WO2013165051A1 - Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof - Google Patents

Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof Download PDF

Info

Publication number
WO2013165051A1
WO2013165051A1 PCT/KR2012/005490 KR2012005490W WO2013165051A1 WO 2013165051 A1 WO2013165051 A1 WO 2013165051A1 KR 2012005490 W KR2012005490 W KR 2012005490W WO 2013165051 A1 WO2013165051 A1 WO 2013165051A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
titanium
titanium implant
surface treatment
ultra
Prior art date
Application number
PCT/KR2012/005490
Other languages
French (fr)
Korean (ko)
Inventor
김수경
장일석
박기태
강은정
송주동
엄태관
최규옥
Original Assignee
오스템임플란트주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스템임플란트주식회사 filed Critical 오스템임플란트주식회사
Publication of WO2013165051A1 publication Critical patent/WO2013165051A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • A61C8/0015Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention is a superoleophilic titanium or titanium alloy material (hereinafter,
  • the present invention relates to a surface treatment method that gives such superhydrophilicity and a storage method capable of preserving the superhydrophilicity imparted by the surface treatment method for a long time.
  • a surface treatment method that gives such superhydrophilicity and a storage method capable of preserving the superhydrophilicity imparted by the surface treatment method for a long time.
  • RBM or SLA which is widely used as a method
  • it provides superhydrophilicity to the surface of titanium implants through dry cleaning method using room temperature plasma or ultraviolet rays, and immediately transfers titanium implants to organic zwitterionic buffer.
  • the present invention relates to a titanium implant having a superhydrophilic property to preserve superhydrophilic properties for a long time by supporting the same, and a surface treatment and storage method thereof.
  • the surface treatment method of the implant As an important determinant in bone fusion, the surface treatment method of the implant has been pointed out.
  • the smooth surface treatment method by lathe processing has the longest history and the long term history due to the excellent biocompatibility and tissue stability with bone. Has been used.
  • efforts have been made to improve the surface in order to improve the success rate in bones with low bone density.
  • Predecki et al. Reported that irregularly-imposed implants were able to observe rapid bone growth and good mechanical bonding.
  • Buser et al. Reported that implants with irregular and rough surfaces showed more bone contact rates than those with smooth surfaces in animal experiments.
  • first-generation implants have smooth surfaces
  • second-generation implants are coated surfaces
  • the blasting technique is used as an absorbent medium. It is divided into RBMC Resorbable Blasted Media blasting, which increases the roughness of the implant, Titanium Plasma Spray (TPS), and sandblast large grit acid etch (SLA) with high biocompatibility. can see.
  • Implants with a hydroxyapatite (HA) coating surface belong to the third generation. The surface area is increased by the effect of particles and coatings sprayed on the surface, which increases the interfacial bond strength of the implant and activates the reaction of cells on the rough surface. Has the advantage of being.
  • an oxide layer grows on the surface of the product when the product is exposed to air vapor after the surface treatment process, as shown in FIG. Adsorption of contaminants occurs and hydrophobizes while changing to a chemically stable state. Since the surface of the hydrophobized implant has low wettability to body fluids and blood, it has a disadvantage of prolonging the period of stabilization of the implant by preventing the overall process of fusion with bone after implant implantation.
  • Prior art according to EP 1,150,620 describes an implant having a hydrophilic surface after SLA surface treatment.
  • the manufacturing method in this document shows that i) mechanically roughening the titanium surface through various methods. Ii) cleaning the surface with pure water, which may contain additives, and iii) packaging the titanium surface in a container containing inert gas without further processing.
  • the wettability of the titanium surface is described as maintaining a hydrophilic surface exhibiting a contact angle of 20 to 50 ° with respect to water.
  • water containing salts is mentioned as an alternative to an inert gas, and in the case of salt concentration, 100 to 200 mEq / Mg for monovalent salts such as Na and K and 1 to 1 for divalent salts such as Ca. A concentration range of 20 mEq / is described.
  • EP1, 150 In the case of the prior art according to No. 620, a method of cleaning titanium surface using pure water is applied, and when applying such a wet method such as ultrasonic method in surface cleaning, it is possible to remove 1 or less fine surface contaminants present on the surface. Not only is it difficult to remove, but there are disadvantages in that it is difficult to clean the minute irregularities that ultrasonic waves cannot reach.
  • the concentration of the applied salt is sufficient at a concentration of 100 200 mEq / i for the monovalent salt, whereas for the divalent salt, 1-20 mEq
  • concentration is too low in the / i range when applied to the actual dental implant abutment there is a problem that the amount is too small to cover the entire surface of the abutment.
  • the present invention is to improve the body fluid and blood affinity through the super-hydrophilicity secured by the above method to finally provide an implant having an excellent initial bone formation effect and a short bone fusion period after the implant procedure The purpose.
  • the present invention provides ultra-hydrophilic properties through precise dry surface cleaning, without changing the physical shape of the titanium surface. It is related to the method of modifying the surface and the method of storing it to maintain its superhydrophilicity for a long time. By securing the superhydrophilicity of the implant surface for a long time, it improves the fluid and blood affinity, and finally the excellent initial bone formation effect after the implant procedure. And a short bone fusion period, and to provide such superhydrophilized implants.
  • the present invention comprises the steps of modifying the macro-micromorphology to a superhydrophilic surface having a contact angle of 10 ⁇ or less through dry cleaning of room temperature full-lasma or ultraviolet irradiation in a timed manner to sufficiently remove the microcontamination present on the structured titanium surface. And, after the contaminant cleaning, the implant surface is immersed in a concentration of organic amphoteric bilayer complete solution so that the surface of the implant is not hydrophobized and the superhydrophilicity of 10 ° or less is continuously maintained.
  • the first step of the present invention is a dry cleaning method that decomposes a fine contaminant layer on the surface of an implant by reaction of an ionized component by room temperature plasma or ultraviolet light in a vacuum or atmosphere without using a solvent. It is the step of changing the surface contact angle to less than 10 ⁇ superhydrophilicity without changing the physical shape.
