WO2013100331A1 - Manufacturing method for dental implant having hydrophilic surface for enhanced ossification - Google Patents

Manufacturing method for dental implant having hydrophilic surface for enhanced ossification Download PDF

Info

Publication number
WO2013100331A1
WO2013100331A1 PCT/KR2012/008018 KR2012008018W WO2013100331A1 WO 2013100331 A1 WO2013100331 A1 WO 2013100331A1 KR 2012008018 W KR2012008018 W KR 2012008018W WO 2013100331 A1 WO2013100331 A1 WO 2013100331A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
dental implant
wavelength
dental
titanium
Prior art date
Application number
PCT/KR2012/008018
Other languages
French (fr)
Korean (ko)
Inventor
김수경
강은정
송주동
엄태관
최규옥
Original Assignee
오스템임플란트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스템임플란트 주식회사 filed Critical 오스템임플란트 주식회사
Publication of WO2013100331A1 publication Critical patent/WO2013100331A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention relates to a method for manufacturing a dental implant having a hydrophilic surface having an effect of promoting bone formation, and to irradiate the surface of the hydrophobized implant with ultraviolet rays to hydrophilize the surface and improve body fluid and blood affinity.
  • the present invention relates to a method for producing a dental implant that can improve the bone formation effect and shorten the bone fusion period after the implant procedure.
  • the purpose of the present invention is to solve problems of surface treatment methods such as RBM and SLA, to hydrophilize the hydrophobized surface and to improve the fluid and blood affinity of the implant. It is to provide a method for producing a dental implant having a hydrophilic surface that can improve the formation and shorten the period of bone fusion.
  • the present invention for achieving the above object is a step of forming a roughness on the dental implant surface of titanium or titanium alloy material, and irradiated with ultraviolet rays of 10 ⁇ 400nm wavelength on the surface of the implant is formed rough surface contamination source It provides a method for producing a dental implant having a hydrophilic surface comprising the step of oxidizing.
  • ultraviolet rays irradiated onto the surface of the implant to oxidize the surface contamination source It is preferable to have a wavelength of 100 to 200 nm to generate the reactive oxygen species, and it is preferable to irradiate ultraviolet rays of 320 to 400 nm having a photocatalytic effect. , .
  • the hydrophobized surface of the implant may be hydrophilized and the body fluid and blood affinity of the implant may be improved without finally undergoing a complicated process, thereby improving bone formation and shortening the bone fusion period after the implant procedure.
  • 1 is a schematic view showing the hydrophilization process according to the present invention of the hydrophobized titanium implant surface.
  • 2 and 3 are graph and photographic results showing surface contact angle changes with UV-ozone treatment time of SA disks.
  • Figure 4 is the result of measuring the blood affinity of the dental implant treated with ultraviolet rays.
  • the nature of the implant surface is an important factor in the bone adhesion process in which new bone tissue is fused to the implant surface, and the implant surface is changed to improve implant fixation and hardening of the implant to hard tissue. It can accelerate the healing process by strengthening the bone adhesion of the implant.
  • Osteoadhesion of such implants can be improved by creating micro-grained roughness on the implant surface, and the micro-grained roughness can be improved by particle spraying, absorbent spray media, acid etching, alkali etching, and titanium plasma. It can be formed by a variety of methods, such as spray method, particle treatment after acid treatment method, anodization method, laser surface processing method. Implants formed with micro roughness have the advantage of increasing the surface area and improving bone adhesion. However, as the surface area is large during storage before implantation, contamination caused by various pollutants in the air increases. There are disadvantages. In particular, the carbon pollutant present in the air is irreversibly adsorbed on the surface of the implant to hydrophobic the surface of the implant.
  • the present invention is to form a roughness on the surface of the dental implant made of titanium or titanium alloy, in order to hydrophilize the titanium surface in which the various contaminants including hydrocarbons described above, 10 ⁇ 10 on the surface of the implant formed Ultraviolet rays having a wavelength of 400 nm may be irradiated and removed by oxidizing surface contamination sources.
  • the present invention as shown in Figure 1 by oxidizing and volatilizing the surface contamination source through the ultraviolet irradiation on the titanium surface in which various pollutants including hydrocarbons exist, by removing the contamination source causing surface hydrophobicity of the titanium surface
  • the hydrophilicity of the surface improves body fluid and blood affinity, which ultimately improves bone formation and shortens bone fusion after implantation.
  • the ultraviolet rays irradiated onto the implant surface for the oxidation of the surface contaminants are preferably ultraviolet rays having a wavelength of 100 to 200 nm to generate reactive oxygen species, wherein the ultraviolet rays having 320 to 400 nm wavelength have a photocatalytic effect. Can be investigated together to promote oxidation of the pollutant.
  • the step may be additionally performed by irradiating 180-190 nm wavelength ultraviolet rays to the dental implant surface of which the surface contaminant is oxidized.
  • the hydrophilized implant according to the present invention is preferably implanted during a period in which the contaminant is not resorbed on the hydrophilized surface.
  • the machined titanium implant or disk is blasted for 1 to 60 seconds at a blasting pressure of 1 to 10 atm using A1203 powder having a particle size of 1 ⁇ or less, and then the acid treatment method using a mixed acid aqueous solution is used. Macro & micro morphology was applied to the implant or disc surface.
  • the acid-treated dental titanium implant or disc was ultrasonically cleaned with ethane for 30 minutes and with distilled water for 30 minutes and then dried.
  • distilled water 5 was dropped in the center of the disk and photographed with a digital camera from the side. The contact angle of was measured. In addition, the contact angle was measured for each UV irradiation time in order to confirm the effect of improving the wettability of the titanium disk according to the UV irradiation time. At this time, as a negative control was used a disk without removing the source.
  • the implant was loaded with about 1 5 in 53 ⁇ 4 BSA (bovine serum albumin) solution or FBS (Fetal Bovine Serum) Afterwards, BSA or plasma proteins adhered to the surface were confirmed by BCA assay. At this time, the negative control group was used as the implant was not removed.
  • BSA bovine serum albumin
  • FBS Fetal Bovine Serum
  • the adhesion of blood proteins on the surface of the UV-treated implants was increased by about 70% in 53 ⁇ 4 FBS and about 40% in BSA.
  • Example 1 the osteoblast cell line MG63 in order to measure the cell adhesion function of the produced disc seeding with 1X10 S eel ls / disk and then in one hour the cultured adhering to the disc surface with crystal violet assay Cells Quantification. At this time, the negative control group was used as an implant was not removed. ⁇
  • the implant is placed in a micropig tibia and the removal torque after 16 days of bone formation period (removal torque) The measurement was made. At this time, the negative control group was used as the implant was not removed.
  • the torsional removal force was improved by about 50% in the experimental group irradiated with ultraviolet rays compared to the negative control group SA, resulting in a strong implant-bone interface binding force. It was confirmed to disappear.
  • the present invention is not limited to the above specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the spirit of the invention as claimed in the claims. It is possible for such modifications to fall within the protection scope of the present invention.

