WO2013162116A1 - 해안 지하수 모니터링 시스템 - Google Patents

해안 지하수 모니터링 시스템 Download PDF

Info

Publication number
WO2013162116A1
WO2013162116A1 PCT/KR2012/004176 KR2012004176W WO2013162116A1 WO 2013162116 A1 WO2013162116 A1 WO 2013162116A1 KR 2012004176 W KR2012004176 W KR 2012004176W WO 2013162116 A1 WO2013162116 A1 WO 2013162116A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
distance
freshwater
interface
measurement sensor
Prior art date
Application number
PCT/KR2012/004176
Other languages
English (en)
French (fr)
Inventor
김용철
윤희성
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to JP2014512765A priority Critical patent/JP2014519605A/ja
Priority to EP12875389.4A priority patent/EP2851883B1/en
Priority to US13/699,715 priority patent/US9964425B2/en
Publication of WO2013162116A1 publication Critical patent/WO2013162116A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/84Measuring functions
    • H04Q2209/845Measuring functions where the measuring is synchronized between sensing devices

Definitions

  • the present invention relates to a coastal groundwater monitoring system.
  • the groundwater level is lowered due to the excessive use of groundwater, which is contaminated by the inflow of brine (sea water) into the groundwater, thereby exposing the groundwater to the danger of not using not only drinking water but also agricultural or industrial water.
  • brine brine
  • groundwater observation wells that monitor groundwater changes are installed by installing wired or wireless measuring sensors that penetrate groundwater observation wells and measure groundwater level, temperature, and conductivity values.
  • the freshwater interface (groundwater and brine interface) changes by two mechanisms.
  • the first is a phenomenon in which the thickness of the freshwater layer is reduced, and the other is a phenomenon in which the thickness of the salt water layer is changed.
  • the thickness of the freshwater layer may increase due to rainfall or decrease (thinner) due to nearby pumping activities.
  • the brine layer changes as the sea level changes periodically due to tidal phenomena.
  • the thickness of the freshwater layer becomes thinner and the saltwater layer becomes thicker than the reference point.
  • the freshwater interface increases, and when the freshwater layer becomes thicker and the thickness of the saltwater layer decreases, the freshwater boundary falls.
  • the present invention has been invented to solve this problem, by introducing a measurement sensor capable of measuring the freshwater interface and the distance measurement in freshwater to measure the distance between the freshwater interface position tracking device and the measuring sensor, and measuring the ground water surface
  • the purpose of the warning is to limit the use of groundwater when there is a risk of seawater infiltration into the groundwater by measuring the change of freshwater lens thickness or the change of freshwater interface depth in real time.
  • Coastal groundwater monitoring system for achieving the above object is a freshwater saltwater interface position tracking device which is inserted into the observation well to measure the groundwater in the coastal area and moves in accordance with the buoyancy change on the saltwater interface; And a first measuring sensor inserted into the observation well, the distance measuring unit being positioned above the salt water interface position tracking device and measuring a first distance from the salt water interface position tracking device.
  • the measuring sensor may include a first transmitter for transmitting the measured first distance.
  • the first measuring sensor is characterized in that it comprises a hydraulic pressure measuring unit capable of measuring the hydraulic pressure.
  • the invention is characterized in that it comprises a second measuring sensor inserted into the observation well, installed in the atmosphere.
  • the distance measuring unit is characterized in that it comprises a sound wave generator, a sound wave receiver or a laser generator and a laser receiver.
  • the second measurement sensor is characterized in that it comprises an atmospheric pressure measuring unit for measuring the atmospheric pressure.
  • the second measurement sensor is characterized in that it comprises a second transmitter for transmitting the measured atmospheric pressure data.
  • the present invention characterized in that it comprises a monitor for monitoring the freshwater lens thickness or freshwater interface depth by the data transmitted from the first transmitter and the data transmitted from the second transmitter.
  • the monitor is characterized in that it comprises an alarm unit for providing an alarm when the freshwater lens thickness or the freshwater interface depth is less than a predetermined value.
  • Coastal groundwater monitoring system is inserted into an observation well for measuring the groundwater in the coastal area, the saltwater interface position tracking device that moves in accordance with the change of buoyancy on the saltwater interface;
  • a distance measuring part inserted into the observation well and fixedly positioned above the freshwater brine interface position tracking device to measure a first distance a with the freshwater brine interface location tracking device, and a hydraulic pressure measuring unit measuring water pressure;
  • a second measuring sensor including an atmospheric pressure measuring unit measuring atmospheric pressure; Sleep measurement sensor for measuring the ground water surface; And a database for storing data measured by the first measurement sensor, the second measurement sensor, and the sleep measurement sensor, an operation unit for calculating the data stored in the database, and a value calculated by the operation unit compared with a preset value.
  • Comparator And
  • a monitor including an alarm unit configured to provide an alarm when a value calculated by comparing in the comparison unit is smaller than a preset value.
  • the calculating unit corrects the ground water level measured by the sleep measurement sensor by using the water pressure measured by the water pressure measurement unit of the first measurement sensor and the atmospheric pressure of the second measurement sensor, The second distance to the first measuring sensor is calculated, and the freshwater lens thickness is calculated by the sum of the first distance a and the second distance b.
  • Coastal groundwater monitoring method is inserted in the observatory to measure the groundwater in the coastal area of the saltwater interface position tracking device that moves in accordance with the buoyancy change on the saltwater interface; And a first measuring sensor inserted into the observation well, the distance measuring unit being positioned above the salt water interface position tracking device and measuring a first distance from the salt water interface position tracking device.
  • the first sensor for measuring the first distance from the first measurement sensor to the freshwater interface position tracking device in the coastal groundwater monitoring system, the measurement sensor includes a first transmitter for transmitting the measured first distance. step; A transmission step of transmitting the measured first distance to the monitor through the first transmitter after the first distance measurement step; And monitoring the freshwater lens thickness or the freshwater interface depth change using the transmitted data.
  • Coastal groundwater monitoring method is inserted in the observatory to measure the groundwater in the coastal area of the saltwater interface position tracking device that moves in accordance with the buoyancy change on the saltwater interface;
  • a first measurement sensor which is inserted into the observation well and positioned above the salt water interface position tracking device and includes a distance measuring unit measuring a first distance from the salt water interface position tracking device and a hydraulic pressure measuring unit measuring water pressure; ;
  • a second measuring sensor including an atmospheric pressure measuring unit measuring atmospheric pressure; Sleep measurement sensor for measuring the ground water surface; And a database storing data measured by the first measurement sensor, the second measurement sensor, and the sleep measurement sensor.
  • a calculation unit configured to calculate the data stored in the database, and using the sleep measurement sensor in a coastal groundwater monitoring system including a monitor to provide an alarm when a value calculated by the calculation unit is smaller than a preset value.
  • the distance from the ground level to the first measurement sensor of the stored data is characterized in that it comprises a calculation step of calculating the freshwater lens thickness in combination with the first distance by correcting by the atmospheric pressure and the water pressure.
  • Coastal groundwater monitoring system made in the above is to observe the saltwater interface in real time, and according to the measurement of the change in freshwater lens thickness or the depth of the saltwater interface depth, if there is a risk that seawater can penetrate the groundwater, groundwater use By issuing a warning limiting the risk, there is an effect of facilitating coastal groundwater management.
  • 1 is a schematic state diagram installed in the observation well to measure the groundwater is the brine interface position tracking device used in the present invention.
  • FIG. 2 is a schematic state diagram in which the saltwater interface position tracking device used in the present invention is installed and operated in an observation well for measuring groundwater.
  • Figure 3 is a perspective view of the brine interface position tracking device used in the present invention.
  • Figure 4 is an exploded perspective view of the brine interface position tracking device used in the present invention.
  • FIG. 5 is a schematic view of a variable metal member of the saltwater interface position tracking device according to the present invention.
  • FIG. 6 is an exploded cross-sectional view of the saltwater interface position tracking device according to the present invention.
