WO2013164525A1 - Systeme d'accumulateurs et piles aluminium air - Google Patents

Systeme d'accumulateurs et piles aluminium air Download PDF

Info

Publication number
WO2013164525A1
WO2013164525A1 PCT/FR2013/050766 FR2013050766W WO2013164525A1 WO 2013164525 A1 WO2013164525 A1 WO 2013164525A1 FR 2013050766 W FR2013050766 W FR 2013050766W WO 2013164525 A1 WO2013164525 A1 WO 2013164525A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrolyte
air
aluminum
cell according
Prior art date
Application number
PCT/FR2013/050766
Other languages
English (en)
Inventor
Serge Gonzalez
Renaud Revel
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to JP2015509470A priority Critical patent/JP2015521344A/ja
Priority to EP13720463.2A priority patent/EP2845262A1/fr
Priority to CN201380023619.8A priority patent/CN104303360A/zh
Priority to KR1020147033602A priority patent/KR20150018527A/ko
Priority to CA2869911A priority patent/CA2869911A1/fr
Priority to US14/398,481 priority patent/US20150093659A1/en
Publication of WO2013164525A1 publication Critical patent/WO2013164525A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to the field of storage of electrical energy, in particular the field of electrochemical metal-air cells.
  • the storage of electrical energy including batteries are increasingly used and for increasingly diverse applications: mobile phones, laptops, portable tools, electric vehicles or hybrids ...
  • the energy storage means must be light, compact and must satisfy the electrical characteristics associated with their use.
  • a metal-air electrochemical cell consists of a negative electrode (anode) where the metal will be the seat of an oxidation reaction during the discharge of the cell, while the positive electrode (cathode, also called electrode to air) involves a reduction reaction of the oxygen contained in the air, an electrolyte ensures the ionic conduction between electrodes by means of ionic species.
  • the air electrode is most often made of an assembly of two active layers containing a catalyst that sandwich a metal grid.
  • Lithium is the most electronegative and lightest element of metals; Naturally a lot of development work is underway on Li-air batteries, as shown for example in US patent application 2009/0053594 A1.
  • lithium is a material that can present a number of hazards when exposed to ambient air and, if the natural reserves of this metal are important, the costs of extraction and treatment are also important.
  • the massive use of lithium in Li-ion batteries tends to reduce these reserves.
  • Silicon is also of increasing interest and patent application WO 201 1/061728 A1 describes a system of this type. In this document, the silicon used is doped n-type or p, which is a relatively high additional cost, even if the implementation technologies are perfectly mastered for microelectronics.
  • Aluminum is a trivalent metal of low atomic mass, abundant, which presents no danger when exposed to the air and relatively inexpensive.
  • Aluminum-air battery systems or mechanically rechargeable aluminum-air batteries are described in the prior art, in particular in the patent applications WO 2010/132357 and WO 2002/086984.
  • the aluminum-air systems described in the prior art involve an electrolyte comprising a saline solution or a solution alkaline. In the latter case, which has been most studied, the reaction of reduction of oxygen in water at the cathode generates hydroxyl ions. The oxidation of the metal in the presence of these ions causes the formation of crystalline hydrated aluminum hydroxide which precipitates and progressively clogs the pores of the air cathode, which results in a degradation of the performance of the electrochemical cell.
  • the first document indicates the possibility that the metal electrode is aluminum and describes different types of electrolytes that can be used, but does not provide a solution to the problems encountered with aluminum-air systems.
  • the patent application WO 2002/086984 proposes to use a "desiccant" additive that will prevent the formation of crystalline hydrated aluminum hydroxide to give a compound crystallizing with fewer molecules. of water, which has the effect of increasing the duration of use of the battery.
  • adding an additive increases the cost of the cell.
  • the conductivity of the electrolyte is decreased by adding additives. Indeed, among the organic additives claimed in this document, starch and polyacrylamide will increase the viscosity of the medium (formation of a gel), thus reducing the conductivity. The other two additives will decrease the amount of water present in the electrolyte and make it less conductive.
  • a second problem of aluminum-air cells is related to the phenomenon of aluminum corrosion observed in alkaline media and which results in a release of hydrogen with the safety problems that this entails and significant overvoltages which penalize the overall performance. of the pile. Neither of these two documents solves this problem; for example, the addition of additive does not reduce the release of hydrogen related to the corrosion of aluminum.
  • the invention relates to an electrochemical cell aluminum-air comprising an electrolyte which is non-aqueous and which is, by its composition, little corrosive vis-à-vis aluminum.
  • an electrochemical cell aluminum-air equipped with such an electrolyte is light, with good electrochemical performance while having suitable electrical characteristics for the storage of electrical energy.
  • the invention relates to an electrochemical aluminum-air cell capable of supplying and / or accumulating electrical energy comprising an oxidizable electrode made of aluminum or aluminum alloy, a conductive air electrode allowing air diffusion and reduction. oxygen from the air and an electrolyte.
  • the electrolyte is non-aqueous, and includes a mixture of aluminum trichloride (A / C7 3 ) with a chlorinated aliphatic, cyclic or heterocyclic nitrogen derivative.
  • the molar ratio of the amount of aluminum trichloride (AlCl 3 ) to the amount of chlorinated aliphatic, cyclic or heterocyclic nitrogen derivative is between 1, 01 and 2.
  • the chlorinated aliphatic, cyclic or heterocyclic nitrogen-containing derivative of the electrolyte is chosen from 1-ethyl-3-methyl-imidazolium chloride (EMImCl), 1-butyl-3-methyl-imidazolium chloride, and 1-butyl-pyridinium, or benzyltrimethylammonium chloride.
  • EMImCl 1-ethyl-3-methyl-imidazolium chloride
