WO2013161656A1 - Power supply apparatus and vehicle provided with power supply apparatus - Google Patents

Power supply apparatus and vehicle provided with power supply apparatus Download PDF

Info

Publication number
WO2013161656A1
WO2013161656A1 PCT/JP2013/061458 JP2013061458W WO2013161656A1 WO 2013161656 A1 WO2013161656 A1 WO 2013161656A1 JP 2013061458 W JP2013061458 W JP 2013061458W WO 2013161656 A1 WO2013161656 A1 WO 2013161656A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
cell
voltage
battery
power supply
Prior art date
Application number
PCT/JP2013/061458
Other languages
French (fr)
Japanese (ja)
Inventor
公彦 古川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013161656A1 publication Critical patent/WO2013161656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power supply device in which a plurality of battery cells are connected in series to increase the output voltage, and in particular, a power supply device including an equalization circuit that eliminates an unbalance of each battery cell and a vehicle including the power supply device About.
  • a power supply device in which a plurality of battery cells are connected in series to increase the output voltage.
  • this power supply device since all the battery cells are charged and discharged with the same current, if the battery cells have exactly the same electrical characteristics, no voltage difference occurs between the charged and discharged battery cells.
  • the electrical characteristics of all the battery cells are not completely the same, and due to the difference in electrical characteristics, the charge amount of each battery cell is unbalanced as charging and discharging are repeated. The unbalance between the battery cells is narrowed from the capacity originally having the battery system.
  • the specific battery cell is overcharged or overdischarged, which is a harmful effect of promoting the deterioration of the specific battery cell.
  • the power supply device detects the voltage of each battery cell, discharges the battery cell having a high voltage, and eliminates the battery cell imbalance.
  • the power supply device described in Patent Document 1 connects the positive and negative electrodes of each battery cell to an equalization circuit via a lead line.
  • the equalization circuit detects the voltage of each battery cell via each lead line, and charges and discharges based on the voltage difference of each battery cell, thereby eliminating the battery cell imbalance.
  • the positive and negative electrodes of all the battery cells are connected to the equalization circuit via lead lines. And the voltage of all the battery cells is detected, the lowest voltage of the battery cell is detected from the detected voltage, and the battery cells are equalized by charging the battery cells with a low charge amount from the battery cells with a high charge amount. .
  • the equalization circuit detects the voltage of all the battery cells, determines the lowest voltage from the detected voltage, and controls the equalization circuit so that the charge amounts of all the battery cells are substantially equal.
  • the circuit configuration of the circuit is complicated. In particular, there is a drawback that the equalization circuit becomes more complicated as the number of battery cells increases. In addition, since the positive and negative electrodes of all the battery cells are connected to the equalization circuit with lead lines, there is a problem that the number of lead lines is large and the wiring of the lead lines is complicated, which complicates the configuration of the assembled battery. .
  • the present invention has been developed for the purpose of solving the above problems.
  • the objective of this invention is providing the vehicle provided with the power supply device which can equalize each battery cell, and this power supply device, simplifying the circuit structure of an equalization circuit.
  • Another object of the present invention is to provide a power supply device capable of equalizing battery cells while simplifying wiring of a lead line, and a vehicle including the power supply device.
  • the power supply device of the present invention includes a series battery group 10 formed by connecting a plurality of battery cells 1 in series, and an equalization circuit 3 that equalizes the plurality of battery cells 1 constituting the series battery group 10. .
  • the series battery group 10 has a plurality of cell blocks 2 and 20 formed by connecting a plurality of battery cells 1 connected in series.
  • the equalization circuit 3 equalizes the main equalization circuit 4 that equalizes the plurality of cell blocks 2 and 20 constituting the series battery group 10 and the plurality of battery cells 1 that constitute the cell blocks 2 and 20.
  • an adjacent equalization circuit 5 The main equalization circuit 4 and the adjacent equalization circuit 5 have different circuit configurations that are equalized independently.
  • the power supply device described above has a feature that all battery cells can be equalized while simplifying the circuit configuration of an equalization circuit that equalizes a series battery group composed of a plurality of cell blocks. It consists of battery cells connected in series to form a cell block, a plurality of cell blocks connected in series to form a series battery group, and a plurality of battery cells constituting each cell block are separated by an adjacent equalization circuit. This is because the plurality of cell blocks constituting the series battery group are equalized independently by the main equalization circuit.
  • the power supply device described above also realizes the feature that all the battery cells can be equalized while simplifying the wiring of the lead lines by reducing the number of lead lines connected to the main equalization circuit. That is, the above power supply device does not connect the positive and negative electrodes of each battery cell to the main equalization circuit, but both ends of the cell block connecting the battery cells in series to the main equalization circuit with lead lines It is because it connects.
  • the power supply device of the present invention comprises battery blocks 9 and 29 with an adjacent equalization circuit 5 that equalizes a plurality of battery cells 1 comprising the cell blocks 2 and 20 and the cell blocks 2 and 20,
  • the main equalization circuit 4 can equalize the plurality of battery blocks 9 and 29. Since the above power supply apparatus equalizes the plurality of battery cells constituting the battery block by the adjacent equalization circuit, the main equalization circuit may equalize each battery block as one battery cell.
  • the circuit is characterized in that fine voltage detection and control for equalization based on the detected voltage can be simplified.
  • the power supply device of the present invention connects the main equalization circuit 4 and the adjacent equalization circuit 5 to the battery cell 1 via the lead line 6 and leads for connecting the adjacent equalization circuit 5 to the cell blocks 2 and 20.
  • the line 6B can be made shorter than the lead line 6A that connects the main equalization circuit 4 to the battery cell 1.
  • the above power supply device can simplify the wiring by shortening the lead line connecting the adjacent equalization circuit to the battery cell, and further reduces the failure such as the disconnection of the lead line connected to the adjacent equalization circuit. There is a feature that can improve the reliability of equalization of battery cells.
  • the adjacent equalization circuit can be disposed close to the battery cell. In that case, the battery cell and the adjacent equalization circuit can be handled together.
  • the main equalization circuit 4 includes a digital circuit that performs digital processing to equalize the plurality of cell blocks 2 and 20, and the adjacent equalization circuit 5 performs analog processing to perform a plurality of batteries.
  • An analog circuit for equalizing the cells 1 can be provided.
  • the above power supply apparatus uses the adjacent equalization circuit as an analog circuit, equalizes a plurality of battery cells constituting the cell block by the adjacent equalization circuit, and further digitally processes the plurality of cell blocks for equalization. There is a feature that can be equalized in the circuit.
  • the processing load can be reduced by reducing the number of management points. Therefore, a device that is less expensive than a device that individually manages all battery cells. Can be configured.
  • the adjacent equalization circuit since the adjacent equalization circuit only needs to perform equalization mainly, the circuit configuration can be simplified and the size can be reduced.
  • the main equalization circuit 4 discharges and equalizes the cell blocks 2 and 20, and the control circuit 12 includes a microcomputer 16 that controls the discharge state of the discharge circuit 11.
  • the control circuit 12 includes a block voltage detection circuit 13 for inputting the voltages of the cell blocks 2 and 20, and the control circuit 12 digitally converts the voltages of the cell blocks 2 and 20 detected by the block voltage detection circuit 13.
  • the plurality of cell blocks 2 and 20 can be equalized by processing and controlling the discharge circuit 11.
  • the above power supply apparatus detects the voltage of each cell block with a block voltage detection circuit, digitally processes the detection voltage with a microcomputer and controls the discharge circuit to equalize the cell blocks.
  • each cell block can be equalized in a preferable state while an allowable voltage deviation of the cell block to be equalized, a discharge current of the cell block and the like are adjusted to optimum values by a microcomputer.
  • a plurality of cell blocks can be equalized, even if a plurality of battery cells constituting each cell block are equalized by another means, equalization of the entire battery cells can be achieved.
  • the cell block 2 is composed of two battery cells 1, and the adjacent equalization circuit 5 includes a discharge resistor 24 connected to each battery cell 1 and a discharge circuit 21 including a discharge switch 25. And voltage comparators 23 and 33 for detecting the voltage difference between the two battery cells 1 and controlling the discharge circuit 21. The voltage comparators 23 and 33 detect the voltage difference between the battery cells 1.
  • the discharge switch 25 connected to the battery cell 1 having a higher voltage is controlled to be in an on state, and the discharge switch 25 connected to the battery cell 1 having a lower voltage is controlled to be in an off state. By discharging at 24, the two battery cells 1 can be equalized.
  • the power supply apparatus described above can stably equalize the two battery cells by switching the discharge switch on and off by the voltage difference between the battery cells, while making the adjacent equalization circuit a simple circuit configuration.
  • Such a configuration can be easily configured by, for example, hardware using an IC or an electronic element. For this reason, even if it arranges near a battery cell, it does not get in the way.
  • the cell block 20 is composed of a plurality of battery cells 1, and the adjacent equalization circuit 5 includes a discharge resistor 24 connected to each battery cell 1 and a discharge circuit 21 including a discharge switch 25.
  • the minimum voltage detection circuit 43 that detects the minimum voltage of each battery cell 1 and the minimum voltage detected by the minimum voltage detection circuit 43 are compared with the voltage of each battery cell 1, and the voltage is higher than the minimum voltage.
  • a discharge cell determination circuit 44 for controlling the discharge switch 25 of the discharge circuit 21 connected to the battery cell 1 to be turned on, and setting the discharge circuit 21 of the battery cell 1 whose cell voltage is higher than the minimum voltage to a discharge state, A plurality of battery cells 1 constituting the cell block 20 can be equalized.
  • the above power supply apparatus detects the minimum voltage of a plurality of battery cells constituting a cell block, and discharges the plurality of battery cells by discharging with a discharge circuit connected to a battery cell having a voltage higher than the minimum voltage.
  • a vehicle of the present invention is a vehicle including any of the power supply devices described above, and includes a power supply device 100, a traveling motor 93 that is supplied with power from the power supply device 100, the power supply device 100, and the motor.
  • the vehicle body 90 which mounts 93, and the wheel 97 which drives with the motor 93 and runs the vehicle body 90 are provided.
  • the above vehicle has a feature that the equalization circuit can be simplified and the wiring can be simplified while equalizing the battery cells constituting the series battery group of the power supply device.
  • the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention and a vehicle including the power supply device
  • the present invention is a vehicle including the power supply device and the power supply device.
  • the member shown by the claim is not what specifies the member of embodiment.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 shows a configuration of a power supply apparatus 100 according to an embodiment of the present invention.
  • a power supply device 100 shown in this block diagram includes a series battery group 10 in which a plurality of battery cells 1 are connected in series, and an equalization circuit 3 that equalizes the plurality of battery cells 1 constituting the series battery group 10. It has.
  • the series battery group 10 has a plurality of cell blocks 2 connected in series. Each cell block 2 has a plurality of battery cells 1 connected in series.
  • the battery cell 1 is a nonaqueous electrolyte secondary battery composed of a lithium ion battery or a lithium polymer battery. However, all rechargeable batteries such as nickel metal hydride batteries and nickel cadmium batteries can be used as the battery cells.
  • the battery cell 1 is constituted by one secondary battery.
  • a cell block in which a battery cell is a nickel metal hydride battery or a nickel cadmium battery has a plurality of secondary batteries connected in series to form a battery cell.
  • the equalization circuit 3 includes a main equalization circuit 4 and an adjacent equalization circuit 5.
  • the main equalization circuit 4 equalizes the plurality of cell blocks 2 constituting the series battery group 10 to eliminate the unbalance of the cell blocks 2.
  • the adjacent equalization circuit 5 equalizes the plurality of battery cells 1 constituting the cell block 2 and eliminates the unbalance of the battery cells 1.
  • the main equalization circuit 4 and the adjacent equalization circuit 5 have different circuit configurations that are equalized independently. That is, the main equalization circuit 4 equalizes the plurality of cell blocks 2 independently, and the adjacent equalization circuit 5 has a circuit configuration that equalizes the plurality of battery cells 1 independently.
  • the equalization circuit 3 equalizes the plurality of battery cells 1 constituting each cell block 2 with the adjacent equalization circuit 5, the adjacent equalization circuit 5 is independent of the battery cells 1 of each cell block 2. As a simple circuit configuration to equalize, a plurality of battery cells 1 can be equalized. Further, since the equalization circuit 3 equalizes the plurality of cell blocks 2 constituting the series battery group 10 with the main equalization circuit 4, the main equalization circuit 4 is managed independently while being managed in units of cell blocks 2. As a simple circuit configuration for equalizing, a plurality of cell blocks 2 can be equalized. Therefore, the equalization circuit 3 can equalize all the battery cells 1 constituting the series battery group 10 while simplifying the entire circuit configuration.
  • the main equalization circuit 4 and the adjacent equalization circuit 5 are connected to the battery cell 1 via the lead line 6.
  • the lead line 6 has one end connected to the positive and negative electrodes of the battery cell 1 and the other end connected to the equalization circuit 3.
  • the main equalization circuit 4 is connected to the positive and negative terminals of the cell block 2 via the lead line 6A.
  • the adjacent equalization circuit 5 is connected to the positive and negative terminals of each battery cell 1 via the lead line 6B.
  • the main equalization circuit 4 and the adjacent equalization circuit 5 having different circuit configurations are realized by a digital circuit that digitally processes the main equalization circuit 4 to equalize the plurality of cell blocks 2, and the adjacent equalization circuit 5.
  • a digital circuit that digitally processes the main equalization circuit 4 to equalize the plurality of cell blocks 2, and the adjacent equalization circuit 5.
  • the main equalization circuit 4 that performs digital processing to equalize the plurality of cell blocks 2 includes a microcomputer, and performs digital processing by the microcomputer to equalize the plurality of cell blocks 2.
  • the adjacent equalization circuit may be a digital circuit that performs digital processing to equalize a plurality of battery cells.
  • the adjacent equalization circuit 5 is arranged closer to the battery cell 1 than the main equalization circuit 4.
  • the lead line 6B connecting the adjacent equalization circuit 5 to the cell block 2 is shorter than the lead line 6A connecting the main equalization circuit 4 to the battery cell 1, or the adjacent equalization circuit 5 is connected to the electrode of the battery cell 1. Connected directly to the terminal.
  • the wiring of the lead line 6B can be simplified, and the lead line 6B connected to the adjacent equalization circuit 5 is disconnected.
  • the reliability of equalization of the battery cells 1 can be increased.
  • the main equalization circuit 4 includes a discharge circuit 11, a control circuit 12, and a block voltage detection circuit 13.
  • the discharge circuit 11 discharges and equalizes each cell block 2.
  • the control circuit 12 includes a microcomputer 16 that controls the discharge state of the discharge circuit 11.
  • the block voltage detection circuit 13 inputs the voltage of each cell block 2 to the control circuit 12.
  • the discharge circuit 11 and the burr voltage detection circuit 13 are connected to the positive and negative terminals of each cell block 2 via the lead line 6A.
  • the discharge circuit 11 is a series circuit of a discharge resistor 14 and a discharge switch 15.
