WO2016006889A1 - Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same - Google Patents

Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same Download PDF

Info

Publication number
WO2016006889A1
WO2016006889A1 PCT/KR2015/006928 KR2015006928W WO2016006889A1 WO 2016006889 A1 WO2016006889 A1 WO 2016006889A1 KR 2015006928 W KR2015006928 W KR 2015006928W WO 2016006889 A1 WO2016006889 A1 WO 2016006889A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
implant
dental implant
coated
coating
Prior art date
Application number
PCT/KR2015/006928
Other languages
French (fr)
Korean (ko)
Inventor
장일석
김효원
김수경
송주동
엄태관
최규옥
이해신
Original Assignee
오스템임플란트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140087629A external-priority patent/KR101460976B1/en
Priority claimed from KR20140087631A external-priority patent/KR101460973B1/en
Priority claimed from KR20140087630A external-priority patent/KR101460974B1/en
Application filed by 오스템임플란트 주식회사 filed Critical 오스템임플란트 주식회사
Publication of WO2016006889A1 publication Critical patent/WO2016006889A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite

Definitions

  • the present invention relates to a dental implant and a method for manufacturing the same by improving the biocompatibility of the implant by coating the surface of the implant using the composition for implant coating, such as hydrophilicity, blood affinity, bone formation promoting ability and bone interface binding strength of the implant, More particularly, the present invention relates to a dental implant and a method for producing the same, which are coated with a pre-treated implant surface using an implant coating composition, thereby improving biocompatibility or biocompatibility.
  • the composition for implant coating such as hydrophilicity, blood affinity, bone formation promoting ability and bone interface binding strength of the implant
  • Dental implants are used to permanently implant artificial teeth on the jaw bone of humans.
  • the dental implant connects the jaw bone with artificial teeth and handles and distributes the load generated when chewing food. It is mechanically manufactured to serve as a more stable tooth than a conventional denture. Therefore, the implant should be made of biocompatible materials that are very stable against human tissues and should be free of side effects and other chemical and biochemical reactivity. In addition, it is very difficult to select a suitable material because the mechanical strength must be very high so as not to be deformed and destroyed even under repeated loads and instantaneous pressures.
  • Titanium (Ti) metals and alloys are mainly used (Larry L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81 (7) 1705 -1728, 1998). Titanium or its alloys are not only easy to process but also have the advantages of high biocompatibility, high mechanical strength and bioinertness to human tissues. However, Ti and its alloys have a disadvantage in that the bonding time with the bone is long when transplanted into the human body, and metal ions melt into the living body after a long time after transplantation.
  • Implants with irregular surfaces are effective for rapid bone growth and good mechanical adhesion, and implants with irregular and rough surfaces. Has been reported to have more bone contact rates than implants with smooth surfaces.
  • the first-generation implant is an implant with a smooth surface
  • the second-generation implant is an implant with an anodized surface.
  • TPS Transsorbable Blasted Media blasting
  • RBM Resorbable Blasted Media blasting
  • the product is exposed to air after the surface treatment process.
  • the oxide layer grows on the surface of the product, and adsorption of various pollutants such as hydrocarbons occurs, resulting in hydrophobization while changing to a chemically stable state. That is, the hydrophobized surface has a disadvantage of prolonging the period of stabilization of the implant by preventing the overall process of fusion with the bone after implant implantation because of low wettability to body fluids and blood.
  • US Patent 6670855 discloses a method of chemically etching with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, etc. as a method of improving the hydrophilicity of the roughened surface of the titanium implant, Plasma treatment (Radio-Frequency Glow Discharge (RFGD), O2, etc.), light irradiation (ultraviolet radiation, ultraviolet-ozone) as a method of imparting hydrophilicity of the metal surface to overcome the disadvantages of hydrophobicity of titanium surface Etc.).
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, etc.
  • Plasma treatment Radio-Frequency Glow Discharge (RFGD), O2, etc.
  • light irradiation ultraviolet radiation, ultraviolet-ozone
  • the present invention provides a composition for implant surface coating that can be coated on the surface of the implant, thereby improving the hydrophilicity, blood affinity, bone formation promoting ability, etc. of the implant surface, by using the same, improved biocompatibility and biocompatibility
  • the present invention proposes a method for preparing a dental implant and a dental implant manufactured by the method.
  • an object of the present invention is a method of coating an implant surface using a composition for implant surface coating comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or a salt thereof as an active ingredient And the implant surface coating composition is coated to provide a dental implant with improved biocompatibility and biocompatibility.
  • R1 is -PO (OH) 2 or -SO 2 (OH)
  • R2 is hydrogen or -OH
  • R3 is hydrogen or -NH 2
  • R4 is oxygen or -NH 2 .
  • a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
  • a is -PO (OH) 2 or -SO 2 (OH).
  • Another object of the present invention is to provide a method for treating a surface of an implant comprising: (a) pretreatment to roughen the surface of the implant; And (b) roughening the implant coating composition comprising a compound selected from the group consisting of compounds represented by the above [Formula 1] to [Formula 3] or salts thereof as an active ingredient in the pretreatment step (a).
  • a dental implant manufacturing method with improved biocompatibility or biocompatibility, such as hydrophilicity, blood affinity, bone formation promoting ability and bone interface binding strength of the implant.
  • the dental implant with improved biocompatibility presented in the present invention comprises a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or salts thereof as an active ingredient, on the surface of the dental implant
  • the concentration of the composition to be coated is 0.05 to 0.5 M, pH is characterized in that 5 to 9.
  • R1 is -PO (OH) 2 or -SO 2 (OH)
  • R2 is hydrogen or -OH
  • R3 is hydrogen or -NH 2
  • R4 is oxygen or -NH 2 .
  • a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
  • a is -PO (OH) 2 or -SO 2 (OH).
  • the compound selected from the group consisting of the compound represented by the above [Formula 1] to [Formula 3] or a salt thereof is coated on the surface of the implant is preferably coated on the dental implant surface in an amount of 10 ⁇ 40 ⁇ g / mm. .
  • the compound of [Formula 1] is preferably 2'-deoxyadenosine 5'-monophosphate (hereinafter referred to as 'DAP') or 2'-deoxycytidine 5'-monophosphate (hereinafter referred to as 'DCP').
  • the compound of [Formula 2] is preferably 4,4'-Diaminostibene-2,2'-disulfonic acid (hereinafter referred to as 'DASDA').
  • the compound represented by [Formula 3] or a salt thereof it is preferable to coat the surface of the dental implant in an amount of 1 ⁇ g / mm 2 ⁇ 1 mg / mm 2, wherein the compound of Formula 3 is N-Tris (hydroxymethyl) It is preferably methyl-3-aminopropanesulfonic acid (hereinafter referred to as 'TAPS').
  • the dental implant coating composition used in the present invention includes DAP, DCP, DASDA, TAPS or salts thereof as an active ingredient, pH is 5 ⁇ 9, more preferably 0.05 ⁇ 0.5 in the range of pH 6 ⁇ 8 It is included in the concentration of M.
  • the composition containing DAP, DCP, DASDA or salts thereof is coated in an amount of 10-40 ⁇ g / mm 2 per unit area, and the composition containing TAPS or salt thereof is 1 ⁇ g per unit area. / Mm2-1 mg / mm2.
  • Another embodiment of the present invention is a method for manufacturing a dental implant, (a) pre-treatment step of roughening the surface of the dental implant through the blasting and acid treatment step; And (b) a composition comprising a compound selected from the group consisting of the compounds represented by the above [Formula 1] to [Formula 3] or a salt thereof as an active ingredient, the coating on the implant surface subjected to the pretreatment step (a) It includes; step.
  • Dental implants coated with the composition for implant coating presented in the present invention has the advantage that the surface hydrophilicity, blood affinity and bone-interface force is improved, the bone formation of the peripheral portion implanted is greatly increased, dental implants The biocompatibility or biocompatibility of the is greatly improved.
  • Figure 1 shows the results of the contact angle test of the coated dental implant.
  • Figure 2 shows the results of blood affinity measurement experiment of the coated dental implant of the present invention.
  • Figure 3 shows the experimental results of measuring the bone interface binding force of the coated dental implant of the present invention.
  • Figure 4 is a ⁇ -CT imaging results for bone interface morphometric evaluation of the coated dental implant of the present invention.
  • the compounds represented by [Formula 1] to [Formula 3] of the present invention may be used in the form of a salt thereof, or a pharmaceutically acceptable salt thereof.
  • 'pharmaceutically acceptable refers to a physiologically acceptable and normally does not cause an allergic or similar reaction when administered to a human, and as the salt, a pharmaceutically acceptable free acid Acid addition salts formed by
  • R1 is -PO (OH) 2 or -SO 2 (OH)
  • R2 is hydrogen or -OH
  • R3 is hydrogen or -NH 2
  • R4 is oxygen or -NH 2 .
  • a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
  • a is -PO (OH) 2 or -SO 2 (OH).
  • an organic acid or an inorganic acid may be used, and as the organic acid, citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, meta Sulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, glutamic acid, aspartic acid, and the like, but are not particularly limited thereto.
  • the inorganic acid includes hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, and the like, but is not limited thereto.
  • composition for implant coating of the present invention may be molded and used in the form of putty, paste, moldable strip, block, chip, etc. using a method of compression, compression, pressure contact, packing, pressing, hardening, and the like, and chemical additives. It may be used in the form of gels, powders, pastes, tablets, pellets, etc., but is preferably used in the form of an aqueous solution.
  • the concentration of the coating composition to be coated on the implant surface is 0.05 ⁇ 0.5 M
  • the pH is preferably 5 ⁇ 9, more preferably 6 ⁇ 8
  • the surface of the implant [Formula 1]
  • the compound represented by [Formula 2] is preferably coated in an amount of 10 to 40 ⁇ g / mm 2
  • the compound represented by [Formula 3] is preferably coated in an amount of 1 ⁇ g to 1 mg / mm 2.
  • the concentration when the concentration is less than 0.05 M, the amount of the coating on the implant surface may be too small to improve the biocompatibility, and when the concentration is 0.5 M or more, it is difficult to uniformly coat the entire surface due to the high viscosity.
  • the thick coating layer causes problems such as long-term dropout stability due to vibration and dropping.
  • the pH is preferably in the range of about 5 to 9, which is a neutral region including weakly acidic to weakly basic regions.
  • the pH is less than 5, the surface of the implant base may be oxidized.
  • the pH is more than 9 is not preferable because the problem of lowering the material stability of the coating composition itself.
  • DAP 2'-deoxyadenosine 5'-monophosphate
  • DASDA 4,4'-Diaminostibene-2,2'-disulfonic acid
  • DASDA 4,4'-Diaminostibene-2,2'-disulfonic acid
  • TAPS N-Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid
  • the dental implant coating composition used in the present invention includes DAP, DCP, DASDA, TAPS or a salt thereof as an active ingredient, pH is contained in a concentration of 0.05 to 0.5 M in the range of 5-9.
  • the composition comprising DAP, DCP, DASDA or salts thereof is preferably coated in an amount of 10-40 ⁇ g / mm 2 per unit area of the implant.
  • a composition containing TAPS or a salt thereof may be used per 1 implant unit area. It is preferable to coat in an amount of ⁇ g / mm 2 to 1 mg / mm 2.
  • the amount of coating is less than the above range there is a problem that can not cover the entire surface of the implant, if the coating amount exceeding the above range because a thick coating layer is formed, problems such as dropping due to vibration during distribution As it may, it is not preferable.
  • an additional biologically active substance when used for coating the surface of the implant in the form of such an aqueous solution, an additional biologically active substance may be added and used, growth factors for promoting bone growth, peptides and proteins for promoting bone tissue formation, Fibrin, bone morphogenic factors, bone growth agents, chemotherapeutic agents, antibiotics, analgesics, bisphosphonates, strontum salts, fluoride salts, magnesium salts, sodium salts and the like can be used.
  • the growth factors include bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), transgenic growth factor (TGFbeta), insulin-like growth factor (IGF-I), IGF-II, fibroblast growth factor (FGF) and BGDF-II (beta-2-microglobulin), and the like, and the bone tissue formation-promoting peptides and proteins include various peptides including RGD sequences and various proteins such as collagen and fibronogen.
  • BMP bone morphogenic protein
  • PDGF platelet-derived growth factor
  • TGFbeta transgenic growth factor
  • IGF-I insulin-like growth factor
  • IGF-II insulin-like growth factor
  • FGF fibroblast growth factor
  • BGDF-II beta-2-microglobulin
  • Osteocalcin, bonesialo protein, osteogenin, BMP, and the like may be used as bone morphogenesis factors, and the bone growth agent may be harmful if it is harmless to the human body and promotes bone growth. It can be used without, nucleic acids that promote bone formation, antagonists of substances that inhibit bone formation, and the like.
  • step (a) a pretreatment step of roughening the surface of the implant; And (b) coating the implant coating composition of the present invention on the surface of the implant pretreated in step (a).
  • the step (a) is a step of pretreating the surface of the implant before coating with the composition for implant coating of the present invention
  • various pretreatment methods known in the art can be used.
  • RBM Resorbable Blasting Media
  • SA Small Large grit, and Acid etched surface treatment method after etching with aluminum after aluminum blasting
  • UV irradiation temperature above 300 °C Heat treatment
  • anodizing acid treatment, and heat treatment after base treatment, and the like
  • UV irradiation or SA Sand-blasted Large grit and Acid etched
  • the material of the implant used in the present invention is not particularly limited, and all known implant materials are possible, and ceramics such as Glass, ITO, synthetic polymers such as PU, PTFE, and metals may be used as SiO 2 , Pt, St, Titanium, a titanium alloy, etc. are mentioned.
  • ceramics such as Glass, ITO, synthetic polymers such as PU, PTFE, and metals may be used as SiO 2 , Pt, St, Titanium, a titanium alloy, etc. are mentioned.
  • titanium or titanium alloy may be used, and in the aforementioned pretreatment (surface treatment) step, nitric acid solution may be used to remove carbon hydroxide on the surface of the titanium or titanium alloy implant.
  • the nitric acid solution is preferably about 4 v / v% to 60 v / v%, and the nitric acid solution cleaning process may be omitted depending on the hydrophilic property and shape of the surface.
  • nitric acid washing it is preferable to wash the surface with distilled water to remove residual nitric acid from the surface, and the surface washing process of distilled water may be omitted on the surface where the nitric acid solution cleaning process is omitted, but following the alcohol washing step to remove impurities Can be used.
  • Step (b) is a step of coating the surface of the implant using the composition for implant coating of the present invention
  • specific implant surface coating method may include a physical and chemical coating method. Specific examples include pulsed laser deposition (PLD), sputtering, sputtering, chemical vapor deposition (CVD), dip coating, spin coating, plating, and three-dimensional plasma dry deposition ( 3D plasma gun deposition).
  • PLD pulsed laser deposition
  • CVD chemical vapor deposition
  • dip coating spin coating
  • plating plating
  • 3D plasma gun deposition three-dimensional plasma dry deposition
  • the coating composition of the present invention may be dried by a simple application process on the surface of the implant, thereby performing a coating step. At this time, the room temperature drying time may be about 1 to 24 hours, more preferably 1 to 3 hours.
  • the surface-coated implant using the coating composition of the present invention has the advantage of maintaining or enhancing the biocompatibility of the implant even after a long time.
  • Specimens used were made of titanium (CP Ti Gr4, Siwon company, USA) in a precision CNC dedicated to implants (CINCOM.L20VIII, Japan) with a diameter of 10 mm, a thickness of 1 mm and a screw shape of 1.5 mm and a length of 1.5 mm.
  • CP Ti Gr4, Siwon company, USA CP Ti Gr4, Siwon company, USA
  • CNC dedicated to implants CINCOM.L20VIII, Japan
  • macro-morphology was applied to the surface of the implant using an acid treatment method using a mixed acid aqueous solution. And micro-morphology.
  • the implant was washed.
  • the acid-treated dental titanium implant was ultrasonically cleaned for 30 minutes with ethanol and for 30 minutes with distilled water and then dried.
  • the treated implant was treated with plasma for 1 minute or ultraviolet light for 5 minutes to remove contaminants adsorbed and stabilized on the surface, and pH 0.1 M TMP, FA, MDP, DAP, DCP, DASDA and TAPS aqueous solutions were applied to the surface. After adjusting to 7, uniformly uniformly applied, and dried at room temperature to prepare a 25 ⁇ g / mm 2 (0.5 mg / mm 2 in the case of TAPS) coating amount. TMP, FA, MDP, DAP, DCP, DASDA and TAPS aqueous solution prepared by this method was coated in the following [Example 2].
  • the Sessile drop method was used to measure the hydrophilicity of the coated implant surface prepared in [Example 1].
  • the TMP, FA, MDP, DAP, DCP, DASDA and TAPS coated titanium disks prepared in [Example 1] were left for 18 weeks (accelerated aging 3 years) under accelerated aging conditions (55 ° C). After that, 10 ml of distilled water was dropped into each of the accelerated aging disks, respectively, and the contact angle between the surface and distilled water was measured. In order to accurately measure the contact angle, a picture was taken with a video camera-equipped device (Contact angle measurement, Surface Tech, Korea), and the left and right contact values were measured, and then an average value (Contact angle) was obtained.
  • a video camera-equipped device Contact angle measurement, Surface Tech, Korea
  • the SA disk immediately after the manufacture of the surface coating is not made as a positive control, the SA disk accelerated aging in a state in which the surface coating is not made as a negative control.
  • the contact angle of distilled water in TMP, FA, MDP, DAP, DCP, DASDA and TAPS coated experimental groups compared to the negative control group having a contact angle of 121 ° for 18 weeks (accelerated aging) 3 years. It can be seen that the contact angle is lowered to about 0 °, 12 °, 60 °, 0 °, 0 °, 0 °, and 0 °, respectively, thereby improving the hydrophilicity of the coating surface.
  • the dental implant coated with the surface prepared in Example 1 was left for 18 weeks under accelerated aging conditions (55 ° C.), and then the implant was immersed in micropig blood for about 3 mm for 3 minutes to check blood affinity. After that, the blood wettability was confirmed by the height of the blood coming up the surface of the implant.
  • the SA control which was not coated with the materials immediately after the preparation was used as the positive control, and the SA implant that was subjected to accelerated aging conditions without coating the material as the negative control was used.
  • the negative control SA implant had 1.5 mm of blood coming up the surface of the implant for 3 minutes, whereas 6 mm, 4 mm, and 3 mm for TMP, FA, MDP, DAP, DCP, DASDA and TAPS, respectively. , 8.5 mm, 8 mm, 8.3 mm and 8.5 mm was found to significantly improve the blood wettability.
  • TMP, FA, MDP, TMP, FA, MDP, DAP, DAP, DCP, DASDA and TAPS prepared in [Example 1] were confirmed to have excellent blood affinity through [Example 3] dental implants.
  • DAP, DCP, DASDA, and TAPS coated implants were left for 18 weeks (accelerated aging) for 18 weeks under accelerated aging conditions (55 ° C), and the implant and bone-interface binding force were confirmed.
  • the surface-coated implant was placed in the tibia of the rabbit to measure the implant and bone-interfacial binding force, and the torque was measured after 14 days of bone formation.
  • the surface-free SA implant immediately after preparation was used, and as a negative control, an accelerated aging SA implant was used for the same period without the surface being coated.
  • implantation of TMP, DAP, DCP, DASDA and TAPS surface-coated implants into micro pig mandible was performed and then morphometric measurement by ⁇ CT imaging after 16 days of bone formation period. Physiological evaluation was performed.
  • the dental implants coated with DAP, DCP, DASDA and TAPS have a significantly increased degree of bone formation around the implant compared to the negative control. You can see that.
  • Dental implants coated with the composition for implant coating presented in the present invention is improved hydrophilicity, blood affinity and bone-interface force of the surface, increased bone formation in the periphery in which the implant is placed, bio-compatibility of the dental implant Alternatively, since there is an effect of greatly improving biocompatibility, there is industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a dental implant and a method for manufacturing the same, wherein the dental implant has improved bioaffinity such as hydrophilicity, hemocompatibility, bone formation promotion capability and bone-interface binding force by coating the surface of the dental implant using a composition for coating implants and, more specifically, to a dental implant having improved bioaffinity or biocompatibility by coating the pre-processed surface of the implant using a composition for coating implants, and a method for manufacturing the same. The dental implant coated with a composition for coating implants, according to the present invention, has advantages that hydrophilicity, hemocompatibility and bone-interface binding force are improved and the formation of bone around an implanted implant is enhanced, and also has effects of improving bioaffinity and biocompatibility of the dental implant.