Abstract

The present invention relates to a manufacturing method for a dental implant having a hydrophilic surface for enhanced ossification in which the surface of an hydrophobized implant is hydrophilized and affinity thereof to bodily fluids and blood is improved by irradiating same with ultraviolet light, thus ultimately enhancing ossification after an implant procedure, and allowing a bone fusion period to be shortened.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
골형성 증진 효과가 있는 친수성 표면을 가진 치과용 임플란트의 제조방법 【기술분야】  Manufacturing method of dental implant with hydrophilic surface with bone formation promoting effect
<1> 본 발명은 골형성 증진 효과가 있는 친수성 표면을 가진 치과용 임플란트의 제조방법에 관한 것으로서, 소수화된 임플란트 표면에 자외선을 조사하여 표면을 친수화하고 체액 및 혈액 친화성을 향상시켜, 최종적으로는 임플란트 시술 후 골형 성 효과를 향상하고 골융합 기간을 단축할 수 있는 치과용 임플란트의 제조방법에 대한 것이다.  The present invention relates to a method for manufacturing a dental implant having a hydrophilic surface having an effect of promoting bone formation, and to irradiate the surface of the hydrophobized implant with ultraviolet rays to hydrophilize the surface and improve body fluid and blood affinity. The present invention relates to a method for producing a dental implant that can improve the bone formation effect and shorten the bone fusion period after the implant procedure.
【배경기술】  Background Art
<2> 현재 많이 사용되고 있는 임플란트 표면처리방식인 RBM이나 SLA 등의 표면처 리 방식 경우, 도 1에 도시된 바와 같이 표¾처리공정 후 제품이 공기 중에 노출되 었을 때 제품 표면에 산화층이 성장하고 탄화수소 물질 등 다양한 오염원의 흡착이 일어나 화학적으로 안정한 상태로 변화하면서 소수화된다. 이렇게 소수화된 표면은 체액 및 혈액에 대한 젖음성이 낮기 때문에 임플란트 매식 후 뼈와 융합되는 전반 적인 과정을 방해하여 임플란트가 안정되는 기간을 연장시키는 단점이 있다.  <2> In the case of surface treatment methods such as RBM and SLA, which are currently used in the implant surface treatment method, an oxide layer grows on the surface of the product when the product is exposed to air after the Table 3 treatment process as shown in FIG. Adsorption of various pollutants, such as hydrocarbons, occurs and becomes hydrophobic as it changes to a chemically stable state. Since the hydrophobized surface has low wettability to body fluids and blood, it has a disadvantage of prolonging the period of stabilization of the implant by preventing the overall process of fusion with bone after implant implantation.
<3> 상기 티타늄 표면의 소수화로 인한 단점을 극복하기 위하여 친수성 폴리머 고분자와 같은 물질을 코팅하여 표면을 친수화하는 기술들이 개발되었으나, 이러한 방법은 모두 일정 수준 이상 표면의 형상을 변화시키게 되므로, 티타늄 표면 형상 을 그대로 유지하면서 친수성을 부여하는 데에는 한계가 있었다.  In order to overcome the disadvantages caused by the hydrophobicity of the titanium surface, techniques for hydrophilizing the surface by coating a material such as a hydrophilic polymer polymer have been developed, but all of these methods change the shape of the surface by a predetermined level or more. There was a limit to providing hydrophilicity while maintaining the surface shape.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<4> 본 발명의 목적은 기존의 RBM, SLA와 같은 표면처리 방식의 문제점을 해결하 여, 소수화된 표면을 친수화하고 임플란트의 체액 및 혈액 친화성을 향상시켜 최종 적으로는 임플란트 시술 후 골형성올 향상시키고 골융합 기간을 단축할 수 있는 친 수성 표면을 가진 치과용 임플란트의 제조방법을 제공하기 위한 것이다.  The purpose of the present invention is to solve problems of surface treatment methods such as RBM and SLA, to hydrophilize the hydrophobized surface and to improve the fluid and blood affinity of the implant. It is to provide a method for producing a dental implant having a hydrophilic surface that can improve the formation and shorten the period of bone fusion.
【기술적 해결방법】  Technical Solution