  • the discharge switch 15 is switched on and off by the control circuit 12.
  • the discharge circuit 11 is controlled so that the cell block 2 is discharged when the discharge switch 15 is on, and the cell block 2 is not discharged when the discharge switch 15 is off.
  • the control circuit 12 controls the discharge switch 15 so as to equalize the voltage of each cell block 2 detected by the block voltage detection circuit 13. That is, the control circuit 12 detects the lowest voltage of the cell block 2 and controls the discharge circuit 11 so that the voltage of each cell block 2 becomes equal to the lowest voltage.
  • the control circuit 12 equalizes the voltage of the cell block 2 by turning on the discharge switch 15 of the discharge circuit 11 connected to the cell block 2 whose voltage is higher than the lowest voltage.
  • the control circuit 12 can equalize the voltage of each cell block 2 within the deviation voltage without completely equalizing the voltages of all the cell blocks 2.
  • the deviation voltage is set to an optimum value depending on the type and number of battery cells 1 constituting the cell block 2, and is set to, for example, 5 mV to 50 mV.
  • the control circuit 12 for providing and equalizing the deviation voltage switches on the discharge switch 15 of the discharge circuit 11 connected to the cell block 2 higher than the voltage obtained by adding the deviation voltage to the minimum voltage, and thereby turns on the plurality of cell blocks.
  • the voltage of 2 is equalized.
  • the control circuit 12 lengthens the timing for switching the discharge switch 15 on and off to 0.5 to 5 seconds to equalize the cell blocks 2 while preventing the chattering state of the discharge switch 15.
  • the block voltage detection circuit 13 detects the voltage of each cell block 2 at a predetermined sampling period, converts the detected voltage into a digital signal by an A / D converter (not shown), and outputs it to the microcomputer 16 of the control circuit 12. To do.
  • the microcomputer 16 of the control circuit 12 digitally processes the voltage of each cell block 2 input from the block voltage detection circuit 13 to detect the lowest voltage, and connects to the cell block 2 having a voltage higher than the lowest voltage + the deviation voltage.
  • the discharge switch 15 of the discharge circuit 11 is turned on to equalize the plurality of cell blocks 2.
  • the above main equalization circuit 4 detects the voltage of each cell block 2 with the block voltage detection circuit 13 and digitally processes the detection voltage with the microcomputer 16 to detect the minimum voltage, and the voltage is lower than the minimum voltage + deviation voltage.
  • the discharge switch 15 of the discharge circuit 11 connected to the high cell block 2 is turned on to equalize the plurality of cell blocks 2. For this reason, while adjusting the conditions for equalization, for example, the allowable voltage deviation of the cell block 2 to be equalized, the discharge current of the cell block 2, etc., to the optimum values by the microcomputer 16, each cell block 2 is kept in a preferable state. Can be equalized.
  • a battery block 9 is configured by a cell block 2 and an adjacent equalization circuit 5 that equalizes a plurality of battery cells 1 constituting the cell block 2.
  • This power supply apparatus has a structure in which a plurality of battery blocks 9 are equalized by a main equalization circuit 4.
  • the main equalization circuit 4 equalizes each battery block 9 as if it were one battery cell. can do. Therefore, the main equalization circuit 4 can easily perform fine voltage detection and control for equalization based on the detected voltage.
  • the adjacent equalization circuit 5 equalizes the plurality of battery cells 1 constituting the cell block 2.
  • the cell block 2 is composed of two battery cells 1.
  • the cell block can be composed of three or more battery cells.
  • 2 and 3 show an adjacent equalization circuit 5 that equalizes the two battery cells 1 constituting the cell block 2.
  • Adjacent equalization circuits 5A and 5B in FIGS. 2 and 3 are analog circuits, and equalize the battery cells 1 in real time.
  • the adjacent equalization circuits 5A and 5B in FIGS. 2 and 3 include two sets of discharge circuits 21 and voltage comparators 23 and 33.
  • the discharge circuit 21 is connected to each battery cell 1.
  • the voltage comparators 23 and 33 detect the voltage difference between the two battery cells 1 and control each discharge circuit 21.
  • the discharge circuit 21 includes a series circuit of a discharge resistor 24 and a discharge switch 25.
  • the differential amplifier 26 is provided with a differential amplifier 26.
  • the differential amplifier 26 has a connection point 28 connecting the two battery cells 1 as one input terminal and a midpoint of the voltage dividing resistor 27 connected to the positive and negative terminals of the cell block 2 as the other input terminal. Connected to.
  • the voltage dividing resistor 27 is a resistor having the same electric resistance, and the voltage at the midpoint is an intermediate potential between the voltages at both ends of the cell block 2.
  • the differential amplifier 26 when the voltage of the battery cell 1 on the plus side in FIG. 2 is high, the differential amplifier 26 outputs a plus voltage.
  • a base current flows through the transistor 25a of the discharge switch 25 connected to the upper side in FIG. 2 to be turned on, and a base current is supplied to the transistor 25b of the lower discharge switch 25. It turns off without flowing. In this state, the battery cell 1 on the upper side, that is, the positive side is discharged, and the voltage decreases.
  • the output of the differential amplifier 26 becomes 0 V, and the transistors 25a and 25b that are the upper and lower discharge switches 25 are both turned off. Become. That is, when the voltage of the battery cell 1 is equalized, the discharge switch 25 is turned off.
  • the differential amplifier 26 when the voltage of the negative battery cell 1 in FIG. 2 is high, the differential amplifier 26 outputs a negative voltage.
  • a base current flows through the transistor 25b of the discharge switch 25 connected to the lower side in FIG. 2, and the base current flows to the transistor 25a of the upper discharge switch 25. It turns off without flowing.
  • the battery cell 1 on the lower side that is, the negative side is discharged, and the voltage decreases.
  • the output of the differential amplifier 26 becomes 0 V, and the transistors 25a and 25b, which are the upper and lower discharge switches 25, are turned off. . That is, when the voltage of the battery cell 1 is equalized, the discharge switch 25 is turned off.
  • the adjacent equalization circuit 5B in FIG. 3 equalizes the two battery cells 1 by providing a predetermined deviation voltage.
  • the deviation voltage is, for example, 5 mV to 20 mV.
  • the voltage comparator 33 of the adjacent equalization circuit 5B includes a pair of differential amplifiers 36.
  • the pair of differential amplifiers 36 have a negative input terminal connected to a connection point 28 connecting the two battery cells 1 and a positive input terminal connected to the middle of the voltage dividing resistor 37. It is connected to both ends of an intermediate resistor 38 that generates a voltage.
  • the positive input terminals of the differential amplifier 36 are connected to both ends of the intermediate resistor 38 so as to cross each other.
  • the voltage comparator 33 is connected to the positive differential amplifier 36A and the negative differential amplifier 36B. Both output a positive voltage.
  • the positive side differential amplifier 36A outputs a positive voltage
  • a base current flows through the transistor 25a of the discharge switch 25 connected to the upper side in FIG. 3, and the positive side discharge switch 25 is turned on.
  • the differential amplifier 36B outputs a positive voltage
  • the base current does not flow through the transistor 25b of the lower discharge switch 25, and the negative discharge switch 25 is turned off.
  • the positive side differential amplifier 36A outputs a negative voltage and is connected to the upper side.
  • the 25 transistors 25a are turned off. That is, when the voltage of the battery cell 1 is equalized below the deviation voltage, both the discharge switches 25 are turned off.
  • the voltage comparator 33 when the voltage of the negative battery cell 1 is higher than the voltage of the positive battery cell 1, the voltage comparator 33 is connected to the positive differential amplifier 36A and the negative differential. Both amplifiers 36B output a negative voltage.
  • the minus side differential amplifier 36B When the minus side differential amplifier 36B outputs a minus voltage, a base current flows through the transistor 25b of the discharge switch 25 connected to the lower side in FIG. 3, and the minus side discharge switch 25 is turned on. Even if the side differential amplifier 36A outputs a negative voltage, the base current does not flow through the transistor 25a of the upper discharge switch 25, and the positive side discharge switch 25 is turned off.
  • the negative side differential amplifier 36B outputs a positive voltage and is connected to the lower side.
  • the transistor 25b of the discharge switch 25 is turned off. That is, when the voltage of the battery cell 1 is equalized below the deviation voltage, both the discharge switches 25 are turned off.
  • the adjacent equalization circuits 5A and 5B can be made compact with a simple circuit configuration, and can stably equalize the two battery cells 1 by switching the discharge switch 25 on and off by the voltage difference of the battery cells 1.
  • the voltage comparators 23 and 33 can detect the voltage difference between the two battery cells 1 and control each discharge circuit 21 to equalize the battery cells 1 in real time.
  • the adjacent equalization circuits 5A and 5B that can have a simple circuit configuration can be arranged in a space-saving manner, and therefore can be arranged close to the battery cell 1.
  • the adjacent equalization circuit 5 close to the cell block 2 the cell block 2 and the adjacent equalization circuit 5 constitute a battery block 9, and the cell block 2 and the adjacent equalization circuit 5 Can be handled collectively in units of 9 battery blocks.
  • Adjacent equalization circuits 5A and 5B shown in FIGS. 2 and 3 equalize the voltages of the two battery cells 1. As shown in FIG. 4, these adjacent equalization circuits 5 ⁇ / b> A and 5 ⁇ / b> B can be connected in multiple stages to equalize the voltages of the four battery cells 1.
  • the power supply apparatus of FIG. 4 equalizes two adjacent battery cells 1 with a first adjacent equalization circuit 5X, and connects the two battery cells 1 equalized with the first adjacent equalization circuit 5X in series.
  • the cell block 20 is equalized by the second adjacent equalization circuit 5Y.
  • the adjacent equalization circuits 5A and 5B shown in FIGS. 2 and 3 can be used for the first adjacent equalization circuit 5X and the second adjacent equalization circuit 5Y.
  • Adjacent equalization circuits 5A and 5B for equalizing two battery cells 1 can be connected in multiple stages to equalize 2n battery cells 1 as shown in FIG. Also in this power supply device, the battery block 29 is configured by the cell block 20 and the adjacent equalization circuit 5 including the first adjacent equalization circuit 5X and the second adjacent equalization circuit 5Y.
  • the main equalization circuit 4 performs equalization.
  • FIG. 5 shows an adjacent equalization circuit 5 ⁇ / b> C that configures the cell block 20 by a plurality of battery cells 1 and equalizes the plurality of battery cells 1 constituting the cell block 20.
  • FIG. 5 shows an adjacent equalization circuit 5 ⁇ / b> C composed of an analog circuit that equalizes the four battery cells 1.
  • the adjacent equalization circuit 5C includes a discharge circuit 21 connected to each battery cell 1, and a control circuit 41 that switches a transistor that is a discharge switch 25 of the discharge circuit 21 on and off.
  • the control circuit 41 includes a cell voltage extraction circuit 42, a minimum voltage detection circuit 43, a discharge cell determination circuit 44, and a level shift circuit 45.
  • the cell voltage extraction circuit 42 includes a differential amplifier 46 that outputs the voltage of each battery cell 1.
  • the lowest voltage detection circuit 43 detects the lowest voltage of each cell voltage output from the cell voltage extraction circuit 42.
  • the discharge cell determination circuit 44 includes a differential amplifier 47 that inputs the minimum voltage output from the minimum voltage detection circuit 43 to one input terminal.
  • the level shift circuit 45 shifts the output signal of the discharge cell determination circuit 44 by a direct current level and controls each discharge switch 25 to be turned on / off.
  • FIG. 6 shows a minimum voltage detection circuit 43 that detects the minimum voltage from the voltages of the four battery cells 1.
  • the minimum voltage detection circuit 43 includes an analog multiplexer 51.
  • the analog multiplexer 51 connects the output of the comparator 53 to the S terminal of the multiplexer 52, and the input terminal of the comparator 53 inputs the voltages of the two battery cells 1 input to the D 0 terminal and D 1 terminal of the multiplexer 52.
  • the analog multiplexer 51 compares two analog voltages input to the D0 terminal and the D1 terminal, and outputs a low voltage.
  • the lowest voltage detection circuit 43 in FIG. 6 connects the analog multiplexers 51 in two stages and outputs the lowest voltage of the four battery cells 1.
  • the discharge cell determination circuit 44 inputs the lowest voltage of the battery cell 1 output from the lowest voltage detection circuit 43 to one input terminal (minus side input terminal in FIG. 5), and the other input terminal (plus in FIG. 5). Side input terminal) is provided with a differential amplifier 47 to which the voltage of each battery cell 1 is input from the cell voltage extraction circuit 42.
  • the differential amplifier 47 to which the voltage of the battery cell 1 higher than the minimum voltage is input outputs a positive signal ON signal.
  • the on signal is level-shifted by the level shift circuit 45 to turn on the discharge switch 25 of the discharge circuit 21.
  • the adjacent equalization circuit 5C in FIG. 5 connects a circuit (not shown) that adds a deviation voltage to the voltage of the battery cell 1 on the output side of the minimum voltage detection circuit 43 and inputs it to the discharge cell determination circuit 44.
  • the battery cell 1 can be equalized by providing a deviation voltage.
  • a low speed control circuit (not shown) for delaying the time interval for switching on / off the discharge switch 25 to a predetermined time, for example, 0.3 seconds to 5 seconds is connected to the output side of the discharge cell determination circuit 44. Can do.
  • the adjacent equalization circuit 5C can equalize the battery cells 1 stably without the discharge switch 25 being switched on and off in a short time.
  • the adjacent equalization circuit 5C described above detects the lowest voltage of the plurality of battery cells 1 constituting the cell block 20, and discharges it by the discharge circuit 21 connected to the battery cell 1 having a voltage higher than the lowest voltage. Thus, the plurality of battery cells 1 can be stably equalized.
  • 5 illustrates the adjacent equalization circuit 5C that equalizes the four battery cells 1. However, the adjacent equalization circuit having this circuit configuration equalizes three or less battery cells or five or more battery cells. You can also
  • the above power supply device can be used as an in-vehicle battery system.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric car that runs only with a motor can be used, and it is used as a power source for these vehicles. .
  • FIG. 7 shows an example in which a power supply device is mounted on a hybrid car that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and power generation that charges a battery cell of the power supply device 100.
  • a vehicle body 90 on which a machine 94, an engine 96, a motor 93, a power supply device 100, and a generator 94 are mounted, and wheels 97 driven by the engine 96 or the motor 93 to drive the vehicle body 90.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery cell of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the battery cell of the power supply device 100.
  • FIG. 8 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery cell of the power supply device 100.
  • 94 a vehicle main body 90 on which the motor 93, the power supply device 100, and the generator 94 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body 90.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery cell of the power supply device 100.
  • the wiring can be simplified while simplifying the equalization circuit 3 that equalizes the large number of battery cells 1 constituting the series battery group 10 of the power supply device.
  • the power supply device equalizes the plurality of battery cells 1 constituting each cell block 2 independently by the adjacent equalization circuit 5 and main equalizes the plurality of cell blocks 2 constituting the series battery group 10.
  • the circuit 4 performs equalization independently.
  • this power supply device by arranging the adjacent equalization circuit 5 close to the cell block 2, the lead line 6B connecting the adjacent equalization circuit 5 to the cell block 2 can be shortened and wiring can be simplified.
  • the power supply device that can simplify the wiring of the lead line 6 connected to the battery cell 1 is mounted on a vehicle that can greatly reduce failures such as disconnection due to vibrations during traveling and increase reliability. This makes it possible to achieve ideal characteristics for power supply devices.
  • the above power supply device can be used as a battery system that is charged with the generated power of natural energy such as solar cells or wind power generation, and can also be used as a power source for electric motorcycles, electric bicycles, electric tools, etc. .
  • the power supply apparatus according to the present invention and the vehicle including the power supply apparatus can be suitably used as a power supply apparatus for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode. .
  • a plug-in hybrid electric vehicle for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • vehicle-mounted use For example, it can utilize also as a battery for assist bicycles, electric motorcycles, and electric tools.