  • the second step of the present invention in order to maintain the superhydrophilic for a long time is to support in a buffer containing a salt based on organic amphoteric material, the salt concentration of the titanium surface even if stored for a long period of about 3 years It is characterized by being protected by an aqueous solution containing a salt in a layered amount capable of maintaining hydrophilicity of 10 ° or less without being hydrophobized.
  • the organic zwitterionic material include, for example, ACE, BES, CHES, HEPES, MOPS, PIPES, TES, etc., and it was confirmed that the salt concentration is preferably in the range of 0.1M to 1M.
  • organic zwitterionic buffer having a sulfonic acid group and removing contaminants adsorbed on the metal surface by pretreatment such as plasma or light irradiation. It is possible to maintain superhydrophilicity for a long period of time by being supported on the base material so that hydrophobicity as in conventional titanium surfaces does not occur.
  • the superhydrophilic titanium implant of the present invention has a surface that not only effectively prevents the adsorption and stabilization of pollutants in the air, but also uniformly surrounds the surface.
  • Superhydrophilicity of the surface is maintained by the solution; Excellent blood affinity, excellent bone formation effect and has an effect of shortening the bone fusion period.
  • 1 is a view schematically showing the surface treatment and storage method of the super-hydrophilic titanium implant of the present invention.
  • Figure 3 is a photograph showing the contact angle of the titanium disk stored on the organic zwitterionic complete layer liquid having a titanium disk and sulfonic acid group hydrophobized by surface contamination.
  • FIG. 4 is a view showing a change in contact angle with a change in the irradiation time of ultraviolet rays during dry cleaning.
  • FIG. 5 shows changes in implant-bone interface binding force at 4 months accelerated aging conditions.
  • Figure 6 shows the change in implant-bone interface binding force under three-year accelerated aging conditions.
  • FIG. 7 shows the change in implant-bone interface binding force with concentration of organic zwitterionic buffer at 3 years accelerated aging conditions.
  • Machined titanium disks are blasted for 1 to 60 seconds with blast pressure of 1 to 10 atm using A1 2 Q 3 powder with particle size of 1mm or less, and then macro acid is applied to titanium disk surface by acid treatment with mixed acid aqueous solution.
  • Micromorphology was assigned (hereinafter referred to as 'SA treatment' or 'SA').
  • the acid-treated titanium disc was ultrasonically cleaned for 30 minutes with ethanol and for 30 minutes with distilled water and then dried.
  • RFGD Radio-Frequency Glow Discharge
  • Organic zwitterionic materials with sulfonic acid groups that can be used in addition to HEPES include ACES, BES, CHES, MOPS, PIPES, TES, etc.
  • Titanium discs prepared through the above process were used in Examples 2 and 3 below.
  • the surface of the negative control group (SA) is the same as the SA-treated basic shape, but the surface component is present only titanium, in the case of the experimental group has a shape that the SA surface is covered with the supporting solution and the surface component of the supporting solution Ingredients S, 0, and C were detected with titanium.
  • the sample was washed three times or more with distilled water for 10 minutes, and then dried by spraying with nitrogen. From the side after The contact angle was measured by close-up photography.
  • the negative control group used a titanium disk in which the pollutant was adsorbed on the surface by exposure to the air after the SA treatment and dry cleaning using plasma or ultraviolet light at room temperature.
  • the negative control group was hydrophobized, and the contact angle showed a large value of 107 °, while the contact angle of the experimental group was 0 ° and it was confirmed that superhydrophilicity was maintained.
  • Figure 4 is a graph showing the change in contact angle with the time change of the dry cleaning process using ultraviolet light. As shown, it can be seen that when irradiated with ultraviolet rays for a time of 2 minutes or more, it is possible to secure a superhydrophilic surface having a contact angle of 0 °.
  • the SA surface is treated with SA, wet cleaning, and drying, followed by dry cleaning for 1 minute with room temperature plasma or at least 2 minutes with ultraviolet light to remove pollutants adsorbed and stabilized on the surface. It was confirmed in this example that the superhydrophilic titanium surface having a contact angle of 0 ° may be maintained when supported on the complete layer solution.
  • the machined dental titanium implant is blasted for 1 to 60 seconds with a blast pressure of 1 to 10 atm using A1 2 0 3 powder with a particle size of 1 mm or less.
  • Macro-micromorphology was imparted to the titanium disc surface by acid treatment with aqueous solution (SA treatment).
  • SA treatment aqueous solution
  • the acid-treated titanium disc was ultrasonically washed with ethanol for 30 minutes and distilled water for 30 minutes and then dried.
  • the implant was removed by a dry cleaning treatment of at least one minute of plasma at room temperature or at least two minutes of ultraviolet light to remove contaminants adsorbed and stabilized on the surface, and was supported in an organic amphoteric buffer (HEPES) having 0.02M sulfonic acid group on the surface.
  • HEPES organic amphoteric buffer
  • the titanium implant prepared as above was used in Examples 5, 6 and 7 below.
  • Example 5 Animal Experiment for Measurement of Bone Interfacial Adhesion of Organic Amphiphilic Complete Serum with Dental Accelerated Sulfonate Group (1)
  • the micro-pig After placing the HEPES-supported dental titanium implant prepared in Example 4 for 2 weeks under accelerated aging conditions (about 55 ° C.) for 4 months, the micro-pig (to check the implant-bone interface strength) was established. micropig) The implant was placed in the tibia and after 16 days of bone formation, the removal torque was measured.
  • a titanium implant without a contaminant was removed as a negative control, and a titanium implant (pretreatment) without undergoing accelerated aging conditions was used as a positive control after dry removal of the contaminant.
  • the bond-bone interface coupling force decreased by about 20% due to accelerated aging conditions. It was also confirmed that the removal ability of the skid was improved by about 5%.
  • the HEPES-supported dental titanium implant prepared in Example 4 was left for 18 weeks under accelerated aging conditions (about 55 ° C) to create a three-year storage period, followed by micro-implantation to check the implant-bone interface.
  • the implant was placed in the pig tibia and measured for removal torque after 16 days of bone formation.
  • a titanium implant that did not remove the contaminant was used as a negative control group, and a titanium implant that was subjected to a pretreatment process to remove the contaminant as a negative control group was not supported in the HEPES solution and was not subjected to accelerated aging conditions.