  • 1-butyl-3-methyl-imidazolium chloride 1-butyl-3-methyl-imidazolium chloride
  • 1-butyl-pyridinium 1-butyl-pyridinium
  • benzyltrimethylammonium chloride 1-ethyl-3-methyl-imidazolium chloride
  • the molar ratio of the amount of aluminum trichloride to the amount of 1-ethyl-3-methyl-imidazolium chloride (EMImCl) is substantially equal to 1.5.
  • said electrolyte further comprises an organic liquid and / or an ionic liquid.
  • said electrolyte is liquid at ambient temperature of use of the cell.
  • said electrolyte is a room temperature gel for use of the cell.
  • said air electrode comprises a microporous multilayer assembly and an active element allowing the reduction of oxygen.
  • said air electrode consists of porous carbon, an oxygen reduction catalyst, perfluorinated polymer and a current collector.
  • said oxygen reduction catalyst is chosen from metal oxides, in particular oxides of manganese, nickel or cobalt or from doped metal oxides, or from noble metals.
  • the cell may further comprise porous devices located upstream of the air electrode.
  • the invention relates to an electrochemical system for storing electrical energy, consisting of at least one cell according to the invention.
  • the electrochemical system for storing the electrical energy comprises a plurality of cells as described above, arranged in series and / or in parallel.
  • the invention relates to a vehicle, in particular a motor vehicle, comprising at least one electric machine.
  • vehicle is equipped with an electrical energy storage system according to the invention for powering said electric machine.
  • FIG. 1 illustrates an electrochemical aluminum-air cell according to the invention, used experimentally.
  • Figure 2 illustrates discharge curves of an electrochemical cell according to the invention.
  • FIG. 3 illustrates load and discharge curves of an electrochemical cell according to the invention.
  • the invention therefore relates to an electrolyte for a metal-air electrochemical cell capable of supplying and / or accumulating electrical energy.
  • this electrolyte is non-aqueous, which makes it possible to avoid the formation of crystalline hydrated aluminum hydroxide, which can clog the pores of the air electrode of the electrochemical cell.
  • the performance of the cell degrades less in time than the cells envisaged in the prior art.
  • the electrolyte comprises a mixture of a chlorinated aliphatic, cyclic or heterocyclic nitrogen derivative with aluminum trichloride (A / C7 3 ).
  • This mixture is slightly corrosive to aluminum, as experimentally verified (corrosion measurements are described in Example 1).
  • the electrolyte according to the invention can therefore be used in an electrochemical aluminum-air cell, while at the same time avoiding the formation of aluminum hydroxide and, secondly, by reducing the corrosion of the metal electrode, this which therefore allows a decrease in hydrogen evolution.
  • the chlorinated aliphatic, cyclic or heterocyclic nitrogen compound which is mixed in the electrolyte with aluminum trichloride may be chosen from 1-ethyl-3-methyl-imidazolium chloride, chloride 1-butyl-3-methylimidazolium, 1-butyl-pyridinium chloride, or benzyltrimethylammonium chloride.
  • Other compounds that can be used are described in "Electrodeposition from ionic liquids" edited by F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH (2008). More generally, it is possible to use any mixture of an ionic salt with AICI 3 which makes it possible to obtain an ionic conductive liquid electrolyte which has an electrochemical window sufficient to effect this reaction.
  • the non-aqueous electrolyte is at room temperature a liquid or a gel.
  • the gels are adapted as electrolytes.
  • the electrolyte may further contain an ionic solution whose purpose is to ensure the stability of the gel at high temperature (about 60 ° C).
  • the molar ratio of aluminum trichloride AlCl 3 to the chlorinated nitrogen derivative is between 1.0 and 2, and has very low corrosion with respect to aluminum. Indeed, this ratio ensures a high concentration of aluminum ions, which promotes the diffusion of ionic species (high transport number) with high current densities and which allows a high specific power.
  • the electrolyte may further comprise ionic and / or organic liquids.
  • This type of electrolyte is particularly little corrosive with respect to aluminum under the normal conditions of use of electrochemical cells (see Example 1).
  • electrolyte it is possible to construct an electrochemical aluminum-air cell, in which the evolution of hydrogen is reduced (because the phenomenon of corrosion is limited), and in which no aluminum hydroxide is form.
  • This electrochemical system consists of an assembly comprising a metal component (metal electrode) capable of undergoing an oxidation reaction, consisting of aluminum or an aluminum alloy, of a non-aqueous electrolyte with very little corrosive to the metal or metal alloy and an electrode (called air electrode) for the reduction of oxygen.
  • the air electrode may comprise a microporous multilayer assembly for the diffusion of gases and may comprise at least one active element for the reduction of oxygen.
  • the air electrodes are made of porous carbon, perfluorinated polymer such as PTFE, PFA, FEP ... and comprise an oxygen reduction catalyst and a current collector.
  • the oxygen reduction catalyst is chosen from metal oxides such as oxides of manganese, nickel or cobalt for example, doped metal oxides, or from noble metals such as platinum, palladium, or silver.
  • the electrochemical cell works indifferently with pure oxygen, with a mixture of oxygen and nitrogen or with air. It is also possible to add to the cell porous devices located upstream of the air electrode, to remove water and / or carbon dioxide from the air.
  • the geometry of the assembly is not a brake on the operation of the electrochemical cell if a sufficient flow of oxygen is maintained for the proper functioning of the assembly. Consequently, any type of geometry of the cell is adapted to the invention: the cell can be cylindrical (concentric electrodes), parallelepipedal (parallel electrodes) ... It is also possible to use an inert porous separator (for example woven polypropylene or non-woven, microporous, PTFE ”) which provides electrical insulation between the two electrodes.