Description

표면이 코팅되어 생체 친화성과 생체 적합성이 향상된 치과용 임플란트 및 이의 제조방법Surface-coated dental implants with improved biocompatibility and biocompatibility and methods for their preparation
본 발명은 임플란트 코팅용 조성물을 사용하여 임플란트 표면을 코팅함으로써, 임플란트의 친수성, 혈액친화성, 골 형성 촉진능 및 골계면 결합력 등과 같은 생체 친화성이 향상된 치과용 임플란트 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는 임플란트 코팅용 조성물을 사용하여 전처리된 임플란트 표면에 코팅함으로써, 생체 친화성 또는 생체 적합성이 향상된 치과용 임플란트 및 이의 제조 방법에 관한 것이다.The present invention relates to a dental implant and a method for manufacturing the same by improving the biocompatibility of the implant by coating the surface of the implant using the composition for implant coating, such as hydrophilicity, blood affinity, bone formation promoting ability and bone interface binding strength of the implant, More particularly, the present invention relates to a dental implant and a method for producing the same, which are coated with a pre-treated implant surface using an implant coating composition, thereby improving biocompatibility or biocompatibility.
고령화 사회의 진전에 따라 삶의 질이 사회적 이슈로 등장하고 있고 건강에 대한 관심도 세분화되고 있으며, 특히 구강건강이 전신건강에 직접적인 영향을 주고 있으나 가령화(加齡化)에 따른 치아 상실은 불가피하다.As the aging society progresses, quality of life is emerging as a social issue, and attention to health is being subdivided. In particular, oral health has a direct impact on general health, but tooth loss due to aging is inevitable. .
치아 상실시 저작기능이 제대로 되지 않아 음식물 섭취 제한뿐만 아니라 소화기능 장애, 얼굴의 변형과 부정확한 발음으로 인해 대인관계에도 지장을 주기 때문에 치아 상실의 해결방법으로 틀니, 브릿지 등 보철치료 방법이 주를 이루었으나, 근래에는 자연치에 근접한 치료방법인 임플란트 시술이 등장하였으며, 소비자들의 소득수준 향상, 치의학 치과기술의 발전으로 임플란트 시술이 치아상실의 보편적 치료방법으로 인식되고 있는 실정이다.Proper teeth treatment such as dentures and bridges is the main solution to tooth loss because it does not affect food intake and affects interpersonal relationships due to digestive problems, facial deformation and incorrect pronunciation. In recent years, implant surgery, a treatment approach that is close to natural teeth, has emerged, and implant surgery has been recognized as a universal treatment method for tooth loss due to the improvement of consumer's income level and the development of dental dental technology.
치과용 임플란트는 인간의 턱뼈 위에 인공치아를 영구적으로 이식시키기 위해 사용하는 것으로서, 턱뼈와 인공치아를 연결시키고 음식의 저작(詛嚼)시 발생하는 하중을 감당, 분산시켜 실제 치아와 동일한 역할을 할 수 있고, 기존의 의치(義齒)에 비하여 더욱 안정한 치아로서의 역할을 하도록 기계적으로 제작된다. 따라서 임플란트는 인간의 생체조직에 대하여 매우 안정적인 생체친화 재료를 사용하여야 하며 부작용 및 기타 화학, 생화학적 반응성이 없는 것이어야 한다. 또한 반복되는 하중 및 순간적인 압력의 부과에도 변형 및 파괴되지 않도록 기계적 강도가 매우 높아야 하기 때문에 적당한 소재를 선택하는 것이 매우 까다롭다.Dental implants are used to permanently implant artificial teeth on the jaw bone of humans. The dental implant connects the jaw bone with artificial teeth and handles and distributes the load generated when chewing food. It is mechanically manufactured to serve as a more stable tooth than a conventional denture. Therefore, the implant should be made of biocompatible materials that are very stable against human tissues and should be free of side effects and other chemical and biochemical reactivity. In addition, it is very difficult to select a suitable material because the mechanical strength must be very high so as not to be deformed and destroyed even under repeated loads and instantaneous pressures.
임플란트의 적절한 소재로서 다양한 금속 및 합금이 개발, 시도되었으나 티타늄(Ti) 금속이나 그 합금을 주로 이용하고 있다(Larry L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81(7) 1705-1728, 1998). 티타늄 또는 그 합금은 가공이 용이할 뿐만 아니라 인간의 생체조직에 대한 높은 생체친화성, 높은 기계적 강도 및 생체 불활성을 갖는 장점이 있다. 그러나 Ti 및 그 합금 자체는 인체에 이식시 골과의 결합시간이 길고, 이식 후 장시간 지나면 금속 이온이 생체로 녹아 들어가는 단점이 있다.Various metals and alloys have been developed and tried as suitable materials for implants, but titanium (Ti) metals and alloys are mainly used (Larry L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81 (7) 1705 -1728, 1998). Titanium or its alloys are not only easy to process but also have the advantages of high biocompatibility, high mechanical strength and bioinertness to human tissues. However, Ti and its alloys have a disadvantage in that the bonding time with the bone is long when transplanted into the human body, and metal ions melt into the living body after a long time after transplantation.
이러한 단점을 보완하기 위하여 이들 재료의 표면을 적절히 처리함으로써 골결합을 강화할 수 있는 기술들이 개발되어 사용되고 있다(대한민국 공개특허 제2013-0022252호). 특히 골융합(Osseointegration)에 있어서 중요한 결정인자로 임플란트의 표면처리 방식이 지적되어 왔으며, 이와 관련하여 선반 가공에 의한 매끈한 표면처리 방식이 골과의 우수한 생체 적합성과 조직 안정성 때문에 가장 오랜 역사를 가지고 오랜 기간 동안 임플란트 시술에 적용되어 왔다.In order to make up for these drawbacks, techniques that can enhance bone bonding by appropriately treating the surfaces of these materials have been developed and used (Korean Patent Publication No. 2013-0022252). In particular, the surface treatment method of the implant has been pointed out as an important determinant in osseointegration. In this connection, the smooth surface treatment method by lathe processing has the longest history due to its excellent biocompatibility and tissue stability. Has been applied to implant procedures.
그러나 골 밀도가 낮은 골에서의 성공률을 개선하기 위해 임플란트의 표면 특성을 개선시키려는 노력이 대두되었으며, 불규칙한 표면을 가진 임플란트가 빠른 골 성장과 우수한 기계적 접착에 효과가 있으며, 불규칙하고 거친 표면을 갖는 임플란트가 평활한 표면을 갖는 임플란트에 비해 더 많은 골접촉률을 갖는 것으로 보고된 바 있다.However, efforts have been made to improve the surface characteristics of implants to improve the success rate in bones with low bone density. Implants with irregular surfaces are effective for rapid bone growth and good mechanical adhesion, and implants with irregular and rough surfaces. Has been reported to have more bone contact rates than implants with smooth surfaces.
임플란트 표면의 진화된 양상을 살펴보면, 제1세대 임플란트는 평활한 표면을 갖는 임플란트이고, 제2세대 임플란트는 피막 표면을 갖는 임플란트로서 수산화인회석 피막(hydroxyapatite coating, HA) 또는 티타늄 분사 피막(Titanium Plasma Spray, TPS)으로 나뉠 수 있다. RBM(Resorbable Blasted Media blasting) 표면을 갖는 임플란트는 제3세대 임플란트에 속하며, 흡수성 매질로 블라스팅 기법을 이용하여 임플란트의 거칠기를 증가시켰다. 이러한 블라스팅 방법은 표면에 분사되는 입자의 영향으로 표면적이 증가되어 요철 효과로 임플란트 계면 골결합력이 증가되며 거친 표면에 세포의 반응이 활성화되는 장점을 갖는다.Looking at the evolution of the implant surface, the first-generation implant is an implant with a smooth surface, and the second-generation implant is an implant with an anodized surface. , TPS). Implants with a Resorbable Blasted Media blasting (RBM) surface belong to the third generation of implants and have increased the roughness of the implant using blasting techniques as an absorbent medium. This blasting method has the advantage that the surface area is increased by the effect of particles sprayed on the surface to increase the implant interfacial bone bonding force due to the uneven effect and to activate the reaction of the cells on the rough surface.
그러나, 현재 많이 사용되고 있는 임플란트 표면처리방식인 상기 RBM이나 산성물질로 표면 처리한 생체 친화성이 높은 SLA(Sandblast Large grit Acid etch) 등의 표면처리 방식의 경우, 표면처리공정 후 제품이 공기 중에 노출되었을 때, 제품 표면에 산화층이 성장하고 탄화수소 등의 다양한 오염원의 흡착이 일어나 화학적으로 안정한 상태로 변화하면서 소수화되는 문제가 있다. 즉, 이렇게 소수화된 표면은 체액 및 혈액에 대한 젖음성이 낮기 때문에 임플란트 매식 후 뼈와 융합되는 전반적인 과정을 방해하여 임플란트가 안정되는 기간을 연장시키는 단점이 있다.However, in the case of a surface treatment method such as the RBM, which is a widely used implant surface treatment method, and a high biocompatibility SLA (Sandblast Large grit Acid etch) surface treated with an acidic substance, the product is exposed to air after the surface treatment process. In this case, the oxide layer grows on the surface of the product, and adsorption of various pollutants such as hydrocarbons occurs, resulting in hydrophobization while changing to a chemically stable state. That is, the hydrophobized surface has a disadvantage of prolonging the period of stabilization of the implant by preventing the overall process of fusion with the bone after implant implantation because of low wettability to body fluids and blood.
한편, 미국 특허공보 제6702855호에는 티타늄 임플란트의 조면화된 표면의 친수성을 개선시키는 방법으로서 염산, 황산, 질산 등과 같은 무기산을 이용하여 화학적으로 에칭(etching)시키는 방법이 개시되어 있으며, 여러 문헌에서 티타늄 표면의 소수화로 인한 단점을 극복하기 위해 금속표면의 친수성을 부여하는 방법으로 플라즈마 처리(라디오-주파수 글로 방전; Radio-Frequency Glow Discharge(RFGD), O2 등), 광 조사(자외선, 자외선-오존등)방식을 언급하고 있다.On the other hand, US Patent 6670855 discloses a method of chemically etching with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, etc. as a method of improving the hydrophilicity of the roughened surface of the titanium implant, Plasma treatment (Radio-Frequency Glow Discharge (RFGD), O2, etc.), light irradiation (ultraviolet radiation, ultraviolet-ozone) as a method of imparting hydrophilicity of the metal surface to overcome the disadvantages of hydrophobicity of titanium surface Etc.).
그러나, 이를 적용했을 경우 티타늄 표면을 초친수화시키는 것은 가능하나, 친수성을 일정 기간 이상 유지하고, 골 결합의 속도 등과 같은 품질의 향상 측면에서는 여전히 한계가 존재한다.However, if applied, it is possible to superhydrophilize the titanium surface, but there are still limitations in terms of improving the quality such as the rate of bone bonding, maintaining hydrophilicity for a certain period of time.
이에 본 발명에서는 임플란트 표면에 코팅되어, 임플란트 표면의 친수성, 혈액 친화성, 골 형성 촉진능 등을 향상시킬 수 있는 임플란트 표면 코팅용 조성물을 제공하고, 이를 사용하여 생체 친화성 및 생체 적합성이 향상된 치과용 임플란트의 제조방법과 이러한 방법으로 제조된 치과용 임플란트를 제시하고자 한다.Accordingly, the present invention provides a composition for implant surface coating that can be coated on the surface of the implant, thereby improving the hydrophilicity, blood affinity, bone formation promoting ability, etc. of the implant surface, by using the same, improved biocompatibility and biocompatibility The present invention proposes a method for preparing a dental implant and a dental implant manufactured by the method.