  • the implant-bone interface binding force of the experimental group that underwent the accelerated aging condition of 3 years of storage period was maintained at the same level as the implant-bone interface binding force of the positive control group which did not undergo any accelerated aging condition. It is confirmed that the storage of implant in ionic complete layer solution is very effective in maintaining superhydrophilicity of implant surface.
  • the HEPES-supported dental titanium implant described in Example 4 was varied in the concentration of HEPES and left for 18 weeks under accelerated aging conditions (approximately 55 0 C) to create a condition for one year of storage, and then implants—
  • the implant was placed in the micropig tibia to check the bone interface binding force, and the removal torque was measured after 16 days of bone formation period.
  • the negative control group was used as a titanium implant that did not remove the contaminant, and the positive control group was subjected to a pretreatment process but not carried out in the HEPES solution and subjected to accelerated aging conditions.
  • the source was dry-removed and used as an implant supported in distilled water instead of HEPES buffer. .
  • the removal ability of Birlin was increased by about 50% in the positive control group compared to the negative control group.
  • the concentration of HEPES buffer exceeds 1M, the HEPES buffer itself is toxic, but considering that the actual amount of HEPES buffer remaining on the implant surface is not too high, the concentration of HEPES buffer is set to 1M or less. It can also be evaluated that the level of safety is secured.
  • the concentration of the HEPES buffer supporting the implant is set in the range of 0.1M ⁇ 1M it was confirmed that the effect of the impingement bone interface binding strength is clearly maintained.
  • the embodiment is intended to help the description of the present invention is not limited by the embodiment, the person skilled in the art of the present invention within the scope of the technical idea of the present invention Various modifications and equivalent other embodiments are possible based on the claims and the content of the invention.
  • the first invention can be applied widely throughout the first half of the implant of titanium or titanium alloy material which lip expression in human bone tissue in the field of medicine dealing with the human bone, such as orthopedic medicine or dentistry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The present invention relates to a method for modifying a titanium surface into an ultra-hydrophilic surface by precise dry surface cleaning without changing the physical shape of the titanium surface without additional surface treatments such as RBM and SLA, and a storage method for maintaining the ultra-hydrophilicity thereof for a long period of time. Body fluid and blood affinity is improved by securing the ultra-hydrophilicity of the surface of an implant for a long period of time, thereby ultimately enabling excellent initial osteogenesis and a short osseointegration time after implantation. In addition, an implant ultra-hydrophilized thereby is provided.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
초친수성을 갖는 티타늄 임플란트, 그 표면처리 및 보관 방법  Superhydrophilic titanium implant, surface treatment and storage method
【기술분야】  Technical Field
본 발명은 초친수성을 갖는 티타늄 또는 티타늄 합금 재질의 임폴란트 (이하, The present invention is a superoleophilic titanium or titanium alloy material (hereinafter,
'티타늄 임플란트'로 통칭함)와, 그와 같은 초친수성을 갖게 하는표면처리 방법 및 상기 표면처리 방법에 의해 부여된 초친수성을 장기간 보존할 수 있는 보관 방법에 관한 것으로서, 현재 임풀란트 표면처리방식으로서 널리 사용되고 있는 RBM이나 SLA 등에 의한 표면처리 후 상온 플라즈마나 자외선을 이용한 건식 세정 방식올 통해 티타늄 임플린트 표면에 초친수성을 부여하고, 그 즉시 티타늄 임플란트를 유기 양쪽성이은 완층액 (organic zwitterionic buffer) 안에 담지시킴으로써 초친수성을 장기간 보존시키는 초친수성을 갖는 티타늄 임플란트, 그 표면처리 및 보관 방법에 관한 것이다. The present invention relates to a surface treatment method that gives such superhydrophilicity and a storage method capable of preserving the superhydrophilicity imparted by the surface treatment method for a long time. After surface treatment with RBM or SLA, which is widely used as a method, it provides superhydrophilicity to the surface of titanium implants through dry cleaning method using room temperature plasma or ultraviolet rays, and immediately transfers titanium implants to organic zwitterionic buffer. The present invention relates to a titanium implant having a superhydrophilic property to preserve superhydrophilic properties for a long time by supporting the same, and a surface treatment and storage method thereof.
【배경기술】  Background Art
정형의학이나 치의학 등 인체의 뼈를 다루는 의학분야에서는 손상, 결손된 뼈를 대체할 수 있는 보철물, 즉 임플란트에 관한 관심이 높다. 임플란트의 재료로서 티타늄의 생체적합성이 우수하다는 사실은 상당히 예전부터 알려져 현재까지 활발히 사용되고 있는데, 임풀란트 시술의 성공 여부는 인조조직인 임플란트가 뼈 조직 안에서 결합되는 골융합 (Osseointegration) 얼마나 견고하게, 그리고 빨리 완성되는가에 달려있다고 할 수 있다.  In the medical field dealing with the bones of the human body, such as orthodontics and dentistry, there is a great interest in the prosthesis, or implants that can replace damaged or missing bones. The excellent biocompatibility of titanium as an implant material has been known for a long time and has been actively used to date. The success of the implant procedure is how firm and fast Osseointegration of artificial implants can be incorporated into bone tissue. It depends on the completion.
골융합에 있어서 중요한 결정인자로 임플란트의 표면처리 방식이 지적되어 왔으며, 이와 관련하여 선반 가공에 의한 매끈한 표면처리 방식이 골과의 우수한 생체 적합성과 조직 안정성 때문에 가장 오랜 역사를 가지고 오랜기간 동안 임플란트 술식에 이용되어 왔다. 그러나 골 밀도가 낮은 골에서의 성공률을 개선하기 위해 표면을 개선시키려는 노력이 대두되었으며, Predecki 등은 불규칙한 표면을 가진 임폴란트가 빠른 골 성장과 우수한 기계적 접합을 관찰할 수 있었다고 보고하였다. 또한, Buser 등은 동물실험에서 불규칙하고 거친 표면을 갖는 임플란트가 평활한 표면을 갖는 임플란트에 비해 더 많은 골접촉률을 보인다고 하였다.  As an important determinant in bone fusion, the surface treatment method of the implant has been pointed out. In this connection, the smooth surface treatment method by lathe processing has the longest history and the long term history due to the excellent biocompatibility and tissue stability with bone. Has been used. However, efforts have been made to improve the surface in order to improve the success rate in bones with low bone density. Predecki et al. Reported that irregularly-imposed implants were able to observe rapid bone growth and good mechanical bonding. In addition, Buser et al. Reported that implants with irregular and rough surfaces showed more bone contact rates than those with smooth surfaces in animal experiments.
임플란트 표면의 진화된 양상을 살펴보면 1세대는 평활한 표면을 갖는 임플란트, 2세대 임폴란트는 피막 표면을 갖는 임플란트로, 흡수성 매질로 블라스팅 기법을 이용하여 임플란트의 거 칠기를 증가시 킨 RBMCResorbable Blasted Media blasting)과 티타늄 분사 피막 (Titanium Plasma Spray, TPS), 인체 산성물질로 표면 처리하여 생체 친화성 이 높은 SLA(Sandblast Large grit Acid etch) 등으로 나누어 볼 수 있다. 수산화인회석 (hydroxyapatite, HA) 피막 표면을 갖는 임플란트는 3세대에 속하는데, 표면은 표면에 분사되는 입자 및 코팅의 영향으로 표면적 이 증가되어 임플란트 계면 골결합력 이 증가되며 거친 표면에 세포의 반웅이 활성화되는 장점을 지닌다. In the evolution of the implant surface, first-generation implants have smooth surfaces, second-generation implants are coated surfaces, and the blasting technique is used as an absorbent medium. It is divided into RBMC Resorbable Blasted Media blasting, which increases the roughness of the implant, Titanium Plasma Spray (TPS), and sandblast large grit acid etch (SLA) with high biocompatibility. can see. Implants with a hydroxyapatite (HA) coating surface belong to the third generation.The surface area is increased by the effect of particles and coatings sprayed on the surface, which increases the interfacial bond strength of the implant and activates the reaction of cells on the rough surface. Has the advantage of being.