Abstract

[Problem] To equalize each of a plurality of battery cells while keeping the circuit structure of equalization circuits simple. Further, to equalize the battery cells while keeping the wiring of lead lines simple. [Solution] A power supply apparatus is provided with a series-connected battery group (10) comprising a plurality of battery cells (1) connected in series, and an equalization circuit (3) for equalizing the plurality of battery cells (1) that constitute the series-connected battery group (10). In the series-connected battery group (10), a plurality of cell blocks (2), each comprising a plurality of series-connected battery cells (1), are connected in series. The equalization circuit (3) is provided with: a main equalization circuit (4) for equalization between the plurality of cell blocks (2) constituting the series-connected battery group (10); and adjacent-equalization circuits (5) for equalization between the plurality of battery cells (1) constituting a cell block (2). The main equalization circuit (4) and the adjacent-equalization circuits (5) have different circuit constructions which carry out equalization independent of each other.

Description

電源装置及びこの電源装置を備える車両Power supply device and vehicle equipped with this power supply device
 本発明は、複数の電池セルを直列に接続して出力電圧を高くしている電源装置に関し、とくに、各電池セルのアンバランスを解消する均等化回路を備える電源装置とこの電源装置を備える車両に関する。 The present invention relates to a power supply device in which a plurality of battery cells are connected in series to increase the output voltage, and in particular, a power supply device including an equalization circuit that eliminates an unbalance of each battery cell and a vehicle including the power supply device About.
 最近、複数の電池セルを直列に接続して出力電圧を高くしている電源装置が知られてきている。この電源装置は、全ての電池セルが同じ電流で充電され、また放電されるので、電池セルが全く同じ電気特性であれば、充放電される電池セルに電圧差は発生しない。しかしながら、現実には全ての電池セルの電気特性は完全に同じではなく、電気特性の違いによって、充放電を繰り返すにしたがって、各電池セルの充電量にアンバランスが発生する。電池セル間のアンバランスは、電池システムとしての利用域を本来持っている容量から狭めてしまう。もしくは特定の電池セルを過充電し、あるいは過放電する原因となって、その特定の電池セルの劣化を促進する弊害となる。この弊害を防止するために、電源装置は、各々の電池セルの電圧を検出して、電圧の高い電池セルを放電して、電池セルのアンバランスを解消している。(特許文献1参照) Recently, a power supply device is known in which a plurality of battery cells are connected in series to increase the output voltage. In this power supply device, since all the battery cells are charged and discharged with the same current, if the battery cells have exactly the same electrical characteristics, no voltage difference occurs between the charged and discharged battery cells. However, in reality, the electrical characteristics of all the battery cells are not completely the same, and due to the difference in electrical characteristics, the charge amount of each battery cell is unbalanced as charging and discharging are repeated. The unbalance between the battery cells is narrowed from the capacity originally having the battery system. Alternatively, the specific battery cell is overcharged or overdischarged, which is a harmful effect of promoting the deterioration of the specific battery cell. In order to prevent this problem, the power supply device detects the voltage of each battery cell, discharges the battery cell having a high voltage, and eliminates the battery cell imbalance. (See Patent Document 1)
 特許文献1に記載される電源装置は、各電池セルの正負の電極をリードラインを介して均等化回路に接続する。均等化回路は、各々のリードラインを介して各電池セルの電圧を検出し、各電池セルの電圧の差に基づき充放電させることで、電池セルのアンバランスを解消する。 The power supply device described in Patent Document 1 connects the positive and negative electrodes of each battery cell to an equalization circuit via a lead line. The equalization circuit detects the voltage of each battery cell via each lead line, and charges and discharges based on the voltage difference of each battery cell, thereby eliminating the battery cell imbalance.
特開2011-211808号公報Japanese Patent Laid-Open No. 2011-212808
 以上の電源装置では、全ての電池セルの正負の電極をリードラインを介して均等化回路に接続している。そして、全ての電池セルの電圧を検出して検出電圧から電池セルの最低電圧を検出し、充電量の高い電池セルから充電量の低い電池セルを充電するようにして電池セルを均等化している。この電源装置は、均等化回路で全ての電池セルの電圧を検出し、検出電圧から最低電圧を判定し、全ての電池セルの充電量が略等しくなるように均等化回路をコントロールするので、均等化回路の回路構成が複雑になる。とくに、電池セルの数が多くなるにしたがって、均等化回路がより複雑になる欠点がある。また、全ての電池セルの正負の電極をリードラインでもって均等化回路に接続するので、リードラインの数が多くてリードラインの配線も複雑となり、組電池の構成を複雑にしてしまう問題がある。 In the above power supply device, the positive and negative electrodes of all the battery cells are connected to the equalization circuit via lead lines. And the voltage of all the battery cells is detected, the lowest voltage of the battery cell is detected from the detected voltage, and the battery cells are equalized by charging the battery cells with a low charge amount from the battery cells with a high charge amount. . In this power supply device, the equalization circuit detects the voltage of all the battery cells, determines the lowest voltage from the detected voltage, and controls the equalization circuit so that the charge amounts of all the battery cells are substantially equal. The circuit configuration of the circuit is complicated. In particular, there is a drawback that the equalization circuit becomes more complicated as the number of battery cells increases. In addition, since the positive and negative electrodes of all the battery cells are connected to the equalization circuit with lead lines, there is a problem that the number of lead lines is large and the wiring of the lead lines is complicated, which complicates the configuration of the assembled battery. .
 本発明は、以上の課題を解決することを目的に開発されたものである。本発明の目的は、均等化回路の回路構成を簡単にしながら、各電池セルを均等化できる電源装置とこの電源装置を備える車両を提供することにある。
 また、本発明の他の目的は、リードラインの配線を簡単にしながら、電池セルを均等化できる電源装置とこの電源装置を備える車両を提供することにある。
The present invention has been developed for the purpose of solving the above problems. The objective of this invention is providing the vehicle provided with the power supply device which can equalize each battery cell, and this power supply device, simplifying the circuit structure of an equalization circuit.
Another object of the present invention is to provide a power supply device capable of equalizing battery cells while simplifying wiring of a lead line, and a vehicle including the power supply device.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明の電源装置は、複数の電池セル1を直列に接続してなる直列電池群10と、この直列電池群10を構成する複数の電池セル1を均等化する均等化回路3を備えている。直列電池群10は、複数の電池セル1を接続してなる複数のセルブロック2、20を直列に接続している。均等化回路3は、直列電池群10を構成する複数のセルブロック2、20同士を均等化するメイン均等化回路4と、セルブロック2、20を構成する複数の電池セル1同士を均等化する隣接均等化回路5とを備えている。メイン均等化回路4と隣接均等化回路5は、それぞれ独立して均等化する異なる回路構成としている。 The power supply device of the present invention includes a series battery group 10 formed by connecting a plurality of battery cells 1 in series, and an equalization circuit 3 that equalizes the plurality of battery cells 1 constituting the series battery group 10. . The series battery group 10 has a plurality of cell blocks 2 and 20 formed by connecting a plurality of battery cells 1 connected in series. The equalization circuit 3 equalizes the main equalization circuit 4 that equalizes the plurality of cell blocks 2 and 20 constituting the series battery group 10 and the plurality of battery cells 1 that constitute the cell blocks 2 and 20. And an adjacent equalization circuit 5. The main equalization circuit 4 and the adjacent equalization circuit 5 have different circuit configurations that are equalized independently.
 以上の電源装置は、複数のセルブロックからなる直列電池群を均等化する均等化回路の回路構成を簡単にしながら、全ての電池セルを均等化できる特徴がある。それは、直列に接続している電池セルでセルブロックを構成し、複数のセルブロックを直列に接続して直列電池群とし、各セルブロックを構成する複数の電池セル同士を隣接均等化回路で独立して均等化し、直列電池群を構成する複数のセルブロック同士をメイン均等化回路で独立して均等化するからである。 The power supply device described above has a feature that all battery cells can be equalized while simplifying the circuit configuration of an equalization circuit that equalizes a series battery group composed of a plurality of cell blocks. It consists of battery cells connected in series to form a cell block, a plurality of cell blocks connected in series to form a series battery group, and a plurality of battery cells constituting each cell block are separated by an adjacent equalization circuit. This is because the plurality of cell blocks constituting the series battery group are equalized independently by the main equalization circuit.
 また、以上の電源装置は、メイン均等化回路に接続するリードラインの数を少なくするなどして、リードラインの配線を簡単にしながら、全ての電池セルを均等化できる特徴も実現する。それは、以上の電源装置が、各電池セルの正負の電極をメイン均等化回路に接続することなく、複数の電池セルを直列に接続しているセルブロックの両端をリードラインでメイン均等化回路に接続するからである。 In addition, the power supply device described above also realizes the feature that all the battery cells can be equalized while simplifying the wiring of the lead lines by reducing the number of lead lines connected to the main equalization circuit. That is, the above power supply device does not connect the positive and negative electrodes of each battery cell to the main equalization circuit, but both ends of the cell block connecting the battery cells in series to the main equalization circuit with lead lines It is because it connects.
 本発明の電源装置は、セルブロック2、20及びセルブロック2、20を構成してなる複数の電池セル1同士を均等化する隣接均等化回路5とで電池ブロック9、29を構成して、メイン均等化回路4が、複数の電池ブロック9、29同士を均等化することができる。
 以上の電源装置は、電池ブロックを構成する複数の電池セルを隣接均等化回路で均等化するので、メイン均等化回路は、あたかも各電池ブロックをひとつの電池セルとして均等化すればよく、メイン均等化回路は細かい電圧検出や検出する電圧に基づく均等化のための制御を簡単にできる特徴がある。
The power supply device of the present invention comprises battery blocks 9 and 29 with an adjacent equalization circuit 5 that equalizes a plurality of battery cells 1 comprising the cell blocks 2 and 20 and the cell blocks 2 and 20, The main equalization circuit 4 can equalize the plurality of battery blocks 9 and 29.
Since the above power supply apparatus equalizes the plurality of battery cells constituting the battery block by the adjacent equalization circuit, the main equalization circuit may equalize each battery block as one battery cell. The circuit is characterized in that fine voltage detection and control for equalization based on the detected voltage can be simplified.
 本発明の電源装置は、メイン均等化回路4と隣接均等化回路5とを、リードライン6を介して電池セル1に接続すると共に、隣接均等化回路5をセルブロック2、20に接続するリードライン6Bを、メイン均等化回路4を電池セル1に接続するリードライン6Aよりも短くすることができる。
 以上の電源装置は、隣接均等化回路を電池セルに接続するリードラインを短くすることで配線を簡単にでき、さらに隣接均等化回路に接続するリードラインの断線などの故障を少なくして、各電池セルの均等化の信頼性を高くできる特徴がある。また、隣接均等化回路を電池セルに接近して配置することも可能になる。その場合、電池セルと隣接均等化回路をまとめて扱うことも可能となる。
The power supply device of the present invention connects the main equalization circuit 4 and the adjacent equalization circuit 5 to the battery cell 1 via the lead line 6 and leads for connecting the adjacent equalization circuit 5 to the cell blocks 2 and 20. The line 6B can be made shorter than the lead line 6A that connects the main equalization circuit 4 to the battery cell 1.
The above power supply device can simplify the wiring by shortening the lead line connecting the adjacent equalization circuit to the battery cell, and further reduces the failure such as the disconnection of the lead line connected to the adjacent equalization circuit. There is a feature that can improve the reliability of equalization of battery cells. In addition, the adjacent equalization circuit can be disposed close to the battery cell. In that case, the battery cell and the adjacent equalization circuit can be handled together.
 本発明の電源装置は、メイン均等化回路4が、デジタル処理して複数のセルブロック2、20同士を均等化するデジタル回路を備えて、隣接均等化回路5が、アナログ処理して複数の電池セル1同士を均等化するアナログ回路を備えることができる。
 以上の電源装置は、隣接均等化回路をアナログ回路として、セルブロックを構成する複数の電池セルを該隣接均等化回路で均等化し、さらに複数のセルブロックをデジタル処理して均等化するメイン均等化回路で均等化できる特徴がある。また、メイン均等化回路が扱う管理点数はセルブロック単位となるため、管理点数削減により処理負荷を低減させることができるため、全ての電池セルを個別管理する装置と比較して、より安価な装置で構成が可能となる。一方、隣接均等化回路は主に均等化を行うだけでいいので、回路構成を簡単にしてコンパクト化が可能となる。
In the power supply device of the present invention, the main equalization circuit 4 includes a digital circuit that performs digital processing to equalize the plurality of cell blocks 2 and 20, and the adjacent equalization circuit 5 performs analog processing to perform a plurality of batteries. An analog circuit for equalizing the cells 1 can be provided.
The above power supply apparatus uses the adjacent equalization circuit as an analog circuit, equalizes a plurality of battery cells constituting the cell block by the adjacent equalization circuit, and further digitally processes the plurality of cell blocks for equalization. There is a feature that can be equalized in the circuit. In addition, since the number of management points handled by the main equalization circuit is in units of cell blocks, the processing load can be reduced by reducing the number of management points. Therefore, a device that is less expensive than a device that individually manages all battery cells. Can be configured. On the other hand, since the adjacent equalization circuit only needs to perform equalization mainly, the circuit configuration can be simplified and the size can be reduced.
 本発明の電源装置は、メイン均等化回路4が、各セルブロック2、20を放電して均等化する放電回路11と、この放電回路11の放電状態を制御するマイコン16を備える制御回路12と、この制御回路12に各セルブロック2、20の電圧を入力するブロック電圧検出回路13とを備えて、制御回路12が、ブロック電圧検出回路13で検出されるセルブロック2、20の電圧をデジタル処理して放電回路11を制御して複数のセルブロック2、20同士を均等化することができる。
 以上の電源装置は、各セルブロックの電圧をブロック電圧検出回路で検出し、検出電圧をマイコンでデジタル処理して放電回路をコントロールしてセルブロック同士を均等化するので、均等化の条件、たとえば、均等化するセルブロックの許容される電圧偏差や、セルブロックの放電電流などをマイコンで最適値に調整しながら、各セルブロックを好ましい状態で均等化できる特徴がある。なお、複数のセルブロック同士を均等化できれば、各セルブロックを構成する複数の電池セル同士の均等化を別の手段で行っても、電池セル全体の均等化が達成できる。
In the power supply device of the present invention, the main equalization circuit 4 discharges and equalizes the cell blocks 2 and 20, and the control circuit 12 includes a microcomputer 16 that controls the discharge state of the discharge circuit 11. The control circuit 12 includes a block voltage detection circuit 13 for inputting the voltages of the cell blocks 2 and 20, and the control circuit 12 digitally converts the voltages of the cell blocks 2 and 20 detected by the block voltage detection circuit 13. The plurality of cell blocks 2 and 20 can be equalized by processing and controlling the discharge circuit 11.
The above power supply apparatus detects the voltage of each cell block with a block voltage detection circuit, digitally processes the detection voltage with a microcomputer and controls the discharge circuit to equalize the cell blocks. There is a feature that each cell block can be equalized in a preferable state while an allowable voltage deviation of the cell block to be equalized, a discharge current of the cell block and the like are adjusted to optimum values by a microcomputer. In addition, if a plurality of cell blocks can be equalized, even if a plurality of battery cells constituting each cell block are equalized by another means, equalization of the entire battery cells can be achieved.