  • Figure 7 is an enlarged view showing the air outlet of the saltwater interface position tracking device according to the present invention.
  • FIG. 9 is a schematic diagram of a coastal groundwater monitoring system in accordance with the present invention.
  • FIG. 10 is a block diagram of a first measuring sensor according to the present invention.
  • FIG. 11 is a block diagram of a second measuring sensor according to the present invention.
  • FIG. 12 is a block diagram of a monitor according to the present invention.
  • Figure 13 shows the change of the groundwater surface and freshwater interface according to the use of groundwater.
  • FIG. 14 is a flow chart of a coastal groundwater monitoring method according to the present invention.
  • 15 is a flow chart of a coast groundwater monitoring method as still another embodiment according to the present invention.
  • the present inventors the saltwater interface position tracking device 1 is inserted into the drilled (perforated) observation well (2) to measure the groundwater change in the coastal area as shown in Figs. 1 and 2 up and down according to the variation of the saltwater interface of the groundwater.
  • buoyancy guide 10 for adjusting the size of the buoyancy largely by using a fluid, and is installed in the lower portion of the buoyancy guide 10 It consists of a wireless measuring sensor 20 for measuring the ground water level, the temperature, the value of the electrical conductivity of the ground water, and the other hole 30 is installed to surround the wireless measuring sensor 20 in the lower portion of the buoyancy conductor (10).
  • the buoyancy inductor 10 has an inner space 11a to contain the fluid, and a buoyancy body 11 in the form of a closed pipe (pipe) in which the opening 11b is formed to insert the fluid thereon, and
  • the lower part of the buoyancy body 11 has a sub-racket 12 having a through-hole 12a for installing the wireless measuring sensor 20, and a screw for installing the perforated pipe 30 to the outside of the sub-racket 12 (13) is formed, the sealing cap 14 including a variable metal member (15) attached to the magnet to insert the fluid in the inner space (11a) and seal the opening (11b) in the upper portion of the buoyancy body (11) This is installed.
  • variable metal member 15 is expandable and reduced in size by expanding the metal wings 17 in the circumferential direction.
  • variable metal member 15 is attached by replacing metal members having different sizes with the sealing cap 14 or by attaching the metal member to the sealing cap 14, and the metal member.
  • the size may be varied by adding another metal member of a larger size in the circumferential direction.
  • variable metal member 15 is attached to the cap 14 for sealing when the fresh water interface position tracking device 1 is installed and recovered in the groundwater observation well 2, and then the number of the variable metal members 15 is attached and recovered.
  • the electromagnet is located exactly on top of the variable metal member 15, the fresh water interface position tracking device 1 is recoverable by magnetic force.
  • variable metal member 15 is set to be slightly smaller than the diameter of the groundwater observation well 2 so that the electromagnet can be easily recovered at any position of the groundwater observation well 2.
  • variable metal member 15 and the sealing cap 14 may be coupled by screws, and the protruding portion having a thread is formed on the variable metal member 15 itself so that the female thread portion is formed at the upper end of the sealing cap 14. You can also combine.
  • the opening 11b and the sealing cap 14 are generally formed with screw grooves corresponding to each other, and a packing 16 made of rubber material for ensuring airtightness is positioned between the opening 11b and the sealing cap 14. Then, the fluid 40 is inserted into the inner space 11a through the opening 11b to adjust the size of the buoyancy and then sealed with a sealing cap 14.
  • the wireless measuring sensor 20 is a conventional measurement of the groundwater level, temperature, electrical conductivity values, etc. in the coastal area, the wireless measuring sensor 20 measures the change in the groundwater signal to the recording device installed on the ground by wireless communication Send to confirm the change of position of freshwater interface on the ground.
  • the wireless measuring sensor 20 is formed with a connector 21 provided with a through-hole 22 to be installed in the racket 12 formed on the buoyancy guide 10 as shown in FIG.
  • the wireless measuring sensor 20 matches the through hole 12a formed in the buckle 12 of the buoyancy guide 10 with the through hole 22 of the connector 21, and then inserts a pin. To be fixedly installed underneath the buoyancy guide (10).
  • the other hole 30 is installed on the periphery of the wireless measuring sensor 20 to protect the wireless measuring sensor 20, and the groundwater and the brine flow into the wireless measuring sensor 20 located inside as shown in FIG. 4. Be sure to
  • a plurality of inflow holes 32 are formed on the outer circumferential surface of the perforated body 31, and groundwater and brine flow into the perforated body 31 through the inflow hole 32.
  • the screw groove 33 is formed on the upper surface of the perforated body 31 between the perforated body 31 and the female screw portion 13 formed in the lower portion of the buoyancy body 11 Screw connection is possible.
  • the plurality of inflow holes 32 are formed in the longitudinal direction of the perforated body 31.
  • the groundwater brine position tracking device (1) When the groundwater brine position tracking device (1) is inserted into the groundwater observation well (2), the groundwater and the brine are introduced from the inflow hole (32) located below the perforated body (31), and the inflow hole (32) formed in the upper portion Through the air remaining in the perforated body 31 is discharged.
  • the microcavity is formed at the uppermost portion of the perforated body 31, that is, the screwed coupling portion between the male screw portion 33 formed on the upper surface of the perforated body 31 and the female screw portion 13 formed on the lower portion of the buoyancy body 11. And air can remain in this area and affect buoyancy.
  • an air outlet 34 is formed in the male screw part 33, and the female screw part 13 is provided. Air outlet 34 is also formed in the corresponding position.
  • the air outlet 34 formed in the male threaded portion 33 and the air outlet 34 formed in the female threaded portion 13 can communicate with each other when the male threaded portion 33 and the female threaded portion 13 are coupled to each other.
  • the micro air remaining at the top of the body 31 is completely discharged through the air outlet 34.
  • the other hole 30 may be installed to be detached from the outer circumferential surface of the wireless measurement sensor 20 to protect the wireless measurement sensor 20, but the buoyancy of the wireless measurement sensor 20 directly in the absence of the other hole 30 is buoyant. It can be installed and used in the derivative (10).
  • a screw thread is formed on the upper outer circumferential surface of the wireless measuring sensor 20 to be screwed with the connector 21.
  • a screw thread is formed on the upper outer circumferential surface of the wireless measuring sensor 20 from which the connector 21 is removed, and a screw thread may be formed on the lower surface of the buoyancy guide 10 and screwed directly.
  • the wireless measuring sensor 20 may have a variety of forms, and may also vary in size, the diameter of the upper outer peripheral surface is different depending on the size and buoyancy inducer 10 of a certain size In order to be screwed together, the connecting member 16 is used.
  • the first screw thread 24 is formed on the upper outer circumferential surface of the connecting member 16, and the second screw thread 18 is formed on the lower inner circumferential surface thereof so that the second screw thread 18 is a screw thread formed on the radio measuring sensor 20.
  • the first screw thread 24 is coupled to the thread formed on the lower inner circumferential surface of the buoyancy body 11 of the buoyancy inductor 10 to couple the buoyancy inductor 10 and the wireless measuring sensor 20.
  • the diameter of the second screw thread 18 of the connecting member 16 may be formed in various sizes according to the diameter of the wireless measuring sensor 20, the diameter of the first screw thread 24 is the lower inner peripheral surface of the buoyancy body 11 It is fixed according to the diameter.
  • the buoyancy inductor 10 has an inner space 11a to include a fluid, and has a bottom-closed pipe (tube) in which an opening 11b is formed to insert a fluid thereon.
  • the buoyancy body 11 of the, the lower inner peripheral surface is formed with a screw thread is coupled to the wireless measuring sensor 20, the sealing member to prevent the fluid contained therein due to the screw thread formed on the lower surface of the blocked pipe (pipe). (19) is formed at the lower end of the inner space (11a) to isolate the screw thread and the inner space (11a) to be watertight.
  • FIG. 9 is a schematic diagram of a coastal groundwater monitoring system in accordance with the present invention.
  • the coastal groundwater monitoring system includes a freshwater interface position tracking device 1, a first measurement sensor 100, and a first transmitter 120.
  • Brine interface location tracking device (1) is inserted into the observation well (2) for measuring the groundwater in the coastal area to measure the change in the position of the salt water interface (5) while moving in accordance with the buoyancy change on the salt water interface (5) .
  • the first measurement sensor 100 is installed between the groundwater surface 4 and the freshwater interface 5, that is, installed above the freshwater interface location tracking device 1, but fixed to a predetermined height of the freshwater flux.
  • FIG. 10 is a block diagram of a first measuring sensor according to the present invention.