- 그런데 , 현재 많이 사용되고 있는 RBM(Resorbable Blasted Media blasting)이나-By the way, RBM (Resorbable Blasted Media blasting)
SLACSandblast Large grit Acid etch) 등의 임플란트 표면처리 방식의 경우, 도 1에 모식적으로 도시된 바와 같이, 표면처 리공정 후 제품이 공기 증에 노출되었을 때 제품 표면에 산화층이 성장하고 탄화수소 등의 다양한 오염원의 흡착이 일어나 화학적으로 안정한 상태로 변화하면서 소수화된다. 이 렇게 소수화된 임플란트 표면은 체액 및 혈액에 대한 젖음성 이 낮기 때문에 임플란트 매식 후 뼈와 융합되는 전반적 인 과정을 방해하여 임플란트가 안정되는 기간을 연장시키는 단점 이 있다. In the case of an implant surface treatment method such as SLACSandblast Large grit Acid etch, an oxide layer grows on the surface of the product when the product is exposed to air vapor after the surface treatment process, as shown in FIG. Adsorption of contaminants occurs and hydrophobizes while changing to a chemically stable state. Since the surface of the hydrophobized implant has low wettability to body fluids and blood, it has a disadvantage of prolonging the period of stabilization of the implant by preventing the overall process of fusion with bone after implant implantation.
EP 1, 150,620호에 따른 선행 기술은 SLA 표면처 리 후 친수성 표면올 갖는 임플란트를 기술하고 있는데, 이 문헌에서의 제조방법을 살펴보면 i )다양한 방법들을 통해 기 계적으로 티타늄 표면을 거 칠게 구현시 키고, ii )첨가제를 포함할 수 있는 순수 (純水)를 사용하여 표면을 세척 시킨 후, iii)추가적 인 공정 없이 티타늄 표면을 블활성 기체가 들어간 용기 내에 포장하는 제조 방식을 기술하고 있다. 그리고, 이에 따른 티타늄 표면의 젖음성은 물에 대하여 20〜 50°의 접촉각을 나타내는 친수성 표면을 유지 한다고 기술하고 있다. 또한, 불활성 기체를 대신할 수 있는 것으로 염을 포함한 물을 언급하고 있으며, 염 농도의 경우 Na, K와 같은 1가의 염에 대해서는 100〜 200 mEq/ Mg와 Ca와 같은 2가의 염에 대해서는 1 ~ 20 mEq/ 의 농도 범위를 기술하고 있다.  Prior art according to EP 1,150,620 describes an implant having a hydrophilic surface after SLA surface treatment. The manufacturing method in this document shows that i) mechanically roughening the titanium surface through various methods. Ii) cleaning the surface with pure water, which may contain additives, and iii) packaging the titanium surface in a container containing inert gas without further processing. In addition, the wettability of the titanium surface is described as maintaining a hydrophilic surface exhibiting a contact angle of 20 to 50 ° with respect to water. In addition, water containing salts is mentioned as an alternative to an inert gas, and in the case of salt concentration, 100 to 200 mEq / Mg for monovalent salts such as Na and K and 1 to 1 for divalent salts such as Ca. A concentration range of 20 mEq / is described.
하지만, EP1, 150..620호에 따른 선행 기술의 경우 순수를 사용하여 티타늄 표면을 세척하는 방식을 적용하였는데, 표면 세척 에 있어 초음파 방식과 같은 이 러한 습식 방식을 적용할 경우 표면에 존재하는 1 이하의 미세한 표면 오염물을 제거하기 힘들 뿐 아니 라 초음파가 도달하지 못하는 미세 한 요철 부분에 대해서는 세척 이 이루어 지기 힘들다는 단점 이 있다. However, EP1, 150 . In the case of the prior art according to No. 620, a method of cleaning titanium surface using pure water is applied, and when applying such a wet method such as ultrasonic method in surface cleaning, it is possible to remove 1 or less fine surface contaminants present on the surface. Not only is it difficult to remove, but there are disadvantages in that it is difficult to clean the minute irregularities that ultrasonic waves cannot reach.
이 러 한 세척 정도를 판단하는 방법으로서, "Handbook of Physical Vapor Deposition(PVD) Processing, Donald M. Mattox, Noyes Publications (1998)"에서는 접촉각 측정을 통해 표면의 세척 정도를 판단할수 있으며, 초순수에 대한 접촉각이 20° 이상인 표면은 오염이 남아있기 때문이라고 추정하고 있으며, 효율적인 방법을 통해 깨끗한 표면올 형성했을 경우 5°에 근접하는 접촉각을 갖는다고 기술하고 있다. 또한, 표면의 친수성을 유지하기 위해 염을 함유한 수용액에 보관하는 방식을 적용하였는데, 이때 적용된 염의 농도에 있어서 1가의 염의 경우 100 200 mEq/i 농도로 충분한데 반해 2가의 염의 경우 1~20 mEq/i 범위로 그 농도가 너무 낮아실제 치과용 임플란트 어버트먼트에 적용할 경우 어버트먼트 전체 표면을 층분히 덮을 수 없는 정도의 너무 적은 양이라는 문제점이 있다. As a method of determining the degree of cleaning, Handbook of Physical Vapor Deposition (PVD) Processing, Donald M. Mattox, Noyes Publications (1998) The degree of cleaning of the surface can be judged by measuring the contact angle, and it is assumed that the surface with the contact angle for ultrapure water is 20 ° or more because contamination remains. It is described as having. In addition, in order to maintain the surface hydrophilicity, a method of storing in an aqueous solution containing salt was applied. At this time, the concentration of the applied salt is sufficient at a concentration of 100 200 mEq / i for the monovalent salt, whereas for the divalent salt, 1-20 mEq When the concentration is too low in the / i range when applied to the actual dental implant abutment there is a problem that the amount is too small to cover the entire surface of the abutment.
한편, EP 2,121,058호의 선행 기술은 EP 1,150,620호에 따른 기술이 갖는 친수성의 한계를 극복하기 위해 크름황산 표면처리를 사용하여 티타늄 표면에 50~100 nm의 나노 포어 구조를 형성시켜야만 접촉각이 10° 이하인 초친수성 표면을 확보할수 있으며, 또한 건조 후에도 친수성을 유지하기 위한 방법으로 0.5 mo\/i 이상 바람직하게는 1 mol/« 이상의 높은 농도의 전체 이온 농도를 갖는 염 함유 수용액에 보관해야 한다고 기술하고 있다.  The prior art of EP 2,121,058, on the other hand, uses a sulfuric acid surface treatment to form a nanopore structure of 50-100 nm on the surface of titanium to overcome the hydrophilic limitations of the technique according to EP 1,150,620. It is described that a hydrophilic surface can be secured and that it should be stored in a salt-containing aqueous solution having a high total ion concentration of at least 0.5 mo \ / i and preferably at least 1 mol / «as a method for maintaining hydrophilicity after drying.
그러나, 접촉각 10 이하의 초친수성 표면을 얻기 위해서는 크름황산 표면처리에 의한 나노 포어를 형성시키는 복잡한 공정에 의해서만 가능하고, 티타늄 표면의 초친수성을 유지하기 위한 수용액 내 염의 농도 또한 1 mol/ 이상의 고농도이기 때문에 인체 내에 임풀란트 어버트먼트를 식립했을 경우 고농도의 염에 의한 독성 발현 등의 안전성의 문제가 발생할 가능성이 존재한다.  However, in order to obtain a superhydrophilic surface with a contact angle of 10 or less, it is possible only by a complicated process of forming nanopores by the surface treatment of sulfuric acid, and the concentration of the salt in the aqueous solution to maintain the superhydrophilicity of the titanium surface is also high. Therefore, when implant implants are implanted in the human body, there is a possibility that safety problems such as toxicity expression due to high concentrations of salts occur.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 정밀한 건식 표면 세정 방식을 통해 초친수성으로 표면을 개질시키는 방법과 그 초친수성을 장시간 유지시킬 수 있도록 보관하는 방법을 제공하는 것을 그 목적으로 한다.  It is an object of the present invention to provide a method of modifying a surface with superhydrophilicity through a precise dry surface cleaning method and a method of storing the hydrophilicity for a long time.
또한, 본 발명은 위와 같은 방법에 의해 확보된 초친수성을 통해 체액 및 혈액 친화성을 향상시켜 최종적으로는 임플란트 시술 후 우수한 초기 골 형성 효과와 짧은 골 융합 기간올 가지는 임플란트를 제공하는 것을 또 하나의 목적으로 한다.  In addition, the present invention is to improve the body fluid and blood affinity through the super-hydrophilicity secured by the above method to finally provide an implant having an excellent initial bone formation effect and a short bone fusion period after the implant procedure The purpose.
【기슬적 해결방법】  【Esoteric Solution】
본 발명은 RBM 및 SLA와 같은 표면처리 이외에 추가적으로 티타늄 표면의 물리적인 형상은 변화시키지 않고도, 정밀한 건식 표면 세정 방식을 통해 초친수성으로 표면을 개질시키는 방법과 그 초친수성을 장시간 유지시킬 수 있도록 보관하는 방법에 관련된 것으로서, 임플란트 표면의 초친수성을 장기간 확보함으로써 체액 및 혈액 친화성을 향상시켜 최종적으로는 임플란트 시술 후 우수한 초기 골 형성 효과와 짧은 골 융합 기간을 가지도록 하며, 또한 이와 같은 초친수화 처 리된 임풀란트를 제공하기 위한 것이다. In addition to surface treatments such as RBM and SLA, the present invention provides ultra-hydrophilic properties through precise dry surface cleaning, without changing the physical shape of the titanium surface. It is related to the method of modifying the surface and the method of storing it to maintain its superhydrophilicity for a long time. By securing the superhydrophilicity of the implant surface for a long time, it improves the fluid and blood affinity, and finally the excellent initial bone formation effect after the implant procedure. And a short bone fusion period, and to provide such superhydrophilized implants.
