WO2013164896A1 - Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate - Google Patents

Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate Download PDF

Info

Publication number
WO2013164896A1
WO2013164896A1 PCT/JP2012/061617 JP2012061617W WO2013164896A1 WO 2013164896 A1 WO2013164896 A1 WO 2013164896A1 JP 2012061617 W JP2012061617 W JP 2012061617W WO 2013164896 A1 WO2013164896 A1 WO 2013164896A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power supply
coil
capacitor
Prior art date
Application number
PCT/JP2012/061617
Other languages
French (fr)
Japanese (ja)
Inventor
浩 島森
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014513333A priority Critical patent/JPWO2013164896A1/en
Priority to PCT/JP2012/061617 priority patent/WO2013164896A1/en
Publication of WO2013164896A1 publication Critical patent/WO2013164896A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a current suppression circuit, a power supply circuit, a power supply device, a semiconductor circuit, and a load circuit board.
  • a current limiter that restricts the flow of a large current to the coil by providing a permanent magnet or an electromagnet in a part of the core and saturating the magnetic density of the core has been proposed. Further, as a technique using a current limiter, a technique for suppressing the discharge current of a capacitor provided inside the apparatus has been proposed. In this technique, when the power supply from the power supply line is stopped due to a short circuit or the like, the discharge current from the capacitor is suppressed to prevent the power stored in the capacitor from being discharged to the power supply line.
  • the power supply device rectifies the AC voltage with a rectifier circuit and then smoothes it using an electrolytic capacitor or the like to convert it to a DC voltage and supplies it to the load device.
  • the current value of the capacitor charging current instantaneously increases, and an inrush current is generated in the input current of the power supply device.
  • an object of the present invention is to suppress generation of an inrush current due to a voltage applied to a capacitor.
  • the capacitor accumulates charge with a charging current according to the applied DC voltage.
  • the bias coil includes a coil connected in series to the capacitor, a core around which the coil is wound, and a magnetizing member that forms a magnetic field in the core with a saturation magnetic flux density inside the core. Further, the inductance of the magnetically biased coil increases when the charging current flowing through the coil becomes a predetermined value or more.
  • FIG. 1 shows a current suppression circuit 10.
  • the current suppression circuit 10 is provided between the power supply unit 12 and a load 14 supplied with power from the power supply unit 12.
  • the power supply unit 12 supplies a predetermined DC voltage Vd to the load 14 when the contact is closed by turning on the power switch 16.
  • the current suppression circuit 10 includes a capacitor 18 such as an electrolytic capacitor.
  • the capacitor 18 is connected in parallel with the load 14 on the load 14 side of the power switch 16 by connecting one of the pair of terminals to the + side of the power supply unit 12 and the other connected to the ⁇ side of the power supply unit 12. ing.
  • the capacitor 18 has a function of accumulating charges according to the voltage applied between the pair of terminals.
  • a magnetic bias coil 20 is connected in series with the capacitor 18 to the positive terminal of the capacitor 18.
  • the magnetic bias coil 20 includes a core 22 formed using a magnetic material, and a coil 24 generated by winding an electric wire around the core 22.
  • a known material can be applied as the material of the core 22.
  • the core 22 is not limited to an annular shape, and any shape such as a quadrangle having a hollow portion formed inside can be applied.
  • a part of the core 22 formed in an annular shape is excised, and a permanent magnet 26 as a magnetizing member is fitted into the excised part to form a closed magnetic circuit.
  • the magnetically biased coil 20 may be any one as long as a member that forms the core 22 and a member that forms the permanent magnet 26 are connected so as to form a magnetic loop.
  • the magnetizing member a member that forms a predetermined magnetic field on the core 22 can be applied.
  • the current that flows through the coil 24 of the magnetic bias coil 20 when the capacitor 18 is charged is the charging current Ic.
  • FIG. 3 shows a BH characteristic curve of a general coil (hereinafter referred to as a non-biased coil) without the permanent magnet 26 and a bias coil 20, and a DC superposition characteristic which is a characteristic of inductance with respect to current. Is shown.
  • the characteristics of the biased coil 20 are indicated by solid lines, and the characteristics of the non-biased coils are indicated by broken lines.
  • magnetic field H is applied by the permanent magnet 26, so that magnetic flux is generated even when no current flows through the coil 24.
  • the magnetic flux density B inside the core 22 changes depending on the direction and strength of the magnetic field H, and by increasing the magnetic field H, the magnetic flux density B increases.
  • the permanent magnet 26 provided in the biased coil 20 saturates the magnetic flux density B inside the core 22 even when no current flows through the coil 24.
  • a permanent magnet 26 forms a magnetic flux in one direction inside the core 22, and a current flows through the coil 24 to increase the magnetic flux in the same direction. Indicates that there is no room to increase.
  • the magnetic flux density B at this time becomes the saturation magnetic flux density Bs. Since the magnetic flux density B in the core 22 has reached the saturation magnetic flux density Bs, the magnetic flux does not increase even if the magnetic field H is increased.
  • the coil 24 of the bias coil 20 is wound around the core 22 in a direction in which a magnetic flux opposite to the magnetic flux generated by the permanent magnet 26 is generated when the charging current Ic flows from the positive side to the negative side. It has been turned.
  • a current charging current Ic
  • a magnetic field in a direction that reduces the magnetic flux density B is generated.
  • the coil 24 maintains a low inductance L until the magnetic field inside the core 22 reaches a magnetic field at which the magnetic flux density B is less than the saturation magnetic flux density Bs.
  • the inductance L of the magnetic bias coil 20 is greatly increased.
  • the inductance L acts as an impedance with respect to the change in the charging current Ic of the coil 24 and suppresses the change in the charging current Ic.
  • the magnetized coil 20 is provided with a permanent magnet 26 so that the core 22 has a saturation magnetic flux density Bs until the current reaches a predetermined value (hereinafter referred to as current Is) with respect to the charging current Ic in the direction of the arrow Ic. Yes.
  • current Is a predetermined value
  • the permanent magnet 26 forms a magnetic field H that maintains the inside of the core 22 at the saturation magnetic flux density Bs until the charging current Ic reaches the current Is.
  • the magnetic flux density B of the core 22 that has been set to the saturation magnetic flux density Bs by the permanent magnet 26 is decreased.
  • the inductance L of the magnetic bias coil 20 increases significantly.
  • the magnetic bias coil 20 suppresses an increase in the charging current Ic by an impedance corresponding to the inductance L.
  • the current suppression circuit 10 has a DC superimposition characteristic of the magnetic bias coil 20 with respect to a DC superimposition characteristic of the non-magnetic coil so that an inductance L is generated in the magnetic bias coil 20 when the charging current Ic exceeds the current Is. Shift.
  • the current Is is set so that the direct current superimposition characteristic of the non-biased coil and the direct current superimposition characteristic of the magnetic bias coil 20 do not overlap, but this is not restrictive. Any method may be used as long as the inductance L of the magnetic bias coil 20 is increased by a preset current Is or more. For example, it includes setting the current Is so that the direct current superimposition characteristic of the non-biased coil and the direct current superimposition characteristic of the magnetic bias coil 20 overlap.
  • FIG. 4 shows a change in voltage applied between the terminals of the capacitor 18 (hereinafter referred to as capacitor voltage Vc), and FIG. 5 shows a change in the charging current Ic by turning on the power switch 16.
  • capacitor voltage Vc capacitor voltage
  • FIG. 5 shows a change in the charging current Ic by turning on the power switch 16.
  • the voltage change and the current change in the current suppression circuit 10 provided with the magnetic bias coil 20 are shown by solid lines, and the voltage change of the capacitor voltage and the charging current when the magnetic bias coil 20 is removed are shown.
  • the change in current is indicated by a broken line.
  • the charging current Ic increases rapidly immediately after the power switch 16 is turned on.
  • the charging current Ic decreases when it reaches a peak value (peak current).
  • the peak current Ipa of the charging current Ic is determined by impedance components such as the impedance of the power supply unit 12 and circuit resistance. Since this impedance component is low because it causes unnecessary power consumption, the peak current Ipa has a very high current value. Therefore, an rush current that becomes a surge current having a very large current value is generated in the input current In immediately after the power switch 16 is turned on.
  • the charging current Ic increases rapidly immediately after the power switch 16 is turned on.
  • the current suppression circuit 10 when the charging current Ic reaches the current Is, the inductance L of the magnetic bias coil 20 increases, and an impedance corresponding to the inductance L is generated, so that the slope of the charging current Ic rises gradually. It becomes. Therefore, the current suppression circuit 10 can suppress the peak current Ipb of the charging current Ic to be lower than the peak current Ipa.
  • This peak current Ipb is determined by the inductance L of the magnetic bias coil 20, and by increasing the inductance L, the peak current Ipb can be lowered.
  • the capacitor voltage Vc gradually increases as compared with the case where the bias coil 20 is not provided, but the input current caused by the charging current Ic when the power switch 16 is turned on.
  • the inrush current of In can be suppressed.
  • the peak current Ipb and the current Is are set based on the allowable range of the inrush current generated in the input current In, and the inductance L of the magnetic bias coil 20 is set based on the set peak current Ipb and current Is. To do. As a result, the current suppression circuit 10 can prevent an inrush current from occurring in the input current In due to an increase in the charging current Ic of the capacitor 18.
  • the magnetic bias coil 20 can be connected in series with the load 14.
  • the bias coil 20 connected in series to the capacitor 18 is also connected in series to the load 14.
  • the current that has passed through the magnetic bias coil 20 flows to the load 14 and the capacitor 18.
  • the current suppression circuit 10A it is necessary to set the current Is in consideration of the current flowing through the load 14. However, also in the current suppression circuit 10A, when the voltage applied to the capacitor 18 increases, the increase in the charging current Ic can be suppressed. Thereby, also in the current suppression circuit 10 ⁇ / b> A, similar to the current suppression circuit 10, it is possible to suppress a rapid increase in the input current In due to the inrush current.
  • FIG. 7 shows the power supply device 30 according to the first embodiment of the disclosed technique.
  • the power supply device 30 includes a power switch 32 and a fuse 34, and an AC power supply 36 such as a commercial power supply is connected via the power switch 32 and the fuse 34.
  • the power supply device 30 is supplied with AC power of a predetermined voltage (hereinafter referred to as AC voltage Vac) from the AC power source 36 by turning on the power switch 32 (closing the contact).
  • AC voltage Vac a predetermined voltage
  • the power supply device 30 includes a rectifying circuit 38 that rectifies the AC voltage Vac and a smoothing circuit 40 that smoothes the voltage rectified by the rectifying circuit 38.
  • the power supply device 30 smoothes the voltage rectified by the rectifier circuit 38 by passing through the smoothing circuit 40.
  • the resistor 42 is a discharge resistor provided to discharge the electric charge of the capacitor 18 when the power switch 32 and the switch 46 are opened.
  • the load 44 includes a switch 46.
  • the power supply device 30 supplies power of a predetermined DC voltage Vin to the load 44 when the switch 46 of the load 44 is turned on.
  • the load 44 operates according to the power supplied from the power supply device 30 and thereby consumes power according to the impedance RL.
  • a current including the current corresponding to the power consumed by the load 44 (hereinafter referred to as input current In) flows through the fuse 34.
  • the fuse 34 blows when the input current In exceeds the allowable current value, and cuts off the power supply to the rectifier circuit 38 and the subsequent parts.
  • the load 44 does not include the switch 46, and includes the electric device that is turned on / off by the power switch 32 by integrating the power supply device 30 and the load 44. That is, in the disclosed technology, the load 44 may be an electric device including the power supply device 30.
  • the smoothing circuit 40 is an example of a current suppression circuit in the disclosed technology
  • the power supply device 30 including the smoothing circuit 40 is an example of a power supply device and a power supply circuit in the disclosed technology.
  • the rectifier circuit 38 has four diodes 48 connected in a bridge manner, and full-wave rectifies and outputs the input AC voltage Vac.
  • the disclosed technology is not limited to full-wave rectification but may be half-wave rectification.
  • the power supply device 30 can also include a transformer that converts the AC voltage Vac input from the AC power supply 36 into a predetermined voltage. By including a transformer, the power supply device 30 boosts or steps down the input AC voltage Vac, converts it to a desired voltage, and outputs it. Further, in the disclosed technique, a DC voltage source that outputs a DC voltage can be used instead of the AC power supply 36 and the rectifier circuit 38.
  • the smoothing circuit 40 includes a capacitor 18.
  • one terminal side of the capacitor 18 is the positive side (+ side), and the other terminal is connected to the negative side ( ⁇ side).
  • the capacitor 18 is connected in parallel with the load 44 as viewed from the rectifier circuit 38 side.
  • the smoothing circuit 40 includes the biased coil 20.
  • the magnetic bias coil 20 is connected to the positive terminal of the capacitor 18 so as to be in series with the capacitor 18.
  • the capacitor 18 and the bias coil 20 connected in series are integrally connected in parallel to the load 44.
  • the magnetic bias coil 20 may be inserted into the negative terminal of the capacitor 18.
  • the biasing coil 20 is supplied with a charging current Ic corresponding to the charge accumulated in the capacitor 18 and a current (discharge current) corresponding to the charge released from the capacitor 18.
  • the charging current Ic for charging the capacitor 18 is included in the input current In of the power supply device 30.
  • the biased coil 20 does not function as an impedance with respect to the discharge current by using the biased coil 20.
  • the magnetic bias coil 20 does not function as an impedance with respect to the charging current Ic until the charging current Ic reaches the current Is.
  • the magnetically biased coil 20 when the charging current Ic rapidly increases and exceeds the current Is, a magnetic flux is generated in a direction that cancels the magnetic flux in the core 22, and the inductance L is greatly increased. Thereby, the magnetic bias coil 20 becomes an impedance with respect to the charging current Ic that is rapidly increased, and suppresses an increase in the charging current Ic.
  • the power supply device 30 suppresses the occurrence of an inrush current in the input current In by suppressing a rapid increase in the charging current Ic.
  • the power supply device 30 prevents the inrush current from being generated in the input current In, thereby preventing the input current In from exceeding the protection current (blown current) by the fuse 34 and blowing the fuse 34.
  • the AC voltage Vac of the AC power supply 36 is input to the rectifier circuit 38 by turning on the power switch 32.
  • the rectifying circuit 38 rectifies the AC voltage Vac and outputs it to the smoothing circuit 40.
  • the smoothing circuit 40 the voltage input from the rectifier circuit 38 is smoothed and output to the load 44.
  • the inductance L of the magnetic bias coil 20 is so small that it can be ignored, so that the capacitor voltage Vc becomes the DC voltage Vin supplied to the load 44.
  • the power supply device 30 when the power switch 32 is turned on, charging of the capacitor 18 of the smoothing circuit 40 is started. At the start of charging of the capacitor 18, a large inrush current flows as the charging current Ic. In the power supply device 30, the inrush current of the charging current Ic is suppressed by connecting the magnetic bias coil 20 in series with the capacitor 18 of the smoothing circuit 40.
  • the magnetic bias coil 20 becomes an impedance with respect to the charging current Ic. Thereby, in the smoothing circuit 40 of the power supply device 30, the change of the charging current Ic becomes gentle. Thereafter, the charging current Ic starts decreasing when it reaches the peak current Ipb.
  • the magnetic bias coil 20 provided in the smoothing circuit 40 suppresses an abrupt increase in current generated in the charging current Ic. Further, in the power supply device 30, by suppressing the charging current Ic to the capacitor 18, the input current In does not increase due to the inrush current and the fuse 34 is not blown.
  • the AC power that is input may be temporarily stopped due to the AC power supply 36 being stopped (hereinafter referred to as an instantaneous power failure).
  • the power supply 30 discharges the capacitor 18 when a power failure such as an instantaneous power failure occurs.
  • the power switch 36 since the power switch 36 is turned on, charging of the capacitor 18 is started immediately after the power failure is restored.
  • 8 and 9 show changes in the AC voltage Vac, the input current In, and the capacitor voltage Vc before and after the instantaneous power failure.
  • 8 shows a change in the power supply device 30 provided with the magnetic bias coil 20
  • FIG. 9 shows a change in the power supply device obtained by removing the magnetic bias coil 20 from the power supply device 30.
  • the capacitor voltage Vc and the input current In change within a predetermined range.
  • the capacitor voltage Vc at this time is the voltage Vc0.
  • the power supply from the AC power supply 36 is stopped.
  • the supply of the AC voltage Vac from the AC power supply 36 is started to the power supply device 30 when the power failure of the AC power supply 36 is restored.
  • the power supply device 30 starts charging the capacitor 18.
  • the capacitor voltage Vc drops from the voltage Vc ⁇ b> 0 (voltage drop) by discharging the capacitor 18 even in the case of an instantaneous power failure with a short power failure time.
  • the power supply device 30 starts charging the capacitor 18.
  • the voltage applied to the capacitor 18 is increased by a voltage corresponding to a voltage drop generated at the time of a power failure.
  • the charging current Ic increases rapidly, and the input current In increases as the charging current Ic increases.
  • the charging current Ic increases rapidly.
  • the inductance L of the magnetic bias coil 20 increases, and the impedance corresponding to the inductance L suppresses the increase in the charging current Ic and the peak current.
  • the power supply device 30 can suppress the occurrence of an inrush current that causes the fuse 34 to blow in the input current In even in the event of an instantaneous power failure.
  • FIG. 10 shows a power supply device 50 according to the second embodiment.
  • This power supply device 50 is different from the power supply device 30 in that it includes a resistor 52 for suppressing inrush current, a bypass switch 54 and a voltage detection circuit 56.
  • the resistor 52 is connected between the rectifying circuit 38 and the magnetic bias coil 20 of the smoothing circuit 40, and the bypass switch 54 is connected in parallel to the resistor 52.
  • the voltage detection circuit 56 detects the voltage V (DC voltage Vin) supplied to the load 44.
  • the power supply device 50 supplies the output of the rectifier circuit 38 to the smoothing circuit 40 and the load 44 through the resistor 52 by turning off the bypass switch 54 and opening the contact. Further, the power supply device 50 supplies the output of the rectifier circuit 38 to the smoothing circuit 40 without passing through the resistor 52 by turning on the bypass switch 54 and closing the contact.
  • the voltage detection circuit 56 turns on the bypass switch 54 when the detected voltage V reaches a preset setting voltage Vs.
  • the voltage detection circuit 56 detects the terminal voltage of the resistor 42.
  • the terminal voltage of the resistor 42 is the capacitor voltage Vc.
  • the output voltage of the rectifier circuit 38 is a voltage Vr
  • the impedance (resistance value) of the resistor 42 is R2
  • the impedance (resistance value) of the resistor 52 is R1.
  • the voltage detection circuit 56 uses a set voltage Vs set based on this voltage.
  • the voltage detection circuit 56 closes the bypass switch 54 when the voltage V reaches the set voltage Vs (V ⁇ Vs).
  • the capacitor voltage Vc2 is a voltage corresponding to the voltage Vr output from the rectifier circuit 38.
  • the power switch 32 is turned on while the bypass switch 54 is turned off.
  • the current that has passed through the resistor 52 flows to the capacitor 18 by turning on the power switch 32.
  • the peak current of the charging current Ic of the capacitor 18 immediately after the power switch 32 is turned on is suppressed by the resistor 52.
  • the voltage detection circuit 56 turns on the bypass switch 54 when the detected voltage V reaches the set voltage Vs.
  • the capacitor voltage Vc increases by the voltage (Vr ⁇ R1 / (R1 + R2)) applied to the resistor 52.
  • the voltage rise is increased by increasing the resistance value R1 of the resistor 52 that suppresses the inrush current when the power switch 32 is turned on.
  • the power supply device 50 by providing the magnetizing coil 20 in the smoothing circuit 40A, it is possible to suppress a sudden increase in the charging current Ic due to a voltage change when the bypass switch 54 is turned on. In addition, the power supply device 50 prevents the charging current Ic from rapidly increasing, so that the inrush current does not appear in the input current In and the fuse 34 is not blown.
  • FIG. 11 and 12 show changes in the AC voltage Vac, the input current In, and the capacitor voltage Vc. 11 shows a change of the power supply device 50 provided with the magnetic bias coil 20, and FIG. 12 shows a change of the power supply device obtained by removing the magnetic bias coil 20 from the power supply device 50.
  • charging the capacitor 18 is started by turning on the power switch 32.
  • the bypass switch 54 since the bypass switch 54 is turned off, the capacitor voltage Vc does not increase rapidly, and the capacitor voltage Vc1 determined by the resistance value R2 of the resistor 42 and the resistance value R1 of the resistor 52 become.
  • the voltage detection circuit 56 turns on the bypass switch 54 at the timing of time t3, whereby the capacitor voltage Vc rises to the voltage Vc2. That is, by turning on the bypass switch 52, the capacitor voltage Vc increases, and accordingly, the charging current Ic tends to increase rapidly.
  • the charging current Ic is increased by turning on the bypass switch 54.
  • the inductance L of the magnetically biased coil 20 increases, and the rapid increase of the charging current Ic is suppressed by the impedance corresponding to the inductance L.
  • the peak current Ipb when the capacitor voltage Vc reaches the voltage Vc2 can be suppressed low. Thereby, as shown in FIG. 11, it can suppress that an inrush current arises in the input current In.
  • the current Is can be reduced in order to suppress an inrush current due to a voltage change when the bypass switch 54 is turned on to bypass the resistor 52. Therefore, the magnetic force of the permanent magnet 26 provided on the core 22 can be reduced.
  • the power supply device 50 flows a charging current Ic for charging the capacitor 18 when the power failure is restored.
  • the inrush current resulting from the increase in the charging current Ic at the time of restoration of a power failure such as an instantaneous power failure can be suppressed by providing the magnetic bias coil 20.
  • FIG. 13 shows a power supply device 60 according to a third embodiment of the disclosed technology.
  • the power supply device 60 is different from the power supply device 50 according to the second embodiment in that it includes a power factor improving unit.
  • the power supply device 60 includes a PFC (Power Factor Control) circuit 62 as a power factor improvement unit.
  • the PFC circuit 62 includes a choke coil 64, a diode 66, a switching element 68, and a PFC control unit 70.
  • the switching element 68 for example, a MOS-FET can be used, but not limited to this, a known semiconductor element can be used.
  • the PFC circuit 62 has a choke coil 64 and a diode 66 connected in series on the load side of the resistor 52 and the bypass switch 54.
  • the choke coil 64 in the disclosed technique is a non-biased coil, and a known coil can be applied.
  • the diode 66 may be a known rectifying element that can regulate the current direction.
  • the drain D is connected between the choke coil 64 and the diode 66, and the source S is connected to the negative side of the rectifier circuit 38.
  • the PFC control unit 70 drives the switching element 68 on / off by inputting a switching signal to the gate G of the switching element 68.
  • the smoothing circuit 40B provided in the power supply device 60 includes a PFC circuit 62 to form a so-called active smoothing filter.
  • the PFC control unit 70 detects the output voltage and output current of the rectifier circuit 38, and generates a switching signal for driving the switching element 68 on / off based on the detected output current and input current. At this time, the PFC control unit 70 sets the duty ratio of the switching signal so that the phase of the waveform of the output current matches the phase of the waveform of the output voltage, and drives the switching element with the set duty ratio.
  • the phase of the input current In is matched with the phase of the AC voltage Vac.
  • a known general configuration can be applied to the PFC circuit 62.
  • the power factor improving unit provided in the power supply device 60 is not limited to the PFC circuit 62, and a known technique for matching the phase of the input current In to the phase of the AC voltage Vac input to the power supply device 60 can be applied. .
  • the power switch 32 is turned on while the bypass switch 52 is turned off. At this time, the resistor 52 suppresses an increase in the charging current In and suppresses an inrush current from being generated in the input current In.
  • the power supply device 60 suppresses the increase in the charging current Ic when the bypass switch 54 is turned on by the magnetic bias coil 20, it is possible to suppress the inrush current from being generated in the input current In.
  • the power supply device 60 includes the PFC circuit 62, the phase of the AC voltage Vac and the input current In can be matched, so that the power use efficiency can be improved.
  • the power supply from the AC power supply 36 is temporarily stopped due to a power failure such as an instantaneous power failure, whereby the capacitor 18 is discharged.
  • the power supply 60 starts charging the capacitor 18 when the power failure is restored.
  • the bypass switch 54 is turned on at the time of recovery from the power failure, the charging current Ic of the capacitor 18 increases rapidly.
  • the power supply device 60 can suppress the charging current Ic from rapidly increasing to the capacitor 18 by providing the magnetically biased coil 20 connected in series with the capacitor 18. Thereby, the power supply device 60 can suppress an inrush current from being generated in the input current In when the power failure is restored.
  • FIG. 14 shows another aspect of the disclosed technology.
  • FIG. 14 shows a semiconductor circuit 72 and a power supply substrate 74 that supplies a DC voltage for operation to the semiconductor circuit 72.
  • the semiconductor circuit 72 includes a pair of power supply terminals 76A and 76B.
  • the power supply board 74 includes a pair of output terminals 78A and 78B.
  • the power supply board 74 supplies a DC voltage for operation to the semiconductor circuit 72 by connecting the power supply terminals 76A and 76B of the semiconductor circuit 72 to the pair of output terminals 78A and 78B.
  • the capacitor 18 and the magnetic bias coil 20 are connected in series to the semiconductor circuit 72 in the disclosed technology.
  • the bias coil 20 has one end connected to the + side power supply terminal 76 ⁇ / b> A and the other end connected to the + side of the capacitor 18.
  • the capacitor 18 is connected to the power terminal 76B on the negative side.
  • the semiconductor circuit 72 When the semiconductor circuit 72 is connected to the active power supply substrate 74, immediately after the connection, the capacitor 18 starts to be charged, and the charging current Ic rapidly increases. As a result, an inrush current flows through the power supply substrate 74. At this time, in the semiconductor circuit 72 having the magnetically biased coil 20 connected in series to the capacitor 18, the magnetically biased coil 20 suppresses the rapid increase and the peak current of the charging current Ic.
  • the power supply board 74 connected to the semiconductor circuit 72 can suppress the occurrence of an inrush current due to a sudden rise in the charging current Ic, and prevent the overcurrent protection function from being activated due to the occurrence of the inrush current. Is done.
  • a DC power supply that outputs a DC voltage such as the power supply board 74, is connected to a DC voltage supplied from the DC power supply, and a load circuit formed therein is activated. Including application to various load circuit boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

The present invention suppresses a rapid increase of a charge current to a capacitor. A current suppressing circuit (10) is provided between a power supply section (12), which outputs a direct current voltage, and a load (14), which operates by means of the direct current voltage outputted from the power supply section. The current suppressing circuit has a capacitor (18) and a polarized coil (20) connected in series. The polarized coil includes a core, in which a magnetic field wherein magnetic density (B) has become saturated magnetic density (Bs) due to a permanent magnet is formed, and a coil (24) that is wound on the core. When charging of the capacitor is started by having a power supply switch (16) turned on, and a charge current (Ic) flowing in the coil becomes equal to or more than a current (Is), inductance of the polarized coil is increased. The polarized coil suppresses a rapid increase and the peak current of the charge current by means of impedance corresponding to the inductance.