따라서 본 발명의 목적은 하기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하는 임플란트 표면 코팅용 조성물을 사용하여 임플란트 표면을 코팅하는 방법 및 이러한 임플란트 표면 코팅용 조성물이 코팅되어 생체친화성과 생체적합성이 향상된 치과용 임플란트를 제공하는 것이다.Therefore, an object of the present invention is a method of coating an implant surface using a composition for implant surface coating comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or a salt thereof as an active ingredient And the implant surface coating composition is coated to provide a dental implant with improved biocompatibility and biocompatibility.
[화학식 1][Formula 1]
Figure PCTKR2015006928-appb-I000001
Figure PCTKR2015006928-appb-I000001
상기 [화학식 1]에서, R1는 -PO(OH)2 또는 -SO2(OH) 이고, R2는 수소 또는 -OH 이고, R3는 수소 또는 -NH2 이며, R4는 산소 또는 -NH2 이다.In Formula 1, R1 is -PO (OH) 2 or -SO 2 (OH), R2 is hydrogen or -OH, R3 is hydrogen or -NH 2 , R4 is oxygen or -NH 2 .
[화학식 2][Formula 2]
Figure PCTKR2015006928-appb-I000002
Figure PCTKR2015006928-appb-I000002
상기 [화학식 2]에서, a1, a2는 각각 독립적으로 -PO(OH)2 또는 -SO2(OH) 이고, Q1, Q2는 각각 독립적으로 수소 또는 -NH2 이다.In Formula 2, a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
[화학식 3][Formula 3]
Figure PCTKR2015006928-appb-I000003
Figure PCTKR2015006928-appb-I000003
상기 [화학식 3]에서 a는 -PO(OH)2 또는 -SO2(OH) 이다.In [Formula 3] a is -PO (OH) 2 or -SO 2 (OH).
본 발명의 다른 목적은 (a) 임플란트의 표면을 조면화하는 전처리하는 단계; 및 (b) 상기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하는 임플란트 코팅용 조성물을 상기 (a)의 전처리 단계에서 조면화 처리된 임플란트 표면에 코팅함으로써, 임플란트의 친수성, 혈액친화성, 골 형성 촉진능 및 골계면 결합력 등과 같은 생체 친화성 또는 생체 적합성이 향상된 치과용 임플란트 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for treating a surface of an implant comprising: (a) pretreatment to roughen the surface of the implant; And (b) roughening the implant coating composition comprising a compound selected from the group consisting of compounds represented by the above [Formula 1] to [Formula 3] or salts thereof as an active ingredient in the pretreatment step (a). By coating the implant surface, it is to provide a dental implant manufacturing method with improved biocompatibility or biocompatibility, such as hydrophilicity, blood affinity, bone formation promoting ability and bone interface binding strength of the implant.
본 발명에서 제시하는 생체친화성이 향상된 치과용 임플란트는 하기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하며, 치과용 임플란트 표면에 코팅되는 조성물의 농도는 0.05 ~ 0.5 M이고, pH는 5 ~ 9인 것을 특징으로 한다.The dental implant with improved biocompatibility presented in the present invention comprises a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or salts thereof as an active ingredient, on the surface of the dental implant The concentration of the composition to be coated is 0.05 to 0.5 M, pH is characterized in that 5 to 9.
[화학식 1][Formula 1]
Figure PCTKR2015006928-appb-I000004
Figure PCTKR2015006928-appb-I000004
상기 [화학식 1]에서, R1는 -PO(OH)2 또는 -SO2(OH) 이고, R2는 수소 또는 -OH 이고, R3는 수소 또는 -NH2 이며, R4는 산소 또는 -NH2 이다.In Formula 1, R1 is -PO (OH) 2 or -SO 2 (OH), R2 is hydrogen or -OH, R3 is hydrogen or -NH 2 , R4 is oxygen or -NH 2 .
[화학식 2] [Formula 2]
Figure PCTKR2015006928-appb-I000005
Figure PCTKR2015006928-appb-I000005
상기 [화학식 2]에서, a1, a2는 각각 독립적으로 -PO(OH)2 또는 -SO2(OH) 이고, Q1, Q2는 각각 독립적으로 수소 또는 -NH2 이다.In Formula 2, a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
[화학식 3][Formula 3]
Figure PCTKR2015006928-appb-I000006
Figure PCTKR2015006928-appb-I000006
상기 [화학식 3]에서 a는 -PO(OH)2 또는 -SO2(OH) 이다.In [Formula 3] a is -PO (OH) 2 or -SO 2 (OH).
이렇게 임플란트 표면에 코팅되는 상기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물은 치과용 임플란트 표면에 10 ~ 40 ㎍/㎟의 양으로 코팅되는 것이 바람직하다. The compound selected from the group consisting of the compound represented by the above [Formula 1] to [Formula 3] or a salt thereof is coated on the surface of the implant is preferably coated on the dental implant surface in an amount of 10 ~ 40 ㎍ / ㎜. .
좀 더 구체적으로 상기 [화학식 1]의 화합물은 2'-deoxyadenosine 5'-monophosphate(이하, 'DAP'라 한다) 또는 2'-deoxycytidine 5'-monophosphate(이하, 'DCP'라 한다)인 것이 바람직하며, 상기 [화학식 2]의 화합물은 4,4'-Diaminostibene-2,2'-disulfonic acid(이하, 'DASDA'라 한다)인 것이 바람직하다.More specifically, the compound of [Formula 1] is preferably 2'-deoxyadenosine 5'-monophosphate (hereinafter referred to as 'DAP') or 2'-deoxycytidine 5'-monophosphate (hereinafter referred to as 'DCP'). In addition, the compound of [Formula 2] is preferably 4,4'-Diaminostibene-2,2'-disulfonic acid (hereinafter referred to as 'DASDA').
[화학식 3]으로 표시되는 화합물 또는 이의 염의 경우, 치과용 임플란트 표면에 1 ㎍/㎟ ~ 1 ㎎/㎟의 양으로 코팅되는 것이 바람직하며, 상기 [화학식 3]의 화합물은 N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(이하, 'TAPS'라 한다)인 것이 바람직하다.In the case of the compound represented by [Formula 3] or a salt thereof, it is preferable to coat the surface of the dental implant in an amount of 1 μg / mm 2 ~ 1 mg / mm 2, wherein the compound of Formula 3 is N-Tris (hydroxymethyl) It is preferably methyl-3-aminopropanesulfonic acid (hereinafter referred to as 'TAPS').
따라서 본 발명에서 사용되는 치과용 임플란트 코팅 조성물에는 DAP, DCP, DASDA, TAPS 또는 이들의 염이 유효성분으로 포함되며, pH는 5 ~ 9, 더욱 바람직하게는 pH 6 ~ 8의 범위에서 0.05 ~ 0.5 M의 농도로 포함된다. Therefore, the dental implant coating composition used in the present invention includes DAP, DCP, DASDA, TAPS or salts thereof as an active ingredient, pH is 5 ~ 9, more preferably 0.05 ~ 0.5 in the range of pH 6 ~ 8 It is included in the concentration of M.
치과용 임플란트 표면에 코팅될 경우, DAP, DCP, DASDA 또는 이들의 염이 포함된 조성물은 단위 면적당 10 ~ 40 ㎍/㎟의 양으로 코팅되고, TAPS 또는 이의 염이 포함된 조성물은 단위 면적당 1 ㎍/㎟ ~ 1 ㎎/㎟의 양으로 코팅된다.When coated on the dental implant surface, the composition containing DAP, DCP, DASDA or salts thereof is coated in an amount of 10-40 μg / mm 2 per unit area, and the composition containing TAPS or salt thereof is 1 μg per unit area. / Mm2-1 mg / mm2.
본 발명의 다른 실시 형태로는 치과용 임플란트의 제조방법이 있으며, (a) 치과용 임플란트의 표면을 블라스팅 및 산처리 단계를 거쳐 조면화 시키는 전처리 단계; 및 (b) 상기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하는 조성물을, (a)의 전처리 단계를 거친 임플란트 표면에 코팅하는 단계;를 포함한다.Another embodiment of the present invention is a method for manufacturing a dental implant, (a) pre-treatment step of roughening the surface of the dental implant through the blasting and acid treatment step; And (b) a composition comprising a compound selected from the group consisting of the compounds represented by the above [Formula 1] to [Formula 3] or a salt thereof as an active ingredient, the coating on the implant surface subjected to the pretreatment step (a) It includes; step.
본 발명에서 제시된 임플란트 코팅용 조성물이 코팅된 치과용 임플란트는 표면의 친수성, 혈액친화성 및 골-계면력이 향상되고, 임플란트가 식립된 주변부의 골 형성이 크게 증가하는 장점이 있으며, 치과용 임플란트의 생체 친화성 또는 생체 적합성이 크게 향상되는 효과가 있다.Dental implants coated with the composition for implant coating presented in the present invention has the advantage that the surface hydrophilicity, blood affinity and bone-interface force is improved, the bone formation of the peripheral portion implanted is greatly increased, dental implants The biocompatibility or biocompatibility of the is greatly improved.
도 1은 코팅된 치과용 임플란트의 접촉각 실험 결과를 나타낸 것이다.Figure 1 shows the results of the contact angle test of the coated dental implant.
도 2는 본 발명의 코팅된 치과용 임플란트의 혈액 친화성 측정 실험 결과를 나타낸 것이다.Figure 2 shows the results of blood affinity measurement experiment of the coated dental implant of the present invention.
도 3은 본 발명의 코팅된 치과용 임플란트의 골계면 결합력을 측정한 실험 결과를 나타낸 것이다.Figure 3 shows the experimental results of measuring the bone interface binding force of the coated dental implant of the present invention.
도 4는 본 발명의 코팅된 치과용 임플란트의 골계면 형태계측학적 평가를 위한 μ-CT 촬영 결과이다.Figure 4 is a μ-CT imaging results for bone interface morphometric evaluation of the coated dental implant of the present invention.
본 발명의 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물은 그 자체, 이의 염 또는 이의 약학적으로 허용 가능한 염의 형태로 사용될 수 있다. 상기에서 '약학적으로 허용 가능한'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 말하며, 상기 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 바람직하다.The compounds represented by [Formula 1] to [Formula 3] of the present invention may be used in the form of a salt thereof, or a pharmaceutically acceptable salt thereof. As used herein, 'pharmaceutically acceptable' refers to a physiologically acceptable and normally does not cause an allergic or similar reaction when administered to a human, and as the salt, a pharmaceutically acceptable free acid Acid addition salts formed by
[화학식 1][Formula 1]
Figure PCTKR2015006928-appb-I000007
Figure PCTKR2015006928-appb-I000007
상기 [화학식 1]에서, R1는 -PO(OH)2 또는 -SO2(OH) 이고, R2는 수소 또는 -OH 이고, R3는 수소 또는 -NH2 이며, R4는 산소 또는 -NH2 이다.In Formula 1, R1 is -PO (OH) 2 or -SO 2 (OH), R2 is hydrogen or -OH, R3 is hydrogen or -NH 2 , R4 is oxygen or -NH 2 .
[화학식 2] [Formula 2]
Figure PCTKR2015006928-appb-I000008
Figure PCTKR2015006928-appb-I000008
상기 [화학식 2]에서, a1, a2는 각각 독립적으로 -PO(OH)2 또는 -SO2(OH) 이고, Q1, Q2는 각각 독립적으로 수소 또는 -NH2 이다.In Formula 2, a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
[화학식 3][Formula 3]
Figure PCTKR2015006928-appb-I000009
Figure PCTKR2015006928-appb-I000009
상기 [화학식 3]에서 a는 -PO(OH)2 또는 -SO2(OH) 이다.In [Formula 3] a is -PO (OH) 2 or -SO 2 (OH).