본 발명은 매크로-마이크로 모폴로지를 구조를 갖는 티타늄 표면에 존재하는 미세 오염을 충분히 제거하기 위해 층분한 시간의 상온 풀라즈마 또는 자외선 조사의 건식 세정을 통해 접촉각이 10ο 이하인 초친수성 표면으로 개질시키는 단계와, 오염물 세정 후에도 임플란트 표면이 소수화되지 않고 10° 이하의 초친수성을 지속적으로 유지할 수 있도록 층분한 농도의 유기 양쪽성 이은 완층액에 임플란트를 담지시키는 단계로 구성된다. The present invention comprises the steps of modifying the macro-micromorphology to a superhydrophilic surface having a contact angle of 10 ο or less through dry cleaning of room temperature full-lasma or ultraviolet irradiation in a timed manner to sufficiently remove the microcontamination present on the structured titanium surface. And, after the contaminant cleaning, the implant surface is immersed in a concentration of organic amphoteric bilayer complete solution so that the surface of the implant is not hydrophobized and the superhydrophilicity of 10 ° or less is continuously maintained.
본 발명의 첫 번째 단계는, 용매를 사용하지 않고 진공 또는 대기 중에서 상온 플라즈마 또는 자외선에 의 한 이온화된 성분의 반응에 의해 임플란트 표면의 미세한 오염층을 분해시 키는 건식 세척 방식으로서, 티타늄 표면의 물리 적 인 형상을 변화시키지 않고도 표면 접촉각을 10ο 이하의 초친수성으로 변화시키는 단계이다. The first step of the present invention is a dry cleaning method that decomposes a fine contaminant layer on the surface of an implant by reaction of an ionized component by room temperature plasma or ultraviolet light in a vacuum or atmosphere without using a solvent. It is the step of changing the surface contact angle to less than 10 ο superhydrophilicity without changing the physical shape.
또한 본 발명의 두 번째 단계는, 초친수성을 장기간 유지시키기 위해 유기 양쪽성 이은 물질 기 반의 염을 함유한 완충액에 담지하는 것이며 , 이때 염의 농도는 3년 정도의 장기간 동안 보관되는 경우에도 티타늄 표면이 소수화되지 않고 10° 이하의 친수성을 유지할 수 있는 층분 양의 염을 함유한 수용액에 의해 보호되는 것을 특징으로 한다. 여기서 유기 양쪽성 이온 물질의 예를 들면, ACE, BES, CHES, HEPES, MOPS, PIPES, TES 등을 들 수 있으며, 이 염의 농도는 0.1M~ 1M 범위를 가지는 것 이 바람직한 것으로 확인되었다ᅳ  In addition, the second step of the present invention, in order to maintain the superhydrophilic for a long time is to support in a buffer containing a salt based on organic amphoteric material, the salt concentration of the titanium surface even if stored for a long period of about 3 years It is characterized by being protected by an aqueous solution containing a salt in a layered amount capable of maintaining hydrophilicity of 10 ° or less without being hydrophobized. Examples of the organic zwitterionic material include, for example, ACE, BES, CHES, HEPES, MOPS, PIPES, TES, etc., and it was confirmed that the salt concentration is preferably in the range of 0.1M to 1M.
【유리한 효과】  Advantageous Effects
본 발명 의 임플란트의 표면처 리 및 보관 방법에 따르면, 플라즈마나 광조사 등의 전처리를 통해 금속표면에 흡착된 오염원을 제거하고 술폰산기 (sulfonic group)를 가지는 유기 양쪽성 이온 완충액 (organic zwitterionic buffer) 기반의 물질에 담지 됨으로써 종래의 티타늄 표면에서와 같은 소수화가 일어 나지 않게 되 어 장기 간 동안 초친수성을 유지시키 는 것 이 가능해진다.  According to the surface treatment and storage method of the implant of the present invention, organic zwitterionic buffer having a sulfonic acid group and removing contaminants adsorbed on the metal surface by pretreatment such as plasma or light irradiation. It is possible to maintain superhydrophilicity for a long period of time by being supported on the base material so that hydrophobicity as in conventional titanium surfaces does not occur.
또한, 본 발명의 초친수성을 갖는 티타늄 임풀란트는 그 표면이 공기 중 오염원의 흡착 및 안정화를 효과적으로 방지할 뿐만 아니라 표면을 균일하게 에워싼 용액에 의해 표면의 초친수성이 유지되므로, 임풀란트 시술 후 생체친화성이 높은 것은 물론 체액 및. 혈액친화성이 우수해 골형성 효과가 뛰어나고 골융합 기간이 단축되는 효과를 갖는다. In addition, the superhydrophilic titanium implant of the present invention has a surface that not only effectively prevents the adsorption and stabilization of pollutants in the air, but also uniformly surrounds the surface. Superhydrophilicity of the surface is maintained by the solution; Excellent blood affinity, excellent bone formation effect and has an effect of shortening the bone fusion period.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 초친수성을 갖는 티타늄 임플란트의 표면처리 및 보관 방법을 개략적으로 보여주는 도면.  1 is a view schematically showing the surface treatment and storage method of the super-hydrophilic titanium implant of the present invention.
도 2는 건식 세정된. 티타늄 디스크를 술폰산기를 가지는 유기 양쪽성이온 완충액에 담지하기 전후의 표면 형상 및 성분을 SEM 및 EDS로 분석한 결과를 보여주는 도면.  2 is dry cleaned. Figure showing the results of SEM and EDS analysis of the surface shape and components before and after the titanium disk is supported in the organic zwitterionic buffer solution having a sulfonic acid group.
도 3은 표면의 오염으로 소수화된 티타늄 디스크 및 술폰산기를 가지는 유기 양쪽성이온 완층액에 담지 보관된 티타늄 디스크의 접촉각을 보여주는 사진.  Figure 3 is a photograph showing the contact angle of the titanium disk stored on the organic zwitterionic complete layer liquid having a titanium disk and sulfonic acid group hydrophobized by surface contamination.
도 4는 건식 세정시 자외선 조사시간의 변화에 따른 접촉각의 변화를 보여주는 도면.  4 is a view showing a change in contact angle with a change in the irradiation time of ultraviolet rays during dry cleaning.
도 5는 4개월 가속노화 조건에서의 임풀란트-골계면 결합력의 변화를 보여주는 도면.  FIG. 5 shows changes in implant-bone interface binding force at 4 months accelerated aging conditions. FIG.
도 6은 3년 가속노화 조건에서의 임플란트-골계면 결합력의 변화를 보여주는 도면.  Figure 6 shows the change in implant-bone interface binding force under three-year accelerated aging conditions.
도 7은 3년 가속노화 조건에서의 유기 양쪽성이온 완충액의 농도에 따른 임플란트—골계면 결합력의 변화를 보여주는 도면.  FIG. 7 shows the change in implant-bone interface binding force with concentration of organic zwitterionic buffer at 3 years accelerated aging conditions.
【발명의 실시를 위한 최선의 형태】  Best Mode for Implementation of the Invention
이하, 실시예를 통하여 본 발명을 상세히 설명한다.  Hereinafter, the present invention will be described in detail through examples.
[실시예 1] Example 1
티타늄 디스크 표면의 오염원 제거 및 술폰산기를 가지는 유기 양쪽성이온 완층액 담지  Removal of contaminants on the surface of titanium discs and supporting of organic amphoteric ions with sulfonic acid groups
기계가공된 티타늄 디스크를 입자 크기 1mm이하의 A12Q3 분말을 사용하여 블라스트 압력 1~ 10기압으로 1~60초간 블라스팅 가공한 후, 혼합산 수용액을 이용한 산처리법에 의하여 티타늄 디스크 표면에 매크로—마이크로 모폴로지를 부여하였다 (이하, 'SA 처리' 또는 'SA'라 표기함). 그리고, 산부식 처리된 티타늄 디스크를 에탄올로 30분간, 그리고 증류수로 30분간 초음파 세척한 다음 건조시켰다. Machined titanium disks are blasted for 1 to 60 seconds with blast pressure of 1 to 10 atm using A1 2 Q 3 powder with particle size of 1mm or less, and then macro acid is applied to titanium disk surface by acid treatment with mixed acid aqueous solution. Micromorphology was assigned (hereinafter referred to as 'SA treatment' or 'SA'). The acid-treated titanium disc was ultrasonically cleaned for 30 minutes with ethanol and for 30 minutes with distilled water and then dried.
상기 공정을 거친 티타늄 디스크에 상온 플라즈마로 1분 또는 자외선으로 2분 이상 건식 세정처리하여 표면에 흡착 및 안정화된 오염원을 제거하였고, 상기 표면에 0.2M술폰산기 (sulfonic group)를 가지는 유기 양쪽성이온 완층액 (organic zwitterionic buffer)에 담지하였는데, 본 실시예에서는 유기 양쪽성이온 물질로 HEPES(4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid)를사용하였다 . 1 minute by room temperature plasma or 2 minutes by UV light on the titanium disk The dry cleaning process was performed to remove contaminants adsorbed and stabilized on the surface, and was supported on an organic zwitterionic buffer having 0.2M sulfonic acid group on the surface. HEPES (4- (2-hydroxyethyl) -l-piperazineethanesulfonic acid) was used as the ionic material.