<5> 상기의 목적을 달성하기 위한 본 발명은 티타늄 또는 티타늄 합금 재질의 치 과용 임플란트 표면에 거칠기를 형성하는 단계, 및 상기 거칠기가 형성된 임플란트 표면에 10~400nm 파장의 자외선을 조사하여 표면 오염원을 산화시키는 단계를 포함 하는 친수성 표면을 가진 치과용 임플란트의 제조방법을 제공한다.  <5> The present invention for achieving the above object is a step of forming a roughness on the dental implant surface of titanium or titanium alloy material, and irradiated with ultraviolet rays of 10 ~ 400nm wavelength on the surface of the implant is formed rough surface contamination source It provides a method for producing a dental implant having a hydrophilic surface comprising the step of oxidizing.
<6> 이때, 상기 표면 오염원의 산화를 위하여 임플란트 표면에 조사되는 자외선 이 활성산소족 (Reactive Oxygen Species)을 생성하는 100~200nm 파장인 것이 바람 직하며, 광촉매 효과를 가지는 320~400nm 파장의 자외선을 함께 조사하는 것이 바 람직하다. ,. In this case, ultraviolet rays irradiated onto the surface of the implant to oxidize the surface contamination source It is preferable to have a wavelength of 100 to 200 nm to generate the reactive oxygen species, and it is preferable to irradiate ultraviolet rays of 320 to 400 nm having a photocatalytic effect. , .
<7> 또한, 상기 표면 오염원이 산화된 치과용 임풀란트 표면에 180~190nm 파장의 자외선올 조사하여 표면 오염원의 산화를 가속화시켜 표면 오염원을 휘발시키는 단 계를 추가로 포함하는 것이 바람직하다.  In addition, it is preferable to further include a step of accelerating the oxidation of the surface contaminant by volatilizing the surface contaminant by irradiating the surface of the dental implant oxidized surface of the dental implant 180 ~ 190nm ultraviolet rays.
【유리한 효과】  Advantageous Effects
<8> 본 발명에 따르면 복잡한 공정을 거치지 않고도 임플란트의 소수화된 표면을 친수화하고 임플란트의 체액 및 혈액 친화성올 향상시켜 최종적으로는 임플란트 시 술 후 골형성을 향상시키고 골융합 기간을 단축할 수 있다.  According to the present invention, the hydrophobized surface of the implant may be hydrophilized and the body fluid and blood affinity of the implant may be improved without finally undergoing a complicated process, thereby improving bone formation and shortening the bone fusion period after the implant procedure. .
【도면의 간단한 설명】  [Brief Description of Drawings]
<9> 도 1은 소수화된 티타늄 임플란트 표면의 본 발명에 따른 친수화 과정을 보 여주는 모식도이다.  1 is a schematic view showing the hydrophilization process according to the present invention of the hydrophobized titanium implant surface.
<ιο> 도 2, 3은 SA 디스크의 UV-오존 처리시간별 표면 접촉각 변화를 보여주는 그 래프 및 사진 결과이다.  2 and 3 are graph and photographic results showing surface contact angle changes with UV-ozone treatment time of SA disks.
<π> 도 4는 자외선 처리된 치과용 임플란트의 혈액친화성을 측정한 결과이다.<π> Figure 4 is the result of measuring the blood affinity of the dental implant treated with ultraviolet rays.
<12> 도 5는 자외선 처리된 치과용 임플란트의 단백질 부착량을 측정한 결과이다.5 is a result of measuring the protein adhesion amount of the UV-treated dental implant.
<13> 도 6은 자외선 처리된 치과용 임플란트의 세포 부착량올 측정한 결과이다.6 is a result of measuring the cell adhesion amount of the UV-treated dental implants.
<14> 도 7은 자외선 처리된,치과용 임플란트의 계면골결합력을 측정한 결과이다. 7 is a result of measuring the interfacial bone bonding force of the UV-treated, dental implant.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<15> 이하 첨부된 도면을 참조하면서 상기 본 발명의 일 양상에 따른 골형성 증진 효과가 있는 친수성 표면을 가진 치과용 임플란트의 제조방법을 상세하게 설명하면 다음과 같다.  Hereinafter, a method for manufacturing a dental implant having a hydrophilic surface having a bone formation promoting effect according to an aspect of the present invention will be described in detail with reference to the accompanying drawings.
<16> 임폴란트 표면의 성질은 임플란트 표면에 신생골 조직이 융합되는 골유착 과 정에서의 중요한 인자로서, 상기 임플란트 표면에 변화를 주어 경질 조직에 대한 임플란트의 정착성과 또한 임플란트 흔화성을 향상시키고, 임플란트의 골유착을 강 화하여 치유 과정을 가속화시킬 수 있다.  <16> The nature of the implant surface is an important factor in the bone adhesion process in which new bone tissue is fused to the implant surface, and the implant surface is changed to improve implant fixation and hardening of the implant to hard tissue. It can accelerate the healing process by strengthening the bone adhesion of the implant.
