WO2013161870A1 - 絶縁異常検出装置 - Google Patents

絶縁異常検出装置 Download PDF

Info

Publication number
WO2013161870A1
WO2013161870A1 PCT/JP2013/062044 JP2013062044W WO2013161870A1 WO 2013161870 A1 WO2013161870 A1 WO 2013161870A1 JP 2013062044 W JP2013062044 W JP 2013062044W WO 2013161870 A1 WO2013161870 A1 WO 2013161870A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
notch filter
insulation abnormality
resistor
waveform
Prior art date
Application number
PCT/JP2013/062044
Other languages
English (en)
French (fr)
Inventor
鈴木 恒雄
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013161870A1 publication Critical patent/WO2013161870A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Definitions

  • the present invention relates to an insulation abnormality detection device that detects an insulation abnormality of a high-voltage battery of a vehicle in a floating state.
  • Vehicles or transporting machines (hereinafter referred to as “vehicles”) equipped with a motor (electric motor) as a power source in addition to the engine, which are called so-called hybrid cars, plug-in hybrid cars, hybrid vehicles, and hybrid electric vehicles are put into practical use. It has become. Furthermore, an electric vehicle that does not include an engine and drives the vehicle only by a motor is being put into practical use.
  • a power source for driving these motors a lithium ion battery having a small size and a large capacity has been frequently used. And in such an application, a some battery (cell) is connected in series, for example, a battery stack is comprised, and also it may be supplied as an assembled battery connected combining this battery stack.
  • a high voltage necessary for driving the motor of the vehicle is obtained by the series connection of the batteries, and a necessary current capacity and a further high voltage are obtained by connecting the battery stacks in combination in series and parallel.
  • Such a battery (hereinafter referred to as a “high-voltage side battery”) generates a high voltage and cannot be grounded to the body, and is in a floating state. As a result, there is virtually an insulation resistance between the battery and the body ground. And if it is a normal state, this insulation resistance shows a sufficiently high value, and is in a safe insulation state. However, the insulation resistance value decreases or becomes zero due to material deterioration, scratches, breakage of the insulating material used to bring the battery into a floating state, and the influence of deposits on the insulating material. It may become abnormal. In such a state, there is a possibility that a current flows through the body. Therefore, a device for detecting an insulation abnormality is required.
  • a conventional capacitor insulation detection device In order to detect a pulse signal oscillation circuit and a pulse signal oscillation circuit in series with the coupling capacitor, a conventional capacitor insulation detection device has a coupling capacitor at the connection point with the negative electrode of the high-voltage battery.
  • a circuit comprising a detection resistor is known. With such a configuration, the high voltage side battery and the insulation abnormality detection circuit side are galvanically insulated, so if the insulation resistance of the high voltage side battery is normal, the pulse signal oscillated by the oscillation circuit passes through the detection resistance. It can be detected with almost the same voltage.
  • a very low frequency noise is caused by a change in the stray capacitance on the battery side, and the insulation abnormality may be erroneously determined due to the noise.
  • high frequency noise due to inverter operation and low frequency noise due to battery voltage fluctuation also cause erroneous determination of insulation abnormality.
  • An example of the aspect includes a series connection circuit portion of a coupling capacitor, a detection resistor, and an oscillator, one end of which is connected to the high-voltage side battery side of the vehicle and the other end of which is grounded, and a connection portion of the coupling capacitor and the detection resistor
  • This is an insulation abnormality detection device that detects the insulation abnormality of the high-voltage battery by comparing the waveform of the observed signal with the waveform of the oscillation signal that the oscillator oscillates.