본 발명에서 사용되는 유리산으로는 유기산 또는 무기산이 사용될 수 있으며, 상기 유기산으로는 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산 등이 포함되지만, 특별히 이들로 제한되는 것은 아니다. 또한 상기 무기산으로는 염산, 브롬산, 황산 및 인산 등이 포함되지만, 역시 이들만으로 제한되는 것은 아니다.As the free acid used in the present invention, an organic acid or an inorganic acid may be used, and as the organic acid, citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, meta Sulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, glutamic acid, aspartic acid, and the like, but are not particularly limited thereto. In addition, the inorganic acid includes hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, and the like, but is not limited thereto.
상기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물이 치과용 임플란트 코팅용 물질로 사용하기에 적합한지 여부를 확인하기 위해 다양한 코팅 조성물을 사용하여 실험을 수행하였으며, 비교를 위해 사용된 물질로 TMP(Thiamine monophosphate), FA(Folic acid), MDP(Methylene diphosphonic acid) 등을 사용하였다.Experiment using various coating compositions to determine whether the compound selected from the group consisting of a compound represented by the above [Formula 1] to [Formula 3] or salts thereof is suitable for use as a material for dental implant coating TMP (Thiamine monophosphate), FA (Folic acid), MDP (Methylene diphosphonic acid) and the like were used for the comparison.
본 발명의 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 사용하여 디스크 형태의 임플란트 시편 표면이 코팅된 경우에는, 3년의 가속 노화 조건(55 ℃ 에서 18주 방치)을 거친 이후에도 다른 비교 물질이 코팅된 경우에 비해 매우 낮은 접촉각을 보였으며, 이는 이러한 코팅된 화합물이 임플란트 표면의 친수성을 매우 증가시킨다는 것을 의미한다(후술되는 도 1 참조).When the surface of the disk of the implant specimen is coated using a compound selected from the group consisting of a compound represented by [Formula 1] to [Formula 3] or a salt thereof of the present invention, accelerated aging conditions of 3 years (55 ℃ After 18 weeks of standing), the contact angle was very low compared to the case where other comparative materials were coated, which means that the coated compound greatly increased the hydrophilicity of the implant surface (see FIG. 1 described later).
또한, 픽스쳐 형태의 임플란트 시편으로 혈액친화성을 측정한 결과, 본 발명의 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물로 코팅된 임플란트가 3년의 가속 노화 조건에도 다른 비교 물질이 코팅된 경우에 비해 매우 높은 혈액친화성을 나타내었으며(후술되는 도 2 참조), 픽스쳐 형태의 임플란트 시편으로 골-계면력(Interfacial force)을 in vivo 로 측정한 결과 역시 비교 물질을 사용한 경우에 비해 우수한 골-계면력을 나타내었다(후술되는 도 3 참조).In addition, as a result of measuring blood affinity with an implant specimen in the form of a fixture, an implant coated with a compound selected from the group consisting of compounds represented by [Formula 1] to [Formula 3] or salts thereof of the present invention The accelerated aging condition showed very high blood affinity compared with the case of coating with other comparative materials (see FIG. 2 below), and the measurement of the interfacial force in vivo with a fixture type implant specimen Again showed better bone-interface force compared to the case of using the comparative material (see FIG. 3 described later).
본 발명의 임플란트 코팅용 조성물은 압착, 압축, 가압접촉, 패킹, 압박, 굳힘 등의 방법을 사용하여, 퍼티, 페이스트, 주형 가능한 스트립, 블록, 칩 등의 형태로 성형되어 사용될 수 있고, 화학적 첨가물을 이용하여 겔, 분말, 페이스트, 정제, 펠렛 등의 형태로 사용될 수도 있으나, 수용액의 형태로 사용되는 것이 바람직하다.The composition for implant coating of the present invention may be molded and used in the form of putty, paste, moldable strip, block, chip, etc. using a method of compression, compression, pressure contact, packing, pressing, hardening, and the like, and chemical additives. It may be used in the form of gels, powders, pastes, tablets, pellets, etc., but is preferably used in the form of an aqueous solution.
수용액의 형태로 사용될 경우에는, 임플란트 표면에 코팅되는 코팅용 조성물의 농도는 0.05 ~ 0.5 M이고, pH는 5 ~ 9, 더욱 바람직하게는 6 ~ 8인 것이 바람직하며, 임플란트 표면에 [화학식 1] 또는 [화학식 2]로 표시되는 화합물은 10 ~ 40 ㎍/㎟의 양으로 코팅되는 것이 바람직하며, [화학식 3]으로 표시되는 화합물은 1 ㎍ ~ 1 ㎎/㎟의 양으로 코팅되는 것이 바람직하다. When used in the form of an aqueous solution, the concentration of the coating composition to be coated on the implant surface is 0.05 ~ 0.5 M, the pH is preferably 5 ~ 9, more preferably 6 ~ 8, the surface of the implant [Formula 1] Alternatively, the compound represented by [Formula 2] is preferably coated in an amount of 10 to 40 μg / mm 2, and the compound represented by [Formula 3] is preferably coated in an amount of 1 μg to 1 mg / mm 2.
이때, 농도가 0.05 M 미만일 경우에는 임플란트 표면에 코팅되는 양이 너무 적어 생체 친화성 향상 효과가 나타나지 않을 수 있으며, 농도가 0.5 M 이상인 경우에는 높은 점도로 인해 전체 표면에 고른 코팅이 되기 어렵고, 형성된 두터운 코팅층은 진동, 낙하 등에 의한 장기적인 탈락 안정성 감소 등의 문제점이 발생한다.In this case, when the concentration is less than 0.05 M, the amount of the coating on the implant surface may be too small to improve the biocompatibility, and when the concentration is 0.5 M or more, it is difficult to uniformly coat the entire surface due to the high viscosity. The thick coating layer causes problems such as long-term dropout stability due to vibration and dropping.
또한 상기 수용액 형태의 코팅용 조성물의 경우 pH는 약산성 내지 약염기성 영역을 포함하는 중성 영역인 약 5 ~ 9의 범위가 바람직한데, pH 5 미만의 산성일 경우에는 임플란트 Base 표면인 타이타늄 표면을 산화시킬 수 있는 문제점이 있고, pH 9 초과의 염기성인 경우에는 코팅용 조성물 자체의 물질 안정성을 떨어뜨리는 문제점이 발생하므로 바람직하지 아니하다.In addition, in the case of the coating composition in the form of the aqueous solution, the pH is preferably in the range of about 5 to 9, which is a neutral region including weakly acidic to weakly basic regions. When the pH is less than 5, the surface of the implant base may be oxidized. There is a problem that can be, if the pH is more than 9 is not preferable because the problem of lowering the material stability of the coating composition itself.
상기 [화학식 1]의 화합물의 구체적인 형태로, 하기의 [화학식 4] 또는 [화학식 5]로 표시되는 2'-deoxyadenosine 5'-monophosphate(이하, 'DAP'라 한다) 또는 2'-deoxycytidine 5'-monophosphate(이하, 'DCP'라 한다)를 들 수 있으며, 이의 염이 포함된다.As a specific form of the compound of [Formula 1], 2'-deoxyadenosine 5'-monophosphate (hereinafter referred to as' DAP ') or 2'-deoxycytidine 5' represented by the following [Formula 4] or [Formula 5] -monophosphate (hereinafter referred to as 'DCP'), including salts thereof.
[화학식 4][Formula 4]
Figure PCTKR2015006928-appb-I000010
Figure PCTKR2015006928-appb-I000010
2'-deoxyadenosine 5'-monophosphate (DAP)2'-deoxyadenosine 5'-monophosphate (DAP)
[화학식 5][Formula 5]
Figure PCTKR2015006928-appb-I000011
Figure PCTKR2015006928-appb-I000011
2'-deoxycytidine 5'-monophosphate (DCP)2'-deoxycytidine 5'-monophosphate (DCP)
또한 상기 [화학식 2]의 화합물의 구체적인 형태로는, 하기의 [화학식 6]과 같이 표현되는 4,4'-Diaminostibene-2,2'-disulfonic acid(DASDA)를 들 수 있으며, 이의 염이 포함된다.In addition, as a specific form of the compound of [Formula 2], 4,4'-Diaminostibene-2,2'-disulfonic acid (DASDA) represented by the following [Formula 6] can be included, and salts thereof do.
[화학식 6][Formula 6]
Figure PCTKR2015006928-appb-I000012
Figure PCTKR2015006928-appb-I000012
4,4'-Diaminostibene-2,2'-disulfonic acid(DASDA)4,4'-Diaminostibene-2,2'-disulfonic acid (DASDA)
그리고 상기 [화학식 3]의 화합물의 구체적인 형태로는, 하기의 [화학식 7]과 같이 표현되는 N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS)를 들 수 있으며, 이의 염이 포함된다.And Specific examples of the compound of [Formula 3] include N-Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS) represented by the following [Formula 7], the salt thereof is included.
[화학식 7][Formula 7]
Figure PCTKR2015006928-appb-I000013
Figure PCTKR2015006928-appb-I000013
N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS)N-Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS)
따라서 본 발명에서 사용되는 치과용 임플란트 코팅 조성물에는 DAP, DCP, DASDA, TAPS 또는 이의 염이 유효성분으로 포함되고, pH가 5 ~ 9의 범위에서 0.05 ~ 0.5 M의 농도로 포함된다.Therefore, the dental implant coating composition used in the present invention includes DAP, DCP, DASDA, TAPS or a salt thereof as an active ingredient, pH is contained in a concentration of 0.05 to 0.5 M in the range of 5-9.
치과용 임플란트 표면에 코팅될 경우에는 DAP, DCP, DASDA 또는 이들의 염이 포함된 조성물은 임플란트 단위 면적당 10 ~ 40 ㎍/㎟의 양으로 코팅되는 것이 바람직하다. 또한, TAPS 또는 이의 염이 포함된 조성물은 임플란트 단위 면적당 1 ㎍/㎟ ~ 1 ㎎/㎟의 양으로 코팅되는 것이 바람직하다.When coated on the dental implant surface, the composition comprising DAP, DCP, DASDA or salts thereof is preferably coated in an amount of 10-40 μg / mm 2 per unit area of the implant. In addition, a composition containing TAPS or a salt thereof may be used per 1 implant unit area. It is preferable to coat in an amount of µg / mm 2 to 1 mg / mm 2.
이때, 코팅되는 양이 상기 범위 미만인 경우에는 임플란트 표면 전체를 커버하지 못하는 문제점이 있고, 상기 범위를 초과하는 양으로 코팅될 경우에는 두터운 코팅층이 형성되므로 유통 시 진동 등에 의한 탈락 등의 문제점이 발생될 수 있으므로, 바람직하지 아니하다.At this time, if the amount of coating is less than the above range there is a problem that can not cover the entire surface of the implant, if the coating amount exceeding the above range because a thick coating layer is formed, problems such as dropping due to vibration during distribution As it may, it is not preferable.
또한, 이러한 수용액의 형태로 임플란트 표면 코팅에 사용될 경우에는 생물학적 활성물질을 추가로 첨가하여 사용할 수 있는데, 상기 생물학적 활성물질로 골 성장을 촉진하는 성장인자, 골 조직 형성 증진을 유도하는 펩타이드와 단백질, 피브린, 골 형태 형성인자, 골 성장제, 화학요법제, 항생제, 진통제, 비스포스포네이트, 스트론툼염, 불소염, 마그네슘염 및 나트륨염 등이 사용될 수 있다.In addition, when used for coating the surface of the implant in the form of such an aqueous solution, an additional biologically active substance may be added and used, growth factors for promoting bone growth, peptides and proteins for promoting bone tissue formation, Fibrin, bone morphogenic factors, bone growth agents, chemotherapeutic agents, antibiotics, analgesics, bisphosphonates, strontum salts, fluoride salts, magnesium salts, sodium salts and the like can be used.