건식 세정처리로 사용할 수 있는 또 다른 방법으로는 RFGD (라디오-주파수 글로 방전)을 # 수 있으며, HEPES 이외에 사용할 수 있는 술폰산기를 가진 유기 양쪽성이온 물질로는 ACES, BES, CHES, MOPS, PIPES, TES등이 있다.  Another method that can be used for dry cleaning is RFGD (Radio-Frequency Glow Discharge). Organic zwitterionic materials with sulfonic acid groups that can be used in addition to HEPES include ACES, BES, CHES, MOPS, PIPES, TES, etc.
위와 같은 과정을 통해 제조된 티타늄 디스크는 하기의 실시예 2 및 3에서 사용되었다.  Titanium discs prepared through the above process were used in Examples 2 and 3 below.
[실시예 2] Example 2
가속노화된 티타늄 디스크의 표면 형상및 성분관찰  Surface shape and component observation of accelerated aging titanium disc
상기 실시예 1에서 제작한 술폰산기를 가지는 유기 양쪽성이온 완층액에 담지한 티타늄 디스크의 표면 형상 및 성분을 관찰하기 위해서 SEM, EDS로 분석하였다. 이때, 음성대조군으로는 상기 유기 양쪽성이온 완충액에 담지하지 않은 티타늄 디스크를 사용하였다.  SEM and EDS were analyzed in order to observe the surface shape and components of the titanium disk loaded on the organic amphoteric ion complete solution having the sulfonic acid group prepared in Example 1. At this time, a titanium disc not supported in the organic zwitterionic buffer was used as the negative control group.
도 2에서 보는 바와 같이, 음성대조군 (SA)의 표면은 SA 처리된 기본 형상 그대로이며 표면성분은 티타늄만 존재하나, 실험군의 경우 SA 표면이 담지용액으로 덮혀있는 형상을 가지며 표면성분에는 담지용액의 성분인 S, 0, C 등이 티타늄과 함깨 검출되었다ᅳ  As shown in Figure 2, the surface of the negative control group (SA) is the same as the SA-treated basic shape, but the surface component is present only titanium, in the case of the experimental group has a shape that the SA surface is covered with the supporting solution and the surface component of the supporting solution Ingredients S, 0, and C were detected with titanium.
따라서, SA 처리된 티타늄 디스크를 술폰산기를 가지는 유기 양쪽성이온 완층액에 담지한 후 추출하더라도 그 표면에 유기 양쪽성이온 완충액 성분이 잔존한다는 것을 확인할 수 있다. [실시예 3]  Therefore, even if the SA-treated titanium disk is extracted after being supported on the organic amphoteric complete layer solution having a sulfonic acid group, it can be confirmed that the organic amphoteric buffer component remains on the surface thereof. Example 3
술폰산기를 가지는 유기 양쪽성이온 완층액에 담지되었던 티타늄 디스크의 접촉각측정  Measurement of Contact Angle of Titanium Disk Supported on Organic Amphoteric Complete Solution with Sulfonic Acid Group
상기 실시예 1에서 제작한 술폰산기를 가지는 유기 양쪽성이온 완충액 담지 티타늄 디스크의 접촉각을 측정하기 위해 증류수로 10분간 3회 이상 세척한 후 질소를 분사하여 건조시킨 다음, 증류수 5 ^을 상기 디스크에 적하 (滴下)한 후 측면에서 근접촬영하여 접촉각을 측정하였다. 이때, 음성대조군으로는 SA 처리 및 상온 플라즈마나 자외선을 이용한 건식 세정 후 공기 중에 그대로 노출시킴으로써 표면에 오염원이 다시 흡착된 티타늄 디스크를사용하였다. In order to measure the contact angle of the organic zwitterionic buffer-carrying titanium disc having the sulfonic acid group prepared in Example 1, the sample was washed three times or more with distilled water for 10 minutes, and then dried by spraying with nitrogen. From the side after The contact angle was measured by close-up photography. At this time, the negative control group used a titanium disk in which the pollutant was adsorbed on the surface by exposure to the air after the SA treatment and dry cleaning using plasma or ultraviolet light at room temperature.
도 3의 사진에서 보는 바와 같이, 음성대조군은 그 표면이 소수화되어 접촉각이 107°의 큰 값을 보인 반면, 실험군의 접촉각은 0°로서 초친수성이 계속 유지됨을 확인하였다.  As shown in the photograph of FIG. 3, the negative control group was hydrophobized, and the contact angle showed a large value of 107 °, while the contact angle of the experimental group was 0 ° and it was confirmed that superhydrophilicity was maintained.
한편, 도 4는 자외선을 이용한 건식 세정처리의 시간 변화에 따른 접촉각의 변화를 보여주는 그래프이다. 도시된 바와 같이, 2분 이상의 시간 동안 자외선을 조사하면 접촉각 0°의 초친수성 표면을 확보하는 것이 가능하다는 것을 확인할 수 있다.  On the other hand, Figure 4 is a graph showing the change in contact angle with the time change of the dry cleaning process using ultraviolet light. As shown, it can be seen that when irradiated with ultraviolet rays for a time of 2 minutes or more, it is possible to secure a superhydrophilic surface having a contact angle of 0 °.
따라서, 티타늄 표면을 SA 처리하고 습식 세정 및 건조과정을 거친 후 상온 플라즈마로 1분 또는 자외선으로 2분 이상 건식 세정처리하여 표면에 흡착 및 안정화된 오염원을 제거하고, 이것을 술폰산기를 가지는 유기 양쪽성이은 완층액에 담지할 경우 접촉각 0°의 초친수성 티타늄 표면이 유지될 수 있음을 본 실시예에서 확인하였다.  Therefore, the SA surface is treated with SA, wet cleaning, and drying, followed by dry cleaning for 1 minute with room temperature plasma or at least 2 minutes with ultraviolet light to remove pollutants adsorbed and stabilized on the surface. It was confirmed in this example that the superhydrophilic titanium surface having a contact angle of 0 ° may be maintained when supported on the complete layer solution.
[실시예 4] Example 4
치과용 티타늄 임플란트 표면의 오염원 제거 및 술폰산기를 가지는 유기 양쪽성이온완충액 담지  Removal of contaminants on the surface of dental titanium implants and supporting of organic amphoteric buffers with sulfonic acid groups
기계가공된 치과용 티타늄 임플란트를 입자 크기 1mm 이하의 A1203 분말을 사용하여 블라스트 압력 1~ 10기압으로 1~60초간 블라스팅 가공한 후, 흔합산. 수용액을 이용한산처리법에 의하여 티타늄 디스크 표면에 매크로-마이크로 모폴로지를 부여하였다 (SA 처리). 그리고, 산부식 처리된 티타늄 디스크를 에탄올로 30분간, 그리고 증류수로 30분간초음파 세척한 다음 건조시켰다. The machined dental titanium implant is blasted for 1 to 60 seconds with a blast pressure of 1 to 10 atm using A1 2 0 3 powder with a particle size of 1 mm or less. Macro-micromorphology was imparted to the titanium disc surface by acid treatment with aqueous solution (SA treatment). In addition, the acid-treated titanium disc was ultrasonically washed with ethanol for 30 minutes and distilled water for 30 minutes and then dried.
상기 공정을 거친 임플란트에 상온 플라즈마 1분 혹은 자외선 2분 이상의 건식 세정처리로 표면에 흡착 및 안정화된 오염원을 제거하였고, 상기 표면에 0.02M 술폰산기를 가지는 유기 양쪽성이온 완충액 (HEPES)에 담지하였다.  The implant was removed by a dry cleaning treatment of at least one minute of plasma at room temperature or at least two minutes of ultraviolet light to remove contaminants adsorbed and stabilized on the surface, and was supported in an organic amphoteric buffer (HEPES) having 0.02M sulfonic acid group on the surface.
상기와 같이 제조한 티타늄 임플란트를 하기 실시예 5, 6 및 7에서 사용하였다. [실시예 5] 가속노화된 술폰산기를 가지는 유기 양쪽성이온 완층액 담지 치과용 임플란트의 골계면 결합력 측정을위한동물실험 (1) The titanium implant prepared as above was used in Examples 5, 6 and 7 below. Example 5 Animal Experiment for Measurement of Bone Interfacial Adhesion of Organic Amphiphilic Complete Serum with Dental Accelerated Sulfonate Group (1)
상기 실시예 4에서 제작한 HEPES 담지 치과용 티타늄 임플란트를 가속노화 조건 (약 55°C)에서 2주간 방치하여 보관기간 4개월의 조건을 조성한 다음, 임플란트-골계면 결합력을 확인하기 위해 마이크로피그 (micropig) 경골에 상기 임플란트를 식립하고 16일간의 골형성기간 경과 후에 비를림 제거력 (removal torque) 측정을 하였다.  After placing the HEPES-supported dental titanium implant prepared in Example 4 for 2 weeks under accelerated aging conditions (about 55 ° C.) for 4 months, the micro-pig (to check the implant-bone interface strength) was established. micropig) The implant was placed in the tibia and after 16 days of bone formation, the removal torque was measured.
이때, 음성대조군으로는 오염원이 제거되지 않은 티타늄 임풀란트를, 양성대조군으로는 오염원을 건식 제거한 직후 가속노화 조건을 거치지 않은 티타늄 임플란트 (전처리)를사용하였다.  At this time, a titanium implant without a contaminant was removed as a negative control, and a titanium implant (pretreatment) without undergoing accelerated aging conditions was used as a positive control after dry removal of the contaminant.
도 5에서 보는 바와 같이, 음성대조군에 비해 양성대조군에서 비를림 제거력이 약 50% 가량 증가하였고, 실험군 또한 음성대조군 대비 약 55% 가량 비를림 제거력이 향상됨을 확인하였다.  As shown in Figure 5, compared to the negative control group in the positive control group about 50% increase in the removal power, the experimental group also confirmed that the removal of the removal of the forest control about 55% compared to the negative control group.