  • an inert porous separator for example woven polypropylene or non-woven, microporous, PTFE
  • the electrochemical cell according to the invention comprises a single electrolyte, adapted to the two electrodes (in particular non-corrosive with respect to aluminum) and having good electrochemical characteristics.
  • a cell constitutes an electrochemical storage system for electrical energy, for example in the form of a battery.
  • an electrochemical storage system for electrical energy is constructed, in particular a rechargeable battery, or accumulator system (see Example 3).
  • the series and / or parallel assembly depends on the desired electrical characteristics (voltages, currents, powers, etc.) for the application of the energy storage system.
  • This electrochemical energy storage system can be used as an onboard battery in vehicles; for example, motor vehicles or electric or hybrid two-wheelers. However, this system is also suitable for use for mobile phones, laptops, portable tools in which a battery is shipped.
  • Example 1 In order to establish the non-corrosivity of the electrolyte vis-à-vis the metal component of the electrochemical cell, the applicant conducted an experiment to measure the corrosion of aluminum by the electrolyte according to the invention.
  • EMImCl 1-ethyl-3-methyl-imidazolium chloride
  • Solvionic® 1-ethyl-3-methyl-imidazolium chloride
  • AlCl 3 dry aluminum chloride
  • the measurement of corrosion is carried out in a glove box using an SP 150 potentiostat from Biologie ®, and visualization and data processing using the EC-Lab ® software.
  • a 1 mm diameter aluminum wire marketed by GoodFellow® with a purity of 99.9999%
  • a reference electrode or quasi-reference
  • Electrochemical measurement by linear polarization is carried out by a scanning of
  • the Tafel curves which are curves of the logarithm of the current as a function of the voltage, are then drawn in. These curves give a cathodic line ( oxygen or proton reduction reaction) and an anodic straight line (oxidation of the metal) on either side of the corrosion potential. The corrosion current is then deduced by the coordinates of the point of intersection of these 2 straight lines.
  • the plot of the Tafel curves makes it possible to determine, for this experiment, a corrosion current density of less than 3 ⁇ . ⁇ "2 . This value is extremely low and shows that the electrolyte is particularly low corrosive vis-à-vis aluminum under the conditions of the experiment.
  • Figure 1 illustrates the mounting of the cell for measurements.
  • a glove box we assemble, on a metal support (5) covered with an insulating coating and equipped with an air vent (8), the body of the cell (4) made of PTFE equipped with other seals and an opening (7) permitting injecting the electrolyte between an aluminum plate (2) and an air electrode (1).
  • a tightening handle (6) ensures the tight assembly of the assembly.
  • the distance between the aluminum plate (2) and the air electrode (1) is 10 mm for an internal diameter of the body of the cell of 15 mm.
  • the complete assembly containing the electrolyte (3) is introduced into a glass cell comprising: two sealed outlets allowing the electrical connection to a potentiostat, an arrival of dry air freed of carbon dioxide by means of a guard of 5X molecular sieve.
  • the air supply rate of the cell is set at 30 ml / min.
  • the galvanostatic discharge manipulations were carried out using an SP 150 potentiostat from BioLogic ®, visualization and data processing using the EC-Lab ® software.
  • the discharge measurements were performed for different current densities: -50 ⁇ . ⁇ 2 ; -100 ⁇ . ⁇ 2 ; -300 ⁇ . ⁇ 2 ; and -600 ⁇ . ⁇ 2 at a temperature of 22 ⁇ C ⁇ 3 ° C.
  • the curves of discharges obtained are represented in FIG. 2. These curves represent the evolution of the voltage U (in V) at the terminals of the cell as a function of time t (in days).
  • the results obtained show that the electrochemical aluminum-air system allows in a non-corrosive aprotic medium to obtain energy generation from aluminum and oxygen from the air.
  • the values in the table are determined for a current density of -100 ⁇ . ⁇ 2 .
  • the first example (lithium electrode) is shown in particular in the document: Takashi Kuboki, Tetsuo Okuyama, Takahisa Ohsaki, Norio Takami, "Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte", Journal of Power Sources 146, 766-769 (2005).
  • the second example silicon electrode
  • the values are calculated using the data from the document: Gil Cohn, Yair Ein-Eli, "Study and development of non-aqueous silicon-air battery", Journal of Power Sources 195, 4963-4970 (2010).
  • the capacity / carbon is calculated taking into account the mass of carbon and the catalyst of the air electrode, this capacity corresponds to the capacity of the cell per unit mass. It should be noted that the cell according to the invention makes it possible to construct a cell having a higher capacity / carbon than the lithium-air or silicon-air cells described in the literature.
  • a cell identical to the cell formed in Example 2 is constructed. This cell is subjected to several cycles of charging and discharging by imposing a current to the cell.
  • Figure 3 illustrates the behavior of the cell for these charge and discharge cycles.
  • the curve in solid line corresponds to the voltage U at the terminals of the cell.
  • the curve in dashed lines corresponds to the current I imposed on the cell. These curves represent the evolution of the voltage U (in V) and the current I (in mA / cm 2 ) at the terminals of the cell as a function of time t (in hours).
  • a positive direct current (+0.6 mA / cm 2 ) is applied in charge and negative (-0.6 mA cm 2 ) in discharge.
  • the cell according to the invention is adapted for a rechargeable battery (battery).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne une cellule électrochimique apte à fournir et/ accumuler de l'énergie électrique comprenant une électrode oxydable (2) en aluminium ou en alliage d'aluminium, une électrode à air (1) conductrice permettant la diffusion de l'air et la réduction de l'oxygène de l'air, et un électrolyte (3). L'électrolyte (3) est non aqueux et comprend un mélange de trichlorure d'aluminium (Al Cl 3) avec un dérivé azoté aliphatique, cyclique ou hétérocyclique chloré. L'invention concerne également un système électrochimique de stockage de l'énergie électrique comprenant au moins une telle cellule.