  • a notch filter to be cut a subtraction circuit that performs subtraction processing between the observation signal and the output signal of the notch filter, and a determination circuit that compares the waveform of the output signal of the subtraction circuit with the waveform of the oscillation signal to determine an insulation abnormality With.
  • the present invention it is possible to prevent a decrease in accuracy due to the influence of noise when performing an insulation abnormality determination between a high-voltage battery and a body ground.
  • FIG. 1 is a circuit configuration diagram of the present embodiment.
  • the high-voltage side battery is, for example, a traveling battery mounted on a vehicle, and a load that is, for example, a traveling motor is connected to the positive electrode and the negative electrode. Since this negative pole generates a high voltage, it is brought into a floating state without being grounded to the body. As a result, a virtual insulation resistance exists between the high-voltage battery and the body ground.
  • the coupling capacitor 101 One end of the coupling capacitor 101 is connected to the negative electrode of the high voltage side battery. Subsequently, a series connection circuit in which the coupling capacitor 101, the detection resistor 102, and the oscillator 103 are connected in series is formed. The other end of the oscillator 103 is grounded. The oscillator 103 outputs an oscillation signal V1.
  • the output frequency of the oscillation signal V1 is, for example, several Hz (hertz) to several tens Hz.
  • the observation signal V2 is output from the connection portion between the coupling capacitor 101 and the detection resistor 102.
  • a low-pass filter (LPF) 107 may be connected to the connection portion. This will be described later.
  • the observation signal V2 is input to the notch filter 104 and the subtraction circuit 105.
  • the notch filter 104 receives the observation signal V2, cuts only a component near the frequency of the oscillation signal V1, and outputs an output signal Vm. This output signal Vm is input to the subtraction circuit 105.
  • the subtraction circuit 105 performs a subtraction process between the observation signal V2 and the output signal Vm of the notch filter 104.
  • the determination circuit 106 determines the insulation abnormality by comparing the waveform of the output signal Ve of the subtraction circuit 105 with the waveform of the oscillation signal V1 of the oscillator 103.
  • the notch filter 104 includes resistors 111, 112, 116, and 117, capacitors 108, 114, and 115, and operational amplifiers 110 and 113.
  • the observation signal V2 is input to one end of a capacitor 108 having a capacitance value C and one end of a resistor 111 having a resistance value R.
  • the other end of the capacitor 108 is connected to one end of a resistor 109 having a resistance value Rc and one end of a capacitor 115 having a capacitance value C.
  • the other end of the resistor 109 is connected to the negative input of the operational amplifier 110.
  • the output of the operational amplifier 110 is connected to the other end of the resistor 109 and one end of a capacitor 114 having a capacitance value Cc, and is fed back to the negative input of the operational amplifier 110 itself.
  • the other end of the capacitor 114 is connected to the other end of the resistor 111 and one end of the resistor 112 having a resistance value R.
  • the other end of the resistor 112 is connected to the other end of the capacitor 115 and the positive input of the operational amplifier 113.
  • the output of the operational amplifier 113 is connected to one end of a resistor 116 having a resistance value Ra and is fed back to the negative input of the operational amplifier 113 itself.
  • the output of the operational amplifier 113 becomes the output signal Vm of the notch filter 104.
  • the other end of the resistor 116 is connected to one end of a resistor 117 having a resistance value Rb and to the positive input of the operational amplifier 110.
  • the other end of the resistor 117 is grounded.
  • the subtraction circuit 105 includes resistors 118, 119, 121, and 122 and an operational amplifier 120.
  • the output signal Vm of the notch filter 104 is input to one end of a resistor 118 having a resistance value R1.
  • the observation signal V2 is input to one end of a resistor 119 having a resistance value R2.
  • the other end of the resistor 118 is connected to the negative input of the operational amplifier 120.