상기 성장인자로는 BMP(bone morphogenic protein), PDGF(Platelet-derived growth factor), TGFbeta(Transgenic growth factor), IGF-I(Insulin-like growth factor), IGF-II, FGF(Fibroblast growth factor) 및 BGDF-II(beta-2-microglobulin) 등이 있으며, 상기 골 조직 형성 증진 펩타이드와 단백질로는 RGD 시퀀스를 포함하는 각종 펩타이드와 콜라겐 및 피브로노젠과 같은 각종 단백질 등을 들 수 있다.The growth factors include bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), transgenic growth factor (TGFbeta), insulin-like growth factor (IGF-I), IGF-II, fibroblast growth factor (FGF) and BGDF-II (beta-2-microglobulin), and the like, and the bone tissue formation-promoting peptides and proteins include various peptides including RGD sequences and various proteins such as collagen and fibronogen.
골 형태 형성인자로는 오스테오칼신(osteocalcin), 본사이알로프로테인(bonesialo protein), 오스테오제닌(osteogenin), BMP 등이 사용될 수 있는데, 상기 골 성장제는 인체에 무해하고 골 성장을 촉진하는 물질이라면 제한 없이 사용될 수 있으며, 골 형성을 증진시키는 핵산, 골 형성을 억제하는 물질의 길항제 등이 사용될 수 있다.Osteocalcin, bonesialo protein, osteogenin, BMP, and the like may be used as bone morphogenesis factors, and the bone growth agent may be harmful if it is harmless to the human body and promotes bone growth. It can be used without, nucleic acids that promote bone formation, antagonists of substances that inhibit bone formation, and the like.
본 발명의 다른 실시 형태로는 (a) 임플란트의 표면을 조면화 시키는 전처리 단계; 및 (b) 상기 본 발명의 임플란트 코팅용 조성물을 상기 (a) 단계에서 전처리된 임플란트 표면에 코팅하는 단계;를 포함한다.In another embodiment of the present invention (a) a pretreatment step of roughening the surface of the implant; And (b) coating the implant coating composition of the present invention on the surface of the implant pretreated in step (a).
상기 (a) 단계는 본 발명의 임플란트 코팅용 조성물로 코팅하기 전 임플란트의 표면을 전처리하는 단계로서, 당업계에 공지된 다양한 전처리 방법이 사용될 수 있다. 예를 들면, 흡수성 분사 입자를 사용하여 표면처리 하는 RBM(Resorbable Blasting Media)법, 알루미늄 블라스팅 후 산에서 식각하는 SA(Sand-blasted Large grit, and Acid etched) 표면처리법, 자외선 조사, 300℃ 이상의 온도에서 열처리, 또는 양극산화(anodizing), 산처리 및 염기처리 후 열처리 등이 있는데, 이중 바람직하게는 자외선 조사 또는 SA(Sand-blasted Large grit and Acid etched) 표면처리법 등이 있으며, 가장 바람직하게는 이 두 가지를 모두 실시하는 전처리 단계를 고려할 수 있다.The step (a) is a step of pretreating the surface of the implant before coating with the composition for implant coating of the present invention, various pretreatment methods known in the art can be used. For example, RBM (Resorbable Blasting Media) method using surface-absorbing spray particles, SA (Sand-blasted Large grit, and Acid etched) surface treatment method after etching with aluminum after aluminum blasting, UV irradiation, temperature above 300 ℃ Heat treatment, or anodizing, acid treatment, and heat treatment after base treatment, and the like, preferably UV irradiation or SA (Sand-blasted Large grit and Acid etched) surface treatment, and the like. Consider a pretreatment step that performs both.
또한, 본 발명에서 사용되는 임플란트의 재질로는, 특별히 제한되지 아니하고 공지된 임플란트 재질 모두 가능하며, Glass, ITO 등의 Ceramic 과 PU, PTFE 등의 합성 고분자와 금속 계열로 SiO2, Pt, St, 티타늄, 티타늄 합금 등을 들 수 있다. 바람직하게는 티타늄 또는 티타늄 합금이 사용될 수 있으며, 앞서 언급한 전처리(표면처리) 단계에서, 티타늄 혹은 티타늄 합금 재질의 임플란트에 질산 용액을 이용하여 표면에 있는 수산화탄소를 제거할 수도 있다.In addition, the material of the implant used in the present invention is not particularly limited, and all known implant materials are possible, and ceramics such as Glass, ITO, synthetic polymers such as PU, PTFE, and metals may be used as SiO 2 , Pt, St, Titanium, a titanium alloy, etc. are mentioned. Preferably, titanium or titanium alloy may be used, and in the aforementioned pretreatment (surface treatment) step, nitric acid solution may be used to remove carbon hydroxide on the surface of the titanium or titanium alloy implant.
상기 질산 용액은 4 v/v% 내지 60 v/v% 정도가 바람직하며, 표면의 친수성 특성 및 형상에 따라 이러한 질산 용액 세정 공정은 생략될 수 있다. 질산 세정 후에는 표면의 잔류 질산을 제거하기 위해서 증류수로 표면을 세척하는 것이 바람직하며, 질산 용액 세정 공정이 생략된 표면에서는 증류수 표면 세척 과정이 생략될 수 있으나, 불순물 제거를 위해 알코올 세척단계에 이어서 사용될 수 있다.The nitric acid solution is preferably about 4 v / v% to 60 v / v%, and the nitric acid solution cleaning process may be omitted depending on the hydrophilic property and shape of the surface. After nitric acid washing, it is preferable to wash the surface with distilled water to remove residual nitric acid from the surface, and the surface washing process of distilled water may be omitted on the surface where the nitric acid solution cleaning process is omitted, but following the alcohol washing step to remove impurities Can be used.
상기 (b) 단계는 본 발명의 임플란트 코팅용 조성물을 사용하여 임플란트 표면을 코팅하는 단계로, 구체적인 임플란트 표면 코팅 방법은 물리적, 화학적 코팅 방법을 들 수 있다. 구체적인 예로 펄스레이저증착법(PLD), 스파터링증착법(sputtering), 화학기상증착법(CVD), 딥코팅법(dip coating), 스핀 코팅법(spin coating), 도금법(plating), 3차원 플라즈마건증착법(3D plasma gun deposition) 등을 들 수 있다. 이러한 코팅 방법 외에도 본 발명의 코팅용 조성물은 임플란트 표면에 단순 도포 과정을 거쳐 건조시킴으로써, 코팅 단계가 수행될 수 있다. 이때 상온 건조 시간은 약 1 내지 24 시간 일 수 있고, 더 바람직하게는 1 시간 내지 3 시간 일 수 있다.Step (b) is a step of coating the surface of the implant using the composition for implant coating of the present invention, specific implant surface coating method may include a physical and chemical coating method. Specific examples include pulsed laser deposition (PLD), sputtering, sputtering, chemical vapor deposition (CVD), dip coating, spin coating, plating, and three-dimensional plasma dry deposition ( 3D plasma gun deposition). In addition to the coating method, the coating composition of the present invention may be dried by a simple application process on the surface of the implant, thereby performing a coating step. At this time, the room temperature drying time may be about 1 to 24 hours, more preferably 1 to 3 hours.
일반적으로 자외선 조사 공정이나 SA 처리 공정은 골유착을 유도하는 것으로 알려져 있지만, 처리 후 일정 시간이 지나면 생체적합성이 떨어진다는 단점이 있다. 하지만, 본 발명의 코팅용 조성물을 사용하여 표면 코팅된 임플란트의 경우, 장기간의 시간이 지나도 임플란트의 생체 친화성이 유지되거나 증진되는 장점을 갖는 특징이 있다.In general, UV irradiation process or SA treatment process is known to induce bone adhesion, but there is a disadvantage that the biocompatibility falls after a certain time after treatment. However, the surface-coated implant using the coating composition of the present invention has the advantage of maintaining or enhancing the biocompatibility of the implant even after a long time.
이하에서는 본 발명의 기술적 특징을 구체적으로 살펴보기 위해 실시예와 도면을 참조하여 설명하고자 한다. 다만, 이러한 구체적인 실시예를 통해 본 발명의 기술적 사상이 한정되는 것은 아니며, 특허청구범위와 이의 균등범위에 대해서 본 발명의 기술적 사상이 보호되어야 한다.Hereinafter, with reference to the embodiments and the drawings in order to look at the technical features of the present invention in detail. However, the technical spirit of the present invention is not limited through these specific embodiments, and the technical spirit of the present invention should be protected with respect to the claims and their equivalents.
[실시예 1]Example 1
치과용 임플란트 표면의 전처리 및 코팅용 조성물의 건조 코팅층 형성Formation of dry coating layer of the composition for pretreatment and coating of dental implant surface
사용된 시편은 티타늄(CP Ti Gr4, Siwon company, USA)을 임플란트 전용 정밀 CNC(CINCOM. L20VIII, Japan)에서 직경 10 ㎜, 두께 1 ㎜의 디스크 형태 및 screw가 없는 직경 1.5 ㎜, 길이 1.5 ㎜의 픽스쳐(fixture) 형태로 가공한 후, 입자 크기 50 ㎛의 Al2O3 분말을 사용하여 블라스트 압력 5 기압으로 30 초간 블라스팅한 후, 혼합산 수용액을 이용한 산처리법을 이용하여 임플란트 표면에 macro-morphology 및 micro-morphology를 부여하였다.Specimens used were made of titanium (CP Ti Gr4, Siwon company, USA) in a precision CNC dedicated to implants (CINCOM.L20VIII, Japan) with a diameter of 10 mm, a thickness of 1 mm and a screw shape of 1.5 mm and a length of 1.5 mm. After processing in the form of a fixture, using an Al 2 O 3 powder having a particle size of 50 μm and blasting for 30 seconds at a blast pressure of 5 atm, macro-morphology was applied to the surface of the implant using an acid treatment method using a mixed acid aqueous solution. And micro-morphology.
상기 전처리를 끝낸 후, 임플란트를 세척하였다. 산부식 처리된 치과용 타이타늄 임플란트를 에탄올로 30 분간 그리고 증류수로 30 분간 초음파 세척한 다음 건조시켰다.After the pretreatment, the implant was washed. The acid-treated dental titanium implant was ultrasonically cleaned for 30 minutes with ethanol and for 30 minutes with distilled water and then dried.
상기 공정을 거친 임플란트에 플라즈마 1 분 혹은 자외선 5 분을 처리하여 표면에 흡착 및 안정화된 오염원을 제거하였고, 상기 표면에 0.1 M 농도의 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS 수용액을 pH 7로 조절한 후, 일정량 균일하게 도포한 후 상온에서 건조하여 25 ㎍/㎟ (단, TAPS의 경우는 0.5 ㎎/㎟) 코팅량이 되도록 제조하였다. 이러한 방법으로 제조된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS 수용액이 코팅된 임플란트를 하기 [실시예 2]에서 사용하였다.The treated implant was treated with plasma for 1 minute or ultraviolet light for 5 minutes to remove contaminants adsorbed and stabilized on the surface, and pH 0.1 M TMP, FA, MDP, DAP, DCP, DASDA and TAPS aqueous solutions were applied to the surface. After adjusting to 7, uniformly uniformly applied, and dried at room temperature to prepare a 25 μg / mm 2 (0.5 mg / mm 2 in the case of TAPS) coating amount. TMP, FA, MDP, DAP, DCP, DASDA and TAPS aqueous solution prepared by this method was coated in the following [Example 2].
[실시예 2]Example 2
코팅된 임플란트의 친수성 확인을 위한 접촉각 측정Contact angle measurement for checking hydrophilicity of coated implants