Description

電流抑制回路、電源回路、電源装置、半導体回路、及び負荷回路基板Current suppression circuit, power supply circuit, power supply device, semiconductor circuit, and load circuit board
 本発明は、電流抑制回路、電源回路、電源装置、半導体回路、及び負荷回路基板に関する。 The present invention relates to a current suppression circuit, a power supply circuit, a power supply device, a semiconductor circuit, and a load circuit board.
 従来より、コアの一部に永久磁石又は電磁石を設け、コアの磁気密度を飽和させることで、コイルに大電流が流れるのを制限する限流器が提案されている。また、限流器を用いた技術としては、装置内部に設けたコンデンサの放電電流を抑制する技術が提案されている。この技術では、短絡などにより電源ラインからの電力供給が停止した場合に、コンデンサからの放電電流を抑制することで、コンデンサに蓄積された電力が電源ラインへ放出されてしまうのを防止する。 Conventionally, a current limiter that restricts the flow of a large current to the coil by providing a permanent magnet or an electromagnet in a part of the core and saturating the magnetic density of the core has been proposed. Further, as a technique using a current limiter, a technique for suppressing the discharge current of a capacitor provided inside the apparatus has been proposed. In this technique, when the power supply from the power supply line is stopped due to a short circuit or the like, the discharge current from the capacitor is suppressed to prevent the power stored in the capacitor from being discharged to the power supply line.
 一方、電源装置は、交流電圧を整流回路で整流した後、電解コンデンサなどを用いて平滑化することで直流電圧に変換して負荷機器へ供給する。このような電源装置では、電源スイッチをオンしてコンデンサへの電圧印加を開始したとき、コンデンサの充電電流の電流値が瞬間的に増加し、電源装置の入力電流に突入電流を生じさせる。 On the other hand, the power supply device rectifies the AC voltage with a rectifier circuit and then smoothes it using an electrolytic capacitor or the like to convert it to a DC voltage and supplies it to the load device. In such a power supply device, when the power switch is turned on and voltage application to the capacitor is started, the current value of the capacitor charging current instantaneously increases, and an inrush current is generated in the input current of the power supply device.
 突入電流を抑制する技術としては、整流回路の出力側に突入電流抑制用の抵抗等のインピーダンス成分を設ける技術がある。この技術では、突入電流を抑制することができるが、定常状態においてもインピーダンス成分により電力が消費されてしまう。 As a technique for suppressing the inrush current, there is a technique for providing an impedance component such as an inrush current suppressing resistor on the output side of the rectifier circuit. With this technique, inrush current can be suppressed, but power is consumed by the impedance component even in a steady state.
 ここから、突入電流抑制用の抵抗と並列にスイッチを設け、定常状態で、スイッチを閉じることで、インピーダンス成分により電力が消費されることがないようにした技術がある。しかし、この技術においては、スイッチを閉じた瞬間にインピーダンス成分が無くなることで、コンデンサに印加される電圧が上昇し、突入電流を生じさせてしまうことがある。 From here, there is a technology in which a switch is provided in parallel with the resistor for suppressing the inrush current, and the switch is closed in a steady state so that power is not consumed by the impedance component. However, in this technique, since the impedance component disappears at the moment when the switch is closed, the voltage applied to the capacitor may rise and cause an inrush current.
 更に、コンデンサへの突入電流を抑制する技術としては、コンデンサの充電電流に対してインピーダンス成分を設けることで、コンデンサ充電時の突入電流を抑制する技術が提案されている。しかし、提案の技術では、コンデンサの充電電流に対して常にインピーダンス成分が作用してしまう。 Furthermore, as a technique for suppressing the inrush current to the capacitor, a technique for suppressing the inrush current at the time of charging the capacitor by providing an impedance component for the charging current of the capacitor has been proposed. However, in the proposed technique, an impedance component always acts on the charging current of the capacitor.
特開平09-168281号公報JP 09-168281 A 特開2001-238349号公報JP 2001-238349 A 特開2004-201369号公報JP 2004-201369 A 特開2010-263709号公報JP 2010-263709 A
 1つの側面では、本発明は、コンデンサに印加された電圧よる突入電流の発生を抑制することを目的とする。 In one aspect, an object of the present invention is to suppress generation of an inrush current due to a voltage applied to a capacitor.
 1つの案では、コンデンサが、印加される直流電圧に応じた充電電流により電荷を蓄積する。また、偏磁コイルは、前記コンデンサに対して直列接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備える。また、偏磁コイルは、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する。 In one scheme, the capacitor accumulates charge with a charging current according to the applied DC voltage. The bias coil includes a coil connected in series to the capacitor, a core around which the coil is wound, and a magnetizing member that forms a magnetic field in the core with a saturation magnetic flux density inside the core. Further, the inductance of the magnetically biased coil increases when the charging current flowing through the coil becomes a predetermined value or more.
 コンデンサに印加された電圧が上昇することによる突入電流の発生を抑制することができる、という効果を有する。 It has the effect that generation | occurrence | production of the inrush current by the voltage applied to the capacitor rising can be suppressed.
開示の技術における電流抑制回路を示す回路図である。It is a circuit diagram which shows the current suppression circuit in the technique of an indication. 開示の技術における偏磁コイルの一例を示す斜視図である。It is a perspective view which shows an example of the magnetic bias coil in the technique of an indication. B-H特性、非偏磁コイル及び偏磁コイルの直流重畳特性を示す線図である。It is a diagram which shows the DC superimposition characteristic of a BH characteristic, a non-biased coil, and a biased coil. 電流抑制回路に印加される電圧の変化を示す線図である。It is a diagram which shows the change of the voltage applied to a current suppression circuit. 電流抑制回路への入力電流の変化を示す線図である。It is a diagram which shows the change of the input current to a current suppression circuit. 開示の技術における電流抑制回路の他の態様を示す回路図である。It is a circuit diagram which shows the other aspect of the current suppression circuit in the technique of an indication. 第1の実施の形態に係る電源装置の一例を示す要部の回路図である。It is a circuit diagram of the principal part which shows an example of the power supply device which concerns on 1st Embodiment. 偏磁コイルを設けている場合の瞬時停電時における交流電圧、入力電流及びコンデンサ電圧の変化を示す線図である。It is a diagram which shows the change of the alternating voltage, the input current, and the capacitor voltage at the time of the momentary power failure in the case of providing the magnetizing coil. 偏磁コイルを設けていない場合の瞬時停電時における交流電圧、入力電流及びコンデンサ電圧の変化を示す線図である。It is a diagram which shows the change of the alternating voltage, the input current, and the capacitor voltage at the time of the momentary power failure when not providing the magnetizing coil. 第2の実施の形態に係る電源装置の一例を示す要部の回路図である。It is a circuit diagram of the principal part which shows an example of the power supply device which concerns on 2nd Embodiment. 第2の実施の形態に係る電源装置における交流電圧、入力電流及びコンデンサ電圧の変化を示す線図である。It is a diagram which shows the change of the alternating voltage in the power supply device which concerns on 2nd Embodiment, an input current, and a capacitor voltage. 第2の実施の形態に係る電源装置において偏磁コイルを設けていない場合の交流電圧、入力電流及びコンデンサ電圧の変化を示す線図である。It is a diagram which shows the change of an alternating voltage, an input current, and a capacitor voltage when not providing the magnetizing coil in the power supply device which concerns on 2nd Embodiment. 第3の実施の形態に係る電源装置の一例を示す要部の回路図である。It is a circuit diagram of the principal part which shows an example of the power supply device which concerns on 3rd Embodiment. 開示の技術における他の態様の一例を示すブロック図である。It is a block diagram which shows an example of the other aspect in the technique of an indication.
 以下、開示の技術の実施の形態の説明に先立ち、開示の技術の原理を説明する。図1には、電流抑制回路10を示す。電流抑制回路10は、電源部12と、電源部12から電力画供給される負荷14との間に設けられる。電源部12は、電源スイッチ16がオン操作されることで接点を閉じると、所定直流電圧Vdを負荷14へ供給する。 Hereinafter, the principle of the disclosed technology will be described prior to the description of the embodiment of the disclosed technology. FIG. 1 shows a current suppression circuit 10. The current suppression circuit 10 is provided between the power supply unit 12 and a load 14 supplied with power from the power supply unit 12. The power supply unit 12 supplies a predetermined DC voltage Vd to the load 14 when the contact is closed by turning on the power switch 16.
 電流抑制回路10は、電解コンデンサなどのコンデンサ18を備える。コンデンサ18は、一対の端子の一方が電源部12の+側に接続され、他方が電源部12の-側に接続されることで、電源スイッチ16の負荷14側に負荷14と並列に接続されている。コンデンサ18は、一対の端子間に印加された電圧に応じた電荷を蓄積する機能を有する。 The current suppression circuit 10 includes a capacitor 18 such as an electrolytic capacitor. The capacitor 18 is connected in parallel with the load 14 on the load 14 side of the power switch 16 by connecting one of the pair of terminals to the + side of the power supply unit 12 and the other connected to the − side of the power supply unit 12. ing. The capacitor 18 has a function of accumulating charges according to the voltage applied between the pair of terminals.
 電流抑制回路10は、コンデンサ18の+側の端子に、コンデンサ18と直列に偏磁コイル20が接続されている。 In the current suppression circuit 10, a magnetic bias coil 20 is connected in series with the capacitor 18 to the positive terminal of the capacitor 18.
 図2に示すように、偏磁コイル20は、磁性材料を用いて形成したコア22、及びコア22に電線を巻き付けて生成したコイル24を含む。 As shown in FIG. 2, the magnetic bias coil 20 includes a core 22 formed using a magnetic material, and a coil 24 generated by winding an electric wire around the core 22.
 コア22の材質としては、公知の材質を適用することができる。また、コア22は、環状に限らず、内側に中空部が形成された四角形などの任意の形状を適用することができる。 A known material can be applied as the material of the core 22. The core 22 is not limited to an annular shape, and any shape such as a quadrangle having a hollow portion formed inside can be applied.
 コア22は、環状に形成された一部が切除され、切除部分に磁化部材としての永久磁石26が嵌め込まれ、閉じられた磁気回路が形成されている。偏磁コイル20は、コア22を形成する部材と永久磁石26を形成する部材とを、磁気的にループを形成するように連結したものであれば良い。また、磁化部材としては、コア22に所定の磁界を形成する部材を適用することができる。 A part of the core 22 formed in an annular shape is excised, and a permanent magnet 26 as a magnetizing member is fitted into the excised part to form a closed magnetic circuit. The magnetically biased coil 20 may be any one as long as a member that forms the core 22 and a member that forms the permanent magnet 26 are connected so as to form a magnetic loop. In addition, as the magnetizing member, a member that forms a predetermined magnetic field on the core 22 can be applied.
 図1及び図2において、コンデンサ18への充電時に偏磁コイル20のコイル24に流れる電流を充電電流Icとしている。 1 and 2, the current that flows through the coil 24 of the magnetic bias coil 20 when the capacitor 18 is charged is the charging current Ic.
 図3には、永久磁石26が設けられていない一般的なコイル(以下、非偏磁コイルとする)及び偏磁コイル20のB-H特性曲線、及び電流に対するインダクタンスの特性である直流重畳特性を示している。なお、図3の直流重畳特性は、偏磁コイル20の特性を実線で示し、非偏磁コイルの特性を破線で示している。 FIG. 3 shows a BH characteristic curve of a general coil (hereinafter referred to as a non-biased coil) without the permanent magnet 26 and a bias coil 20, and a DC superposition characteristic which is a characteristic of inductance with respect to current. Is shown. In the DC superposition characteristics of FIG. 3, the characteristics of the biased coil 20 are indicated by solid lines, and the characteristics of the non-biased coils are indicated by broken lines.
 コア22では、永久磁石26により磁界Hが加わることで、コイル24に電流が流れていない状態でも、磁束が発生している。コア22の内部の磁束密度Bは、磁界Hの向き及び強さによって変化し、磁界Hを強くすることで磁束密度Bが高くなる。 In the core 22, magnetic field H is applied by the permanent magnet 26, so that magnetic flux is generated even when no current flows through the coil 24. The magnetic flux density B inside the core 22 changes depending on the direction and strength of the magnetic field H, and by increasing the magnetic field H, the magnetic flux density B increases.