  • the other end of the resistor 119 is connected to the positive input of the operational amplifier and to one end of a resistor 121 having a resistance value R3.
  • the other end of the resistor 121 is grounded.
  • the output of the operational amplifier 120 is connected to one end of a resistor 122 having a resistance value Rf.
  • the other end of the resistor 122 is fed back to the negative input of the operational amplifier 120.
  • the output of the operational amplifier 120 becomes the output signal Ve of the subtraction circuit 105.
  • the notch filter 104 is a filter that sharply cuts only a component in the vicinity of the frequency of the oscillation signal V ⁇ b> 1 oscillated by the oscillator 103.
  • the center frequency fc [Hz] of the frequency component to be cut is determined from the resistance value R of the resistors 111 and 112 and the capacitance value C of the capacitors 108 and 115.
  • fc 1 / 2 ⁇ RC (1) It is obtained as
  • is the circumference ratio.
  • the resistance value Rc of the resistor 109 and the capacitance value Cc of the capacitor 114 are obtained from the resistance value R and the capacitance value C, respectively.
  • the resonance sharpness Q of the cut frequency portion is determined from the resistance value Ra of the resistor 116 and the resistance value Rb of the resistor 117.
  • Q (Ra + Rb) / 4Ra (3) It is obtained.
  • the resistance value R of the resistors 111 and 112 and the capacitor 108 so that the frequency fc of the equation (1) matches the frequency of the oscillation signal V1 of the oscillator 103.
  • the capacitance value C of 115 is determined.
  • the resistance value Rc of the resistor 109 and the capacitance value Cc of the capacitor 114 are determined from the equation (2).
  • the resistance value Ra of the resistor 116 and the resistance value Rb of the resistor 117 are determined based on the equation (3) so that the resonance sharpness Q corresponding to the determination accuracy in the determination circuit 106 can be obtained.
  • the frequency characteristic of the output signal Vm of the notch filter 104 sharply cuts only the component in the vicinity of the center frequency fc corresponding to the frequency of the oscillation signal V1 as shown in FIG. 2A, for example. It will have the characteristic.
  • the output signal Ve is equal to a signal obtained by inverting the output signal Vm of the notch filter 104 and adding it to the observation signal V2.
  • the frequency characteristic of the output signal Ve passes only the component near the center frequency fc corresponding to the frequency of the oscillation signal V1, and cuts all other frequency components. It will have such frequency characteristics. That is, for example, only frequency components of several Hz to several tens Hz are left.
  • the output signal Ve of the subtraction circuit 105 input to the determination circuit 106 becomes a signal component having only the frequency component of the oscillation signal V1 of the oscillator 103. That is, by the combination of the notch filter 104 and the subtracting circuit 105 of this embodiment, from the observation signal V2, high frequency noise due to inverter operation in the vehicle, low frequency noise due to voltage fluctuation of the high voltage side battery, DC component fluctuation due to stray capacitance, etc. Various noises such as are removed. As a result, it is possible to obtain the output signal Ve including only the component corresponding to the frequency of the oscillation signal V1 of the oscillator 103.
  • the determination circuit 106 compares the waveform of the output signal Ve with the waveform of the oscillation signal V1 from the oscillator 103, thereby making it possible to determine the insulation abnormality while suppressing the influence of noise. Therefore, the accuracy of the insulation abnormality determination between the high voltage battery and the body ground can be improved.
  • the observation signal V ⁇ b> 2 at the connection portion between the coupling capacitor 101 and the detection resistor 102 may be input to the notch filter 104 and the subtraction circuit 105 after being passed through the low-pass filter (LPF) 107.
  • LPF low-pass filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 高圧側電池のマイナス極には、カップリングコンデンサ101、検出抵抗102、発振器103の直列接続回路が接続される。カップリングコンデンサ101と検出抵抗102の接続部分から出力される観測信号V2は、ノッチフィルタ104と、減算回路105に入力される。ノッチフィルタ104は、観測信号V2を入力し発振器103が発振する発振信号V1の周波数の近傍成分のみをカットする。ノッチフィルタ104の出力信号Vmは、減算回路105に入力される。減算回路105は、観測信号V2とノッチフィルタ104の出力信号Vmとの間で減算処理を実行する。そして、判定回路106は、減算回路105の出力信号Veの波形を発振器103の発振信号V1の波形と比較して絶縁異常を判定する。

