WO2013163851A1 - 静压支承系统全方位次级压力监控装置和方法 - Google Patents

静压支承系统全方位次级压力监控装置和方法 Download PDF

Info

Publication number
WO2013163851A1
WO2013163851A1 PCT/CN2012/079761 CN2012079761W WO2013163851A1 WO 2013163851 A1 WO2013163851 A1 WO 2013163851A1 CN 2012079761 W CN2012079761 W CN 2012079761W WO 2013163851 A1 WO2013163851 A1 WO 2013163851A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
monitoring
support system
alarm
static pressure
Prior art date
Application number
PCT/CN2012/079761
Other languages
English (en)
French (fr)
Inventor
徐小平
Original Assignee
上海大众汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海大众汽车有限公司 filed Critical 上海大众汽车有限公司
Priority to DE212012000270.7U priority Critical patent/DE212012000270U1/de
Publication of WO2013163851A1 publication Critical patent/WO2013163851A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0644Details of devices to control the supply of liquids to the bearings

Definitions

  • the present invention relates to monitoring apparatus and methods in hydrostatic support systems, and more particularly to monitoring apparatus and methods for detecting secondary pressure in a hydrostatic support system. Background technique
  • the hydrostatic bearing system consists of an oil pump, a throttle, and some auxiliary components; such as filters, pressure sensors, accumulators, etc., of which there are many types of restrictors: membrane feedback, slide feedback, small holes Throttle and capillary throttling, etc., but no matter which type of restrictor, it must meet a common requirement: that is, a pressure ratio of about 2:1 or throttle ratio, in layman's terms, no-load
  • the pressure ratio of the front end and the rear end of the orifice is ⁇ , and the magnitude of this value is directly related to the oil film stiffness of the hydrostatic support. Taking the thin film feedback type static pressure bearing as an example, the influence of the pressure ratio on the oil film stiffness is further explained.
  • FIG. 1A and Figure 1B show the film feedback static pressure loop.
  • the hydrostatic support system consists of a plurality of pressure sensors (shown as pressure sensors 10a, 10b, 10c, 10d), a distributor (shown as distributors 12a, 12b), a hydrostatic bearing 14, a main shaft 11,
  • the oil pump 15 is composed.
  • the following throttling gap increases, and the pressure ⁇ 3 rises.
  • the pressure difference between the hydrostatic bearing oil chamber 3 and the oil chamber 1 increases, and the journal is slightly lifted and stabilized at a new position.
  • the so-called oil film stiffness refers to the extent to which the oil film around the journal resists the load F capacity.
  • the stiffness of the oil film is directly related to the magnitude of the throttle ratio ⁇ .
  • the object of the present invention is to solve the above problems and to provide an omnidirectional secondary pressure monitoring device for a static pressure support system, which can monitor the pressure change of the static pressure support system in real time in an all-round manner, and timely and effectively perform early warning.
  • Another object of the present invention is to provide an omnidirectional secondary pressure monitoring method for a hydrostatic support system, which can monitor the pressure change of the hydrostatic support system in real time in an all-round manner, and timely and effectively perform early warning.
  • the technical solution of the present invention is:
  • the present invention discloses an omnidirectional secondary pressure monitoring device for a static pressure support system, comprising a monitoring component, a memory, and a detector, wherein:
  • the monitoring component directly intervenes in the static pressure chamber of the hydrostatic support system to directly measure the pressure value in the static pressure chamber;
  • the memory stores a preset monitoring threshold
  • the detector is connected to the monitoring component and the memory, compares the measured pressure value in the static pressure chamber with the preset monitoring threshold, and determines whether an early warning signal is generated according to the comparison result.
  • the apparatus further includes:
  • An alarm device is connected to the detector, receives an early warning signal from the detector, and performs an alarm.
  • the apparatus further includes:
  • a display connected to the detector, receiving an early warning signal from the detector, displaying an alarm message number.
  • the monitoring component comprises a digital pressure sensor.
  • the invention also discloses an omnidirectional secondary pressure monitoring method for a static pressure bearing system, comprising: directly monitoring a pressure component in the static pressure chamber by a monitoring component of a static pressure chamber directly intervening in the static pressure bearing system;
  • Whether or not an early warning signal is generated is determined based on the comparison result.
  • An embodiment of the omnidirectional secondary pressure monitoring method for a hydrostatic support system according to the present invention comprising:
  • the alarm includes an audible alarm and an alarm.
  • the monitoring component is a digital pressure sensor.