Description

SYSTEME D'ACCUMULATEURS ET PILES ALUMINIUM AIR
La présente invention concerne le domaine du stockage de l'énergie électrique, notamment le domaine des cellules électrochimiques métal-air.
Les moyens de stockage de l'énergie électrique, notamment les batteries sont de plus en plus fréquemment utilisées et pour des applications de plus en plus variées : téléphones portables, ordinateurs portables, outils portatifs, véhicules électriques ou hybrides... Pour ces applications, les moyens de stockage de l'énergie doivent être légers, peu encombrants et doivent satisfaire les caractéristiques électriques liées à leur utilisation.
Parmi les systèmes d'accumulateurs pressentis pour équiper les véhicules automobiles du futur, les batteries métal - air apparaissent comme les candidats les plus prometteurs en termes de densité énergétique théorique. Une cellule électrochimique métal-air est constituée d'une électrode négative (anode) où le métal va être le siège d'une réaction d'oxydation durant la décharge de la cellule, tandis que l'électrode positive (cathode, appelée aussi électrode à air) met en jeu une réaction de réduction de l'oxygène contenu dans l'air, un électrolyte assure la conduction ionique entre électrodes grâce à des espèces ioniques. L'électrode à air est le plus souvent constituée d'un assemblage de deux couches actives contenant un catalyseur qui prennent en sandwich une grille métallique.
Le choix du métal utilisé est une étape importante de la conception de la cellule électrochimique. Le lithium (Li) est l'élément le plus électronégatif et le plus léger des métaux ; tout naturellement un gros travail de développement est en cours sur les batteries Li-air, comme nous le montre par exemple la demande de brevet US 2009/0053594 A1 . Cependant, le lithium est un matériau qui peut présenter un certain nombre de dangers quand il est exposé à l'air ambiant et, si les réserves naturelles de ce métal sont importantes, les coûts d'extraction et de traitement sont aussi importants. Par ailleurs, l'utilisation massive du lithium dans les batteries Li-ion tend à diminuer ces réserves. Le silicium présente également un intérêt croissant et la demande de brevet WO 201 1/061728 A1 décrit un système de ce type. Dans ce document, le silicium utilisé est dopé de type n ou p, ce qui constitue un surcoût relativement important, même si les technologies de mise en œuvre sont parfaitement maîtrisées pour la micro-électronique.
L'aluminium, quant à lui, est un métal trivalent, de masse atomique faible, abondant, qui ne présente pas de danger lorsqu'il est exposé à l'air et relativement peu onéreux. Des systèmes de piles aluminium-air ou des batteries aluminium-air rechargeables mécaniquement sont décrits dans l'art antérieur, notamment dans les demandes de brevet WO 2010/132357 et WO 2002/086984. Les systèmes aluminium-air décrits dans l'art antérieur mettent en jeu un électrolyte comprenant une solution saline ou une solution alcaline. Dans ce dernier cas, qui a été le plus étudié, la réaction de réduction de l'oxygène dans l'eau à la cathode génère des ions hydroxyles. L'oxydation du métal en présence de ces ions engendre la formation d'hydroxyde d'aluminium hydraté cristallin qui précipite et progressivement bouche les pores de la cathode à air, ce qui entraîne une dégradation des performances de la cellule électrochimique.
Le premier document (WO 2010/132357) indique la possibilité que l'électrode métallique soit en aluminium et décrit différents types d'électrolytes pouvant être utilisés, mais ne prévoit pas de solution aux problèmes rencontrés avec les systèmes aluminium-air.
Pour remédier à l'inconvénient cité ci-dessus, la demande de brevet WO 2002/086984 propose d'utiliser un additif "déshydratant" qui va empêcher la formation d'hydroxyde d'aluminium hydraté cristallin pour donner un composé cristallisant avec moins de molécules d'eau associées, ce qui a pour conséquence d'augmenter la durée d'utilisation de la pile. En outre, ajouter un additif augmente le coût de la cellule. Toutefois, la conductivité de l'électrolyte est diminuée par l'ajout d'additifs. En effet, parmi les additifs organiques revendiqués dans ce document, l'amidon et le polyacrylamide vont augmenter la viscosité du milieu (formation d'un gel), donc réduire la conductivité. Les deux autres additifs vont diminuer d'autant la quantité d'eau présente dans l'électrolyte et le rendre moins conducteur.
Un second problème des piles aluminium-air est lié au phénomène de corrosion de l'aluminium observé dans les milieux alcalins et qui se traduit par un dégagement d'hydrogène avec les problèmes de sécurité que cela entraîne et des surtensions importantes qui pénalisent la performance globale de la pile. Aucun des deux documents précités ne résout ce problème ; par exemple, l'ajout d'additif ne permet pas de réduire le dégagement d'hydrogène lié à la corrosion de l'aluminium.
Pour remédier aux inconvénients cités ci-dessus, l'invention concerne une cellule électrochimique aluminium-air comprenant un électrolyte qui est non aqueux et qui est, par sa composition, peu corrosif vis-à-vis de l'aluminium. Ainsi, une cellule électrochimique aluminium-air équipée d'un tel électrolyte est légère, avec de bonnes performances électrochimiques tout en présentant des caractéristiques électriques adaptées pour le stockage de l'énergie électrique.
Le dispositif selon l'invention
L'invention concerne une cellule électrochimique aluminium-air apte à fournir et/ou accumuler de l'énergie électrique comprenant une électrode oxydable en aluminium ou en alliage d'aluminium, une électrode à air conductrice permettant la diffusion de l'air et la réduction de l'oxygène de l'air et un électrolyte. L'électrolyte est non aqueux, et comprend un mélange de trichlorure d'aluminium ( A/C73 ) avec un dérivé azoté aliphatique, cyclique ou hétérocyclique chloré.
Selon l'invention, au sein de l'électrolyte le rapport molaire de la quantité de trichlorure d'aluminium ( AlCl3 ) sur la quantité de dérivé azoté aliphatique, cyclique ou hétérocyclique chloré est compris entre 1 ,01 et 2.
De préférence, le dérivé azoté aliphatique, cyclique ou hétérocyclique chloré de l'électrolyte est choisi parmi le chlorure de 1 -éthyl-3-méthyl-imidazolium (EMImCI), le chlorure de 1 -butyl-3-méthyl-imidazolium, le chlorure de 1 -butyl-pyridinium, ou le chlorure de benzyltriméthylammonium.
Avantageusement, le rapport molaire de la quantité de trichlorure d'aluminium sur la quantité de chlorure de 1 -éthyl-3-méthyl-imidazolium (EMImCI) est sensiblement égal à 1 ,5.
Selon un mode de réalisation de l'invention, ledit électrolyte comprend en outre un liquide organique et/ou un liquide ionique.
En outre, ledit électrolyte est liquide à température ambiante d'utilisation de la cellule.
Alternativement, ledit électrolyte est un gel à température ambiante d'utilisation de la cellule.
Selon un mode de réalisation, ladite électrode à air comprend un assemblage multicouche microporeux et un élément actif permettant la réduction de l'oxygène.
De manière avantageuse, ladite électrode à air est constituée de carbone poreux, d'un catalyseur de réduction de l'oxygène, de polymère perfluoré et d'un collecteur de courant.
Avantageusement, ledit catalyseur de réduction de l'oxygène est choisi parmi les oxydes métalliques, notamment les oxydes de manganèse, de nickel, ou de cobalt ou parmi les oxydes métallique dopés, ou parmi les métaux nobles.