 偏磁コイル20に設けた永久磁石26は、コイル24に電流が流れていない状態でも、コア22内部の磁束密度Bを飽和させている。磁束密度Bの飽和は、永久磁石26によりコア22の内部に一方向に向く磁束が形成され、かつ、コイル24に電流を流して同一方向の磁束を増加させようとしても、逆方向へは磁束が増加する余地がない状態を示す。このときの磁束密度Bは、飽和磁束密度Bsとなる。偏磁コイル20は、コア22の内部の磁束密度Bが飽和磁束密度Bsに達していることで、磁界Hを強くしても磁束の増加が生じない。 The permanent magnet 26 provided in the biased coil 20 saturates the magnetic flux density B inside the core 22 even when no current flows through the coil 24. When the magnetic flux density B is saturated, a permanent magnet 26 forms a magnetic flux in one direction inside the core 22, and a current flows through the coil 24 to increase the magnetic flux in the same direction. Indicates that there is no room to increase. The magnetic flux density B at this time becomes the saturation magnetic flux density Bs. Since the magnetic flux density B in the core 22 has reached the saturation magnetic flux density Bs, the magnetic flux does not increase even if the magnetic field H is increased.
 図2に示すように、コア22の内部で矢印B方向の磁束により飽和磁束密度Bsに達している場合、コイル22の内部の磁束(磁束密度B)は増加しない。このとき、コイル24のインダクタンスLは、極めて低くなっている。したがって、コイル24には、磁束を増加する方向(-側から+側)へ電流が流れても、この電流に対するインピーダンスが現れない。なお、図2においては、充電電流Icの方向を矢印Icで示す。 As shown in FIG. 2, when the saturation magnetic flux density Bs is reached by the magnetic flux in the arrow B direction inside the core 22, the magnetic flux (magnetic flux density B) inside the coil 22 does not increase. At this time, the inductance L of the coil 24 is extremely low. Therefore, even if a current flows in the coil 24 in the direction of increasing the magnetic flux (from the negative side to the positive side), no impedance for this current appears. In FIG. 2, the direction of the charging current Ic is indicated by an arrow Ic.
 図2に示すように、偏磁コイル20のコイル24は、充電電流Icが+側から-側に流れたときに、永久磁石26によって生ずる磁束と逆向きの磁束が生じる向きでコア22に巻回されている。コイル24に電流(充電電流Ic)が流れると、磁束密度Bを減少させる向きの磁界が生ずる。このとき、コア22の内部の磁界が、磁束密度Bが飽和磁束密度Bs未満となる磁界に達するまでは、コイル24は、低いインダクタンスLを維持している。 As shown in FIG. 2, the coil 24 of the bias coil 20 is wound around the core 22 in a direction in which a magnetic flux opposite to the magnetic flux generated by the permanent magnet 26 is generated when the charging current Ic flows from the positive side to the negative side. It has been turned. When a current (charging current Ic) flows through the coil 24, a magnetic field in a direction that reduces the magnetic flux density B is generated. At this time, the coil 24 maintains a low inductance L until the magnetic field inside the core 22 reaches a magnetic field at which the magnetic flux density B is less than the saturation magnetic flux density Bs.
 コア22の内部には、磁界の強さが、磁束密度Bが飽和磁束密度Bs未満となる値になると、磁束密度Bを減少させる方向の磁束が生ずる。コア22の内部に磁束密度Bを減少させる方向の磁束が生じることで、偏磁コイル20のインダクタンスLは大幅に増加する。このインダクタンスLは、コイル24の充電電流Icの変化に対してインピーダンスとして作用して充電電流Icの変化を抑制する。 In the core 22, when the strength of the magnetic field becomes a value at which the magnetic flux density B is less than the saturation magnetic flux density Bs, a magnetic flux in a direction to decrease the magnetic flux density B is generated. By generating a magnetic flux in the direction of decreasing the magnetic flux density B inside the core 22, the inductance L of the magnetic bias coil 20 is greatly increased. The inductance L acts as an impedance with respect to the change in the charging current Ic of the coil 24 and suppresses the change in the charging current Ic.
 すなわち、偏磁コイル20では、インダクタンスLが増加することで、充電電流Icに対する逆起電力が生じ、この逆起電力により充電電流Icの増加が抑えられる。 That is, in the magnetically biased coil 20, when the inductance L increases, a counter electromotive force is generated with respect to the charging current Ic, and an increase in the charging current Ic is suppressed by the counter electromotive force.
 偏磁コイル20は、矢印Ic方向の充電電流Icに対して電流が所定値(以下、電流Isとする)に達するまでは、コア22が飽和磁束密度Bsとなるように永久磁石26を設けている。これにより、永久磁石26は、コイル24に流れる充電電流Icが増加するとき、充電電流Icが電流Isに達するまでコア22の内部を飽和磁束密度Bsに維持する磁界Hを形成する。 The magnetized coil 20 is provided with a permanent magnet 26 so that the core 22 has a saturation magnetic flux density Bs until the current reaches a predetermined value (hereinafter referred to as current Is) with respect to the charging current Ic in the direction of the arrow Ic. Yes. Thus, when the charging current Ic flowing through the coil 24 increases, the permanent magnet 26 forms a magnetic field H that maintains the inside of the core 22 at the saturation magnetic flux density Bs until the charging current Ic reaches the current Is.
 また、偏磁コイル20は、充電電流Icが増加して電流Isを超えた場合、永久磁石26により飽和磁束密度Bsとされていたコア22の磁束密度Bが減少する。これにより、偏磁コイル20のインダクタンスLが大幅に増加する。偏磁コイル20は、このインダクタンスLに応じたインピーダンスにより充電電流Icの上昇を抑える。 Further, when the charging current Ic increases and exceeds the current Is, the magnetic flux density B of the core 22 that has been set to the saturation magnetic flux density Bs by the permanent magnet 26 is decreased. Thereby, the inductance L of the magnetic bias coil 20 increases significantly. The magnetic bias coil 20 suppresses an increase in the charging current Ic by an impedance corresponding to the inductance L.
 このように電流抑制回路10は、充電電流Icが電流Isを超えると偏磁コイル20にインダクタンスLが生じるように、非偏磁コイルの直流重畳特性に対して、偏磁コイル20の直流重畳特性をシフトさせる。 As described above, the current suppression circuit 10 has a DC superimposition characteristic of the magnetic bias coil 20 with respect to a DC superimposition characteristic of the non-magnetic coil so that an inductance L is generated in the magnetic bias coil 20 when the charging current Ic exceeds the current Is. Shift.
 図3では、非偏磁コイルの直流重畳特性と偏磁コイル20の直流重畳特性とが重ならないように電流Isを設定しているが、これに限るものではない。予め設定した電流Is以上で偏磁コイル20のインダクタンスLが増加するものであれば良い。例えば、非偏磁コイルの直流重畳特性と偏磁コイル20の直流重畳特性とが重なるように電流Isを設定することを含む。 In FIG. 3, the current Is is set so that the direct current superimposition characteristic of the non-biased coil and the direct current superimposition characteristic of the magnetic bias coil 20 do not overlap, but this is not restrictive. Any method may be used as long as the inductance L of the magnetic bias coil 20 is increased by a preset current Is or more. For example, it includes setting the current Is so that the direct current superimposition characteristic of the non-biased coil and the direct current superimposition characteristic of the magnetic bias coil 20 overlap.
 図4には、コンデンサ18の端子間に印加される電圧(以下、コンデンサ電圧Vcと表記する)の変化を示し、図5には、電源スイッチ16をオンすることによる充電電流Icの変化を示している。なお、図4及び図5では、偏磁コイル20を設けた電流抑制回路10における電圧変化及び電流変化を実線で示し、偏磁コイル20を除いている場合のコンデンサ電圧の電圧変化及び充電電流の電流変化を破線で示す。 FIG. 4 shows a change in voltage applied between the terminals of the capacitor 18 (hereinafter referred to as capacitor voltage Vc), and FIG. 5 shows a change in the charging current Ic by turning on the power switch 16. ing. 4 and 5, the voltage change and the current change in the current suppression circuit 10 provided with the magnetic bias coil 20 are shown by solid lines, and the voltage change of the capacitor voltage and the charging current when the magnetic bias coil 20 is removed are shown. The change in current is indicated by a broken line.
 図4に示すように、電流抑制回路10では、電源スイッチ16がオンされると、コンデンサ18に電荷を蓄積し、蓄積された電荷に応じたコンデンサ電圧Vcが生じる。すなわち、コンデンサ18は、コンデンサ電圧Vcが、印加された電圧に一致するように電荷を蓄積する。このとき、偏磁コイル20を有している場合は、偏磁コイル20を有していない場合に比較して、電圧変化は緩やかとなる。 As shown in FIG. 4, in the current suppression circuit 10, when the power switch 16 is turned on, electric charge is accumulated in the capacitor 18, and a capacitor voltage Vc corresponding to the accumulated electric charge is generated. That is, the capacitor 18 accumulates electric charges so that the capacitor voltage Vc matches the applied voltage. At this time, in the case where the magnetic bias coil 20 is provided, the voltage change is moderate as compared with the case where the magnetic bias coil 20 is not provided.
 図5に破線で示すように、偏磁コイル20を有していない場合、充電電流Icは、電源スイッチ16をオンした直後に急激に上昇する。充電電流Icは、ピーク値(ピーク電流)に達することで減少する。充電電流Icのピーク電流Ipaは、電源部12のインピーダンス、回路抵抗などのインピーダンス成分によって定まる。このインピーダンス成分は、不要な電力消費を生じさせることから低くされているため、ピーク電流Ipaは、極めて高い電流値となる。したがって、入力電流Inには、電源スイッチ16をオンした直後に極めて大きい電流値のサージ電流となる突入電流が生じる。 As shown by a broken line in FIG. 5, when the magnetic bias coil 20 is not provided, the charging current Ic increases rapidly immediately after the power switch 16 is turned on. The charging current Ic decreases when it reaches a peak value (peak current). The peak current Ipa of the charging current Ic is determined by impedance components such as the impedance of the power supply unit 12 and circuit resistance. Since this impedance component is low because it causes unnecessary power consumption, the peak current Ipa has a very high current value. Therefore, an rush current that becomes a surge current having a very large current value is generated in the input current In immediately after the power switch 16 is turned on.
 これに対して、偏磁コイル20を備える電流抑制回路10では、電源スイッチ16をオンした直後は、充電電流Icが急激に上昇する。しかし、電流抑制回路10では、充電電流Icが電流Isに達すると、偏磁コイル20のインダクタンスLが増加し、このインダクタンスLに応じたインピーダンスが発生することで充電電流Icの上昇の傾きが緩やかとなる。したがって、電流抑制回路10は、充電電流Icのピーク電流Ipbを、ピーク電流Ipaと比較して低く抑えることができる。このピーク電流Ipbは、偏磁コイル20のインダクタンスLにより定まり、インダクタンスLを高くすることで、ピーク電流Ipbを低くできる。 On the other hand, in the current suppression circuit 10 including the biased coil 20, the charging current Ic increases rapidly immediately after the power switch 16 is turned on. However, in the current suppression circuit 10, when the charging current Ic reaches the current Is, the inductance L of the magnetic bias coil 20 increases, and an impedance corresponding to the inductance L is generated, so that the slope of the charging current Ic rises gradually. It becomes. Therefore, the current suppression circuit 10 can suppress the peak current Ipb of the charging current Ic to be lower than the peak current Ipa. This peak current Ipb is determined by the inductance L of the magnetic bias coil 20, and by increasing the inductance L, the peak current Ipb can be lowered.
 したがって、電流抑制回路10は、偏磁コイル20を有しない場合と比較して、コンデンサ電圧Vcが緩やかに上昇することになるが、電源スイッチ16をオンしたときの充電電流Icに起因する入力電流Inの突入電流を抑制することができる。 Therefore, in the current suppression circuit 10, the capacitor voltage Vc gradually increases as compared with the case where the bias coil 20 is not provided, but the input current caused by the charging current Ic when the power switch 16 is turned on. The inrush current of In can be suppressed.
 電流抑制回路10においては、ピーク電流Ipb、電流Isを入力電流Inに生じる突入電流の許容範囲に基づいて設定し、設定したピーク電流Ipb、電流Isに基づいて偏磁コイル20のインダクタンスLを設定する。これにより、電流抑制回路10では、コンデンサ18の充電電流Icが増加することに起因して、入力電流Inに突入電流が生じるのを防止できる。 In the current suppression circuit 10, the peak current Ipb and the current Is are set based on the allowable range of the inrush current generated in the input current In, and the inductance L of the magnetic bias coil 20 is set based on the set peak current Ipb and current Is. To do. As a result, the current suppression circuit 10 can prevent an inrush current from occurring in the input current In due to an increase in the charging current Ic of the capacitor 18.
 なお、偏磁コイル20は、負荷14に対して直列に接続することもできる。図6に電流抑制回路10Aは、コンデンサ18に直列に接続した偏磁コイル20が、負荷14に対しても直列に接続させている。電流抑制回路10Aでは、偏磁コイル20を通過した電流が負荷14及びコンデンサ18に流れる。 The magnetic bias coil 20 can be connected in series with the load 14. In the current suppression circuit 10 </ b> A shown in FIG. 6, the bias coil 20 connected in series to the capacitor 18 is also connected in series to the load 14. In the current suppression circuit 10 </ b> A, the current that has passed through the magnetic bias coil 20 flows to the load 14 and the capacitor 18.