  • the first measuring sensor 100 measures the first distance a with the freshwater interface surface position tracking device 1 and the measured first distance a. It includes a first transmitter 120 capable of transmitting.
  • the first measuring sensor 100 includes a hydraulic pressure measuring unit 130 to measure the fresh water pressure in real time.
  • the distance measuring unit 110 may be applied to any technology that can measure the distance in water, and in one embodiment, including a sound wave generator or laser generator 111 and a sound wave receiver or laser receiver 112, sound wave generator Sound waves generated from the (111) is reflected back to the fresh water interface position tracking device (1) is detected by the sound wave receiver 112 and the distance can be measured through this, or laser generated from the laser generator 111 The laser beam reflected on the water interface position tracking device 1 and returned to the laser receiver 112 can detect the distance.
  • a sound wave generator or laser generator 111 and a sound wave receiver or laser receiver 112
  • sound wave generator Sound waves generated from the (111) is reflected back to the fresh water interface position tracking device (1) is detected by the sound wave receiver 112 and the distance can be measured through this, or laser generated from the laser generator 111
  • the laser beam reflected on the water interface position tracking device 1 and returned to the laser receiver 112 can detect the distance.
  • FIG. 11 is a block diagram of a second measuring sensor according to the present invention.
  • the present invention may include a second measuring sensor 200 inserted into the groundwater observation well 2 and installed in the atmosphere, and the second measuring sensor 200 may include an atmospheric pressure measuring unit ( 210 and a second transmitter 220 for transmitting the measured atmospheric pressure data.
  • the second measuring sensor 200 may include an atmospheric pressure measuring unit ( 210 and a second transmitter 220 for transmitting the measured atmospheric pressure data.
  • the atmospheric pressure is measured as a correction value when measuring the change in the thickness of the freshwater lens between the groundwater surface 4 and the saltwater interface 5 because the groundwater surface 4 changes slightly according to the atmospheric pressure. .
  • Data of the first distance a measured by the first measurement sensor 100 is transmitted through the first transmitter 120, and atmospheric pressure data measured by the second measurement sensor 200 is transmitted to the second transmitter 220. Transmitted by the monitor 300 to monitor the freshwater lens thickness and / or the freshwater interface depth.
  • the freshwater lens thickness is the first distance a between the freshwater interface tracking device 1 and the first measurement sensor 100 floating at the freshwater interface 5 and the first measurement sensor 100 from the groundwater surface 4. It is the sum of the second distance b to.
  • the distance from the groundwater surface 4 to the first measuring sensor 100 is installed so that the height of the first measuring sensor 100 is fixed, but the groundwater surface 5 changes according to atmospheric pressure, and the groundwater surface ( The change in 4) can be calculated as a change in water pressure, and the second distance b is corrected by using the change in atmospheric pressure and the water pressure measured by the water pressure measuring unit 130 of the first measuring sensor 100. .
  • the freshwater interface depth means the distance from the ground surface of the groundwater observation well (2) to the freshwater interface (5), which is the sum of the first distance (a) and the second distance (b). It is computed as the sum of the 3rd distance c from the ground surface 6 which meets the entrance of to, and the groundwater surface 4.
  • the first underground water level 4 measures and records the distance when the underground water level 4 and the surface measurement sensor 400 come in contact with the ground water level sensor 400 while lowering the ground water observation well 2.
  • the change in the groundwater level 4 is calculated based on the first groundwater level 4 through the change in the water pressure measured by the pressure measuring unit 130.
  • FIG. 12 is a block diagram of a monitor according to the present invention.
  • the monitor 300 includes an alarm unit 350 that provides an alarm when the freshwater lens thickness or the freshwater interface depth is smaller than the preset value P set by the user. do.
  • the monitor 300 can know the altitude of the ground surface 6 of the groundwater observation well through the altitude from the sea level 3, and the altitude of the fresh water interface 5 is the elevation of the ground surface 6 of the groundwater observation well. Calculated from the first distance (a), the second distance (b), and the third distance (c) from the above, and when the altitude above sea level of the salt water interface 5 rises above the reference set value (P1), groundwater The groundwater level of the observation well (2) is lowered by that much, which means that the brine has risen, thus providing an alarm to manage the groundwater.
  • the alarm unit 350 may be recognized by the user in various ways such as a sound or a warning lamp.
  • the monitor 300 may provide an alarm to the alarm unit 350 by using the first distance observed from the first measurement sensor 100 through the first transmitter 120 of the first measurement sensor 100.
  • the comparison unit 330 and the comparison unit 330 comparing the preset reference value P1 set in advance, the freshwater lens thickness is smaller than the preset value P, or the freshwater interface depth value is the reference value. If greater than the set value (P1) includes an alarm unit for providing an alarm.
  • the hydraulic pressure measuring unit 130 of the first measurement sensor 100 is based on the groundwater level 4 measured by the sleep measurement sensor 400.
  • the hydraulic pressure measuring unit 130 of the first measurement sensor 100 is based on the groundwater level 4 measured by the sleep measurement sensor 400.
  • the second distance b is calculated.
  • the freshwater lens thickness is calculated from the sum of the first distance (a), the second distance (b), and the third distance (c), and the freshwater boundary depth value is calculated through the difference of these values from the elevation of the surface of the earth.
  • the monitor 300 additionally displays various data stored in the database 310 in real time and the freshwater lens thickness or the freshwater interface depth value calculated by the operation unit 320 on the display unit 340 to monitor the user visually. have.
  • the freshwater lens thickness or the freshwater brine depth value is smaller than the preset value (P).
  • P the preset value
  • the rainwater that penetrates naturally decreases and the freshwater lens thickness becomes thin and the saltwater thickness becomes thick.
  • the groundwater surface (4) is conical form around the groundwater well due to the excessive pumping of groundwater in the groundwater well in the coastal area. It means that the saltwater interface rises in a conical shape as it descends, so that the saltwater interface is located above the predetermined depth, and the elevation of the saltwater interface by the amniotic fluid is the groundwater level (2) in the groundwater observation well (2) of FIG. 4) and the change of the freshwater interface 5 can be seen in the drawing.
  • FIG. 14 is a flow chart of a coastal groundwater monitoring method according to the present invention.
  • the coastal groundwater monitoring method according to the present invention is inserted into an observation well (2) for measuring groundwater in a coastal area, and tracks the position of the saltwater interface where the saltwater interface (5) moves according to the change of buoyancy on the saltwater interface (5).
  • Device 1 a distance measuring unit 110 inserted into the observation well 2 and positioned above the freshwater brine interface position tracking device 1 to measure a first distance a with the freshwater brine interface position tracking device 1.
  • Coastal groundwater monitoring system comprising a first measuring sensor 100 including a), the first measuring sensor 100 includes a first transmitter 120 for transmitting the measured first distance (a)
  • 15 is a flow chart of a coast groundwater monitoring method as still another embodiment according to the present invention.
  • a coastal groundwater monitoring method is inserted in the observation well (2) for measuring the groundwater in the coastal area and the fresh salt boundary surface position moving in accordance with the change of buoyancy on the fresh salt interface (5) Tracking device 1;
  • a distance measuring unit 110 inserted into the observation well 2 and positioned above the freshwater brine interface location tracking device 1 and measuring a first distance a with the freshwater brine interface location tracking device 1;
  • a first measuring sensor 100 comprising a hydraulic pressure measuring unit 130 for measuring the hydraulic pressure;
  • Sleep measurement sensor 400 for measuring the ground water surface (4);
  • a database 310 storing data measured by the first measurement sensor 100, the second measurement sensor 200, and the sleep measurement sensor 400.
  • the sleep measurement sensor in the coastal groundwater monitoring system including a monitor 300 including an alarm unit 350 that provides an alarm when the comparison unit 330 is smaller or larger than the preset value P or the reference set value P1.
  • the coastal groundwater monitoring system observes the saltwater interface in real time, and thus measures the change of the freshwater lens thickness or the depth of the saltwater interface to warn the use of groundwater when there is a risk of seawater infiltration into the groundwater.
  • the announcement there is an effect of facilitating the management of the coastal groundwater, and thus there is industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fluid Mechanics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Level Indicators Using A Float (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