La cellule peut comprendre en outre des dispositifs poreux situés en amont de l'électrode à air.
En outre, l'invention concerne un système électrochimique de stockage de l'énergie électrique, constitué d'au moins une cellule selon l'invention.
En variante, le système électrochimique de stockage de l'énergie électrique comprend une pluralité de cellules telle que décrite précédemment, disposées en série et/ou en parallèle.
De plus, l'invention concerne un véhicule, notamment un véhicule automobile, comprenant au moins une machine électrique. Le véhicule est équipé d'un système de stockage de l'énergie électrique selon l'invention pour alimenter ladite machine électrique. Présentation succincte des figures
D'autres caractéristiques et avantages de l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
La figure 1 illustre une cellule électrochimique aluminium-air selon l'invention, utilisée expérimentalement.
La figure 2 illustre des courbes de décharge d'une cellule électrochimique selon l'invention.
La figure 3 illustre des courbes de charge et de décharge d'une cellule électrochimique selon l'invention.
Description détaillée de l'invention
L'invention concerne donc un électrolyte pour une cellule électrochimique métal-air apte à fournir et/ou accumuler de l'énergie électrique. Selon un premier aspect de l'invention, cet électrolyte est non aqueux, ce qui permet d'éviter la formation d'hydroxyde d'aluminium hydraté cristallin, pouvant boucher les pores de l'électrode à air de la cellule électrochimique. Ainsi, les performances de la cellule se dégradent moins dans le temps que les cellules envisagées dans l'art antérieur.
Selon un deuxième aspect de l'invention, l'électrolyte comprend un mélange d'un dérivé azoté aliphatique, cyclique ou hétérocyclique chloré avec du trichlorure d'aluminium ( A/C73 ). Ce mélange est peu corrosif vis-à-vis de l'aluminium, tel que cela est vérifié expérimentalement (les mesures de corrosion sont décrites dans l'exemple 1 ). L'électrolyte selon l'invention peut donc être utilisé dans une cellule électrochimique aluminium-air, tout en évitant d'une part la formation d'hydroxyde d'aluminium et d'autre part en réduisant la corrosion de l'électrode métallique, ce qui permet donc une diminution d'un dégagement d'hydrogène.
Par exemple, le dérivé azoté aliphatique, cyclique ou hétérocyclique chloré qui est mélangé dans l'électrolyte avec du trichlorure d'aluminium ( A/C73 ) peut être choisi parmi le chlorure de 1 -éthyl-3-méthyl-imidazolium, le chlorure de 1 -butyl-3-méthyl-imidazolium, le chlorure de 1 -butyl-pyridinium, ou le chlorure de benzyltriméthylammonium. D'autres composés pouvant être utilisés sont décrits dans l'ouvrage « Electrodeposition from ionic liquids » edited by F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH (2008). Plus généralement, on peut utiliser tout mélange d'un sel ionique avec AICI3 permettant d'obtenir un électrolyte liquide conducteur ionique qui a une fenêtre électrochimique suffisante pour effectuer cette réaction.
L'électrolyte non aqueux est à température ambiante un liquide ou un gel. Potentiellement inflammables en cas de court-circuit, les batteries cylindriques ou prismatiques qui comportent un électrolyte liquide à base de carbonates d'alkyles, couramment commercialisées pour l'électronique portable, n'offrent pas des conditions de sécurité acceptables pour les applications véhicule électrique hybride ou véhicule électrique, car ce type d'électrolyte est inflammable. Pour améliorer la sécurité des cellules, les gels sont adaptés comme électrolytes. Dans le cas où l'électrolyte est sous forme de gel, l'électrolyte peut contenir en outre une solution ionique dont le but est d'assurer la stabilité du gel à température élevée (environ 60 °C).
Avantageusement, le rapport molaire du trichlorure d'aluminium AlCl3 sur le dérivé azoté chloré est compris entre 1 ,01 et 2, et présente une corrosion très faible vis-à-vis de l'aluminium. En effet, ce rapport assure une concentration importante en ions aluminium, ce qui favorise la diffusion des espèces ioniques (nombre de transport élevé) avec de fortes densités de courant et ce qui permet une puissance spécifique élevée. L'électrolyte peut comprendre en outre des liquides ioniques et/ou organiques.
Ce type d'électrolyte est particulièrement peu corrosif vis-à-vis de l'aluminium dans les conditions normales d'utilisation de cellules électrochimiques (voir exemple 1 ).
Grâce à l'électrolyte selon l'invention, on peut construire une cellule électrochimique aluminium-air, dans laquelle le dégagement d'hydrogène est réduit (car le phénomène de corrosion est limité), et dans laquelle aucun hydroxyde d'aluminium n'est formé. Ce système électrochimique est constitué d'un assemblage comprenant une composante métallique (électrode métallique) susceptible de subir une réaction d'oxydation, constitué d'aluminium ou d'un alliage d'aluminium, d'un électrolyte non aqueux très peu corrosif vis-à-vis du métal ou de l'alliage métallique et d'une électrode (dite électrode à air) permettant la réduction de l'oxygène.
L'électrode à air peut comporter un assemblage multicouche microporeux permettant la diffusion des gaz et peut comprendre au moins un élément actif permettant la réduction de l'oxygène. Classiquement, les électrodes à air sont réalisées en carbone poreux, en polymère perfluoré tel que PTFE, PFA, FEP ... et comprennent un catalyseur de réduction de l'oxygène et un collecteur de courant. Le catalyseur de réduction de l'oxygène est choisi parmi les oxydes métalliques comme les oxydes de manganèse, de nickel ou de cobalt par exemple, les oxydes métalliques dopés, ou parmi les métaux nobles comme le platine, le palladium, ou l'argent. La cellule électrochimique fonctionne indifféremment avec de l'oxygène pur, avec un mélange d'oxygène et d'azote ou avec de l'air. On peut également adjoindre à la cellule des dispositifs poreux situés en amont de l'électrode à air, visant à éliminer l'eau et/ou le dioxyde de carbone de l'air.
La géométrie de l'assemblage n'est pas un frein au fonctionnement de la cellule électrochimique si l'on maintient un débit d'oxygène suffisant pour le bon fonctionnement de l'ensemble. Par conséquent, tout type de géométrie de la cellule est adapté à l'invention : la cellule peut être cylindrique (électrodes concentriques), parallélépipédique (électrodes parallèles)... On pourra également utiliser un séparateur poreux inerte (par exemple en polypropylène tissé ou non tissé, microporeux, en PTFE ...) qui assure l'isolation électrique entre les deux électrodes.
La cellule électrochimique selon l'invention comporte un unique électrolyte, adapté aux deux électrodes (notamment non corrosif vis-à-vis de l'aluminium) et présentant de bonnes caractéristiques électrochimiques.
Une cellule constitue un système de stockage électrochimique de l'énergie électrique, par exemple sous forme de pile.
En associant en série et/ou en parallèle plusieurs cellules selon l'invention, on construit un système de stockage électrochimique de l'énergie électrique, notamment une batterie rechargeable, ou système d'accumulateurs (voir exemple 3). Le montage série et/ou parallèle dépend des caractéristiques électriques souhaitées (tensions, courants, puissances, ...) pour l'application du système de stockage d'énergie. Ce système électrochimique de stockage de l'énergie peut être utilisé comme batterie embarquée à bord de véhicules ; par exemples de véhicules automobiles ou de deux-roues électriques ou hybrides. Toutefois, ce système est également adapté à une utilisation pour les téléphones portables, les ordinateurs portables, les outils portatifs dans lesquels une batterie est embarquée. Exemples d'application