 この電流抑制回路10Aでは、負荷14に流れる電流を考慮して電流Isを設定する必要がある。しかし、電流抑制回路10Aにおいても、コンデンサ18に印加される電圧が上昇した場合に、充電電流Icの上昇を抑えることができる。これにより、電流抑制回路10Aにおいても、電流抑制回路10と同様に、突入電流による入力電流Inの急激な上昇を抑えることができる。 In the current suppression circuit 10A, it is necessary to set the current Is in consideration of the current flowing through the load 14. However, also in the current suppression circuit 10A, when the voltage applied to the capacitor 18 increases, the increase in the charging current Ic can be suppressed. Thereby, also in the current suppression circuit 10 </ b> A, similar to the current suppression circuit 10, it is possible to suppress a rapid increase in the input current In due to the inrush current.
 以下に開示の技術の実施形態を説明する。 Embodiments of the disclosed technology will be described below.
 〔第1の実施の形態〕 [First embodiment]
 図7には、開示の技術の第1の実施の形態に係る電源装置30を示す。電源装置30は、電源スイッチ32及びヒューズ34を備え、電源スイッチ32及びヒューズ34を介して商用電源などの交流電源36が接続される。電源装置30は、電源スイッチ32をオンする(接点を閉じる)ことで交流電源36から所定電圧の交流電力(以下、交流電圧Vacと表記する)が供給される。 FIG. 7 shows the power supply device 30 according to the first embodiment of the disclosed technique. The power supply device 30 includes a power switch 32 and a fuse 34, and an AC power supply 36 such as a commercial power supply is connected via the power switch 32 and the fuse 34. The power supply device 30 is supplied with AC power of a predetermined voltage (hereinafter referred to as AC voltage Vac) from the AC power source 36 by turning on the power switch 32 (closing the contact).
 電源装置30は、交流電圧Vacを整流する整流回路38、整流回路38で整流された電圧を平滑化する平滑回路40を備える。電源装置30は、整流回路38で整流した電圧が平滑回路40を通過することで平滑化する。 The power supply device 30 includes a rectifying circuit 38 that rectifies the AC voltage Vac and a smoothing circuit 40 that smoothes the voltage rectified by the rectifying circuit 38. The power supply device 30 smoothes the voltage rectified by the rectifier circuit 38 by passing through the smoothing circuit 40.
 抵抗42は、電源スイッチ32とスイッチ46が開放になったと時にコンデンサ18の電荷を放電するために設けた放電抵抗となる。また、負荷44は、スイッチ46を備える。電源装置30は、負荷44のスイッチ46がオンされることで、所定の直流電圧Vinの電力を負荷44へ供給する。負荷44は、電源装置30から供給される電力に応じて動作することで、インピーダンスRLに応じた電力を消費する。 The resistor 42 is a discharge resistor provided to discharge the electric charge of the capacitor 18 when the power switch 32 and the switch 46 are opened. The load 44 includes a switch 46. The power supply device 30 supplies power of a predetermined DC voltage Vin to the load 44 when the switch 46 of the load 44 is turned on. The load 44 operates according to the power supplied from the power supply device 30 and thereby consumes power according to the impedance RL.
 電源装置30は、負荷44で消費する電力に応じた電流を含む電流(以下、入力電流Inとする)がヒューズ34を流れる。ヒューズ34は、入力電流Inが許容電流値を超えることで溶断し、整流回路38以降への電力供給を遮断する。 In the power supply device 30, a current including the current corresponding to the power consumed by the load 44 (hereinafter referred to as input current In) flows through the fuse 34. The fuse 34 blows when the input current In exceeds the allowable current value, and cuts off the power supply to the rectifier circuit 38 and the subsequent parts.
 なお、開示の技術においては、負荷44にスイッチ46を設けず、電源装置30と負荷44とを一体として、電源スイッチ32によりオン/オフされる電気機器を含む。すなわち、開示の技術においては、負荷44が電源装置30を含む電気機器であっても良い。 In the disclosed technology, the load 44 does not include the switch 46, and includes the electric device that is turned on / off by the power switch 32 by integrating the power supply device 30 and the load 44. That is, in the disclosed technology, the load 44 may be an electric device including the power supply device 30.
 第1の実施の形態において、平滑回路40は、開示の技術における電流抑制回路の一例であり、平滑回路40を含む電源装置30は、開示の技術における電源装置及び電源回路の一例である。 In the first embodiment, the smoothing circuit 40 is an example of a current suppression circuit in the disclosed technology, and the power supply device 30 including the smoothing circuit 40 is an example of a power supply device and a power supply circuit in the disclosed technology.
 整流回路38は、4個のダイオード48がブリッジ接続され、入力される交流電圧Vacを全波整流して出力する。開示の技術においては、全波整流に限らず、半波整流を行うものであっても良い。また、電源装置30は、交流電源36から入力される交流電圧Vacを所定電圧に変換する変圧器を含むこともできる。電源装置30は、変圧器を含むことで、入力される交流電圧Vacを昇圧又は降圧して所望の電圧に変換して出力する。更に、開示の技術においては、交流電源36及び整流回路38に代えて直流電圧を出力する直流電圧源を用いることもできる。 The rectifier circuit 38 has four diodes 48 connected in a bridge manner, and full-wave rectifies and outputs the input AC voltage Vac. The disclosed technology is not limited to full-wave rectification but may be half-wave rectification. The power supply device 30 can also include a transformer that converts the AC voltage Vac input from the AC power supply 36 into a predetermined voltage. By including a transformer, the power supply device 30 boosts or steps down the input AC voltage Vac, converts it to a desired voltage, and outputs it. Further, in the disclosed technique, a DC voltage source that outputs a DC voltage can be used instead of the AC power supply 36 and the rectifier circuit 38.
 平滑回路40は、コンデンサ18を備える。電源装置30では、コンデンサ18の一方の端子側が正側(+側)となり、他方の端子が負側(-側)に接続される。また、平滑回路40は、整流回路38側から見てコンデンサ18が負荷44と並列に接続される。 The smoothing circuit 40 includes a capacitor 18. In the power supply device 30, one terminal side of the capacitor 18 is the positive side (+ side), and the other terminal is connected to the negative side (− side). In the smoothing circuit 40, the capacitor 18 is connected in parallel with the load 44 as viewed from the rectifier circuit 38 side.
 平滑回路40は、偏磁コイル20を備える。偏磁コイル20は、コンデンサ18の+側の端子に、コンデンサ18と直列となるように接続される。また、平滑回路40は、直列接続されたコンデンサ18と偏磁コイル20とが一体で負荷44に対して並列接続されている。なお、偏磁コイル20は、コンデンサ18の-側の端子に入れても良い。 The smoothing circuit 40 includes the biased coil 20. The magnetic bias coil 20 is connected to the positive terminal of the capacitor 18 so as to be in series with the capacitor 18. In the smoothing circuit 40, the capacitor 18 and the bias coil 20 connected in series are integrally connected in parallel to the load 44. The magnetic bias coil 20 may be inserted into the negative terminal of the capacitor 18.
 偏磁コイル20には、コンデンサ18に蓄積する電荷に応じた充電電流Ic、及びコンデンサ18から放出される電荷に応じた電流(放電電流)が流れる。コンデンサ18を充電する場合の充電電流Icは、電源装置30の入力電流Inに含まれる。 The biasing coil 20 is supplied with a charging current Ic corresponding to the charge accumulated in the capacitor 18 and a current (discharge current) corresponding to the charge released from the capacitor 18. The charging current Ic for charging the capacitor 18 is included in the input current In of the power supply device 30.
 開示の技術においては、平滑回路40では、偏磁コイル20を用いることで、放電電流に対して、偏磁コイル20がインピーダンスとして機能しない。また、開示の技術においては、偏磁コイル20は、充電電流Icが電流Isに達するまでは、充電電流Icに対してインピーダンスとして機能しない。 In the disclosed technology, in the smoothing circuit 40, the biased coil 20 does not function as an impedance with respect to the discharge current by using the biased coil 20. In the disclosed technique, the magnetic bias coil 20 does not function as an impedance with respect to the charging current Ic until the charging current Ic reaches the current Is.
 これに対して、偏磁コイル20は、充電電流Icが急激に増加して電流Isを超えることで、コア22内の磁束を打ち消す方向への磁束が生じ、インダクタンスLが大幅に増加する。これにより、偏磁コイル20は、急激に増加した充電電流Icに対するインピーダンスとなり、充電電流Icの増加を抑制する。 On the other hand, in the magnetically biased coil 20, when the charging current Ic rapidly increases and exceeds the current Is, a magnetic flux is generated in a direction that cancels the magnetic flux in the core 22, and the inductance L is greatly increased. Thereby, the magnetic bias coil 20 becomes an impedance with respect to the charging current Ic that is rapidly increased, and suppresses an increase in the charging current Ic.
 電源装置30は、充電電流Icの急激な増加を抑制することで、入力電流Inに突入電流が生じるのを抑制する。電源装置30は、入力電流Inに突入電流が生じるのが抑制されることで、入力電流Inがヒューズ34による保護電流(溶断電流)を超え、ヒューズ34が溶断するのを防止する。 The power supply device 30 suppresses the occurrence of an inrush current in the input current In by suppressing a rapid increase in the charging current Ic. The power supply device 30 prevents the inrush current from being generated in the input current In, thereby preventing the input current In from exceeding the protection current (blown current) by the fuse 34 and blowing the fuse 34.
 以下に、実施の形態の作用として、電源装置30の動作を説明する。 Hereinafter, the operation of the power supply device 30 will be described as an operation of the embodiment.
 電源装置30では、電源スイッチ32がオンされることで、交流電源36の交流電圧Vacが整流回路38へ入力される。整流回路38は、交流電圧Vacを整流して、平滑回路40へ出力する。平滑回路40では、整流回路38から入力される電圧を平滑して負荷44へ出力する。このとき、電源装置30では、偏磁コイル20のインダクタンスLが無視できる程度に小さいので、コンデンサ電圧Vcが負荷44へ供給される直流電圧Vinとなる。 In the power supply device 30, the AC voltage Vac of the AC power supply 36 is input to the rectifier circuit 38 by turning on the power switch 32. The rectifying circuit 38 rectifies the AC voltage Vac and outputs it to the smoothing circuit 40. In the smoothing circuit 40, the voltage input from the rectifier circuit 38 is smoothed and output to the load 44. At this time, in the power supply device 30, the inductance L of the magnetic bias coil 20 is so small that it can be ignored, so that the capacitor voltage Vc becomes the DC voltage Vin supplied to the load 44.
 ところで、電源装置30では、電源スイッチ32がオンされることで、平滑回路40のコンデンサ18の充電が開始される。このコンデンサ18の充電開始時には、充電電流Icとして大きな突入電流が流れ込む。電源装置30では、平滑回路40のコンデンサ18と直列に偏磁コイル20を接続することで充電電流Icの突入電流を抑制する。 Incidentally, in the power supply device 30, when the power switch 32 is turned on, charging of the capacitor 18 of the smoothing circuit 40 is started. At the start of charging of the capacitor 18, a large inrush current flows as the charging current Ic. In the power supply device 30, the inrush current of the charging current Ic is suppressed by connecting the magnetic bias coil 20 in series with the capacitor 18 of the smoothing circuit 40.
 すなわち、図5に示すように、電源装置30では、電源スイッチ32をオンした直後からコンデンサ18が充電されるため、充電電流Icが急激に増加しようとする。 That is, as shown in FIG. 5, in the power supply device 30, since the capacitor 18 is charged immediately after the power switch 32 is turned on, the charging current Ic tends to increase rapidly.
 このとき、偏磁コイル20を備えることで、充電電流Icが電流Isに達すると、偏磁コイル20が充電電流Icに対するインピーダンスとなる。これにより、電源装置30の平滑回路40では、充電電流Icの変化が緩やかとなる。この後、充電電流Icは、ピーク電流Ipbに達すると減少を開始する。 At this time, by providing the magnetic bias coil 20, when the charging current Ic reaches the current Is, the magnetic bias coil 20 becomes an impedance with respect to the charging current Ic. Thereby, in the smoothing circuit 40 of the power supply device 30, the change of the charging current Ic becomes gentle. Thereafter, the charging current Ic starts decreasing when it reaches the peak current Ipb.
 このように、電源装置30では、平滑回路40に設けた偏磁コイル20が充電電流Icに生じる急激な電流の増加を抑制する。また、電源装置30では、コンデンサ18への充電電流Icを抑えることで、入力電流Inが突入電流により増加してヒューズ34を溶断させることがない。 As described above, in the power supply device 30, the magnetic bias coil 20 provided in the smoothing circuit 40 suppresses an abrupt increase in current generated in the charging current Ic. Further, in the power supply device 30, by suppressing the charging current Ic to the capacitor 18, the input current In does not increase due to the inrush current and the fuse 34 is not blown.
 一方、電源装置30では、例えば、交流電源36の停止などにより、入力される交流電力が一時的に停止することがある(以下、瞬時停電という)。電源装置30は、瞬時停電などの停電が生じることで、コンデンサ18が放電する。電源装置30では、電源スイッチ36がオンしていることで、停電復旧直後にコンデンサ18への充電が開始される。 On the other hand, in the power supply device 30, for example, the AC power that is input may be temporarily stopped due to the AC power supply 36 being stopped (hereinafter referred to as an instantaneous power failure). The power supply 30 discharges the capacitor 18 when a power failure such as an instantaneous power failure occurs. In the power supply device 30, since the power switch 36 is turned on, charging of the capacitor 18 is started immediately after the power failure is restored.