해안 지하수 모니터링 시스템은 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 및 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부를 포함하는 제1측정센서를 포함하고, 상기 제1측정센서는 측정한 상기 제1거리를 송신하는 제1송신부를 포함하는 것을 특징으로 한다.

Description

해안 지하수 모니터링 시스템
본 발명은 해안 지하수 모니터링 시스템에 관한 것이다.
일반적으로 해안지역에서는 과다한 지하수 사용으로 지하수의 수위가 낮아짐으로써 지하수에 염수(바닷물)가 유입되어 오염이 되고, 이로 인하여 지하수를 식수뿐만 아니라 농업용수나 공업용수로도 사용하지 못하는 위험에 노출되고 있다.
그러므로 해안지역에서는 지하수 관측정을 뚫고, 관측정에 지하수위, 온도, 전기전도도의 값 등을 측정하는 유선 또는 무선 측정센서를 설치하여 지하수의 변화를 감시하는 지하수 관측정을 운영해오고 있다.
담염수 경계면(지하수와 염수의 경계면)은 두 가지의 기작에 의하여 변화한다. 첫째는 담수층의 두께가 감소하는 현상이고, 다른 하나는 염수층의 두께가 변화하는 현상이다.
담수층의 두께는 강우에 의해 증가하기도 하고, 주변의 양수활동에 의해 감소하기도(얇아지기도) 한다.
염수층은 조석현상에 의해 해수면의 높이가 주기적으로 변함에 따라 변화한다.
최근에는 지구의 온난화 현상에 의해 해수면이 점진적으로 상승하고 있다.
여러가지 현상에 의하여 기준시점보다 담수층의 두께가 얇아지고 염수층의 두께가 두꺼워지는 담염수 경계면이 상승하고, 담수층의 두께가 두꺼워지고 염수층 두께가 낮아지면 담염수 경계면이 하강한다.
이와 같이 지하수의 과다한 양수활동, 강우, 조석현상, 지구온난화에 의한 해수면의 상승 등 다양한 복합적인 현상에 의하여 담염수의 경계면이 위치가 수시로 변화한다.
그러나 실제 해안지역의 지하수 관측정에 설치되는 측정센서는 유무선과 관계없이 고정된 심도에 설치되어 측정하기 때문에 실시간으로 담염수 경계면의 위치를 파악하기 어려운 문제점이 있었고, 담염수 경계면 위치를 실시간으로 파악한다고 하더라도, 담수 렌즈 두께 또는 담염수 경계면 심도 변화를 실시간으로 측정하여 지하수에 해수 침투를 방지하기 위한 실시간 모니터링은 불가능하였다.
본 발명은 이러한 문제점을 해결하기 위하여 발명된 것으로, 담염수 경계면 위치 추적장치와 거리측정이 가능한 측정센서를 담수에 인입하여 담염수 경계면 위치 추적장치와 측정센서간의 거리를 측정하고, 지하수면과 측정센서간의 거리를 측정함으로써, 실시간으로 담수렌즈 두께 변화 또는 담염수 경계면 심도 변화를 측정하여 지하수에 해수가 침투할 우려가 있는 경우, 지하수 사용을 제한하는 경고 발령을 하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 해안 지하수 모니터링 시스템은 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 및 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부를 포함하는 제1측정센서를 포함하고, 상기 제1측정센서는 측정한 상기 제1거리를 송신하는 제1송신부를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 제1측정센서는 수압도 측정할 수 있는 수압측정부를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 관측정의 내부에 삽입되며, 대기중에 설치된 제2측정센서를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 거리측정부를 음파 발생기와 음파수신기 또는 레이저발생기와 레이저수신기를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 제2측정센서는 대기압을 측정하는 대기압 측정부를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 제2측정센서는 측정한 대기압 데이터를 전송하는 제2송신부를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 제1송신부에서 전송된 데이터와 상기 제2송신부에서 전송된 데이터에 의해 담수렌즈 두께 또는 담염수 경계면 심도를 감시하는 모니터를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 모니터는 상기 담수렌즈 두께 또는 상기 담염수 경계면 심도가 기설정값보다 작으면 알람을 제공하는 알람부를 포함하는 것을 특징으로 한다.
본 발명에 따른 해안 지하수 모니터링 시스템은 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 고정 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리(a)를 측정하는 거리측정부 및 수압을 측정하는 수압측정부를 포함하는 제1측정센서; 대기압을 측정하는 대기압 측정부를 포함하는 제2측정센서; 지하수면을 측정하는 수면측정센서; 및 상기 제1측정센서와 상기 제2측정센서, 상기 수면측정센서에서 측정된 데이터를 저장하는 데이터베이스, 상기 데이터베이스에 저장된 상기 데이터를 연산하는 연산부, 상기 연산부에서 연산된 값이 기설정값과 비교하는 비교부; 상기 비교부에서 비교하여 연산된 값이 기설정값보다 작으면 알람을 제공하는 알람부를 포함하는 모니터를 포함하는 것을 특징으로 한다.
또한 본 발명에 따르면, 상기 연산부는 수면측정센서에서 측정한 지하수면을 제1측정센서의 상기 수압측정부에서 측정한 수압과 상기 제2측정센서의 대기압을 이용하여 보정함으로써, 상기 지하수면으로부터 상기 제1측정센서까지의 제2거리를 연산하고, 상기 제1거리(a)와 상기 제2거리(b)의 합으로 담수 렌즈 두께를 연산하는 것을 특징으로 한다.
본 발명에 따른 해안 지하수 모니터링 방법은 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 및 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부를 포함하는 제1측정센서를 포함하고, 상기 제1측정센서는 측정한 상기 제1거리를 송신하는 제1송신부를 포함하는 것을 해안 지하수 모니터링 시스템에서 상기 제1측정센서로부터 상기 담염수 경계면 위치 추적장치까지의 상기 제1거리를 측정하는 제1거리 측정단계; 상기 제1거리 측정단계 후, 측정한 상기 제1거리를 상기 제1송신부를 통해 모니터에 전송하는 전송단계; 상기 전송된 데이터를 이용하여 담수 렌즈 두께 또는 담염수 경계면 심도 변화를 모니터링하는 모니터링 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 해안 지하수 모니터링 방법은 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부 및 수압을 측정하는 수압측정부를 포함하는 제1측정센서; 대기압을 측정하는 대기압 측정부를 포함하는 제2측정센서; 지하수면을 측정하는 수면측정센서; 및 상기 제1측정센서와 상기 제2측정센서, 상기 수면측정센서에서 측정된 데이터를 저장하는 데이터베이스; 상기 데이터베이스에 저장된 상기 데이터를 연산하는 연산부를 포함하고, 상기 연산부에서 연산된 값이 기설정값보다 작으면 알람을 제공하는 모니터를 포함하는 해안 지하수 모니터링 시스템에서 상기 수면측정센서를 이용하여 지하수면을 측정하는 지하수면 측정단계; 상기 제1측정센서로부터 상기 담염수 경계면 위치 추적장치까지의 상기 제1거리를 측정하고, 수압을 측정하는 제1거리 및 수압측정단계; 상기 제2측정센서의 대기압 측정부에서 대기압을 측정하는 대기압 측정단계; 상기 데이터 베이스에 측정된 상기 데이터를 저장하는 저장단계; 저장된 상기 데이터 중 상기 지하수면으로부터의 상기 제1측정센서까지의 거리는 상기 대기압 및 상기 수압에 의해 보정하여 상기 제1거리와 합하여 담수렌즈 두께를 연산하는 연산단계를 포함하는 것을 특징으로 한다.
상기와 같이 이루어지는 본 발명에 따른 해안 지하수 모니터링 시스템은 담염수 경계면을 실시간으로 관측하고, 이에 따라 담수렌즈 두께 변화 또는 담염수 경계면 심도 변화를 측정하여 지하수에 해수가 침투할 우려가 있는 경우, 지하수 사용을 제한하는 경고 발령함으로써, 해안 지하수 관리를 용이하게 하는 효과가 있다.
도 1은 본 발명에 사용되는 담염수 경계면 위치 추적장치가 지하수를 측정하는 관측정에 설치된 개략상태도이다.
도 2는 본 발명에 사용되는 담염수 경계면 위치 추적장치가 지하수를 측정하는 관측정에 설치되어 작동하는 개략상태도이다.
도 3은 본 발명에 사용되는 담염수 경계면 위치 추적장치의 사시도이다.
도 4는 본 발명에 사용되는 담염수 경계면 위치 추적장치의 분리사시도이다.
도 5은 본 발명에 따른 담염수 경계면 위치 추적장치의 가변형 금속부재의 개략도이다.
도 6은 본 발명에 따른 담염수 경계면 위치 추적장치의 분리단면도이다.
도 7은 본 발명에 따른 담염수 경계면 위치 추적장치의 공기 배출구를 나타내는 확대도이다.
도 8은 본 발명에 따른 담염수 경계면 위치 추적장치의 또 다른 실시예이다.
도 9는 본 발명에 따른 해안 지하수 모니터링 시스템의 개략도이다.
도 10은 본 발명에 따른 제1측정센서의 블럭도이다.
도 11은 본 발명에 따른 제2측정센서의 블럭도이다.
도 12는 본 발명에 따른 모니터의 블럭도이다.
도 13은 지하수 이용에 따른 지하수면과 담염수 경계면의 변화를 나타낸다.
도 14은 본 발명에 따른 해안 지하수 모니터링 방법의 순서도이다.
도 15는 본 발명에 따른 또 다른 실시예로서의 해안 지하수 모니터링 방법의 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 우선, 도면들 중 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의해야 한다. 본 발명을 설명함에 있어서 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하게 하지 않기 위해 생략한다.
본 발명인 담염수 경계면 위치 추적장치(1)는 도 1과 도 2와 같이 해안지역의 지하수 변화를 측정하기 위하여 뚫린(천공) 관측정(2)에 삽입되어 지하수의 담염수 경계면의 변동에 따라 상하로 이동하는 것으로, 도 3 내지 도 8과 같이 담염수 경계면 위치 추적장치(1)는 크게 유체를 이용하여 부력의 크기를 조절하는 부력유도체(10)와,상기 부력유도체(10)의 하부에 설치되어 지하수의 지하수위, 온도, 전기전도도의 값 등을 측정하는 무선측정센서(20)와, 부력유도체(10)의 하부에 무선측정센서(20)를 감싸도록 설치된 타공관(30)으로 구성된다.
부력유도체(10)는 유체를 포함할 수 있도록 내부공간(11a)을 가지며, 상부에 유체를 삽입할 수 있도록 개구부(11b)가 형성된 하부가 막힌 파이프(관) 형태의 부력몸체(11)와, 부력몸체(11)의 하부에는 무선측정센서(20)를 설치하기 위한 관통홀(12a)이 형성된 부라켓(12)과, 부라켓(12)의 외측으로 타공관(30)을 설치하기 위한 나사부(13)가 형성되고, 부력몸체(11)의 상부에는 내부공간(11a)에 유체를 삽입하고 개구부(11b)를 밀폐시키는 자석에 붙는 가변형 금속부재(15)를 포함하는 밀폐용 캡(14)이 설치된다.
도 5에 도시된 바와 같이 가변형 금속부재(15)는 원주방향으로 금속날개(17)를 확장가능하여 사이즈를 확장 축소 가능한 형상이다.
그러나 이러한 형상에 한정되는 것은 아니고, 가변형 금속부재(15)를 서로 다른 사이즈의 금속부재를 밀폐용 캡(14)에 교체하여 부착하거나, 밀폐용 캡(14)에 금속부재를 부착하고, 금속부재에 원주방향으로 더 큰 사이즈의 또 다른 금속 부재를 덧붙여 사이즈를 가변시킬 수도 있다.
이렇게 가변형 금속부재(15)를 밀폐용 캡(14)에 부착시키는 것은 지하수 관측정(2)에 담염수 경계면 위치 추적장치(1)를 설치회수할 때, 전자석을 이용하여 부착한 후 설치 회수하게 되고, 전자석이 정확히 가변형 금속부재(15)의 상부에 위치해야 자력에 의해 담염수 경계면 위치 추적장치(1)가 회수가능하게 된다.
이 때, 지하수 관측정(2)의 직경에 비해 가변형 금속부재(15)의 직경이 작으면, 전자석이 정확히 가변형 금속부재(15)에 위치하는 것이 어렵고 이로 인해 회수의 어려움이 있으므로, 가변형 금속부재(15)를 지하수 관측정(2)의 직경보다 약간 작게 설정하여 삽입함으로써, 전자석이 지하수 관측정(2)의 어느 위치에 위치하더라도 회수가 용이하게 하기 위함이다.
가변형 금속부재(15)와 밀폐용 캡(14)은 나사에 의해 결합할 수도 있고, 가변형 금속부재(15) 자체에 나사산이 형성된 돌출부가 형성되어 밀폐용 캡(14)의 상단부에 형성된 암나사산부에 결합할 수도 있다.
또한, 개구부(11b)와 밀폐용 캡(14)에는 보통 서로 대응되게 나사홈이 형성되어 있고, 기밀 확보용 고무재질의 패킹(16)이 개구부(11b)와 밀폐용 캡(14) 사이에 위치하며, 개구부(11b)를 통하여 유체(40)를 내부공간(11a)에 삽입하여 부력의 크기를 조절한 후 밀폐용 캡(14)으로 밀폐시킨다.
무선측정센서(20)는 해안지역의 지하수수위, 온도, 전기전도도의 값 등을 측정하는 통상의 것으로, 무선측정센서(20)는 지하수의 변화를 측정하여 지상에 설치된 기록장치에 무선통신으로 신호를 보내어 지상에서 담염수 경계면의 위치변화를 확인할 수 있도록 한다.
이러한 무선측정센서(20)에는 도 4와 같이 상부에 부력유도체(10)에 형성된 부라켓(12)에 설치되도록 관통홀(22)이 구비된 연결구(21)가 형성된다.
이와 같이 이루어진 무선측정센서(20)는 도 6과 같이 부력유도체(10)의 부라켓(12)에 형성된 관통홀(12a)과 연결구(21)의 관통홀(22)을 일치시킨 후 핀을 삽입하여 부력유도체(10)의 하부 일체로 고정설치한다.
타공관(30)은 무선측정센서(20)의 감싸도록 둘레에 설치되어 무선측정센서(20)를 보호하는 것으로, 도 4와같이 지하수 및 염수가 내측에 위치하는 무선측정센서(20)로 유입되도록 한다.
도 6 및 도 7에 도시된 바와 같이, 타공몸체(31)의 외주면에는 복수개의 유입홀(32)이 형성되어, 유입홀(32)을 통해 지하수 및 염수가 타공몸체(31)의 내측으로 유입되어 무선측정센서(20)와 접촉하게 되고, 타공몸체(31)의 상부면에는 나사홈(33)이 형성되어 타공몸체(31)와 부력몸체(11)의 하부에 형성된 암나사부(13)간의 나사결합이 가능하다.
복수개의 유입홀(32)은 타공몸체(31)의 길이방향으로 형성된다.
지하수 염수면 위치 추적장치(1)를 지하수 관측정(2)에 삽입시, 타공몸체(31)의 하부에 위치한 유입홀(32)부터 지하수 및 염수가 유입되고, 상부에 형성된 유입홀(32)을 통해서는 타공몸체(31)에 잔류하던 공기가 배출되게 된다.
그러나, 타공몸체(31)의 최상부, 즉 타공몸체(31)의 상부면에 형성된 수나사부(33)과 부력몸체(11)의 하부에 형성된 암나사부(13)간의 나사결합된 결합부에 미소 공간이 있고 이 부분에 공기가 잔류하여 부력에 영향을 줄 수 있다.
이러한 타공몸체(31) 상부에 잔류하는 미소 공기를 배출시켜 담염수 경계면의 변화에 따라 정확히 부력이 변동되도록 하기 위해 수나사부(33)에는 공기 배출구(34)가 형성되어 있고, 암나사부(13)에도 대응되는 위치에 공기 배출구(34)가 형성된다.
따라서, 수나사부(33)와 암나사부(13)가 결합된 상태에서 수나사부(33)에 형성된 공기 배출구(34)와 암나사부(13)에 형성된 공기 배출구(34)가 서로 연통가능하여, 타공몸체(31)의 최상부에 잔류하는 미소 공기가 공기 배출구(34)를 통해 완전히 배출되게 된다.
도 8은 본 발명에 따른 담염수 경계면 위치 추적장치(1)의 또 다른 실시예이다.
타공관(30)은 무선측정센서(20)를 보호하기 위해 무선측정센서(20)의 외주면에 탈착되도록 설치가능하나, 타공관(30)이 없는 형태로도 무선측정센서(20)를 직접 부력유도체(10)에 설치하여 사용가능하다.
일반적으로 무선측정센서(20)의 상부 외주면에는 나사산이 형성되어 연결구(21)와 나사결합되게 된다.
연결구(21)를 제거한 무선측정센서(20)의 상부 외주면에는 나사산이 형성되어 있고, 이를 부력유도체(10)의 하부면에 나사산을 형성하고 나사결합을 직접적으로 할 수도 있다.
도 8은 이러한 실시예를 도시한 것으로서, 무선측정센서(20)는 다양한 형태가 있을 수 있고, 크기 또한 다양할 수 있으며, 크기에 따라 상부 외주면의 직경이 상이하고 이를 일정 크기의 부력유도체(10)에 나사결합하기 위해, 연결부재(16)를 사용한다.
연결부재(16)의 상부 외주면에는 제1나사산(24)이 형성되고, 하부 내주면에는 제2나사산(18)이 형성되어 있어 제2나사산(18)은 무선측정센서(20)의 상부에 형성된 나사산과 결합하고, 제1나사산(24)은 부력유도체(10) 중 부력몸체(11)의 하부 내주면에 형성된 나사산과 결합하여 부력유도체(10)와 무선측정센서(20)가 결합된다.
연결부재(16)의 제2나사산(18)의 직경은 무선측정센서(20)의 직경에 따라 다양한 사이즈로 형성될 수 있고, 제1나사산(24)의 직경은 부력몸체(11)의 하부 내주면 직경에 따라 고정된다.
부력유도체(10)는 도 8에 도시된 바와 같이, 유체를 포함할 수 있도록 내부공간(11a)을 가지며, 상부에 유체를 삽입할 수 있도록 개구부(11b)가 형성된 하부가 막힌 파이프(관) 형태의 부력몸체(11)이고, 그 하부 내주면에는 나사산이 형성되어 무선측정센서(20)가 결합되는데, 막힌 파이프(관)의 하부면에 형성된 나사산으로 인해 내부에 포함된 유체가 유출되지 않도록 실링부재(19)가 내부공간(11a)의 하단부에 형성되어 나사산과 내부공간(11a)을 격리시켜 수밀시킨다.
도 9는 본 발명에 따른 해안 지하수 모니터링 시스템의 개략도이다.
도 9에 도시된 바와 같이, 본 발명에 따른 해안 지하수 모니터링 시스템은 담염수 경계면 위치 추적장치(1), 제1측정센서(100), 제1송신부(120)를 포함한다.
담염수 경계면 위치 추적장치(1)는 해안지역의 지하수를 측정하는 관측정(2)에 삽입되어 담염수 경계면(5) 상에서 부력의 변화에 따라 이동하면서 담염수 경계면(5)의 위치 변화를 측정한다.
지하수면(4)과 담염수 경계면(5) 사이, 즉 담염수 경계면 위치 추적장치(1)보다는 상부에 설치되나 담수속의 일정 높이에 고정되도록 제1측정센서(100)를 설치한다.
도 10은 본 발명에 따른 제1측정센서의 블럭도이다.
도 10에 도시된 바와 같이, 제1측정센서(100)는 담염수 경계면 위치 추적장치(1)와의 제1거리(a)를 측정하는 거리측정부(110)와 측정된 제1거리(a)를 송신할 수 있는 제1송신부(120)를 포함한다.
또한, 제1측정센서(100)는 담수의 수압도 실시간으로 측정가능하도록 수압 측정부(130)를 포함한다.
여기서, 거리측정부(110)는 수중에서 거리측정이 가능한 어떠한 기술이라도 적용가능하며, 일실시예로서, 음파 발생기 또는 레이저 발생기(111)와 음파수신기 또는 레이저 수신기(112)를 포함하여, 음파발생기(111)로부터 발생된 음파가 담염수 경계면 위치 추적장치(1)에 반사되어 돌아온 음파를 음파수신기(112)에서 감지하고 이를 통해 거리를 측정가능하거나, 레이저발생기(111)로부터 발생된 레이저가 담염수 경계면 위치 추적장치(1)에 반사되어 돌아온 레이저를 레이저수신기(112)에서 감지하여 거리 측정가능하다.
도 11은 본 발명에 따른 제2측정센서의 블럭도이다.
도 11에 도시된 바와 같이, 본 발명은 지하수 관측정(2)의 내부에 삽입되며, 대기중에 설치된 제2측정센서(200)를 포함할 수 있고, 제2측정센서(200)는 대기압 측정부(210)와 측정한 대기압 데이터를 전송하는 제2송신부(220)을 포함한다.
대기압 측정부(210)를 통해 지하수 관측정(2)에서의 대기압의 변화를 실시간으로 관측가능하다.
대기압을 측정하는 것은 대기압의 변화에 따라 지하수면(4)이 미세하게 변화하기 때문에 지하수면(4)과 담염수 경계면(5) 사이의 담수렌즈 두께 변화를 측정할 때 보정값으로 활용하기 위한 것이다.
제1측정센서(100)에서 측정한 제1거리(a)의 데이터는 제1송신부(120)를 통해 전송되고, 제2측정센서(200)에서 측정한 대기압 데이터는 제2송신부(220)에 의해 전송되어 모니터(300)에서 담수렌즈 두께 및/또는 담염수 경계면 심도를 감시하게 된다.
담수렌즈 두께는 담염수 경계면(5)에서 부유하는 담염수 경계면 추적장치(1)와 제1측정센서(100)간의 제1거리(a)와 지하수면(4)으로부터 제1측정센서(100)까지의 제2거리(b)와의 합이다.
이 때, 지하수면(4)으로부터 제1측정센서(100)까지의 거리는 제1측정센서(100)의 높이가 고정되어 있도록 설치되나, 지하수면(5)이 대기압에 따라 변화하고, 지하수면(4)의 변화는 수압의 변화로서 산출가능하여, 대기압의 변화 및 제1측정센서(100)의 수압 측정부(130)에서 측정한 수압에 의해 보정하여 제2거리(b)를 보정하여 사용한다.
또한, 담염수 경계면 심도는 지하수 관측정(2)의 지표면으로부터 담염수 경계면(5)까지의 거리를 의미하고, 이는 제1거리(a)와 제2거리(b)의 합에 지하수 관측정(2)의 입구와 만나는 지표면(6)으로부터 지하수면(4)까지의 제3거리(c)의 합으로서 산출된다.
최초의 지하수면(4)은 수면측정센서(400)을 지하수 관측정(2)에 내리면서 지하수면(4)과 수면측정센서(400)가 접촉할 때의 거리를 측정하여 기록하고, 그 이후의 지하수면(4)의 변화는 수압측정부(130)에서 측정한 수압의 변화를 통해 최초의 지하수면(4)을 기준으로 변화과정을 산출하게 된다.
도 12는 본 발명에 따른 모니터의 블럭도이다.
도 12에 도시된 바와 같이, 본 발명에 따른 모니터(300)는 담수렌즈 두께 또는 담염수 경계면 심도가 사용자가 설정한 기설정값(P)보다 작아지면 알람을 제공하는 알람부(350)를 포함한다.
또는 모니터(300)는 지하수 관측정의 지표면(6)의 해발고도는 해수면(3)으로부터의 고도를 통해 알 수 있고, 담염수 경계면(5)의 해발고도는 지하수 관측정의 지표면(6)의 해발고도로부터 제1거리(a), 제2거리(b), 제3거리(c)를 뺀 값으로부터 산출되고, 담염수 경계면(5)의 해발고도가 기준설정값(P1)보다 상승하게 되면, 지하수 관측정(2)의 지하수 수위가 그 만큼 낮아지고, 염수가 상승했음을 의미하므로 알람을 제공하여 지하수를 관리하게 한다.
여기서, 알람부(350)는 음향 또는 경고등 등 다양한 방법으로 사용자가 인지할 수 있으면 된다.
보다 구체적으로 모니터(300)는 알람부(350)에 알람을 제공하기 위해, 제1측정센서(100)의 제1송신부(120)를 통해 제1측정센서(100)에서 관측된 제1거리(a) 및 수압에 대한 데이터를 수신하고, 제2측정센서(200)의 제2송신부(220)에서 측정한 대기압 데이터를 수신하여 저장하는 데이터베이스(310), 데이터베이스(310)에 저장된 각종 데이터를 이용하여 담수렌즈 두께 및/또는 담염수 경계면 심도를 연산하는 연산부(320), 연산된 값, 즉 담수렌즈 두께가 사용자가 기설정한 기설정값(P)과 비교하거나, 담염수 경계면 심도값이 사용자가 기설정하여 둔 기준설정값(P1)과 비교하는 비교부(330), 비교부(330)에서 비교한 결과 담수렌즈 두께가 기설정값(P)보다 작거나, 담염수 경계면 심도값이 기준설정값(P1)보다 크면 알람을 제공하는 알람부(350)를 포함한다.
연산부(320)는 담수렌즈 두께 또는 담염수 경계면 심도값을 연산할 때, 수면측정센서(400)에서 측정한 지하수면(4)을 기초로 하여 제1측정센서(100)의 수압측정부(130)에서 측정한 수압과 제2측정센서(200)의 대기압 측정부(310)에서 측정한 대기압값으로 보정하여 지하수면 변화를 실시간으로 관측하여 지하수면(4)으로부터 고정된 제1측정센서까지의 제2거리(b)를 연산한다.
또한, 제1거리(a), 제2거리(b), 제3거리(c)와의 합을 통해 담수렌즈 두께를 산출하고, 지표면의 해발고도로부터 이들 값의 차를 통해 담염수 경계면 심도값을 연산한다.
모니터(300)는 추가로 실시간으로 데이터베이스(310)에 저장된 각종 데이터와 연산부(320)에서 연산된 담수렌즈 두께 또는 담염수 경계면 심도값을 디스플레이부(340)에 디스플레이하여 사용자가 육안으로 모니터링할 수도 있다.
담수렌즈 두께 또는 담염수 경계면 심도값이 기설정값(P)보다 작다는 의미는 첫째 자연적으로 오랜기간 비가 오지 않아 자연적으로 침투되는 빗물이 줄어들어 담수렌즈 두께가 얇아지고 염수두께가 두꺼워져서 담염수 경계면(5)이 상승하여 더 이상 펌프를 통해서 안정적으로 담수를 양수할 수 없게 되는 상황이거나, 둘째, 해안지역의 지하수관정에서 지하수의 과잉 양수에 의해 지하수면(4)이 지하수 관정을 중심으로 원추형태 내려감에 따라 담염수 경계면이 원뿔형태로 상승하여 담염수 경계면이 기설정된 심도보다 상부에 위치하는 상황을 의미하고, 양수에 의한 담염수 경계면 상승은 도 13의 지하수 관측정(2)에서의 지하수면(4)과 담염수 경계면(5)의 변화를 도시한 도면을 통해 알 수 있다.
도 14는 본 발명에 따른 해안 지하수 모니터링 방법의 순서도이다.
도 14에 도시된 바와 같이, 본 발명에 따른 해안 지하수 모니터링 방법은 해안지역의 지하수를 측정하는 관측정(2)에 삽입되어 담염수 경계면(5)상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치(1); 및 상기 관측정(2)에 삽입되고, 상기 담염수 경계면 위치 추적장치(1)보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치(1)와의 제1거리(a)를 측정하는 거리측정부(110)를 포함하는 제1측정센서(100)를 포함하고, 상기 제1측정센서(100)는 측정한 상기 제1거리(a)를 송신하는 제1송신부(120)를 포함하는 것을 해안 지하수 모니터링 시스템에서 상기 제1측정센서(100)로부터 상기 담염수 경계면 위치 추적장치(1)까지의 상기 제1거리(a)를 측정하는 제1거리 측정단계(S100); 상기 제1거리 측정단계(S100) 후, 측정한 상기 제1거리(a)를 상기 제1송신부(120)를 통해 모니터(300)에 전송하는 전송단계(S200); 전송된 데이터를 이용하여 담수 렌즈 두께 또는 담염수 경계면 심도 변화를 모니터링하는 모니터링 단계(S300)를 포함하는 것을 특징으로 한다.
도 15는 본 발명에 따른 또 다른 실시예로서의 해안 지하수 모니터링 방법의 순서도이다.
도 15에 도시된 바와 같이, 는 본 발명에 따른 해안 지하수 모니터링 방법은 해안지역의 지하수를 측정하는 관측정(2)에 삽입되어 담염수 경계면(5)상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치(1); 상기 관측정(2)에 삽입되고, 상기 담염수 경계면 위치 추적장치(1)보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치(1)와의 제1거리(a)를 측정하는 거리측정부(110) 및 수압을 측정하는 수압측정부(130)를 포함하는 제1측정센서(100); 대기압을 측정하는 대기압 측정부(210)를 포함하는 제2측정센서(200); 지하수면(4)을 측정하는 수면측정센서(400); 및 상기 제1측정센서(100)와 상기 제2측정센서(200), 상기 수면측정센서(400)에서 측정된 데이터를 저장하는 데이터베이스(310); 상기 데이터베이스(310)에 저장된 상기 데이터를 연산하는 연산부(320)를 포함하고, 상기 연산부(320)에서 연산된 값이 기설정값(P)보다 작은지 비교하는 비교부(330)를 포함하고, 비교부(330)에서 기설정값(P) 또는 기준설정값(P1)보다 작거나 크면 알람을 제공하는 알람부(350)를 포함한 모니터(300)를 포함하는 해안 지하수 모니터링 시스템에서 상기 수면측정센서(400)를 이용하여 지하수면(4)을 측정하는 지하수면 측정단계(S50'); 상기 제1측정센서(100)로부터 상기 담염수 경계면 위치 추적장치(1)까지의 상기 제1거리(a)를 측정하고, 수압을 측정하는 제1거리 및 수압측정단계(S100'); 상기 제2측정센서(200)의 대기압 측정부(210)에서 대기압을 측정하는 대기압 측정단계(S150'); 상기 데이터 베이스(310)에 측정된 상기 데이터를 저장하는 저장단계(S200'); 저장된 상기 데이터 중 상기 지하수면(4)으로부터의 상기 제1측정센서(100)까지의 거리는 상기 대기압 및 상기 수압에 의해 보정하여 상기 제1거리(a)와 합하여 담수렌즈 두께를 연산하는 연산단계(S300')를 포함하는 것을 특징으로 한다.
이상에서 본 발명은 특정의 실시예와 관련하여 도시 및 설명하였지만, 첨부된 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도내에서 다양한 변경, 개조 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
본 발명에 따른 해안 지하수 모니터링 시스템은 담염수 경계면을 실시간으로 관측하고, 이에 따라 담수렌즈 두께 변화 또는 담염수 경계면 심도 변화를 측정하여 지하수에 해수가 침투할 우려가 있는 경우, 지하수 사용을 제한하는 경고 발령함으로써, 해안 지하수 관리를 용이하게 하는 효과가 있으므로 산업상 이용가능성이 있다.

Claims (12)

  1. 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 및
    상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부를 포함하는 제1측정센서를 포함하고,
    상기 제1측정센서는 측정한 상기 제1거리를 송신하는 제1송신부를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  2. 제1항에 있어서,
    상기 제1측정센서는 수압도 측정할 수 있는 수압측정부를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  3. 제2항에 있어서,
    상기 관측정의 내부에 삽입되며, 대기중에 설치된 제2측정센서를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  4. 제1항에 있어서,
    상기 거리측정부는 음파 발생기와 음파수신기 또는 레이저 발생기와 레이저수신기를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  5. 제3항에 있어서,
    상기 제2측정센서는 대기압을 측정하는 대기압 측정부를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  6. 제5항에 있어서,
    상기 제2측정센서는 측정한 대기압 데이터를 전송하는 제2송신부를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  7. 제6항에 있어서,
    상기 제1송신부에서 전송된 데이터와 상기 제2송신부에서 전송된 데이터에 의해 담수렌즈 두께 또는 담염수 경계면 심도를 감시하는 모니터를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  8. 제7항에 있어서,
    상기 모니터는 상기 담수렌즈 두께가 기설정값보다 작거나, 상기 담염수 경계면 심도가 기준설정값보다 크면 알람을 제공하는 알람부를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  9. 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치;
    상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부 및 수압을 측정하는 수압측정부를 포함하는 제1측정센서;
    대기압을 측정하는 대기압 측정부를 포함하는 제2측정센서;
    지하수면을 측정하는 수면측정센서; 및
    상기 제1측정센서와 상기 제2측정센서, 상기 수면측정센서에서 측정된 데이터를 저장하는 데이터베이스, 상기 데이터베이스에 저장된 상기 데이터를 연산하는 연산부, 상기 연산부에서 연산된 값이 기설정값과 비교하는 비교부; 상기 비교부에서 비교하여 연산된 값이 기설정값보다 작으면 알람을 제공하는 알람부를 포함하는 모니터를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  10. 제9항에 있어서,
    상기 연산부는 수면측정센서에서 측정한 지하수면을 제1측정센서의 상기 수압측정부에서 측정한 수압과 상기 제2측정센서의 대기압을 이용하여 보정함으로써, 상기 지하수면으로부터 상기 제1측정센서까지의 제2거리를 연산하고,
    상기 제1거리와 상기 제2거리의 합으로 담수 렌즈 두께를 연산하는 것을 특징으로 하는 해안 지하수 모니터링 시스템.
  11. 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 및 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부를 포함하는 제1측정센서를 포함하고, 상기 제1측정센서는 측정한 상기 제1거리를 송신하는 제1송신부를 포함하는 것을 해안 지하수 모니터링 시스템에서 상기 제1측정센서로부터 상기 담염수 경계면 위치 추적장치까지의 상기 제1거리를 측정하는 제1거리 측정단계;
    상기 제1거리 측정단계 후, 측정한 상기 제1거리를 상기 제1송신부를 통해 모니터에 전송하는 전송단계;
    전송된 데이터를 이용하여 담수 렌즈 두께 또는 담염수 경계면 심도 변화를 모니터링하는 모니터링 단계를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 방법.
  12. 해안지역의 지하수를 측정하는 관측정에 삽입되어 담염수 경계면상에서 부력의 변화에 따라 이동하는 담염수 경계면 위치 추적장치; 상기 관측정에 삽입되고, 상기 담염수 경계면 위치 추적장치보다 상부에 위치하여 상기 담염수 경계면 위치 추적장치와의 제1거리를 측정하는 거리측정부 및 수압을 측정하는 수압측정부를 포함하는 제1측정센서; 대기압을 측정하는 대기압 측정부를 포함하는 제2측정센서; 지하수면을 측정하는 수면측정센서; 및 상기 제1측정센서와 상기 제2측정센서, 상기 수면측정센서에서 측정된 데이터를 저장하는 데이터베이스, 상기 데이터베이스에 저장된 상기 데이터를 연산하는 연산부, 상기 연산부에서 연산된 값이 기설정값보다 작은지 비교하는 비교부, 상기 비교부에서 연산된 값이 기설정값보다 작으면 알람을 제공하는 알람부를 포함한 모니터를 포함하는 해안 지하수 모니터링 시스템에서 상기 수면측정센서를 이용하여 지하수면을 측정하는 지하수면 측정단계;
    상기 제1측정센서로부터 상기 담염수 경계면 위치 추적장치까지의 상기 제1거리를 측정하고, 수압을 측정하는 제1거리 및 수압측정단계;
    상기 제2측정센서의 대기압 측정부에서 대기압을 측정하는 대기압 측정단계;
    상기 데이터 베이스에 측정된 상기 데이터를 저장하는 저장단계;
    저장된 상기 데이터 중 상기 지하수면으로부터의 상기 제1측정센서까지의 거리는 상기 대기압 및 상기 수압에 의해 보정하여 상기 제1거리와 합하여 담수렌즈 두께를 연산하는 연산단계를 포함하는 것을 특징으로 하는 해안 지하수 모니터링 방법.
PCT/KR2012/004176 2012-04-26 2012-05-25 해안 지하수 모니터링 시스템 WO2013162116A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014512765A JP2014519605A (ja) 2012-04-26 2012-05-25 海岸地下水モニタリングシステム
EP12875389.4A EP2851883B1 (en) 2012-04-26 2012-05-25 System for monitoring coastal underground water
US13/699,715 US9964425B2 (en) 2012-04-26 2012-05-25 System for monitoring coastal underground water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120043743A KR101255352B1 (ko) 2012-04-26 2012-04-26 해안 지하수 모니터링 시스템
KR10-2012-0043743 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013162116A1 true WO2013162116A1 (ko) 2013-10-31