<17> 이러한 임플란트의 골유착은 임플란트 표면에 마이크로 단위의 거칠기를 생 성하여 향상시킬 수 있으며, 이러한 마이크로 단위의 거칠기는 입자분사법, 흡수성 분사 매질법, 산 에칭법, 알칼리 에칭법, 티타늄 플라즈마 스프레이법, 입자분사 후 산처리법, 양극산화법, 레이저 표면가공법 등 다양한 방법에 의하여 형성될 수 있다. <18> 이와 같이 마이크로 단위의 거칠기가 형성된 임플란트는 그 표면적이 증가하 여 골유착을 향상시킨다는 장점이 있지만, 임플란트 시술 전까지 보관하는 동안 표 면적이 넓은 만큼 공기 중의 여러 오염원으로 인한 오염 발생이 증가한다는 단점이 있다. 특히, 공기 중에 존재하는 탄소 오염원은 상기 임플란트의 표면에 비가역적 으로 흡착되어 임플란트 표면을 소수화 (hydrophobic)시키게 된다. Osteoadhesion of such implants can be improved by creating micro-grained roughness on the implant surface, and the micro-grained roughness can be improved by particle spraying, absorbent spray media, acid etching, alkali etching, and titanium plasma. It can be formed by a variety of methods, such as spray method, particle treatment after acid treatment method, anodization method, laser surface processing method. Implants formed with micro roughness have the advantage of increasing the surface area and improving bone adhesion. However, as the surface area is large during storage before implantation, contamination caused by various pollutants in the air increases. There are disadvantages. In particular, the carbon pollutant present in the air is irreversibly adsorbed on the surface of the implant to hydrophobic the surface of the implant.
<19> 임플란트의 표면이 상기 오염원들로 인해 오염되어 소수화되면, 임플란트가 생체 내에 이식되었을 때 여러 혈액 단백질들이 임플란트 표면에 부착하지 못하게 되고, 결과적으로 임플란트 표면의 생체 적합성이 감소하여 골유착이 어려워지게 되며, 더 나아가상기 오염원들로 인한 염증 반웅이 유발될 수도 있다.  When the surface of the implant is contaminated and hydrophobized by the contaminants, various blood proteins do not adhere to the surface of the implant when the implant is implanted in vivo, and as a result, the biocompatibility of the surface of the implant is reduced and bone adhesion becomes difficult. In addition, inflammatory reactions may be caused by the pollutants.
<20> 본 발명은 위에서 설명한 탄화수소를 비롯한 여러 오염원이 존재하는 티타늄 표면을 친수화하기 위하여, 티타늄 또는 티타늄 합금 재질의 치과용 임플란트 표면 에 거칠기를 형성한 후, 상기 거칠기가 형성된 임플란트 표면에 10~400nm 파장의 자외선을 조사하여 표면 오염원을 산화시켜 제거하는 것을 특징으로 한다.  The present invention is to form a roughness on the surface of the dental implant made of titanium or titanium alloy, in order to hydrophilize the titanium surface in which the various contaminants including hydrocarbons described above, 10 ~ 10 on the surface of the implant formed Ultraviolet rays having a wavelength of 400 nm may be irradiated and removed by oxidizing surface contamination sources.
<21> 즉, 본 발명은 도 1에서 볼 수 있듯이 탄화수소를 비롯한 여러 오염원이 존 재하는 티타늄 표면에 자외선 조사를 통해 표면 오염원을 산화시키고 휘발시킴으로 써, 표면 소수화를 일으키는 오염원올 제거하여 티타늄 표면의 친수성을 부여하며 이러한 표면의 친수성은 체액 및 혈액 친화성을 향상시켜 최종적으로는 임플란트 시술 후 골형성을 향상시키고 골융합 기간을 단축하게 된다. That is, the present invention, as shown in Figure 1 by oxidizing and volatilizing the surface contamination source through the ultraviolet irradiation on the titanium surface in which various pollutants including hydrocarbons exist, by removing the contamination source causing surface hydrophobicity of the titanium surface The hydrophilicity of the surface improves body fluid and blood affinity, which ultimately improves bone formation and shortens bone fusion after implantation.
<22> 상기 표면 오염원의 산화를 위하여 임플란트 표면에 조사되는 자외선은 활성 산소족 (Reactive Oxygen Species)을 생성하는 100~200nm 파장의 자외선인 것이 바 람직하며, 이때 광촉매 효과를 가지는 320~400nm 파장의 자외선을 함께 조사하여 오염원의 산화를 촉진시킬 수 있다.  The ultraviolet rays irradiated onto the implant surface for the oxidation of the surface contaminants are preferably ultraviolet rays having a wavelength of 100 to 200 nm to generate reactive oxygen species, wherein the ultraviolet rays having 320 to 400 nm wavelength have a photocatalytic effect. Can be investigated together to promote oxidation of the pollutant.