Le demandeur a réalisé trois études expérimentales afin de montrer la non-corrosivité de l'électrolyte par rapport à l'aluminium et afin de montrer les performances d'une cellule électrochimique aluminium-air selon l'invention. Exemple 1 Afin d'établir la non corrosivité de l'électrolyte vis-à-vis de la composante métallique de la cellule électrochimique, le demandeur a mené une expérience pour mesurer la corrosion de l'aluminium par l'électrolyte selon l'invention.
Dans une boîte à gants (enceinte expérimentale), nous introduisons du chlorure de 1 - éthyl-3-méthyl-imidazolium (EMImCI) (commercialisé par la société Solvionic ®) préalablement séché 12 heures à 120 ^ sous pression réduite au moyen d'une pompe à palettes, et du chlorure d'aluminium sec (commercialisé par la société Sigma Aldrich ® avec une pureté de 99,99%). Dans un récipient en verre sec sous agitation, nous introduisons le dérivé azoté EMImCI et additionnons progressivement le trichlorure d'aluminium AlCl3 en limitant l'exothermie et en respectant un rapport molaire R de 1 ,5 (compris entre 1 ,01 et 2).
La mesure de la corrosion est effectuée sous boîte à gants à l'aide d'un potentiostat SP 150 de la société Biologie ®, et la visualisation et le traitement des données à l'aide du logiciel EC-Lab ®. Nous réalisons un montage trois électrodes avec un fil d'aluminium de 1 mm de diamètre (commercialisé par la société GoodFellow ® avec une pureté de 99,9999%) comme électrode de travail, une contre électrode de tungstène de 4 mm de diamètre et une électrode de référence (ou quasi référence) constitué d'un fil d'aluminium (1 mm de diamètre d'une pureté de 99.9999 %, commercialisé par la société Goodfellow ®) plongé dans un mélange de même composition que le milieu à étudier et séparée de la solution par un fritté poreux.
Une mesure électrochimique par polarisation linéaire est effectuée par un balayage de
± 50 mV à 1 mV.s" par rapport au potentiel d'abandon mesuré à 0,082 V. On trace alors les courbes de Tafel, qui sont des courbes du logarithme du courant en fonction de la tension. Ces courbes donnent une droite cathodique (réaction de réduction de l'oxygène ou du proton) et une droite anodique (oxydation du métal) de part et d'autre du potentiel de corrosion. Le courant de corrosion est alors déduit par les coordonnées du point d'intersection de ces 2 droites). Le tracé des courbes de Tafel permet de déterminer pour cette expérimentation une densité de courant de corrosion inférieure à 3 μΑ.οηι"2. Cette valeur est extrêmement faible et montre bien que l'électrolyte est particulièrement peu corrosif vis-à-vis de l'aluminium dans les conditions de l'expérience.
Exemple 2
Afin d'établir les caractéristiques électriques de la cellule selon l'invention, le demandeur a réalisé des mesures expérimentales. La figure 1 illustre le montage de la cellule pour les mesures. Sous boîte à gants, nous assemblons, sur un support métallique (5) recouvert d'un revêtement isolant et équipé d'une mise à l'air (8), le corps de la cellule (4) en PTFE équipé de part et d'autre de joints d'étanchéité et d'une ouverture (7) permettant d'injecter l'électrolyte entre une plaque d'aluminium (2) et une électrode à air (1 ). Une manette de serrage (6) permet d'assurer l'assemblage étanche de l'ensemble.
La cellule électrochimique est composée d'une électrode à air (1 ) E-4 commercialisée par la société Electric Fuel ®, d'une plaque d'aluminium (2) de dimensions 25x25 mmx2 mm, de pureté 99,999%, commercialisée par la société Goodfellow ® et du mélange AICI3/EMImCI (avec un rapport molaire R=1 ,5) comme électrolyte (3). La distance entre la plaque d'aluminium (2) et l'électrode à air (1 ) est de 10 mm pour un diamètre interne du corps de la cellule de 15 mm.
Le montage complet contenant l'électrolyte (3) est introduit dans une cellule en verre comportant : deux sorties étanches permettant la connexion électrique à un potentiostat, une arrivée d'air sec débarrassé du dioxyde de carbone à l'aide d'une garde de tamis moléculaire 5X. Le débit d'alimentation en air de la cellule est fixé à 30 ml/min.
Les manipulations de décharges galvanostatiques ont été effectuées à l'aide d'un potentiostat SP 150 de la société BioLogic ®, la visualisation et le traitement des données à l'aide du logiciel EC-Lab ®. Les mesures de décharges ont été réalisées pour différentes densités de courant : -50 μΑ.οηι 2; -100 μΑ.οηι 2 ; -300 μΑ.οηι 2 ; et -600 μΑ.οηι 2 à une température de 22 <C ± 3°C. Les courbes de décharges obtenues sont représentées sur la figure 2. Ces courbes représentent l'évolution de la tension U (en V) aux bornes de la cellule en fonction du temps t (en jours).
Le tableau 1 regroupe les résultats obtenus après calcul.
Tableau 1
Figure imgf000010_0001
Les résultats obtenus montrent que le système électrochimique aluminium-air permet dans un milieu aprotique non corrosif d'obtenir une génération d'énergie à partir d'aluminium et de l'oxygène de l'air.
Des exemples comparatifs avec différents systèmes métal-air sont disponibles dans la littérature et montrent que le système décrit est intéressant comme l'indiquent les valeurs comparatives du tableau 2.
Tableau 2
Electrode Electrolyte Tension (V) Capacité/carbone (mAh/g)
Lithium LiO04 EC/PC 2,8 2220
Silicium EMlm(FH )2 3 F 0,95 2255
Aluminium AlCl EMlmCl (avec R=1 ,5) 0,67 5250
On note que les valeurs du tableau sont déterminées pour une densité de courant de -100 μΑ.οηι 2. Le premier exemple (électrode en lithium) est montré notamment dans le document : Takashi Kuboki, Tetsuo Okuyama, Takahisa Ohsaki, Norio Takami, "Lithium-air batteries using hydrophobic room température ionic liquid electrolyte", Journal of Power Sources 146, 766-769 (2005). Concernant le deuxième exemple (électrode en silicium), les valeurs sont calculées à l'aide des données issues du document : Gil Cohn, Yair Ein-Eli, "Study and development of non-aqueous silicon-air battery", Journal of Power Sources 195, 4963-4970 (2010).
La capacité/carbone est calculée en prenant en compte la masse de carbone et du catalyseur de l'électrode à air, cette capacité correspond donc à la capacité de la cellule par unité massique. On remarque, que la cellule selon l'invention permet de construire une cellule possédant une capacité/carbone plus élevée que les cellules lithium-air ou silicium-air décrites dans la littérature.
Exemple 3
Une cellule identique à la cellule formée à l'exemple 2 est construite. Cette cellule est soumise à plusieurs cycles de charge et de décharge en imposant un courant à la cellule. La figure 3 illustre le comportement de la cellule pour ces cycles de charge et de décharge. La courbe en trait continu correspond à la tension U aux bornes de la cellule. La courbe en traits pointillés correspond au courant I imposé à la cellule. Ces courbes représentent l'évolution de la tension U (en V) et du courant I (en mA/cm2) aux bornes de la cellule en fonction du temps t (en heures).
Pour simuler les cycles de charge et de décharge, on impose un courant continu positif (+0,6 mA/cm2) en charge et négatif (-0,6 mA cm2) en décharge.
On remarque que la tension varie sensiblement entre 0,5 et 2,5 V, que la courbe de la tension suit bien les courbes de charge et de décharge. Par conséquent, la cellule selon l'invention est adaptée pour un accumulateur (batterie) rechargeable.