또한, 비교대조군으로서 오염원을 건식 제거한 후 HEPES 완층액이 아닌 증류수에 담지한 임플란트의 경우에는 가속노화 조건에 의해 임플란트-골계면 결합력이 20% 가량 저하되었지만, 실험군은 오히려 가속노화 조건을 거쳤음에도 약 5% 정도 비를림 제거력이 향상되었음도 확인되었다.  In addition, in the case of an implant carried out in a distilled water rather than a HEPES complete solution after dry removal of the contaminant as a comparative control group, the bond-bone interface coupling force decreased by about 20% due to accelerated aging conditions. It was also confirmed that the removal ability of the skid was improved by about 5%.
따라서, 술폰산기를 가지는 유기 양쪽성이온 완충액에 치과용 임풀란트를 담지하는 것이 보관기간 4개월의 가속노화조건을 거친 후에도 여전히 가속노화 이전과 동등 수준 이상으로 골계면 결합력의 향상 효과를 유지시킨다는 것과, 이 효과가 증류수에 담지하는 경우보다우수하다는 것을 확인할 수 있다.  Therefore, the support of dental implants in organic zwitterionic buffers with sulfonic acid groups still maintains the improvement of bone interface binding force even after the accelerated aging condition of 4 months of storage period. It can be seen that this effect is superior to the case of supporting in distilled water.
[실시예 6] Example 6
가속노화된 술폰산기를 가지는 유기 양쪽성이온 완층액 담지 치과용 임플란트의 골계면 결합력 측정을 위한동물실험 (2)  Animal Experiment for the Measurement of Bone Interfacial Adhesion of Dental Acupuncture Supported Dental Acupuncture with Accelerated Aging Sulfonate Group (2)
상기 실시예 4에서 제작한 HEPES 담지 치과용 티타늄 임풀란트를 가속노화 조건 (약 55°C)에서 18주간 방치하여 보관기간 3년의 조건을 조성한 다음, 임플란트—골계면 결합력을 확인하기 위해 마이크로피그 경골에 상기 임플란트를 식립하고 16일간의 골형성기간 경과 후에 비를림 제거력 (removal torque) 측정을 하였다. 이때, 음성대조군으로는 오염원을 제거하지 않은 티타늄 임플란트를, 양성대조군으로는 오염원을 제거하는 전처리 과정을 거쳤으나 상기 HEPES 용액에 담지하지 않고 가속노화조건도 거치지 않은 티타늄 임플란트를사용하였다. The HEPES-supported dental titanium implant prepared in Example 4 was left for 18 weeks under accelerated aging conditions (about 55 ° C) to create a three-year storage period, followed by micro-implantation to check the implant-bone interface. The implant was placed in the pig tibia and measured for removal torque after 16 days of bone formation. At this time, a titanium implant that did not remove the contaminant was used as a negative control group, and a titanium implant that was subjected to a pretreatment process to remove the contaminant as a negative control group was not supported in the HEPES solution and was not subjected to accelerated aging conditions.
도 6에 도시된 바와 같이, 음성대조군에 비해 양성대조군에서 비를림 제거력이 약 50% 가량 증가하였고, 실험군 또한 음성대조군 대비 약 50% 가량 비를림 제거력이 향상됨을 확인하였다.  As shown in Figure 6, compared to the negative control group compared to the negative control group about 50% increase in the removal of the Birlin, the experimental group also confirmed that the removal of the Birlin removal force about 50% compared to the negative control group.
따라서, 보관기간 3년의 가속노화 조건을 거친 실험군의 임플란트—골계면 결합력이 가속노화 조건을 전혀 거치지 않은 양성대조군의 임플란트-골계면 결합력과 동등 수준을 유지하고 있고, 이는 슬폰산기를 가지는 유기 양쪽성이온 완층액에 임플란트를 담지하여 보관하는 것이 임플란트 표면의 초친수성 유지에 매우 효과적이라는 것을 확인시켜 준다.  Therefore, the implant-bone interface binding force of the experimental group that underwent the accelerated aging condition of 3 years of storage period was maintained at the same level as the implant-bone interface binding force of the positive control group which did not undergo any accelerated aging condition. It is confirmed that the storage of implant in ionic complete layer solution is very effective in maintaining superhydrophilicity of implant surface.
[실시예 7] Example 7
다양한농도를 가진 술폰산기를 가지는 유기 양쪽성이온 완층액에 담지된 치과용 임플란트의 골계면 결합력 측정을위한동물실험  Animal Experiments for the Measurement of Bone Interfacial Adhesion of Dental Implants Supported in Organic Amphoteric Compartments with Various Sulfonate Groups
상기 실시예 4에서 제작과정을 설명한 HEPES 담지 치과용 티타늄 임플란트를 HEPES의 농도를 다양하게 변화시키고 가속노화 조건 (약 550C)에서 18주간 방치하여 보관기간 1년의 조건을 조성한 다음, 임플란트—골계면 결합력을 확인하기 위해 마이크로피그 경골에 상기 임플란트를 식립하고 16일간의 골형성 기간 경과 후에 비를림 제거력 (removal torque) 측정을 하였다. The HEPES-supported dental titanium implant described in Example 4 was varied in the concentration of HEPES and left for 18 weeks under accelerated aging conditions (approximately 55 0 C) to create a condition for one year of storage, and then implants— The implant was placed in the micropig tibia to check the bone interface binding force, and the removal torque was measured after 16 days of bone formation period.
이때, 음성대조군으로는 오염원을 제거하지 않은 임플란트를, 양성대조군으로는 오염원을 제거하는 전처리 과정을 거쳤으나 상기 HEPES 용액에 담지하지 않고 가속노화조건도 거치지 않은 티타늄 임플란트를 사용하였다.  At this time, the negative control group was used as a titanium implant that did not remove the contaminant, and the positive control group was subjected to a pretreatment process but not carried out in the HEPES solution and subjected to accelerated aging conditions.
그리고, 비교대조군으로서 오염원을 건식 제거한 후 HEPES 완충액이 아닌 증류수에 담지한 임플란트를 사용하였다. .  As the control group, the source was dry-removed and used as an implant supported in distilled water instead of HEPES buffer. .
도 7에서 보는 바와 같이, 음성대조군에 비해 양성대조군에서 비를림 제거력이 약 50%가량 증가하였다.  As shown in FIG. 7, the removal ability of Birlin was increased by about 50% in the positive control group compared to the negative control group.
그리고, 오염원을 제거하는 전처리 과정을 거쳤으나 HEPES 용액에 담지하지 않고 증류수에 담지한 비교대조군과 대비해봤올 때, 0.1M 이상의 HEPES 용액에 담지한 실험군에서 10% 이상 비를림 제거력이— 향상됨을 확인하였다. 또한, 0.1M 이상의 HEPES 용액에 담지한 실험군의 경우 HEPES 완충액의 농도가 높을수록 양성 대조군과 동등 수준 이상의 골계면 결합력의 향상 효과를 유지하고 있음을 확인할 수 있다. ' And, compared with the control group which carried out the pretreatment process to remove the contaminants but not the HEPES solution, but distilled water, compared to the control group which was loaded in the HEPES solution of 0.1M or more, the removal ability of the soil was improved by more than 10%. Confirmed. Also, 0.1M In the experimental group carried in the above HEPES solution, the higher the concentration of HEPES buffer solution, it can be seen that maintaining the improvement of bone interface binding force equal to or more than the positive control. '
다만, HEPES 완충액의 농도가 1M을 초과할 경우에는 HEPES 완충액 자체가 독성을 가지지만 임플란트 표면에 잔존하는 HEPES 완충액의 실제양은 그리 많지 않다는 점을 함께 고려한다면, HEPES 완충액의 농도를 1M 이하로 설정하여도 층분한 안전도가 확보된 것으로 평가할 수 있다.  However, if the concentration of HEPES buffer exceeds 1M, the HEPES buffer itself is toxic, but considering that the actual amount of HEPES buffer remaining on the implant surface is not too high, the concentration of HEPES buffer is set to 1M or less. It can also be evaluated that the level of safety is secured.
따라서 , .임풀란트가 담지되는 HEPES 완충액의 농도를 0.1M~ 1M 범위의 조건으로 설정할 경우 임폴란트ᅳ골계면 결합력 상승의 효과는 뚜렷이 유지됨을 확인하였다. 한편, 상기 실시 예는 본 발명의 설명을 돕기 위 한 것으로 본 발명 이 상기 실시 예에 의해 제한되는 것은 아니며, 본 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상의 범주 내에서 본 발명의 특허 청구범위 및 발명의 내용을 근거로 다양한 변형 및 균등한 타 실시 예가 가능하다.  Therefore, when the concentration of the HEPES buffer supporting the implant is set in the range of 0.1M ~ 1M it was confirmed that the effect of the impingement bone interface binding strength is clearly maintained. On the other hand, the embodiment is intended to help the description of the present invention is not limited by the embodiment, the person skilled in the art of the present invention within the scope of the technical idea of the present invention Various modifications and equivalent other embodiments are possible based on the claims and the content of the invention.
【산업상 이용가능성】  Industrial Applicability
1발명은 정형의학이나 치의학 등 인체의 뼈를 다루는 의학분야에 있어서 인체 골조직 내에 식 립되는 티타늄 또는 티타늄 합금 재질의 임플란트 전반에 걸쳐 폭넓게 적용될 수 있다. The first invention can be applied widely throughout the first half of the implant of titanium or titanium alloy material which lip expression in human bone tissue in the field of medicine dealing with the human bone, such as orthopedic medicine or dentistry.

Claims

【청구의 범위】 - [Claims]-
【청구항 1】 [Claim 1]
매크로-마이크로 모풀로지의 표면 구조를 갖는 티타늄 임폴란트를 준비하는 단계;  Preparing a titanium impurant having a surface structure of macro-micromorphology;
상기 티타늄 임플란트의 표면올 상온 플라즈마 또는 자외선 조사의 건식 세정을 통해 접촉각이 10° 이하인 초친수성 표면으로 개질시키는 단계; 및  Modifying the surface of the titanium implant to a superhydrophilic surface having a contact angle of 10 ° or less through dry cleaning of room temperature plasma or ultraviolet irradiation; And
상기 초친수성 표면으로 개질된 티타늄 임풀란트를 유기 양쪽성이온 물질 기반의 염올 함유한완층액에 임플란트를 담지시켜 보관하는 단계;  Storing the titanium implant modified with the superhydrophilic surface by supporting the implant in a complete solution containing a salt based on an organic zwitterionic material;
를 포함하는 티타늄 임플란트의 표면처리 및 보관 방법.  Surface treatment and storage method of the titanium implant comprising a.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 표면 개질 단계는 상기 건식 세정이 1분 이상의 상은 플라즈마 또는 2분 이상의 자외선 조사로 수행되는 것을 특징으로 하는 티타늄 임플란트의 표면처리 및 보관 방법.  The surface modification step of the surface treatment and storage method of the titanium implant, characterized in that the dry cleaning is carried out by at least one minute phase is plasma or ultraviolet irradiation at least two minutes.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 완층액은 0.1M~1M 범위의 농도를 갖는 유기 양쪽성이은 물질 기반의 염을 포함하는 것을 특징으로 하는 티타늄 임풀란트의 표면처리 및 보관 방법.  The complete solution is a surface treatment and storage method of the titanium implant, characterized in that it comprises an organic amphoteric material based salt having a concentration in the range of 0.1M ~ 1M.
【청구항 4】  [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 유기 양쪽성이은 물질은 술폰산기를 가지는 것을 특징으로 하는 티타늄 임풀란트의 표면처리 및 보관 방법.  The organic amphoteric material is a surface treatment and storage method of a titanium implant, characterized in that it has a sulfonic acid group.
【청구항 5】  [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 유기 양쪽성이온 물질은 ACE, BES, CHES, HEPES, MOPS, PIPES, TES로 이루어진 군에서 선택된 적어도 어느 하나 이상의 물질인 것을 특징으로 하는 티타늄 임플란트의 표면처리 및 보관 방법.  The organic zwitterionic material is at least one material selected from the group consisting of ACE, BES, CHES, HEPES, MOPS, PIPES, TES, surface treatment and storage method of a titanium implant.
【청구항 6】  [Claim 6]
제 1항 내지 제 5항 중 어느 한 항에 따른 티타늄 임플란트의 표면처리 및 보관 방법에 의해 제조된 티타늄 임플란트. 【청구항 7】 A titanium implant prepared by the method for surface treatment and storage of the titanium implant according to any one of claims 1 to 5. [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 티타늄 임풀란트는 치과용인 것을 특징으로 하는 티타늄 임플란트.  The titanium implant is a titanium implant, characterized in that for dental.
PCT/KR2012/005490 2012-04-30 2012-07-11 Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof WO2013165051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120045351A KR101248785B1 (en) 2012-04-30 2012-04-30 Titanium implant having ultrahydrophilic surface, surface modification and storing method thereof
KR10-2012-0045351 2012-04-30

Publications (1)

Publication Number Publication Date
WO2013165051A1 true WO2013165051A1 (en) 2013-11-07

Family

ID=48441989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005490 WO2013165051A1 (en) 2012-04-30 2012-07-11 Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof

Country Status (2)

Country Link
KR (1) KR101248785B1 (en)
WO (1) WO2013165051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041462A (en) * 2022-07-15 2022-09-13 江苏创英医疗器械有限公司 Surface cleaning process for dental implant

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405859B1 (en) * 2013-04-24 2014-06-12 오스템임플란트 주식회사 Dental implant coated with a mixed solution of chemical buffering agent and organic amphoteric substance and a prepareation process thereof
KR101404632B1 (en) 2013-05-02 2014-06-27 오스템임플란트 주식회사 Method for treating surface of implant
KR101311990B1 (en) * 2013-07-18 2013-09-27 오스템임플란트 주식회사 Implant coating material for enhancing a bioactivity and osseointegration of implant surface, and the method for manufacturing and storing the same
WO2016006889A1 (en) * 2014-07-11 2016-01-14 오스템임플란트 주식회사 Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same
KR101460974B1 (en) 2014-07-11 2014-11-13 오스템임플란트 주식회사 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR101460976B1 (en) 2014-07-11 2014-11-13 오스템임플란트 주식회사 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR101460973B1 (en) 2014-07-11 2014-11-13 오스템임플란트 주식회사 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR101972122B1 (en) * 2019-01-31 2019-04-24 주식회사 네오바이오텍 Method for Preparing Dental Implants with Improved Surface Morphology and Osseointegration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505352A (en) * 2001-10-11 2005-02-24 シュトラウマン・ホールディング・アクチェンゲゼルシャフト Osteophilic implant
JP2005289852A (en) * 2004-03-31 2005-10-20 Shigeo Okahata Medical material and/or dental material, and method for producing the same
KR20090117807A (en) * 2007-02-14 2009-11-12 허벌트 제니슨 Process for the production of storable implants with an ultrahydrophilic surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098673B (en) * 2004-11-16 2012-02-29 3M创新有限公司 Dental fillers and compositions including phosphate salts
WO2006096793A2 (en) 2005-03-07 2006-09-14 The Regents Of The University Of California Medical implants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505352A (en) * 2001-10-11 2005-02-24 シュトラウマン・ホールディング・アクチェンゲゼルシャフト Osteophilic implant
JP2005289852A (en) * 2004-03-31 2005-10-20 Shigeo Okahata Medical material and/or dental material, and method for producing the same
KR20090117807A (en) * 2007-02-14 2009-11-12 허벌트 제니슨 Process for the production of storable implants with an ultrahydrophilic surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041462A (en) * 2022-07-15 2022-09-13 江苏创英医疗器械有限公司 Surface cleaning process for dental implant
CN115041462B (en) * 2022-07-15 2023-09-01 江苏创英医疗器械有限公司 Tooth implant surface cleaning process

Also Published As

Publication number Publication date
KR101248785B1 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2013165051A1 (en) Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof
Att et al. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration.
CA2563299C (en) Coated implants and methods of coating
JP6006213B2 (en) Implant comprising a surface having calcium, and method for modifying the surface of the implant to give calcium to the surface
JP2003325561A (en) Surface-mineralized spinal implant
KR101311990B1 (en) Implant coating material for enhancing a bioactivity and osseointegration of implant surface, and the method for manufacturing and storing the same
JP2019511346A (en) Tissue adhesion improvement coating
WO2013100331A1 (en) Manufacturing method for dental implant having hydrophilic surface for enhanced ossification
Lee et al. The cell attachment and morphology of neonatal rat calvarial osteoblasts on the surface of Ti-6Al-4V and plasma-sprayed HA coating: Effect of surface roughness and serum contents
JPH064089B2 (en) Method for preparing transplant main body
EP3880116B1 (en) Dental implant, component for dental applications, implant system for dental applications
KR101972122B1 (en) Method for Preparing Dental Implants with Improved Surface Morphology and Osseointegration
KR101306803B1 (en) Implant Using Organic Solvent For Enhancing Bioactivity Of Implant Surface, and Implant Manufacturing Method
KR101405859B1 (en) Dental implant coated with a mixed solution of chemical buffering agent and organic amphoteric substance and a prepareation process thereof
KR101304217B1 (en) Dental implant with hydrophilic moisturized coating and method for manufacturing the samw
KR101271403B1 (en) Storing method for maintenance of hydrophilic dental implant surface
WO2013027928A2 (en) Implant having hydrophilic surface
KR101460973B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
Ryu et al. Regeneration of a micro-scratched tooth enamel layer by nanoscale hydroxyapatite solution
Monai et al. Effect of UV Photofunctionalization of HA/TiO2 coated implants prepared by dual-target sputtering on bone-implant integration
EP3124056B1 (en) Method for preparing titanium-containing implant by using environmentally-friendly etching composition
WO2013027929A2 (en) Titanium implant having hydrophilic surface
JP5785435B2 (en) Implant manufacturing method
JP4472267B2 (en) Titanium implant for obtaining bone bond and surface treatment method thereof
Alpay et al. The Investigation of Corrosion Performance and Durability of Hydroxyapatite-Coated Titanium Implants and the Effect of Antibiotic Additives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875973

Country of ref document: EP

Kind code of ref document: A1