<23> 또한, 상기 표면 오염원의 산화를 더욱 가속시켜 오염원올 휘발시키기 위하 여, 상기 표면 오염원이 산화된 치과용 임플란트 표면에 180~190nm 파장의 자외선 을 조사하여 단계를 추가로 수행할 수 있다. 본 발명에 따라 친수화 처리된 임플 란트는 상기 친수화된 표면에 오염원이 재흡착되지 않는 기간 동안에 이식되는 것 이 바람직하다. In addition, in order to further accelerate the oxidation of the surface contaminant to volatilize the contaminant, the step may be additionally performed by irradiating 180-190 nm wavelength ultraviolet rays to the dental implant surface of which the surface contaminant is oxidized. The hydrophilized implant according to the present invention is preferably implanted during a period in which the contaminant is not resorbed on the hydrophilized surface.
<24> 이하 실시예를 통하여 본 발명의 효과를 상세하게 설명한다 . 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 발명의 범위가 이들 실시예에 한정되는 것은 아니다.  Hereinafter, the effects of the present invention will be described in detail with reference to the following examples. However, these examples are provided to illustrate one or more embodiments by way of example, but the scope of the invention is not limited to these examples.
<25>  <25>
<26> [실시예 1] 치과용 임플란트 표면의 오염원이 제거된 친수성 티타늄 표면 제 조 Example 1 Hydrophilic Titanium Surface Agent Removed Contaminants from Dental Implant Surfaces article
<27> 기계가공된 티타늄 임플란트 또는 디스크를 입자 크기 1麵 이하의 A1203 분 말을 사용하여 블라스팅 압력 1~10기압으로 1~60초간 블라스팅 처리한 후, 흔합산 수용액을 이용한 산처리법을 이용하여 상기 임플란트 또는 디스크 표면에 macro & micro morphology를 부여하였다. 상기 산부식 처리된 치과용 티타늄 임플란트 또 는 디스크를 에탄을로 30분간 그리고 증류수로 30분간 초음파 세척한 다음 건조시 켰다.  <27> The machined titanium implant or disk is blasted for 1 to 60 seconds at a blasting pressure of 1 to 10 atm using A1203 powder having a particle size of 1 麵 or less, and then the acid treatment method using a mixed acid aqueous solution is used. Macro & micro morphology was applied to the implant or disc surface. The acid-treated dental titanium implant or disc was ultrasonically cleaned with ethane for 30 minutes and with distilled water for 30 minutes and then dried.
<28> 상기 SA( Sandblasting and Acid etching) 공정을 거친 임플란트 또는 디스크 에 5분 동안 150nm및 350nm의 파장으로 자외선 처리한 후, 다시 5분 동안 185nm 파 장의 자외선을 조사하여 표면에 흡착 및 안정화된 오염원올 제거한 후, 제조한 친 수성 임플란트 또는 디스크를 하기 실시예 2 ~ 5에서 사용하였다.  <28> After the UV treatment at 150nm and 350nm wavelength for 5 minutes to the implant or disk after the SA (Sandblasting and Acid etching) process, and further irradiated with UV light of 185nm wavelength for 5 minutes to adsorb and stabilize the surface After removal, the prepared hydrophilic implants or discs were used in Examples 2 to 5 below.
<29>  <29>
<30> [실시예 2] 자외선 처리된 임폴란트의 접촉각 및 표면 탄소오염도 측정 실험 Example 2 Measurement of Contact Angle and Surface Carbon Pollution Degree of UV Treated Impulent
<31> 상기 실시예 1에서 제작한 자외선 처리된 치과용 티타늄 디스크의 젖음성을 확인하기 위해 증류수 5 를 디스크 중앙에 투하하고 측면에서 디지털카메라로 촬 영한 후, 측면 사진 분석을 통해 증류수와 티타늄 표면과의 접촉각을 측정하였다. 또한, 자외선 조사시간에 따른 티타늄 디스크의 젖음성 개선효과를 확인하기 위해 자외선 조사시간별로 접촉각을 측정하였다. 이때, 음성 대조군으로는 오염원을 제 거하지 않은 디스크를 사용하였다. In order to check the wettability of the UV-treated dental titanium disk produced in Example 1, distilled water 5 was dropped in the center of the disk and photographed with a digital camera from the side. The contact angle of was measured. In addition, the contact angle was measured for each UV irradiation time in order to confirm the effect of improving the wettability of the titanium disk according to the UV irradiation time. At this time, as a negative control was used a disk without removing the source.
<32> 도 2에서 볼 수 있듯이 자외선 조사시간이 증가함에 따라 친수성 및 젖음성 이 증가하여 SA 디스크의 접촉각이 낮아짐을 확인할 수 있고, 도 3에서 볼 수 있듯 이 자외선이 5분간 조사되었을 경우 SA 디스크의 접촉각이 97° 에서 0° 로 낮아져 서 친수성 표면으로 개질된 것을 확인하였다. As shown in FIG. 2, as the UV irradiation time increases, the hydrophilicity and wettability increase, so that the contact angle of the SA disk is lowered. As shown in FIG. 3, when the ultraviolet ray is irradiated for 5 minutes, It was confirmed that the contact angle was lowered from 97 ° to 0 ° and modified to a hydrophilic surface.
<33> 또한 자외선 처리된 치과용 디스크 표면의 탄소 오염도를 측정하기 위해,<33> In addition, to measure the carbon contamination of the surface of the ultraviolet treated dental disk,
XPS를 이용해 티타늄 표면에 분포된 원소함량을 측정하여 하기 표 1에 나타내었다. 하기 표에서 볼 수 있듯이 SA 디스크의 탄소함량은 약 35%이나, UV 조사시 약 24% 로 탄소함량이 감소하였다. Using XPS to measure the element content distributed on the titanium surface is shown in Table 1 below. As can be seen in the table below, the carbon content of the SA disk was about 35%, but the carbon content was reduced to about 24% upon UV irradiation.
<34> 【표 1】 <34> [Table 1]
Figure imgf000006_0001
Figure imgf000006_0001
[실시예 3] 자외선 처리된 치과용 임플란트의 혈액친화성 및 혈액단백질 부 착능 측정 실험 Example 3 Blood Affinity and Blood Protein Part of UV-treated Dental Implants Implantation measurement experiment
<36> 상기 실시예 1에서 제작한 치과용 임플란트에 자외선을 조사한 다음, 혈액친 화성올 확인하기 위해 마이크로피그 (mkropig) 혈액에 상기 임플란트를 약 3mm 담 지한 후, 임플란트 표면을 타고 올라오는 혈액의 높이로 혈액친화성올 확인하였다. 그 결과, 도 4에서 보는 바와 같이, 자외선 조사에 의해 혈액젖음성이 향상된 것을 확인하였으며, 이를 통해 자외선 처리를 통하여 임플란트 표면의 혈액친화성이 향 상된 것을 알 수 있었다.  After irradiating UV light to the dental implant prepared in Example 1, the micro-pig (mkropig) blood to support the implant about 3mm in order to check the blood affinity, and then the blood coming up the surface of the implant Blood affinity was confirmed by height. As a result, as shown in Figure 4, it was confirmed that the blood wettability was improved by the ultraviolet irradiation, through which the blood affinity of the implant surface was improved through the ultraviolet treatment.
<37> 또한, 상기 실시예 1에서 제작한 자외선 처리된 치과용 임플란트의 혈액단백 질 부착량을 확인하기 위해 5¾ BSA( bovine serum albumin) 수용액 혹은 FBS(Fetal Bovine Serum)에 상기 임플란트를 약 1醒 담지한 후, 표면에 부착되는 BSA 혹은 혈 장단백질을 BCA assay로 확인하였다. 이때, 음성대조군으로는 오염원을 제거하지 않은 임플란트를 사용하였다.  In addition, in order to confirm the blood protein adhesion amount of the UV-treated dental implant prepared in Example 1, the implant was loaded with about 1 5 in 5¾ BSA (bovine serum albumin) solution or FBS (Fetal Bovine Serum) Afterwards, BSA or plasma proteins adhered to the surface were confirmed by BCA assay. At this time, the negative control group was used as the implant was not removed.
<38> 실험 결과, 도 5에서 보는 바와 같이 자외선 처리를 한 임플란트 표면의 혈 액단백질 부착능이 5¾ FBS에서는 약 70% 가량, BSA에서는 약 40% 가량 단백질 부착 능이 증가하는 것을 확인할 수 있었다.  As a result of the experiment, as shown in FIG. 5, the adhesion of blood proteins on the surface of the UV-treated implants was increased by about 70% in 5¾ FBS and about 40% in BSA.
<39>  <39>
<40> [실시예 4] 자외선 처리된 티타늄 디스크의 세포 부착능 축정  Example 4 Accumulation of Cell Adhesion of Ultraviolet Treated Titanium Disc
<41> 상기 실시예 1에서 제작한 디스크의 세포부착능을 측정하기 위해 조골세포주 인 MG63을 1X10S eel ls/disk로 seeding한 후, 1시간 배양하여 crystal violet assay 로 디스크 표면에 부착된 세포를 정량화하였다. 이때, 음성대조군으로는 오염원을 제거하지 않은 임플란트를 사용하였다. <41> the Example 1, the osteoblast cell line MG63 in order to measure the cell adhesion function of the produced disc seeding with 1X10 S eel ls / disk and then in one hour the cultured adhering to the disc surface with crystal violet assay Cells Quantification. At this time, the negative control group was used as an implant was not removed.
<42> 실험 결과, 도 6에서 보는 바와 같이 음성대조군인 SA와 비교해봤을 때, UV 를 조사한 실험군에서 세포부착이 약 40% 가량 증가함을 확인하였다. As a result of the experiment, as shown in FIG. 6, it was confirmed that the cell adhesion increased by about 40% in the experimental group irradiated with UV when compared with SA, which is a negative control group.
<43>  <43>