Claims

Revendications
1 ) Cellule électrochimique apte à fournir et/ou accumuler de l'énergie électrique comprenant une électrode oxydable (2) en aluminium ou en alliage d'aluminium, une électrode à air (1 ) conductrice permettant la diffusion de l'air et la réduction de l'oxygène de l'air, et un électrolyte (3), caractérisée en ce que ledit électrolyte (3) est non aqueux et comprend un mélange de trichlorure d'aluminium ( A/C73 ) avec un dérivé azoté aliphatique, cyclique ou hétérocyclique chloré.
2) Cellule selon la revendication 1 , dans laquelle au sein de l'électrolyte (3) le rapport molaire de la quantité de trichlorure d'aluminium ( AlCl3 ) sur la quantité de dérivé azoté aliphatique, cyclique ou hétérocyclique chloré est compris entre 1 ,01 et 2.
3) Cellule selon l'une des revendications précédentes, dans laquelle le dérivé azoté aliphatique, cyclique ou hétérocyclique chloré de l'électrolyte (3) est choisi parmi le chlorure de 1 -éthyl-3-méthyl-imidazolium (EMImCI), le chlorure de 1 -butyl-3-méthyl- imidazolium, le chlorure de 1 -butyl-pyridinium, ou le chlorure de benzyltriméthylammonium.
4) Cellule selon la revendication 3, dans laquelle le rapport molaire de la quantité de trichlorure d'aluminium sur la quantité de chlorure de 1 -éthyl-3-méthyl-imidazolium
(EMImCI) est sensiblement égal à 1 ,5.
5) Cellule selon l'une des revendications précédentes, dans laquelle ledit électrolyte (3) comprend en outre un liquide organique et/ou un liquide ionique.
6) Cellule selon l'une des revendications précédentes, dans laquelle ledit électrolyte (3) est liquide à température ambiante d'utilisation de la cellule.
7) Cellule selon la revendication 5, dans laquelle ledit électrolyte est un gel à température ambiante d'utilisation de ladite cellule.
8) Cellule selon l'une des revendications précédentes, dans laquelle ladite électrode à air (1 ) comprend un assemblage multicouche microporeux et un élément actif permettant la réduction de l'oxygène. 9) Cellule selon la revendication 8, dans laquelle ladite électrode à air (1 ) est constituée de carbone poreux, d'un catalyseur de réduction de l'oxygène, de polymère perfluoré et d'un collecteur de courant. 10) Cellule selon la revendication 9, dans laquelle ledit catalyseur de réduction de l'oxygène est choisi parmi les oxydes métalliques, notamment les oxydes de manganèse, de nickel, ou de cobalt ou parmi les oxydes métallique dopés, ou parmi les métaux nobles.
1 1 ) Cellule selon l'une des revendications 9 ou 10, dans laquelle ladite cellule comprend en outre des dispositifs poreux situés en amont de l'électrode à air.
12) Système électrochimique de stockage de l'énergie électrique, caractérisé en ce qu'il est constitué d'au moins une cellule selon l'une des revendications précédentes. 13) Système électrochimique de stockage de l'énergie électrique, caractérisé en ce qu'il comprend une pluralité de cellules selon l'une des revendications 1 à 1 1 , disposées en série et/ou en parallèle.
14) Véhicule, notamment véhicule automobile, comprenant au moins une machine électrique, caractérisé en ce que le véhicule est équipé d'un système de stockage de l'énergie électrique selon la revendication 13 pour alimenter ladite machine électrique.
PCT/FR2013/050766 2012-05-04 2013-04-09 Systeme d'accumulateurs et piles aluminium air WO2013164525A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015509470A JP2015521344A (ja) 2012-05-04 2013-04-09 アルミニウム−空気電池および蓄電池システム
EP13720463.2A EP2845262A1 (fr) 2012-05-04 2013-04-09 Systeme d'accumulateurs et piles aluminium air
CN201380023619.8A CN104303360A (zh) 2012-05-04 2013-04-09 包括蓄电池和空-铝电池组的系统
KR1020147033602A KR20150018527A (ko) 2012-05-04 2013-04-09 축전지들 및 공기-알루미늄 배터리들을 포함하는 시스템
CA2869911A CA2869911A1 (fr) 2012-05-04 2013-04-09 Systeme d'accumulateurs et piles aluminium air
US14/398,481 US20150093659A1 (en) 2012-05-04 2013-09-04 Aluminium-air battery and accumulator system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201303A FR2990304B1 (fr) 2012-05-04 2012-05-04 Systeme d'accumulateurs et piles aluminium air
FR12/01.303 2012-05-04

Publications (1)

Publication Number Publication Date
WO2013164525A1 true WO2013164525A1 (fr) 2013-11-07

Family

ID=48289452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050766 WO2013164525A1 (fr) 2012-05-04 2013-04-09 Systeme d'accumulateurs et piles aluminium air

Country Status (8)

Country Link
US (1) US20150093659A1 (fr)
EP (1) EP2845262A1 (fr)
JP (1) JP2015521344A (fr)
KR (1) KR20150018527A (fr)
CN (1) CN104303360A (fr)
CA (1) CA2869911A1 (fr)
FR (1) FR2990304B1 (fr)
WO (1) WO2013164525A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031625A1 (fr) * 2015-01-08 2016-07-15 Peugeot Citroen Automobiles Sa Procede de fabrication d’une electrode negative par compression d’une pate et d’une mousse metalliques, pour un dispositif de stockage d’energie electrique
JP2016213964A (ja) * 2015-05-08 2016-12-15 シャープ株式会社 電池システム、電極カートリッジ、放電槽、電池及び充電槽