 本発明の電源装置は、セルブロック2をふたつの電池セル1で構成すると共に、隣接均等化回路5が、各電池セル1に接続してなる放電抵抗24と放電スイッチ25とからなる放電回路21と、ふたつの電池セル1の電圧差を検出して放電回路21を制御する電圧比較器23、33とを備えて、電圧比較器23、33が、各電池セル1の電圧差を検出して、電圧が高い方の電池セル1に接続してなる放電スイッチ25をオン状態に制御し、電圧が低い方の電池セル1に接続してなる放電スイッチ25をオフ状態に制御して、放電抵抗24において放電させることでふたつの電池セル1を均等化することができる。
 以上の電源装置は、隣接均等化回路を簡単な回路構成としながら、電池セルの電圧差で放電スイッチをオンオフに切り換えてふたつの電池セルを安定して均等化できる。こうした構成は、例えばICや電子素子を用いたハードウェアで簡単に構成できる。このため、電池セルのそばに配置しても邪魔にならない。
In the power supply device of the present invention, the cell block 2 is composed of two battery cells 1, and the adjacent equalization circuit 5 includes a discharge resistor 24 connected to each battery cell 1 and a discharge circuit 21 including a discharge switch 25. And voltage comparators 23 and 33 for detecting the voltage difference between the two battery cells 1 and controlling the discharge circuit 21. The voltage comparators 23 and 33 detect the voltage difference between the battery cells 1. The discharge switch 25 connected to the battery cell 1 having a higher voltage is controlled to be in an on state, and the discharge switch 25 connected to the battery cell 1 having a lower voltage is controlled to be in an off state. By discharging at 24, the two battery cells 1 can be equalized.
The power supply apparatus described above can stably equalize the two battery cells by switching the discharge switch on and off by the voltage difference between the battery cells, while making the adjacent equalization circuit a simple circuit configuration. Such a configuration can be easily configured by, for example, hardware using an IC or an electronic element. For this reason, even if it arranges near a battery cell, it does not get in the way.
 本発明の電源装置は、セルブロック20を複数の電池セル1で構成すると共に、隣接均等化回路5が、各電池セル1に接続してなる放電抵抗24と放電スイッチ25とからなる放電回路21と、各電池セル1の最低電圧を検出する最低電圧検出回路43と、この最低電圧検出回路43で検出される最低電圧を各電池セル1の電圧に比較して、最低電圧よりも電圧が高い電池セル1に接続している放電回路21の放電スイッチ25をオンに制御する放電セル判定回路44とを備えて、セル電圧が最低電圧よりも高い電池セル1の放電回路21を放電状態として、セルブロック20を構成する複数の電池セル1同士を均等化することができる。
 以上の電源装置は、セルブロックを構成する複数の電池セルの最低電圧を検出し、この最低電圧よりも電圧が高い電池セルに接続している放電回路で放電することで、複数の電池セルを安定して均等化できる特徴が実現される。
In the power supply device of the present invention, the cell block 20 is composed of a plurality of battery cells 1, and the adjacent equalization circuit 5 includes a discharge resistor 24 connected to each battery cell 1 and a discharge circuit 21 including a discharge switch 25. The minimum voltage detection circuit 43 that detects the minimum voltage of each battery cell 1 and the minimum voltage detected by the minimum voltage detection circuit 43 are compared with the voltage of each battery cell 1, and the voltage is higher than the minimum voltage. A discharge cell determination circuit 44 for controlling the discharge switch 25 of the discharge circuit 21 connected to the battery cell 1 to be turned on, and setting the discharge circuit 21 of the battery cell 1 whose cell voltage is higher than the minimum voltage to a discharge state, A plurality of battery cells 1 constituting the cell block 20 can be equalized.
The above power supply apparatus detects the minimum voltage of a plurality of battery cells constituting a cell block, and discharges the plurality of battery cells by discharging with a discharge circuit connected to a battery cell having a voltage higher than the minimum voltage. Features that can be stably equalized are realized.
 本発明の車両は、上記のいずれかに記載の電源装置を備えてなる車両であって、電源装置100と、この電源装置100から電力供給される走行用のモータ93と、電源装置100及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。
 以上の車両では、電源装置の直列電池群を構成する電池セルを均等化しながら、均等化回路を簡単にできると共に、配線を簡略できる特徴がある。
A vehicle of the present invention is a vehicle including any of the power supply devices described above, and includes a power supply device 100, a traveling motor 93 that is supplied with power from the power supply device 100, the power supply device 100, and the motor. The vehicle body 90 which mounts 93, and the wheel 97 which drives with the motor 93 and runs the vehicle body 90 are provided.
The above vehicle has a feature that the equalization circuit can be simplified and the wiring can be simplified while equalizing the battery cells constituting the series battery group of the power supply device.
本発明の一実施の形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning one embodiment of the present invention. 隣接均等化回路の一例を示す回路図である。It is a circuit diagram which shows an example of an adjacent equalization circuit. 隣接均等化回路の他の一例を示す回路図である。It is a circuit diagram which shows another example of an adjacent equalization circuit. 本発明の他の実施の形態にかかる電源装置のブロック図である。It is a block diagram of the power supply device concerning other embodiment of this invention. 隣接均等化回路の他の一例を示すブロック図である。It is a block diagram which shows another example of an adjacent equalization circuit. 最低電圧検出回路の一例を示すブロック図である。It is a block diagram which shows an example of the minimum voltage detection circuit. エンジンとモータで走行するハイブリッドカーに電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid car which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこの電源装置を備える車両を例示するものであって、本発明は電源装置及びこの電源装置を備える車両を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention and a vehicle including the power supply device, and the present invention is a vehicle including the power supply device and the power supply device. Is not specified as below. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
 図1に、本発明の一実施の形態に係る電源装置100の構成を示す。このブロック図に示す電源装置100は、複数の電池セル1を直列に接続している直列電池群10と、この直列電池群10を構成する複数の電池セル1を均等化する均等化回路3とを備えている。 FIG. 1 shows a configuration of a power supply apparatus 100 according to an embodiment of the present invention. A power supply device 100 shown in this block diagram includes a series battery group 10 in which a plurality of battery cells 1 are connected in series, and an equalization circuit 3 that equalizes the plurality of battery cells 1 constituting the series battery group 10. It has.
(直列電池群10)
 直列電池群10は、複数のセルブロック2を直列に接続している。各セルブロック2は、複数の電池セル1を直列に接続している。電池セル1は、リチウムイオン電池又はリチウムポリマー電池からなる非水電解質二次電池である。ただ、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の充電できる全ての二次電池も使用できる。電池セル1を非水電解質電池とするセルブロック2は、電池セル1をひとつの二次電池で構成する。電池セルをニッケル水素電池やニッケルカドミウム電池とするセルブロックは、複数の二次電池を直列に接続して電池セルとしている。
(Series battery group 10)
The series battery group 10 has a plurality of cell blocks 2 connected in series. Each cell block 2 has a plurality of battery cells 1 connected in series. The battery cell 1 is a nonaqueous electrolyte secondary battery composed of a lithium ion battery or a lithium polymer battery. However, all rechargeable batteries such as nickel metal hydride batteries and nickel cadmium batteries can be used as the battery cells. In the cell block 2 in which the battery cell 1 is a nonaqueous electrolyte battery, the battery cell 1 is constituted by one secondary battery. A cell block in which a battery cell is a nickel metal hydride battery or a nickel cadmium battery has a plurality of secondary batteries connected in series to form a battery cell.
(均等化回路3)
 均等化回路3は、メイン均等化回路4と隣接均等化回路5とを備える。メイン均等化回路4は、直列電池群10を構成する複数のセルブロック2同士を均等化して、セルブロック2のアンバランスを解消する。隣接均等化回路5は、セルブロック2を構成する複数の電池セル1同士を均等化して、電池セル1のアンバランスを解消する。メイン均等化回路4と隣接均等化回路5は、それぞれ独立して均等化する異なる回路構成としている。すなわち、メイン均等化回路4は、複数のセルブロック2同士を独立して均等化し、隣接均等化回路5は、複数の電池セル1同士を独立して均等化する回路構成としている。
(Equalization circuit 3)
The equalization circuit 3 includes a main equalization circuit 4 and an adjacent equalization circuit 5. The main equalization circuit 4 equalizes the plurality of cell blocks 2 constituting the series battery group 10 to eliminate the unbalance of the cell blocks 2. The adjacent equalization circuit 5 equalizes the plurality of battery cells 1 constituting the cell block 2 and eliminates the unbalance of the battery cells 1. The main equalization circuit 4 and the adjacent equalization circuit 5 have different circuit configurations that are equalized independently. That is, the main equalization circuit 4 equalizes the plurality of cell blocks 2 independently, and the adjacent equalization circuit 5 has a circuit configuration that equalizes the plurality of battery cells 1 independently.
 この均等化回路3は、各セルブロック2を構成する複数の電池セル1同士を隣接均等化回路5で均等化するので、隣接均等化回路5を、各セルブロック2の電池セル1同士を独立して均等化する簡単な回路構成として、複数の電池セル1を均等化できる。また、均等化回路3は、直列電池群10を構成する複数のセルブロック2同士をメイン均等化回路4で均等化するので、メイン均等化回路4を、セルブロック2単位で管理しながら独立して均等化する簡単な回路構成として、複数のセルブロック2を均等化できる。したがって、この均等化回路3は、全体の回路構成を簡単にしながら、直列電池群10を構成する全ての電池セル1を均等化できる。 Since the equalization circuit 3 equalizes the plurality of battery cells 1 constituting each cell block 2 with the adjacent equalization circuit 5, the adjacent equalization circuit 5 is independent of the battery cells 1 of each cell block 2. As a simple circuit configuration to equalize, a plurality of battery cells 1 can be equalized. Further, since the equalization circuit 3 equalizes the plurality of cell blocks 2 constituting the series battery group 10 with the main equalization circuit 4, the main equalization circuit 4 is managed independently while being managed in units of cell blocks 2. As a simple circuit configuration for equalizing, a plurality of cell blocks 2 can be equalized. Therefore, the equalization circuit 3 can equalize all the battery cells 1 constituting the series battery group 10 while simplifying the entire circuit configuration.
 メイン均等化回路4と隣接均等化回路5は、リードライン6を介して電池セル1に接続される。リードライン6は、一端を電池セル1の正負の電極に接続して、他端を均等化回路3に接続している。メイン均等化回路4は、リードライン6Aを介してセルブロック2の正負の端子に接続されている。隣接均等化回路5は、リードライン6Bを介して各電池セル1の正負の端子に接続されている。このように、セルブロック2を複数の電池セル1で構成し、各セルブロック2の正負の端子をリードライン6Aを介してメイン均等化回路4に接続する構造は、全ての電池セルの正負の電極をメイン均等化回路に接続することなく、複数の電池セル1を直列に接続しているセルブロック2の両端のみをリードライン6Aでメイン均等化回路4に接続するので、メイン均等化回路4に接続するリードライン6Aの数を少なくして、リードライン6Aの配線を簡単にできる。 The main equalization circuit 4 and the adjacent equalization circuit 5 are connected to the battery cell 1 via the lead line 6. The lead line 6 has one end connected to the positive and negative electrodes of the battery cell 1 and the other end connected to the equalization circuit 3. The main equalization circuit 4 is connected to the positive and negative terminals of the cell block 2 via the lead line 6A. The adjacent equalization circuit 5 is connected to the positive and negative terminals of each battery cell 1 via the lead line 6B. Thus, the structure in which the cell block 2 is composed of a plurality of battery cells 1 and the positive and negative terminals of each cell block 2 are connected to the main equalization circuit 4 via the lead line 6A is the positive and negative of all the battery cells. Without connecting the electrodes to the main equalization circuit, only the both ends of the cell block 2 connecting the plurality of battery cells 1 in series are connected to the main equalization circuit 4 via the lead lines 6A. By reducing the number of lead lines 6A connected to the lead wire 6A, the wiring of the lead lines 6A can be simplified.
 異なる回路構成とするメイン均等化回路4と隣接均等化回路5は、メイン均等化回路4を、デジタル処理して複数のセルブロック2同士を均等化するデジタル回路で実現し、隣接均等化回路5を、アナログ処理してリアルタイムに複数の電池セル1同士を均等化するアナログ回路とする。デジタル処理して複数のセルブロック2を均等化するメイン均等化回路4はマイコンを備え、マイコンでデジタル処理して複数のセルブロック2を均等化する。ただ、隣接均等化回路は、デジタル処理して複数の電池セルを均等化するデジタル回路とすることもできる。 The main equalization circuit 4 and the adjacent equalization circuit 5 having different circuit configurations are realized by a digital circuit that digitally processes the main equalization circuit 4 to equalize the plurality of cell blocks 2, and the adjacent equalization circuit 5. Is an analog circuit that performs analog processing to equalize a plurality of battery cells 1 in real time. The main equalization circuit 4 that performs digital processing to equalize the plurality of cell blocks 2 includes a microcomputer, and performs digital processing by the microcomputer to equalize the plurality of cell blocks 2. However, the adjacent equalization circuit may be a digital circuit that performs digital processing to equalize a plurality of battery cells.
 さらに、隣接均等化回路5は、メイン均等化回路4よりも電池セル1に接近して配置されている。隣接均等化回路5をセルブロック2に接続するリードライン6Bは、メイン均等化回路4を電池セル1に接続するリードライン6Aよりも短くし、あるいは、隣接均等化回路5を電池セル1の電極端子に直接に接続している。このように、隣接均等化回路5をセルブロック2に接続するリードライン6Bを短くすることで、リードライン6Bの配線を簡単にできると共に、隣接均等化回路5に接続するリードライン6Bの断線などの故障を少なくして、各電池セル1の均等化の信頼性を高くできる。 Furthermore, the adjacent equalization circuit 5 is arranged closer to the battery cell 1 than the main equalization circuit 4. The lead line 6B connecting the adjacent equalization circuit 5 to the cell block 2 is shorter than the lead line 6A connecting the main equalization circuit 4 to the battery cell 1, or the adjacent equalization circuit 5 is connected to the electrode of the battery cell 1. Connected directly to the terminal. Thus, by shortening the lead line 6B connecting the adjacent equalization circuit 5 to the cell block 2, the wiring of the lead line 6B can be simplified, and the lead line 6B connected to the adjacent equalization circuit 5 is disconnected. Thus, the reliability of equalization of the battery cells 1 can be increased.
(メイン均等化回路4)
 メイン均等化回路4は、放電回路11と制御回路12とブロック電圧検出回路13とを備える。放電回路11は、各セルブロック2を放電して均等化する。制御回路12は、放電回路11の放電状態を制御するマイコン16を備える。ブロック電圧検出回路13は、制御回路12に各セルブロック2の電圧を入力する。放電回路11とブロックル電圧検出回路13は、リードライン6Aを介して各セルブロック2の正負の端子に接続している。
(Main equalization circuit 4)
The main equalization circuit 4 includes a discharge circuit 11, a control circuit 12, and a block voltage detection circuit 13. The discharge circuit 11 discharges and equalizes each cell block 2. The control circuit 12 includes a microcomputer 16 that controls the discharge state of the discharge circuit 11. The block voltage detection circuit 13 inputs the voltage of each cell block 2 to the control circuit 12. The discharge circuit 11 and the burr voltage detection circuit 13 are connected to the positive and negative terminals of each cell block 2 via the lead line 6A.
