WO2013162131A1 - 제트 터빈 - Google Patents

제트 터빈 Download PDF

Info

Publication number
WO2013162131A1
WO2013162131A1 PCT/KR2012/008151 KR2012008151W WO2013162131A1 WO 2013162131 A1 WO2013162131 A1 WO 2013162131A1 KR 2012008151 W KR2012008151 W KR 2012008151W WO 2013162131 A1 WO2013162131 A1 WO 2013162131A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
plate
guide plate
fluid
rotating
Prior art date
Application number
PCT/KR2012/008151
Other languages
English (en)
French (fr)
Inventor
이정석
Original Assignee
써클파워 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 써클파워 주식회사 filed Critical 써클파워 주식회사
Publication of WO2013162131A1 publication Critical patent/WO2013162131A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/32Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical

Definitions

  • the present invention relates to a jet turbine, and more particularly, it is possible to easily rotate the rotating plate using a low pressure fluid flowing in an oblique direction, and when the fluid flows into the rotating plate and when it flows out from the rotating plate
  • the present invention relates to a jet turbine which hardly causes a pressure drop.
  • a turbine converts energy of a fluid such as water, gas, and steam into useful mechanical energy, and the fluid collides with a plurality of blades fastened to a rotating shaft at high speed to be converted into rotating energy.
  • the turbine may be a steam turbine that emits steam from the nozzle and strikes the blade to rotate the turbine, a gas turbine that uses energy of high temperature and high pressure gas, and an air turbine that uses energy of high pressure compressed air.
  • the conventional turbine is suitable for large-scale power generation facilities, such as thermal power generation or nuclear power generation because the blade must be rotated using a high pressure fluid.
  • a large power plant has a problem in that the initial construction cost is high, and because a high-voltage electricity in one area to be transmitted to different areas, it is necessary to construct a plurality of transmission towers, the construction cost of the transmission tower and There is a problem that additionally incurs maintenance costs.
  • An object of the present invention for solving the problems of the prior art as described above is to provide a jet turbine that can generate a mechanical drive force even when using a low pressure fluid without using a blade.
  • Another object of the present invention is to provide a jet turbine that can be manufactured in a small size, it is possible to build a small power plant in a specific area requiring electricity.
  • Another object of the present invention is to provide a jet turbine that does not use a blade of a complex shape, the production cost is reduced, and the productivity is improved.
  • the present invention is a hollow housing and one side and the other side is open;
  • a rotating plate provided to rotate inside the housing and having a plurality of rotating guide holes formed along an edge thereof;
  • An inlet guide plate fixed to one side of the housing and having one or more inlet holes formed to allow fluid to flow into a position opposite to one end of the rotary induction hole;
  • An outlet guide plate which is fixed to the other side of the housing and has at least one outlet hole formed so that the fluid is discharged to a position opposite to the other end of the rotary induction hole;
  • a rotating shaft integrally passing through the rotating plate, the inflow guide plate, and the outflow guide plate, wherein the inflow hole includes a portion formed to be inclined in a direction in which the rotation plate rotates toward the rotation plate. It provides a jet turbine, characterized in that for rotating the rotating plate while the fluid flowing into the rotation guide side.
  • the inflow guide plate may include a first inflow guide plate and a second inflow guide plate in close contact with the outside of the first inflow guide plate, and the inflow hole may be disposed at a position opposite to the rotation guide hole of the first inflow guide plate.
  • a first inlet hole formed to be inclined in a direction in which the rotating plate rotates toward the rotating plate, and formed at a position opposite to the first inlet hole of the second inlet guide plate in a direction perpendicular to the second inlet guide plate. It provides a jet turbine comprising a second inlet hole is formed.
  • the outflow guide plate may include a first outflow guide plate fixed to the other side of the housing and a second outflow guide plate in close contact with the outside of the first outflow guide plate, and the outflow hole may be configured to rotate the first outflow guide plate. It provides a jet turbine, characterized in that it comprises a first outlet hole formed in a position facing the guide hole, and a second outlet hole formed in a position facing the first outlet hole of the second inlet guide plate.
  • the rotating plate may include a first rotating plate provided to rotate on one side of the housing, and a second rotating plate provided to rotate on the other side of the housing, wherein the rotating guide is formed along an edge of the first rotating plate.
  • the first rotating guide hole is formed in a direction perpendicular to the first rotating plate, and is formed at a position opposite to the first rotating guide hole along an edge of the second rotating plate, and the first rotating plate moves toward the outlet hole. It provides a jet turbine comprising a plurality of second rotary induction hole is formed to be inclined in a direction opposite to the rotation direction.
  • the side opposite to the direction in which the rotary plate of one end of the rotary induction hole facing the inlet hole is characterized in that it comprises a fluid guide portion formed in the form along the moving direction of the fluid flowing into the rotary induction hole in the inlet hole Provided is a jet turbine.
  • the plurality of the inlet hole provides a jet turbine, characterized in that configured in fewer than the plurality of rotary induction hole.
  • first coupling guide in a direction opposite to the edge of the first rotating plate or the edge of the first outflow guide plate of the edge of the inlet guide plate in which the inlet hole is formed or the edge of the second rotating plate in which the second rotation guide hole is formed.
  • a second coupling guide portion is formed so as to rotate along the first coupling guide portion at a position opposite to the first coupling guide portion of the edge of the first rotating plate or the edge of the outflow guide plate.
  • the jet turbine provides a jet turbine, characterized in that the plurality is arranged in a row, the outlet hole of one jet turbine adjacent to each other and the inlet hole of the other jet turbine is interconnected.
  • the diameter of the inlet hole located in each jet turbine provides a jet turbine, characterized in that configured to increase gradually along the direction in which the fluid is moved.
  • a plurality of the housings are arranged in a row along the rotation axis, the rotating plate is provided with a plurality so as to be rotated in each of the plurality of housings, the inlet guide plate is an outer body in the direction in which the fluid flows out of the plurality of housings It is fixed to the end of the housing which is located in the, the guide plate is fixed to the end of the housing which is located in the outer periphery in the direction of the fluid out of a plurality of the housing, is positioned to be fixed between the adjacent housings, adjacent to each other At least one fluid transfer plate is formed at a position opposite to the rotation induction hole of the rotating plate so that fluid is transferred, wherein the fluid transfer hole is in a direction in which the rotating plate rotates toward a direction in which the fluid is moved.
  • the jet turbine according to the present invention pressurizes the rotary plate in the rotation direction while the fluid flows into the rotary induction hole of the rotary plate in an oblique direction, so that the rotary plate can be easily rotated even when a low pressure fluid is used.
  • the jet turbine according to the present invention does not require a separate blade, and can be manufactured in a small size, and can generate a mechanical driving force by using the pressure of the fluid, and thus can produce a small amount of electricity required in the region. From the power source of the generator, there is an effect that can be widely used in the propeller drive source of the ship, the engine of the jet plane, automobiles, etc., and does not use a blade of a complex shape, the production cost is reduced, the productivity is improved.
  • the jet turbine according to the present invention has the effect of being able to reuse the fluid and increase the rotational efficiency by having a plurality of arranged side by side, or having a plurality of rotary plates.
  • FIG. 1 is a view schematically showing a jet turbine according to a preferred embodiment of the present invention.
  • FIG. 2 is an exploded view illustrating a jet turbine according to a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • FIG. 4 is a cross-sectional view taken along line BB ′ of FIG. 1.
  • 5 and 6 are views for explaining the fluid guide portion of the jet turbine according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating a coupling guide of a jet turbine according to a preferred embodiment of the present invention.
  • FIG. 8 is a view illustrating an embodiment of a state where a plurality of jet turbines of the present invention are provided.
  • FIG 9 is a view illustrating another embodiment of the jet turbine of the present invention.
  • FIG. 1 is a view schematically showing a jet turbine according to a preferred embodiment of the present invention
  • Figure 2 is an exploded view showing a jet turbine according to a preferred embodiment of the present invention.
  • a jet turbine 5 includes a housing 10, a rotating plate, an inlet guide plate, an outlet guide plate, and a rotating shaft 50.
  • the housing 10 is formed in a cylindrical shape and has an empty space 12 therein.
  • One side and the other side of the housing 10 are configured to be open, and first and second fixing parts 14 and 16 are formed outwardly along one side and the other side of the circumference.
  • the rotating plate is formed in a disk shape and is provided to rotate in the space portion 12 of the housing 10, the first rotating plate 30 provided to rotate on one side of the housing 10, the housing 10 It includes a second rotating plate 35 provided to be rotated on the other side inside.
  • a plurality of first rotating guides 32 are formed in the first rotating plate 30 along the edge thereof, and a plurality of first rotating guides 32 are formed in the second rotating plate 35 opposite the first rotating guide holes 32 along the edge thereof.
  • the second rotary guide hole 37 is formed.
  • the first rotation guide 32 is formed in a direction perpendicular to the first rotation plate 30, the second rotation guide hole 37 toward the first outflow guide plate 40 to be described later toward the first rotation plate 30 It is formed to be inclined in a direction opposite to the direction of rotation.
  • the inclination angle of the second rotary induction hole 37 is composed of 25 ° to 50 °, preferably 45 °. Accordingly, the fluid that is moved from the first rotary guide hole 32 to the second rotary guide hole 37 presses the sidewall of the second rotary guide hole 37 along the inclined direction of the second rotary guide hole 37 while the second rotary plate is rotated. Will rotate (35). This will be described again with reference to the following drawings.
  • the inflow guide plate is fixed to an open side of the housing 10 and is formed to cover the open side of the housing 10, the edge of which is fixed to the first fixing part 14 of the housing 10.
  • 1 includes an inlet guide plate 20 and a second inlet guide plate 25 which is fixed in close contact with the outside of the first inlet guide plate 20.
  • the first inlet guide plate 20 and the second inlet guide plate 25 may be integrally formed with each other or may be separately formed and fixed to each other.
  • the first fixing part 14, the first inlet guide plate 20, and the second inlet guide plate 25 of the housing 10 may be firmly coupled to each other by using a coupling part such as a bolt, and the housing 10.
  • the first inflow guide plate 20 or the first inflow guide plate 20 and the second inflow guide plate 25 may be in close contact with each other.
  • a first inflow hole 22 is formed at a position facing the first rotation guide hole 32 of the first rotation plate 30 in the first inflow guide plate 20.
  • the first inflow guide plate 20 in order to allow the fluid introduced into the first inflow hole 22 of the first inflow guide plate 20 to easily flow into the first rotation induction hole 32 of the first rotation plate 30. It is preferable that the first inlet hole 22 is smaller in number than the first rotary induction hole 32 of the first rotating plate 30.
  • the first inflow hole 22 of the first inflow guide plate 20 is 25 ° to 50 °, preferably 30 ° in the direction in which the first rotation plate 30 rotates toward the first rotation plate 30. It is formed to be inclined. As such, the first inflow hole 22 of the first inflow guide plate 20 is formed to be inclined, and the first rotation induction hole 32 of the first rotation plate 30 is formed in the vertical direction, such that the first inflow hole 22 is formed.
  • the fluid flowing into the first rotary induction hole 32 obliquely along the inclined sidewall of the first rotary induction hole 32 rotates the first rotation induction hole 32 while pressing the sidewall of the first rotation induction hole 32.
  • At least one second inflow hole 27 is formed at a position facing the first inflow hole 22 in the second inflow guide plate 25.
  • the second inflow hole 27 is formed in a direction perpendicular to the second inflow guide plate 25, and two may be formed at one side and the other side of the outer surface of the second inflow guide plate 25.