앞서 [실시예 1]에서 제조된 코팅된 임플라트 표면의 친수성 측정을 위해 Sessile drop method를 이용하였다.The Sessile drop method was used to measure the hydrophilicity of the coated implant surface prepared in [Example 1].
접촉각 측정에 앞서, [실시예 1]에서 제작된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 코팅된 타이타늄 디스크를 가속노화 조건(55 ℃)에서 18주간(가속노화 3년) 방치한 후, 가속노화된 각각의 디스크에 증류수를 각각 10 ㎖씩 떨어뜨려 표면과 증류수와의 접촉각을 측정 하였다. 정확한 접촉각의 측정을 위해, 동영상 카메라가 부착된 장비(Contact angle measurement, Surface Tech, Korea)로 사진을 촬영하여, 사진에서 좌우 접촉값을 측정 후 평균값(Contact angle)을 구하였다. Prior to the contact angle measurement, the TMP, FA, MDP, DAP, DCP, DASDA and TAPS coated titanium disks prepared in [Example 1] were left for 18 weeks (accelerated aging 3 years) under accelerated aging conditions (55 ° C). After that, 10 ml of distilled water was dropped into each of the accelerated aging disks, respectively, and the contact angle between the surface and distilled water was measured. In order to accurately measure the contact angle, a picture was taken with a video camera-equipped device (Contact angle measurement, Surface Tech, Korea), and the left and right contact values were measured, and then an average value (Contact angle) was obtained.
이때, 양성 대조군으로는 표면 코팅이 이루어지지 않은 제조 직후의 SA disk, 음성 대조군으로 표면 코팅이 이루어지지 않은 상태로 가속노화된 SA disk를 사용하였다.At this time, the SA disk immediately after the manufacture of the surface coating is not made as a positive control, the SA disk accelerated aging in a state in which the surface coating is not made as a negative control.
도 1의 실험 결과에서 확인할 수 있듯이, 18주(가속노화 3년) 가속노화의 경우 접촉각이 121°인 음성 대조군에 비해 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS 코팅 실험군의 증류수의 접촉각이 각각 약 0°, 12°, 60°, 0°, 0°, 0°, 0°로 접촉각이 낮아져 코팅표면의 친수성이 향상됨을 알 수 있다.As can be seen from the experimental results of FIG. 1, the contact angle of distilled water in TMP, FA, MDP, DAP, DCP, DASDA and TAPS coated experimental groups compared to the negative control group having a contact angle of 121 ° for 18 weeks (accelerated aging) 3 years. It can be seen that the contact angle is lowered to about 0 °, 12 °, 60 °, 0 °, 0 °, 0 °, and 0 °, respectively, thereby improving the hydrophilicity of the coating surface.
[실시예 3]Example 3
표면 코팅된 임플란트의 혈액 젖음성 측정Blood Wetting of Surface-Coated Implants
[실시예 1]에서 제작된 표면이 코팅된 치과용 임플란트를 가속노화 조건(55℃)에서 18주간 방치한 다음, 혈액친화성을 확인하기 위해 micropig 혈액에 상기 임플란트를 3 분 동안 약 3 ㎜ 담지한 후, 임플란트 표면을 타고 올라오는 혈액의 높이로 혈액 젖음성을 확인하였다.The dental implant coated with the surface prepared in Example 1 was left for 18 weeks under accelerated aging conditions (55 ° C.), and then the implant was immersed in micropig blood for about 3 mm for 3 minutes to check blood affinity. After that, the blood wettability was confirmed by the height of the blood coming up the surface of the implant.
이때, 양성 대조군으로는 제조 직후의 상기 물질들이 코팅되지 않는 SA 임플란트를 사용하였고, 음성 대조군으로 상기 물질을 코팅하지는 않고 가속노화 조건을 거친 SA 임플란트를 사용하였다.In this case, the SA control which was not coated with the materials immediately after the preparation was used as the positive control, and the SA implant that was subjected to accelerated aging conditions without coating the material as the negative control was used.
도 2의 실험 결과에서 확인되는 바와 같이, 가속노화된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 코팅된 치과용 임플란트들이 음성 대조군인 SA 임플란트에 비해 혈액 젖음성이 높음을 확인할 수 있었다. 음성 대조군인 SA 임플란트의 경우 3분 동안 임플란트 표면을 타고 올라오는 혈액의 높이가 1.5 ㎜인 반면에, TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS의 경우 각각 6 ㎜, 4 ㎜, 3 ㎜, 8.5 ㎜, 8 ㎜, 8.3 ㎜ 및 8.5 ㎜로 혈액 젖음성이 크게 향상되었음을 확인할 수 있었다.As confirmed in the experimental results of Figure 2, accelerated aging TMP, FA, MDP, DAP, DCP, DASDA and TAPS coated dental implants were confirmed that the blood wettability is higher than the negative control SA implants. The negative control SA implant had 1.5 mm of blood coming up the surface of the implant for 3 minutes, whereas 6 mm, 4 mm, and 3 mm for TMP, FA, MDP, DAP, DCP, DASDA and TAPS, respectively. , 8.5 mm, 8 mm, 8.3 mm and 8.5 mm was found to significantly improve the blood wettability.
이러한 혈액 젖음성 측정을 통해, 표면이 코팅된 임플란트 표면의 혈액 친화성이 가속노화 3년의 조건에도 향상됨을 알 수 있으며, 특히 음성 대조군 대비 DAP, DCP, DASDA 및 TAPS로 표면이 코팅된 임플란트가 혈액 친화성이 크게 향상됨을 확인할 수 있다.Through the measurement of blood wettability, it can be seen that blood affinity of the surface coated implant surface is improved even under conditions of 3 years of accelerated aging.In particular, the surface coated implants with DAP, DCP, DASDA and TAPS are compared to the negative control group. It can be seen that the affinity is greatly improved.
[[ 실시예Example 4] 4]
표면이 코팅된 임플란트의 골-계면 결합력 측정 (In Measurement of Bone-Interface Cohesion of Surface-Coated Implants (In vivovivo ))
앞서 [실시예 1]에서 제조된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 코팅된 치과용 임플란트 중에서 [실시예 3]을 통해 혈액 친화성이 우수한 것으로 확인된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 코팅된 임플란트에 대해 가속노화 조건(55 ℃)에서 18주간(가속노화 3년) 방치한 후, 임플란트와 골-계면 결합력을 확인하였다.TMP, FA, MDP, TMP, FA, MDP, DAP, DAP, DCP, DASDA and TAPS prepared in [Example 1] were confirmed to have excellent blood affinity through [Example 3] dental implants. DAP, DCP, DASDA, and TAPS coated implants were left for 18 weeks (accelerated aging) for 18 weeks under accelerated aging conditions (55 ° C), and the implant and bone-interface binding force were confirmed.
임플란트와 골-계면 결합력을 측정하기 위해 가토의 경골에 상기 표면이 코팅된 임플란트를 식립하고, 14 일의 골형성 기간 경과 후에 비틀림 제거력(removal torque) 측정을 하였다.The surface-coated implant was placed in the tibia of the rabbit to measure the implant and bone-interfacial binding force, and the torque was measured after 14 days of bone formation.
양성 대조군으로는 제조 직후의 표면 코팅되지 않은 SA 임플란트를 사용하였고, 음성 대조군으로 표면이 코팅되지 않은 상태로 동일 기간동안 가속노화된 SA 임플란트를 사용하였다.As a positive control, the surface-free SA implant immediately after preparation was used, and as a negative control, an accelerated aging SA implant was used for the same period without the surface being coated.
도 3의 결과에서 알 수 있듯이, 18주(가속노화 3년) 동안의 가속노화를 거쳐도 음성 대조군에 비해 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 표면 코팅된 임플란트 실험군의 경우, 비틀림 제거력이 각각 약 131 %, 110 %, 114 %, 148 %, 150 %, 150 %, 148 %로 골-계면 결합력이 향상됨을 알 수 있다. 특히 DAP, DCP, DASDA 및 TAPS가 표면 코팅된 임플란트의 경우 양성 대조군인 제조 직후의 SA의 골계면 결합력과 거의 동등하거나 오히려 약간 향상되었음을 알 수 있다.As can be seen from the results of FIG. 3, in the case of an implant experimental group coated with TMP, FA, MDP, DAP, DCP, DASDA, and TAPS compared to the negative control even after accelerated aging for 18 weeks (accelerated aging 3 years), It can be seen that the torsional removal force is about 131%, 110%, 114%, 148%, 150%, 150%, 148%, respectively, and the bone-interface binding force is improved. In particular, in the case of DAP, DCP, DASDA, and TAPS surface-coated implants, the bone interface binding force of SA immediately after preparation, which is a positive control, was almost equivalent to or slightly improved.
[실시예 5]Example 5
표면 코팅된 치과용 임플란트의 골계면 형태 계측학적 평가Measurement of Bone Interface Morphology of Surface-Coated Dental Implants
[실시예 1]에서 제조된 TMP, FA, MDP, DAP, DCP, DASDA 및 TAPS가 코팅된 치과용 임플란트 중에서 [실시예 4]의 비틀림 제거력이 높았던 TMP, DAP, DCP, DASDA 및 TAPS가 코팅된 임플란트를 선정하여, 가속노화 조건(55 ℃)에서 18주간(가속노화 3년) 방치한 후, 골계면의 형태계측학적 평가를 진행하였다.TMP, DAP, DCP, DASDA and TAPS coated with high torsional removal of [Example 4] among the dental implants coated in TMP, FA, MDP, DAP, DCP, DASDA and TAPS prepared in [Example 1] Implants were selected and left for 18 weeks (accelerated aging 3 years) under accelerated aging conditions (55 ° C), followed by morphometric evaluation of the bone interface.
골-계면의 형태 계측학적 평가를 위해, micro pig 하악에 상기 TMP, DAP, DCP, DASDA 및 TAPS가 표면 코팅된 임플란트를 식립한 후, 16 일간의 골 형성기간이 지난 후에 μCT 촬영을 통해 형태 계측학적 평가를 실시하였다.For morphometric evaluation of bone-interface, implantation of TMP, DAP, DCP, DASDA and TAPS surface-coated implants into micro pig mandible was performed and then morphometric measurement by μCT imaging after 16 days of bone formation period. Physiological evaluation was performed.
양성 대조군으로는 제조 직후의 표면 코팅되지 않은 SA 임플란트를 사용하였고, 음성 대조군으로 상기 표면 코팅 조성물이 코팅되지 않고 동일기간 동안 가속노화된 SA 임플란트를 사용하였다.As a positive control, a surface-free SA implant immediately after preparation was used. As a negative control, an SA-implant accelerated for the same period without coating the surface coating composition was used.
도 4의 결과에서 확인될 수 있듯이, 18주간의 가속노화에도 불구하고, DAP, DCP, DASDA 및 TAPS가 표면 코팅된 치과용 임플란트의 경우가, 음성 대조군에 비해 임플란트 주변부의 Bone 형성 정도가 크게 증가했음을 알 수 있다.As can be seen from the results of FIG. 4, despite 18 weeks of accelerated aging, the dental implants coated with DAP, DCP, DASDA and TAPS have a significantly increased degree of bone formation around the implant compared to the negative control. You can see that.
본 발명에서 제시된 임플란트 코팅용 조성물로 코팅된 치과용 임플란트는 표면의 친수성, 혈액친화성 및 골-계면력이 향상되고, 임플란트가 식립된 주변부의 골 형성이 증가되며, 치과용 임플란트의 생체 친화성 또는 생체 적합성을 크게 향상시키는 효과가 있으므로, 산업상 이용가능성이 있다.Dental implants coated with the composition for implant coating presented in the present invention is improved hydrophilicity, blood affinity and bone-interface force of the surface, increased bone formation in the periphery in which the implant is placed, bio-compatibility of the dental implant Alternatively, since there is an effect of greatly improving biocompatibility, there is industrial applicability.