 放電回路11は、放電抵抗14と放電スイッチ15との直列回路である。放電スイッチ15は、制御回路12でオンオフに切り換えられる。放電回路11は、放電スイッチ15のオン状態でセルブロック2を放電し、放電スイッチ15のオフ状態でセルブロック2を放電しない状態に制御される。 The discharge circuit 11 is a series circuit of a discharge resistor 14 and a discharge switch 15. The discharge switch 15 is switched on and off by the control circuit 12. The discharge circuit 11 is controlled so that the cell block 2 is discharged when the discharge switch 15 is on, and the cell block 2 is not discharged when the discharge switch 15 is off.
 制御回路12は、ブロック電圧検出回路13で検出される各セルブロック2の電圧を均等化するように放電スイッチ15を制御する。すなわち、制御回路12は、セルブロック2の最低電圧を検出し、各セルブロック2の電圧が最低電圧に等しくなるように放電回路11を制御する。この制御回路12は、最低電圧よりも電圧が高いセルブロック2に接続している放電回路11の放電スイッチ15をオン状態として、セルブロック2の電圧を均等化する。制御回路12は、全てのセルブロック2の電圧を完全に均等化することなく、各セルブロック2の電圧が、偏差電圧内となるように均等化することができる。偏差電圧は、セルブロック2を構成する電池セル1のタイプや個数により最適値に設定するが、例えば、5mV~50mVとする。偏差電圧を設けて均等化する制御回路12は、最低電圧に偏差電圧を加算した電圧よりも高いセルブロック2に接続している放電回路11の放電スイッチ15をオンに切り換えて、複数のセルブロック2の電圧を均等化する。さらに、制御回路12は、放電スイッチ15をオンオフに切り換えるタイミングを0.5秒~5秒と長くして、放電スイッチ15のチャタリング状態を防止しながら、各セルブロック2を均等化する。 The control circuit 12 controls the discharge switch 15 so as to equalize the voltage of each cell block 2 detected by the block voltage detection circuit 13. That is, the control circuit 12 detects the lowest voltage of the cell block 2 and controls the discharge circuit 11 so that the voltage of each cell block 2 becomes equal to the lowest voltage. The control circuit 12 equalizes the voltage of the cell block 2 by turning on the discharge switch 15 of the discharge circuit 11 connected to the cell block 2 whose voltage is higher than the lowest voltage. The control circuit 12 can equalize the voltage of each cell block 2 within the deviation voltage without completely equalizing the voltages of all the cell blocks 2. The deviation voltage is set to an optimum value depending on the type and number of battery cells 1 constituting the cell block 2, and is set to, for example, 5 mV to 50 mV. The control circuit 12 for providing and equalizing the deviation voltage switches on the discharge switch 15 of the discharge circuit 11 connected to the cell block 2 higher than the voltage obtained by adding the deviation voltage to the minimum voltage, and thereby turns on the plurality of cell blocks. The voltage of 2 is equalized. Further, the control circuit 12 lengthens the timing for switching the discharge switch 15 on and off to 0.5 to 5 seconds to equalize the cell blocks 2 while preventing the chattering state of the discharge switch 15.
 ブロック電圧検出回路13は、所定のサンプリング周期で各セルブロック2の電圧を検出し、検出する電圧をA/Dコンバータ(図示せず)でデジタル信号に変換して制御回路12のマイコン16に出力する。制御回路12のマイコン16は、ブロック電圧検出回路13から入力される各セルブロック2の電圧をデジタル処理して最低電圧を検出し、最低電圧+偏差電圧よりも電圧が高いセルブロック2に接続している放電回路11の放電スイッチ15をオンに切り換えて、複数のセルブロック2を均等化する。 The block voltage detection circuit 13 detects the voltage of each cell block 2 at a predetermined sampling period, converts the detected voltage into a digital signal by an A / D converter (not shown), and outputs it to the microcomputer 16 of the control circuit 12. To do. The microcomputer 16 of the control circuit 12 digitally processes the voltage of each cell block 2 input from the block voltage detection circuit 13 to detect the lowest voltage, and connects to the cell block 2 having a voltage higher than the lowest voltage + the deviation voltage. The discharge switch 15 of the discharge circuit 11 is turned on to equalize the plurality of cell blocks 2.
 以上のメイン均等化回路4は、各セルブロック2の電圧をブロック電圧検出回路13で検出し、検出電圧をマイコン16でデジタル処理して最低電圧を検出し、最低電圧+偏差電圧よりも電圧が高いセルブロック2に接続している放電回路11の放電スイッチ15をオンに切り換えて、複数のセルブロック2を均等化する。このため、均等化の条件、たとえば、均等化するセルブロック2の許容される電圧偏差や、セルブロック2の放電電流などをマイコン16で最適値に調整しながら、各セルブロック2を好ましい状態で均等化できる。 The above main equalization circuit 4 detects the voltage of each cell block 2 with the block voltage detection circuit 13 and digitally processes the detection voltage with the microcomputer 16 to detect the minimum voltage, and the voltage is lower than the minimum voltage + deviation voltage. The discharge switch 15 of the discharge circuit 11 connected to the high cell block 2 is turned on to equalize the plurality of cell blocks 2. For this reason, while adjusting the conditions for equalization, for example, the allowable voltage deviation of the cell block 2 to be equalized, the discharge current of the cell block 2, etc., to the optimum values by the microcomputer 16, each cell block 2 is kept in a preferable state. Can be equalized.
 さらに、以上のメイン均等化回路4は、直列電池群10を、電池セル単位ではなくセルブロック2単位で管理するため、管理点数を削減して、処理負荷を低減できる。このため、従来のように、全ての電池セルを個別管理することなく、より安価な装置で構成が可能となる。ここで、図1に示す電源装置は、セルブロック2、及びセルブロック2を構成してなる複数の電池セル1同士を均等化する隣接均等化回路5で電池ブロック9を構成している。この電源装置は、複数の電池ブロック9同士を、メイン均等化回路4で均等化する構造としている。以上の電源装置は、各電池ブロック9を構成する複数の電池セル1を隣接均等化回路5で均等化するので、メイン均等化回路4は、各電池ブロック9をあたかもひとつの電池セルとして均等化することができる。このため、メイン均等化回路4は、細かい電圧検出や検出する電圧に基づく均等化のための制御を簡単にできる。 Furthermore, since the above main equalization circuit 4 manages the series battery group 10 not in units of battery cells but in units of cell blocks 2, the number of management points can be reduced and the processing load can be reduced. For this reason, unlike the conventional case, it is possible to configure with a cheaper device without individually managing all the battery cells. Here, in the power supply device shown in FIG. 1, a battery block 9 is configured by a cell block 2 and an adjacent equalization circuit 5 that equalizes a plurality of battery cells 1 constituting the cell block 2. This power supply apparatus has a structure in which a plurality of battery blocks 9 are equalized by a main equalization circuit 4. Since the above power supply device equalizes the plurality of battery cells 1 constituting each battery block 9 by the adjacent equalization circuit 5, the main equalization circuit 4 equalizes each battery block 9 as if it were one battery cell. can do. Therefore, the main equalization circuit 4 can easily perform fine voltage detection and control for equalization based on the detected voltage.
(隣接均等化回路5)
 隣接均等化回路5は、セルブロック2を構成する複数の電池セル1同士を均等化する。図1の電源装置は、セルブロック2をふたつの電池セル1で構成する。ただ、セルブロックは、3個以上の電池セルで構成することもできる。セルブロック2を構成するふたつの電池セル1を均等化する隣接均等化回路5を図2と図3に示す。図2と図3の隣接均等化回路5A、5Bはアナログ回路で、リアルタイムに電池セル1を均等化する。図2と図3の隣接均等化回路5A、5Bは、2組の放電回路21と、電圧比較器23、33とを備えている。放電回路21は、各々の電池セル1に接続している。電圧比較器23、33は、ふたつの電池セル1の電圧差を検出して各放電回路21を制御する。放電回路21は、放電抵抗24と放電スイッチ25との直列回路からなる。
(Adjacent equalization circuit 5)
The adjacent equalization circuit 5 equalizes the plurality of battery cells 1 constituting the cell block 2. In the power supply device of FIG. 1, the cell block 2 is composed of two battery cells 1. However, the cell block can be composed of three or more battery cells. 2 and 3 show an adjacent equalization circuit 5 that equalizes the two battery cells 1 constituting the cell block 2. Adjacent equalization circuits 5A and 5B in FIGS. 2 and 3 are analog circuits, and equalize the battery cells 1 in real time. The adjacent equalization circuits 5A and 5B in FIGS. 2 and 3 include two sets of discharge circuits 21 and voltage comparators 23 and 33. The discharge circuit 21 is connected to each battery cell 1. The voltage comparators 23 and 33 detect the voltage difference between the two battery cells 1 and control each discharge circuit 21. The discharge circuit 21 includes a series circuit of a discharge resistor 24 and a discharge switch 25.
 図2に示す隣接均等化回路5Aの電圧比較器23は、差動アンプ26を備えている。差動アンプ26は、ふたつの電池セル1を接続している接続点28を一方の入力端子に、セルブロック2の正負の端子に接続している分圧抵抗27の中点を他方の入力端子に接続している。分圧抵抗27は、同じ電気抵抗の抵抗器からなり、中点の電圧はセルブロック2の両端電圧の中間電位となる。 2 is provided with a differential amplifier 26. The voltage comparator 23 of the adjacent equalization circuit 5A shown in FIG. The differential amplifier 26 has a connection point 28 connecting the two battery cells 1 as one input terminal and a midpoint of the voltage dividing resistor 27 connected to the positive and negative terminals of the cell block 2 as the other input terminal. Connected to. The voltage dividing resistor 27 is a resistor having the same electric resistance, and the voltage at the midpoint is an intermediate potential between the voltages at both ends of the cell block 2.
 この電圧比較器23は、図2においてプラス側の電池セル1の電圧が高いと、差動アンプ26がプラス電圧を出力する。差動アンプ26がプラス電圧を出力すると、図2において上側に接続している放電スイッチ25のトランジスタ25aにベース電流が流れてオン状態となり、下側の放電スイッチ25のトランジスタ25bにはベース電流が流れることなくオフ状態となる。この状態で、上側、すなわちプラス側の電池セル1が放電されて、電圧が低下する。プラス側の電池セル1の電圧が低下して、上下の電池セル1の電圧が等しくなると、差動アンプ26の出力は0Vとなり、上下の放電スイッチ25であるトランジスタ25a、25bはともにオフ状態となる。すなわち、電池セル1の電圧が均等化されると、放電スイッチ25はオフ状態となる。 In the voltage comparator 23, when the voltage of the battery cell 1 on the plus side in FIG. 2 is high, the differential amplifier 26 outputs a plus voltage. When the differential amplifier 26 outputs a positive voltage, a base current flows through the transistor 25a of the discharge switch 25 connected to the upper side in FIG. 2 to be turned on, and a base current is supplied to the transistor 25b of the lower discharge switch 25. It turns off without flowing. In this state, the battery cell 1 on the upper side, that is, the positive side is discharged, and the voltage decreases. When the voltage of the battery cell 1 on the positive side decreases and the voltages of the upper and lower battery cells 1 become equal, the output of the differential amplifier 26 becomes 0 V, and the transistors 25a and 25b that are the upper and lower discharge switches 25 are both turned off. Become. That is, when the voltage of the battery cell 1 is equalized, the discharge switch 25 is turned off.
 また、この電圧比較器23は、図2においてマイナス側の電池セル1の電圧が高いと、差動アンプ26がマイナス電圧を出力する。差動アンプ26がマイナス電圧を出力すると、図2において下側に接続している放電スイッチ25のトランジスタ25bにベース電流が流れてオン状態となり、上側の放電スイッチ25のトランジスタ25aにはベース電流が流れることなくオフ状態となる。この状態で、下側、すなわちマイナス側の電池セル1が放電されて、電圧が低下する。マイナス側の電池セル1の電圧が低下して、上下の電池セル1の電圧が等しくなると、差動アンプ26の出力は0Vとなり、上下の放電スイッチ25であるトランジスタ25a、25bはオフ状態となる。すなわち、電池セル1の電圧が均等化されると、放電スイッチ25はオフ状態となる。 Further, in the voltage comparator 23, when the voltage of the negative battery cell 1 in FIG. 2 is high, the differential amplifier 26 outputs a negative voltage. When the differential amplifier 26 outputs a negative voltage, a base current flows through the transistor 25b of the discharge switch 25 connected to the lower side in FIG. 2, and the base current flows to the transistor 25a of the upper discharge switch 25. It turns off without flowing. In this state, the battery cell 1 on the lower side, that is, the negative side is discharged, and the voltage decreases. When the voltage of the negative battery cell 1 decreases and the voltages of the upper and lower battery cells 1 become equal, the output of the differential amplifier 26 becomes 0 V, and the transistors 25a and 25b, which are the upper and lower discharge switches 25, are turned off. . That is, when the voltage of the battery cell 1 is equalized, the discharge switch 25 is turned off.
 図3の隣接均等化回路5Bは、ふたつの電池セル1を、所定の偏差電圧を設けて均等化する。偏差電圧は、たとえば5mV~20mVとする。この隣接均等化回路5Bの電圧比較器33は、一対の差動アンプ36を備えている。一対の差動アンプ36は、マイナス側入力端子をふたつの電池セル1を接続している接続点28に接続して、プラス側入力端子を、分圧抵抗37の中間に接続している、偏差電圧を発生する中間抵抗38の両端に接続している。差動アンプ36のプラス側入力端子は、互いにクロスするように、中間抵抗38の両端に接続している。 The adjacent equalization circuit 5B in FIG. 3 equalizes the two battery cells 1 by providing a predetermined deviation voltage. The deviation voltage is, for example, 5 mV to 20 mV. The voltage comparator 33 of the adjacent equalization circuit 5B includes a pair of differential amplifiers 36. The pair of differential amplifiers 36 have a negative input terminal connected to a connection point 28 connecting the two battery cells 1 and a positive input terminal connected to the middle of the voltage dividing resistor 37. It is connected to both ends of an intermediate resistor 38 that generates a voltage. The positive input terminals of the differential amplifier 36 are connected to both ends of the intermediate resistor 38 so as to cross each other.
 この電圧比較器33は、図3において、プラス側の電池セル1の電圧がマイナス側の電池セル1の電圧よりも偏差電圧以上に高いと、プラス側差動アンプ36Aとマイナス側差動アンプ36Bがともにプラス電圧を出力する。プラス側差動アンプ36Aがプラス電圧を出力すると、図3において上側に接続している放電スイッチ25のトランジスタ25aにベース電流が流れて、プラス側の放電スイッチ25はオン状態となるが、マイナス側差動アンプ36Bがプラス電圧を出力しても、下側の放電スイッチ25のトランジスタ25bにはベース電流が流れることなく、マイナス側の放電スイッチ25はオフ状態となる。この状態で、上側、すなわちプラス側の電池セル1が放電されて、電圧差が偏差電圧よりも小さくなると、プラス側差動アンプ36Aはマイナス電圧を出力して、上側に接続している放電スイッチ25のトランジスタ25aをオフ状態とする。すなわち、電池セル1の電圧が偏差電圧以下に均等化されると、両方の放電スイッチ25はオフ状態となる。 In FIG. 3, when the voltage of the positive battery cell 1 is higher than the deviation voltage than the voltage of the negative battery cell 1, the voltage comparator 33 is connected to the positive differential amplifier 36A and the negative differential amplifier 36B. Both output a positive voltage. When the positive side differential amplifier 36A outputs a positive voltage, a base current flows through the transistor 25a of the discharge switch 25 connected to the upper side in FIG. 3, and the positive side discharge switch 25 is turned on. Even if the differential amplifier 36B outputs a positive voltage, the base current does not flow through the transistor 25b of the lower discharge switch 25, and the negative discharge switch 25 is turned off. In this state, when the battery cell 1 on the upper side, that is, the positive side is discharged, and the voltage difference becomes smaller than the deviation voltage, the positive side differential amplifier 36A outputs a negative voltage and is connected to the upper side. The 25 transistors 25a are turned off. That is, when the voltage of the battery cell 1 is equalized below the deviation voltage, both the discharge switches 25 are turned off.
 また、この電圧比較器33は、図3において、マイナス側の電池セル1の電圧がプラス側の電池セル1の電圧よりも偏差電圧以上に高いと、プラス側差動アンプ36Aとマイナス側差動アンプ36Bがともにマイナス電圧を出力する。マイナス側差動アンプ36Bがマイナス電圧を出力すると、図3において下側に接続している放電スイッチ25のトランジスタ25bにベース電流が流れて、マイナス側の放電スイッチ25はオン状態となるが、プラス側差動アンプ36Aがマイナス電圧を出力しても、上側の放電スイッチ25のトランジスタ25aにはベース電流が流れることなく、プラス側の放電スイッチ25はオフ状態となる。この状態で、下側、すなわちマイナス側の電池セル1が放電されて、電圧差が偏差電圧よりも小さくなると、マイナス側差動アンプ36Bはプラス電圧を出力して、下側に接続している放電スイッチ25のトランジスタ25bをオフ状態とする。すなわち、電池セル1の電圧が偏差電圧以下に均等化されると、両方の放電スイッチ25はオフ状態となる。 Further, in FIG. 3, when the voltage of the negative battery cell 1 is higher than the voltage of the positive battery cell 1, the voltage comparator 33 is connected to the positive differential amplifier 36A and the negative differential. Both amplifiers 36B output a negative voltage. When the minus side differential amplifier 36B outputs a minus voltage, a base current flows through the transistor 25b of the discharge switch 25 connected to the lower side in FIG. 3, and the minus side discharge switch 25 is turned on. Even if the side differential amplifier 36A outputs a negative voltage, the base current does not flow through the transistor 25a of the upper discharge switch 25, and the positive side discharge switch 25 is turned off. In this state, when the battery cell 1 on the lower side, that is, the negative side is discharged and the voltage difference becomes smaller than the deviation voltage, the negative side differential amplifier 36B outputs a positive voltage and is connected to the lower side. The transistor 25b of the discharge switch 25 is turned off. That is, when the voltage of the battery cell 1 is equalized below the deviation voltage, both the discharge switches 25 are turned off.