  • the inflow guide groove 26 may be further concave along the inner edge facing the first inflow guide plate 20 in the second inflow guide plate 25.
  • the second inlet hole 27 is formed at least one along the outer edge of the second inlet guide plate 25, one end thereof penetrates the bottom surface of the inlet guide groove 26, the other end is the second inlet guide plate ( Penetrates the outside of 25).
  • an inlet pipe 28 is mounted at the other end of the second inlet hole 27 so that the fluid flowing from the inlet pipe 28 to the second inlet hole 27 is formed through a plurality of inlet guide grooves 26. 1 is easily guided to the inlet (22).
  • the outlet guide plate is fixed to the other open side of the housing 10, is formed to cover the other open side of the housing 10, the edge is fixed to the second fixing portion 16 of the housing 10 1 includes an outlet guide plate 40 and a second outlet guide plate 45 in close contact with and fixed to the outside of the first outlet guide plate 40.
  • the first and second outflow guide plates 40 and 45 are integrally formed with each other or separately formed and configured to be fixed to each other.
  • the second fixing part 16, the first outlet guide plate 40, and the second outlet guide plate 45 of the housing 10 may be firmly coupled to each other by using a coupling part such as a bolt, and the housing 10.
  • the first outflow guide plate 40 or the first outflow guide plate 40 and the second outflow guide plate 45 may be in close contact with each other.
  • first outflow guide plate 40 and the second outflow guide plate 45 may be integrally formed with each other or separately formed, and then may be closely fixed.
  • first outflow guide plate 40 may be omitted in some cases, in this case, the second outflow guide plate 45 is fixed to the second fixing portion 16 of the housing 10.
  • a first outlet hole 42 is formed at a position facing the second rotation guide hole 37 of the second rotating plate 35 in the first outlet guide plate 40.
  • the first outlet hole 42 is formed in a direction perpendicular to the first outlet guide plate 40.
  • a second outlet hole 47 is formed at a position facing the first outlet hole 42 in the second outlet guide plate 45, and the second outlet hole 47 is perpendicular to the second outlet guide plate 45. Is formed.
  • the fluid flowing into the first and second rotary guide holes 32 and 37 of the first and second rotary plates 30 and 35 flows out through the first and second outlet holes 42 and 47.
  • the first inflow hole 22 or the second inflow hole 27 or the first rotation induction hole 32 or the second rotation induction hole 37 or the first outflow hole 42 or the second outflow hole 47 The cross section may consist of a circular or polygonal or oval shape.
  • an outflow guide groove 46 may be further concave along the inner edge facing the first outflow guide plate 40 in the second outflow guide plate 45.
  • the second outlet hole 47 is formed at least one along the outer edge of the second outlet guide plate 45, one end of which penetrates the bottom surface of the outlet guide groove 46, and the other end thereof has the second outlet guide plate ( Penetrates the outside of 45).
  • an outlet pipe 48 is mounted at the other end of the second outlet hole 47 so that the fluid flowing out of the first outlet hole 42 is easily transferred to the second outlet hole 47 through the outlet guide groove 46. The fluid guided to the second outlet hole 47 is easily discharged to the outside through the outlet pipe 48.
  • the rotating shaft 50 integrally penetrates the centers of the first and second inflow guide plates 20 and 25, the first and second rotation plates 30 and 35, and the first and second outflow guide plates 40 and 45. , 2 serves as the axis when the rotating plate (30, 35) is rotated.
  • the first and second rotating plates 30 and 35 are connected to the rotating shaft 50, and when the first and second rotating plates 30 and 35 are rotated, the rotating shaft 50 is also rotated to generate rotational energy.
  • Or between the first and second outflow guide plates 40 and 45 and the rotating shaft 50 may be watertight.
  • FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 1
  • FIG. 4 is a cross-sectional view taken along line B-B ′ of FIG. 1.
  • the external fluid guided to the second inlet hole 27 of the second inlet guide plate 25 is moved along the first inlet hole 22 of the first inlet guide plate 20.
  • the direction of movement of the first rotating plate 30 is obliquely bent.
  • the fluid moved from the first inlet hole 22 to the first rotary induction hole 32 of the first rotating plate 30 in this bent state is introduced into the first rotation induction hole 32 so that the kinetic energy of the fluid is rotated first.
  • the side wall of the guide hole 32 is pressed to rotate the first rotating plate 30.
  • the number of the first rotary guide holes 32 of the first rotating plate 30 should be larger than the number of the first inlet holes 22 of the first inlet guide plate 20, so that the first inlet hole 22 may be introduced.
  • the fluid can be smoothly moved to the first rotary induction hole (32).
  • the fluid pressurizing the side of the first rotating guide hole 32 is moved in the direction of the second rotating plate 35 and flows into the second rotating guide hole 37 of the second rotating plate 35.
  • the second rotary induction hole 37 is formed to be inclined in a direction opposite to the direction in which the first rotation plate 30 is rotated toward the first outflow guide plate 40, the fluid flowing into the second rotation induction hole 37
  • the fluid passing through the second rotation guide hole 37 of the second rotating plate 35 may include the first outlet hole 42 of the first outlet guide plate 40 and the second outlet hole of the second outlet guide plate 45. It is discharged to the outside through 47).
  • the first inflow hole 22 of the first inflow guide plate 20 is the second of the first rotation guide hole 32 and the second rotation plate 35 of the first rotation plate 30. It may be configured to have a smaller diameter than the rotary induction hole 37. Accordingly, when the fluid flows into the first and second rotary guide holes 32 and 37 from the first inlet hole 22, the pressure drop hardly occurs, so that the first and second rotary plates (low pressure) are used. 32, 35) there is an effect that can be easily rotated.
  • the jet turbine 5 of the present invention uses the first and second inlet guide plates 20 and 25. , Most of the fluid that is moved to the first rotating plate 30 through the second inlet hole 22, 27 is introduced into the first rotating guide hole 32 of the first rotating plate 30 without loss, and thus, the first rotating plate 32. ) Is pressed in the rotational direction. Accordingly, the first rotating plate 30 can be easily rotated even when a low pressure fluid is used without using a high pressure as in the prior art, and since the fluid does not press the blade, vibration and noise are not generated, There is no effect of damage caused by the repair cost is reduced.
  • 5 and 6 are views for explaining the fluid guide portion of the jet turbine according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating the first rotating plate 30 on which the fluid guide part 33 is not formed.
  • a fluid moving at an angle of about 25 ° to 50 ° is introduced into the first rotating guide hole 32 of the first rotating plate 30.
  • the kinetic energy of the fluid presses the first side portion 32a provided in the direction in which the first rotating plate 30 rotates in the first rotating guide hole 32, thereby rotating the first rotating plate 30.
  • the fluid that is obliquely moved along the first inlet hole 22 of the first inlet guide plate 20 is a second position facing the first side portion 32a in the first rotary guide hole 32 according to the position thereof.
  • the end of the side portion 32b is also hit.
  • the fluid striking the end of the second side portion 32b is not guided in the direction of the first side portion 32a of the first rotary induction hole 32 and bounces out of the first rotation induction hole 32, thereby causing a normal flow of the fluid. It acts as a factor that hinders, eventually reducing the efficiency of the rotational energy of the first rotating plate (30).
  • FIG. 6 is a view illustrating the first rotating plate 30 on which the fluid guide part 33 is formed.
  • the first inlet hole 22 of the first inlet guide plate 20 is obliquely.
  • the moving fluid flows into the first rotary induction hole 32 of the first rotary plate 30.
  • the end of the second side portion 32b of the first rotary induction hole 32 is inclined at about 25 ° to 50 ° along the moving direction of the fluid flowing from the first inlet hole 22 to the first rotation induction hole 32.
  • the fluid guide part 33 is inserted into the fluid guide part 33 so that the fluid flowing in the direction of the second side part 32b of the first rotary induction hole 32 is easily directed in the direction of the first side part 32a of the first rotary induction hole 32. Is induced.
  • the kinetic energy of the fluid acting on the first side portion 32a of the first rotary induction hole 32 increases, so that the rotational energy efficiency of the first rotary plate 30 becomes higher.
  • FIG. 7 is a view illustrating a coupling guide of a jet turbine according to a preferred embodiment of the present invention.
  • the first rotation plate At the edge of the first inflow guide plate 20 in which the first inflow hole 22 is formed and the edge of the second rotation plate 35 in which the second rotation guide hole 37 is formed, the first rotation plate ( The first coupling guides 23 and 43 are protruded in a circular direction in a direction opposite to the edge of the frame 30 and the first outflow guide plate 40, and the edge of the first rotating plate 30 and the first outflow guide plate 30.
  • the second coupling guides 34 and 38 are concave so that the first coupling guides 23 and 43 are inserted and slidably rotated at positions opposite to the first coupling guides 23 and 43 at the edge of the 40. Is formed.
  • first rotating plate 30 and the second rotating plate 35 When the first rotating plate 30 and the second rotating plate 35 are rotated, the first coupling guides 23 and 43 and the second coupling guides 34 and 38 are slidably rotated to each other to form the first rotating plate ( 30 and the second rotating plate 35 may be configured to rotate more stably.
  • FIG. 8 is a view illustrating an embodiment of a state where a plurality of jet turbines of the present invention are provided.
  • the present invention includes a plurality of jet turbines 5, and the fluid discharged from the second outlet hole 47 of one jet turbine 5 adjacent to each other is used as the second jet turbine 5.
  • Inflow to the inlet 27 is configured to reuse the fluid.
  • a plurality of jet turbines 5 are arranged in a row, and the second outlet hole 47 of the one jet turbine 5 adjacent to each other and the second inlet hole 27 of the other jet turbine 5 closely adhere to each other.
  • the rotating shaft 50 may be provided in each of the plurality of jet turbine 5, or one may be provided integrally.
  • the fluid passing through the one jet turbine 5 is not discharged to the outside, but flows back to the other jet turbine 5, so that the fluid can be reused. There is an effect that can increase the efficiency.
  • FIG 9 is a view illustrating another embodiment of the jet turbine of the present invention.
  • the jet turbine 5 ′ of the present invention may include a plurality of first rotating plates 30 and second rotating plates 35.
  • a plurality of housings 10 are arranged in a line along the rotation shaft 50, and the rotating plate, that is, the first rotating plate 30 and the second rotating plate 35, are rotated inside each housing 10.
  • the first inlet guide plate 20 is fixed to the end of the housing 10 which is located outside the body in the direction of the fluid flow of the plurality of the housing 10
  • the second inlet guide plate 25 is the first inlet guide plate Are positioned integrally or mutually fixed on the outside of the 20.
  • the discharge guide plate is fixed to the end of the housing 10 which is located outside the body in the direction in which the fluid out of the plurality of the housing (10).
  • the outflow guide plate includes a first outflow guide plate 40 (shown in FIG. 3) and a second outflow guide plate 45. In some cases, the outflow guide plate 40 may be omitted.
  • the fluid transfer plate 39 is positioned between the housings 10 adjacent to each other.
  • the fluid transfer plate 39 includes a plurality of fluid transfer holes such that fluid is transferred to a position opposite to the first and second rotation guide holes 32 and 37 of the first and second rotary plates 30 and 35 adjacent to each other. 39a) is formed.
  • the fluid transfer hole 39a is formed to be inclined in a direction in which the first rotating plate 30 or the second rotating plate 35 rotates toward the direction in which the fluid moves.
  • the fluid discharged from the second rotary guide hole 37 of the second rotary plate 35 disposed in one housing 10 of the housing 10 adjacent to each other passes through the fluid transfer hole 39a and the other housing 10.
  • the first rotation of the first rotating plate 30 The side wall of the induction hole 32 is pressed to rotate the first rotating plate 30.
  • the first rotary plate 30 is rotated by the fluid flowing into the first rotary guide hole 32 of the first rotary plate 30 obliquely along the first inlet hole 22 of the first inlet guide plate 20 or Alternatively, it may be rotated by the fluid flowing obliquely into the first rotary guide hole 32 of the first rotating plate 30 along the fluid transfer hole 39a of the fluid transfer plate 39.
  • the fluid passing through the first rotating plate 30 presses the sidewall of the second rotating guide hole 37 along the inclined direction of the second rotating guide hole 37 so that the second rotating plate 35 is easily rotated. It is composed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Turbines (AREA)

Abstract

본 발명은 유체를 사용하여 회전판을 회전시킬 수 있도록 하는 제트 터빈에 관한 것으로, 유체가 비스듬한 방향으로 회전판의 회전유도공으로 유입되면서 회전판을 회전방향으로 가압하게 되므로, 저압의 유체를 사용하여 회전판을 용이하게 회전시킬 수 있게 되는 효과가 있다. 또한, 별도의 블레이드를 필요로 하지 않아 소형으로 제조될 수 있으며, 유체의 압력을 이용하여 기계적 구동력을 생성할 수 있으므로, 해당 지역에 필요한 전기를 소량 생산할 수 있는 소형 발전기의 동력원에서부터, 선박의 프로펠러 구동원, 제트비행기의 엔진, 전기자동차 등에 널리 사용될 수 있는 효과가 있다.

Description

제트 터빈
본 발명은 제트 터빈에 관한 것으로, 보다 상세하게는 비스듬한 방향으로 유입되는 저압의 유체를 사용하여 회전판을 용이하게 회전시킬 수 있도록 하고, 유체가 회전판으로 유입될 때와 회전판에서 외부로 유출될 때의 압력저하가 거의 발생되지 않도록 하는 제트 터빈에 관한 것이다.
일반적으로 터빈은 물, 가스, 증기 등의 유체가 가지는 에너지를 유용한 기계적 에너지로 변환시키는 것으로, 회전축에 체결된 다수 개의 블레이드에 유체가 고속으로 충돌하여 회전에너지로 변화된다. 터빈은 유체의 종류에 따라, 증기를 노즐로부터 내뿜어 블레이드에 부딪히게 하여 회전시키는 증기터빈, 고온 고압의 가스가 가지는 에너지를 이용하는 가스터빈, 고압의 압축공기가 가지는 에너지를 이용하는 공기터빈 등이 있다.
이러한 종래 터빈은 고온, 고압의 유체가 지속적으로 블레이드에 마찰되면서 운전되기 때문에, 그 과정에서 피로에 의한 블레이드의 손상, 진동, 소음, 각도 불균형 등이 발생되고, 고온의 증기에 의한 부품의 부식, 균열 등이 발생되어, 발전 효율이 떨어지게 되고, 보수 비용이 증가하는 문제점이 있다.
또한, 종래 터빈은 고압의 유체를 이용하여 블레이드를 회전시켜야 하므로 화력발전이나 원자력발전 등 대형 발전시설에 적합하다. 그러나 대형 발전시설은 초기 건설비용이 많이 소요되는 문제점이 있으며, 어느 한 지역에서 고압의 전기를 생산하여 여러 다른 지역으로 송전해야 하므로, 이에 따른 다수의 송전탑을 건설해야 하는바, 송전탑의 건설 비용 및 유지 비용이 추가로 발생되는 문제점이 있다.
상기와 같은 종래기술의 문제점을 해결하기 위한 본 발명의 목적은 블레이드를 사용하지 않고 저압의 유체를 이용하더라도 기계적 구동력을 생성할 수 있도록 하는 제트 터빈을 제공하도록 하는 데 있다.
또한, 본 발명의 다른 목적은 소형으로 제조될 수 있도록 하여, 전기가 필요한 특정지역에 소형 발전시설을 건설할 수 있도록 하는 제트 터빈을 제공하도록 하는 데 있다.
또한, 본 발명의 다른 목적은 복잡한 형태의 블레이드를 사용하지 않아, 생산비가 절감되고, 생산성이 향상되도록 하는 제트 터빈을 제공하도록 하는 데 있다.
상기 목적을 달성하기 위하여 본 발명은 내부가 비어 있으며 일측과 타측이 개방되는 하우징; 상기 하우징 내부에 회전되도록 구비되며, 그 테두리를 따라 다수 개의 회전유도공이 형성되는 회전판; 상기 하우징의 일측에 고정되되 상기 회전유도공의 일단과 대향되는 위치에 유체가 유입되도록 하나 이상의 유입공이 형성되는 유입안내판; 상기 하우징의 타측에 고정되되 상기 회전유도공의 타단과 대향되는 위치에 유체가 유출되도록 하나 이상의 유출공이 형성되는 유출안내판; 및 상기 회전판과, 상기 유입안내판과, 상기 유출안내판을 일체로 관통하는 회전축을 포함하고, 상기 유입공은 상기 회전판 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성된 부분을 포함하고, 상기 유입공으로 유입되는 유체가 상기 회전유도공 측으로 유출되면서 상기 회전판을 회전시키는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 유입안내판은, 제 1 유입안내판과, 상기 제 1 유입안내판의 외측에 밀착되는 제 2 유입안내판을 포함하고, 상기 유입공은, 상기 제 1 유입안내판의 상기 회전유도공과 대향되는 위치에 형성되되, 상기 회전판 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성되는 제 1 유입공과, 상기 제 2 유입안내판의 상기 제 1 유입공과 대향되는 위치에 형성되되 상기 제 2 유입안내판과 수직 방향으로 형성되는 제 2 유입공을 포함하는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 유출안내판은, 상기 하우징 타측에 고정되는 제 1 유출안내판과, 상기 제 1 유출안내판의 외측에 밀착되는 제 2 유출안내판을 포함하고, 상기 유출공은, 상기 제 1 유출안내판의 상기 회전유도공과 대향되는 위치에 형성되는 제 1 유출공과, 상기 제 2 유입안내판의 상기 제 1 유출공과 대향되는 위치에 형성되는 제 2 유출공을 포함하는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 회전판은, 상기 하우징 내부 일측에 회전되도록 구비되는 제 1 회전판과, 상기 하우징 내부 타측에 회전되도록 구비되는 제 2 회전판을 포함하고, 상기 회전유도공은, 상기 제 1 회전판의 테두리를 따라 형성되되, 상기 제 1 회전판과 수직 방향으로 형성되는 제 1 회전유도공과, 상기 제 2 회전판의 테두리를 따라 상기 제 1 회전유도공과 대향되는 위치에 형성되되, 상기 유출공 방향으로 갈수록 상기 제 1 회전판이 회전되는 방향과 반대 방향으로 경사지도록 형성되는 다수 개의 제 2 회전유도공을 포함하는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 유입공과 대향되는 상기 회전유도공의 일단의 상기 회전판이 회전되는 방향과 반대 측방에는 상기 유입공에서 상기 회전유도공으로 유입되는 유체의 이동방향을 따라 내입되어 형성되는 유체안내부를 포함하는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 다수의 상기 유입공은 다수의 상기 회전유도공보다 적은 개수로 구성되는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 유입공이 형성되는 상기 유입안내판의 테두리 또는 상기 제 2 회전유도공이 형성되는 제 2 회전판의 테두리의 상기 제 1 회전판의 테두리 또는 상기 제 1 유출안내판의 테두리와 대향되는 방향으로 제 1 결합안내부가 형성되고, 상기 제 1 회전판의 테두리 또는 상기 유출안내판의 테두리의 상기 제 1 결합안내부와 대향되는 위치에 상기 제 1 결합안내부를 따라 회전되도록 제 2 결합안내부가 형성되는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 제트 터빈은 다수 개가 일렬로 배열되고, 서로 인접한 일 제트 터빈의 상기 유출공과 타 제트 터빈의 상기 유입공은 상호 연결되는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 각각의 상기 제트 터빈에 위치되는 상기 유입공의 직경은 유체가 이동되는 방향을 따라 점차 커지도록 구성되는 것을 특징으로 하는 제트 터빈을 제공한다.