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524617A (zh) * 2014-03-31 2019-03-26 泰克年研究发展基金会公司 钝态金属活化方法和其用途
WO2016160703A1 (fr) 2015-03-27 2016-10-06 Harrup Mason K Solvants entièrement inorganiques pour électrolytes
ES2540171B1 (es) 2015-04-29 2016-04-21 Albufera Energy Storage, S.L. Celda electroquímica de aluminio-manganeso
CN106548878B (zh) * 2015-09-22 2018-08-10 南京绿索电子科技有限公司 一种使用离子液体电解液的超级电容器
CN105406074A (zh) * 2015-12-09 2016-03-16 江苏科技大学 一种正极为石墨烯复合电极的二次离子电池及制备方法
ES2636362B1 (es) * 2016-04-05 2018-07-18 Albufera Energy Storage, S.L. Celda electroquímica aluminio-aire recargable
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CA3046940A1 (fr) 2016-12-15 2018-06-21 Phinergy Ltd. Systeme et procede pour initialiser et faire fonctionner une pile metal-air
TWI654170B (zh) 2017-12-22 2019-03-21 財團法人工業技術研究院 電解質組成物及包含其之金屬離子電池
US10340552B1 (en) 2017-12-22 2019-07-02 Industrial Technology Research Institute Electrolyte composition and metal-ion battery employing the same
CN108933310B (zh) * 2018-05-25 2021-07-02 四川大学 一种高容量高功率型锂离子/空气混合电池系统
KR102246948B1 (ko) * 2020-02-05 2021-04-30 부산대학교 산학협력단 에너지 효율이 향상된 알루미늄-공기 전지의 제조 방법
CN112002937A (zh) * 2020-08-07 2020-11-27 山东科技大学 一种用于铝离子电池的凝胶电解质及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258782A (ja) * 1992-03-13 1993-10-08 Hitachi Ltd 空気電池
WO2002086984A2 (fr) 2001-04-19 2002-10-31 Eontech Group, Inc. Batterie aluminum-air alcaline
WO2004082060A1 (fr) * 2003-03-13 2004-09-23 Apex Energy Inc. Batterie a haute capacite de courant
US20090053594A1 (en) 2007-08-23 2009-02-26 Johnson Lonnie G Rechargeable air battery and manufacturing method
JP2010129495A (ja) * 2008-11-29 2010-06-10 Equos Research Co Ltd 空気電池
US20100285375A1 (en) * 2009-05-11 2010-11-11 Arizona Board Of Regents For And On Behalf Of Arizona Status University Metal-air low temperature ionic liquid cell
WO2011061728A1 (fr) 2009-11-19 2011-05-26 Technion Research & Development Foundation Ltd. Batteries silicium-air

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558825B1 (en) * 2000-05-12 2003-05-06 Reveo, Inc. Fuel containment and recycling system
AU2002247306A1 (en) * 2001-03-08 2002-09-24 Evionyx, Inc. Refuelable metal air electrochemical cell with replacable anode structure
CN202181219U (zh) * 2010-05-17 2012-04-04 昆明珀玺金属材料有限公司 超声-电场耦合金属铝原电池反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258782A (ja) * 1992-03-13 1993-10-08 Hitachi Ltd 空気電池
WO2002086984A2 (fr) 2001-04-19 2002-10-31 Eontech Group, Inc. Batterie aluminum-air alcaline
WO2004082060A1 (fr) * 2003-03-13 2004-09-23 Apex Energy Inc. Batterie a haute capacite de courant
US20090053594A1 (en) 2007-08-23 2009-02-26 Johnson Lonnie G Rechargeable air battery and manufacturing method
JP2010129495A (ja) * 2008-11-29 2010-06-10 Equos Research Co Ltd 空気電池
US20100285375A1 (en) * 2009-05-11 2010-11-11 Arizona Board Of Regents For And On Behalf Of Arizona Status University Metal-air low temperature ionic liquid cell
WO2010132357A1 (fr) 2009-05-11 2010-11-18 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Pile métal/air à liquide ionique basse température
WO2011061728A1 (fr) 2009-11-19 2011-05-26 Technion Research & Development Foundation Ltd. Batteries silicium-air

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Electrodeposition from ionic liquids", 2008, WILEY-VCH
GIL COHN; YAIR EIN-ELI: "Study and development of non-aqueous silicon-air battery", JOURNAL OF POWER SOURCES, vol. 195, 2010, pages 4963 - 4970, XP026991267
TAKASHI KUBOKI; TETSUO OKUYAMA; TAKAHISA OHSAKI; NORIO TAKAMI: "Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte", JOURNAL OF POWER SOURCES, vol. 146, 2005, pages 766 - 769

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031625A1 (fr) * 2015-01-08 2016-07-15 Peugeot Citroen Automobiles Sa Procede de fabrication d’une electrode negative par compression d’une pate et d’une mousse metalliques, pour un dispositif de stockage d’energie electrique
JP2016213964A (ja) * 2015-05-08 2016-12-15 シャープ株式会社 電池システム、電極カートリッジ、放電槽、電池及び充電槽

Also Published As

Publication number Publication date
FR2990304A1 (fr) 2013-11-08
CA2869911A1 (fr) 2013-11-07
EP2845262A1 (fr) 2015-03-11
FR2990304B1 (fr) 2014-04-25
CN104303360A (zh) 2015-01-21
JP2015521344A (ja) 2015-07-27
US20150093659A1 (en) 2015-04-02
KR20150018527A (ko) 2015-02-23

Similar Documents

Publication Publication Date Title
EP2845262A1 (fr) Systeme d&#39;accumulateurs et piles aluminium air
US10720640B2 (en) Aluminum-based metal-air batteries
JP6723728B2 (ja) 金属空気電池、リチウム空気電池、および車両
US9159995B2 (en) Silicon-air batteries
Hwang et al. Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries
EP2926403B1 (fr) Batterie métal-air avec dispositif de contrôle du potentiel de l&#39;électrode négative
EP3229309B1 (fr) Cellule électrochimique aluminium-air rechargeable
EP2926404B1 (fr) Procédé de charge d&#39;une batterie zinc-air à potentiel limité
CA2854049C (fr) Electrolyte aqueux pour batterie lithium-air
CN110350271B (zh) 一种含水锂空气电池及其制备方法和应用
EP3773991A1 (fr) Procede et dispositif de compression electrochimique d&#39;hydrogene gazeux
FR3002696A1 (fr) Procede de charge d&#39;une batterie zinc/plomb et dispositif electrochimique comprenant une batterie zinc/plomb
EP0016792A1 (fr) Piles, accumulateurs et generateurs electriques a electrodes non metalliques ou en solution
US20170012293A1 (en) Cathode for metal-air current sources and metal-air current source with such cathode
EP3190649B1 (fr) Accumulateur lithium-ion
EP3297070B1 (fr) Batterie de type lithium comportant une electrode negative a duree de vie amelioree
FR3095552A1 (fr) Procédé de formation d’une cellule de batterie Li-ion
US10601095B2 (en) Anaerobic aluminum-water electrochemical cell
FR3139580A1 (fr) Procede d’ouverture et de decharge d’un generateur electrochimique
CH720370A2 (fr) Électrolyte à l&#39;état solide pour élément de batterie à métal sans anode
EP1042839A1 (fr) Additifs pour ameliorer la reversibilite d&#39;une electrode de carbone d&#39;un generateur electrochimique secondaire a ions lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13720463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013720463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2869911

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14398481

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015509470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147033602

Country of ref document: KR

Kind code of ref document: A