 図8及び図9には、瞬時停電の前後における交流電圧Vac、入力電流In及びコンデンサ電圧Vcの変化を示す。なお、図8は、偏磁コイル20を備えた電源装置30における変化を示し、図9は、電源装置30から偏磁コイル20を除いた電源装置における変化を示す。 8 and 9 show changes in the AC voltage Vac, the input current In, and the capacitor voltage Vc before and after the instantaneous power failure. 8 shows a change in the power supply device 30 provided with the magnetic bias coil 20, and FIG. 9 shows a change in the power supply device obtained by removing the magnetic bias coil 20 from the power supply device 30.
 図8及び図9に示すように、電源スイッチ32がオンされて交流電圧Vacの供給が継続している場合、コンデンサ電圧Vc及び入力電流Inは、所定の範囲で変化する。図8及び図9では、このときのコンデンサ電圧Vcを電圧Vc0としている。 As shown in FIGS. 8 and 9, when the power switch 32 is turned on and the supply of the AC voltage Vac is continued, the capacitor voltage Vc and the input current In change within a predetermined range. In FIGS. 8 and 9, the capacitor voltage Vc at this time is the voltage Vc0.
 ここで、時間t1から時間t2までの時間Tで、瞬時停電が生じると、交流電源36からの電力供給が停止する。また、交流電源36の停電が復旧することで、電源装置30には、交流電源36から交流電圧Vacの供給が開始される。停電復旧により交流電圧Vacの供給が開始されることで、電源装置30では、コンデンサ18への充電を開始する。電源装置30では、停電時間の短い瞬時停電であっても、コンデンサ18が放電することで、コンデンサ電圧Vcが電圧Vc0から降下する(電圧降下)。 Here, when an instantaneous power failure occurs at time T from time t1 to time t2, the power supply from the AC power supply 36 is stopped. In addition, the supply of the AC voltage Vac from the AC power supply 36 is started to the power supply device 30 when the power failure of the AC power supply 36 is restored. When the supply of the AC voltage Vac is started by the power failure recovery, the power supply device 30 starts charging the capacitor 18. In the power supply device 30, the capacitor voltage Vc drops from the voltage Vc <b> 0 (voltage drop) by discharging the capacitor 18 even in the case of an instantaneous power failure with a short power failure time.
 このために、停電が復旧したときに、電源装置30では、コンデンサ18への充電が開始される。このときに、コンデンサ18に印加される電圧は、停電時に生じた電圧降下分の電圧だけ上昇される。この電圧上昇により充電電流Icが急激に増加し、充電電流Icの増加に応じて入力電流Inが増加する。 For this reason, when the power failure is restored, the power supply device 30 starts charging the capacitor 18. At this time, the voltage applied to the capacitor 18 is increased by a voltage corresponding to a voltage drop generated at the time of a power failure. As the voltage rises, the charging current Ic increases rapidly, and the input current In increases as the charging current Ic increases.
 これにより、図9に示すように、偏磁コイル20を有していない電源装置では、充電電流Icが急激に増加すると、入力電流Inに大きな電流値(ピーク電流Ip)の突入電流が生じてしまう。 As a result, as shown in FIG. 9, in the power supply device that does not have the bias coil 20, when the charging current Ic increases rapidly, an inrush current having a large current value (peak current Ip) occurs in the input current In. End up.
 これに対して、図8に示すように、偏磁コイル20を備えた電源装置30では、充電電流Icが急激に増加する。しかし、電源装置30では、増加した充電電流Icが電流Isに達すると、偏磁コイル20のインダクタンスLが増加し、インダクタンスLに応じたインピーダンスが充電電流Icの上昇及びピーク電流を抑制する。 On the other hand, as shown in FIG. 8, in the power supply device 30 provided with the magnetic bias coil 20, the charging current Ic increases rapidly. However, in the power supply device 30, when the increased charging current Ic reaches the current Is, the inductance L of the magnetic bias coil 20 increases, and the impedance corresponding to the inductance L suppresses the increase in the charging current Ic and the peak current.
 これにより、電源装置30では、入力電流Inに突入電流が生じるのが抑えられる。したがって、電源装置30では、瞬時停電であっても、入力電流Inにヒューズ34を溶断させる突入電流が生じるのを抑えることができる。 Thereby, in the power supply device 30, the occurrence of an inrush current in the input current In can be suppressed. Therefore, the power supply device 30 can suppress the occurrence of an inrush current that causes the fuse 34 to blow in the input current In even in the event of an instantaneous power failure.
 〔第2の実施の形態〕 [Second Embodiment]
 次に開示の技術における第2の実施の形態を説明する。なお、第2の実施の形態において、第1の実施の形態と同一の部分には同一の符号を付与してその説明を省略する。 Next, a second embodiment of the disclosed technique will be described. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図10には、第2の実施の形態に係る電源装置50を示している。この電源装置50は、突入電流抑制用の抵抗52、バイパススイッチ54及び電圧検出回路56を含む点で電源装置30と相違する。抵抗52は、整流回路38と平滑回路40の偏磁コイル20との間に接続し、バイパススイッチ54は、抵抗52に並列に接続している。また、電圧検出回路56は、負荷44へ供給される電圧V(直流電圧Vin)を検出する。 FIG. 10 shows a power supply device 50 according to the second embodiment. This power supply device 50 is different from the power supply device 30 in that it includes a resistor 52 for suppressing inrush current, a bypass switch 54 and a voltage detection circuit 56. The resistor 52 is connected between the rectifying circuit 38 and the magnetic bias coil 20 of the smoothing circuit 40, and the bypass switch 54 is connected in parallel to the resistor 52. The voltage detection circuit 56 detects the voltage V (DC voltage Vin) supplied to the load 44.
 電源装置50は、バイパススイッチ54がオフされて接点が開かれていることで、整流回路38の出力を、抵抗52を介して平滑回路40、負荷44へ供給する。また、電源装置50は、バイパススイッチ54がオンされて接点が閉じられることで、整流回路38の出力を、抵抗52を通過させずに平滑回路40へ供給する。電圧検出回路56は、検出する電圧Vが予め設定した設定電圧Vsに達することでバイパススイッチ54をオンする。 The power supply device 50 supplies the output of the rectifier circuit 38 to the smoothing circuit 40 and the load 44 through the resistor 52 by turning off the bypass switch 54 and opening the contact. Further, the power supply device 50 supplies the output of the rectifier circuit 38 to the smoothing circuit 40 without passing through the resistor 52 by turning on the bypass switch 54 and closing the contact. The voltage detection circuit 56 turns on the bypass switch 54 when the detected voltage V reaches a preset setting voltage Vs.
 ここで、バイパススイッチ54がオフしている場合、電圧検出回路56は、抵抗42の端子電圧を検出する。この抵抗42の端子電圧は、コンデンサ電圧Vcとなっている。整流回路38の出力電圧を電圧Vr、抵抗42のインピーダンス(抵抗値)をR2、抵抗52のインピーダンス(抵抗値)をR1とする。このとき、バイパススイッチ52がオフしているときのコンデンサ電圧Vc1は、Vc1=Vr・R2/(R1+R2)となる。電圧検出回路56は、この電圧に基づいて設定した設定電圧Vsを用いる。 Here, when the bypass switch 54 is OFF, the voltage detection circuit 56 detects the terminal voltage of the resistor 42. The terminal voltage of the resistor 42 is the capacitor voltage Vc. The output voltage of the rectifier circuit 38 is a voltage Vr, the impedance (resistance value) of the resistor 42 is R2, and the impedance (resistance value) of the resistor 52 is R1. At this time, the capacitor voltage Vc1 when the bypass switch 52 is OFF is Vc1 = Vr · R2 / (R1 + R2). The voltage detection circuit 56 uses a set voltage Vs set based on this voltage.
 また、電圧検出回路56は、電圧Vが設定電圧Vsに達している場合(V≧Vs)、バイパススイッチ54を閉じる。この場合の、コンデンサ電圧Vc2は、整流回路38から出力された電圧Vrに応じた電圧となる。 Further, the voltage detection circuit 56 closes the bypass switch 54 when the voltage V reaches the set voltage Vs (V ≧ Vs). In this case, the capacitor voltage Vc2 is a voltage corresponding to the voltage Vr output from the rectifier circuit 38.
 以下に、第2の実施の形態の作用として電源装置50の動作を説明する。 Hereinafter, the operation of the power supply device 50 will be described as an operation of the second embodiment.
 電源装置50では、バイパススイッチ54がオフしている状態で、電源スイッチ32がオンされる。電源装置50では、電源スイッチ32をオンすることで、抵抗52を通過した電流がコンデンサ18へ流れる。これにより、電源スイッチ32の投入直後のコンデンサ18の充電電流Icは、ピーク電流が抵抗52によって抑制される。また、電圧検出回路56は、検出する電圧Vが設定電圧Vsに達すると、バイパススイッチ54をオンする。 In the power supply device 50, the power switch 32 is turned on while the bypass switch 54 is turned off. In the power supply device 50, the current that has passed through the resistor 52 flows to the capacitor 18 by turning on the power switch 32. As a result, the peak current of the charging current Ic of the capacitor 18 immediately after the power switch 32 is turned on is suppressed by the resistor 52. Further, the voltage detection circuit 56 turns on the bypass switch 54 when the detected voltage V reaches the set voltage Vs.
 電源装置50は、バイパススイッチ54がオンすると、コンデンサ電圧Vcが、抵抗52に印加されていた電圧(Vr・R1/(R1+R2))だけ上昇する。この電圧上昇は、電源スイッチ32をオンしたときの突入電流を抑制する抵抗52の抵抗値R1を大きくすることで上昇電圧が高くなる。 In the power supply device 50, when the bypass switch 54 is turned on, the capacitor voltage Vc increases by the voltage (Vr · R1 / (R1 + R2)) applied to the resistor 52. The voltage rise is increased by increasing the resistance value R1 of the resistor 52 that suppresses the inrush current when the power switch 32 is turned on.
 電源装置50では、平滑回路40Aに偏磁コイル20を設けていることで、バイパススイッチ54をオンしたときの電圧変化に起因して、充電電流Icが急激に増加するのを抑えることができる。また、電源装置50は、充電電流Icが急激に増加するのを抑えることで、突入電流が入力電流Inに現れてヒューズ34を溶断させてしまうことがない。 In the power supply device 50, by providing the magnetizing coil 20 in the smoothing circuit 40A, it is possible to suppress a sudden increase in the charging current Ic due to a voltage change when the bypass switch 54 is turned on. In addition, the power supply device 50 prevents the charging current Ic from rapidly increasing, so that the inrush current does not appear in the input current In and the fuse 34 is not blown.
 図11及び図12には、交流電圧Vac、入力電流In及びコンデンサ電圧Vcの変化を示す。なお、図11は、偏磁コイル20を備えた電源装置50の変化を示し、図12は、電源装置50から偏磁コイル20を除いた電源装置の変化を示す。 11 and 12 show changes in the AC voltage Vac, the input current In, and the capacitor voltage Vc. 11 shows a change of the power supply device 50 provided with the magnetic bias coil 20, and FIG. 12 shows a change of the power supply device obtained by removing the magnetic bias coil 20 from the power supply device 50.
 図11及び図12に示すように、電源スイッチ32をオンすることで、コンデンサ18への充電が開始される。このとき、電源装置50では、バイパススイッチ54がオフしていることで、コンデンサ電圧Vcが急激に上昇することがなく、抵抗42の抵抗値R2及び抵抗52の抵抗値R1によって定まるコンデンサ電圧Vc1となる。 As shown in FIGS. 11 and 12, charging the capacitor 18 is started by turning on the power switch 32. At this time, in the power supply device 50, since the bypass switch 54 is turned off, the capacitor voltage Vc does not increase rapidly, and the capacitor voltage Vc1 determined by the resistance value R2 of the resistor 42 and the resistance value R1 of the resistor 52 Become.
 この後、電圧検出回路56が、時間t3のタイミングでバイパススイッチ54をオンすることで、コンデンサ電圧Vcが電圧Vc2まで上昇する。すなわち、バイパススイッチ52をオンすることでコンデンサ電圧Vcが上昇し、これに伴い、充電電流Icが急激に増加しようとする。 Thereafter, the voltage detection circuit 56 turns on the bypass switch 54 at the timing of time t3, whereby the capacitor voltage Vc rises to the voltage Vc2. That is, by turning on the bypass switch 52, the capacitor voltage Vc increases, and accordingly, the charging current Ic tends to increase rapidly.
 ここで、偏磁コイル20を有していない電源装置では、図12に示すように、充電電流Icの急激な増加が入力電流Inに突入電流として現れてしまう。このときの入力電流Inのピーク電流Ipは、抵抗52によるインピーダンスがなくなることで極めて大きな電流値となる。 Here, in the power supply device that does not have the magnetic bias coil 20, as shown in FIG. 12, a rapid increase in the charging current Ic appears as an inrush current in the input current In. At this time, the peak current Ip of the input current In becomes an extremely large current value because the impedance due to the resistor 52 disappears.
 これに対して、電源装置50では、バイパススイッチ54をオンすることにより充電電流Icが増加する。電源装置50では、充電電流Icが電流Isに達することで、偏磁コイル20のインダクタンスLが増大し、インダクタンスLに応じたインピーダンスにより充電電流Icの急激な増加を抑える。また、充電電流Icの急激な増加を抑えることで、コンデンサ電圧Vcが電圧Vc2に達した時のピーク電流Ipbを低く抑えることができる。これにより、図11に示すように、入力電流Inに突入電流が生じてしまうのを抑えることができる。 In contrast, in the power supply device 50, the charging current Ic is increased by turning on the bypass switch 54. In the power supply device 50, when the charging current Ic reaches the current Is, the inductance L of the magnetically biased coil 20 increases, and the rapid increase of the charging current Ic is suppressed by the impedance corresponding to the inductance L. Further, by suppressing the rapid increase in the charging current Ic, the peak current Ipb when the capacitor voltage Vc reaches the voltage Vc2 can be suppressed low. Thereby, as shown in FIG. 11, it can suppress that an inrush current arises in the input current In.