 以上の隣接均等化回路5A、5Bは、簡単な回路構成としてコンパクト化しながら、電池セル1の電圧差で放電スイッチ25をオンオフに切り換えてふたつの電池セル1を安定して均等化できる。とくに、電圧比較器23、33でふたつの電池セル1の電圧差を検出して各放電回路21を制御することで、リアルタイムに電池セル1同士を均等化できる。また、簡単な回路構成にできる隣接均等化回路5A、5Bは、省スペースに配置できるので、電池セル1に接近して配置できる。このように、隣接均等化回路5をセルブロック2に接近して配置することで、セルブロック2と隣接均等化回路5とで電池ブロック9を構成し、セルブロック2と隣接均等化回路5とを電池ブロック9単位でまとめて扱うことも可能となる。 The adjacent equalization circuits 5A and 5B can be made compact with a simple circuit configuration, and can stably equalize the two battery cells 1 by switching the discharge switch 25 on and off by the voltage difference of the battery cells 1. In particular, the voltage comparators 23 and 33 can detect the voltage difference between the two battery cells 1 and control each discharge circuit 21 to equalize the battery cells 1 in real time. In addition, the adjacent equalization circuits 5A and 5B that can have a simple circuit configuration can be arranged in a space-saving manner, and therefore can be arranged close to the battery cell 1. Thus, by arranging the adjacent equalization circuit 5 close to the cell block 2, the cell block 2 and the adjacent equalization circuit 5 constitute a battery block 9, and the cell block 2 and the adjacent equalization circuit 5 Can be handled collectively in units of 9 battery blocks.
 図2と図3に示す隣接均等化回路5A、5Bは、ふたつの電池セル1の電圧を均等化する。これらの隣接均等化回路5A、5Bは、図4に示すように、多段に接続して4個の電池セル1の電圧を均等化できる。図4の電源装置は、隣接するふたつの電池セル1を第1隣接均等化回路5Xで均等化し、第1隣接均等化回路5Xで均等化されたふたつの電池セル1を直列に接続しているセルブロック20を第2隣接均等化回路5Yで均等化する。第1隣接均等化回路5Xと第2隣接均等化回路5Yには、図2と図3に示す隣接均等化回路5A、5Bが使用できる。ふたつの電池セル1を均等化する隣接均等化回路5A、5Bは、図4に示すように、多段に接続して2個の電池セル1を均等化できる。この電源装置も、セルブロック20、及び第1隣接均等化回路5Xと第2隣接均等化回路5Yとからなる隣接均等化回路5で電池ブロック29を構成しており、複数の電池ブロック29同士を、メイン均等化回路4で均等化する構造としている。 Adjacent equalization circuits 5A and 5B shown in FIGS. 2 and 3 equalize the voltages of the two battery cells 1. As shown in FIG. 4, these adjacent equalization circuits 5 </ b> A and 5 </ b> B can be connected in multiple stages to equalize the voltages of the four battery cells 1. The power supply apparatus of FIG. 4 equalizes two adjacent battery cells 1 with a first adjacent equalization circuit 5X, and connects the two battery cells 1 equalized with the first adjacent equalization circuit 5X in series. The cell block 20 is equalized by the second adjacent equalization circuit 5Y. The adjacent equalization circuits 5A and 5B shown in FIGS. 2 and 3 can be used for the first adjacent equalization circuit 5X and the second adjacent equalization circuit 5Y. Adjacent equalization circuits 5A and 5B for equalizing two battery cells 1 can be connected in multiple stages to equalize 2n battery cells 1 as shown in FIG. Also in this power supply device, the battery block 29 is configured by the cell block 20 and the adjacent equalization circuit 5 including the first adjacent equalization circuit 5X and the second adjacent equalization circuit 5Y. The main equalization circuit 4 performs equalization.
 さらに、図5は、セルブロック20を複数の電池セル1で構成して、このセルブロック20を構成する複数の電池セル1を均等化する隣接均等化回路5Cを示している。図5は、4個の電池セル1を均等化するアナログ回路からなる隣接均等化回路5Cを示している。この隣接均等化回路5Cは、各電池セル1に接続している放電回路21と、放電回路21の放電スイッチ25であるトランジスタをオンオフにスイッチングする制御回路41とを備えている。 Further, FIG. 5 shows an adjacent equalization circuit 5 </ b> C that configures the cell block 20 by a plurality of battery cells 1 and equalizes the plurality of battery cells 1 constituting the cell block 20. FIG. 5 shows an adjacent equalization circuit 5 </ b> C composed of an analog circuit that equalizes the four battery cells 1. The adjacent equalization circuit 5C includes a discharge circuit 21 connected to each battery cell 1, and a control circuit 41 that switches a transistor that is a discharge switch 25 of the discharge circuit 21 on and off.
 制御回路41は、セル電圧切り出し回路42と最低電圧検出回路43と放電セル判定回路44とレベルシフト回路45とを備える。セル電圧切り出し回路42は、各電池セル1の電圧を出力する差動アンプ46からなる。最低電圧検出回路43は、セル電圧切り出し回路42から出力される各セル電圧の最低電圧を検出する。放電セル判定回路44は、最低電圧検出回路43から出力される最低電圧を一方の入力端子に入力している差動アンプ47からなる。レベルシフト回路45は、放電セル判定回路44の出力信号を直流レベルシフトして、各放電スイッチ25をオンオフに制御する。 The control circuit 41 includes a cell voltage extraction circuit 42, a minimum voltage detection circuit 43, a discharge cell determination circuit 44, and a level shift circuit 45. The cell voltage extraction circuit 42 includes a differential amplifier 46 that outputs the voltage of each battery cell 1. The lowest voltage detection circuit 43 detects the lowest voltage of each cell voltage output from the cell voltage extraction circuit 42. The discharge cell determination circuit 44 includes a differential amplifier 47 that inputs the minimum voltage output from the minimum voltage detection circuit 43 to one input terminal. The level shift circuit 45 shifts the output signal of the discharge cell determination circuit 44 by a direct current level and controls each discharge switch 25 to be turned on / off.
 図6は、4個の電池セル1の電圧から最低電圧を検出する最低電圧検出回路43を示している。この最低電圧検出回路43は、アナログマルチプレクサ51を備える。アナログマルチプレクサ51は、マルチプレクサ52のS端子にコンパレータ53の出力を接続し、コンパレータ53の入力端子はマルチプレクサ52のD0端子とD1端子に入力されるふたつの電池セル1の電圧を入力している。このアナログマルチプレクサ51は、D0端子とD1端子に入力されるふたつのアナログ電圧を比較して、低い電圧を出力する。図6の最低電圧検出回路43は、アナログマルチプレクサ51を2段に接続して、4個の電池セル1の最低電圧を出力する。 FIG. 6 shows a minimum voltage detection circuit 43 that detects the minimum voltage from the voltages of the four battery cells 1. The minimum voltage detection circuit 43 includes an analog multiplexer 51. The analog multiplexer 51 connects the output of the comparator 53 to the S terminal of the multiplexer 52, and the input terminal of the comparator 53 inputs the voltages of the two battery cells 1 input to the D 0 terminal and D 1 terminal of the multiplexer 52. The analog multiplexer 51 compares two analog voltages input to the D0 terminal and the D1 terminal, and outputs a low voltage. The lowest voltage detection circuit 43 in FIG. 6 connects the analog multiplexers 51 in two stages and outputs the lowest voltage of the four battery cells 1.
 放電セル判定回路44は、一方の入力端子(図5においてマイナス側入力端子)に最低電圧検出回路43から出力される電池セル1の最低電圧を入力して、他方の入力端子(図5においてプラス側入力端子)にはセル電圧切り出し回路42から各電池セル1の電圧を入力している差動アンプ47を備える。この放電セル判定回路44は、最低電圧よりも高い電池セル1の電圧が入力される差動アンプ47がプラス信号のオン信号を出力する。オン信号は、レベルシフト回路45でレベルシフトされて、放電回路21の放電スイッチ25をオン状態とする。 The discharge cell determination circuit 44 inputs the lowest voltage of the battery cell 1 output from the lowest voltage detection circuit 43 to one input terminal (minus side input terminal in FIG. 5), and the other input terminal (plus in FIG. 5). Side input terminal) is provided with a differential amplifier 47 to which the voltage of each battery cell 1 is input from the cell voltage extraction circuit 42. In the discharge cell determination circuit 44, the differential amplifier 47 to which the voltage of the battery cell 1 higher than the minimum voltage is input outputs a positive signal ON signal. The on signal is level-shifted by the level shift circuit 45 to turn on the discharge switch 25 of the discharge circuit 21.
 図5の隣接均等化回路5Cは、最低電圧検出回路43の出力側に、電池セル1の電圧に偏差電圧を加算する回路(図示せず)を接続して、放電セル判定回路44に入力して、電池セル1に偏差電圧を設けて均等化できる。また、放電セル判定回路44の出力側に、放電スイッチ25をオンオフに切り換える時間間隔を所定の時間、たとえば0.3秒~5秒よりも遅くする低速制御回路(図示せず)を接続することができる。この隣接均等化回路5Cは、放電スイッチ25が短い時間でオンオフに切り換えられることがなく、安定して電池セル1を均等化できる。 The adjacent equalization circuit 5C in FIG. 5 connects a circuit (not shown) that adds a deviation voltage to the voltage of the battery cell 1 on the output side of the minimum voltage detection circuit 43 and inputs it to the discharge cell determination circuit 44. Thus, the battery cell 1 can be equalized by providing a deviation voltage. Further, a low speed control circuit (not shown) for delaying the time interval for switching on / off the discharge switch 25 to a predetermined time, for example, 0.3 seconds to 5 seconds is connected to the output side of the discharge cell determination circuit 44. Can do. The adjacent equalization circuit 5C can equalize the battery cells 1 stably without the discharge switch 25 being switched on and off in a short time.
 以上の隣接均等化回路5Cは、セルブロック20を構成する複数の電池セル1の最低電圧を検出し、この最低電圧よりも電圧が高い電池セル1に接続している放電回路21で放電することで、複数の電池セル1を安定して均等化できる。なお、図5は、4個の電池セル1を均等化する隣接均等化回路5Cを例示するが、この回路構成の隣接均等化回路は、3個以下、あるいは5個以上の電池セルを均等化することもできる。 The adjacent equalization circuit 5C described above detects the lowest voltage of the plurality of battery cells 1 constituting the cell block 20, and discharges it by the discharge circuit 21 connected to the battery cell 1 having a voltage higher than the lowest voltage. Thus, the plurality of battery cells 1 can be stably equalized. 5 illustrates the adjacent equalization circuit 5C that equalizes the four battery cells 1. However, the adjacent equalization circuit having this circuit configuration equalizes three or less battery cells or five or more battery cells. You can also
 以上の電源装置は、車載用のバッテリシステムとして利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッドカーやプラグインハイブリッドカー、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。 The above power supply device can be used as an in-vehicle battery system. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric car that runs only with a motor can be used, and it is used as a power source for these vehicles. .
 図7に、エンジンとモータの両方で走行するハイブリッドカーに電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池セルを充電する発電機94と、エンジン96、モータ93、電源装置100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池セルを充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池セルを充電する。 FIG. 7 shows an example in which a power supply device is mounted on a hybrid car that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and power generation that charges a battery cell of the power supply device 100. A vehicle body 90 on which a machine 94, an engine 96, a motor 93, a power supply device 100, and a generator 94 are mounted, and wheels 97 driven by the engine 96 or the motor 93 to drive the vehicle body 90. . The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery cell of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked, and charges the battery cell of the power supply device 100.
 また、図8に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池セルを充電する発電機94と、モータ93、電源装置100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池セルを充電する。 FIG. 8 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery cell of the power supply device 100. 94, a vehicle main body 90 on which the motor 93, the power supply device 100, and the generator 94 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body 90. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV, and charges the battery cell of the power supply device 100.
 以上の車両では、電源装置の直列電池群10を構成する多数の電池セル1を均等化する均等化回路3を簡単にしながら、配線を簡略できる。それは、この電源装置が、各セルブロック2を構成する複数の電池セル1同士を隣接均等化回路5で独立して均等化し、直列電池群10を構成する複数のセルブロック2同士をメイン均等化回路4で独立して均等化するからである。とくに、この電源装置は、隣接均等化回路5をセルブロック2に接近して配置することで、隣接均等化回路5をセルブロック2に接続するリードライン6Bを短くして配線を簡単にできる。また、複数の電池セル1で構成されるセルブロック2の両端のみをリードライン6Aでメイン均等化回路4に接続するので、メイン均等化回路4に接続するリードライン6Aの数を少なくして、リードライン6Aの配線を簡単にできる。このように、電池セル1に接続されるリードライン6の配線を簡単にできる電源装置は、走行中の振動等による断線などの故障を極減して信頼性を高くできるという、車両に搭載される電源装置にとって理想的な特徴を実現できる。 In the above vehicle, the wiring can be simplified while simplifying the equalization circuit 3 that equalizes the large number of battery cells 1 constituting the series battery group 10 of the power supply device. This is because the power supply device equalizes the plurality of battery cells 1 constituting each cell block 2 independently by the adjacent equalization circuit 5 and main equalizes the plurality of cell blocks 2 constituting the series battery group 10. This is because the circuit 4 performs equalization independently. In particular, in this power supply device, by arranging the adjacent equalization circuit 5 close to the cell block 2, the lead line 6B connecting the adjacent equalization circuit 5 to the cell block 2 can be shortened and wiring can be simplified. Moreover, since only the both ends of the cell block 2 comprised by the some battery cell 1 are connected to the main equalization circuit 4 with the lead line 6A, the number of the lead lines 6A connected to the main equalization circuit 4 is reduced, Wiring of the lead line 6A can be simplified. As described above, the power supply device that can simplify the wiring of the lead line 6 connected to the battery cell 1 is mounted on a vehicle that can greatly reduce failures such as disconnection due to vibrations during traveling and increase reliability. This makes it possible to achieve ideal characteristics for power supply devices.
 さらに、以上の電源装置は、太陽電池や風力発電などの自然エネルギーの発電電力で充電するバッテリシステムとして使用することができ、また電動バイク、電動自転車、電動工具などの電源として使用することもできる。 Furthermore, the above power supply device can be used as a battery system that is charged with the generated power of natural energy such as solar cells or wind power generation, and can also be used as a power source for electric motorcycles, electric bicycles, electric tools, etc. .
 本発明に係る電源装置及びこの電源装置を備える車両は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。また車載用に限られず、例えばアシスト自転車や電動バイク、電動工具用のバッテリとしても利用できる。 The power supply apparatus according to the present invention and the vehicle including the power supply apparatus can be suitably used as a power supply apparatus for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode. . Moreover, it is not restricted to vehicle-mounted use, For example, it can utilize also as a battery for assist bicycles, electric motorcycles, and electric tools.
100…電源装置
  1…電池セル
  2…セルブロック
  3…均等化回路
  4…メイン均等化回路
  5…隣接均等化回路        5A…隣接均等化回路
                   5B…隣接均等化回路
                   5C…隣接均等化回路
                   5X…第1隣接均等化回路
                   5Y…第2隣接均等化回路
  6…リードライン         6A…リードライン