Family

ID=48443281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004176 WO2013162116A1 (ko) 2012-04-26 2012-05-25 해안 지하수 모니터링 시스템

Country Status (4)

Country Link
EP (1) EP2851883B1 (ko)
JP (2) JP2014519605A (ko)
KR (1) KR101255352B1 (ko)
WO (1) WO2013162116A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459823A (zh) * 2014-12-17 2015-03-25 中冶集团武汉勘察研究院有限公司 一种综合物探测试海水侵入界面方法
WO2015194752A1 (ko) * 2014-06-20 2015-12-23 한국지질자원연구원 지하수 관측용 모니터링 프로브
CN117870826A (zh) * 2024-03-13 2024-04-12 山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队) 一种岩溶地下水水位波动异常预警设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319270B1 (ko) 2012-04-26 2013-10-17 한국지질자원연구원 지하수 염수면 위치 추적장치 및 그 설치기
KR101649726B1 (ko) * 2014-10-22 2016-08-22 한국해양과학기술원 부유식 수환경 측정장치 및 이를 이용한 실시간 수환경 모니터링 방법
KR102011500B1 (ko) 2016-11-15 2019-08-19 동아대학교 산학협력단 해수침투 저감을 위한 무동력 해수양수 시스템, 및 이 시스템에서의 관정의 최적화 설계를 위한 장치 및 방법
KR101870171B1 (ko) 2016-12-09 2018-06-22 한국지질자원연구원 대기압 보정이 필요 없는 지하수 관측시스템
RU179735U1 (ru) * 2018-02-02 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный университет морского и речного флота имени адмирала С.О. Макарова" Устройство для измерения уровня воды в водоемах
CN110196035A (zh) * 2018-02-27 2019-09-03 中国地质大学(北京) 海岸带地下淡水存在垂向水头差时咸淡水界面位置计算方法
IT201900012879A1 (it) 2019-07-25 2021-01-25 Dab Pumps Spa Dispositivo per la rilevazione del livello di un pozzo/serbatoio ed elettropompa ad immersione con tale dispositivo
CN110631654B (zh) * 2019-10-09 2021-11-19 刘福东 一种基于地下水的深度测量方法
KR102140759B1 (ko) 2019-11-08 2020-08-04 (주)동아엔지니어링 이원화 측정 가능한 지하수 오염방지 측정 장치
KR102140752B1 (ko) 2019-11-08 2020-08-04 (주)동아엔지니어링 지하수 오염방지 측정 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200362372Y1 (ko) * 2004-06-25 2004-09-23 농업기반공사 다중 심도 지하수 모니터링 장치
KR20100030340A (ko) * 2008-09-10 2010-03-18 정현주 지하수 내의 담수와 염수의 경계면 측정 장치 및 방법
KR101077125B1 (ko) * 2011-07-08 2011-10-26 주식회사 인포월드 지하수 모니터링 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091018A (ja) * 2004-08-27 2006-04-06 Newjec Inc 塩淡境界面形状把握調査法
KR20080081452A (ko) * 2007-03-05 2008-09-10 한국지질자원연구원 이중압력자료를 이용한 담-염수 경계면 변화 산정방법
JP5464548B2 (ja) * 2009-08-18 2014-04-09 国立大学法人九州大学 淡塩水境界面の測定方法
KR100977155B1 (ko) * 2009-12-22 2010-08-20 한국지질자원연구원 중성부력장치를 이용한 담염수 경계면 위치 추적장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200362372Y1 (ko) * 2004-06-25 2004-09-23 농업기반공사 다중 심도 지하수 모니터링 장치
KR20100030340A (ko) * 2008-09-10 2010-03-18 정현주 지하수 내의 담수와 염수의 경계면 측정 장치 및 방법
KR101077125B1 (ko) * 2011-07-08 2011-10-26 주식회사 인포월드 지하수 모니터링 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194752A1 (ko) * 2014-06-20 2015-12-23 한국지질자원연구원 지하수 관측용 모니터링 프로브
US10012076B2 (en) 2014-06-20 2018-07-03 Korea Institute Of Groscience And Mineral Resources Monitoring probe for detecting the position of a fresh water-salt water interface in an observation well
CN104459823A (zh) * 2014-12-17 2015-03-25 中冶集团武汉勘察研究院有限公司 一种综合物探测试海水侵入界面方法
CN117870826A (zh) * 2024-03-13 2024-04-12 山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队) 一种岩溶地下水水位波动异常预警设备
CN117870826B (zh) * 2024-03-13 2024-05-28 山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队) 一种岩溶地下水水位波动异常预警设备

Also Published As

Publication number Publication date
EP2851883A1 (en) 2015-03-25
JP2016020919A (ja) 2016-02-04
KR101255352B1 (ko) 2013-04-16
JP2014519605A (ja) 2014-08-14
EP2851883B1 (en) 2017-11-22
JP6059312B2 (ja) 2017-01-11
EP2851883A4 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2013162116A1 (ko) 해안 지하수 모니터링 시스템
AU2017294793B2 (en) Systems and methods for sewer monitoring
WO2015194752A1 (ko) 지하수 관측용 모니터링 프로브
WO2013162115A1 (ko) 지하수 염수면 위치 추적장치 및 그 설치기
US11400328B2 (en) Hydrant monitoring communications hub
RU2604102C2 (ru) Зонд со встроенным датчиком и связанный с ним способ
WO2019106379A3 (en) Monitor for underground infrastructure
ES2868125T3 (es) Sensor de tapón
US11952755B2 (en) Self-contained hydrant monitoring system
WO2013105706A1 (ko) 어망관리 시스템
ES2695428T3 (es) Conjunto de tapón de orificio de cabeza de pozo
WO2021172719A1 (ko) Iot 기반 라이다 센서 기술을 이용한 지하수 모니터링 시스템
US20230407610A1 (en) Dual sensor for hydrant
BR102013006915A2 (pt) "conjunto de cabeça de poço e método para monitorar condições"
CN213022107U (zh) 一种防水防腐蚀的气象气压传感装置
CN108955826A (zh) 一种集差压式和声波式为一体的液位监测装置
US11530939B2 (en) Monitoring flow parameters with natural expressions
JP3201668U (ja) 水位表示装置及び水位表示システム
US4504857A (en) Gyro-compass positioning apparatus
CN107543533A (zh) 一种海洋牧场水下视频监控与水质监测用水下电子舱
KR102104603B1 (ko) 청음센서용 프로텍터
CN208505426U (zh) 一种集差压式和声波式为一体的液位监测装置
WO2018070572A1 (ko) 실시간 모니터링 이동식 하수관로 유량계
CN207215107U (zh) 一种海洋牧场水下视频监控与水质监测用水下电子舱
KR20200027743A (ko) 부유식 복합센서모듈 장치 및 이를 이용한 맨홀 내부 수위 측정 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13699715

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014512765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875389

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012875389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE