260)은 상기 기저막(250)의 일부 표면에 상기 제1반사막(230)과 같이 반사 도료를 칠하거나, 알루미늄 시트 등의 반사재를 코팅 또는 합지하거나 부착할 수도 있고, 알루미늄 등의 반사재료를 증착시킬 수 도 있다. The base film 250 is laid on the ground on which the collector is installed, and does not need to be made of a transparent or flexible material. However, the base film 250 is preferably made of a material capable of blocking moisture and cold air from the ground. However, the base film 250 may also be made of the same material as the heat insulating film or the protective film. The solar collector 200 may further include a second reflective film 260 provided on a portion of the base film 250 to reflect sunlight to the heat collecting tube 210 or the first reflective film 230. Do. The second reflective film 260 may be coated with a reflective paint on a portion of the base film 250, as in the first reflective film 230, or may be coated, laminated, or adhered to a reflective material such as an aluminum sheet. It is also possible to deposit reflective materials.
또한, 상기 제2반사막(260)은 상기 기저막(250) 없이 제2반사막(260) 자체가 태양광을 반사할 수 있는 재질로 이루어져 지면에 깔리도록 구성할 수도 있을 것이다. 도 5에 도시된 바와 같이, 태양열 집열기(200)의 우측이 남쪽을 향하도록 설치되면, 상기 제2반사막(260)은 상기 기저막(250)의 우측 일부에 마련된다. 태양은 남중할 때 고도가 가장 높아 태양열이 가장 강하므로 태양열을 효율적으로 받을 수 있도록 상기 집열튜브(210)는 동서로 설치되고 상기 제2반사막(260)은 상기 집열튜브(210)의 우측 바닥에, 즉 남쪽에 설치되는 것이 바람직하다. 또한, 상기 제1반사막(230)은 상기 보온막(220)의 측면 중에서도 상기 제2반사막(260)이 있는 우측의 반대쪽인 좌측에 설치되는 것이 바람직하다. 상기 태양열 집열기(200)는, 상기 보호막(240)을 팽팽하게 당기도록 상기 기저막(250)의 양측에 마련되어 지면에 고정되는 고정막(270)을 더 포함하는 것이 바람직하다. 이 고정막(270)은 땅 속에 매설하거나 고정막(270) 위에 무거운 물체를 올려 놓아 고정할 수 있다. 이 고정막(270)은 상기 보호막(240)의 양 단부와 연결되어 보호막(240)이 부풀려졌을 때 팽팽하게 당겨지도록 고정할 수 있다. 또한, 이 고정막(270)은 상기 보호막(240)과 일체로 형성되어 보호막(240)의 양 단부가 지면에 고정되는 방식으로 고정될 수도 있을 것이다. 그리고, 상기 기저막(250)은 투명 또는 반투명한 막으로 이루어지고, 이 기저막(250) 아래에 기저막(250)과 거의 같은 크기로 형성되어 지면에 깔리는 반사막 부착용 막(미도시)을 더 포함할 수도 있다. 이 반사막 부착용 막의 일부에는 상기 제2반사막(260)이 마련되어 태양광을 반사하여 상기 집열튜브(210) 쪽으로 향하도록 반사할 수 있음이 이해될 것이다. 한편, 상기 집열튜브(210)와 상기 기저막(250)은 태양열을 잘 흡수할 수 있도록 검은색 재질인 것이 바람직하다.도 5를 참조하여 본 발명의 태양열 집열기를 이용한 집열 작용을 설명한다.도 5에는 본 발명의 제1실시예에 의한 태양광 집열기에서 태양광이 직접 또는 반사에 의해 집열튜브에 도달하는 것이 도시되어 있다. 도 5에서 집열기를 비추는 태양광의 일부가 점선으로 도시되어 있다. 태양광 A는 보호막(240)과 보온막(220)을 통과하여 상기 집열튜브(210)를 직접 비추는 직달광이다. 태양광 B는 보호막(240)과 보온막(220)을 통과하여 상기 제1반사막(230)[0112] 에 의해 반사되어 상기 집열튜브(210)로 향한다. 태양광 C는 보호막(240)을 통과하여 상기 제2반사막(260)에 의해 반사되고 보온막(220)을 통과하여 상기 집열튜브(210)로 향한다. 태양광 D는 보호막(240)을 통과하여 상기 제2반사막(260)에 의해 반사되고 보온막(220)을 통과하여 다시 상기 제1반사막(230)에 의해 반사되어 상기 집열튜브(210)로 향한다.이와 같이, 본 발명의 태양광 집열기에 의하면 두 반사막에 의해 상당히 넓은 폭의 태양광이 상기 집열튜브(210)에 도달하도록 할 수 있다. 집열튜브(210)가 검은색 재질로 이루어져 있기 때문에 상기 집열튜브(210)에 도달한 태양광은 그 열에너지가 집열튜브(210)에 잘 흡수될 수 있다. 그리고, 상기 집열튜브(210)의 일단부에는 집열매체 출입부(212)가 마련되고, 상기 보온막(220)의 일단부에는 보온기체 출입부(222)가 마련되는 것이 바람직하다.도 2 및 도 3에 도시된 바와 같이, 상기 집열매체 출입부(212)는 상기 집열튜브(210)의 양 단부에 마련되어 후술하는 축열장치 등으로 연결되는 연결튜브와 연결될 수 있으나, 상기 집열튜브(210)의 일단부에만 마련될 수도 있다(도 8 참조). 상기 집열매체 출입부(212)는 상기 연결튜브와의 결합이 용이하도록 나사가 형성되거나 클램프 등으로 조이거나 고무밴드 등을 이용하여 묶을 수 있도록 이루어질 수 있다. 물론, 보호막(240)을 통과하여 집열기로 입사되는 태양광 전부가 집열튜브(210)에 도달하지는 않는다. 이 경우, 일부의 빛은 반사되어 집열기 밖으로 나가기도 하지만 일부는 온실효과로 인하여 보호막(240)과 보온막(220) 사이의 공기와 보온막(220) 내부의 보온기체를 데우기도 한다. 이때 데워진 공기 또는 보온기체의 온도가 집열튜브(210) 내부의 집열매체의 온도보다 높으면 대류나 전도와 같은 열전달 현상에 의해 열이 집열튜브(210) 쪽으로 이동하게 되므로 집열의 목적을 달성할 수 있게 된다. 이와 같이, 본 발명에 의한 태양열 집열기에 의하면 직달광, 산란광 뿐만 아니라 집열튜브의 전면에 위치한 평면 형태의 제2반사막(260)에 의한 반사와 후면에 위치한 오목한 곡면 형태의 제1반사막(230)에 의한 반사를 통한 반사광에 의해서도 집열을 할 수 있게 된다. 한편, 상기 집열기(200)를 이루는 각 구성품인 보온막(220), 보호막(240), 기저막(205), 고정막(207)들은 상호간에 열접착이나 접착제에 의해 영구적으로 접합시키는 것도 가능하지만, 벨크로나 지퍼 등을 이용하여 착탈식으로 결합시키는 방법으로 제작할 수도 있다.착탈식으로 제작할 경우의 이점은 사용 중 손상된 구성품을 신제품으로 교체할 수 있을 뿐만 아니라, 예를 들어 상기 집열기(200) 위에 쌓인 눈을 제거하고자 할 경우 지면에 부착시킨 고정막을 분리한 다음 집열기를 뒤집어서 손쉽게 눈을 제거하고 다시 결합할 수 있는 등의 사용상의 편의를 위해서이다. 도 6에는 본 발명의 제2실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도가 도시되어있다. 제2실시예에 의한 태양열 집열기에서는, 상기 집열튜브(210)에 주입되는 집열매체로서 물이 아니라 보온기체와 동일한 공기가 사용되고, 상기 집열튜브(210)의 일측에는 집열튜브(210) 내부로 유입되는 공기가 집열튜브(210)와 보온막(220) 사이의 공간으로 유출되도록 하는 통기공(214)이 형성되어 있다.본 실시예의 집열기에서는 상기 집열튜브(210)의 양 단부에 집열매체 출입부(212)가 마련되어 있지만, 상기 보온막(220)의 일단부에 보온기체 출입부를 마련하지 않아도 된다. 그 대신에, 상기한 통기공(214)이 형성되어 있기 때문에 상기 집열매체 출입부(212)를 통해 집열튜브(210) 내로 공기를 주입하면, 공기가 집열튜브(210)를 통과하면서 공기 중 일부가 상기 통기공(214)을 통해 집열튜브(210) 밖으로 빠져나가 상기 보온막(220) 내부 공간을 채우면서 보온막(220)을 부풀리게 된다. 도 7에는 본 발명의 제3실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도가 도시되어있다.In addition, the second reflective film 260 may be configured so that the second reflective film 260 itself may be made of a material capable of reflecting sunlight without the base film 250. As shown in FIG. 5, when the right side of the solar collector 200 faces south, the second reflective film 260 is provided on a part of the right side of the base film 250. When the sun is the south, the altitude is the highest and the solar heat is strongest so that the heat collecting tube 210 is installed in the east and west so as to efficiently receive the solar heat, and the second reflecting film 260 is located on the right bottom of the heat collecting tube 210. That is, it is preferable to be installed in the south. In addition, the first reflective film 230 may be disposed on the left side of the insulating film 220 opposite to the right side of the second reflective film 260. The solar collector 200 may further include a fixed membrane 270 that is provided on both sides of the base layer 250 so as to pull the protective layer 240 tightly and is fixed to the ground. The fixed membrane 270 may be buried in the ground or placed on a fixed object by placing a heavy object on the fixed membrane 270. The pinned layer 270 may be connected to both ends of the passivation layer 240 so as to be pulled tight when the passivation layer 240 is inflated. In addition, the fixed layer 270 may be integrally formed with the protective layer 240 so that both ends of the protective layer 240 may be fixed to the ground. In addition, the base film 250 may be formed of a transparent or translucent film, and may further include a reflective film attaching film (not shown) formed under the base film 250 to be substantially the same size as the base film 250 and laid on the ground. have. It will be appreciated that a portion of the reflective film attaching film may be provided with the second reflective film 260 to reflect the sunlight to reflect toward the heat collecting tube 210. On the other hand, the heat collecting tube 210 and the base film 250 is preferably made of a black material so as to absorb the solar heat well. Referring to Fig. 5 will be described the heat collecting action using the solar heat collector of the present invention. In the solar collector according to the first embodiment of the present invention, it is shown that the sunlight reaches the collecting tube directly or by reflection. In FIG. 5, a part of the sunlight illuminating the collector is shown by the dotted line. Sunlight A is a direct sunlight that passes directly through the passivation layer 240 and the insulation layer 220 to directly shine the heat collecting tube 210. The sunlight B passes through the passivation layer 240 and the insulating layer 220 and is reflected by the first reflecting layer 230 and directed toward the heat collecting tube 210. The sunlight C passes through the passivation layer 240, is reflected by the second reflecting layer 260, passes through the insulating layer 220, and is directed toward the heat collecting tube 210. The sunlight D passes through the passivation layer 240, is reflected by the second reflecting layer 260, passes through the insulating layer 220, and is reflected by the first reflecting layer 230, and then directed to the heat collecting tube 210. As described above, according to the solar collector of the present invention, it is possible to allow the sunlight of a relatively wide width to reach the collector tube 210 by the two reflective films. Since the heat collecting tube 210 is made of a black material, the solar energy reaching the heat collecting tube 210 may be absorbed by the heat collecting tube 210. Further, it is preferable that one end of the heat collecting tube 210 is provided with a heat collecting medium inlet 212, and one end of the heat insulating film 220 is provided with a heat insulating gas inlet 222. As shown in FIG. 3, the heat collecting medium access part 212 may be connected to a connection tube provided at both ends of the heat collecting tube 210 and connected to a heat storage device, which will be described later, of the heat collecting tube 210. It may be provided only at one end (see Fig. 8). The collecting medium access part 212 may be formed to be screwed or fastened with a clamp or the like by using a rubber band to facilitate coupling with the connection tube. Of course, not all of the sunlight passing through the passivation layer 240 and incident to the collector may reach the collector tube 210. In this case, some of the light is reflected and go out of the collector, but some heat the air between the protective film 240 and the insulating film 220 and the insulating gas inside the insulating film 220 due to the greenhouse effect. At this time, if the temperature of the warmed air or the insulating gas is higher than the temperature of the heat collecting medium in the heat collecting tube 210, the heat is moved toward the heat collecting tube 210 by heat transfer such as convection or conduction so that the purpose of heat collecting can be achieved. do. As described above, according to the solar collector according to the present invention, not only the direct light and the scattered light but also the reflection by the planar second reflecting film 260 located on the front of the collecting tube and the concave curved first reflecting film 230 located on the back By the reflected light through the reflected light can also be collected. On the other hand, the insulating film 220, the protective film 240, the base film 205, the fixed film 207 of each component constituting the collector 200 may be permanently bonded to each other by thermal bonding or adhesive, It is also possible to manufacture by detachable coupling using a velcro or zipper. The advantage of the detachable manufacturing is not only to replace a damaged component during use with a new product, but also to accumulate snow accumulated on the collector 200, for example. If you want to remove the fixed membrane attached to the ground and then the collector is easy to use, such as easy to remove the snow and re-combining the collector. 6 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a second embodiment of the present invention. In the solar collector according to the second embodiment, the same air as the warming gas is used as the heat collecting medium injected into the heat collecting tube 210, and water is introduced into the heat collecting tube 210 on one side of the heat collecting tube 210. Ventilation holes 214 are formed to allow air to be discharged into the space between the heat collecting tube 210 and the heat insulating film 220. In the heat collector of the present embodiment, the heat collecting medium enters at both ends of the heat collecting tube 210. Although 212 is provided, it is not necessary to provide a heat insulating gas inlet at one end of the heat insulating film 220. Instead, since the vent hole 214 is formed, when the air is injected into the collecting tube 210 through the collecting medium inlet 212, the air passes through the collecting tube 210 and a part of the air. Out of the heat collecting tube 210 through the vent hole 214, the insulation film 220 is inflated while filling the inner space of the insulation film 220. 7 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a third embodiment of the present invention.
본 실시예에 의한 태양열 집열기에서는 도 6에 도시된 태양열 집열기에서 상기 통기공(214)에 보온막(220) 내부로 유입된 공기가 다시 유출되지 않도록 하는 체크밸브(216)가 추가로 설치된다.이 체크밸브(216)에 의하면, 상기 집열튜브(210) 내부의 공기 압력이 떨어지더라도 상기 보온막(220) 내에 한번 주입된 공기가 빠지지 않도록 할 수 있다. 한편, 보온막(220) 내에 주입된 보온기체인 공기를 빼내어야 하는 경우에는 상기 체크밸브(216)에 빨대 등을 밀어넣어서 공기가 빠지도록 할 수 있다. 도 8에는 본 발명의 제4실시예에 의한 태양열 집열기의 집열튜브 및 보온막을 나타낸 사시도가 도시되어 있다. 본 실시예에 의한 태양열 집열기에서는 상기 집열튜브(210)의 일단부에만 집열매체 출입부(212)가 마련되어있고, 그타단부(218)는 막혀 있다. 또한, 상기 보온막(220)의 일단부에는 보온기체 출입부(222)가 마련되어 있다. 따라서, 집열매체로 물 또는 공기가 상기 집열매체 출입부(212)를 통해 주입되고, 집열매체를 추출할 때는 상기 집열매체 출입부(212) 측에 부압을 형성하면 집열튜브(210)가 유연한 재질로 되어 있기 때문에 압착되면서 그 내부의 집열매체가 빠져나오게 된다. 보온기체는 집열매체와 별도로 상기 보온기체 출입부(222)를 통해 주입된다. 도 9에는 본 발명의 제5실시예에 의한 태양열 집열기를 나타낸 단면도가 도시되어 있다. 본 실시예에서는 상기 보호막(240)이 보온막(220)의 상부와 접촉하면서 이를 덮도록 마련된 것이 아니라 보온막(220)의 측면에 연결되어 있다. 이 경우, 상기 제1반사막(230)은 상기 보온막(220)의 외면보다는 내면에 마련되는 것이 상기 보호막(240)과의 간섭을 피할 수 있어서 바람직할 것이다. In the solar collector according to the present embodiment, a check valve 216 is additionally installed in the solar collector shown in FIG. 6 to prevent the air introduced into the thermal insulation film 220 from flowing out again. According to the check valve 216, even if the air pressure inside the heat collecting tube 210 drops, it is possible to prevent the air once injected into the thermal insulation film 220 is released. On the other hand, when it is necessary to remove the air, which is the thermal insulation gas injected into the thermal insulation film 220, it is possible to push the straw or the like into the check valve 216 to allow the air to escape. 8 is a perspective view showing a heat collecting tube and a heat insulating film of a solar collector according to a fourth embodiment of the present invention. In the solar collector according to the present embodiment, the collecting medium entrance part 212 is provided only at one end of the collecting tube 210, and the other end 218 is blocked. In addition, the insulating gas inlet 222 is provided at one end of the thermal insulation film 220. Therefore, when water or air is injected into the collecting medium through the collecting medium inlet 212, and when the collecting medium is extracted, if the negative pressure is formed on the collecting medium inlet 212, the collecting tube 210 is made of a flexible material. Since it is compressed so that the heat collecting medium therein is pulled out. The heat insulating gas is injected through the heat insulating gas inlet 222 separately from the heat collecting medium. 9 is a cross-sectional view showing a solar collector according to a fifth embodiment of the present invention. In the present exemplary embodiment, the protective layer 240 is not provided to cover the upper portion of the insulating layer 220 and covers the upper side of the insulating layer 220. In this case, it is preferable that the first reflective film 230 is provided on the inner surface of the insulating film 220 rather than the outer surface of the heat insulating film 220 to avoid interference with the protective film 240.
상기 보호막(240)은 상기 보온막(220)을 보호하면서 상기 집열튜브(210)를 보온하기 위해 설치하는 것인데, 상기 집열튜브(210)는 상기 보온막(220) 내부 바닥에 배치된다. 상기 집열튜브(210)의 상부는 상기 보온막(220)과 충분한 간격을 갖도록 설치되기 때문에, 상기 보호막(240)은 상기 보온막(220)의 상면을 덮지 않더라도 집열튜브의 상부 보온 기능은 충분히 달성할 수 있다. 따라서, 본 실시예에서는 상기 보호막(240)을 상기 보온막(220)의 측면에 연결함으로써 상기 집열튜브(210)의측부 및 하부를 보온하면서도 상기 보온막(220)을 보호하는 역할을 할 수 있다. 상기 보온막(220)도 원형 파이프 형태이기 때문에 그 상면에 비나 눈이 내리면 흘러내릴 수 있고, 상기 보온막(220)의 측면에 연결된 보호막(240)도 경사면을 형성하도록 이루어져 있어서 마찬가지 기능을 할 수 있다. 도 10에는 본 발명의 제6실시예에 의한 태양열 집열기에 장착될 수 있는 말단부 마개부재를 나타낸 사시도가 도시되어 있다. 본 실시예에 따른 태양열 집열기에서는 상기 집열튜브(210) 및 상기 보온막(220)의 일단부에 집열매체 출입부(292)와 보온기체 출입부(294)가 구비되는 마개부재(290)가 결합된다. 이 마개부재(290)는 상기 보온막(220)의 일단부에 삽입되는 마개본체(291)와 상기 집열튜브(210)의 일단부에 삽입되는 집열튜브 결합부(293)가 마련되어 있다. 상기 마개본체(291)의 막힌 쪽 단부에는 상기 집열튜브 결합부(293)와 연통되도록 형성된 집열매체 출입부(292)가 마련되어 있어서 집열매체의 유로를 형성하는 연결튜브(미도시)와 연결될 수 있다. 또한, 상기 마개본체(291)의 막힌 쪽 단부에는 보온기체 출입부(294)가 마련되어 있어서, 이를 통해 공기 등의 보온기체를 주입할 수 있다. 이와 같은 마개부재(290)를 이용하여 태양열 집열기를 연결하는 경우, 집열튜브와 보온막은 얇은 막으로 이루어진 일정한 단면 형태로 상당한 길이로 제작할 수 있다. 따라서, 생산성이 향상되고, 설치 현장의 여건에 따라 집열튜브와 보온막 등을 필요한 길이로 절단하여 사용할 수 있기 때문에 설치 작업의 능률이 향상될 수 있다. 이러한 마개부재(290)는 집열튜브와 보온막과 기밀되도록 연결되어야 할 것이다.이 마개부재(290) 의 연결방법을 설명하면 다음과 같다. 먼저 상기 집열튜브 결합부(293)를 집열튜브(210)의 일단부에 끼워넣고 집열튜브(210)의 외측면에서 클램프로 조이거나 고무밴드 등을 이용하여 묶는다. 그 다음 상기 마개본체(291)를 보온막(220)의 일단부에 끼워넣고 보온막(220)의 외측면에서 클램프로 조이거나 고무밴드 등을 이용하여 묶는다. 도 11은 본 발명의 제7실시예에 의한 태양열 집열기를 나타낸 단면도가 도시되어 있다. 본 실시예의 태양열 집열기에서는 하나의 보호막(240) 내에 두 개 이상의 보온막(2201, 2202)과 집열튜브(2101, 2102)가 마련된다. 아울러, 각각의 보온막(2201, 2202)에는 제1반사막(2301, 2302)이 마련되어 있고, 하나의 기저막(250) 상면 일부에는 보온막(2201, 2202) 우측에 각각 제2반사막(2601,2602)이 마련되어 있다. 상기 보호막(240)의 양측 단부에 마련된 고정막(270)의 경우 다른 실시예와 동일하다. 도 12에는 본 발명에 의한 태양열 집열기를 복수개 연결하여 구성한 개략도가 도시되어 있다. 본 실시예에서는 복수개의 태양열 집열기(201, 202, 203, 204, 205, 206)를 병렬 또는 직렬로 연결하여 넓은 면적에 걸쳐 설치함으로써, 태양광의 입사 밀도가 낮은 경우에도 대량의 태양에너지를 집열할 수 있다. 도 12에서 4개의 태양열 집열기(201, 202, 203, 204)는 서로 병렬로 연결되고, 2개의 태양열 집열기(205,206)는 서로 직렬로 연결되어 있다. 복수의 태양열 집열기 사이에 연결된 선들은 집열매체의 연결튜브(2000)를 나타낸다.이러한 태양열 집열기의 수와 연결 방법은 집열되어야 하는 태양에너지의 양과 설치 현장의 상태 등을 고려하여 적절하게 선택할 수 있을 것이다.The protective film 240 is installed to heat the heat collecting tube 210 while protecting the heat insulating film 220, the heat collecting tube 210 is disposed on the inner bottom of the heat insulating film 220. Since the upper part of the heat collecting tube 210 is installed to have a sufficient distance from the heat insulating film 220, the protective film 240 is sufficient to achieve the upper heat insulating function of the heat collecting tube even if it does not cover the top surface of the heat insulating film 220 can do. Therefore, in the present exemplary embodiment, the protective film 240 may be connected to the side surface of the heat insulating film 220 to protect the heat insulating film 220 while keeping the side and the bottom of the heat collecting tube 210 warm. . Since the thermal insulation film 220 is also in the shape of a circular pipe, rain or snow falls on the upper surface thereof, and the protective film 240 connected to the side surface of the thermal insulation film 220 may also form an inclined surface to perform the same function. have. Figure 10 is a perspective view showing a distal end cap member that can be mounted to the solar collector according to the sixth embodiment of the present invention. In the solar collector according to the present embodiment, a stopper member 290 having a heat collecting medium access part 292 and a heat insulating gas access part 294 is coupled to one end of the heat collecting tube 210 and the heat insulating film 220. do. The stopper member 290 is provided with a stopper body 291 inserted into one end of the heat insulating film 220 and a collecting tube coupling part 293 inserted into one end of the collecting tube 210. A clogging end portion of the plug body 291 is provided with a collecting medium access part 292 formed to communicate with the collecting tube coupler 293, and may be connected to a connection tube (not shown) forming a flow path of the collecting medium. . In addition, at the closed end of the plug body 291, the insulating gas inlet 294 may be provided, and thus, insulating gas such as air may be injected. When connecting the solar collector using the plug member 290, the heat collecting tube and the heat insulating film can be manufactured to a considerable length in a constant cross-sectional shape consisting of a thin film. Therefore, productivity can be improved, and the efficiency of installation work can be improved because the heat collecting tube, the heat insulating film, etc. can be cut to the required length according to the conditions of the installation site. The stopper member 290 should be connected to the airtight tube and the heat insulating film to be hermetically described. The method of connecting the stopper member 290 is as follows. First, the collection tube coupling portion 293 is inserted into one end of the collection tube 210 and tightened with a clamp or bundled using a rubber band or the like on the outer side of the collection tube 210. Then, the stopper body 291 is inserted into one end of the insulating film 220 and tightened with a clamp or bundled using a rubber band or the like on the outer surface of the insulating film 220. 11 is a cross-sectional view showing a solar collector according to a seventh embodiment of the present invention. In the solar collector of the present embodiment, two or more insulating films 2201 and 2202 and heat collecting tubes 2101 and 2102 are provided in one protective film 240. In addition, each of the insulating films 2201 and 2202 is provided with first reflecting films 2301 and 2302, and a portion of the upper surface of one base film 250 is provided with a second reflecting film 2601 and 2602 on the right side of the insulating films 2201 and 2202, respectively. ) Is provided. The fixed membrane 270 provided at both ends of the passivation layer 240 is the same as in the other embodiments. 12 is a schematic diagram of a plurality of solar collectors according to the present invention. In the present embodiment, a plurality of solar collectors 201, 202, 203, 204, 205, and 206 are connected in parallel or in series to be installed over a large area, thereby collecting a large amount of solar energy even when the incident density of sunlight is low. Can be. In FIG. 12, four solar collectors 201, 202, 203, and 204 are connected in parallel to each other, and two solar collectors 205 and 206 are connected in series to each other. The lines connected between the plurality of solar collectors represent the connection tubes 2000 of the collecting medium. The number and connection method of these solar collectors may be appropriately selected in consideration of the amount of solar energy to be collected and the state of the installation site. .
한편, 상기한 실시예들에서는 보온막(220)과 보호막(240)을 동시에 구비한 태양열 집열기에 대하여 설명하였으나, 보호막(240) 없이 보온막(220)만을 구비한 태양열 집열기로도 구성할 수 있다. 이 경우, 상기한 제1반사막(230) 이외에 제2반사막(260)도 구비되는 것이 바람직하고, 보온기체는 상기 보온막(220) 내부에만 주입된다.이러한 실시예의 경우, 보호막(240)이 없기 때문에 비 또는 눈에 의한 영향을 더 많이 받을 수 있고 보호막에 의한 보온 효과를 받을 수 없지만, 높은 집열 성능을 요구하지 않는 경우라면 간단한 구성으로 설치할 수 있어서 유용할 수있다. 다음으로, 도 13에는 본 발명의 제1실시예에 의한 태양열 집열시스템을 나타낸 개략도가 도시되어 있다. 본 발명의 제1실시예에 의한 태양열 집열시스템은, 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열집열기(200)와, 상기 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 축열매체에 축열하는 축열장치(500)와, 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치(600)와, 상기 집열매체의 공급 및 순환을 제어하는 제어장치(700)를 포함한다. 본 발명의 태양열 집열시스템에서는 상술한 태양열 집열기에 관한 실시예들이 적용될 수 있다. 도 13에서는 상기 태양열 집열기(200)가 도 2 내지 도 5에 나타낸 제1실시예에 따른 태양열 집열기와 마찬가지로 구성될 수 있으나, 엄밀하게는 집열튜브 및 보온막의 타단부가 막혀 있는 도 8의 제4실시예에 따른 태양열 집열기를 개략적으로 나타낸 것이다. 상기 태양열 집열기(200)의 경우 상술한 바와 같으므로, 여기서 중복되는 설명은 생략하기로 한다. 상기 축열장치(500)는 물을 축열매체로 사용하여 상기 태양열 집열기(200)에 의해 데워진 물이 순차적으로 교환되어 물의 온도를 점점 올리게 된다. 이를 위해 상기 축열장치(500)와 상기 태양열 집열기(200)는 집열매체이자 축열매체인 물이 이동할 수 있는 유로를 형성하여 물을 이동시키는 연결장치(600)에 의해 연결된다. 이 연결장치(600)는 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는데, 상기 "순환"은 축열장치에 있던 축열매체를 집열기에 집열매체로서 주입해서 집열한 다음 이를 추출하여 다시 축열장치에 저장하는 것을 포함하는 개념이다. Meanwhile, in the above-described embodiments, the solar collector including the insulation film 220 and the protection film 240 is described at the same time. However, the solar collector may include a solar heat collector having only the insulation film 220 without the protection film 240. . In this case, the second reflective film 260 is preferably provided in addition to the first reflective film 230, and the insulating gas is injected only into the insulating film 220. In this embodiment, the protective film 240 is not provided. Because of this it can be more affected by rain or snow and can not receive the warming effect of the protective film, but if it does not require high heat collection performance can be useful because it can be installed in a simple configuration. Next, FIG. 13 is a schematic view showing a solar heat collecting system according to a first embodiment of the present invention. In the solar heat collecting system according to the first embodiment of the present invention, a solar heat collector 200 that collects heat by receiving solar heat using a heat collecting medium and a heat collecting medium connected to the heat collector and circulating and heat-exchanging the heat collecting medium of the heat collector A heat storage device 500 for accumulating the heat in the heat storage medium, a connection device 600 for connecting the heat collecting medium of the heat collector to the heat storage device, and a control device for controlling the supply and circulation of the heat collecting medium ( 700). In the solar heat collecting system of the present invention, embodiments related to the above-described solar heat collector may be applied. In FIG. 13, the solar collector 200 may be configured in the same manner as the solar collector according to the first embodiment shown in FIGS. 2 to 5, but strictly the fourth end of FIG. 8 in which the other ends of the collector tube and the heat insulating film are blocked. The solar collector according to the embodiment is schematically shown. Since the solar collector 200 is as described above, a redundant description thereof will be omitted. The heat storage device 500 uses water as a heat storage medium to sequentially heat the water heated by the solar heat collector 200 to gradually increase the temperature of the water. To this end, the heat storage device 500 and the solar heat collector 200 are connected by a connection device 600 for moving water by forming a flow path through which water, which is a heat collecting medium and a heat storage medium, can move. The connection device 600 is connected to circulate the heat collecting medium of the heat collector to the heat storage device, and the "circulation" is injected by collecting the heat storage medium in the heat storage device as a heat collecting medium to the heat collector, and then extracts the heat storage again. The concept involves storing on a device.
상기 태양열 집열기(200)의 집열매체와 상기 축열장치(500)의 축열매체로 동일한 액체가 사용될 수 있는데, 이 경우 상기 연결장치(600)는, 상기 축열장치의 하부와 연결되어 상대적으로 저온의 액체를 공급하는 제1유로(610)와, 상기 축열장치의 상부와 연결되어 상기 집열기에서 집열되어 상대적으로 고온의 액체를 상기 축열장치로 공급하는 제2유로(620)와, 상기 집열기(200)의 집열튜브(210)와 연결되어 상기 제1유로로부터 공급되는 액체를 상기 집열튜브로 공급하는 제3유로(630)와, 상기 제1유로, 제2유로 및 제3유로가 만나는 곳에 설치되어 상기 액체의 유동 방향을 조절하는 삼방밸브(640)와, 상기 집열튜브(210) 내에서 집열된 집열매체를 상기 제3유로 및 제2유로를 거쳐 상기 축열장치(500)의 상부로 끌어올리는 펌프(650)를 포함하는 것이 바람직하다. 또한, 상기 제어장치(700)는 집열매체의 공급 및 순환을 제어하는데, 상기 태양열 집열기(200) 내부의 물 온도와 상기 축열장치(500) 내부의 물 온도를 측정하는 온도 센서(710, 720)가 각각 마련되는 것이 바람직하다. 상기 제어장치(700)는 상기 온도 센서(710, 720)로부터 측정된 온도 값의 차이에 따라 상기 삼방밸브(640) 및 상기 펌프(650)의 작동을 제어함으로써, 물의 공급 및 순환을 제어할 수 있다. 본 발명에 따른 태양열 집열시스템의 작동을 설명한다. 여기서는 집열매체로 사용되는 액체가 물인 경우로 한정하여 설명하기로 한다. 먼저, 상기 삼방밸브(640)를 작동하여 상기 축열장치(500)의 상부에 연결된 상기 제2유로(610)는 닫고, 상기 축열장치(500)의 하부에 연결된 상기 제1유로(610)와 상기 태양열 집열기(200)의 집열튜브와 연결된 제3유로(630)를 연통시키면, 상기 축열장치(500) 내부에 저장된 물의 압력에 의해 그 물이 상기 태양열 집열기(200)의 집열튜브(210) 내로 공급된다. 상기 태양열 집열기(200)의 집열튜브 내에 있던 물이 태양열을 받아 그 온도가 높아지고, 상기 두 온도 센서(710, 720)에서 측정된 온도가 소정의 차이값 이상이 되면, 상기 삼방밸브(640)의 유로를 바꾸어 상기 제1유로(610)는 닫고 상기 축열장치(500)의 상부에 연결된 상기 제2유로(620)와 상기 제3유로(630)가 연통되도록 한다.The same liquid may be used as the heat storage medium of the solar heat collector 200 and the heat storage medium of the heat storage device 500. In this case, the connection device 600 is connected to a lower portion of the heat storage device and has a relatively low temperature liquid. A first flow path 610 for supplying a second flow path, the second flow path 620 connected to an upper portion of the heat storage device, and collected in the heat collector to supply a relatively high temperature liquid to the heat storage device, and the heat collector 200. A third passage 630 connected to a collecting tube 210 to supply a liquid supplied from the first passage to the collecting tube, and a place where the first passage, the second passage, and the third passage meet; Three-way valve 640 for controlling the flow direction of the pump, and the pump 650 to raise the heat collecting medium collected in the heat collecting tube 210 to the upper portion of the heat storage device 500 through the third and second flow paths It is preferable to include). In addition, the control device 700 controls the supply and circulation of the heat collecting medium. Temperature sensors 710 and 720 for measuring the water temperature inside the solar heat collector 200 and the water temperature inside the heat storage device 500. It is preferable that each be provided. The controller 700 may control the supply and circulation of water by controlling the operation of the three-way valve 640 and the pump 650 according to the difference in temperature values measured by the temperature sensors 710 and 720. have. The operation of the solar heat collecting system according to the present invention will be described. Herein, the liquid used as the collecting medium will be described as being limited to water. First, the second flow path 610 connected to the top of the heat storage device 500 by operating the three-way valve 640 is closed, and the first flow path 610 and the bottom connected to the bottom of the heat storage device 500. When the third flow passage 630 connected to the heat collecting tube of the solar heat collector 200 is connected, the water is supplied into the heat collecting tube 210 of the solar heat collector 200 by the pressure of the water stored in the heat storage device 500. do. When the water in the collector tube of the solar collector 200 receives solar heat and its temperature is increased, and the temperature measured by the two temperature sensors 710 and 720 is equal to or greater than a predetermined difference value, the three-way valve 640 By changing the flow path, the first flow path 610 is closed and the second flow path 620 and the third flow path 630 connected to the upper portion of the heat storage device 500 communicate with each other.
그리고, 상기 펌프(650)를 작동시켜 집열튜브 내에 있던 물을 끌어올려서 상기 축열장치(500)로 보낸다.그런 다음, 다시 삼방밸브(640)의 유로를 바꾸어 상기 태양열 집열기(200)의 집열튜브(210)로 다시 물을 공급하여 상기집열 과정을 반복한다. 이렇게 물의 공급과 태양열 집열 및 물의 추출 과정을 반복함에 따라 상기 축열장치(500) 내에 저장된 물의 온도는 점점 높아진다. 물은 4℃ 이상일 때 온도가 높을수록 밀도가 작기 때문에 낮은 온도의 물은 상기 축열장치(500) 내부에서 아래로 내려가고 높은 온도의 물은 위로 올라가게 된다. 그래서, 상기 축열장치(500)에서 집열을 위해 상기 태양열 집열기(200)로 공급되는 물은 상대적으로 낮은 온도의 물이 공급될 수 있다. Then, the pump 650 is operated to draw up the water in the heat collecting tube and send the water to the heat storage device 500. Then, the flow path of the three-way valve 640 is changed again to collect the heat collecting tube of the solar heat collector 200 ( The water is supplied to 210 again to repeat the collection process. As the water supply, solar heat collection, and water extraction process are repeated, the temperature of the water stored in the heat storage device 500 is gradually increased. Since the higher the temperature, the lower the density of the water when the water is higher than 4 ℃, the water of the lower temperature is lowered inside the heat storage device 500 and the water of the higher temperature is raised. Thus, the water supplied to the solar collector 200 for collecting heat from the heat storage device 500 may be supplied with water of a relatively low temperature.
상기 제어장치(700)는 상기 두 온도센서(710, 720)의 차이값에 따라 상기 삼방밸브(640)와 펌프(650)의 작동을 제어하지만, 상기 축열장치(500) 내 물의 온도가 점점 높아짐에 따라 그 차이값은 점점 작아질 것이다. 따라서, 상기 축열장치(500) 내 물의 온도에 따라 상기 제어에 적용되는 기준값인 차이값을 점점 작게 설정하는 것이 바람직할 것이다. 또한, 상기 집열기(200) 내부의 물 온도와 상기 축열장치(500) 내부의 물 온도 사이의 차이값이 아니라, 상기 축열장치(500) 내 물의 온도를 기준으로 집열시스템의 작동을 제어할 수도 있음은 물론이다. 이 경우, 상기 축열장치(500) 내 물의 온도가 소정 온도 이상이 될 때까지 집열시스템을 작동시킨 후 그 소정온도가 되면 정지시킬 수 있다.The controller 700 controls the operation of the three-way valve 640 and the pump 650 according to the difference between the two temperature sensors 710 and 720, but the temperature of the water in the heat storage device 500 is gradually increased. The difference will be smaller. Therefore, it may be desirable to gradually set the difference value, which is a reference value applied to the control, according to the temperature of the water in the heat storage device 500. In addition, the operation of the heat collecting system may be controlled based on the temperature of the water in the heat storage device 500, not a difference value between the water temperature in the heat collector 200 and the water temperature in the heat storage device 500. Of course. In this case, the heat collecting system may be operated until the temperature of the water in the heat storage device 500 is higher than or equal to a predetermined temperature, and then stopped when the predetermined temperature is reached.
한편, 상기 태양열 집열기(200)의 집열튜브(210)는 유연한 재질로 이루어지는데, 상기 집열매체로 물과 같은 액체가 사용될 때 상기 집열튜브(210) 내로 대기압 이상의 압력으로 물을 주입하는 장치가 연결될 필요가 있다.On the other hand, the collector tube 210 of the solar collector 200 is made of a flexible material, when a liquid such as water is used as the collector medium, a device for injecting water at a pressure higher than atmospheric pressure into the collector tube 210 to be connected. There is a need.
본 실시예에서는 상기 삼방밸브(640)를 작동하여 상기 제1유로(610)와 제3유로(630)를 연결하기만 하면, 상기 한 축열장치(500) 내부에 있는 물의 압력에 의해 자동으로 상기 집열튜브(210) 내로 물이 주입되어 집열튜브가 부풀려지게 된다.따라서, 상기 축열장치(500)가 상기 집열튜브(210) 내로 대기압 이상의 압력으로 물을 주입하는 장치 역할을 하는 것이다. In this embodiment, the three-way valve 640 is operated to connect only the first flow path 610 and the third flow path 630, and automatically the pressure of the water inside the heat storage device 500. Water is injected into the collecting tube 210 to inflate the collecting tube. Accordingly, the heat storage device 500 serves to inject water into the collecting tube 210 at a pressure higher than atmospheric pressure.
도 14에는 본 발명의 제2실시예에 의한 태양열 집열시스템을 나타낸 개략도가 도시되어 있다. 본 실시예가 제1실시예와 다른 점은 태양열 집열기가 제1집열기와 제2집열기의 2개로 이루어져 있다는 것이다. 14 is a schematic view showing a solar heat collecting system according to a second embodiment of the present invention. The present embodiment differs from the first embodiment in that the solar collector is composed of two of the first collector and the second collector.
즉, 본 실시예의 태양열 집열시스템에서는, 상기 태양열 집열기가, 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브(310)와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막(320)과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제1집열기(300)와; 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브(410)와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막(420)과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제2집열기(400)를 포함한다. 여기서, 상기 제2집열기(400)의 집열튜브(410) 내 집열매체는 상기 제1집열기(300)의 보온막(320) 내부와 연통되어 순환된다. 즉, 상기 제2집열기(400)의 집열매체는 상기 제1집열기(300)의 보온기체와 동일한 물질이 사용되고, 그 예로서 주위에서 흔한 공기를 사용하는 것이 바람직하다. 상기 제1집열기(300)의 집열매체는 물 또는 공기가 사용될 수 있는데, 도시된 실시예에서는 액체인 물을 축열장치(500)의 축열매체 및 제1집열기(300)의 집열매체로 사용하는 경우를 도시한 것이다. 도 14에 도시된 바와 같이, 상기 제1집열기(300)의 집열튜브는 일단부가 상기 제3유로(630)와 연결되어 있고,그 타단부는 막혀 있다. 상기 제1집열기(300)의 보온막(320)은 양 단부가 모두 순환유로(350)에 연결되도록 이루어져 있다. 상기 제2집열기(400)의 집열튜브(410) 내에는 상기 제1집열기(300)의 보온막(320) 내 공기가 집열매체로 사용되어 상기 순환유로(350)를 통해 상기 제1집열기(300)의 보온막(320) 내부로 순환한다. 이때, 이 공기를 순환시키기 위해 상기 순환유로(350)의 일측에 송풍기(360)가 설치되어 있다. 상기 제1집열기(300)의 보온막은 물이 들어있는 집열튜브를 보온하는 역할을 하는데, 보온매체로서 상온의 공기가 아니라 제2집열기(400)에서 집열된 공기를 이용하여 상기 제1집열기(300)의 집열튜브(310)를 보온한다. 따라서, 상기 제1집열기(300)의 집열튜브(310) 내에는 공기에 비해 큰 비열을 가져서 천천히 데워지는 물이 들어 있는데, 이 물은 상기 제2집열기(400)에서 데워진 공기로부터 열을 받아 더 가열될 수 있다. 한편, 도 14에서 설명하지 않은 도면부호 340과 440은 각각 제1집열기(300)의 보호막과 제2집열기(400)의 보호막을 나타내고, 이들에 대하여는 상술한 바와 같다. 도 15에는 본 발명의 제3실시예에 의한 태양열 집열시스템을 나타낸 개략도가 도시되어 있고, 도 16에는 본 발명의 제4실시예에 의한 태양열 집열시스템을 나타낸 개략도가 도시되어 있다. 제3실시예 및 제4실시예에 의한 태양열 집열시스템은, 상기 태양열 집열기(200)가 집열매체로 공기를 사용하고, 상기 축열장치(500)는 축열매체로 물을 사용하며, 상기 태양열 집열기(200)의 집열튜브 내 공기는 상기 축열장치 내에서 순환하는 물과 열교환하도록 이루어진다. 도 15에 도시된 바와 같이, 상기 축열장치(500)는 물 순환유로(510)를 연결하고 이에 펌프(520)를 설치하여 내부에 저장된 물을 하부에서 상부로 끌어올린 다음 분사장치(530)를 통해 물을 분사한다. 상기 분사장치(530)의 하부에는 다공성 물질(540)이 배치되어 있어서, 공기와의 접촉을 원활하게 유도함으로써 열교환을 촉진한다.상기 태양열 집열기(200)의 집열튜브는 연결유로(370)를 통해 상기 축열장치(500)의 측면에서 물의 최고수위보다 약간 높은 위치에 연결된다. 상기 축열장치(500)의 상부에는 그 내부를 통과한 공기가 상기 태양열 집열기( 200)로 다시 공급되도록 순환유로(350)가 연결된다. 이 순환유로(350)의 일측에는 송풍기(360)가 설치되어 있어서 공기를 순환시킨다. 상기 태양열 집열기(200)에서 데워진 공기는 상기 송풍기(360)에 의해 상기 연결유로(370)를 통해 축열장치(500) 내부로 들어가고 상부로 올라가면서 상기 분사장치(530)에서 분사되는 물과 열교환하여 물의 온도를 올린다.물과 열교환된 공기는 상기 축열장치(500)의 상부에 연결된 순환유로(350)를 통해 다시 상기 태양열 집열기(200)로 들어가서 태양열을 집열한다. 한편, 상기 축열장치(500) 상부와 송풍기(360) 사이에 순환유로(350)을 두지 않고 집열시스템을 구성하는 것도 가능하다. 이 경우 송풍기(360)에 의해 흡입된 외기가 집열기(200)에서 가열되어 축열장치(500) 내에서 축열매체인 물과 열교환한 다음 축열장치(500)의 상부를 통해서 외부로 배출된다. 도 16의 제4실시예에 의한 태양열 집열시스템은, 상기 축열장치(500)의 구성에 있어서 상기 제3실시예의 것과다르다. 즉, 상기 축열장치(500)는 하부의 물을 상부로 펌핑하기 위해 측부에 물 순환유로(510)를 연결하고 이에 펌프(520)를 설치한 것은 제3실시예와 동일하나, 펌핑된 물을 분사시키는 분사장치가 마련되어 있지 않고 단순히 물이 위에서 아래로 흐르도록 한다. 대신, 상기 축열장치(500)의 내부에는 물이 지그재그로 흘러내릴 수 있도록 복수의 단(550)이 배치되어 있고, 이 복수의 단(550) 사이로 공기가 지그재그로 올라가면서 흘러내리는 물과 열교환하도록 이루어진다. 도 17에는 본 발명의 제5실시예에 의한 태양열 집열시스템을 나타낸 개략도가 도시되어 있고, 도 18에는 본 발명의 제5실시예에 의한 축열장치의 사시도가 도시되어 있으며, 도 19에는 본 발명의 제5실시예에 의한 축열장치의 단면도가 도시되어 있다. 본 실시예에 의한 태양열 집열시스템은, 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열 집열기(200)와, 상기 태양열 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 액체 상태의 축열매체에 축열하는 축열장치(500)와, 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치를 포함하고, 상기 축열장치(500)는, 하부에 상기 축열매체가 주입되고 그 상부로 상기 집열매체가 흐르면서 축열매체와의 직접 접촉에 의해 열교환하도록 이루어진 유연 재질의 축열튜브(560)와, 상기 축열튜브의 적어도 상부를 둘러싸도록 연결되어 내부에 보온기체를 수용하는 유연 재질의 축열보온막(570)을 포함한다. 제5실시예에 의한 태양열 집열시스템은, 상기 태양열 집열기(200)가 집열매체로 공기를 사용하고, 상기 축열장치(500)는 축열매체로 물을 사용하며, 상기 태양열 집열기(200)의 집열튜브 내부에서 가열된 공기가 상기 축열장치(500) 내에서 물의 상부를 흐르면서 물과의 직접 접촉에 의해 열교환하도록 이루어진다. 도 17에 도시된 바와 같이, 집열매체인 공기는 상기 송풍기(360)에 의해 상기 집열기(200)와 상기 축열장치(500) 사이에서 집열과 축열을 하면서 계속적으로 순환된다. 도 18 및 도 19에 도시된 바와 같이, 상기 축열장치(500)는 수평면상에 배치된 축열튜브(560)의 하부에 축열매체인 물을 채우고, 상기 집열기(200)에서 가열되어 상기 순환유로(350)을 통하여 상기 축열장치(500)에 유입된 공기로 하여금 물의 상부를 흐르도록 하여 물과의 직접 접촉에 의해 열교환하도록 이루어진다. 이때, 축열매체인 물의 보온을 위하여 상기 축열튜브(560)의 상부에 축열보온막(570)을 설치하고, 상기 축열튜브(560)와 상기 축열보온막(570) 사이의 공간에는 보온기체로서 공기를 채우는 것이 바람직하다. 여기서 공기를 채우는 방법은 상기 축열튜브(560)의 일단에 통기공(564)을 뚫거나 상기 축열보온막(570)의 일단에 보온기체 출입부(미도시)를 두어 상기 축열튜브(560)와 상기 축열보온막(570) 사이의 공간에 공기를 채우는 방법에 의해 가능하다. 상기 축열장치(500)는 상기 축열튜브(560)의 하부를 감싸서 상기 축열튜브가 안착되도록 형성된 지지부(580)를 더 포함하는 것이 바람직하다. 상기 지지부(580)를 두는 목적은 집열매체인 물의 지면으로의 열손실 저감 뿐만 아니라 유연한 재질로 이루어지고 물이 들어있는 집열튜브의 단면 형태를 안정적으로 유지하여 물의 상부를 흐르는 공기와 잘 접촉할 수 있도록 하는 것이다. 도 19에 도시된 바와 같은 소정 형태를 가진 지지부(580)를 상기 축열튜브(560)의 하부에 둠으로써, 상기 축열튜브(560)와 축열보온막(570)을 구성하는 재료로서 비닐계 수지나 고무와 같이 유연하면서도 값이 싼 재료를 사용하여 상기 축열장치(500)을 구현할 수 있다. 한편, 상기 집열기(200)와 축열장치(500) 사이에서 공기를 순환시키지 않고 통과시키는 형태로 집열시스템을 구성하는 것도 가능하다.이 경우, 상기 송풍기(360)에 의해 흡입된 외기가 집열기(200)에서 가열되어 축열장치(500) 내로 유입되고, 축열장치(500) 내부를 통과하면서 축열매체인 물과 열교환한 다음 축열장치(500)의 외부로 배출되도록 구성될 수 있다. 본 발명의 태양열 집열기에 의하면, 저가의 재료를 이용하여 원하는 길이로 용이하게 제작 및 설치할 수있고, 상황에 따라 복수의 집열기를 병렬 또는 직렬로 연결하여 배치하여 넓은 면적에 걸쳐 설치함으로써 낮은 입사 밀도를 가진 태양광일지라도 대량의 태양에너지를 집열할 수 있다. 또한, 종래의 집열기는 특정 장소에 설치된 다음 다른 장소로 이동하는 것이 자유롭지 못하였으나, 본 발명에 의한 태양열 집열기는 유연한 재질로 이루어지고 집열기 내에 보온기체와 집열매체를 주입 또는 추출하여 부피를 가감하는 것이 가능하므로 원하는 장소에 이동, 설치 및 보관이 용이하다. 이상에서는 본 발명의 바람직한 실시예를 설명하였으나, 본 발명의 범위는 이 같은 특정 실시예에만 한정되지 않으며, 해당분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위 내에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.That is, in the solar heat collecting system of the present embodiment, the solar heat collector has a heat collecting medium that is a heat transfer medium therein, a heat collecting tube 310 made of a flexible material that receives solar heat, and surrounds the heat collecting tube and has a heat insulating gas therein. A first collector 300 provided at a part of the insulating film for accommodating a flexible material, and a reflective film made of a flexible material provided on a portion of the insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube; A heat collecting tube 410 of a flexible material that receives solar heat by collecting a heat collecting medium that is a heat transfer medium therein, a heat insulating film 420 of a flexible material surrounding the heat collecting tube, and receiving a heat insulating gas therein; A second collector 400 is provided on a portion of the film and includes a reflective film of a flexible material that reflects the sunlight around the collection tube to the collection tube. Here, the collecting medium in the collecting tube 410 of the second collector 400 is circulated in communication with the inside of the insulating film 320 of the first collector 300. That is, as the heat collecting medium of the second collector 400, the same material as that of the warming gas of the first collector 300 is used. For example, it is preferable to use air common in the surroundings. Water or air may be used as the heat collecting medium of the first collector 300. In the illustrated embodiment, when liquid water is used as the heat storage medium of the heat storage device 500 and the heat collecting medium of the first collector 300. It is shown. As shown in FIG. 14, one end of the collecting tube of the first collector 300 is connected to the third passage 630, and the other end thereof is blocked. Both ends of the insulating film 320 of the first collector 300 are connected to the circulation passage 350. In the heat collecting tube 410 of the second collector 400, air in the heat insulating film 320 of the first collector 300 is used as a collecting medium, so that the first collector 300 is disposed through the circulation passage 350. Circulates into the thermal insulation film 320. At this time, a blower 360 is installed at one side of the circulation passage 350 to circulate the air. The heat insulating film of the first collector 300 serves to insulate the heat collecting tube containing water, and the first collector 300 using air collected in the second collector 400 instead of air at room temperature as a heat insulating medium. Heat-collecting the heat collecting tube (310). Therefore, the heat collecting tube 310 of the first collector 300 contains water having a larger specific heat than air, and is slowly heated. The water receives heat from the air heated in the second collector 400 and is further heated. Can be heated. Meanwhile, reference numerals 340 and 440 not described with reference to FIG. 14 denote a protective film of the first collector 300 and a protective film of the second collector 400, respectively, as described above. 15 is a schematic view showing a solar heat collecting system according to a third embodiment of the present invention, and FIG. 16 is a schematic view showing a solar heat collecting system according to a fourth embodiment of the present invention. In the solar heat collecting system according to the third and fourth embodiments, the solar heat collector 200 uses air as a heat collecting medium, and the heat storage device 500 uses water as a heat storage medium, and the solar heat collector ( Air in the collecting tube of 200 is made to exchange heat with water circulating in the heat storage device. As shown in FIG. 15, the heat storage device 500 connects the water circulation passage 510 and installs a pump 520 thereto to draw water stored therein from the bottom to the top, and then to the injection device 530. Spray water through. A porous material 540 is disposed under the injector 530 to facilitate heat exchange by inducing contact with air. The heat collecting tube of the solar collector 200 is connected to the connection channel 370. The side of the heat storage device 500 is connected to a position slightly higher than the highest water level. The circulation passage 350 is connected to an upper portion of the heat storage device 500 so that air passing through the heat storage device 500 is supplied back to the solar heat collector 200. One side of the circulation passage 350 is provided with a blower 360 to circulate air. The air warmed by the solar collector 200 enters into the heat storage device 500 through the connection flow path 370 by the blower 360 and heats up with water sprayed from the injector 530 while going up. The temperature of the water is raised. The air heat-exchanged with water enters the solar collector 200 again through the circulation passage 350 connected to the upper portion of the heat storage device 500 to collect solar heat. On the other hand, it is also possible to configure a heat collecting system without having a circulation passage 350 between the heat storage device 500 and the blower 360. In this case, the outside air sucked by the blower 360 is heated in the collector 200, heat-exchanged with the heat storage medium in the heat storage device 500, and then discharged to the outside through the top of the heat storage device 500. The solar heat collecting system according to the fourth embodiment of FIG. 16 differs from that of the third embodiment in the configuration of the heat storage device 500. That is, the heat storage device 500 is connected to the water circulation passage 510 to the side to pump the water of the lower portion and the pump 520 is installed in the same as the third embodiment, but the pumped water There is no injector to inject and the water simply flows from top to bottom. Instead, a plurality of stages 550 are disposed inside the heat storage device 500 to allow water to flow down into the zigzag, and to exchange heat with water flowing down while the air is zigzag between the plurality of stages 550. Is done. FIG. 17 is a schematic view showing a solar heat collecting system according to a fifth embodiment of the present invention, FIG. 18 is a perspective view of a heat storage device according to a fifth embodiment of the present invention, and FIG. A cross-sectional view of the heat storage device according to the fifth embodiment is shown. The solar heat collecting system according to the present embodiment includes a solar heat collector 200 that collects heat by receiving solar heat using a heat collecting medium, and is connected to the solar heat collector and circulates and heat-exchanges the heat collecting medium of the heat collector to heat the heat of the heat collecting medium. A heat storage device 500 for accumulating the heat storage medium in a liquid state, and a connection device for connecting the heat collecting medium of the heat collector to circulate to the heat storage device, wherein the heat storage device 500 has a bottom heat storage medium. A heat storage tube 560 of a flexible material which is injected and heat-exchanges by direct contact with the heat storage medium while the heat collecting medium flows thereon, and is connected to surround at least an upper portion of the heat storage tube to receive a heat insulating gas therein The heat storage insulating film 570 is made of a material. In the solar heat collecting system according to the fifth embodiment, the solar heat collector 200 uses air as a heat collecting medium, the heat storage device 500 uses water as a heat storage medium, and a heat collecting tube of the solar heat collector 200. The heated air is made to heat exchange by direct contact with water while flowing the upper portion of the water in the heat storage device (500). As shown in FIG. 17, air, which is a heat collecting medium, is circulated continuously while collecting and storing heat between the heat collector 200 and the heat storage device 500 by the blower 360. 18 and 19, the heat storage device 500 fills water, which is a heat storage medium, in the lower portion of the heat storage tube 560 disposed on a horizontal plane, and is heated in the heat collector 200 to provide the circulation flow path ( The air introduced into the heat storage device 500 through 350 allows the upper portion of the water to flow to exchange heat by direct contact with the water. At this time, the heat storage insulation film 570 is installed on the heat storage tube 560 to insulate the water, which is the heat storage medium, and in the space between the heat storage tube 560 and the heat storage insulation film 570, air as a heat insulating gas. It is preferable to fill. Here, the method of filling the air may include a hole (564) in one end of the heat storage tube (560) or a heat insulating gas inlet (not shown) at one end of the heat storage insulation film (570) and the heat storage tube (560) and the It is possible by a method of filling air into the space between the heat storage insulation film 570. The heat storage device 500 may further include a support part 580 formed to surround the bottom of the heat storage tube 560 so that the heat storage tube is seated. The purpose of the support portion 580 is to reduce the heat loss to the ground of the water, which is the heat collecting medium, as well as to maintain a stable cross-sectional shape of the heat collecting tube containing water and to contact the air flowing over the top of the water. To ensure that By placing the support part 580 having a predetermined shape as shown in FIG. 19 under the heat storage tube 560, the vinyl resin or the like as a material constituting the heat storage tube 560 and the heat storage insulating film 570. The heat storage device 500 may be implemented using a flexible and inexpensive material such as rubber. On the other hand, it is also possible to configure a heat collecting system in the form of passing the air between the collector 200 and the heat storage device 500 without circulating. In this case, the outside air sucked by the blower 360 is collected. It is heated in the) to be introduced into the heat storage device 500, the heat storage device 500 may be configured to exchange heat with water that is a heat storage medium while passing through the heat storage device 500 and then discharged to the outside of the heat storage device (500). According to the solar collector of the present invention, it can be easily manufactured and installed in a desired length using a low-cost material, and according to the situation, a plurality of collectors are connected in parallel or in series to be installed over a large area, thereby providing low incidence density. Even solar light can collect large amounts of solar energy. In addition, although the conventional collector is not free to move to another place after being installed in a specific place, the solar collector according to the present invention is made of a flexible material and to add or subtract the volume by injecting or extracting the insulating gas and the collecting medium in the collector It is easy to move, install and store where you want. Although the preferred embodiment of the present invention has been described above, the scope of the present invention is not limited only to this specific embodiment, and those skilled in the art are appropriately within the scope described in the claims of the present invention. Changes will be possible.
부호의 설명Explanation of the sign
200: 태양열 집열기 210: 집열튜브200: solar collector 210: collector tube
212: 집열매체 출입부 214: 통기공212: collecting medium entrance 214: ventilator
216: 체크밸브 218: 집열튜브의 타단부216: check valve 218: the other end of the collecting tube
220: 보온막 222: 보온기체 출입부220: heat insulation film 222: heat insulation gas entry
226: 보온막의 타단부 230: 제1반사막226: other end of the heat insulating film 230: first reflective film
240: 보호막 250: 기저막240: protective film 250: base film
260: 제2반사막 270: 고정막260: second reflective film 270: fixed film
290: 마개부재 300: 제1집열기290: plug member 300: first collector
350: 순환유로 360: 송풍기350: circulation passage 360: blower
370: 연결유로 400: 제2집열기370: connection euro 400: second collector
500: 축열장치 560: 축열튜브500: heat storage device 560: heat storage tube
570: 축열보온막 580: 지지부570: heat storage insulating film 580: support portion
600: 연결장치 610: 제1유로600: connecting device 610: first euro
620: 제2유로 630: 제3유로620: second euro 630: third euro
640: 삼방밸브 650: 펌프640: three-way valve 650: pump
700: 제어장치 710: 제1온도센서700: controller 710: first temperature sensor
720: 제2온도센서720: second temperature sensor

Claims (25)

  1. 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와; 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 제1반사막과;설치되는 지면과 함께 상기 보온막을 둘러싸며, 상기 보온막 및 상기 지면과의 사이에 보온기체를 수용하는 유연 재질의 보호막을 포함하고, 사용시에 집열매체 및 보온기체를 선택적으로 주입가능한 것을 특징으로 하는 태양열 집열기.A heat collecting tube made of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas therein; A first reflecting film made of a flexible material provided on a portion of the insulating film and reflecting sunlight around the collecting tube to the collecting tube; and surrounding the insulating film with a ground to be installed, between the insulating film and the ground. A solar heat collector comprising a protective film made of a flexible material for accommodating a heat insulating gas, wherein the heat collecting medium and the heat insulating gas can be selectively injected during use.
  2. 제1항에 있어서, 상기 보호막은 그 길이가 폭에 비해 상대적으로 길게 형성되고, 상기 보호막은 길이 방향의 양 단부가 개방된 것을 특징으로 하는 태양열 집열기.The solar collector of claim 1, wherein a length of the passivation layer is relatively longer than a width, and both ends of the passivation layer are opened in a length direction.
  3. 제1항에 있어서, 상기 보호막은 설치되었을 때 경사면을 형성하는 것을 특징으로 하는 태양열 집열기.The solar collector of claim 1, wherein the protective film forms an inclined surface when installed.
  4. 제1항에 있어서, 상기 보호막은 빛이 통과할 수 있도록 투명 또는 반투명한 재질로 이루어진 것을 특징으로 하는 태양열 집열기.The solar collector of claim 1, wherein the passivation layer is made of a transparent or translucent material to allow light to pass therethrough.
  5. 제1항에 있어서,상기 보호막의 일부는 상기 보온막의 일측에 부착되어 고정되거나 탈착가능하게 연결되는 것을 특징으로 하는 태양열 집열기.The solar collector of claim 1, wherein a part of the protective film is attached to one side of the insulating film and is fixed or detachably connected.
  6. 제1항에 있어서, 상기 태양열 집열기는, 상기 보온막의 일측부 바닥에 설치되어 태양광을 상기 집열튜브 또는 상기 제1반사막으로 반사시키는 제2반사막을 더 포함하는 것을 특징으로 하는 태양열 집열기.The solar collector of claim 1, wherein the solar collector further includes a second reflector installed at a bottom of one side of the thermal insulation film to reflect sunlight to the heat collecting tube or the first reflector.
  7. 제6항에 있어서, 상기 태양열 집열기는, 지면에 설치되어 지면으로부터의 습기 침투를 막고 열손실을 줄이는 기저막을 더 포함하고, 상기 제2반사막은 상기 기저막의 일부에 마련되는 것을 특징으로 하는 태양열 집열기.The solar collector of claim 6, wherein the solar collector further includes a base film installed on the ground to prevent moisture penetration from the ground and reduce heat loss, and the second reflective film is provided on a portion of the base film. .
  8. 제7항에 있어서, 상기 태양열 집열기는, 상기 보호막을 팽팽하게 당기도록 상기 기저막의 양측에 마련되어 지면에 고정되는 고정막을 더 포함하는 것을 특징으로 하는 태양열 집열기.The solar collector of claim 7, wherein the solar collector further comprises a fixed membrane provided on both sides of the base membrane to pull the protective layer tightly and fixed to the ground.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 집열매체는 물 또는 공기이고, 상기 보온기체는 공기인 것을 특징으로 하는 태양열 집열기.The solar heat collector according to any one of claims 1 to 8, wherein the heat collecting medium is water or air, and the heat insulating gas is air.
  10. 제9항에 있어서, 상기 집열매체로 물이 사용될 때, 상기 집열튜브에는 집열튜브 내로 대기압 이상의 압력으로 물을 주입하는 장치가 연결되는 것을 특징으로 하는 태양열 집열기.10. The solar collector according to claim 9, wherein when water is used as the collecting medium, a device for injecting water at a pressure higher than atmospheric pressure into the collecting tube is connected to the collecting tube.
  11. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 집열튜브의 적어도 일단부에는 집열매체 출입부가 마련되고, 상기 보온막의 적어도 일단부에는 보온기체 출입부가 마련되는 것을 특징으로 하는 태양열 집열기.The solar collector according to any one of claims 1 to 8, wherein at least one end of the heat collecting tube is provided with a heat collecting medium inlet, and at least one end of the heat insulating film is provided with a heat insulating gas inlet.
  12. 제11항에 있어서, 상기 집열튜브의 타단부는 막히도록 이루어진 것을 특징으로 하는 태양열 집열기.12. The solar collector of claim 11, wherein the other end of the collecting tube is blocked.
  13. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 보호막은 상기 보온막의 외측면에 연결되어 설치되는 지면과 함께 상기 보온막의 하부를 둘러싸도록 이루어진 것을 특징으로 하는 태양열 집열기.The solar heat collector according to any one of claims 1 to 8, wherein the protective film surrounds a lower portion of the insulating film together with a ground surface connected to the outer surface of the insulating film.
  14. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 태양열 집열기는, 상기 집열튜브 및 상기 보온막과 연결되고 일측에 집열매체 출입부와 보온기체 출입부가 구비되는 마개부재를 더 포함하는 것을 특징으로 하는 태양열 집열기.According to any one of claims 1 to 8, wherein the solar heat collector, is connected to the heat collecting tube and the heat insulating film further comprises a stopper member having a heat collecting medium inlet and a heat insulating gas inlet on one side Solid color.
  15. 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와; 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 제1반사막을 포함하고, 상기 집열매체로 공기가 사용되며, 상기 집열튜브의 일측에는 집열튜브 내부로 유입되는 공기가 상기 집열튜브와 보온막 사이의 공간으로 유출되도록 하는 통기공이 형성된 것을 특징으로 하는 태양열 집열기.A heat collecting tube made of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas therein; Is provided on a portion of the insulating film, and includes a first reflective film of a flexible material for reflecting the sunlight around the heat collecting tube to the heat collecting tube, the air is used as the heat collecting medium, one side of the heat collecting tube into the heat collecting tube Solar collector, characterized in that the air vent is formed so that the air flowing into the space between the heat collecting tube and the insulating film.
  16. 제15항에 있어서, 상기 통기공에는 보온막 내부로 유입된 공기가 다시 유출되지 않도록 하는 체크밸브가 설치된 것을 특징으로 하는 태양열 집열기.The solar collector of claim 15, wherein a check valve is installed in the vent to prevent the air introduced into the insulating film from flowing out again.
  17. 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 집열튜브와; 상기 집열튜브를 둘러싸며, 보온기체를 수용하는 보온막과; 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 제1반사막과; 지면에 설치되어 지면으로부터의 습기 침투를 막고 열손실을 줄이는 기저막과; 상기 기저막의 일부에 마련되어, 태양광을 상기 집열튜브 또는 상기 제1반사막으로 반사시키는 제2반사막을 포함하는 태양열 집열기.A heat collecting tube for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein; A heat insulating film surrounding the heat collecting tube and containing a heat insulating gas; A first reflecting film provided on a portion of the insulating film and reflecting sunlight around the collecting tube to the collecting tube; A base membrane installed on the ground to prevent moisture penetration from the ground and to reduce heat loss; And a second reflecting film provided on a portion of the base film to reflect sunlight to the collecting tube or the first reflecting film.
  18. 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열 집열기와; 상기 태양열 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 축열매체에 축열하는 축열장치와; 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치를 포함하고, 상기 태양열 집열기는,내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 제1반사막을 포함하는 것을 특징으로 하는 태양열 집열시스템.A solar collector which collects heat by receiving solar heat using a collecting medium; A heat storage device connected to the solar heat collector and configured to heat-exchange the heat collecting medium of the heat collector to heat the heat collecting medium to the heat storage medium; And a connection device for circulating the heat collecting medium of the heat collector to the heat storage device, wherein the solar heat collecting device includes: a heat collecting tube made of a flexible material that receives heat from the heat collecting medium, which is a heat transfer medium, and the heat collecting tube; And a heat insulating film made of a flexible material for accommodating a heat insulating gas therein, and a first reflecting film provided on a part of the heat insulating film to reflect sunlight around the heat collecting tube to the heat collecting tube. Collection system.
  19. 제18항에 있어서,상기 태양열 집열기의 집열매체와 상기 축열장치의 축열매체로 동일한 액체가 사용되고,상기 연결장치는,상기 축열장치의 하부와 연결되어 상대적으로 저온의 액체를 공급하는 제1유로와; 상기 축열장치의 상부와 연결되어 상기 집열기에서 집열되어 상대적으로 고온의 액체를 상기 축열장치로 공급하는 제2유로와; 상기 집열기의 집열튜브와 연결되어 상기 제1유로로부터 공급되는 액체를 상기 집열튜브로 공급하는 제3유로와; 상기 제1유로, 제2유로 및 제3유로가 만나는 곳에 설치되어 상기 액체의 유동 방향을 조절하는 삼방밸브와; 상기 집열튜브 내에서 집열된 집열매체를 상기 제3유로 및 제2유로를 거쳐 상기 축열장치의 상부로 끌어올리는 펌프를 포함하는 것을 특징으로 하는 태양열 집열시스템.According to claim 18, The same liquid is used as the heat storage medium of the solar heat collector and the heat storage medium of the heat storage device, The connecting device, The first flow path is connected to the lower portion of the heat storage device to supply a relatively low temperature liquid; ; A second flow passage connected to an upper portion of the heat storage device and configured to collect liquid in the heat collector to supply relatively high temperature liquid to the heat storage device; A third flow passage connected to a collecting tube of the collector to supply a liquid supplied from the first passage to the collecting tube; A three-way valve installed at a place where the first flow passage, the second flow passage, and the third flow passage meet to control a flow direction of the liquid; And a pump that pulls up the heat collecting medium collected in the heat collecting tube to the upper portion of the heat storage device through the third flow path and the second flow path.
  20. 제18항에 있어서, 상기 태양열 집열기는, 물을 집열매체로 사용하는 제1집열기와,공기를 집열매체로 사용하는 제2집열기를 포함하고, 상기 제2집열기의 집열튜브 내 공기는 상기 제1집열기의 보온막 내 공기와 연결되어 순환되는 것을 특징으로 하는 태양열 집열시스템.The solar collector of claim 18, wherein the solar collector comprises a first collector using water as a collecting medium and a second collector using air as a collecting medium, wherein the air in the collecting tube of the second collector is the first collector. Solar heat collecting system, characterized in that the circulation is connected to the air in the heat insulating film of the collector.
  21. 제18항에 있어서,상기 태양열 집열기는 집열매체로 공기를 사용하고,상기 축열장치는 축열매체로 물을 사용하며,상기 태양열 집열기의 집열튜브 내 공기는 상기 축열장치 내에서 순환하는 물과 열교환하도록 이루어진 것을 특징으로 하는 태양열 집열시스템.The method of claim 18, wherein the solar collector uses air as a heat collecting medium, the heat storage device uses water as a heat storage medium, and the air in the heat collecting tube of the solar heat collector is configured to exchange heat with water circulating in the heat storage device. Solar heat collection system, characterized in that made.
  22. 집열매체를 이용하여 태양열을 받아 열을 수집하는 태양열 집열기와; 상기 태양열 집열기와 연결되고 상기 집열기의 집열매체를 순환시켜 열교환하여 집열매체의 열을 액체 상태의 축열매체에 축열하는 축열장치와; 상기 집열기의 집열매체를 상기 축열장치로 순환시키도록 연결하는 연결장치를 포함하고, 상기 축열장치는,하부에 상기 축열매체가 주입되고 그 상부로 상기 집열매체가 흐르면서 축열매체와의 직접 접촉에 의해 열교환하도록 이루어진 유연 재질의 축열튜브를 포함하는 것을 특징으로 하는 태양열 집열시스템.A solar collector which collects heat by receiving solar heat using a collecting medium; A heat storage device connected to the solar heat collector and configured to circulate and heat-exchange the heat collecting medium of the heat collector to heat the heat of the heat collecting medium to a heat storage medium in a liquid state; And a connection device for circulating the heat collecting medium of the heat collector to circulate the heat storage device, wherein the heat storage device is injected by direct contact with the heat storage medium while the heat storage medium is injected into the bottom and the heat collecting medium flows thereon. Solar heat collecting system comprising a heat storage tube of a flexible material made to heat exchange.
  23. 제22항에 있어서,상기 축열장치는, 상기 축열튜브의 적어도 상부를 둘러싸도록 연결되어 내부에 보온기체를 수용하는 유연 재질의 축열보온막을 더 포함하는 것을 특징으로 하는 태양열 집열시스템.The solar heat collecting system according to claim 22, wherein the heat storage device further comprises a heat storage heat insulating film made of a flexible material connected to surround at least an upper portion of the heat storage tube to receive a heat insulating gas therein.
  24. 제23항에 있어서, 상기 축열장치는 상기 축열튜브의 하부를 감싸서 상기 축열튜브가 안착되도록 형성된 지지부를 더 포함하는 것을 특징으로 하는 태양열 집열시스템.24. The solar heat collecting system according to claim 23, wherein the heat storage device further includes a support formed to surround the bottom of the heat storage tube so that the heat storage tube is seated.
  25. 내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제1집열기와;내부에 열전달매체인 집열매체를 수용하여 태양열을 받아들이는 유연 재질의 집열튜브와, 상기 집열튜브를 둘러싸며, 내부에 보온기체를 수용하는 유연 재질의 보온막과, 상기 보온막의 일부에 마련되어, 상기 집열튜브 주위의 태양광을 상기 집열튜브로 반사시키는 유연 재질의 반사막을 포함하는 제2집열기를 포함하고,상기 제2집열기의 집열튜브 내 집열매체는 상기 제1집열기의 보온막 내부와 연통되어 순환되는 것을 특징으로하는 태양열 집열기.A heat collecting tube made of a flexible material for receiving solar heat by receiving a heat collecting medium that is a heat transfer medium therein, a heat insulating film made of a flexible material surrounding the heat collecting tube and accommodating a heat insulating gas therein, and provided in a part of the heat insulating film, A first collector comprising a reflective film made of a flexible material reflecting sunlight around the collecting tube to the collecting tube; a collecting tube of a flexible material receiving the heat collecting medium which is a heat transfer medium therein, and receiving the solar heat; A second heat collector including a second heat insulating layer surrounding the heat collecting gas, the second heat collector including a heat insulating film containing a heat insulating gas therein, and a flexible film formed on a portion of the heat insulating film to reflect the sunlight around the heat collecting tube to the heat collecting tube. And a heat collecting medium in the heat collecting tube of the second heat collector is circulated in communication with the inside of the heat insulating film of the first heat collector. Collector.
PCT/KR2013/003482 2012-05-03 2013-04-24 Solar collector and heat collecting system comprising same WO2013165116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380026935.0A CN104350337A (en) 2012-05-03 2013-04-24 Solar collector and heat collecting system comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0046945 2012-05-03
KR1020120046945A KR101162988B1 (en) 2012-05-03 2012-05-03 A solar heat collector and a solar heat collecting system comprising the same

Publications (1)

Publication Number Publication Date
WO2013165116A1 true WO2013165116A1 (en) 2013-11-07

Family

ID=46716333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003482 WO2013165116A1 (en) 2012-05-03 2013-04-24 Solar collector and heat collecting system comprising same

Country Status (3)

Country Link
KR (1) KR101162988B1 (en)
CN (1) CN104350337A (en)
WO (1) WO2013165116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989243A (en) * 2019-03-28 2019-07-09 淮北市源昇节能科技有限公司 A kind of window curtain type solar clothes dryer systems

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591703A (en) * 2012-08-14 2014-02-19 北京兆阳光热技术有限公司 Solar energy gathering system
KR101336473B1 (en) * 2013-04-23 2013-12-04 서동진 Tube type fan heater of solar heat
KR102010416B1 (en) * 2017-08-11 2019-08-13 도순 임 Solar energy collector
CN109983283A (en) * 2017-10-24 2019-07-05 金润贞 Solar heat collector and its manufacturing method
CN108413618B (en) * 2018-03-06 2019-07-09 安徽人人家集团有限公司 A kind of solar thermal collector and solar water heater of homogeneous heating
CN108679856B (en) * 2018-04-08 2019-06-28 江苏巨天新能源有限公司 A kind of solar water heater of bent thermal-collecting tube
CN108507190B (en) * 2018-04-08 2019-07-02 江苏巨天新能源有限公司 A kind of solar water heater of double medium thermal-collecting tubes
KR20200079966A (en) * 2018-12-26 2020-07-06 김윤정 A solar heat collector
KR102196847B1 (en) * 2018-12-26 2020-12-30 김윤정 A Batch Type Solar Water Heater
CN109945514A (en) * 2019-04-29 2019-06-28 李启民 A kind of high-efficiency pipeline heat collector used suitable for desert and Gobi desert

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081759A (en) * 2000-09-04 2002-03-22 Tomohiro Omura Pressurization and suction type concave reflector
KR100682580B1 (en) * 2005-02-25 2007-02-15 안익로 Heat collector and heat-collection system using the same
KR100803614B1 (en) * 2007-04-26 2008-02-19 제주대학교 산학협력단 Non-glass solar vacuum tube collector
KR100911048B1 (en) * 2007-07-24 2009-08-06 쏠라포스 주식회사 A Solar collector cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223743B1 (en) * 1999-05-18 2001-05-01 Melvin L. Prueitt Solar power generation and energy storage system
CN1448667A (en) * 2002-03-28 2003-10-15 董永友 Solar energy reflection apparatus
CN101059278A (en) * 2006-04-21 2007-10-24 蒙义雄 Soft solar heat-collector
CN101071004B (en) * 2006-05-09 2010-05-12 黄金伦 Molding combined huge solar light-focusing cabin
CN101236022A (en) * 2007-01-31 2008-08-06 杨天敏 Sunlight focusing and multiple layer heat preservation solar water heater
KR100926537B1 (en) * 2007-04-03 2009-11-12 안익로 A Heat Collector
CN201110651Y (en) * 2007-10-11 2008-09-03 李俊 Split solar water heater
CN201731656U (en) * 2010-05-12 2011-02-02 皇明太阳能股份有限公司 Solar water heating system with phase change thermal storage device
CN202177235U (en) * 2011-08-18 2012-03-28 王学明 Novel combined type solar thermal collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081759A (en) * 2000-09-04 2002-03-22 Tomohiro Omura Pressurization and suction type concave reflector
KR100682580B1 (en) * 2005-02-25 2007-02-15 안익로 Heat collector and heat-collection system using the same
KR100803614B1 (en) * 2007-04-26 2008-02-19 제주대학교 산학협력단 Non-glass solar vacuum tube collector
KR100911048B1 (en) * 2007-07-24 2009-08-06 쏠라포스 주식회사 A Solar collector cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989243A (en) * 2019-03-28 2019-07-09 淮北市源昇节能科技有限公司 A kind of window curtain type solar clothes dryer systems

Also Published As

Publication number Publication date
CN104350337A (en) 2015-02-11
KR101162988B1 (en) 2012-07-09

Similar Documents

Publication Publication Date Title
WO2013165116A1 (en) Solar collector and heat collecting system comprising same
US4126270A (en) Solar energy collection system
US4026267A (en) Solar energy apparatus
CN104838217B (en) Solar air warm up/down system
US4015582A (en) Solar heat collector
US20080176504A1 (en) Solar heating system and architectural structure with a solar heating system
KR20140037079A (en) Solar air heating device
US4186721A (en) Solar energy heat collector
US4174703A (en) Solar heat roofing system
AU2020274226A1 (en) Solar energy roof tile, solar energy system and method for obtaining energy from solar radiation
JP3848655B2 (en) Solar system house
EP0776448B1 (en) Solar collector
WO2018030689A1 (en) Solar heating air mat
WO2013024962A1 (en) Greenhouse using solar heat and geothermal heat
CA1113328A (en) Solar collector and heat trap
WO2020138535A1 (en) Batch type solar water heater
WO2011007122A2 (en) Composite solar collector
CN101876197B (en) Heating and cooling type color-changing solar tile
JP2561314Y2 (en) Solar-powered building
ITMI20002872A1 (en) ROOFING ELEMENT FOR BUILDING ROOFS WITH IMPROVED FUNCTIONALITY
CN215057423U (en) Tunnel lining concrete curing means
CN108489117A (en) A kind of warm roof of light
WO2020138534A1 (en) Solar collector
CN208567168U (en) A kind of warm roof of light
JPS63302232A (en) Housing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784494

Country of ref document: EP

Kind code of ref document: A1