Description

絶縁異常検出装置
 本発明は、フローティング状態にある車両の高圧側電池の絶縁異常を検出する絶縁異常検出装置に関する。
 いわゆるハイブリッドカー、プラグインハイブリッドカー、ハイブリッドビークル、およびハイブリッドエレクトリックビークルなどと呼ばれる、エンジンに加えてモータ(電動機)を動力源として備えた車両または輸送機械(以下、「車両など」と称する)が実用化されている。さらには、エンジンを備えずモータのみで車両を駆動する電気自動車も実用化されつつある。それらのモータを駆動する電源として、小型、大容量の特徴を有するリチウムイオン電池などが多く使用されるようになってきている。そして、このような用途においては、複数の電池(セル)が例えば直列に接続されて電池スタックが構成され、さらにこの電池スタックを組み合わして接続される組電池として供給される場合がある。電池の直列接続により車両のモータを駆動するのに必要な高電圧が得られ、電池スタックをさらに直列や並列に組み合わして接続することにより必要な電流容量やさらなる高電圧が得られる。
 このような電池(以下「高圧側電池」と呼ぶ)は、高電圧が発生するため、ボディーに接地させることはできず、フローティング状態にされる。この結果、電池とボディー接地の間には、仮想的に絶縁抵抗が存在することになる。そして、正常な状態であれば、この絶縁抵抗は十分に高い値を示し、安全な絶縁状態にある。しかし、電池をフローティング状態にするために用いられる絶縁材料の材質劣化、傷、破損、および絶縁材料への付着物の影響などにより、絶縁抵抗の値が低下し、またはゼロになってしまって絶縁異常となる可能性がある。このような状態になると、ボディーに電流が流れる可能性があるため、絶縁異常を検出する装置が求められている。
 絶縁異常検出装置の従来技術としては、高圧側電池のマイナス極との接続点にカップリングコンデンサを配置し、そのカップリングコンデンサに直列に、パルス信号の発振回路と、そのパルス信号を検出するための検出抵抗からなる回路が知られている。このような構成により、高圧側電池と絶縁異常検出回路側が直流的に絶縁されるため、高圧側電池の絶縁抵抗が正常値であれば、発振回路で発振されたパルス信号が検出抵抗を介してほぼそのままの電圧で検出できる。一方、絶縁異常であれば、検出抵抗からカップリングコンデンサおよび高圧側電池を介してボディーに電流が流れるため、検出抵抗と絶縁性が低下した絶縁抵抗との分圧比で分圧した発振回路で発振されたパルス信号が検出される。これにより、絶縁異常を検出することができる。
 このような絶縁異常検出装置においては、電池側の浮遊容量の変化により非常に低周波のノイズが乗り、そのノイズにより絶縁異常の判定を誤ることがある。また、インバータ動作などによる高周波ノイズや電池電圧変動による低周波ノイズも、絶縁異常の誤判定を引き起こす。
 このような誤判定を防止するための従来技術として、検出抵抗からの観測信号をバンドパスフィルタに通し、そのフィルタ出力信号を使って判定を行う技術が知られている(例えば特許文献1に記載の技術)。
 しかし実際には、観測信号には通常想定している除去領域以外のノイズも混入する可能性があるため、従来のバンドパスフィルタでは対応しきれず、依然として誤判定を引き起こすという問題点を有していた。
特開2007-57490号公報
 本発明は、高電圧電池とボディー接地との間の絶縁異常判定を行なうときに、ノイズの影響による精度の低下を防止する絶縁異常検出装置を提供することを目的とする。
 態様の一例は、一端が車両の高圧側電池の側に接続され他端が接地される、カップリングコンデンサ、検出抵抗、および発振器の直列接続回路部分を備え、カップリングコンデンサと検出抵抗の接続部分の観測信号の波形を発振器が発振する発振信号の波形と比較することで高圧側電池の絶縁異常を検出する絶縁異常検出装置であって、観測信号を入力し発振信号の周波数の近傍成分のみをカットするノッチフィルタと、観測信号とノッチフィルタの出力信号との間で減算処理を実行する減算回路と、減算回路の出力信号の波形を発振信号の波形と比較して絶縁異常を判定する判定回路とを備える。
 本発明によれば、高電圧電池とボディー接地との間の絶縁異常判定を行なうときに、ノイズの影響による精度の低下を防止することができるという効果を奏する。
本実施形態の回路構成図である。 本実施形態の動作波形図である。
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
 図1は、本実施形態の回路構成図である。
 特には図示しないが、高圧側電池は、例えば車両に搭載される走行用電池であり、そのプラス極およびマイナス極に、例えば走行用モータである負荷が接続されている。このマイナス極は、高電圧を発生するので、ボディーに接地させることなくフローティング状態にされる。この結果、高圧側電池とボディー接地との間には、仮想的な絶縁抵抗が存在する。
 高圧側電池のマイナス極には、カップリングコンデンサ101の一端が接続される。これに続いて、カップリングコンデンサ101、検出抵抗102、発振器103が直列接続された直列接続回路を形成する。発振器103の他端は接地される。発振器103は、発振信号V1を出力する。発振信号V1の出力周波数は、例えば数Hz(ヘルツ)から数十Hzである。
 カップリングコンデンサ101と検出抵抗102の接続部分からは観測信号V2が出力される。なお、その接続部分にローパスフィルタ(LPF)107が接続されてもよい。これについては後述する。
 観測信号V2は、ノッチフィルタ104と、減算回路105に入力される。
 ノッチフィルタ104は、観測信号V2を入力し発振信号V1の周波数の近傍成分のみをカットし、出力信号Vmを出力する。この出力信号Vmは、減算回路105に入力される。
 減算回路105は、観測信号V2とノッチフィルタ104の出力信号Vmとの間で減算処理を実行する。
 判定回路106は、減算回路105の出力信号Veの波形を発振器103の発振信号V1の波形と比較して絶縁異常を判定する。
 ノッチフィルタ104は、抵抗111、112、116、117と、キャパシタ108、114、115と、オペアンプ110、113とを備える。観測信号V2は、容量値Cを有するキャパシタ108の一端と抵抗値Rを有する抵抗111の一端に入力される。キャパシタ108の他端は抵抗値Rcを有する抵抗109の一端と、容量値Cを有するキャパシタ115との一端に接続される。抵抗109の他端は、オペアンプ110の負側入力に接続される。オペアンプ110の出力は、抵抗109の他端と容量値Ccを有するキャパシタ114の一端に接続されるとともに、オペアンプ110自身の負側入力にフィードバックされる。キャパシタ114の他端は、抵抗111の他端と、抵抗値Rを有する抵抗112の一端とに接続される。抵抗112の他端はキャパシタ115の他端とオペアンプ113の正側入力に接続される。オペアンプ113の出力は抵抗値Raを有する抵抗116の一端に接続されるとともに、オペアンプ113自身の負側入力にフィードバックされる。このオペアンプ113の出力がノッチフィルタ104の出力信号Vmとなる。抵抗116の他端は抵抗値Rbを有する抵抗117の一端に接続されるとともに、オペアンプ110の正側入力に接続される。抵抗117の他端は接地される。
 減算回路105は、抵抗118、119、121、122と、オペアンプ120とを備える。ノッチフィルタ104の出力信号Vmは、抵抗値R1を有する抵抗118の一端に入力される。また、観測信号V2は、抵抗値R2を有する抵抗119の一端に入力される。抵抗118の他端はオペアンプ120の負側入力に接続される。抵抗119の他端はオペアンプの正側入力に接続されるとともに抵抗値R3を有する抵抗121の一端に接続される。抵抗121の他端は接地される。オペアンプ120の出力は、抵抗値Rfを有する抵抗122の一端に接続される。抵抗122の他端はオペアンプ120の負側入力にフィードバックされる。このオペアンプ120の出力が減算回路105の出力信号Veとなる。
 上述の構成を有する本実施形態の動作について、以下に説明する。
 ノッチフィルタ104は、発振器103が発振する発振信号V1の周波数の近傍成分のみを鋭くカットするフィルタである。図1に示されるノッチフィルタ104の回路構成により、カットされる周波数成分の中心周波数fc[Hz]は、抵抗111および112の抵抗値Rとキャパシタ108および115の容量値Cとから、
 
   fc=1/2πRC  ・・・(1)
 
として求まる。ただし、πは円周率である。
 また、抵抗109の抵抗値Rcとキャパシタ114の容量値Ccとは、上記抵抗値Rと容量値Cとから、
 
   Rc=R/2
   Cc=2C
              ・・・(2)
と決定される。
 一方、カット周波数部分の共振の鋭さQは、抵抗116の抵抗値Raと抵抗117の抵抗値Rbとから、
 
   Q=(Ra+Rb)/4Ra   ・・・(3)
 
と求まる。
 (1)、(2)、および(3)式の関係より、(1)式の周波数fcが発振器103の発振信号V1の周波数に一致するように、抵抗111および112の抵抗値Rとキャパシタ108および115の容量値Cが決定される。これらの決定された抵抗値Rと容量値Cとに基づいて、(2)式より、抵抗109の抵抗値Rcとキャパシタ114の容量値Ccとが決定される。さらに、判定回路106での判定精度に応じた共振の鋭さQが得られるように、(3)式に基づいて、抵抗116の抵抗値Raと抵抗117の抵抗値Rbとが決定される。
 以上の回路特性により、ノッチフィルタ104の出力信号Vmの周波数特性は、例えば図2(a)に示されるような、発振信号V1の周波数に対応する中心周波数fcの近傍成分のみを鋭くカットするような特性を有するものとなる。
 次に、減算回路105では、抵抗118、119,121、および122の抵抗値R1、R2、R3、およびRfが、
 
   R1=R2=R3=Rf(=例えば1kHz)   ・・・(4)
 
の関係にあるとき、減算回路105の出力信号Veは、
 
   Ve=-(Vm-V2)   ・・・(5)
 
として得られる。
 すなわち、出力信号Veは、ノッチフィルタ104の出力信号Vmを反転したものを観測信号V2に加算したものに等しくなる。この結果、出力信号Veの周波数特性は、例えば図2(b)に示されるように、発振信号V1の周波数に対応する中心周波数fcの近傍成分のみを通過させ、それ以外の周波数成分は全てカットするような周波数特性を有することになる。つまり、例えば数Hzから数十Hzの周波数成分のみが残される。
 以上の動作により、判定回路106に入力される減算回路105の出力信号Veは、発振器103の発振信号V1の周波数成分のみを有する信号成分となる。すなわち、本実施形態のノッチフィルタ104と減算回路105の組合せにより、観測信号V2から、車両内のインバータ動作などによる高周波ノイズ、高圧側電池の電圧変動による低周波ノイズ、浮遊容量などによる直流成分変動などの様々なノイズが除去される。この結果、発振器103の発振信号V1の周波数に対応する成分のみを含む出力信号Veを得ることが可能となる。従って、判定回路106がこの出力信号Veの波形を発振器103からの発振信号V1の波形と比較することにより、ノイズの影響を抑制して絶縁異常判定を行うことが可能となる。よって、高電圧電池とボディー接地との間の絶縁異常判定の精度を向上させることができる。
 図1の構成において、カップリングコンデンサ101と検出抵抗102の接続部分の観測信号V2は、ローパスフィルタ(LPF)107に通されてからノッチフィルタ104および減算回路105に入力されてもよい。
 このLPF107により、例えば数百Hz以上の周波数成分を有するインバータノイズをカットすることが可能となり、さらに絶縁異常判定の精度を向上させることが可能となる。
 

Claims (2)

  1.  一端が車両の高圧側電池の側に接続され他端が接地される、カップリングコンデンサ、検出抵抗、および発振器の直列接続回路部分を備え、前記カップリングコンデンサと前記検出抵抗の接続部分の観測信号の波形を前記発振器が発振する発振信号の波形と比較することで前記高圧側電池の絶縁異常を検出する絶縁異常検出装置であって、
     前記観測信号を入力し前記発振信号の周波数の近傍成分のみをカットするノッチフィルタと、
     前記観測信号と前記ノッチフィルタの出力信号との間で減算処理を実行する減算回路と、
     前記減算回路の出力信号の波形を前記発振信号の波形と比較して絶縁異常を判定する判定回路と、
     を備えることを特徴とする絶縁異常検出装置。
  2.  前記観測信号を入力し該観測信号の所定の低周波成分のみを通過させ、出力信号を前記ノッチフィルタに入力される観測信号とするローパスフィルタをさらに備えることを特徴とする請求項1に記載の絶縁異常検出装置。
PCT/JP2013/062044 2012-04-25 2013-04-24 絶縁異常検出装置 WO2013161870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012099669A JP2013228247A (ja) 2012-04-25 2012-04-25 絶縁異常検出装置
JP2012-099669 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161870A1 true WO2013161870A1 (ja) 2013-10-31