또한, 상기 하우징은 상기 회전축을 따라 다수 개가 일렬로 배열되고, 상기 회전판은 다수 개의 상기 하우징 내부에 각각 회전되도록 다수 개로 구비되며, 상기 유입안내판은 다수 개의 상기 하우징 중 유체가 유입되는 방향으로 체외곽에 위치되는 하우징의 단부에 고정되고, 상기 유출안내판은 다수 개의 상기 하우징 중 유체가 유출되는 방향으로 체외곽에 위치되는 하우징의 단부에 고정되며, 서로 인접한 상기 하우징 사이에 고정되도록 위치되되, 서로 인접한 상기 회전판의 상기 회전유도공과 대향되는 위치에는 유체가 전달되도록 하나 이상의 유체전달공이 형성되는 유체전달판을 더 포함하고, 상기 유체전달공은 상기 유체가 이동되는 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성된 부분을 포함하고, 상기 유입안내판의 상기 유입공으로 유입되는 유체가 다수의 상기 회전판의 상기 회전유도공을 지나 상기 유출안내판의 상기 유출공으로 유출될 때, 서로 인접한 상기 회전판 중 일 회전판의 회전유도공 측으로 유출되는 유체가 상기 유체전달판의 상기 유체전달공을 지나 타 회전판의 회전유도공 측으로 유입되면서 상기 회전판을 회전시키는 것을 특징으로 하는 제트 터빈을 제공한다.
본 발명에 따른 제트 터빈은 유체가 비스듬한 방향으로 회전판의 회전유도공으로 유입되면서 회전판을 회전방향으로 가압하게 되므로, 저압의 유체를 사용하더라도 회전판을 용이하게 회전시킬 수 있게 되는 효과가 있다.
또한, 본 발명에 따른 제트 터빈은 별도의 블레이드를 필요로 하지 않고, 소형으로 제조될 수 있으며, 유체의 압력을 이용하여 기계적 구동력을 생성할 수 있으므로, 해당 지역에 필요한 전기를 소량 생산할 수 있는 소형 발전기의 동력원에서부터, 선박의 프로펠러 구동원, 제트비행기의 엔진, 자동차 등에 널리 사용될 수 있는 효과가 있으며, 복잡한 형태의 블레이드를 사용하지 않으므로, 생산비가 절감되고, 생산성이 향상되는 효과가 있다.
또한, 본 발명에 따른 제트 터빈은 다수 개가 나란히 배치되거나, 다수의 회전판을 구비함으로써, 유체를 재사용할 수 있게 되고, 회전효율을 증가시킬 수 있게 되는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 제트 터빈을 개략적으로 도시한 도면이다.
도 2는 본 발명의 바람직한 실시예에 따른 제트 터빈을 분해하여 도시한 도면이다.
도 3은 도 1의 A-A' 단면을 도시한 도면이다.
도 4는 도 1의 B-B' 단면을 도시한 도면이다.
도 5 및 도 6은 본 발명의 바람직한 실시예에 따른 제트 터빈의 유체안내부를 설명하기 위하여 도시한 도면이다.
도 7은 본 발명의 바람직한 실시예에 따른 제트 터빈의 결합안내부를 설명하기 위하여 도시한 도면이다.
도 8은 본 발명의 제트 터빈이 다수 개 구비된 상태의 일 실시예를 설명하기 위하여 도시한 도면이다.
도 9는 본 발명의 제트 터빈의 다른 실시예를 설명하기 위하여 도시한 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
5: 제트 터빈 10: 하우징
12: 공간부 14: 제 1 고정부
16: 제 2 고정부 20: 제 1 유입안내판
22: 제 1 유입공 23: 제 1 결합안내부
25: 제 2 유입안내판 27: 제 2 유입공
30: 제 1 회전판 32: 제 1 회전유도공
32a: 제 1 측부 32b: 제 2 측부
33: 유체안내부 34: 제 1 결합안내부
35: 제 2 회전판 37: 제 2 회전유도공
38: 제 2 결합안내부 39: 유체전달판
39a: 유체전달공 40: 제 1 유출안내판
42: 제 1 유출공 43: 제 1 결합안내부
45: 제 2 유출안내판 46: 유출안내홈
47: 제 2 유출공 48: 유출파이프
50: 회전축 55: 연결관
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 제트 터빈을 더욱 상세히 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 제트 터빈을 개략적으로 도시한 도면이고, 도 2는 본 발명의 바람직한 실시예에 따른 제트 터빈을 분해하여 도시한 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 제트 터빈(5)은 하우징(10), 회전판, 유입안내판, 유출안내판 및 회전축(50)을 포함한다.
하우징(10)은 원통형으로 형성되며, 내부는 빈 공간부(12)가 구비된다. 그리고 하우징(10)의 일측과 타측은 개방되도록 구성되고, 그 일측과 타측 둘레를 따라 외측으로 제 1, 2 고정부(14, 16)가 형성된다.
상기 회전판은 원판 형상으로 형성되며 하우징(10)의 공간부(12)에 회전되도록 구비되는 것으로, 하우징(10)의 내부 일측에 회전되도록 구비되는 제 1 회전판(30)과, 하우징(10)의 내부 타측에 회전되도록 구비되는 제 2 회전판(35)을 포함한다. 그리고 제 1 회전판(30)에는 그 테두리를 따라 다수 개의 제 1 회전유도공(32)이 형성되고, 제 2 회전판(35)에는 그 테두리를 따라 제 1 회전유도공(32)과 대향되는 위치에 다수 개의 제 2 회전유도공(37)이 형성된다. 여기서 상기 제 1 회전유도공(32)은 제 1 회전판(30)과 수직방향으로 형성되고, 상기 제 2 회전유도공(37)은 후술하는 제 1 유출안내판(40) 방향으로 갈수록 제 1 회전판(30)이 회전되는 방향과 반대 방향으로 경사지도록 형성된다. 그리고 제 2 회전유도공(37)의 경사지는 각도는 25° 내지 50°, 바람직하게는 45°로 구성되는 것이다. 이에 따라 제 1 회전유도공(32)에서 제 2 회전유도공(37)으로 이동되는 유체는 제 2 회전유도공(37)의 경사진 방향을 따라 제 2 회전유도공(37)의 측벽을 가압하면서 제 2 회전판(35)을 회전시키게 된다. 이는 하기 도면을 통하여 다시 설명하기로 한다.
상기 유입안내판은 하우징(10)의 개방된 일측에 고정되는 것으로, 하우징(10)의 개방된 일측을 덮도록 형성되되, 그 테두리가 하우징(10)의 제 1 고정부(14)에 고정되는 제 1 유입안내판(20)과, 제 1 유입안내판(20)의 외측에 밀착되어 고정되는 제 2 유입안내판(25)을 포함한다. 제 1 유입안내판(20)과 제 2 유입안내판(25)은 상호 일체로 구성되거나 또는, 별도로 형성되어, 상호 고정되도록 구성된다. 여기서 하우징(10)의 제 1 고정부(14), 제 1 유입안내판(20) 및 제 2 유입안내판(25)은 볼트 등의 결합부를 이용하여 상호 견고하게 결합될 수 있으며, 하우징(10)과 제 1 유입안내판(20) 또는 제 1 유입안내판(20)과 제 2 유입안내판(25)은 상호 수밀하게 밀착될 수 있다. 그리고 제 1 유입안내판(20)에서 제 1 회전판(30)의 제 1 회전유도공(32)과 대향되는 위치에는 제 1 유입공(22)이 형성된다. 그리고 제 1 유입안내판(20)의 제 1 유입공(22)으로 유입된 유체가 제 1 회전판(30)의 제 1 회전유도공(32)으로 용이하게 유입되도록 하기 위하여, 제 1 유입안내판(20)의 제 1 유입공(22)은 제 1 회전판(30)의 제 1 회전유도공(32)보다 그 개수가 적은 것이 바람직하다.
여기서 제 1 유입안내판(20)의 제 1 유입공(22)은 제 1 회전판(30) 방향으로 갈수록 제 1 회전판(30)이 회전되는 방향으로 25° 내지 50° 정도, 바람직하게는 30°로 경사지도록 형성된다. 이처럼 제 1 유입안내판(20)의 제 1 유입공(22)은 경사지도록 형성되고, 제 1 회전판(30)의 제 1 회전유도공(32)은 수직방향으로 형성되므로, 제 1 유입공(22)의 경사진 측벽을 따라 비스듬하게 제 1 회전유도공(32)으로 유입되는 유체는 제 1 회전유도공(32)의 측벽을 가압하면서 제 1 회전유도공(32)을 회전시키게 된다. 이는 하기 도면을 통하여 다시 설명하기로 한다.
그리고 제 2 유입안내판(25)에서 제 1 유입공(22)과 대향되는 위치에는 하나 이상의 제 2 유입공(27)이 형성된다. 제 2 유입공(27)은 제 2 유입안내판(25)과 수직방향으로 형성되며, 제 2 유입안내판(25)의 외면에서 그 일측과 타측에 두 개가 형성될 수 있다.
그리고 외부의 유체가 제 2 유입공(27)으로 유입된 후, 제 1 유입공(22)을 지나, 제 1, 2 회전판(30, 35)의 제 1, 2 회전유도공(32, 37)으로 유입된다. 이때, 제 2 유입안내판(25)에서 제 1 유입안내판(20)과 마주보는 내측 테두리를 따라 오목하게 유입안내홈(26)이 더 형성될 수 있다. 그리고 제 2 유입공(27)은 제 2 유입안내판(25)의 외측 테두리를 따라 하나 이상 형성되되, 그 일단부는 유입안내홈(26)의 저면을 관통하고, 그 타단부는 제 2 유입안내판(25)의 외측을 관통한다. 그리고 제 2 유입공(27)의 타단부에 유입파이프(28)가 장착되어, 유입파이프(28)에서 제 2 유입공(27)으로 유입되는 유체가 유입안내홈(26)을 통하여 다수의 제 1 유입공(22)으로 용이하게 안내된다.
상기 유출안내판은 하우징(10)의 개방된 타측에 고정되는 것으로, 하우징(10)의 개방된 타측을 덮도록 형성되되, 그 테두리가 하우징(10)의 제 2 고정부(16)에 고정되는 제 1 유출안내판(40)과, 제 1 유출안내판(40)의 외측에 밀착되어 고정되는 제 2 유출안내판(45)을 포함한다. 제 1, 2 유출안내판(40, 45)은 상호 일체로 구성되거나 또는, 별도로 형성되어, 상호 고정되도록 구성된다. 여기서 하우징(10)의 제 2 고정부(16), 제 1 유출안내판(40) 및 제 2 유출안내판(45)은 볼트 등의 결합부를 이용하여 상호 견고하게 결합될 수 있으며, 하우징(10)과 제 1 유출안내판(40) 또는, 제 1 유출안내판(40)과 제 2 유출안내판(45)은 상호 수밀하게 밀착될 수 있다. 또한, 제 1 유출안내판(40)과 제 2 유출안내판(45)은 상호 일체로 형성되거나, 각각 따로 형성된 후, 밀착 고정될 수 있다. 한편, 제 1 유출안내판(40)은 경우에 따라 생략될 수 있으며, 이 경우, 제 2 유출안내판(45)이 하우징(10)의 제 2 고정부(16)에 고정된다.
그리고 제 1 유출안내판(40)에서 제 2 회전판(35)의 제 2 회전유도공(37)과 대향되는 위치에는 제 1 유출공(42)이 형성된다. 상기 제 1 유출공(42)은 제 1 유출안내판(40)과 수직 방향으로 형성된다. 그리고 제 2 유출안내판(45)에서 제 1 유출공(42)과 대향되는 위치에는 제 2 유출공(47)이 형성되는데, 제 2 유출공(47)은 제 2 유출안내판(45)과 수직방향으로 형성된다. 그리고 제 1, 2 회전판(30, 35)의 제 1, 2 회전유도공(32, 37)으로 유입된 유체가 제 1, 2 유출공(42, 47)을 통하여 외부로 유출된다. 한편, 제 1 유입공(22) 또는 제 2 유입공(27) 또는 제 1 회전유도공(32) 또는 제 2 회전유도공(37) 또는 제 1 유출공(42) 또는 제 2 유출공(47)은 단면이 원형 또는 다각형 또는 타원형으로 구성될 수 있다.
그리고 제 2 유출안내판(45)에서 제 1 유출안내판(40)과 마주보는 내측 테두리를 따라 오목하게 유출안내홈(46)이 더 형성될 수 있다. 그리고 제 2 유출공(47)은 제 2 유출안내판(45)의 외측 테두리를 따라 하나 이상 형성되되, 그 일단부는 유출안내홈(46)의 저면을 관통하고, 그 타단부는 제 2 유출안내판(45)의 외측을 관통한다. 그리고 제 2 유출공(47)의 타단부에 유출파이프(48)가 장착되어, 제 1 유출공(42)에서 유출된 유체가 유출안내홈(46)을 통하여 제 2 유출공(47)으로 용이하게 안내되고, 이렇게 제 2 유출공(47)으로 안내된 유체가 유출파이프(48)를 통하여 외부로 용이하게 배출된다.
회전축(50)은 제 1, 2 유입안내판(20, 25), 제 1, 2 회전판(30, 35), 및 제 1, 2 유출안내판(40, 45)의 중앙을 일체로 관통하여, 제 1, 2 회전판(30, 35)이 회전될 때 축 역할을 한다. 그리고 제 1, 2 회전판(30, 35)은 회전축(50)과 연결되어, 제 1, 2 회전판(30, 35)이 회전될 때, 회전축(50)도 같이 회전되어 회전에너지가 생성된다. 그리고 유체가 회전축(50)을 통하여 외부로 빠져나가지 않도록 하기 위하여, 제 1, 2 유입안내판(20, 25)과 회전축(50) 사이 또는, 제 1, 2 회전판(30, 35)과 회전축(50) 사이 또는, 제 1, 2 유출안내판(40, 45)과 회전축(50) 사이는 수밀하게 구성될 수 있다.
도 3은 도 1의 A-A' 단면을 도시한 도면이고, 도 4는 도 1의 B-B' 단면을 도시한 도면이다.
도 3 및 도 4를 참조하면, 제 2 유입안내판(25)의 제 2 유입공(27)으로 안내된 외부의 유체는 제 1 유입안내판(20)의 제 1 유입공(22)을 따라 이동되면서, 그 이동방향이 제 1 회전판(30)의 회전방향으로 비스듬하게 꺾어진다. 이렇게 꺾어진 상태로 제 1 유입공(22)에서 제 1 회전판(30)의 제 1 회전유도공(32)으로 이동되는 유체는 제 1 회전유도공(32)으로 유입되어, 유체의 운동에너지가 제 1 회전유도공(32)의 측벽을 가압하게 되어, 제 1 회전판(30)이 회전된다. 이때, 제 1 유입안내판(20)의 제 1 유입공(22)의 개수보다, 제 1 회전판(30)의 제 1 회전유도공(32)의 개수가 더 많아야, 제 1 유입공(22)으로 유입된 유체가 제 1 회전유도공(32)으로 원활하게 이동할 수 있다.
그리고 제 1 회전유도공(32)의 측방을 가압한 유체는 제 2 회전판(35) 방향으로 이동되어, 제 2 회전판(35)의 제 2 회전유도공(37)으로 유입된다. 이때, 제 2 회전유도공(37)은 제 1 유출안내판(40) 방향으로 갈수록 제 1 회전판(30)이 회전되는 방향과 반대방향으로 경사지도록 형성되므로, 제 2 회전유도공(37)으로 유입되는 유체의 운동에너지는 제 2 회전유도공(37)의 경사진 방향을 따라 제 2 회전유도공(37)의 측벽을 가압하게 되어, 제 2 회전판(35)이 회전된다. 그리고 제 2 회전판(35)의 제 2 회전유도공(37)을 통과한 유체는 제 1 유출안내판(40)의 제 1 유출공(42)과, 제 2 유출안내판(45)의 제 2 유출공(47)을 통하여 외부로 배출된다.
한편, 본 발명의 일 실시에에서, 제 1 유입안내판(20)의 제 1 유입공(22)은 제 1 회전판(30)의 제 1 회전유도공(32) 및 제 2 회전판(35)의 제 2 회전유도공(37) 보다 직경이 더 작도록 구성될 수 있다. 이에 따라, 유체가 제 1 유입공(22)에서 제 1, 2 회전유도공(32, 37)으로 유입될 때, 압력저하가 거의 발생되지 않게 되어, 저압의 유체를 사용하여 제 1, 2 회전판(32, 35)을 용이하게 회전시킬 수 있게 되는 효과가 있다.
그리고 종래 터빈에는 유체가 임펠러의 일부분에 형성되는 블레이드의 일부분을 가압하기 때문에, 고압의 유체를 사용하였으나, 본 발명의 제트 터빈(5)은 제 1, 2 유입안내판(20, 25)의 제 1, 2 유입공(22, 27)을 통하여 제 1 회전판(30)으로 이동되는 대부분의 유체가 손실 없이 제 1 회전판(30)의 제 1 회전유도공(32)으로 그대로 유입되면서, 제 1 회전판(32)을 회전방향으로 가압하게 된다. 이에 따라 종래와 같이 고압을 사용하지 않고, 저압의 유체를 사용하여도 제 1 회전판(30)을 용이하게 회전시킬 수 있으며, 유체가 블레이드를 가압하지 않기 때문에 진동, 소음이 발생되지 않고, 피로에 의한 손상이 발생되지 않아, 보수 비용이 감소되는 효과가 있다. 또한, 대형 블레이드를 사용하지 않으므로, 소형으로 제조될 수 있으며, 유체의 압력을 이용하여 기계적 구동력을 용이하게 생성할 수 있으므로, 발전기, 펌프와 같은 기계의 동력원에서부터, 선박의 프로펠러 구동원, 제트비행기의 엔진, 전기자동차 등에 널리 사용될 수 있는 효과가 있다.
도 5 및 도 6은 본 발명의 바람직한 실시예에 따른 제트 터빈의 유체안내부를 설명하기 위하여 도시한 도면이다.
먼저, 도 5는 유체안내부(33)가 형성되지 않은 제 1 회전판(30)을 도시한 도면으로, 도 5를 참조하면, 제 1 유입안내판(20)의 제 1 유입공(22)을 따라 25° 내지 50° 정도로 비스듬하게 이동되는 유체가 제 1 회전판(30)의 제 1 회전유도공(32)으로 유입된다. 이때, 유체의 운동에너지는 제 1 회전유도공(32)에서 제 1 회전판(30)이 회전되는 방향에 구비되는 제 1 측부(32a)를 가압하게 되어, 제 1 회전판(30)을 회전시키게 된다.
한편, 제 1 유입안내판(20)의 제 1 유입공(22)을 따라 비스듬하게 이동되는 유체는 그 위치에 따라, 제 1 회전유도공(32)에서 제 1 측부(32a)와 대향 위치되는 제 2 측부(32b)의 단부에도 부딪히게 된다. 이처럼 제 2 측부(32b)의 단부에 부딪히는 유체는 제 1 회전유도공(32)의 제 1 측부(32a) 방향으로 유도되지 못하고 제 1 회전유도공(32)의 외측으로 튕겨 나가면서, 정상적인 유체의 흐름을 방해하는 요인으로 작용하게 되어, 결국, 제 1 회전판(30)의 회전에너지의 효율을 떨어뜨리게 된다.
이어서, 도 6은 유체안내부(33)가 형성된 제 1 회전판(30)을 도시한 도면으로, 도 6을 참조하면, 제 1 유입안내판(20)의 제 1 유입공(22)을 따라 비스듬하게 이동되는 유체가 제 1 회전판(30)의 제 1 회전유도공(32)으로 유입된다. 이때, 제 1 회전유도공(32)의 제 2 측부(32b)의 단부에는 제 1 유입공(22)에서 제 1 회전유도공(32)으로 유입되는 유체의 이동방향을 따라 25° 내지 50°정도로 비스듬하게 내입되는 유체안내부(33)가 구비되어, 제 1 회전유도공(32)의 제 2 측부(32b) 방향으로 유입되는 유체가 제 1 회전유도공(32)의 제 1 측부(32a) 방향으로 용이하게 유도된다. 그 결과, 제 1 회전유도공(32)의 제 1 측부(32a)에 작용하는 유체의 운동에너지가 증가하여, 제 1 회전판(30)의 회전에너지 효율이 더욱 높아지게 된다.
도 7은 본 발명의 바람직한 실시예에 따른 제트 터빈의 결합안내부를 설명하기 위하여 도시한 도면이다.
도 7을 참조하면, 제 1 유입공(22)이 형성되는 제 1 유입안내판(20)의 테두리 및 제 2 회전유도공(37)이 형성되는 제 2 회전판(35)의 테두리에서, 제 1 회전판(30)의 테두리 및 제 1 유출안내판(40)의 테두리와 대향되는 방향으로 제 1 결합안내부(23, 43)가 원형으로 돌출되어 형성되고, 제 1 회전판(30)의 테두리 및 제 1 유출안내판(40)의 테두리에서 상기 제 1 결합안내부(23, 43)와 대향되는 위치에는 제 1 결합안내부(23, 43)가 삽입되어 슬라이딩 회전되도록 제 2 결합안내부(34, 38)가 오목하게 형성된다. 그리고 제 1 회전판(30) 및 제 2 회전판(35)이 회전될 때, 제 1 결합안내부(23, 43)와 제 2 결합안내부(34, 38)가 상호 슬라이딩 회전되어, 제 1 회전판(30) 및 제 2 회전판(35)이 보다 안정적으로 회전되도록 구성될 수 있다.
도 8은 본 발명의 제트 터빈이 다수 개 구비된 상태의 일 실시예를 설명하기 위하여 도시한 도면이다.
도 8을 참조하면, 본 발명은 제트 터빈(5)을 다수 개 구비하고, 서로 인접한 일 제트 터빈(5)의 제 2 유출공(47)에서 유출되는 유체를 타 제트 터빈(5)의 제 2 유입공(27)으로 유입시켜서, 유체를 재사용할 수 있도록 구성된다. 이를 위하여, 제트 터빈(5)은 다수 개가 일렬로 배열되고, 서로 인접한 일 제트 터빈(5)의 제 2 유출공(47)과 타 제트 터빈(5)의 제 2 유입공(27)이 서로 밀착되어 상호 연결된다. 그리고 회전축(50)은 다수 개의 제트 터빈(5)에 각각 구비되거나, 한 개가 일체로 구비될 수 있다.
이처럼 다수의 제트 터빈(5)이 상호 연결되면, 일 제트 터빈(5)을 통과한 유체가 외부로 배출되지 않고, 타 제트 터빈(5)으로 다시 유입되어, 유체를 재사용할 수 있게 되므로, 회전효율을 증가시킬 수 있게 되는 효과가 있다.
도 9는 본 발명의 제트 터빈의 다른 실시예를 설명하기 위하여 도시한 도면이다.
도 9를 참조하면, 본 발명의 제트 터빈(5')은 제 1 회전판(30) 및 제 2 회전판(35)을 다수 개 구비할 수 있다. 이를 위하여, 다수의 하우징(10)이 회전축(50)을 따라 일렬로 배열되고, 각각의 하우징(10) 내부에 회전판 즉, 제 1 회전판(30)과 제 2 회전판(35)이 회전되도록 배치된다. 그리고 제 1 유입안내판(20)이 다수 개의 상기 하우징(10) 중 유체가 유입되는 방향으로 체외곽에 위치되는 하우징(10)의 단부에 고정되고, 제 2 유입안내판(25)이 제 1 유입안내판(20)의 외측에 일체로 또는 상호 고정되도록 위치된다. 그리고 유출안내판이 다수 개의 상기 하우징(10) 중 유체가 유출되는 방향으로 체외곽에 위치되는 하우징(10)의 단부에 고정된다. 상기 유출안내판은 제 1 유출안내판(40: 도 3 도시) 및 제 2 유출안내판(45)을 포함하며, 경우에 따라 제 1 유출안내판(40)은 생략 가능하다.
한편, 서로 인접한 하우징(10) 사이에는 유체전달판(39)이 고정되도록 위치된다. 상기 유체전달판(39)은 서로 인접한 제 1 회전판(30)과 제 2 회전판(35)의 제 1, 2 회전유도공(32, 37)과 대향되는 위치에 유체가 전달되도록 다수 개의 유체전달공(39a)이 형성된다. 상기 유체전달공(39a)은 유체가 이동되는 방향으로 갈수록 제 1 회전판(30) 또는 제 2 회전판(35)이 회전되는 방향으로 경사지도록 형성된다. 그 결과, 서로 인접한 하우징(10) 중 일 하우징(10)에 배치되는 제 2 회전판(35)의 제 2 회전유도공(37)에서 배출되는 유체가 유체전달공(39a)을 지나 타 하우징(10)에 배치되는 제 1 회전판(30)의 제 1 회전유도공(32)으로 유입될 때, 유체전달공(39a)의 경사진 측벽을 따라 비스듬하게 유입되면서, 상기 제 1 회전판(30)의 제 1 회전유도공(32)의 측벽을 가압하게 되어, 제 1 회전판(30)을 회전시키게 된다.
이처럼, 제 1 회전판(30)은 제 1 유입안내판(20)의 제 1 유입공(22)을 따라 비스듬하게 제 1 회전판(30)의 제 1 회전유도공(32)으로 유입되는 유체에 의하여 회전되거나 또는, 유체전달판(39)의 유체전달공(39a)을 따라 제 1 회전판(30)의 제 1 회전유도공(32)으로 비스듬하게 유입되는 유체에 의하여 회전될 수 있다. 그리고 제 1 회전판(30)을 통과한 유체는 제 2 회전유도공(37)의 경사진 방향을 따라 제 2 회전유도공(37)의 측벽을 가압하게 되어, 제 2 회전판(35)이 용이하게 회전되도록 구성된다.
본 발명은 상기 실시예에서 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (10)

  1. 내부가 비어 있으며 일측과 타측이 개방되는 하우징;
    상기 하우징 내부에 회전되도록 구비되며, 그 테두리를 따라 다수 개의 회전유도공이 형성되는 회전판;
    상기 하우징의 일측에 고정되되 상기 회전유도공의 일단과 대향되는 위치에 유체가 유입되도록 하나 이상의 유입공이 형성되는 유입안내판;
    상기 하우징의 타측에 고정되되 상기 회전유도공의 타단과 대향되는 위치에 유체가 유출되도록 하나 이상의 유출공이 형성되는 유출안내판; 및
    상기 회전판과, 상기 유입안내판과, 상기 유출안내판을 일체로 관통하는 회전축을 포함하고,
    상기 유입공은 상기 회전판 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성된 부분을 포함하고,
    상기 유입공으로 유입되는 유체가 상기 회전유도공 측으로 유출되면서 상기 회전판을 회전시키는 것을 특징으로 하는 제트 터빈.
  2. 제 1 항에 있어서,
    상기 유입안내판은, 제 1 유입안내판과, 상기 제 1 유입안내판의 외측에 밀착되는 제 2 유입안내판을 포함하고,
    상기 유입공은, 상기 제 1 유입안내판의 상기 회전유도공과 대향되는 위치에 형성되되, 상기 회전판 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성되는 제 1 유입공과, 상기 제 2 유입안내판의 상기 제 1 유입공과 대향되는 위치에 형성되되 상기 제 2 유입안내판과 수직 방향으로 형성되는 제 2 유입공을 포함하는 것을 특징으로 하는 제트 터빈.
  3. 제 1 항에 있어서,
    상기 유출안내판은, 상기 하우징 타측에 고정되는 제 1 유출안내판과, 상기 제 1 유출안내판의 외측에 밀착되는 제 2 유출안내판을 포함하고,
    상기 유출공은, 상기 제 1 유출안내판의 상기 회전유도공과 대향되는 위치에 형성되는 제 1 유출공과, 상기 제 2 유입안내판의 상기 제 1 유출공과 대향되는 위치에 형성되는 제 2 유출공을 포함하는 것을 특징으로 하는 제트 터빈.
  4. 제 1 항에 있어서,
    상기 회전판은, 상기 하우징 내부 일측에 회전되도록 구비되는 제 1 회전판과, 상기 하우징 내부 타측에 회전되도록 구비되는 제 2 회전판을 포함하고,
    상기 회전유도공은, 상기 제 1 회전판의 테두리를 따라 형성되되, 상기 제 1 회전판과 수직 방향으로 형성되는 제 1 회전유도공과, 상기 제 2 회전판의 테두리를 따라 상기 제 1 회전유도공과 대향되는 위치에 형성되되, 상기 유출공 방향으로 갈수록 상기 제 1 회전판이 회전되는 방향과 반대 방향으로 경사지도록 형성되는 다수 개의 제 2 회전유도공을 포함하는 것을 특징으로 하는 제트 터빈.
  5. 제 1 항에 있어서,
    상기 유입공과 대향되는 상기 회전유도공의 일단의 상기 회전판이 회전되는 방향과 반대 측방에는 상기 유입공에서 상기 회전유도공으로 유입되는 유체의 이동방향을 따라 내입되어 형성되는 유체안내부를 포함하는 것을 특징으로 하는 제트 터빈.
  6. 제 1 항에 있어서,
    다수의 상기 유입공은 다수의 상기 회전유도공보다 적은 개수로 구성되는 것을 특징으로 하는 제트 터빈.
  7. 제 1 항에 있어서,
    상기 유입공이 형성되는 상기 유입안내판의 테두리 또는 상기 제 2 회전유도공이 형성되는 제 2 회전판의 테두리의 상기 제 1 회전판의 테두리 또는 상기 제 1 유출안내판의 테두리와 대향되는 방향으로 제 1 결합안내부가 형성되고,
    상기 제 1 회전판의 테두리 또는 상기 유출안내판의 테두리의 상기 제 1 결합안내부와 대향되는 위치에 상기 제 1 결합안내부를 따라 회전되도록 제 2 결합안내부가 형성되는 것을 특징으로 하는 제트 터빈.
  8. 제 1 항에 있어서,
    상기 제트 터빈은 다수 개가 일렬로 배열되고,
    서로 인접한 일 제트 터빈의 상기 유출공과 타 제트 터빈의 상기 유입공은 상호 연결되는 것을 특징으로 하는 제트 터빈.
  9. 제 8 항에 있어서,
    각각의 상기 제트 터빈에 위치되는 상기 유입공의 직경은 유체가 이동되는 방향을 따라 점차 커지도록 구성되는 것을 특징으로 하는 제트 터빈.
  10. 제 1 항에 있어서,
    상기 하우징은 상기 회전축을 따라 다수 개가 일렬로 배열되고,
    상기 회전판은 다수 개의 상기 하우징 내부에 각각 회전되도록 다수 개로 구비되며,
    상기 유입안내판은 다수 개의 상기 하우징 중 유체가 유입되는 방향으로 체외곽에 위치되는 하우징의 단부에 고정되고,
    상기 유출안내판은 다수 개의 상기 하우징 중 유체가 유출되는 방향으로 체외곽에 위치되는 하우징의 단부에 고정되며,
    서로 인접한 상기 하우징 사이에 고정되도록 위치되되, 서로 인접한 상기 회전판의 상기 회전유도공과 대향되는 위치에는 유체가 전달되도록 하나 이상의 유체전달공이 형성되는 유체전달판을 더 포함하고,
    상기 유체전달공은 상기 유체가 이동되는 방향으로 갈수록 상기 회전판이 회전되는 방향으로 경사지도록 형성된 부분을 포함하고,
    상기 유입안내판의 상기 유입공으로 유입되는 유체가 다수의 상기 회전판의 상기 회전유도공을 지나 상기 유출안내판의 상기 유출공으로 유출될 때, 서로 인접한 상기 회전판 중 일 회전판의 회전유도공 측으로 유출되는 유체가 상기 유체전달판의 상기 유체전달공을 지나 타 회전판의 회전유도공 측으로 유입되면서 상기 회전판을 회전시키는 것을 특징으로 하는 제트 터빈.
PCT/KR2012/008151 2012-04-26 2012-10-09 제트 터빈 WO2013162131A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120044049A KR101272820B1 (ko) 2012-04-26 2012-04-26 제트 터빈
KR10-2012-0044049 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013162131A1 true WO2013162131A1 (ko) 2013-10-31

Family

ID=48866603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008151 WO2013162131A1 (ko) 2012-04-26 2012-10-09 제트 터빈

Country Status (2)

Country Link
KR (1) KR101272820B1 (ko)
WO (1) WO2013162131A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217382B1 (ko) * 2018-12-18 2021-02-19 김희근 다단 증기터빈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550366B1 (ko) * 2004-03-17 2006-02-13 이재본 축류형 다단터빈
KR20070092841A (ko) * 2006-03-09 2007-09-14 피티엘중공업 주식회사 하이브리드 시너지 제트터빈 발전 시스템
KR20100105103A (ko) * 2009-03-20 2010-09-29 최혁선 축류형 다단터빈
WO2012030052A2 (ko) * 2010-08-31 2012-03-08 주식회사 에이치케이터빈 반작용식 터빈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550366B1 (ko) * 2004-03-17 2006-02-13 이재본 축류형 다단터빈
KR20070092841A (ko) * 2006-03-09 2007-09-14 피티엘중공업 주식회사 하이브리드 시너지 제트터빈 발전 시스템
KR20100105103A (ko) * 2009-03-20 2010-09-29 최혁선 축류형 다단터빈
WO2012030052A2 (ko) * 2010-08-31 2012-03-08 주식회사 에이치케이터빈 반작용식 터빈

Also Published As

Publication number Publication date
KR101272820B1 (ko) 2013-06-11

Similar Documents

Publication Publication Date Title
WO2015137746A1 (ko) 원심력 추진장치 및 이를 포함하는 선박
WO2019004595A1 (ko) 공기압축기
WO2010107146A1 (ko) 반작용식 터빈
WO2015046970A1 (ko) 축류형 다단 터빈의 구조
WO2011102638A2 (ko) 회전동력 발생기 및 이를 이용한 구심력 동작형 수차
WO2010107276A2 (ko) 축류형 다단터빈
WO2010019177A2 (en) Transition with a linear flow path with exhaust mouths for use in a gas turbine engine
WO2012102433A1 (ko) 조류 발전 장치
WO2014025124A1 (ko) 풍력발전장치
WO2013162131A1 (ko) 제트 터빈
WO2014171631A1 (en) Air blower for fuel cell vehicle
WO2016167456A1 (ko) 볼류트 케이싱 및 이를 구비한 회전 기계
WO2021025524A1 (ko) 충동식 터빈 및 터빈 장치
WO2012118288A1 (ko) 가스터빈
WO2015108353A1 (ko) 터빈 냉각장치
WO2021080318A1 (ko) 터빈 발전장치를 이용한 워터제트 추진방식 및 전기 추진방식을 갖는 하이브리드 선박 추진시스템
WO2018182272A1 (ko) 밀폐된 터빈 내부에 노즐을 포함하는 구심력 터빈장치
WO2010074381A1 (ko) 파력발전장치
WO2023200053A1 (ko) 풍력 및 수력을 이용한 발전장치
WO2012144764A2 (ko) 풍력 발전 장치
WO2017095044A1 (ko) 항력형 풍력발전장치
WO2022265177A1 (ko) 풍력을 이용한 동력발생장치
WO2018009005A1 (ko) 압축 장치
WO2021071169A1 (ko) 차량용 공기 압축기
WO2013176404A1 (ko) 터보 블로워장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/03/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12875708

Country of ref document: EP

Kind code of ref document: A1