Claims (10)

  1. 하기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하는 코팅 조성물이 표면에 코팅된, 치과용 임플란트.A dental implant coated with a coating composition comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or salts thereof as an active ingredient.
    [화학식 1][Formula 1]
    Figure PCTKR2015006928-appb-I000014
    Figure PCTKR2015006928-appb-I000014
    상기 [화학식 1]에서, R1는 -PO(OH)2 또는 -SO2(OH) 이고, R2는 수소 또는 -OH 이고, R3는 수소 또는 -NH2 이며, R4는 산소 또는 -NH2 이다.In Formula 1, R1 is -PO (OH) 2 or -SO 2 (OH), R2 is hydrogen or -OH, R3 is hydrogen or -NH 2 , R4 is oxygen or -NH 2 .
    [화학식 2] [Formula 2]
    Figure PCTKR2015006928-appb-I000015
    Figure PCTKR2015006928-appb-I000015
    상기 [화학식 2]에서, a1, a2는 각각 독립적으로 -PO(OH)2 또는 -SO2(OH) 이고, Q1, Q2는 각각 독립적으로 수소 또는 -NH2 이다.In Formula 2, a 1 and a 2 are each independently -PO (OH) 2 or -SO 2 (OH), and Q1 and Q2 are each independently hydrogen or -NH 2 .
    [화학식 3][Formula 3]
    Figure PCTKR2015006928-appb-I000016
    Figure PCTKR2015006928-appb-I000016
    상기 [화학식 3]에서 a는 -PO(OH)2 또는 -SO2(OH) 이다.In [Formula 3] a is -PO (OH) 2 or -SO 2 (OH).
  2. 제1항에 있어서,The method of claim 1,
    상기 코팅용 조성물의 농도는 0.05 ~ 0.5 M이고, pH는 5 ~ 9인 것을 특징으로 하는, 치과용 임플란트.The concentration of the coating composition is 0.05 ~ 0.5 M, pH is characterized in that 5 to 9, dental implants.
  3. 제1항에 있어서,The method of claim 1,
    상기 [화학식 1] 또는 [화학식 2]로 표시되는 화합물 또는 이의 염은 치과용 임플란트 표면에 10 ~ 40 ㎍/㎟의 양으로 코팅된 것을 특징으로 하는, 치과용 임플란트.The compound represented by the above [Formula 1] or [Formula 2] or a salt thereof is characterized in that the dental implant is coated on the surface of the dental implant in an amount of 10 to 40 ㎍ / ㎜.
  4. 제1항에 있어서,The method of claim 1,
    상기 [화학식 3]으로 표시되는 화합물 또는 이의 염은 치과용 임플란트 표면에 1 ㎍/㎟ ~ 1 ㎎/㎟의 양으로 코팅된 것을 특징으로 하는, 치과용 임플란트.The compound represented by the above [Formula 3] or a salt thereof is a dental implant, characterized in that the coating on the surface of the dental implant in the amount of 1 μg / mm 2 ~ 1 mg / mm 2.
  5. 제1항에 있어서,The method of claim 1,
    상기 코팅 조성물은, 2'-deoxyadenosine 5'-monophosphate(DAP), 2'-deoxycytidine 5'-monophosphate(DCP), 4,4'-Diaminostibene-2,2'-disulfonic acid(DASDA), N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS) 또는 이들의 염을 포함하는 것을 특징으로 하는, 치과용 임플란트.The coating composition, 2'-deoxyadenosine 5'-monophosphate (DAP), 2'-deoxycytidine 5'-monophosphate (DCP), 4,4'-Diaminostibene-2,2'-disulfonic acid (DASDA), N-Tris A dental implant comprising (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS) or a salt thereof.
  6. (a) 치과용 임플란트의 표면을 블라스팅 및 산처리 단계를 거쳐 조면화 시키는 전처리 단계; 및(a) pretreatment step of roughening the surface of the dental implant through the blasting and acid treatment step; And
    (b) 하기 [화학식 1] 내지 [화학식 3]으로 표시되는 화합물 또는 이의 염으로 이루어진 군에서 선택되는 화합물을 유효성분으로 포함하는 코팅용 조성물을, (a)의 전처리 단계에서 전처리된 임플란트 표면에 코팅하는 단계;를 포함하는 치과용 임플란트의 제조방법.(b) a coating composition comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 3] or a salt thereof as an active ingredient, on the surface of the implant pretreated in the pretreatment step (a) A method of manufacturing a dental implant comprising; coating.
    [화학식 1][Formula 1]
    Figure PCTKR2015006928-appb-I000017
    Figure PCTKR2015006928-appb-I000017
    상기 [화학식 1]에서, R1는 -PO(OH)2 또는 -SO2(OH) 이고, R2는 수소 또는 -OH 이고, R3는 수소 또는 -NH2 이며, R4는 산소 또는 -NH2 이다.In Formula 1, R1 is -PO (OH) 2 or -SO 2 (OH), R2 is hydrogen or -OH, R3 is hydrogen or -NH 2 , R4 is oxygen or -NH 2 .
    [화학식 2] [Formula 2]
    Figure PCTKR2015006928-appb-I000018
    Figure PCTKR2015006928-appb-I000018
    상기 [화학식 2]에서, a1, a2는 각각 독립적으로 -PO(OH)2 또는 -SO2(OH) 이고, Q1, Q2는 각각 독립적으로 수소 또는 -NH2 이다.In Formula 2, a 1 and a 2 are each independently —PO (OH) 2 or —SO 2 (OH), and Q 1 and Q 2 are each independently hydrogen or —NH 2 .
    [화학식 3][Formula 3]
    Figure PCTKR2015006928-appb-I000019
    Figure PCTKR2015006928-appb-I000019
    상기 [화학식 3]에서 a는 -PO(OH)2 또는 -SO2(OH) 이다.In [Formula 3] a is -PO (OH) 2 or -SO 2 (OH).
  7. 제6항에 있어서,The method of claim 6,
    상기 코팅용 조성물의 농도는 0.05 ~ 0.5 M이고, pH는 5 ~ 9인 것을 특징으로 하는, 치과용 임플란트의 제조방법.The concentration of the coating composition is 0.05 ~ 0.5 M, pH is 5 ~ 9, characterized in that the dental implant manufacturing method.
  8. 제6항에 있어서,The method of claim 6,
    상기 [화학식 1] 또는 [화학식 2] 로 표시되는 화합물 또는 이의 염은 치과용 임플란트 표면에 10 ~ 40 ㎍/㎟의 양으로 코팅된 것을 특징으로 하는, 치과용 임플란트의 제조방법.The compound represented by the above [Formula 1] or [Formula 2] or a salt thereof is coated on the surface of the dental implant in the amount of 10 to 40 ㎍ / ㎜, method for producing a dental implant.
  9. 제6항에 있어서,The method of claim 6,
    상기 [화학식 3]로 표시되는 화합물 또는 이의 염은 치과용 임플란트 표면에 1 ㎍/㎟ ~ 1 ㎎/㎟의 양으로 코팅된 것을 특징으로 하는, 치과용 임플란트의 제조방법.The compound represented by the above [Formula 3] or a salt thereof is coated on the surface of the dental implant in the amount of 1 μg / mm 2 ~ 1 mg / mm 2, a method for producing a dental implant.
  10. 제1항에 있어서,The method of claim 1,
    상기 코팅용 조성물은, 2'-deoxyadenosine 5'-monophosphate(DAP), 2'-deoxycytidine 5'-monophosphate(DCP), 4,4'-Diaminostibene-2,2'-disulfonic acid(DASDA), N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS) 또는 이들의 염을 포함하는 것을 특징으로 하는, 치과용 임플란트의 제조방법.The coating composition is 2'-deoxyadenosine 5'-monophosphate (DAP), 2'-deoxycytidine 5'-monophosphate (DCP), 4,4'-Diaminostibene-2,2'-disulfonic acid (DASDA), N- Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS) or a salt thereof, characterized in that it comprises a dental implant manufacturing method.
PCT/KR2015/006928 2014-07-11 2015-07-06 Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same WO2016006889A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0087630 2014-07-11
KR10-2014-0087631 2014-07-11
KR20140087629A KR101460976B1 (en) 2014-07-11 2014-07-11 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR20140087631A KR101460973B1 (en) 2014-07-11 2014-07-11 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR20140087630A KR101460974B1 (en) 2014-07-11 2014-07-11 Surface coated dental implant with improved biocompatibility and preparation method thereof
KR10-2014-0087629 2014-07-11

Publications (1)

Publication Number Publication Date
WO2016006889A1 true WO2016006889A1 (en) 2016-01-14

Family

ID=55064451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006928 WO2016006889A1 (en) 2014-07-11 2015-07-06 Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016006889A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148581A (en) * 2000-07-26 2009-07-09 Straumann Holding Ag Surface-modified implant
KR101248785B1 (en) * 2012-04-30 2013-04-03 오스템임플란트 주식회사 Titanium implant having ultrahydrophilic surface, surface modification and storing method thereof
KR20130044918A (en) * 2011-10-25 2013-05-03 오스템임플란트 주식회사 Implant using organic solvent for enhancing bioactivity of implant surface, and implant manufacturing method
KR101404632B1 (en) * 2013-05-02 2014-06-27 오스템임플란트 주식회사 Method for treating surface of implant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148581A (en) * 2000-07-26 2009-07-09 Straumann Holding Ag Surface-modified implant
KR20130044918A (en) * 2011-10-25 2013-05-03 오스템임플란트 주식회사 Implant using organic solvent for enhancing bioactivity of implant surface, and implant manufacturing method
KR101248785B1 (en) * 2012-04-30 2013-04-03 오스템임플란트 주식회사 Titanium implant having ultrahydrophilic surface, surface modification and storing method thereof
KR101404632B1 (en) * 2013-05-02 2014-06-27 오스템임플란트 주식회사 Method for treating surface of implant

Similar Documents

Publication Publication Date Title
Piattelli et al. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits
Novaes Jr et al. Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible.
KR101539229B1 (en) Process for providing a topography to the surface of a dental implant
US6402517B1 (en) Artificial tooth root with anti-adherence of sordes and various germs, with acid resistance and its preparation method
KR101491489B1 (en) Dental implant having a surface made of a ceramic material
US20090092943A1 (en) Method for manufacturing metal with ceramic coating
KR20160061991A (en) Implants with a removable coating
Fouziya et al. Surface modifications of titanium implants–The new, the old, and the never heard of options
Manero et al. Applications of environmental scanning electron microscopy (ESEM) in biomaterials field
CN110753560B (en) Dental implant
WO2009111041A1 (en) Metallic dental implants and prosthetic appliances having colored ceramic surfaces
KR101460973B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
WO2016006889A1 (en) Surface-coated dental implant with improved bioaffinity and biocompatibility and method for manufacturing same
WO2017047912A1 (en) Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent
WO2013035949A1 (en) Dental implant on which hydrophilic water-retaining layer is coated and manufacturing method thereof
KR101460974B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
KR101460976B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
WO2014175657A1 (en) Dental implant coated with mixture solution of ph buffer material and organic amphiphilic material having sulfonic group and method for preparing same
EP1579875B1 (en) Implant made with titanium or titanium alloy and surface treating method thereof
Degidi et al. Bone Formation Around One-Stage Implants with a Modified Sandblasted and Acid-Etched Surface: Human Histologic Results at 4 Weeks.
Lung Surface coatings of titanium and zirconia
WO2019054832A2 (en) Peek-based dental implant having surface roughness
KR101296591B1 (en) Post treatment device for ha coating layer of dental implant surface
Jeong et al. Investigation of effect of zirconia on osseointegration by surface treatments
Miranda-Rius et al. Treatments to optimize dental implant surface topography and enhance cell bioactivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818465

Country of ref document: EP

Kind code of ref document: A1