<44> [실시예 5] 자외선 처리된 치과용 임플란트의 골계면결합력 측정을 위한 동 물실험  [Example 5] Animal experiment for measuring bone interface binding force of the dental implant treated with UV
<45> 상기 실시예 1에서 제작한 치과용 임플란트의 임플란트-골계면결합력을 확인 하기 위해 마이크로피그 (micropig) 경골에 상기 임플란트를 식립하고 16일간의 골 형성 기간 후에 비를림 제거력 (removal torque) 측정을 하였다. 이때, 음성대조군 으로는 오염원을 제거하지 않은 임플란트를 사용하였다.  In order to confirm the implant-bone interface force of the dental implant prepared in Example 1, the implant is placed in a micropig tibia and the removal torque after 16 days of bone formation period (removal torque) The measurement was made. At this time, the negative control group was used as the implant was not removed.
<46> 실험 결과, 도 7에서 보는 바와 같이 음성대조군인 SA에 비해 자외선을 조사 한 실험군에서 비틀림 제거력이 약 50% 가량 향상되어 임플란트―골계면결합력이 강 해짐을 확인하였다. 본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에 서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변 형은 본 발명의 보호 범위 내에 있게 된다. As a result of the experiment, as shown in FIG. 7, the torsional removal force was improved by about 50% in the experimental group irradiated with ultraviolet rays compared to the negative control group SA, resulting in a strong implant-bone interface binding force. It was confirmed to disappear. The present invention is not limited to the above specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the spirit of the invention as claimed in the claims. It is possible for such modifications to fall within the protection scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
티타늄 또는 티타늄 합금 재질의 치과용 임플란트 표면에 거 칠기를 형성하는 단계 ; 및  Forming a roughener on the surface of the dental implant made of titanium or titanium alloy; And
상기 거 칠기가 형성된 임플란트 표면에 10~400nm 파장의 자외선을 조사하여 표면 오염원을 산화시키는 단계 ;  Oxidizing a surface contaminant by irradiating UV light having a wavelength of 10 to 400 nm to an implant surface having the roughening machine;
를 포함하는 친수성 표면올 가진 치과용 임플란트의 제조방법 .  Method for producing a dental implant with a hydrophilic surface allol comprising a.
【청구항 2】  [Claim 2]
제 1항에 있어서 ,  The method of claim 1,
상기 표면 오염원의 산화를 위하여 임플란트 표면에 조사되는 자외선이 활성 산소족 (React ive Oxygen Species)을 생성하는 100~200nm 파장의 자외선인 친수성 표면을 가진 치과용 임플란트의 제조방법 .  Method for producing a dental implant having a hydrophilic surface of the ultraviolet ray of 100 ~ 200nm wavelength to generate reactive oxygen species (Reactive Oxygen Species) is irradiated to the implant surface for oxidation of the surface contamination source.
【청구항 3】  [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 표면 오염원의 산화를 위하여 임플란트 표면에 조사되는 자외선이 광촉 매 효과를 가지는 320~400nm 파장의 자외선을 포함하는 친수성 표면을 가진 치과용 임폴란트의 제조방법 .  Method for producing a dental implant having a hydrophilic surface comprising a ultraviolet ray of 320 ~ 400nm wavelength that the ultraviolet rays irradiated to the implant surface for the oxidation of the surface contamination source has a photocatalytic effect.
【청구항 4]  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 표면 오염원이 산화된 치과용 임플란트 표면에 180~190nm 파장의 자외 선을 조사하여 표면 오염원의 산화를 가속화시 켜 표면 오염원을 휘 발시 키는 단계를 추가로 포함하는 친수성 표면을 가진 치과용 임플란트의 제조방법 .  The surface of the dental implant of the dental implant having a hydrophilic surface further comprising the step of volatilizing the surface contamination by irradiating ultraviolet rays of 180 ~ 190nm wavelength on the surface of the dental implant oxidized surface Manufacturing method.
PCT/KR2012/008018 2011-12-27 2012-10-04 Manufacturing method for dental implant having hydrophilic surface for enhanced ossification WO2013100331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0143048 2011-12-27
KR1020110143048A KR101196171B1 (en) 2011-12-27 2011-12-27 Manufacturing Method Of Dental Implant Having Hydrophilic Surface for Enhancing Osteogenesis

Publications (1)

Publication Number Publication Date
WO2013100331A1 true WO2013100331A1 (en) 2013-07-04

Family

ID=47563718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008018 WO2013100331A1 (en) 2011-12-27 2012-10-04 Manufacturing method for dental implant having hydrophilic surface for enhanced ossification

Country Status (2)

Country Link
KR (1) KR101196171B1 (en)
WO (1) WO2013100331A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083801A (en) * 2014-07-25 2014-10-08 林野 Method for providing hydrophily for roughened surface of dental implant
CN105125304A (en) * 2015-08-19 2015-12-09 周正 Implant hydrophilic activation instrument and activation method of implant hydrophilic activation instrument
CN110403720A (en) * 2019-09-03 2019-11-05 恒泰医疗科技(天津)有限公司 Planting body intelligently activates instrument
CN113413247A (en) * 2021-06-21 2021-09-21 尹川 Multidirectional optical functionalization instrument for modifying surface of titanium alloy implant and using method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563889B1 (en) * 2020-05-06 2023-08-09 한국전기연구원 Laser surface treatment method and apparatus thereof
KR102569322B1 (en) 2021-03-08 2023-08-25 주식회사 코렌텍 A Method of Surface Treatment for Packaged Implant through Plasma and Surface Treatment System for Packaged Implant
KR102569320B1 (en) 2021-03-08 2023-08-25 주식회사 코렌텍 A Method of Surface Treatment for Packaged Implant through Plasma and Surface Treatment System for Packaged Implant
KR102569325B1 (en) 2021-03-08 2023-08-25 주식회사 코렌텍 A Method of Surface Treatment and Packaging for Implant and Its System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046248A (en) * 2002-11-26 2004-06-05 설영택 Osseoinductive magnesium-titanate implant and method of manufacturing the same
US20040210309A1 (en) * 2001-10-11 2004-10-21 Denzer Alain J Osteophilic implants
KR100814355B1 (en) * 2007-02-27 2008-03-18 (주)메디사이텍 Pretreating method of titanate implant and the titanate implant thereby
US20100159118A1 (en) * 2007-05-18 2010-06-24 National University Corporation Okayama University Method for production of biocompatible implant
KR20110131551A (en) * 2010-05-31 2011-12-07 주식회사 메가젠임플란트 Ultraviolet rays irradiator for enhancing osseointegration and surface treatment method of dental implant using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040210309A1 (en) * 2001-10-11 2004-10-21 Denzer Alain J Osteophilic implants
KR20040046248A (en) * 2002-11-26 2004-06-05 설영택 Osseoinductive magnesium-titanate implant and method of manufacturing the same
KR100814355B1 (en) * 2007-02-27 2008-03-18 (주)메디사이텍 Pretreating method of titanate implant and the titanate implant thereby
US20100159118A1 (en) * 2007-05-18 2010-06-24 National University Corporation Okayama University Method for production of biocompatible implant
KR20110131551A (en) * 2010-05-31 2011-12-07 주식회사 메가젠임플란트 Ultraviolet rays irradiator for enhancing osseointegration and surface treatment method of dental implant using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083801A (en) * 2014-07-25 2014-10-08 林野 Method for providing hydrophily for roughened surface of dental implant
CN105125304A (en) * 2015-08-19 2015-12-09 周正 Implant hydrophilic activation instrument and activation method of implant hydrophilic activation instrument
CN110403720A (en) * 2019-09-03 2019-11-05 恒泰医疗科技(天津)有限公司 Planting body intelligently activates instrument
CN113413247A (en) * 2021-06-21 2021-09-21 尹川 Multidirectional optical functionalization instrument for modifying surface of titanium alloy implant and using method thereof

Also Published As

Publication number Publication date
KR101196171B1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2013100331A1 (en) Manufacturing method for dental implant having hydrophilic surface for enhanced ossification
Cheng et al. Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly (dopamine)-coated poly (ε-caprolactone) scaffolds by stereolithography
Buser et al. Enhanced bone apposition to a chemically modified SLA titanium surface
JP5596345B2 (en) Implants, especially dental implants
JP5868705B2 (en) Surface treatment method for implantable medical device
WO2013165051A1 (en) Ultra-hydrophilic titanium implant, and surface treatment and storage methods thereof
da Costa Valente et al. Analysis of the mechanical and physicochemical properties of Ti‐6Al‐4 V discs obtained by selective laser melting and subtractive manufacturing method
JP2019511346A (en) Tissue adhesion improvement coating
WO2015008899A1 (en) Implant coated with material for enhancing bioactivity and osseointegration of implant surface, method for producing implant, and method for storing implant
WO2011093414A1 (en) Metal oxide, metal material, biocompatible material, and method for producing metal oxide
Areid et al. Ultraviolet photofunctionalization of nanostructured titanium surfaces enhances thrombogenicity and platelet response
Neto et al. Protein absorption on titanium surfaces treated with a high-power laser: A systematic review
JP5186376B2 (en) Method for regenerating hydrophilic and bone-compatible surface of implant
Tang et al. Repositioning titanium: an in vitro evaluation of laser-generated microporous, microrough titanium templates as a potential bridging interface for enhanced osseointegration and durability of implants
KR101304217B1 (en) Dental implant with hydrophilic moisturized coating and method for manufacturing the samw
Elias et al. Preparation of bioactive titanium surfaces via fluoride and fibronectin retention
CN111744055A (en) Hydrophilic implant product and preparation method thereof
JP5484030B2 (en) Biological implant
KR101405859B1 (en) Dental implant coated with a mixed solution of chemical buffering agent and organic amphoteric substance and a prepareation process thereof
KR101271403B1 (en) Storing method for maintenance of hydrophilic dental implant surface
WO2013027928A2 (en) Implant having hydrophilic surface
Monai et al. Effect of UV Photofunctionalization of HA/TiO2 coated implants prepared by dual-target sputtering on bone-implant integration
WO2020104840A1 (en) Dental implant activation box used for surface activation with uv c
WO2013027929A2 (en) Titanium implant having hydrophilic surface
CN117181554A (en) Medical titanium alloy screw containing wet adhesive coating and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861086

Country of ref document: EP

Kind code of ref document: A1