  • the solution of the present invention is to connect the monitoring component with the static pressure chamber in the static pressure support system, directly measure the pressure information in the static pressure chamber, and perform preset monitoring thresholds. Compare, timely send out the alarm signal, and display it on the screen through PLC programming, real-time monitoring of pressure.
  • the device of the invention can monitor the pressure change of the static pressure support system in real time in an all-round manner, thereby timely and effectively performing early warning, expanding the monitoring function in the static pressure support system, and providing a safety guarantee for the safety of the static pressure component.
  • the convenient and effective way, the device of the invention has the advantages of simple equipment, simple application and strong applicability, and satisfies the pressure monitoring of various static pressure support systems.
  • FIG. 1A and 1B are schematic views of a film feedback static pressure circuit of a membrane feedback static pressure support system.
  • Figure 2 is a graph showing the relationship between the film feedback static pressure circuit.
  • Fig. 3 is a structural view showing an embodiment of the omnidirectional secondary pressure monitoring device of the hydrostatic support system of the present invention.
  • 4 is a flow chart of an embodiment of the omnidirectional secondary pressure monitoring method of the hydrostatic support system of the present invention.
  • Fig. 5 is a view showing the application of the omnidirectional secondary pressure monitoring device of the hydrostatic support system in the membrane feedback type static pressure support system of the present embodiment.
  • Figure 6 is a graph showing the relationship between the displacement amount and the pressure ratio when the throttle is blocked.
  • Fig. 7 is a graph showing the displacement amount and the pressure ratio when the load causes the pressure in the same direction static pressure chamber to drop.
  • Figure 8 is a schematic diagram of a single analog buck circuit. Detailed description of the invention
  • Embodiment of the hydrostatic support system omnidirectional secondary pressure monitoring device Fig. 3 shows the structure of an embodiment of the hydrostatic support system omnidirectional secondary pressure monitoring device of the present invention.
  • the monitoring device of the present embodiment includes a monitoring component 20, a memory 21, a detector 22, an alarm 23 (optional), and a display 24 (optional).
  • the monitoring element 20 and the memory 21 are both connected to a detector 22, the outputs of which are connected to an alarm 23 and a display 24, respectively.
  • the main components of the hydrostatic bearing system are oil pumps, throttles and auxiliary components.
  • the monitoring element 20 directly intervenes in the static pressure chamber of the hydrostatic support system to directly measure the pressure value in the static pressure chamber.
  • the pressure value here refers to the secondary pressure, and the secondary pressure refers to the outlet pressure of the throttle.
  • the monitoring element 20 can be a pressure sensor, such as a digital pressure sensor.
  • a preset monitoring threshold is stored in the memory 21, and the measured pressure value in the static pressure chamber is compared with a preset monitoring threshold in the detector 22, and whether or not an early warning signal is generated is determined based on the comparison result.
  • the alarm unit 23 receives an early warning signal from the detector 22 to perform an alarm, for example, by an audible prompt.
  • the display 24 receives an early warning signal from the detector 22 for an alarm.
  • the static pressure bearing system is most flexible (particularly the section from the throttle to the static pressure chamber) because it reduces the performance of the hydrostatic bearing.
  • These components are: pressure gauges, hoses, accumulators and some pressure sensors that do not meet the requirements of the system.
  • the use of these components in the secondary section must pay attention to the pressure transmission
  • the deformation of the spring in the sensor can cause a lag in the response speed of the signal feedback.
  • FIG. 5 shows the application of the omnidirectional secondary pressure monitoring device of the hydrostatic support system in the membrane feedback static pressure support system of the present embodiment.
  • the traditional monitoring mode is the primary pressure monitoring, and multiple times during the use process.
  • the blockage of the flow device burns the bearing, so the monitoring of the primary pressure alone can not meet the requirements of monitoring.
  • a full range of secondary pressure monitoring is added to the hydrostatic bearings on the head and tailstock of the equipment.
  • the hydrostatic support system of Figure 5 includes a rear bearing 3 1 , a feedback membrane 32 , a spindle front end 33 , a front bearing 34 , a throttle 35 , a spindle rear end 36 , a static pressure chamber 37 , and a throttling zone 38 .
  • P0 is the primary pressure inlet
  • P 1 ⁇ P8 is the pressure measurement of the secondary pressure
  • SD 1 ⁇ SD8 are the pressure sensors.
  • the head and tail frame has a total of 16 static pressure chambers, each with a pressure sensor as the monitoring component. In this all-round controlled state, no matter which way the pressure drops (caused by the overload caused by the blockage) to the alarm point , the alarm can be stopped, and its parts can be correctly displayed on the operation screen through PLC control.
  • the determination of the preset monitoring threshold in the memory must consider two problems. One is that the throttle is blocked, the pressure in the static pressure chamber can be delayed and the alarm can be sent in time; the second is that the pressure in the same direction of the static pressure chamber caused by the overload can be even The alarm is sent, and the pressure drop in the same direction of the static pressure chamber caused by the normal load cannot be sent.
  • the throttle orifice of the throttle When the throttle orifice of the throttle is blocked, the normal measurement is not guaranteed, and the pressure of the static pressure chamber drops sharply. At this time, the pressure difference between the primary pressure of the throttle and the secondary pressure is large, and the pressure ratio is ⁇ . It will exceed the normal area, at which point the amount of displacement of the support will increase until the support is rubbed and damaged. According to the relationship diagram of Fig. 6, the transmission point can be determined.
  • a P min is the minimum value of the secondary pressure of the system. Below this value, the bearing may be damaged.
  • the following is the determination of the monitoring threshold for the pressure drop in the co-static chamber.
  • the load has normal and abnormal points.
  • the so-called normal load is the load that the static pressure bearing oil film can withstand without causing a large change in the static pressure chamber pressure ⁇ ⁇ .
  • the opposite is the overload.
  • Example 5 The numerical control test data of the static pressure bearing of the CNC crankshaft head and tailstock shown in Figure 5.
  • the amount of displacement is a measure of the accuracy of the spindle's rotation.
  • the system shown in Fig. 5 is processed by a crankshaft with high precision.
  • the pressure difference between the same and reverse static pressure chamber is 4 bar, and the displacement is less than 3 ⁇ according to the above table.
  • the maximum displacement of the headstock is allowed to be 10 ⁇ , and the coercive pressure ⁇ ⁇ is 13 bar. Therefore, the value should be 13bar to ensure the accuracy of its operation.
  • 13bar is just between 1 1.3 and 22.7, which meets the accuracy requirements while meeting the normal pressure ratio requirements.
  • the secondary pressure must be reduced to the alarm point before adjusting the pressure sensor's signaling value. It can be realized by the analog step-down method, and it is operated one by one in the form of single adjustment.
  • the special tool 400 in Figure 8 consists of a small flow relief valve, pressure gauge and oil sump.
  • the quick-connect interface is connected to the system secondary pressure circuit, and the relief valve is adjusted according to the pressure value reflected on the pressure gauge to obtain the required analog transmission pressure. After the relay corresponding to it has been adjusted, simply remove the quick connector. The number of passes is the same as the number of static pressure chambers.
  • This method is accurate, convenient, and can be performed without changing the original pressure of the restrictor.
  • this is not the only way, it can be done according to individual methods, as long as the purpose is achieved.
  • the static pressure chamber monitors a large number of bits, the signal source also increases. If it is a normal device, simply connect all the signal contacts in the electrical control loop. In the case of a program-controlled or numerically controlled device, the orientation of the pressure signal can also be displayed on the screen while the machine is stopped by the PLC program. This brings great convenience to maintenance.
  • Embodiment of omnidirectional secondary pressure monitoring method for hydrostatic support system Based on the above-described hydrostatic support system omnidirectional secondary pressure monitoring device, the present invention also shows a monitoring method implemented by this device. Referring to Figure 4, the following is a detailed description of the various steps of the method of the present embodiment.
  • Step S10 The monitoring element directly intervening in the static pressure chamber of the hydrostatic support system directly measures the pressure value in the static pressure chamber.
  • the monitoring element can be a pressure sensor.
  • Step S12 The measured pressure value is compared with a preset monitoring threshold.
  • Step S14 It is judged according to the comparison result whether or not an early warning signal is generated.
  • Step S16 Receive an early warning signal and perform an alarm.
  • the alarm includes an audible alarm and an alarm.

Abstract

一种静压支承系统全方位次级压力监控装置,包括监控元件(20)、存储器(21)和检测器(22),其中,所述监控元件(20),直接介入静压支承系统的静压腔,直接测得所述静压腔内的压力值;所述存储器(21),存储预设的监控阈值;所述检测器(22),连接所述监控元件(20)和所述存储器(21),将测得的所述静压腔内的压力值和所述预设的监控阈值相比较,根据比较结果判断是否产生预警信号。另外,还提供了一种静压支承系统全方位次级压力监控方法。

Description

静压支承系统全方位次级压力监控装置和方法 发明领域
本发明涉及静压支承系统中的监控设备和方法, 尤其涉及检测静压支承系 统中次级压力的监控装置和方法。 背景技术
静压支承系统是由油泵、 节流器、 和一些辅助元件; 如过滤器、 压力传感 器、 蓄能器等组成, 其中节流器的类型较多: 薄膜反馈式、 滑阀反馈式, 小孔 节流和毛细管节流等,但无论是哪种形式的节流器,都需满足一个共同的要求: 即一个约为 2: 1 的压力比或称节流比, 通俗地说就是指空载时节流口前端和后 端的压力比 β, 这个数值的大小直接关系到静压支承的油膜刚度。 下面就以薄 膜反馈式静压轴承为例, 进一步阐述压力比对油膜刚度的影响。 图 1A和图 1B 是薄膜反馈静压回路。 在图 1B 中, 静压支撑系统由多个压力传感器 (图示为 压力传感器 10a、 10b、 10c、 10d) 、 分配器 (图示为分配器 12a、 12b ) 、 静压 轴承 14、 主轴 11、 油泵 15组成。
当轴颈受到径向载荷 F并向下偏移距离 e时, 轴承下油腔间隙减小, 压力 P3升高, 上油腔间隙增大, P 1压力降低, 上下油腔形成的压力差 Δ Ρ=Ρ3-Ρ 1, 由于油腔 1和油腔 3分别与右边一只薄膜反馈节流器上、 下油室相通, 薄膜节 流器上、 下油室也产生同样的压力差, 薄膜受到一个向上作用的力, 薄膜向上 凸起, 使上面的节流缝隙减少, 压力 P 1 随之下降。 下面的节流缝隙增大, 压 力 Ρ3升高, 结果静压轴承油腔 3和油腔 1 的压力差随之增大, 将轴颈微量托 起, 稳定在新的位置上。 所谓油膜刚度就是指轴颈周围的油膜抵抗载荷 F能力 大小的程度。 对静压支承而言, 如果其轴颈受到径向载荷 F作用时向下移动的 距离 e越小, 则油膜刚度越大。 油膜刚度的大小与节流比值 β的大小有直接的 关系。
从图 2中可以知道, 压力比值的过大过小都会造成轴颈的位移增大, 从而 影响回转精度, 综合起来说就是刚性减弱。 油液受温度影响, 粘度改变会改变 压力比值。 尤为突出的是油液污染 (包括混入空气、 油液氧化产生胶状物、 保 养时脏物带入等) 使节流器堵塞, 油液不能形成正常的流动, 其结果就是烧坏 支承付。
过去仅在节流器的压力油进口处安装压力表、 压力传感器, 即常称之为原 级控制的方法。 定期停机保养就成了保证静压系统安全的唯一手段。 比如更换 油液, 更换过滤芯, 清洗节流器, 清洗管道, 测试油膜刚度等等。 其缺点是: 停机时间长, 操作难度大, 责任性强。
由于客观因素的存在,节流器时时就有被堵的可能,形成防不胜防的局面。 常规的原级压力监控手段是不能百分之百地保护支承元件的。 一旦发生报警, 其系统内部元器件已遭损坏, 只能通过定期停产保养的措施来保证静压支承系 统的安全。 发明概述
本发明的目的在于解决上述问题, 提供了一种静压支承系统全方位次级压 力监控装置, 可以全方位的实时监控静压支承系统的压力变化, 及时有效的进 行预警。
本发明的另一目的在于提供了一种静压支承系统全方位次级压力监控方 法, 可以全方位的实时监控静压支承系统的压力变化, 及时有效的进行预警。
本发明的技术方案为: 本发明揭示了一种静压支承系统全方位次级压力监 控装置, 包括监控元件、 存储器、 检测器, 其中:
所述监控元件, 直接介入静压支承系统的静压腔, 直接测得所述静压腔内 的压力值;
所述存储器, 存储预设的监控阈值;
所述检测器, 连接所述监控元件和所述存储器, 将测得的所述静压腔内的 压力值和所述预设的监控阈值相比较, 根据比较结果判断是否产生预警信号。
根据本发明的静压支承系统全方位次级压力监控装置的一实施例, 所述装 置还包括:
报警器, 连接所述检测器, 接收所述检测器发出的预警信号并进行报警。 根据本发明的静压支承系统全方位次级压力监控装置的一实施例, 所述装 置还包括:
显示器, 连接所述检测器, 接收所述检测器发出的预警信号, 显示报警信 号。
根据本发明的静压支承系统全方位次级压力监控装置的一实施例, 所述监 控元件包括数字式压力传感器。
本发明还揭示了一种静压支承系统全方位次级压力监控方法, 包括: 直接介入静压支承系统的静压腔的监控元件直接测得所述静压腔内的压 力值;
将测得的压力值和预设的监控阈值相比较;
根据比较结果判断是否产生预警信号。
根据本发明的静压支承系统全方位次级压力监控方法的一实施例, 该方法 包括:
接收预警信号并进行报警。
根据本发明的静压支承系统全方位次级压力监控方法的一实施例, 所述报 警包括声音报警、 显示报警。
根据本发明的静压支承系统全方位次级压力监控方法的一实施例, 所述监 控元件是数字式压力传感器。 本发明对比现有技术有如下的有益效果: 本发明的方案是将监控元件与静 压支承系统中的静压腔连接, 直接测得静压腔内的压力信息, 和预设的监控阈 值进行比较, 及时发出报警信号, 并通过 PLC程序编制显示在屏幕上, 进行压 力的实时监控。 对比现有技术, 本发明的装置能够全方位的实时监控静压支承 系统的压力变化, 从而及时有效的进行预警, 扩展了静压支承系统中的监控功 能, 为保障静压元件安全提供了一条便捷、 有效的途径, 本发明的设备简单、 应用简便、 适用性强, 满足了各种静压支承系统的压力监控。 附图说明
图 1A和图 1B是薄膜反馈式静压支承系统的薄膜反馈静压回路的示意图。 图 2是薄膜反馈静压回路的关系曲线图。
图 3 是本发明的静压支承系统全方位次级压力监控装置的实施例的结构 图。 图 4 是本发明的静压支承系统全方位次级压力监控方法的实施例的流程 图。
图 5是本实施例的静压支承系统全方位次级压力监控装置在薄膜反馈式静 压支承系统中的应用的示意图。
图 6是节流器被堵时的位移量和压力比的关系图。
图 7是载荷引起同向静压腔压力下降时的位移量和压力比的取值曲线图。 图 8是单路模拟降压电路的原理图。 发明的详细说明
下面结合附图和实施例对本发明作进一步的描述。 静压支承系统全方位次级压力监控装置的实施例 图 3示出了本发明的静压支承系统全方位次级压力监控装置的实施例的结 构。 请参见图 3, 本实施例的监控装置包括监控元件 20、 存储器 21、 检测器 22、 报警器 23 (可选) 、 显示器 24 (可选) 。
监控元件 20和存储器 21均连接到检测器 22, 检测器 22的输出分别连接 报警器 23和显示器 24。
静压支承系统的主要组件是油泵、 节流器和辅助元件等。 监控元件 20直 接介入静压支承系统的静压腔, 直接测得静压腔内的压力值。 这里的压力值就 是指次级压力, 所谓次级压力, 是指节流器的出口压力。 监控元件 20可以是 压力传感器, 例如是数字式压力传感器。 在存储器 21中存有预设的监控阈值, 在检测器 22中将测得的静压腔内的压力值和预设的监控阈值进行比较, 根据 比较结果判断是否产生预警信号。
报警器 23在接收到检测器 22发出的预警信号进行报警, 例如以声音提示 的方式进行报警。 显示器 24在接收到检测器 22发出的预警信号进行报警。
静压支承系统最忌弹性的参与 (具体指的是节流器到静压腔这一段) , 因 为它可降低静压支承的性能指标。 这些元件有: 压力表、 软管、 储能器和一些 不符合该系统要求的压力传感器等。 在次级段中使用这些元件必须注意压力传 感器中弹簧变形会对信号反馈的响应速度产生滞后的不利因素。
这里要注意恒定载荷与交变载荷的区别。 对恒定载荷来说: 弹簧的吸收量 可在很短的时间内得到油流的补偿而趋向稳定, 即被支承体能在很短的时间内 建立新的位置, 所以其运动精度依旧正常。
而交变载荷的情况就不同了, 支承体的瞬间重载作用下移动了一定距离, 在反向静压腔升高的同时弹簧吸收了能量, 造成反馈压力滞后升高的结果, 这 一时间差越长, 响应速度就越慢, 油膜刚性也就越差。
图 5示出了本实施例的静压支承系统全方位次级压力监控装置在薄膜反馈 式静压支承系统中的应用, 传统的监控方式是原级压力监控, 在使用过程中多 次因节流器堵塞使轴承烧毁, 因此只靠原级压力监控已经满足不了监控的要 求。 正如图 5所示, 在设备的头尾架静压轴承上增设了全方位次级压力监控。
图 5中的静压支承系统包括后轴承 3 1、 反馈薄膜 32、 主轴前端 33、 前轴 承 34、 节流器 35、 主轴后端 36、 静压腔 37、 节流区 38。 其中的 P0是原级压 力入口处, P 1〜P8是次级压力的测压处, SD 1〜SD8为压力传感器。 头尾架共 16路静压腔, 每路都设有一只压力传感器作为监控元件, 在这种全方位受控状 态下, 无论哪一路压力下降 (受堵引起的超载荷引起的) 至报警点, 即可报警 停机, 并通过 PLC控制正确地将其部位显示在操作屏幕上。
存储器中所预设的监控阈值的确定必须考虑两个问题, 一是节流器被堵, 静压腔压力下降能及时发信报警; 二是超载荷引起的同向静压腔压力下降能即 使发信报警, 而正常载荷引起的同向静压腔压力下降不能发信。
以下是节流器被堵的监控阈值的确定。 当节流器的节流口被堵, 正常测量 就得不到保证, 静压腔压力就会急剧下降, 这时节流器原级压力与次级压力的 压差很大, 则压力比 β值就会超出正常区域, 这时支承体位移量增大, 直至支 承付碰擦而损坏。 根据图 6的关系图可以确定其发信点。
β = ^ 式 β —压力比
ΑΡ
中: Δ Ρ—次级压力
Ρ—原级压力
而节流器受堵, 次级压力总是降压, 所以发信值取次级压力的下极限 Δ Ρ min, 即 P
APmin =
βπΐΆχ
A P min就是系统的次级压力的最小值, 小于这个值, 轴承就有被损坏的 可能。
以下是载荷引起同向静压腔压力下降的监控阈值的确定。
载荷有正常和非正常之分。 所谓正常载荷就是指静压支承油膜能够承受 的、 不会引起静压腔压力 Δ Ρ大幅度变化的载荷。 反之就是超载荷。
由于受载荷 F力的作用, 与之同向静压腔的封油缝间隙就会增大, 压力随 之下降。 当压力降超过某一定值时, 监控立即发信报警。 确定这一发信点只能 通过对系统进行试验才能得出, 因为各系统的相关数据有所不同。
例: 图 5所示的数控曲轴磨床头尾架静压轴承定值测试数据。
Figure imgf000008_0001
对于主轴来说, 位移量大小是衡量主轴回转精度的一个标志。 图 5所示的 系统的加工对象是曲轴, 精度较高。 按其正常加工载荷的情况来看, 同、 反向 静压腔的压力差 4bar, 按上述表推算其位移量小于 3 μ。 按加工工件的圆度要 求, 头尾架主轴允许最大位移量为 10 μ, 则同向静压腔压力 Δ Ρηώι为 13 bar。 因此, 取值应 13bar, 才能保证其运转精度。
通过以上两方面的论证得到了两个 Δ Ρηήη值, 1 1.3bar和 13bar.为了进一 步搞清它们的关系。 我们用图示法来确认一个能满足该系统要求的值。 见图 7, 左垂直坐标是压力比 β, 取正常区域 1.5〜3, 通过计算得到 ΔΡ值范围 11.3~22.7(bar); 右垂直坐标是支承体位移量 e, 通过测试得到: 当位移 10 μ时, 同向静压腔压力由 19bar降到 13bar, 由于被加工工件的精度要求 10 μ是最大 值, 所以 13bar就成了保证精度的最小值。
由此可见, 13bar正好在 1 1.3与 22.7之间, 它既能满足精度要求, 同时又 满足了正常压力比的要求。
当节流器被堵时, 作用在被支承体上的压力就会下降, 但只要降到 13bar 时, 继电器即可报警停机。 当负载超过 3000N时, 同向静压腔压力也会降到 13 bar, 继电器同样可报警停机。 这不仅保护了支承付免遭损坏, 而且确保了支承 体的运动精度, 同时也起到了保护其它机械构件安全的作用。从这个意义上讲, 又有了一个过载保护的新方法。
在调整压力传感器发信值之前, 必须把次级压力降到报警点。 可以通过模 拟降压法来实现, 采用单路调整的形式一一操作。
图 8中专用工具 400是由一只小流量的溢流阀、 压力表和盛油器组成。 通 过快速接口与系统次级压力油路接通, 在根据压力表上反映的压力值调整溢流 阀, 从而得到所需要的模拟发信压力。 待与之对应的继电器调整完毕后, 只需 拔去快速接头即可。 进行的次数与静压腔的量数一样。
这种方法精确、 方便、 不需改变节流器的原级压力就可进行。 当然这不是 唯一的方法, 可根据个人的方法操作, 只要达到目的就行。
在一般静压系统中, 都设有原级压力监控以及在过滤器上设有压差监测。 这种形式的目的只是为了防止系统供油中断和流量不足。
由于静压腔监控位数较多, 信号源也随之增加。 如果是普通设备, 只需将 所有信号触点串接在电气控制回路中即可。 如果是程控或数控设备, 还可通过 PLC程序编制将压力信号的方位在停机的同时显示在屏幕上。 这又给维修带来 了极大的方便。
对于原来有继电器监控触点的系统来说, 只需将所有的信号触点与原来的 触点串联起来就可实现。 静压支承系统全方位次级压力监控方法的实施例 在基于上述的静压支承系统全方位次级压力监控装置的基础上, 本发明还 示出了通过这一装置实现的监控方法。 请参见图 4, 下面是对本实施例的方法 的各个步骤的详细描述。
步骤 S 10 : 直接介入静压支承系统的静压腔的监控元件直接测得所述静压 腔内的压力值。
监控元件可以是压力传感器。
步骤 S 12 : 将测得的压力值和预设的监控阈值相比较。
步骤 S 14 : 根据比较结果判断是否产生预警信号。
步骤 S 16 : 接收预警信号并进行报警。
本步骤是可选步骤, 报警包括声音报警、 显示报警。
有关该方法所依赖的装置, 已经在上一实施例中详细描述,此处不再赘述。 上述实施例是提供给本领域普通技术人员来实现和使用本发明的, 本领域 普通技术人员可在不脱离本发明的发明思想的情况下, 对上述实施例做出种种 修改或变化, 因而本发明的保护范围并不被上述实施例所限, 而应该是符合权 利要求书所提到的创新性特征的最大范围。

Claims

权 利 要 求 书
1、 一种静压支承系统全方位次级压力监控装置, 包括监控元件、 存储器、 检测器, 其中:
所述监控元件, 直接介入静压支承系统的静压腔, 直接测得所述静压腔内 的压力值;
所述存储器, 存储预设的监控阈值;
所述检测器, 连接所述监控元件和所述存储器, 将测得的所述静压腔内的 压力值和所述预设的监控阈值相比较, 根据比较结果判断是否产生预警信号。
2、 根据权利要求 1 所述的静压支承系统全方位次级压力监控装置, 其特 征在于, 所述装置还包括:
报警器, 连接所述检测器, 接收所述检测器发出的预警信号并进行报警。
3、 根据权利要求 1 所述的静压支承系统全方位次级压力监控装置, 其特 征在于, 所述装置还包括:
显示器, 连接所述检测器, 接收所述检测器发出的预警信号, 显示报警信 号。
4、 根据权利要求 1 所述的静压支承系统全方位次级压力监控装置, 其特 征在于, 所述监控元件包括数字式压力传感器。
5、 一种静压支承系统全方位次级压力监控方法, 包括:
直接介入静压支承系统的静压腔的监控元件直接测得所述静压腔内的压 力值;
将测得的压力值和预设的监控阈值相比较;
根据比较结果判断是否产生预警信号。
6、 根据权利要求 5 所述的静压支承系统全方位次级压力监控方法, 其特 征在于, 该方法包括: 接收预警信号并进行报警。
7、 根据权利要求 6 所述的静压支承系统全方位次级压力监控方法, 其特 征在于, 所述报警包括声音报警、 显示报警。
8、 根据权利要求 5 所述的静压支承系统全方位次级压力监控方法, 其特 征在于, 所述监控元件是数字式压力传感器。
PCT/CN2012/079761 2012-05-03 2012-08-07 静压支承系统全方位次级压力监控装置和方法 WO2013163851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212012000270.7U DE212012000270U1 (de) 2012-05-03 2012-08-07 Vorrichtung zur vollständigen Überwachung des sekundären Drucks in einem hydrostatischen Stützsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210137253.4 2012-05-03
CN201210137253.4A CN103383295B (zh) 2012-05-03 2012-05-03 静压支承系统全方位次级压力监控装置和方法

Publications (1)

Publication Number Publication Date
WO2013163851A1 true WO2013163851A1 (zh) 2013-11-07

Family

ID=49491145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079761 WO2013163851A1 (zh) 2012-05-03 2012-08-07 静压支承系统全方位次级压力监控装置和方法

Country Status (3)

Country Link
CN (1) CN103383295B (zh)
DE (1) DE212012000270U1 (zh)
WO (1) WO2013163851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131341B1 (en) * 2020-08-07 2021-09-28 National Tsing Hua University Dual membrane restrictor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106382302B (zh) * 2016-11-24 2019-07-12 天津职业技术师范大学 一种可在线检测压力故障及快速维修的静压轴承
CN109139695A (zh) * 2017-06-15 2019-01-04 重庆西门雷森精密装备制造研究院有限公司 一种油膜轴承用新型薄膜节流装置
CN108971528B (zh) * 2018-07-23 2021-04-16 安徽工程大学 一种机床主轴利用滑动轴承自动定心的方法及其装置
CN111852454B (zh) * 2020-06-18 2023-05-23 四川恒铭泽石油天然气工程有限公司 一种自动节流控压系统的通道切换方法
CN112727915A (zh) * 2020-12-29 2021-04-30 上海嵘熵动力科技有限公司 一种动压空气悬浮轴承保护装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871233A (en) * 1973-09-17 1975-03-18 Standun Fluid pressure monitoring device
CN2614287Y (zh) * 2001-12-28 2004-05-05 哈尔滨电机厂有限责任公司 一种静压轴承变恒流量供油系统
US20050145010A1 (en) * 2003-12-31 2005-07-07 Vanderveen Timothy W. Medication safety enhancement for secondary infusion
CN101776507A (zh) * 2009-12-29 2010-07-14 威海华东数控股份有限公司 压力传感器检测装置
CN101886580A (zh) * 2009-03-27 2010-11-17 通用汽车环球科技运作公司 用缸内压力传感器产生发动机部件诊断信号的方法和系统
CN101900163A (zh) * 2010-07-14 2010-12-01 武汉重型机床集团有限公司 变频恒流静压轴承
US20110178736A1 (en) * 2010-01-19 2011-07-21 Greene's Energy Group, Llc Hydrostatic Pressure Testing System and Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220039C (zh) * 2002-12-27 2005-09-21 中国科学院力学研究所 一种深水压力的测量方法及其装置
CN1736540A (zh) * 2004-08-17 2006-02-22 王惠生 机械过滤器堵塞情况监测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871233A (en) * 1973-09-17 1975-03-18 Standun Fluid pressure monitoring device
CN2614287Y (zh) * 2001-12-28 2004-05-05 哈尔滨电机厂有限责任公司 一种静压轴承变恒流量供油系统
US20050145010A1 (en) * 2003-12-31 2005-07-07 Vanderveen Timothy W. Medication safety enhancement for secondary infusion
CN101886580A (zh) * 2009-03-27 2010-11-17 通用汽车环球科技运作公司 用缸内压力传感器产生发动机部件诊断信号的方法和系统
CN101776507A (zh) * 2009-12-29 2010-07-14 威海华东数控股份有限公司 压力传感器检测装置
US20110178736A1 (en) * 2010-01-19 2011-07-21 Greene's Energy Group, Llc Hydrostatic Pressure Testing System and Method
CN101900163A (zh) * 2010-07-14 2010-12-01 武汉重型机床集团有限公司 变频恒流静压轴承

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131341B1 (en) * 2020-08-07 2021-09-28 National Tsing Hua University Dual membrane restrictor

Also Published As

Publication number Publication date
CN103383295B (zh) 2015-10-21
DE212012000270U1 (de) 2014-12-04
CN103383295A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2013163851A1 (zh) 静压支承系统全方位次级压力监控装置和方法
KR100933404B1 (ko) 압연기 유막 베어링용 감시 및 경보 장치
US7936259B1 (en) Alarm management system
US10179368B2 (en) Wire electric discharge machine having estimation function for filter replacement timing
US20170122838A1 (en) Hydrostatic bearing monitoring system and method
JP2008008291A (ja) タービンの望ましくない運転を検出するためのシステム及び方法
US11371382B2 (en) Steam-using facility monitoring system
TW202024594A (zh) 冷軋機之顫震檢測方法、冷軋機之顫震檢測裝置、冷軋方法以及冷軋機
CN106402090A (zh) 液压电控系统的压力感应装置及其控制方法
RU2682268C2 (ru) Способ и устройство для контроля нарушений протекания жидкой среды в трубопроводной системе
JP2010054413A (ja) 着座距離判定方法とその装置
EP2996000B1 (en) Reverse rotation detection in rotating machinery
KR101885479B1 (ko) 윤활상태 자동 감시시스템
CN105511850A (zh) 螺接和/或铆接系统以及监控螺接和/或铆接系统的方法
JP2017007027A (ja) ワーク加工時の着座判定方法
CN204493353U (zh) 液压油在线监测装置和工程机械
JP5515375B2 (ja) 建設機械のフィルタ目詰まり検出装置
CN103302099A (zh) 连轧管机支撑辊液压控制系统
CN203003172U (zh) 一种具有频显功能的油膜测厚装置
US7818146B2 (en) Method and device for the diagnosis of technical devices disposed within an industrial installation
JP7349966B2 (ja) 機械の潤滑油供給系統監視方法及び装置
JP2006083943A (ja) 液化ガスタンクの監視方法及び監視装置
JP4112774B2 (ja) 加工設備における回転体の回転不良監視装置及び方法
CN108518576B (zh) 一种重载机械设备润滑系统断油保护装置及保护方法
CN114798766A (zh) 一种轧机信号的故障处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2120120002707

Country of ref document: DE

Ref document number: 212012000270

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875994

Country of ref document: EP

Kind code of ref document: A1