 電源装置50では、バイパススイッチ54をオンして抵抗52をバイパスさせたときの電圧変化による突入電流を抑えるために、電流Isを低くできる。したがって、コア22に設ける永久磁石26の磁力を低くすることができる。 In the power supply device 50, the current Is can be reduced in order to suppress an inrush current due to a voltage change when the bypass switch 54 is turned on to bypass the resistor 52. Therefore, the magnetic force of the permanent magnet 26 provided on the core 22 can be reduced.
 また、電源装置50は、瞬時停電等の停電が生じた場合、停電復旧時にコンデンサ18を充電するための充電電流Icが流れる。電源装置50では、偏磁コイル20を設けていることで、瞬時停電などの停電復旧時の充電電流Icの上昇に起因する突入電流を抑制することができる。 In addition, when a power failure such as an instantaneous power failure occurs, the power supply device 50 flows a charging current Ic for charging the capacitor 18 when the power failure is restored. In the power supply device 50, the inrush current resulting from the increase in the charging current Ic at the time of restoration of a power failure such as an instantaneous power failure can be suppressed by providing the magnetic bias coil 20.
 〔第3の実施の形態〕 [Third embodiment]
 次に開示の技術における第3の実施の形態を説明する。第3の実施の形態において、第1又は第2の実施の形態と同一の部分については、同一の符号を付与してその説明を省略する。 Next, a third embodiment of the disclosed technology will be described. In the third embodiment, the same parts as those in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図13には、開示の技術における第3の実施の形態に係る電源装置60を示している。この電源装置60は、力率改善部を備えた点で第2の実施の形態に係る電源装置50と相違する。 FIG. 13 shows a power supply device 60 according to a third embodiment of the disclosed technology. The power supply device 60 is different from the power supply device 50 according to the second embodiment in that it includes a power factor improving unit.
 電源装置60は力率改善部としてPFC(Power Factor Control)回路62を備えるPFC回路62は、チョークコイル64、ダイオード66、スイッチング素子68、PFC制御部70を含む。スイッチング素子68としては、例えば、MOS-FETを用いることができるが、これに限らず、公知の半導体素子を用いることができる。 The power supply device 60 includes a PFC (Power Factor Control) circuit 62 as a power factor improvement unit. The PFC circuit 62 includes a choke coil 64, a diode 66, a switching element 68, and a PFC control unit 70. As the switching element 68, for example, a MOS-FET can be used, but not limited to this, a known semiconductor element can be used.
 PFC回路62は、抵抗52及びバイパススイッチ54の負荷側に、チョークコイル64とダイオード66とが直列に接続されている。開示の技術におけるチョークコイル64は、非偏磁コイルであり、公知のコイルを適用することができる。また、ダイオード66は、電流方向を規制し得る公知の整流素子を適用することができる。 The PFC circuit 62 has a choke coil 64 and a diode 66 connected in series on the load side of the resistor 52 and the bypass switch 54. The choke coil 64 in the disclosed technique is a non-biased coil, and a known coil can be applied. The diode 66 may be a known rectifying element that can regulate the current direction.
 スイッチング素子68は、ドレインDがチョークコイル64とダイオード66との間に接続し、ソースSが整流回路38の-側に接続している。PFC制御部70は、スイッチング素子68のゲートGにスイッチング信号を入力することで、スイッチング素子68をオン/オフ駆動する。 In the switching element 68, the drain D is connected between the choke coil 64 and the diode 66, and the source S is connected to the negative side of the rectifier circuit 38. The PFC control unit 70 drives the switching element 68 on / off by inputting a switching signal to the gate G of the switching element 68.
 電源装置60に設けた平滑回路40Bは、PFC回路62を備えることで所謂アクティブ平滑フィルタを形成している。PFC制御部70は、整流回路38の出力電圧及び出力電流を検出し、検出した出力電流及び入力電流に基づき、スイッチング素子68をオン/オフ駆動するときのスイッチング信号を生成する。このとき、PFC制御部70は、出力電圧の波形の位相に出力電流の波形の位相を合わせるようにスイッチング信号のデューティー比を設定し、設定したデューティー比でスイッチング素子を駆動する。 The smoothing circuit 40B provided in the power supply device 60 includes a PFC circuit 62 to form a so-called active smoothing filter. The PFC control unit 70 detects the output voltage and output current of the rectifier circuit 38, and generates a switching signal for driving the switching element 68 on / off based on the detected output current and input current. At this time, the PFC control unit 70 sets the duty ratio of the switching signal so that the phase of the waveform of the output current matches the phase of the waveform of the output voltage, and drives the switching element with the set duty ratio.
 これにより、電源装置60では、入力電流Inの位相が交流電圧Vacの位相に合わせられる。なお、PFC回路62は、公知の一般的構成を適用できる。また、電源装置60に設ける力率改善部は、PFC回路62に限らず、電源装置60に入力される交流電圧Vacの位相に、入力電流Inの位相を合わせる公知の技術を適用することができる。 Thereby, in the power supply device 60, the phase of the input current In is matched with the phase of the AC voltage Vac. A known general configuration can be applied to the PFC circuit 62. The power factor improving unit provided in the power supply device 60 is not limited to the PFC circuit 62, and a known technique for matching the phase of the input current In to the phase of the AC voltage Vac input to the power supply device 60 can be applied. .
 以下に、第3の実施の形態の作用として電源装置60の動作を説明する。 Hereinafter, the operation of the power supply apparatus 60 will be described as an operation of the third embodiment.
 電源装置60においても、電源装置50と同様に、バイパススイッチ52がオフしている状態で、電源スイッチ32がオンされる。このときに、抵抗52が充電電流Inの増加を抑え、入力電流Inに突入電流が生じるのを抑える。 In the power supply device 60 as well, similarly to the power supply device 50, the power switch 32 is turned on while the bypass switch 52 is turned off. At this time, the resistor 52 suppresses an increase in the charging current In and suppresses an inrush current from being generated in the input current In.
 また、電源装置60は、バイパススイッチ54をオンしたときの充電電流Icの増加を、偏磁コイル20によって抑えるので、入力電流Inに突入電流が生じるのが抑えられる。 In addition, since the power supply device 60 suppresses the increase in the charging current Ic when the bypass switch 54 is turned on by the magnetic bias coil 20, it is possible to suppress the inrush current from being generated in the input current In.
 更に、電源装置60は、PFC回路62を備えることで、交流電圧Vacと入力電流Inの位相を合わせることができるので、電力の使用効率の向上が図られる。 Furthermore, since the power supply device 60 includes the PFC circuit 62, the phase of the AC voltage Vac and the input current In can be matched, so that the power use efficiency can be improved.
 電源装置60では、瞬時停電などの停電により交流電源36からの電力供給が一時的に停止することで、コンデンサ18が放電する。また、電源装置60は、停電が復旧することでコンデンサ18への充電が開始される。電源装置60では、停電復旧時に、バイパススイッチ54がオンしていると、コンデンサ18の充電電流Icが急激に増加することになる。 In the power supply device 60, the power supply from the AC power supply 36 is temporarily stopped due to a power failure such as an instantaneous power failure, whereby the capacitor 18 is discharged. The power supply 60 starts charging the capacitor 18 when the power failure is restored. In the power supply device 60, when the bypass switch 54 is turned on at the time of recovery from the power failure, the charging current Ic of the capacitor 18 increases rapidly.
 このとき、電源装置60では、コンデンサ18と直列接続した偏磁コイル20を備えることで、コンデンサ18へ充電電流Icが急激に増加してしまうのを抑えることができる。これにより、電源装置60は、停電復旧時における入力電流Inに突入電流が生じてしまうのを抑えられる。 At this time, the power supply device 60 can suppress the charging current Ic from rapidly increasing to the capacitor 18 by providing the magnetically biased coil 20 connected in series with the capacitor 18. Thereby, the power supply device 60 can suppress an inrush current from being generated in the input current In when the power failure is restored.
 以上では、電源装置に電流抑制を図る態様を説明したが、開示の技術の適用は、これに限るものではない。図14には、開示の技術における他の態様を示す。図14には、半導体回路72及び半導体回路72に動作用の直流電圧を供給する電源基板74を示す。半導体回路72は、一対の電源端子76A、76Bを備えている。また、電源基板74は、一対の出力端子78A、78Bを備える。電源基板74は、一対の出力端子78A、78Bに半導体回路72の電源端子76A、76Bを接続することで、半導体回路72へ動作用の直流電圧を供給する。 In the above, although the aspect which aims at current suppression to a power supply device was demonstrated, application of the technique of an indication is not restricted to this. FIG. 14 shows another aspect of the disclosed technology. FIG. 14 shows a semiconductor circuit 72 and a power supply substrate 74 that supplies a DC voltage for operation to the semiconductor circuit 72. The semiconductor circuit 72 includes a pair of power supply terminals 76A and 76B. The power supply board 74 includes a pair of output terminals 78A and 78B. The power supply board 74 supplies a DC voltage for operation to the semiconductor circuit 72 by connecting the power supply terminals 76A and 76B of the semiconductor circuit 72 to the pair of output terminals 78A and 78B.
 開示の技術における半導体回路72には、コンデンサ18及び偏磁コイル20が直列接続されている。このとき、偏磁コイル20は、一端が+側の電源端子76Aに接続し、他端がコンデンサ18の+側に接続している。コンデンサ18は、-側が-側の電源端子76Bに接続している。 The capacitor 18 and the magnetic bias coil 20 are connected in series to the semiconductor circuit 72 in the disclosed technology. At this time, the bias coil 20 has one end connected to the + side power supply terminal 76 </ b> A and the other end connected to the + side of the capacitor 18. The capacitor 18 is connected to the power terminal 76B on the negative side.
 電源基板74が直流電圧を出力可能な活性状態であるときに、出力端子78A、78Bに、半導体回路76A,76Bを接続すると、半導体回路72には、電源基板74から動作用の電力が供給される。 When the power supply board 74 is in an active state capable of outputting a DC voltage, when the semiconductor circuits 76A and 76B are connected to the output terminals 78A and 78B, power for operation is supplied to the semiconductor circuit 72 from the power supply board 74. The
 半導体回路72は、活性状態の電源基板74に接続すると、接続直後に、コンデンサ18の充電が開始され、充電電流Icが急激に上昇する。これにより、電源基板74には、突入電流が流れる。このとき、コンデンサ18に直列接続した偏磁コイル20を有する半導体回路72は、偏磁コイル20が充電電流Icの急激な上昇及びピーク電流を抑制する。 When the semiconductor circuit 72 is connected to the active power supply substrate 74, immediately after the connection, the capacitor 18 starts to be charged, and the charging current Ic rapidly increases. As a result, an inrush current flows through the power supply substrate 74. At this time, in the semiconductor circuit 72 having the magnetically biased coil 20 connected in series to the capacitor 18, the magnetically biased coil 20 suppresses the rapid increase and the peak current of the charging current Ic.
 したがって、半導体回路72が接続した電源基板74は、充電電流Icの急激な上昇に起因する突入電流の発生が抑えられ、突入電流が生じることで過電流保護機能などが作動してしまうのが防止される。 Therefore, the power supply board 74 connected to the semiconductor circuit 72 can suppress the occurrence of an inrush current due to a sudden rise in the charging current Ic, and prevent the overcurrent protection function from being activated due to the occurrence of the inrush current. Is done.
 開示の技術においては、半導体回路に限らず、電源基板74等の直流電圧を出力する直流電源に接続することで、直流電源から直流電圧の供給を受け、内部に形成された負荷回路が作動する各種の負荷回路基板に適用することを含む。 In the disclosed technique, not only the semiconductor circuit but also a DC power supply that outputs a DC voltage, such as the power supply board 74, is connected to a DC voltage supplied from the DC power supply, and a load circuit formed therein is activated. Including application to various load circuit boards.
 開示の技術では、直流電圧が印加されるコンデンサなどの蓄電部材に対して適用することで、蓄電部材の充電開始時に生じる充電電流の上昇及び、充電電流の最大値を抑えることができる。したがって、充電電流の上昇に起因する突入電流の発生を抑える。 In the disclosed technology, by applying to a power storage member such as a capacitor to which a DC voltage is applied, it is possible to suppress an increase in charging current that occurs at the start of charging of the power storage member and a maximum value of the charging current. Therefore, the occurrence of an inrush current due to an increase in charging current is suppressed.
 開示の技術は、以上の実施の形態に記載に限らず、各部分が目的とする機能を含む形態であれば良い。また、本明細書に記載された全ての特許出願及び特許出願に開示される技術文献は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に、参照により取り込まれる。 The disclosed technology is not limited to the above-described embodiment, and any form may be used as long as each part includes a target function. In addition, all patent applications and technical documents disclosed in the patent application described in this specification include cases where individual documents, patent applications, and technical standards are specifically and individually described to be incorporated by reference. To the same extent, it is incorporated herein by reference.

Claims (13)

  1.  印加される直流電圧に応じた充電電流により電荷を蓄積するコンデンサと、
     前記コンデンサに対して直列接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備え、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する偏磁コイルと、
     を含む電流抑制回路。
    A capacitor for accumulating charge by a charging current according to the applied DC voltage;
    A coil connected in series to the capacitor; a core around which the coil is wound; and a magnetizing member that forms a magnetic field having a saturation magnetic flux density inside the core in the core, wherein the charging current flowing through the coil is predetermined. A magnetized coil whose inductance increases by becoming more than the value,
    Including a current suppression circuit.
  2.  前記コンデンサが、前記直流電圧の印加される負荷と並列接続された請求項1記載の電流抑制回路。 The current suppression circuit according to claim 1, wherein the capacitor is connected in parallel with a load to which the DC voltage is applied.
  3.  前記偏磁コイルと前記コンデンサとが前記負荷に並列接続された請求項2記載の電流抑制回路。 3. The current suppression circuit according to claim 2, wherein the magnetic bias coil and the capacitor are connected in parallel to the load.
  4.  交流電圧を整流して負荷に供給する直流電圧を生成する整流回路と、
     前記整流回路から出力される直流電圧が印加されるコンデンサと、
     前記コンデンサに対して直列接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備え、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する偏磁コイルと、
     を含む電源回路。
    A rectifying circuit that rectifies the AC voltage and generates a DC voltage to be supplied to the load;
    A capacitor to which a DC voltage output from the rectifier circuit is applied;
    A coil connected in series to the capacitor; a core around which the coil is wound; and a magnetizing member that forms a magnetic field having a saturation magnetic flux density inside the core in the core, wherein the charging current flowing through the coil is predetermined. A magnetized coil whose inductance increases by becoming more than the value,
    Including power supply circuit.
  5.  前記コンデンサに前記負荷が並列接続される請求項4記載の電源回路。 The power supply circuit according to claim 4, wherein the load is connected in parallel to the capacitor.
  6.  前記偏磁コイルと前記コンデンサとに前記負荷が並列接続される請求項5記載の電源回路。 6. The power supply circuit according to claim 5, wherein the load is connected in parallel to the magnetic bias coil and the capacitor.
  7.  負荷に直流電圧を供給する電圧源と、
     前記電圧源から出力される直流電圧が印加されるコンデンサと、
     前記コンデンサに対して直列接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備え、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する偏磁コイルと、
     を含む電源装置。
    A voltage source for supplying a DC voltage to the load;
    A capacitor to which a DC voltage output from the voltage source is applied;
    A coil connected in series to the capacitor; a core around which the coil is wound; and a magnetizing member that forms a magnetic field having a saturation magnetic flux density inside the core in the core, wherein the charging current flowing through the coil is predetermined. A magnetized coil whose inductance increases by becoming more than the value,
    Including power supply.
  8.  前記コンデンサが前記負荷と並列接続された請求項7記載の電源装置。 The power supply device according to claim 7, wherein the capacitor is connected in parallel with the load.
  9.  前記偏磁コイルと前記コンデンサとが前記負荷に並列接続された請求項8記載の電源装置。 The power supply device according to claim 8, wherein the magnetic bias coil and the capacitor are connected in parallel to the load.
  10.  前記電圧源が、交流電圧源から入力される交流電圧を整流する整流回路を含む請求項9記載の電源装置。 The power supply apparatus according to claim 9, wherein the voltage source includes a rectifier circuit that rectifies an AC voltage input from an AC voltage source.
  11.  前記交流電圧源から前記交流電圧の入力が開始されたときに前記整流回路から出力する整流電圧の電流を抑制する電流抑制部材と、
     前記電流抑制部材により電流が抑制されて前記負荷へ出力される電圧を検出する電圧検出部と、
     前記電圧検出部の検出電圧が所定電圧に達することで、前記電流抑制部材をバイパスさせて前記整流電圧を出力させるバイパス部と、
     を含む請求項10記載の電源装置。
    A current suppressing member that suppresses the current of the rectified voltage output from the rectifier circuit when the input of the AC voltage is started from the AC voltage source;
    A voltage detection unit that detects a voltage that is output to the load while the current is suppressed by the current suppression member;
    When the detection voltage of the voltage detection unit reaches a predetermined voltage, a bypass unit that bypasses the current suppression member and outputs the rectified voltage;
    The power supply device according to claim 10, comprising:
  12.  外部電源から直流電圧の供給を受けるための一対の端子と、
     前記一対の端子間に印加される前記直流電圧の上昇に応じた充電電流により電荷を蓄積するコンデンサと、
     前記コンデンサ直列接続されて前記一対の端子間に接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備え、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する偏磁コイルと、
     を含む半導体回路。
    A pair of terminals for receiving a DC voltage from an external power source;
    A capacitor that accumulates electric charge by a charging current corresponding to an increase in the DC voltage applied between the pair of terminals;
    A coil connected in series to the capacitor and connected between the pair of terminals; a core around which the coil is wound; and a magnetizing member that forms a magnetic field in the core with a saturation magnetic flux density inside the core. A magnetically biased coil whose inductance increases when the flowing charging current becomes a predetermined value or more,
    A semiconductor circuit including:
  13.  外部電源から直流電圧の供給を受けるための一対の端子と、
     前記一対の端子間に印加される前記直流電圧の上昇に応じた充電電流により電荷を蓄積するコンデンサと、
     前記コンデンサ直列接続されて前記一対の端子間に接続されたコイル、前記コイルが巻き付けられたコア、前記コアの内部を飽和磁束密度とする磁界を前記コアに形成する磁化部材を備え、前記コイルに流れる前記充電電流が所定値以上となることでインダクタンスが増加する偏磁コイルと、
     を含む負荷回路基板。
    A pair of terminals for receiving a DC voltage from an external power source;
    A capacitor that accumulates electric charge by a charging current corresponding to an increase in the DC voltage applied between the pair of terminals;
    A coil connected in series to the capacitor and connected between the pair of terminals; a core around which the coil is wound; and a magnetizing member that forms a magnetic field in the core with a saturation magnetic flux density inside the core. A magnetically biased coil whose inductance increases when the flowing charging current becomes a predetermined value or more,
    Including load circuit board.
PCT/JP2012/061617 2012-05-02 2012-05-02 Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate WO2013164896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014513333A JPWO2013164896A1 (en) 2012-05-02 2012-05-02 Current suppression circuit, power supply circuit, power supply device, semiconductor circuit, and load circuit board
PCT/JP2012/061617 WO2013164896A1 (en) 2012-05-02 2012-05-02 Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061617 WO2013164896A1 (en) 2012-05-02 2012-05-02 Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate

Publications (1)

Publication Number Publication Date
WO2013164896A1 true WO2013164896A1 (en) 2013-11-07

Family

ID=49514305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061617 WO2013164896A1 (en) 2012-05-02 2012-05-02 Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate

Country Status (2)

Country Link
JP (1) JPWO2013164896A1 (en)
WO (1) WO2013164896A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123596A (en) * 2005-10-28 2007-05-17 Yaskawa Electric Corp Dc reactor and inverter device
JP2008178289A (en) * 2007-01-16 2008-07-31 General Electric Co <Ge> Power supply device for x-ray tube, and method to operate the same
JP2009273335A (en) * 2008-05-12 2009-11-19 Nichicon Corp Power supply apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123596A (en) * 2005-10-28 2007-05-17 Yaskawa Electric Corp Dc reactor and inverter device
JP2008178289A (en) * 2007-01-16 2008-07-31 General Electric Co <Ge> Power supply device for x-ray tube, and method to operate the same
JP2009273335A (en) * 2008-05-12 2009-11-19 Nichicon Corp Power supply apparatus

Also Published As

Publication number Publication date
JPWO2013164896A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP4104609B2 (en) Method for controlling the current and voltage of a switch mode power supply unit
EP1605576A1 (en) Device and method for extending the input voltage range of a DC/DC converter
JP4783195B2 (en) Buck converter
TW201815042A (en) Power conversion device
TW201032454A (en) Power converter and method thereof
JP4454530B2 (en) Power factor correction circuit
JP6951631B2 (en) Synchronous rectifier circuit and switching power supply
US20090122579A1 (en) Mixed flyback-forward topology converter with reduced ripple current
WO2013164896A1 (en) Current suppressing circuit, power supply circuit, power supply apparatus, semiconductor circuit, and load circuit substrate
JP5783597B2 (en) Switching power supply
JP2005176535A (en) Switching power supply unit
TWI420790B (en) Controller for switching power supply
JP2005277088A (en) Horizontally structured transformer
JP5769886B2 (en) Power converter
JP4232881B2 (en) Switching power supply
JP2011205810A (en) Overvoltage protection circuit of non-insulation converter
JP5440979B2 (en) AC-DC converter
JP5166730B2 (en) Three-phase earth leakage breaker
TW201616760A (en) Electrical leakage circuit breaker
JP2006223021A (en) Switching power supply device
WO2010110342A1 (en) Power conversion device
JP4505724B2 (en) DC-DC converter
JP4232127B2 (en) Flyback converter
JP5371711B2 (en) Transformer for switching power supply
JP4893904B2 (en) Current limit circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875798

Country of ref document: EP

Kind code of ref document: A1