Family

ID=49483178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062044 WO2013161870A1 (ja) 2012-04-25 2013-04-24 絶縁異常検出装置

Country Status (2)

Country Link
JP (1) JP2013228247A (ja)
WO (1) WO2013161870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477320A1 (en) * 2017-10-23 2019-05-01 Contemporary Amperex Technology Co., Limited Apparatus for processing signals of a high-voltage loop, detector, battery device, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221308B1 (ko) * 2019-11-19 2021-03-02 주식회사 현대케피코 전기차 배터리 또는 연료전지차 스택의 절연저항 측정방법 및 회로
CN113376509B (zh) * 2021-06-09 2022-10-18 深圳麦歌恩科技有限公司 芯片自检电路、检测电路、芯片及自检方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245981A (ja) * 1994-03-01 1995-09-19 Fuji Electric Co Ltd 電動機の磁極位置検出装置
JP2003134529A (ja) * 2001-10-26 2003-05-09 Sony Corp ビデオデエンコーダおよびそれを用いた画像処理システム
JP2003219551A (ja) * 2002-01-21 2003-07-31 Toyota Motor Corp 漏電検出装置
WO2007026603A1 (ja) * 2005-08-29 2007-03-08 Toyota Jidosha Kabushiki Kaisha 絶縁抵抗低下検出器および絶縁抵抗低下検出器の自己異常診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245981A (ja) * 1994-03-01 1995-09-19 Fuji Electric Co Ltd 電動機の磁極位置検出装置
JP2003134529A (ja) * 2001-10-26 2003-05-09 Sony Corp ビデオデエンコーダおよびそれを用いた画像処理システム
JP2003219551A (ja) * 2002-01-21 2003-07-31 Toyota Motor Corp 漏電検出装置
WO2007026603A1 (ja) * 2005-08-29 2007-03-08 Toyota Jidosha Kabushiki Kaisha 絶縁抵抗低下検出器および絶縁抵抗低下検出器の自己異常診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477320A1 (en) * 2017-10-23 2019-05-01 Contemporary Amperex Technology Co., Limited Apparatus for processing signals of a high-voltage loop, detector, battery device, and vehicle
US10797674B2 (en) 2017-10-23 2020-10-06 Contemporary Amperex Technology Co., Limited Signal acquisition device for high-voltage loop, detector, battery device, and vehicle

Also Published As

Publication number Publication date
JP2013228247A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
JP3957598B2 (ja) 絶縁抵抗検出方法および装置
JP5972972B2 (ja) 直流電力供給装置
US20140049860A1 (en) Earth fault detection circuit and power source device
US20140008970A1 (en) Ground fault detecting device for an ungrounded circuit
JP2009042080A (ja) 電圧検出装置
JP3781289B2 (ja) 電気自動車の地絡検出回路
JP2009085830A (ja) 産業車両における絶縁抵抗低下検出装置
US9921259B2 (en) Ground fault detecting device
JP7431212B2 (ja) 漏電検出装置、車両用電源システム
WO2013161870A1 (ja) 絶縁異常検出装置
JP6037951B2 (ja) フィルタ回路
JP5382813B2 (ja) 漏電検出装置
JP2014155329A (ja) 絶縁抵抗低下検出装置およびそれを備える車両ならびに絶縁抵抗低下検出方法
US20210116486A1 (en) Method and device for obtaining internal side, external side insulation resistances of relay, and battery management system
JP2016006407A (ja) 出力電流及び地絡抵抗の検出装置
JP6438729B2 (ja) 絶縁性能診断装置および疑似キャパシタの容量値の設定方法
JP5761044B2 (ja) 絶縁異常検知装置
WO2017159053A1 (ja) 異常検出装置
JP2018009875A (ja) 地絡検知装置
JP2004245600A (ja) 絶縁抵抗検出装置
JP2018021871A (ja) 絶縁検出装置及び検出システム並びに絶縁検出方法
JP6311859B2 (ja) 電動車両の異常検出装置
JP2016178735A (ja) 鉄道車両用駆動制御装置
JP6725349B2 (ja) 地絡検知装置
JP2007089277A (ja) 電気自動車のリーク検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781067

Country of ref document: EP

Kind code of ref document: A1