                   6B…リードライン
  9…電池ブロック
 10…直列電池群
 11…放電回路
 12…制御回路
 13…ブロック電圧検出回路
 14…放電抵抗
 15…放電スイッチ
 16…マイコン
 20…セルブロック
 21…放電回路
 23…電圧比較器
 24…放電抵抗
 25…放電スイッチ        25a…トランジスタ
                  25b…トランジスタ
 26…差動アンプ
 27…分圧抵抗
 28…接続点
 29…電池ブロック
 33…電圧比較器
 36…差動アンプ         36A…プラス側差動アンプ
                  36B…マイナス側差動アンプ
 37…分圧抵抗
 38…中間抵抗
 41…制御回路
 42…セル電圧切り出し回路
 43…最低電圧検出回路
 44…放電セル判定回路
 45…レベルシフト回路
 46…差動アンプ
 47…差動アンプ
 51…アナログマルチプレクサ
 52…マルチプレクサ
 53…コンパレータ
 90…車両本体
 93…モータ
 94…発電機
 95…DC/ACインバータ
 96…エンジン
 97…車輪
 EV…車両
 HV…車両
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Battery cell 2 ... Cell block 3 ... Equalization circuit 4 ... Main equalization circuit 5 ... Adjacent equalization circuit 5A ... Adjacent equalization circuit 5B ... Adjacent equalization circuit 5C ... Adjacent equalization circuit 5X ... No. 1 adjacent equalization circuit 5Y ... 2nd adjacent equalization circuit 6 ... lead line 6A ... lead line

6B ... Lead line 9 ... Battery block 10 ... Series battery group 11 ... Discharge circuit 12 ... Control circuit 13 ... Block voltage detection circuit 14 ... Discharge resistor 15 ... Discharge switch 16 ... Microcomputer 20 ... Cell block 21 ... Discharge circuit 23 ... Voltage comparison 24 ... Discharge resistor 25 ... Discharge switch 25a ... Transistor 25b ... Transistor 26 ... Differential amplifier 27 ... Voltage divider 28 ... Connection point 29 ... Battery block 33 ... Voltage comparator 36 ... Differential amplifier 36A ... Plus side differential amplifier 36B ... Negative side differential amplifier 37 ... Voltage dividing resistor 38 ... Intermediate resistor 41 ... Control circuit 42 ... Cell voltage extraction circuit 43 ... Minimum voltage detection circuit 44 ... Discharge cell determination circuit 45 ... Level shift circuit 46 ... Differential amplifier 47 ... Differential amplifier 51 ... Analog multiplexer 2 ... The multiplexer 53 ... comparator 90 ... vehicle body 93 ... motor 94 ... generator 95 ... DC / AC inverter 96 ... Engine 97 ... wheel EV ... vehicle HV ... vehicle

Claims (8)

  1.  複数の電池セルを直列に接続してなる直列電池群と、前記直列電池群を構成する複数の電池セルを均等化する均等化回路を備える電源装置であって、
     前記直列電池群は、複数の電池セルを接続してなる複数のセルブロックを直列に接続しており、
     前記均等化回路は、前記直列電池群を構成する複数のセルブロック同士を均等化するメイン均等化回路と、前記セルブロックを構成する複数の電池セル同士を均等化する隣接均等化回路とを備え、
     前記メイン均等化回路と前記隣接均等化回路とを、それぞれ独立して均等化する異なる回路構成としてなることを特徴とする電源装置。
    A power supply device comprising a series battery group formed by connecting a plurality of battery cells in series, and an equalization circuit for equalizing a plurality of battery cells constituting the series battery group,
    In the series battery group, a plurality of cell blocks formed by connecting a plurality of battery cells are connected in series,
    The equalization circuit includes a main equalization circuit that equalizes a plurality of cell blocks constituting the series battery group, and an adjacent equalization circuit that equalizes a plurality of battery cells constituting the cell block. ,
    The power supply apparatus according to claim 1, wherein the main equalization circuit and the adjacent equalization circuit have different circuit configurations that equalize each independently.
  2.  前記セルブロック及び該セルブロックを構成してなる複数の電池セル同士を均等化する隣接均等化回路とで電池ブロックを構成しており、
     前記メイン均等化回路が、複数の電池ブロック同士を均等化する請求項1に記載される電源装置。
    A battery block is configured with the cell block and an adjacent equalization circuit that equalizes a plurality of battery cells that constitute the cell block,
    The power supply device according to claim 1, wherein the main equalization circuit equalizes a plurality of battery blocks.
  3.  前記メイン均等化回路と前記隣接均等化回路とを、リードラインを介して前記電池セルに接続しており、
     前記隣接均等化回路を前記セルブロックに接続するリードラインを、前記メイン均等化回路を前記電池セルに接続するリードラインよりも短くしてなる請求項1または2に記載される電源装置。 
    The main equalization circuit and the adjacent equalization circuit are connected to the battery cell via a lead line,
    The power supply device according to claim 1 or 2, wherein a lead line connecting the adjacent equalization circuit to the cell block is shorter than a lead line connecting the main equalization circuit to the battery cell.
  4.  前記メイン均等化回路が、デジタル処理して前記複数のセルブロック同士を均等化するデジタル回路を備え、前記隣接均等化回路が、アナログ処理して前記複数の電池セル同士を均等化するアナログ回路である請求項1から3のいずれかに記載される電源装置。 The main equalization circuit includes a digital circuit that performs digital processing to equalize the plurality of cell blocks, and the adjacent equalization circuit is an analog circuit that performs analog processing to equalize the plurality of battery cells. The power supply device according to any one of claims 1 to 3.
  5.  前記メイン均等化回路が、各セルブロックを放電して均等化する放電回路と、前記放電回路の放電状態を制御するマイコンを備える制御回路と、前記制御回路に各セルブロックの電圧を入力するブロック電圧検出回路とを備え、
     前記制御回路が、前記ブロック電圧検出回路で検出される前記セルブロックの電圧をデジタル処理して前記放電回路を制御して複数のセルブロック同士を均等化する請求項1から4のいずれかに記載される電源装置。
    A main equalization circuit that discharges and equalizes each cell block; a control circuit that includes a microcomputer that controls a discharge state of the discharge circuit; and a block that inputs a voltage of each cell block to the control circuit A voltage detection circuit,
    The said control circuit digitally processes the voltage of the said cell block detected by the said block voltage detection circuit, controls the said discharge circuit, and equalizes several cell blocks. Power supply.
  6.  前記セルブロックがふたつの電池セルからなり、
     前記隣接均等化回路が、各電池セルに接続してなる放電抵抗と放電スイッチとからなる放電回路と、前記ふたつの電池セルの電圧差を検出して前記放電回路を制御する電圧比較器とを備え、
     前記電圧比較器が、各電池セルの電圧差を検出して、電圧の高い方の電池セルに接続してなる放電スイッチをオン状態に制御し、電圧の低い方の電池セルに接続してなる放電スイッチをオフ状態に制御して、前記放電抵抗において放電させることでふたつの電池セルを均等化する請求項1から5のいずれかに記載される電源装置。
    The cell block consists of two battery cells,
    The adjacent equalization circuit includes a discharge circuit composed of a discharge resistor and a discharge switch connected to each battery cell, and a voltage comparator that detects the voltage difference between the two battery cells and controls the discharge circuit. Prepared,
    The voltage comparator detects a voltage difference between the battery cells, controls the discharge switch connected to the battery cell having the higher voltage to be turned on, and is connected to the battery cell having the lower voltage. The power supply device according to any one of claims 1 to 5, wherein two battery cells are equalized by controlling a discharge switch to an off state and discharging the discharge switch at the discharge resistor.
  7.  前記セルブロックが複数の電池セルからなり、
     前記隣接均等化回路が、各電池セルに接続してなる放電抵抗と放電スイッチとからなる放電回路と、
     各電池セルの最低電圧を検出する最低電圧検出回路と、
     前記最低電圧検出回路で検出される最低電圧を各電池セルの電圧に比較して、最低電圧よりも電圧が高い電池セルに接続している放電回路の放電スイッチをオンに制御する放電セル判定回路とを備え、
     セル電圧が最低電圧よりも高い電池セルの放電回路を放電状態として、セルブロックを構成する複数の電池セル同士を均等化する請求項1から5のいずれかに記載される電源装置。
    The cell block comprises a plurality of battery cells;
    A discharge circuit comprising a discharge resistor and a discharge switch connected to each battery cell, the adjacent equalization circuit;
    A minimum voltage detection circuit for detecting the minimum voltage of each battery cell;
    A discharge cell determination circuit that controls a discharge switch of a discharge circuit connected to a battery cell having a voltage higher than the minimum voltage to turn on by comparing a minimum voltage detected by the minimum voltage detection circuit with a voltage of each battery cell And
    The power supply device according to any one of claims 1 to 5, wherein a plurality of battery cells constituting a cell block are equalized by setting a discharge circuit of a battery cell having a cell voltage higher than a minimum voltage to a discharge state.
  8.  請求項1から7のいずれかに記載の電源装置を備えてなる車両であって、
     前記電源装置と、該電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とする電源装置を備える車両。
    A vehicle comprising the power supply device according to claim 1,
    The power supply device, a traveling motor supplied with power from the power supply device, a vehicle main body on which the power supply device and the motor are mounted, and wheels that are driven by the motor and cause the vehicle main body to travel. A vehicle provided with the power supply device characterized by the above.
PCT/JP2013/061458 2012-04-27 2013-04-18 Power supply apparatus and vehicle provided with power supply apparatus WO2013161656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012103934A JP2015133766A (en) 2012-04-27 2012-04-27 Power supply unit and vehicle including power supply unit
JP2012-103934 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161656A1 true WO2013161656A1 (en) 2013-10-31

Family

ID=49482978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061458 WO2013161656A1 (en) 2012-04-27 2013-04-18 Power supply apparatus and vehicle provided with power supply apparatus

Country Status (2)

Country Link
JP (1) JP2015133766A (en)
WO (1) WO2013161656A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035683B1 (en) * 2015-11-30 2019-10-23 주식회사 엘지화학 Apparatus and method for battery cell balancing
JP2017139927A (en) * 2016-02-05 2017-08-10 株式会社東芝 Battery and electric bicycle
KR102167428B1 (en) 2016-10-21 2020-10-20 주식회사 엘지화학 Effective battery cell-balancing method and system through the duty control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312443A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Module battery controller, module battery unit and module battery control method
JP2009296777A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Power storage controller and vehicle
JP2010142039A (en) * 2008-12-12 2010-06-24 Macnica Inc Electrical energy storage device
JP2010141957A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery pack
JP2011030399A (en) * 2009-07-29 2011-02-10 Primearth Ev Energy Co Ltd Battery pack manager

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312443A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Module battery controller, module battery unit and module battery control method
JP2009296777A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Power storage controller and vehicle
JP2010141957A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery pack
JP2010142039A (en) * 2008-12-12 2010-06-24 Macnica Inc Electrical energy storage device
JP2011030399A (en) * 2009-07-29 2011-02-10 Primearth Ev Energy Co Ltd Battery pack manager

Also Published As

Publication number Publication date
JP2015133766A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5865013B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
JP5789846B2 (en) Power supply device for vehicle and vehicle equipped with this power supply device
US10427547B2 (en) Quick charging device
JP5911673B2 (en) Power supply
US8970062B2 (en) Automotive power source apparatus and vehicle equipped with the power source apparatus
US9783037B2 (en) Vehicle
US20110074354A1 (en) Car power source apparatus, and capacity equalizing method for the car power source apparatus
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
JP5602353B2 (en) Power supply for vehicle
JPWO2013057820A1 (en) Battery system monitoring device and power storage device including the same
JP2012135140A (en) Battery control device, and power storage device having the same
JPWO2011148926A1 (en) Power supply
US9059588B2 (en) Balance correcting apparatus, electricity storage system, and transportation device
JP5709601B2 (en) Power storage device and voltage equalization method for power storage device
EP2506389A2 (en) Auxiliary battery charging apparatus
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
WO2012133706A1 (en) Power supply system, power supply device, and vehicle equipped with power supply system or power supply device
WO2013161656A1 (en) Power supply apparatus and vehicle provided with power supply apparatus
KR20190027450A (en) The structure for traction battery by switching series and parallel in two modes
JP5940363B2 (en) Power supply device and vehicle equipped with this power supply device
IT201900001099A1 (en) GROUP AND METHOD OF CHARGING AND POWER SUPPLY FOR AN ELECTRIC VEHICLE, AND ELECTRIC VEHICLE INCLUDING THE CHARGING AND POWER UNIT
CN104081621A (en) Charge equalization method for battery elements, battery system and motor vehicle having said battery system
JP5382070B2 (en) Cell balance device
JP2013074708A (en) Vehicular power unit and vehicle with the same
US11469600B2 (en) Electrical energy store, device and method for operating an electrical energy store

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP