WO2013161592A1 - 音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム - Google Patents

音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム Download PDF

Info

Publication number
WO2013161592A1
WO2013161592A1 PCT/JP2013/061105 JP2013061105W WO2013161592A1 WO 2013161592 A1 WO2013161592 A1 WO 2013161592A1 JP 2013061105 W JP2013061105 W JP 2013061105W WO 2013161592 A1 WO2013161592 A1 WO 2013161592A1
Authority
WO
WIPO (PCT)
Prior art keywords
time envelope
signal
unit
information
high frequency
Prior art date
Application number
PCT/JP2013/061105
Other languages
English (en)
French (fr)
Inventor
菊入 圭
山口 貴史
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP22178627.0A priority Critical patent/EP4086898A1/en
Priority to EP13781215.2A priority patent/EP2843658A4/en
Priority to CN201380021992.XA priority patent/CN104246876B/zh
Publication of WO2013161592A1 publication Critical patent/WO2013161592A1/ja
Priority to US14/523,260 priority patent/US9761240B2/en
Priority to US15/635,191 priority patent/US10068584B2/en
Priority to US16/047,904 priority patent/US10714113B2/en
Priority to US16/894,748 priority patent/US11562760B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • the present invention relates to a speech decoding device, a speech encoding device, a speech decoding method, a speech encoding method, a speech decoding program, and a speech encoding program.
  • the speech coding technology that compresses the data amount of speech signals and acoustic signals to several tenths is an extremely important technology in signal transmission / storage.
  • Examples of widely used speech coding techniques include code-excited linear predictive coding (CELP) that encodes signals in the time domain, transform code excitation coding (TCX) that encodes signals in the frequency domain, Examples include “MPEG4 AAC” standardized by “ISO / IEC MPEG”.
  • band extension technology for generating high-frequency components using low-frequency components of speech has been widely used in recent years.
  • a typical example of bandwidth expansion technology is SBR (Spectral Band Replication) technology used in “MPEG4 AAC”.
  • the time envelope shape of a decoded signal obtained by decoding an encoded sequence obtained by encoding an input signal is significantly different from the time envelope shape of the input signal and may be perceived as distortion.
  • a high frequency component is generated using a signal obtained by encoding / decoding a low frequency component of a voice signal using the voice coding technique as described above.
  • the time envelope shape of high frequency components is also different and may be perceived as distortion.
  • the following technique is known as a technique for solving this problem (see Patent Document 1 below). That is, in order to generate a high frequency component, the high frequency component is divided into frequency bands within an arbitrary time segment, and when energy information for each frequency band is calculated and encoded, the energy for each frequency band is calculated. Is calculated and encoded for each time segment shorter than the above time segment. At this time, the bandwidth of each frequency band and the length of the short time segment can be flexibly set for the frequency band to be divided and the short time segment. Thereby, in the decoding apparatus, in the time direction, the energy of the high frequency component can be controlled for each short time segment, that is, the time envelope of the high frequency component can be controlled for each short time segment.
  • Patent Document 1 in order to control the time envelope of high frequency components in detail, it is divided into very short time segments, and energy information for each frequency band is calculated / coded for each short time segment. Therefore, there is a problem that the information amount of the information becomes very large and encoding at a low bit rate becomes difficult.
  • an object of the present invention is to reduce the perceived distortion by correcting the time envelope shape of a decoded signal with a small amount of information.
  • the applicant has invented a speech decoding apparatus according to the following first to fourth aspects.
  • a speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs a speech signal, wherein the encoded sequence including the encoded speech signal is analyzed
  • a sequence analysis unit a speech decoding unit that receives the encoded sequence including the encoded speech signal from the encoded sequence analysis unit, and obtains a speech signal by decoding, the encoded sequence analysis unit, and the speech decoding unit
  • a time envelope shape determination unit that receives information from at least one of them and determines a time envelope shape of a decoded speech signal based on the information, and a time envelope shape determined by the time envelope shape determination unit
  • a time envelope correction unit that corrects and outputs the time envelope shape of the decoded speech signal.
  • the speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs a speech signal, and at least an encoded sequence including the encoded speech signal is encoded
  • An encoded sequence demultiplexing unit that divides the encoded sequence including the information of the low frequency signal of the speech signal into the encoded sequence including the information of the high frequency signal of the encoded speech signal;
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing unit;
  • a high frequency decoding unit that receives first information from at least one of the low frequency decoding units and generates a high frequency signal based on the first information, the encoded sequence demultiplexing unit, and the low frequency
  • a small number of decryption units A low frequency time envelope shape determination unit that receives second information from one of them and determines a time envelope shape of a decoded low frequency signal based on the
  • a speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs a speech signal, and at least an encoded sequence including the encoded speech signal is encoded
  • An encoded sequence demultiplexing unit that divides the encoded sequence including the information of the low frequency signal of the speech signal into the encoded sequence including the information of the high frequency signal of the encoded speech signal;
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing unit;
  • a high frequency decoding unit that receives first information from at least one of the low frequency decoding units and generates a high frequency signal based on the first information, the encoded sequence demultiplexing unit, and the low frequency A decoding unit, and said high A high frequency time envelope shape determining unit that receives second information from at least one of the wave number decoding units and determines a time envelope shape of the generated high frequency signal based
  • a speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs a speech signal, wherein at least an encoded sequence including the encoded speech signal is encoded
  • An encoded sequence demultiplexing unit that divides the encoded sequence including the information of the low frequency signal of the speech signal into the encoded sequence including the information of the high frequency signal of the encoded speech signal;
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing unit;
  • a high frequency decoding unit that receives first information from at least one of the low frequency decoding units and generates a high frequency signal based on the first information, the encoded sequence demultiplexing unit, and the low frequency
  • a small number of decryption units A low frequency time envelope shape determination unit that receives second information from one of them and determines a time envelope shape of a decoded low frequency signal based on
  • the high frequency decoding unit is at least one of the coded sequence demultiplexing unit, the low frequency decoding unit, and the low frequency time envelope correction unit. More information may be received and a high frequency signal may be generated based on the information.
  • the high frequency time envelope correcting unit is configured to use the high frequency decoding unit based on the time envelope shape determined by the high frequency time envelope shape determining unit.
  • the time envelope shape of the intermediate signal at the time of generating the high frequency signal is corrected at the high frequency decoding unit, and the high frequency decoding unit generates the remaining high frequency signal using the intermediate signal whose time envelope shape is corrected Processing may be performed.
  • the high frequency decoding unit receives the low frequency signal decoded by the low frequency decoding unit, and divides the signal into subband signals, and at least the sub frequency divided by the analysis filter unit
  • a high-frequency signal generation unit that generates a high-frequency signal using a band signal
  • a frequency envelope adjustment unit that adjusts a frequency envelope of the high-frequency signal generated by the high-frequency signal generation unit, the intermediate signal is The high frequency signal generated by the high frequency signal generator may be used.
  • the invention of the speech decoding apparatus according to the first to fourth aspects described above can be regarded as an invention of a speech decoding method and can be described as follows.
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • An encoded sequence analysis step for analyzing an encoded sequence; an audio decoding step for receiving an encoded sequence including the encoded audio signal after analysis; and obtaining an audio signal by decoding; and the encoded sequence analyzing step;
  • the time envelope shape determination step that receives the information obtained in at least one of the speech decoding steps and determines the time envelope shape of the decoded speech signal based on the information
  • a time envelope correcting step of correcting and outputting the time envelope shape of the decoded speech signal based on the determined time envelope shape.
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • Code that divides an encoded sequence into at least an encoded sequence that includes information of a low frequency signal of the encoded speech signal and an encoded sequence that includes information of a high frequency signal of the encoded speech signal An encoded sequence demultiplexing step, a low frequency decoding step of receiving an encoded sequence including information of the encoded low frequency signal obtained by the division and decoding to obtain a low frequency signal, and an inverse of the encoded sequence
  • a low frequency time envelope shape determination step to determine, and a low frequency time envelope correction to correct and output the time envelope shape of the decoded low frequency signal based on the time envelope shape determined in the low frequency time envelope shape determination step And receiving a low frequency signal whose time envelope shape is corrected in the low frequency time envelope correction step, receiving a high frequency signal obtained in the high frequency decoding step, and correcting the time envelope shape.
  • a low frequency / high frequency signal synthesizing step for obtaining an audio signal to be output by synthesizing the low frequency signal and the high frequency signal; Provided.
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • Code that divides an encoded sequence into at least an encoded sequence that includes information of a low frequency signal of the encoded speech signal and an encoded sequence that includes information of a high frequency signal of the encoded speech signal An encoded sequence demultiplexing step, a low frequency decoding step of receiving an encoded sequence including information of the encoded low frequency signal obtained by the division and decoding to obtain a low frequency signal, and an inverse of the encoded sequence Receiving a first information obtained in at least one of a multiplexing step and the low frequency decoding step, and generating a high frequency signal based on the first information; and Receiving the second information obtained in at least one of the coded sequence demultiplexing step, the low frequency decoding step, and the high frequency decoding step, and generating the high information based on the second information.
  • a high frequency time envelope shape determining step for determining a time envelope shape of a frequency signal, and correcting the time envelope shape of the generated high frequency signal based on the time envelope shape determined in the high frequency time envelope shape determining step.
  • Receiving a high frequency time envelope correction step to output and a low frequency signal obtained in the low frequency decoding step receiving a high frequency signal in which the time envelope shape obtained in the high frequency time envelope correction step is corrected, By combining the low frequency signal and the high frequency signal whose time envelope shape is corrected, a low frequency / Comprising a frequency signal combining step.
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • Code that divides an encoded sequence into at least an encoded sequence that includes information of a low frequency signal of the encoded speech signal and an encoded sequence that includes information of a high frequency signal of the encoded speech signal Decoding sequence demultiplexing step, and low frequency decoding step of receiving a coded sequence including information of the encoded low frequency signal obtained in the coded sequence demultiplexing step and decoding to obtain a low frequency signal
  • a low-frequency time envelope shape determining step for determining a time envelope shape of the signal, and correcting and outputting the time envelope shape of the decoded low-frequency signal based on the time envelope shape determined in the low-frequency time envelope shape determining step
  • a high frequency time envelope shape determination step for determining a time envelope shape of the generated high frequency signal; and the high frequency time envelope shape determination step
  • a high frequency time envelope correction step for correcting and outputting the time envelope shape of the generated high frequency signal based on the time envelope shape determined in step, and the time envelope shape obtained in the low frequency time envelope correction step
  • the invention of the speech decoding apparatus according to the first to fourth aspects described above can be regarded as an invention of a speech decoding program and can be described as follows.
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and stores an encoded sequence including the encoded speech signal.
  • a coded sequence analyzing unit to analyze, a speech decoding unit that receives a coded sequence including the coded speech signal from the coded sequence analyzing unit, and obtains a speech signal by decoding; a coded sequence analyzing unit; Information is received from at least one of the speech decoding units, and based on the information, the time envelope shape determining unit that determines the time envelope shape of the decoded speech signal and the time envelope shape determining unit are determined. It functions as a time envelope correction unit that corrects and outputs the time envelope shape of the decoded speech signal based on the time envelope shape.
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and uses an encoded sequence including the encoded speech signal.
  • a coded sequence demultiplexing that divides at least a coded sequence including information of a low frequency signal of the encoded speech signal and a coded sequence including information of a high frequency signal of the encoded speech signal
  • a coding unit, a low frequency decoding unit that receives a coded sequence including information of the coded low frequency signal from the coded sequence demultiplexing unit and decodes the coded sequence to obtain a low frequency signal, and the coded sequence inverse
  • a high-frequency decoding unit that receives first information from at least one of a multiplexing unit and the low-frequency decoding unit and generates a high-frequency signal based on the first information; and the coded sequence demultiplexing unit
  • a low frequency time envelope shape determination unit that receives second information from at least one of the low frequency decoding units and determines a
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and converts an encoded sequence including the encoded speech signal
  • a coded sequence demultiplexing that divides at least a coded sequence including information of a low frequency signal of the encoded speech signal and a coded sequence including information of a high frequency signal of the encoded speech signal
  • a coding unit a low frequency decoding unit that receives a coded sequence including information of the coded low frequency signal from the coded sequence demultiplexing unit and decodes the coded sequence to obtain a low frequency signal
  • the coded sequence inverse A high-frequency decoding unit that receives first information from at least one of a multiplexing unit and the low-frequency decoding unit and generates a high-frequency signal based on the first information; and the coded sequence demultiplexing unit
  • the above A high frequency time envelope shape that receives second information from at least one of the frequency decoding unit and the high frequency decoding unit, and
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes a coded speech signal and outputs the speech signal, and converts a coded sequence including the coded speech signal.
  • a coded sequence demultiplexing that divides at least a coded sequence including information of a low frequency signal of the encoded speech signal and a coded sequence including information of a high frequency signal of the encoded speech signal
  • a coding unit, a low frequency decoding unit that receives a coded sequence including information of the coded low frequency signal from the coded sequence demultiplexing unit and decodes the coded sequence to obtain a low frequency signal, and the coded sequence inverse
  • a high-frequency decoding unit that receives first information from at least one of a multiplexing unit and the low-frequency decoding unit and generates a high-frequency signal based on the first information; and the coded sequence demultiplexing unit
  • a low frequency time envelope shape determination unit that receives second information from at least one of the low frequency decoding units and determine
  • the applicant has invented a speech encoding apparatus according to the following first to fourth aspects.
  • the speech coding apparatus is a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, the speech coding unit that encodes the speech signal, and the speech A time envelope information encoding unit that calculates and encodes time envelope information of a signal, an encoded sequence including the speech signal obtained by the speech encoding unit, and time envelope information obtained by the time envelope information encoding unit And an encoded sequence multiplexing unit that multiplexes the encoded sequences.
  • the speech coding apparatus is a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, and is a low-frequency coding that encodes a low-frequency component of the speech signal.
  • a high-frequency encoding unit that encodes a high-frequency component of the audio signal, at least one of the audio signal, the encoding result of the low-frequency encoding unit, and information obtained in the low-frequency encoding process Based on one or more, a low frequency time envelope information encoding unit that calculates and encodes time envelope information of a low frequency component, an encoded sequence including the low frequency component obtained by the low frequency encoding unit, Coding that multiplexes the coded sequence including the high frequency component obtained by the high frequency coding unit and the coded sequence of the low frequency component time envelope information obtained by the low frequency time envelope information coding unit.
  • Series multiplexing It comprises a part, a.
  • a speech coding apparatus is a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, and is a low-frequency coding that encodes a low-frequency component of the speech signal.
  • a high-frequency encoding unit that encodes a high-frequency component of the audio signal, the audio signal, the encoding result of the low-frequency encoding unit, information obtained in the low-frequency encoding process, the high frequency
  • a high frequency time envelope information encoding unit that calculates and encodes time envelope information of a high frequency component based on at least one of the encoding result of the encoding unit and information obtained in the high frequency encoding process.
  • An encoded sequence including the low frequency component obtained by the low frequency encoding unit, an encoded sequence including the high frequency component obtained by the high frequency encoding unit, and the high frequency time envelope information encoding Gain in part are provided with a coding sequence multiplexing unit for multiplexing the coded sequence of the time envelope information of the high frequency components, a.
  • a speech encoding device is a speech encoding device that encodes an input speech signal and outputs a coded sequence, and is a low-frequency encoding that encodes a low-frequency component of the speech signal
  • a high-frequency encoding unit that encodes a high-frequency component of the audio signal, at least one of the audio signal, the encoding result of the low-frequency encoding unit, and information obtained in the low-frequency encoding process
  • a low frequency time envelope information encoding unit that calculates and encodes time envelope information of a low frequency component, the audio signal, an encoding result of the low frequency encoding unit, and the low frequency encoding Based on at least one of the information obtained in the process, the coding result of the high frequency coding unit, and the information obtained in the high frequency coding process, the time envelope information of the high frequency component is calculated and encoded.
  • a frequency time envelope information encoding unit an encoded sequence including the low frequency component obtained by the low frequency encoding unit, an encoded sequence including the high frequency component obtained by the high frequency encoding unit, and A low frequency time envelope information encoding unit obtained by the low frequency time envelope information encoding unit and a high frequency component time envelope information encoding sequence obtained by the high frequency time envelope information encoding unit are multiplexed. And an encoded sequence multiplexing unit for converting to an encoded sequence.
  • the invention of the speech encoding apparatus according to the first to fourth aspects described above can be regarded as an invention of a speech encoding method and can be described as follows.
  • a speech coding method is a speech coding method executed by a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, and encodes the speech signal.
  • a speech encoding step a time envelope information encoding step for calculating and encoding time envelope information of the speech signal, an encoded sequence including the speech signal obtained in the speech encoding step, and the time envelope information
  • An encoded sequence multiplexing step for multiplexing the encoded sequence of the time envelope information obtained in the encoding step.
  • the speech coding method is a speech coding method executed by a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, wherein the speech signal has a low frequency A low-frequency encoding step for encoding a component, a high-frequency encoding step for encoding a high-frequency component of the speech signal, the speech signal, the encoding result of the low-frequency encoding step, and the low-frequency code
  • a low-frequency temporal envelope information encoding step for calculating and encoding time-envelope information of low-frequency components based on at least one of pieces of information obtained in the conversion process; and An encoded sequence including a frequency component; an encoded sequence including the high frequency component obtained in the high frequency encoding step; and a low frequency time envelope information encoding step. It is provided with a coding sequence multiplexing step for multiplexing the coded sequence of the time envelope information of low frequency components.
  • a speech coding method is a speech coding method executed by a speech coding apparatus that encodes an input speech signal and outputs a coded sequence, wherein the speech signal has a low frequency A low-frequency encoding step for encoding a component; a high-frequency encoding step for encoding a high-frequency component of the speech signal; an encoding result of the speech signal and the low-frequency encoding step; the low-frequency encoding Based on at least one of the information obtained in the process, the coding result of the high frequency coding step, and the information obtained in the high frequency coding process, the time envelope information of the high frequency component is calculated and coded.
  • a high frequency time envelope information encoding step an encoded sequence including the low frequency component obtained in the low frequency encoding step, and the high frequency encoding step.
  • a speech encoding method is a speech encoding method executed by a speech encoding apparatus that encodes an input speech signal and outputs a coded sequence, wherein the speech signal has a low frequency A low-frequency encoding step for encoding a component, a high-frequency encoding step for encoding a high-frequency component of the speech signal, the speech signal, the encoding result of the low-frequency encoding step, and the low-frequency code
  • a low-frequency temporal envelope information encoding step for calculating and encoding low-frequency component time envelope information based on at least one of information obtained in the conversion process, the speech signal, and the low-frequency encoding step.
  • a high frequency time envelope information encoding step for calculating and encoding time envelope information of a high frequency component based on one or more, and an encoded sequence including the low frequency component obtained in the low frequency encoding step;
  • An encoded sequence multiplexing step for multiplexing the encoded sequence of the time envelope information of the high frequency component obtained in the envelope information encoding step.
  • the invention of the speech encoding apparatus according to the first to fourth aspects described above can be regarded as an invention of a speech encoding program and can be described as follows.
  • a speech encoding program includes: a speech encoding unit that encodes the speech signal to a computer provided in a speech encoding device that encodes an input speech signal and outputs a coded sequence; A time envelope information encoding unit that calculates and encodes time envelope information of the speech signal, an encoded sequence including the speech signal obtained by the speech encoding unit, and a time envelope information encoding unit. And an encoded sequence multiplexing unit that multiplexes the encoded sequence of time envelope information.
  • the speech encoding program encodes a low-frequency component of the speech signal by using a computer provided in the speech encoding device that encodes the input speech signal and outputs an encoded sequence.
  • the low-frequency encoding unit that encodes the high-frequency component of the speech signal, the speech signal, the encoding result of the low-frequency encoding unit, and the low-frequency encoding process
  • a low-frequency temporal envelope information encoding unit that calculates and encodes low-frequency component time envelope information based on at least one of the information, and a code including the low-frequency component obtained by the low-frequency encoding unit
  • a speech encoding program encodes a low-frequency component of the speech signal by using a computer provided in a speech encoding device that encodes an input speech signal and outputs a coded sequence.
  • a high-frequency time envelope that calculates and encodes time-envelope information of a high-frequency component based on at least one of the encoding result of the high-frequency encoding unit and information obtained in the high-frequency encoding process
  • a speech encoding program encodes a low-frequency component of the speech signal by using a computer provided in a speech encoding device that encodes an input speech signal and outputs a coded sequence. Obtained in the low-frequency encoding unit, the high-frequency encoding unit that encodes the high-frequency component of the speech signal, the speech signal, the encoding result of the low-frequency encoding unit, and the low-frequency encoding process Based on at least one of the information, a low frequency time envelope information encoding unit that calculates and encodes time envelope information of a low frequency component, the speech signal, the encoding result of the low frequency encoding unit, Based on at least one of the information obtained in the low frequency coding process, the coding result of the high frequency coding unit, and the information obtained in the high frequency coding process, the time of the high frequency component A high frequency time envelope information encoding unit that calculates and encodes envelope information, an encoded sequence including the low frequency component obtained by the low frequency encoding unit,
  • a speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and at least encodes an encoded sequence including the encoded speech signal
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing unit and the low sequence demultiplexing unit
  • a high frequency decoding unit that receives information from at least one of the frequency decoding units and generates a high frequency signal based on the information, the encoded sequence demultiplexing unit, the low frequency decoding unit, and the high frequency decoding Club
  • a time envelope shape determination unit that receives information from at least one and determines a time envelope shape of a decoded low frequency signal and
  • a speech decoding apparatus is a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and at least encodes an encoded sequence including the encoded speech signal
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing unit and the low sequence demultiplexing unit
  • a high frequency decoding unit that receives information from at least one of the frequency decoding units and generates a high frequency signal based on the information, the encoded sequence demultiplexing unit, the low frequency decoding unit, and the high frequency decoding Club Receiving information from at least one, receiving a decoded low frequency signal and a time envelope shape determining unit for determining a time envelope shape
  • the high frequency decoding unit receives information from at least one of the encoded sequence demultiplexing unit, the low frequency decoding unit, and the low frequency time envelope correction unit.
  • the high frequency signal may be generated based on the received information.
  • the high frequency time envelope correcting unit is configured to generate a high frequency signal at the high frequency decoding unit based on the time envelope shape determined by the time envelope shape determining unit.
  • the time envelope shape of the intermediate signal at the time of generating is corrected, and the high frequency decoding unit performs a process of generating a remaining high frequency signal using the intermediate signal whose time envelope shape is corrected Also good.
  • the high frequency decoding unit receives information from at least one of the encoded sequence demultiplexing unit and the low frequency decoding unit, and based on the information, A frequency signal may be generated.
  • the time envelope correction unit generates a high frequency signal at the high frequency decoding unit based on the time envelope shape determined by the time envelope shape determination unit.
  • the time envelope shape of the intermediate signal at the time of correction is corrected, and the high frequency decoding unit may perform a process of generating a remaining high frequency signal using the intermediate signal whose time envelope shape is corrected .
  • the high frequency decoding unit receives the low frequency signal decoded by the low frequency decoding unit, and divides the signal into subband signals, and at least the sub frequency divided by the analysis filter unit
  • a high-frequency signal generation unit that generates a high-frequency signal using a band signal
  • a frequency envelope adjustment unit that adjusts a frequency envelope of the high-frequency signal generated by the high-frequency signal generation unit, the intermediate signal is The high frequency signal generated by the high frequency signal generator may be used.
  • the inventions of the speech decoding apparatuses according to the fifth and sixth aspects described above can be regarded as inventions of speech decoding methods and can be described as follows.
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • An encoded sequence that divides an encoded sequence into an encoded sequence that includes at least information of a low frequency signal of the encoded speech signal and an encoded sequence that includes information of a high frequency signal of the encoded speech signal
  • a high frequency decoding step that receives information obtained in at least one of the step and the low frequency decoding step and generates a high frequency signal based on the information; Time for receiving information obtained in at least one of the multiplexing step, the low frequency decoding step, and the high frequency decoding step, and determining the time envelope shape of the decoded low frequency signal and the generated high frequency signal
  • a speech decoding method is a speech decoding method executed by a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and includes the encoded speech signal.
  • An encoded sequence that divides an encoded sequence into an encoded sequence that includes at least information of a low frequency signal of the encoded speech signal and an encoded sequence that includes information of a high frequency signal of the encoded speech signal
  • a high frequency decoding step that receives information obtained in at least one of the step and the low frequency decoding step and generates a high frequency signal based on the information; Time for receiving information obtained in at least one of the multiplexing step, the low frequency decoding step, and the high frequency decoding step, and determining the time envelope shape of the decoded low frequency signal and the generated high frequency signal
  • the invention of the speech decoding apparatus according to the fifth and sixth aspects described above can be regarded as an invention of a speech decoding program and can be described as follows.
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes an encoded speech signal and outputs the speech signal, and stores a coded sequence including the encoded speech signal.
  • An encoded sequence demultiplexing unit that divides the encoded sequence including at least information of a low frequency signal of the encoded speech signal and an encoded sequence including information of a high frequency signal of the encoded speech signal.
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing
  • a high-frequency decoding unit that receives information from at least one of the information processing unit and the low-frequency decoding unit, and generates a high-frequency signal based on the information, the encoded sequence demultiplexing unit, the low-frequency decoding unit,
  • a time envelope shape determination unit that receives information from at least one of the high frequency decoding units and determines a time envelope shape of the de
  • a low-frequency time envelope correction unit that corrects and outputs the time envelope shape of the decoded low-frequency signal based on the time envelope shape determined in the above, and the time envelope shape determined by the time envelope shape determination unit
  • a high frequency time envelope correction unit that corrects and outputs a time envelope shape of the generated high frequency signal, and receives a low frequency signal whose time envelope is corrected from the low frequency time envelope correction unit, and the high frequency time envelope correction unit
  • the low-frequency / high-frequency signal synthesizer that receives the high-frequency signal whose time envelope has been corrected and synthesizes the output audio signal.
  • a speech decoding program includes a computer provided in a speech decoding apparatus that decodes a coded speech signal and outputs the speech signal, and converts a coded sequence including the coded speech signal.
  • An encoded sequence demultiplexing unit that divides the encoded sequence including at least information of a low frequency signal of the encoded speech signal and an encoded sequence including information of a high frequency signal of the encoded speech signal.
  • a low frequency decoding unit that receives an encoded sequence including information of the encoded low frequency signal from the encoded sequence demultiplexing unit and obtains a low frequency signal by decoding, and the encoded sequence demultiplexing
  • a high-frequency decoding unit that receives information from at least one of the information processing unit and the low-frequency decoding unit, and generates a high-frequency signal based on the information, the encoded sequence demultiplexing unit, the low-frequency decoding unit, and a time envelope shape determination unit for receiving information from at least one of the high frequency decoding units and determining a time envelope shape of the
  • the perceived distortion can be reduced by correcting the time envelope shape of the decoded signal with a small amount of information.
  • FIG. 1 is a diagram showing a configuration of a speech decoding device 10 according to a first embodiment.
  • 3 is a flowchart showing the operation of the speech decoding apparatus 10 according to the first embodiment.
  • 1 is a diagram showing a configuration of a speech encoding device 20 according to a first embodiment.
  • 3 is a flowchart showing the operation of the speech encoding apparatus 20 according to the first embodiment.
  • Fig. 38 illustrates a configuration of a first modification 10A of the speech decoding device according to the first embodiment.
  • 18 is a flowchart showing the operation of the first modification 10A of the speech decoding device according to the first embodiment.
  • Fig. 38] Fig. 38 illustrates a configuration of a second modification 10B of the speech decoding device according to the first embodiment.
  • FIG. 38 illustrates a configuration of a third modification 10C of the speech decoding device according to the first embodiment.
  • FIG. 10 is a diagram showing a configuration of a first modification 20A of the speech encoding device according to the first embodiment.
  • 18 is a flowchart showing the operation of the first modification 20A of the speech encoding device according to the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a speech decoding device 11 according to a second embodiment.
  • 10 is a flowchart showing the operation of the speech decoding apparatus 11 according to the second embodiment.
  • FIG. 6 is a diagram showing a configuration of a speech encoding device 21 according to a second embodiment.
  • FIG. 6 is a flowchart showing the operation of the speech encoding apparatus 21 according to the second embodiment.
  • Fig. 32 illustrates a configuration of a first modification 21A of the speech encoding device according to the second embodiment.
  • 32 is a flowchart showing the operation of the first modification 21A of the speech encoding device according to the second embodiment.
  • FIG. 10 is a diagram showing a configuration of a speech decoding device 12 according to a third embodiment.
  • 14 is a flowchart showing the operation of the speech decoding apparatus 12 according to the third embodiment.
  • FIG. 6 is a diagram showing a configuration of a speech encoding device 22 according to a third embodiment.
  • 14 is a flowchart showing the operation of the speech encoding apparatus 22 according to the third embodiment.
  • FIG. 38 illustrates a configuration of a first modification 22A of the speech encoding device according to the third embodiment.
  • Fig. 38 is a flowchart illustrating the operation of the first modification 22A of the speech encoding device according to the third embodiment.
  • Fig. 38 illustrates a configuration of a second modification 22B of the speech encoding device according to the third embodiment.
  • Fig. 38 is a flowchart illustrating the operation of the first modification 22B of the speech encoding device according to the third embodiment.
  • FIG. 10 is a diagram showing a configuration of a speech decoding device 13 according to a fourth embodiment.
  • 14 is a flowchart showing the operation of the speech decoding apparatus 13 according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a speech encoding device 23 according to a fourth embodiment. 14 is a flowchart showing the operation of the speech encoding device 23 according to the fourth embodiment.
  • FIG. 38 illustrates a configuration of a first modification 13A of the speech decoding device according to the fourth embodiment.
  • Fig. 38 is a flowchart illustrating the operation of the first modification 13A of the speech decoding device according to the fourth embodiment.
  • Fig. 38] Fig. 38 illustrates a configuration of a second modification 13B of the speech decoding device according to the fourth embodiment.
  • FIG. 38 illustrates a configuration of a third modification 13C of the speech decoding device according to the fourth embodiment.
  • Fig. 38 illustrates a configuration of a first modification 23A of the speech encoding device according to the fourth embodiment.
  • Fig. 38 is a flowchart showing the operation of the first modification 23A of the speech encoding device according to the fourth embodiment.
  • FIG. 10 is a diagram showing a configuration of a speech decoding device 14 according to a fifth embodiment. 16 is a flowchart showing the operation of the speech decoding apparatus 14 according to the fifth embodiment.
  • Fig. 10 Fig. 10 is a diagram illustrating a configuration of a speech encoding device 24 according to a fifth embodiment.
  • FIG. 10 is a flowchart showing the operation of the speech encoding apparatus 24 according to the fifth embodiment.
  • Fig. 38 illustrates a configuration of a first modification 14A of the speech decoding device according to the fifth embodiment.
  • Fig. 38 is a flowchart illustrating the operation of the first modification 14A of the speech decoding device according to the fifth embodiment.
  • FIG. 10 is a diagram showing a configuration of a speech decoding device 15 according to a sixth embodiment.
  • 18 is a flowchart showing the operation of the speech decoding apparatus 15 according to the sixth embodiment.
  • FIG. 10 is a diagram showing a configuration of a speech encoding device 25 according to a sixth embodiment.
  • FIG. 18 is a flowchart showing the operation of the speech encoding device 25 according to the sixth embodiment.
  • Fig. 38 illustrates a configuration of a first modification 15A of the speech decoding device according to the sixth embodiment.
  • Fig. 38 is a flowchart showing the operation of the first modification 15A of the speech decoding device according to the sixth embodiment.
  • FIG. 16 is a diagram showing a configuration of a speech decoding device 16 according to a seventh embodiment.
  • 20 is a flowchart showing the operation of the speech decoding apparatus according to the seventh embodiment.
  • Fig. 18 Fig. 18 is a diagram illustrating a configuration of a speech encoding device 26 according to a seventh embodiment.
  • FIG. 18 is a flowchart showing the operation of the speech encoding device 26 according to the seventh embodiment.
  • FIG. 167 It is a figure showing the configuration of the first modification 16A of the speech decoding device according to a seventh embodiment.
  • FIG. 197 It is a flowchart showing the operation of the first modification 16A of the speech decoding device according to a seventh embodiment.
  • FIG. 38 It is a figure showing the configuration of the first modification 26A of the speech encoding device according to a seventh embodiment.
  • Fig. 38 Fig. 38 is a flowchart showing the operation of the first modification 26A of the speech encoding device according to the seventh embodiment.
  • FIG. 20 Fig. 20 illustrates a configuration of a speech decoding device 17 according to an eighth embodiment.
  • FIG. 25 is a flowchart showing the operation of the speech decoding apparatus according to the eighth embodiment.
  • FIG. 28 illustrates a configuration of a speech encoding device 27 according to an eighth embodiment.
  • Fig. 25 is a flowchart showing an operation of the speech encoding device 27 according to the eighth embodiment.
  • Fig. 18 illustrates a configuration of a speech decoding device 18 according to a ninth embodiment.
  • 20 is a flowchart showing the operation of the speech decoding apparatus according to the ninth embodiment.
  • Fig. 20] Fig. 20 is a diagram illustrating a configuration of a speech encoding device 28 according to a ninth embodiment.
  • FIG. 20 is a flowchart showing the operation of the speech encoding device 28 according to the ninth embodiment.
  • FIG. 167 It is a figure showing the configuration of the first modification 18A of the speech decoding device according to a ninth embodiment.
  • FIG. 267 It is a flow chart showing the operation of the first modification 18A of the speech decoding device according to a ninth embodiment.
  • Fig. 18 illustrates a configuration of a speech decoding device 1 according to a tenth embodiment. It is a flowchart showing the operation of the speech decoding apparatus according to the tenth embodiment.
  • Fig. 18] Fig. 18 is a diagram illustrating a configuration of a speech encoding device 2 according to a tenth embodiment.
  • FIG. 34 Fig.
  • FIG. 34 is a flowchart showing the operation of the speech encoding device 2 according to the tenth embodiment.
  • Fig. 38 illustrates a configuration of a speech decoding device 100 according to an eleventh embodiment.
  • Fig. 34 is a flowchart showing the operation of the speech decoding apparatus according to the eleventh embodiment.
  • Fig. 38 illustrates a configuration of a speech encoding device 200 according to an eleventh embodiment.
  • Fig. 38] Fig. 38 is a flowchart showing the operation of the speech encoding device 200 according to the eleventh embodiment.
  • FIG. 167 It is a figure showing the configuration of the first modification 100A of the speech decoding device according to an 11th embodiment. [Fig.
  • FIG. 270 It is a flow chart showing the operation of the first modification 100A of the speech decoding device according to an 11th embodiment.
  • FIG. 153 It is a figure showing the configuration of the first modification 100A of the speech encoding device according to an 11th embodiment.
  • FIG. 137 It is a figure showing the configuration of the speech decoding device 110 according to a twelfth embodiment.
  • FIG. 34 Fig. 34 is a flowchart showing the operation of the speech decoding apparatus according to the twelfth embodiment.
  • FIG. 38 Fig. 38 illustrates a configuration of a speech encoding device 210 according to a twelfth embodiment. [Fig.
  • FIG. 38 It is a flowchart showing the operation of the speech encoding apparatus 210 according to the twelfth embodiment.
  • FIG. 191 It is a figure showing the configuration of the speech decoding device 120 according to a 13th embodiment.
  • FIG. 197 It is a flowchart showing the operation of the speech decoding device 120 according to the 13th embodiment.
  • FIG. 137 It is a figure showing the configuration of the speech encoding device 220 according to a 13th embodiment.
  • FIG. 38 Fig. 38 is a flowchart showing the operation of the speech encoding device 220 according to the thirteenth embodiment.
  • FIG. 153 It is a figure showing the configuration of the first modification 120A of the speech decoding device according to a 13th embodiment.
  • FIG. 153 It is a figure showing the configuration of the first modification 120A of the speech decoding device according to a 13th embodiment.
  • Fig. 38 is a flowchart illustrating the operation of the speech encoding device 230 according to the fourteenth embodiment.
  • FIG. 167 It is a figure showing the configuration of the speech decoding device 140 according to a 15th embodiment.
  • Fig. 26 Fig. 26 is a flowchart showing the operation of the speech decoding apparatus according to the fifteenth embodiment.
  • FIG. 167 It is a figure showing the configuration of the speech encoding device 240 according to a 15th embodiment.
  • FIG. 267 It is a flow chart showing the operation of the speech encoding device 240 according to the 15th embodiment.
  • FIG. 191 It is a figure showing the configuration of the first modification 140A of the speech decoding device according to a 15th embodiment.
  • FIG. 191 It is a figure showing the configuration of the first modification 140A of the speech decoding device according to a 15th embodiment.
  • FIG. 167 It is a figure showing the configuration of the first modification 150A of the speech decoding device according to a 16th embodiment.
  • FIG. 270 It is a flow chart showing the operation of the 1st modification 150A of the speech decoding device according to a 16th embodiment.
  • FIG. 191 It is a figure showing the configuration of the second modification 150B of the speech decoding device according to a 16th embodiment.
  • FIG. 191 It is a figure showing the configuration of the speech decoding device 160 according to a 17th embodiment.
  • FIG. 191 It is a flow chart showing the operation of the speech decoding device according to a 17th embodiment.
  • FIG. 167 It is a figure showing the configuration of the speech encoding device 260 according to a 17th embodiment.
  • FIG. 270 It is a flow chart showing the operation of the speech encoding device 260 according to the 17th embodiment.
  • FIG. 167 It is a figure showing the configuration of the first modification 160A of the speech decoding device according to a 17th embodiment.
  • FIG. 237 It is a flow chart showing the operation of the first modification 160A of the speech decoding device according to a 17th embodiment.
  • FIG. 191 It is a figure showing the configuration of the second modification 160B of the speech decoding device according to a 17th embodiment.
  • FIG. 191 It is a figure showing the configuration of the speech decoding device 170 according to an 18th embodiment.
  • FIG. 270 It is a flow chart showing the operation of the speech decoding device according to an 18th embodiment.
  • FIG. 191 It is a figure showing the configuration of the speech encoding device 270 according to an 18th embodiment.
  • FIG. 191 It is a flowchart showing the operation of the speech encoding device 270 according to the 18th embodiment.
  • FIG. 191 It is a figure showing the configuration of the speech decoding device 180 according to a 19th embodiment.
  • FIG. 191 It is a flow chart showing the operation of the speech decoding device according to a 19th embodiment.
  • FIG. 319 It is a figure showing the configuration of the speech encoding device 280 according to a 19th embodiment.
  • FIG. 291 It is a flowchart showing the operation of the speech encoding device 280 according to the 19th embodiment.
  • Fig. 191 It is a figure showing the configuration of the speech encoding device 270 according to an 18th embodiment.
  • FIG. 191 It is a flowchart showing the operation of the speech encoding device 270 according to the 18th embodiment.
  • FIG. 191 It is a figure
  • FIG. 270 It is a figure showing the configuration of the speech decoding device 190 according to a 20th embodiment. [Fig. 270] It is a flow chart showing the operation of the speech decoding device according to a 20th embodiment. [Fig. 270] It is a figure showing the configuration of the speech encoding device 290 according to the 20th embodiment. [Fig. 270] It is a flow chart showing the operation of the speech encoding device 290 according to the 20th embodiment. [Fig. 315] It is a figure showing the configuration of the speech decoding device 300 according to a 21st embodiment. [Fig. 270] It is a flow chart showing the operation of the speech decoding device according to a 21st embodiment. [Fig. 270]
  • FIG. 315 It is a figure showing the configuration of the speech encoding device 400 according to a 21st embodiment.
  • FIG. 267 It is a flow chart showing the operation of the speech encoding device 400 according to the 21st embodiment.
  • FIG. 267 It is a figure showing the configuration of the speech decoding device 310 according to a 22nd embodiment.
  • FIG. 237 It is a flow chart showing the operation of the speech decoding device according to a 22nd embodiment.
  • FIG. 319 It is a figure showing the configuration of the speech encoding device 410 according to a 22nd embodiment.
  • FIG. 38 It is a flowchart showing the operation of the speech encoding apparatus 410 according to the 22nd embodiment.
  • FIG. 38 It is a flowchart showing the operation of the speech encoding apparatus 410 according to the 22nd embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 320 according to a 23rd embodiment.
  • FIG. 270 It is a flow chart showing the operation of the speech decoding device according to a 23rd embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech encoding device 420 according to a 23rd embodiment.
  • FIG. 270 It is a flow chart showing the operation of the speech encoding device 420 according to a 23rd embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 320A according to a first modification example of the 23rd embodiment. [Fig.
  • FIG. 319 It is a flow chart showing the operation of the speech decoding device 320A according to a first modification example of the 23rd embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 330 according to a 24th embodiment.
  • Fig. 270 It is a flow chart showing the operation of the speech decoding device according to a 24th embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech encoding device 430 according to a 24th embodiment.
  • FIG. 267 It is a flow chart showing the operation of the speech encoding device 430 according to the 24th embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 340 according to a 25th embodiment. [Fig.
  • FIG. 335 It is a flow chart showing the operation of the speech encoding device 450 according to a 26th embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 350A according to a first modification example of the 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the speech decoding device 350A according to a first modification example of the 26th embodiment.
  • FIG. 167 It is a figure showing the configuration of the second modification 16B of the speech decoding device according to a seventh embodiment.
  • Fig. 38 Fig. 38 is a flowchart showing the operation of the second modification 16B of the speech decoding device according to the seventh embodiment.
  • FIG. 167 It is a figure showing the configuration of the third modification 16C of the speech decoding device according to a seventh embodiment.
  • FIG. 267 It is a flow chart showing the operation of the 3rd modification 16C of the speech decoding device according to a seventh embodiment.
  • FIG. 167 It is a figure showing the configuration of the fourth modification 16D of the speech decoding device according to a seventh embodiment.
  • FIG. 38 Fig. 38 is a flowchart showing the operation of the fourth modification 16D of the speech decoding device according to the seventh embodiment.
  • FIG. 167] It is a figure showing the configuration of the fifth modification 16E of the speech decoding device according to a seventh embodiment. [Fig.
  • FIG. 167 It is a figure showing the configuration of the eighth modification 18H of the speech decoding device according to a ninth embodiment. It is a flowchart showing the operation of the eighth modification 18H of the speech decoding device according to the ninth embodiment.
  • FIG. 167 It is a figure showing the configuration of the ninth modification 18I of the speech decoding device according to a ninth embodiment.
  • FIG. 267 It is a flow chart showing the operation of the ninth modification 18I of the speech decoding device according to a ninth embodiment.
  • FIG. 191 It is a figure showing the configuration of the 10th modification 160J of the speech decoding device according to a 17th embodiment.
  • FIG. 191 It is a flow chart showing the operation of the 10th modification 160J of the speech decoding device according to a 17th embodiment.
  • FIG. 191 It is a figure showing the configuration of the 11th modification 160K of the speech decoding device according to a 17th embodiment.
  • FIG. 270 It is a flow chart showing the operation of the 11th modification 160K of the speech decoding device according to a 17th embodiment.
  • FIG. 191 It is a figure showing the configuration of the third modification 170C of the speech decoding device according to an 18th embodiment.
  • FIG. 282 It is a flow chart showing the operation of the 3rd modification 170C of the speech decoding device according to an 18th embodiment.
  • FIG. 191 It is a figure showing the configuration of the 4th modification 170D of the speech decoding device according to an 18th embodiment.
  • FIG. 282 It is a flow chart showing the operation of the 4th modification 170D of the speech decoding device according to an 18th embodiment.
  • FIG. 319 It is a figure showing the configuration of the first modification 180A of the speech decoding device according to a 19th embodiment. [Fig.
  • FIG. 319 It is a figure showing the configuration of the first modification 300A of the speech decoding device according to a 21st embodiment. [Fig. 319] It is a flow chart showing the operation of the first modification 300A of the speech decoding device according to a 21st embodiment. [Fig. 319] It is a figure showing the configuration of the second modification 300B of the speech decoding device according to a 21st embodiment. [Fig. 319] It is a flow chart showing the operation of the 2nd modification 300B of the speech decoding device according to a 21st embodiment. [Fig. 319] It is a figure showing the configuration of the 3rd modification 300C of the speech decoding device according to a 21st embodiment. [Fig.
  • FIG. 319 It is a figure showing the configuration of the second modification 310B of the speech decoding device according to a 22nd embodiment. [Fig. 319] It is a flow chart showing the operation of the second modification 310B of the speech decoding device according to a 22nd embodiment. [Fig. 319] It is a figure showing the configuration of the third modification 310C of the speech decoding device according to a 22nd embodiment. [Fig. 319] It is a flow chart showing the operation of the 3rd modification 310C of the speech decoding device according to a 22nd embodiment. [Fig. 319] It is a figure showing the configuration of the 4th modification 310D of the speech decoding device according to a 22nd embodiment. [Fig.
  • FIG. 319 It is a flow chart showing the operation of the 4th modification 310D of the speech decoding device according to a 22nd embodiment. [Fig. 319] It is a figure showing the configuration of the second modification 320B of the speech decoding device according to a 23rd embodiment. [Fig. 319] It is a flow chart showing the operation of the 2nd modification 320B of the speech decoding device according to a 23rd embodiment. [Fig. 319] It is a figure showing the configuration of the third modification 320C of the speech decoding device according to a 23rd embodiment. [Fig. 319] It is a flow chart showing the operation of the 3rd modification 320C of the speech decoding device according to a 23rd embodiment. [Fig. 319]
  • FIG. 319 It is a figure showing the configuration of the ninth modification 320I of the speech decoding device according to a 23rd embodiment. [Fig. 319] It is a flow chart showing the operation of the ninth modification 320I of the speech decoding device according to a 23rd embodiment. [Fig. 319] It is a figure showing the configuration of the first modification 330A of the speech decoding device according to a 24th embodiment. [Fig. 282] It is a flow chart showing the operation of the first modification 330A of the speech decoding device according to a 24th embodiment. [Fig. 319] It is a figure showing the configuration of the second modification 330B of the speech decoding device according to a 24th embodiment. [Fig.
  • FIG. 319 It is a figure showing the configuration of the first modification 340A of the speech decoding device according to a 25th embodiment. [Fig. 319] It is a flow chart showing the operation of the first modification 340A of the speech decoding device according to a 25th embodiment. [Fig. 319] It is a figure showing the configuration of the second modification 340B of the speech decoding device according to a 25th embodiment. [Fig. 319] It is a flow chart showing the operation of the 2nd modification 340B of the speech decoding device according to a 25th embodiment. [Fig. 319] It is a figure showing the configuration of the 3rd modification 340C of the speech decoding device according to a 25th embodiment. [Fig.
  • FIG. 319 It is a figure showing the configuration of the 3rd modification 350C of the speech decoding device according to a 26th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the 3rd modification 350C of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a figure showing the configuration of the 4th modification 350D of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the 4th modification 350D of the speech decoding device according to a 26th embodiment.
  • FIG. 337 It is a figure showing the configuration of the fifth modification 350E of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the 5th modification 350E of the speech decoding device according to a 26th embodiment.
  • FIG. 337 It is a figure showing the configuration of the sixth modification 350F of the speech decoding device according to a 26th embodiment.
  • FIG. 337 It is a flow chart showing the operation of the sixth modification 350F of the speech decoding device according to a 26th embodiment.
  • FIG. 337 It is a figure showing the configuration of the seventh modification 350G of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the seventh modification 350G of the speech decoding device according to a 26th embodiment.
  • FIG. 337 It is a figure showing the configuration of the eighth modification 350H of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the 8th modification 350H of the speech decoding device according to a 26th embodiment.
  • FIG. 319 It is a figure showing the configuration of the ninth modification 350I of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the ninth modification 350I of the speech decoding device according to a 26th embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 360 according to a 27th embodiment. [Fig.
  • FIG. 337 It is a flow chart showing the operation of the speech decoding device 360 according to a 27th embodiment.
  • FIG. 319 It is a figure showing the configuration of the first modification 360A of the speech decoding device according to a 27th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the first modification 360A of the speech decoding device according to a 27th embodiment.
  • FIG. 319 It is a figure showing the configuration of the speech decoding device 370 according to a 28th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the speech decoding device 370 according to a 28th embodiment.
  • FIG. 319] It is a figure showing the configuration of the first modification 370A of the speech decoding device according to a 28th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the first modification 370A of the speech decoding device according to a 28th embodiment.
  • FIG. 319 It is a figure showing the configuration of the speech decoding device 380 according to a 29th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the speech decoding device 380 according to a 29th embodiment.
  • FIG. 319 It is a figure showing the configuration of the first modification 380A of the speech decoding device according to a 29th embodiment.
  • FIG. 319 It is a flow chart showing the operation of the first modification 380A of the speech decoding device according to a 29th embodiment.
  • FIG. 335 It is a figure showing the configuration of the speech decoding device 390 according to a 30th embodiment.
  • FIG. 335 It is a flow chart showing the operation of the speech decoding device 390 according to the 30th embodiment.
  • FIG. 1 is a diagram showing a configuration of a speech decoding apparatus 10 according to the first embodiment.
  • the communication device of the speech decoding apparatus 10 receives the multiplexed encoded sequence output from the following speech encoding apparatus 20, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 10 functionally includes an encoded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 10d, a low frequency time envelope shape A determination unit 10e, a low frequency time envelope correction unit 10f, a high frequency signal generation unit 10g, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, and a synthesis filter bank unit 10j are provided. The function and operation of each part will be described below.
  • FIG. 2 is a flowchart showing the operation of the speech decoding apparatus 10 according to the first embodiment.
  • the coded sequence demultiplexing unit 10a is configured to determine a coded sequence from a core coded portion obtained by coding a low frequency signal, a band extension portion for generating a high frequency signal from the low frequency signal, and a low frequency time envelope shape determination.
  • the information is divided into information necessary for the unit 10e (information on the low frequency time envelope shape) (step S10-1).
  • the encoded sequence analysis unit 10d analyzes the band extension portion of the encoded sequence divided by the encoded sequence demultiplexing unit 10a, and information necessary for the high frequency signal generation unit 10g and the decoding / inverse quantization unit 10h. (Step S10-2).
  • the core decoding unit 10b receives and decodes the core encoded portion of the encoded sequence from the encoded sequence demultiplexing unit 10a, and generates a low-frequency signal (step S10-3).
  • the analysis filter bank unit 10c divides the low frequency signal into a plurality of subband signals (step S10-4).
  • the low frequency time envelope shape determination unit 10e receives information on the low frequency time envelope shape from the encoded sequence analysis unit 10d, and determines the time envelope shape of the low frequency signal based on the information (step S10-5). For example, there are a case where the time envelope shape of the low frequency signal is determined to be flat, a case where the time envelope shape of the low frequency signal is determined as rising, and a case where the time envelope shape of the low frequency signal is determined as falling.
  • the low frequency time envelope correction unit 10f is based on the time envelope shape determined by the low frequency time envelope shape determination unit 10e, and the time envelope shape of the plurality of subband signals of the low frequency signal output from the analysis filter bank unit 10c. Is corrected (step S10-6).
  • the low frequency time envelope correction unit 10f includes a plurality of subband signals X dec, LO (k, i) (0 ⁇ k ⁇ k x , t E (l) ⁇ the low frequency signal in an arbitrary time segment.
  • X dec, LO (k, i) the following equation (1) is used by using a predetermined function F (X dec, LO (k, i)).
  • X ′ dec, LO (k, i) obtained by the above is output as a subband signal of a low-frequency signal with a corrected time envelope shape.
  • the time envelope shape of the low frequency signal can be corrected by the following processing.
  • X ′ dec, LO (k, i) is output as a subband signal of a low-frequency signal whose time envelope shape is corrected.
  • the predetermined function F (X dec, LO (k, i)) is subjected to smoothing filter processing on the subband signal X dec, LO (k, i).
  • X dec, LO (k, i) is output as a subband signal of a low frequency signal with a corrected time envelope shape.
  • processing can be performed so that the powers of the subband signals before and after the filtering process are matched in each frequency band where the boundary is expressed using the B dec, LO (m).
  • the subband signal X dec, LO (k, i) is linearly predicted in the frequency direction within each frequency band where the boundary is expressed using the B dec, LO (m).
  • N pred ⁇ 1) By defining (N pred ⁇ 1), X ′ dec, LO (k, i) is output as a subband signal of a low frequency signal with a corrected time envelope shape.
  • the above examples of processing for correcting the time envelope shape to be flat can be implemented in combination.
  • the low frequency time envelope correction unit 10f performs a process of correcting the shape of the time envelope of the plurality of subband signals of the low frequency signal to be flat, and is not limited to the above example.
  • the time envelope shape of the low frequency signal can be corrected by the following processing. For example, using a function incr (i) that monotonically increases a predetermined function F (X dec, LO (k, i)) with respect to i. And X ′ dec, LO (k, i) is output as a subband signal of a low frequency signal with a corrected time envelope shape. Furthermore, processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B dec, LO (m).
  • the low frequency time envelope correction unit 10f performs a process of correcting the time envelope shape of the plurality of subband signals of the low frequency signal to rise, and is not limited to the above example.
  • the time envelope shape of the low frequency signal can be corrected by the following processing.
  • a predetermined function F (X dec, LO (k, i)) is used by using a function decr (i) that monotonically decreases with respect to i.
  • X ′ dec, LO (k, i) is output as a subband signal of a low frequency signal with a corrected time envelope shape.
  • processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B dec, LO (m).
  • the low frequency time envelope correction unit 10f performs the process of correcting the time envelope shape of the plurality of subband signals of the low frequency signal to fall, and is not limited to the above example.
  • the decoding / inverse quantization unit 10h determines the design of the scale factor band and the length of the time segment in the high-frequency signal generation / adjustment process based on the time / frequency resolution information output from the encoded sequence analysis unit 10d. Further, gain information on the high frequency signal generated by the high frequency signal generation unit 10g and noise signal information added to the high frequency signal are received from the encoded sequence analysis unit 10d, and decoded / dequantized. The gain for the high frequency signal and the magnitude of the noise signal are acquired (step S10-7). If the scale factor band design and the time segment length are determined in advance, it is not necessary to determine them.
  • the high frequency signal generation unit 10g is configured to receive information output from the encoded sequence analysis unit 10d, design of the scale factor band output from the decoding / inverse quantization unit 10h, time from the subband signal of the input low frequency signal A high frequency signal is generated based on at least one of the segment lengths (step S10-8).
  • the subband signal of the low frequency signal divided by the analysis filter bank unit 10c is input.
  • the frequency envelope adjustment unit 10i performs gain adjustment and noise signal on the high frequency signal generated by the high frequency signal generation unit 10g based on the gain and the magnitude of the noise signal acquired by the decoding / inverse quantization unit 10h. Is added to adjust the frequency envelope of the high-frequency signal (step S10-9). Further, a sine wave signal can be added, and the addition of the sine wave signal may be based on information included in the band extension portion of the encoded sequence.
  • the synthesis filter bank unit 10j synthesizes a time signal from the subband signal of the low frequency signal output from the low frequency time envelope correction unit 10f and the subband signal of the high frequency signal output from the frequency envelope adjustment unit 10i, Output as an output audio signal (step S10-10).
  • steps S10-1 to S10-4 and S10-7 to S10-10 can be handled by each processing of “SBR” and “Low Delay SBR” defined in “ISO / IEC 14496-3”.
  • FIG. 3 is a diagram showing a configuration of the speech encoding apparatus 20 according to the first embodiment.
  • the communication device of the audio encoding device 20 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech coding apparatus 20 is functionally a downsampling unit 20a, a core coding unit 20b, analysis filter bank units 20c and 20c1, a control parameter coding unit 20d, an envelope calculation unit 20e, A quantization / encoding unit 20f, a time envelope information encoding unit 20g, an encoded sequence multiplexing unit 20h, a subband signal power calculation unit 20j, and a core decoded signal generation unit 20i are provided.
  • the function and operation of each part will be described below.
  • FIG. 4 is a flowchart showing the operation of the speech encoding apparatus 20 according to the first embodiment.
  • the downsampling unit 20a downsamples the input audio signal and obtains a downsampled input audio signal corresponding to the low frequency signal of the input audio signal (step S20-1).
  • the core encoding unit 20b encodes the downsampled signal obtained by the downsampling unit 20a to generate a low frequency signal encoded sequence (step S20-2).
  • the analysis filter bank unit 20c divides the input audio signal into a plurality of subband signals (step S20-3).
  • the control parameter encoding unit 20d encodes a control parameter necessary for generating a high frequency signal in the speech decoding apparatus 10 (step S20-4).
  • the parameter includes, for example, time / frequency resolution information.
  • the decoding / inverse quantization unit 10h of the speech decoding apparatus 10 includes information used when determining the design of the scale factor band and the length of the time segment.
  • Envelope calculation unit 20e is the gain and noise signal magnitude for the high-frequency signal decoded / dequantized by decoding / dequantization unit 10h of speech decoding apparatus 10 from the subband signal obtained by analysis filter bank unit 20c. Is calculated (step S20-5).
  • the quantization / encoding unit 20f quantizes and encodes the gain and noise signal magnitude for the high-frequency signal calculated by the envelope calculation unit 20e (step S20-6).
  • the core decoded signal generation unit 20i generates a core decoded signal using the information encoded by the core encoding unit 20b (step S20-7). This process may be performed in the same manner as the core decoding unit 10b of the speech decoding apparatus 10. Also, the core decoded signal may be generated using the quantized information before being encoded in the core encoding unit 20b. Also, some information may be different from the core decoding unit 10b of the speech decoding apparatus 10, for example, in the case of CELP encoding, the signal held in the adaptive codebook in the decoding apparatus is an excitation signal decoded in the past or The core decoded signal generation unit 20i may be a residual signal after linearly predicting the input speech signal.
  • the analysis filter bank unit 20c1 divides the core decoded signal generated by the core decoded signal generation unit 20i into a plurality of subband signals (step S20-8). In this processing, the resolution when dividing the core decoded signal into the subband signal may be the same as that of the analysis filter bank unit 20c.
  • the subband signal power calculation unit 20j calculates the power of the subband signal of the core decoded signal obtained by the analysis filter bank unit 20c1 (step S20-9). This process is performed in the same manner as the calculation of the power of the subband signal of the low frequency signal in the envelope calculation unit 20e.
  • the time envelope information encoding unit 20g calculates the time envelope of the low frequency signal using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e, and similarly, the power of the subband signal of the core decoded signal Is used to calculate the time envelope of the core decoded signal, and the time envelope information is calculated from the time envelope of the low frequency signal and the core decoded signal and encoded (step S20-10).
  • the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 20g. Where the power of the subband signal is calculated is not limited.
  • B LO (m) (m 0,..., M LO , M LO ⁇ 1) (B LO (0) ⁇ Divide into M LO frequency bands whose boundaries are represented by 0, B LO (M LO ) ⁇ k x ), and subband signal X LO (k, i) of the low frequency signal included in the mth frequency band
  • the time envelope E LO (k, i) of (B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is the time segment and frequency It can be calculated as the power of the subband signal X LO (k, i) of the low frequency signal normalized within the band.
  • LO (k, i) of the core decoded signal obtained by normalizing the time envelope E dec, LO (k, i) of the core decoded signal within the time segment and the frequency band. It can be calculated.
  • the time envelope of the subband signals of the low frequency signal and the core decoded signal may be a parameter that can be understood in the time direction of the magnitude of the subband signals of the low frequency signal and the core decoded signal, and is not limited to the above example.
  • the time envelope information encoding unit 20g calculates information representing the degree of flatness as the time envelope information. For example, the variance of the time envelope of the subband signal of the low frequency signal and the core decoded signal or a parameter equivalent thereto is calculated. In yet another example, the ratio of the arithmetic mean and geometric mean of the time envelopes of the subband signals of the low frequency signal and the core decoded signal or a parameter equivalent thereto is calculated. In this case, the time envelope information encoding unit 20g may calculate information representing the flatness of the time envelope of the subband signal of the low frequency signal as the time envelope information, and is not limited to the above example. Then, the parameter is encoded.
  • the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded.
  • the value or absolute value of the parameter of the low frequency signal is encoded.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 20g calculates information representing the degree of rise as time envelope information.
  • the maximum value of the difference value in the time direction of the time envelope of the subband signal of the low frequency signal is calculated in an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1).
  • it can replace with a time envelope and can calculate the maximum value of the difference value of the time direction of the parameter which smoothed the said time envelope in the time direction.
  • the time envelope information encoding unit 20g may calculate information representing the degree of rise of the time envelope of the subband signal of the low frequency signal as the time envelope information, and is not limited to the above example.
  • the parameter is encoded.
  • the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded.
  • it can be encoded with 1 bit Expressed on whether the rise of the degree of rise time envelope, for example, codes the information for each of the M LO number of frequency bands within the arbitrary time segments M LO bit Can be
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information. For example, in a given time segment t E (l) ⁇ i ⁇ t E (l + 1), the minimum value of the time direction difference value of the time envelope of the subband signal of the low frequency signal is calculated. Furthermore, in Equation (10), the minimum value of the difference value in the time direction of the parameter obtained by smoothing the time envelope in the time direction instead of the time envelope can be calculated.
  • the time envelope information encoding unit 20g may calculate information indicating the degree of the fall of the time envelope of the subband signal of the low frequency signal as the time envelope information, and is not limited to the above example.
  • the parameter is encoded.
  • the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded.
  • it can be encoded with 1 bit Expressed on whether falling the degree of fall of the time envelope, for example, the M LO pieces of the information M LO bits for each frequency band within the given time segments Can be encoded.
  • the encoding method of time envelope information is not limited to the above example.
  • the encoded sequence multiplexing unit 20h multiplexes one or more input encoded sequences or encoded information or encoded parameters, and outputs the result as an encoded sequence (step S20-11).
  • the high-frequency signal encoded by the quantization / encoding unit 20f is received by receiving the encoded sequence of the low-frequency signal from the core encoding unit 20b, the control parameter encoded by the control parameter encoding unit 20d, and the like.
  • the time envelope information encoded by the time envelope information encoding unit 20g is received, multiplexed, and output as an encoded sequence.
  • steps S20-1 to S20-6 and S20-80 can be handled by each processing of the “SBR” and “Low Delay SBR” encoders defined in “ISO / IEC 14496-3”.
  • FIG. 5 is a diagram showing a configuration of a first modification 10A of the speech decoding apparatus according to the first embodiment.
  • characteristic functions and operations in the modification and the embodiment will be described, and redundant description will be omitted as far as possible.
  • the encoded sequence demultiplexing unit 10aA divides the encoded sequence into a core encoded portion obtained by encoding a low frequency signal and a band extension portion for generating a high frequency signal from the low frequency signal (step S10-1a). ).
  • FIG. 6 is a flowchart showing the operation of the first modification 10A of the speech decoding apparatus according to the first embodiment.
  • the low frequency time envelope shape determination unit 10eA receives the low frequency signal from the core decoding unit 10b and determines the time envelope shape of the low frequency signal (step S10-5a).
  • the time envelope shape of the low frequency signal is determined to be flat.
  • the power of the low frequency signal x dec (t) or a parameter equivalent thereto is calculated, and the variance of the parameter or a parameter equivalent thereto is calculated.
  • the calculated parameter is compared with a predetermined threshold value to determine whether or not the time envelope shape is flat or the degree of flatness.
  • the power of the low-frequency signal x dec (t) or the ratio of the arithmetic mean to the geometric mean of the parameter or a parameter equivalent to it is calculated, and the time envelope shape is compared by comparing it with a predetermined threshold. Whether or not the degree of flatness is determined.
  • the method of determining the time envelope shape of the low frequency signal as flat is not limited to the above example.
  • the time envelope shape of the low-frequency signal is determined as rising.
  • the power of the low frequency signal x dec (t) or a parameter equivalent thereto is calculated, the difference value in the time direction of the parameter is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated.
  • the maximum value is compared with a predetermined threshold value to determine whether or not the time envelope shape rises or the degree of rise.
  • the method for determining the time envelope shape of the low frequency signal as rising is not limited to the above example.
  • the time envelope shape of the low frequency signal is determined as falling.
  • the power of the low frequency signal x dec (t) or a parameter equivalent thereto is calculated, a difference value in the time direction of the parameter is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated.
  • the minimum value is compared with a predetermined threshold value to determine whether or not the time envelope shape falls or the extent of the fall.
  • the method of determining the time envelope shape of the low frequency signal as falling is not limited to the above example.
  • FIG. 7 is a diagram showing a configuration of the second modification 10B of the speech decoding device according to the first embodiment.
  • the difference from the first modification of the speech decoding apparatus according to the first embodiment is that the low frequency time envelope shape determination unit 10eB receives a plurality of subband signals of low frequency signals from the analysis filter bank unit 10c, This is a point for determining the time envelope shape of the low frequency signal (step S10-5a equivalent processing).
  • the time envelope shape of the low frequency signal is determined to be flat.
  • a parameter is obtained and compared with a predetermined threshold value to determine whether or not the time envelope shape is flat or the degree of flatness.
  • the time envelope E dec, LO (k, i) can be calculated by, for example, the equation (8), but is not limited thereto.
  • the subband signal X dec, LO (k, i) B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E ( l + 1)) time envelope E dec, LO (k, i) or the ratio of the arithmetic mean and geometric mean of the parameters equivalent to it or the parameters equivalent to it is calculated and compared with a predetermined threshold value to determine the time envelope shape. Determine whether flat or how flat.
  • the time envelope E dec, LO (k, i) can be calculated by, for example, the equation (8), but is not limited thereto.
  • the method of determining the time envelope shape of the low frequency signal as flat is not limited to the above example.
  • the time envelope shape of the low-frequency signal is determined as rising.
  • the maximum value of the difference value of the time envelope E dec, LO (k, i) of LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated.
  • the maximum value of the difference value is compared with a predetermined threshold value to determine whether or not the time envelope shape rises or the degree of rise.
  • a parameter obtained by smoothing the time envelope in the time direction can be used instead of the time envelope.
  • the method for determining the time envelope shape of the low frequency signal as rising is not limited to the above example.
  • the time envelope shape of the low frequency signal is determined as falling.
  • Low-frequency signal subband signal X dec, LO (k, i) B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)
  • the minimum value of the difference value of the time envelope E dec, LO (k, i) is calculated. For example, it is computable by Formula (10).
  • the minimum value of the difference value is compared with a predetermined threshold value to determine whether or not the time envelope shape falls or the degree of fall.
  • a parameter obtained by smoothing the time envelope in the time direction can be used instead of the time envelope.
  • the method of determining the time envelope shape of the low frequency signal as falling is not limited to the above example.
  • FIG. 8 is a diagram showing the configuration of the third modification 10C of the speech decoding device according to the first embodiment.
  • the low frequency time envelope shape determination unit 10eC includes information on the low frequency time envelope shape from the coded sequence analysis unit 10d, a low frequency signal from the core decoding unit 10b, and a plurality of sub frequencies of the low frequency signal from the analysis filter bank unit 10c. At least one of the band signals is received, and the time envelope shape of the low frequency signal is determined (corresponding to step S10-5 in FIG. 2).
  • the time envelope shape of the low frequency signal is determined to be flat.
  • the time envelope shape is determined to be flat.
  • the method of determining the time envelope shape of the low frequency signal as flat is not limited to the above.
  • the time envelope shape of the low frequency signal is determined as rising.
  • the speech decoding device of the first embodiment a combination of at least one method for determining the time envelope shape of the low frequency signal described in the first and second modifications of the decoding device as rising The time envelope shape is determined as rising.
  • the method for determining the time envelope shape of the low frequency signal as rising is not limited to the above.
  • the time envelope shape of the low frequency signal is determined as falling.
  • the speech decoding apparatus of the first embodiment a combination of at least one or more methods for determining the time envelope shape of the low-frequency signal described in the first and second modifications of the decoding apparatus as falling
  • the time envelope shape is determined as falling.
  • the method of determining the time envelope shape of the low frequency signal as falling is not limited to the above.
  • FIG. 9 is a diagram illustrating a configuration of the first modification 20A of the speech encoding device according to the first embodiment.
  • FIG. 10 is a flowchart showing the operation of the first modification 20A of the speech encoding apparatus according to the first embodiment.
  • the time envelope information encoding unit 20gA calculates the time envelope of the low frequency signal using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e, and encodes the time envelope information from the time envelope. (Step S20-10a). In this processing, when the power of the subband signal of the low frequency signal is not calculated, the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 20gA, Where the power of the subband signal is calculated is not limited.
  • information representing the degree of flatness of the time envelope shape is calculated as the time envelope information.
  • the time envelope E LO (k, i) of (B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated by equation (7).
  • the method for calculating the time envelope E LO (k, i) is not limited to the equation (7).
  • a variance of time envelope E LO (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the ratio of the arithmetic mean and geometric mean of the time envelope E LO (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the calculation method of the information indicating the degree of flatness of the time envelope shape of the low frequency signal is not limited to the above example.
  • information representing the degree of rise of the time envelope shape is calculated as time envelope information.
  • a difference value in the time direction of the time envelope E LO (k, i) is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the method of calculating information representing the degree of rise of the time envelope shape of the low frequency signal is not limited to the above example.
  • information representing the degree of falling of the time envelope shape is calculated as time envelope information.
  • a difference value in the time direction of the time envelope E LO (k, i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the method of calculating information representing the degree of falling of the time envelope shape of the low frequency signal is not limited to the above example.
  • FIG. 11 is a diagram showing a configuration of the speech decoding apparatus 11 according to the second embodiment.
  • the communication device of the speech decoding device 11 receives the multiplexed encoded sequence output from the following speech encoding device 21, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding device 11 is functionally a coded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, a coded sequence analysis unit 10d, a low frequency time envelope shape A determination unit 10e, a low frequency time envelope correction unit 10f, a high frequency signal generation unit 10g, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, and a synthesis filter bank unit 10j are provided.
  • FIG. 12 is a flowchart showing the operation of the speech decoding apparatus 11 according to the second embodiment.
  • the difference between the operation of the high frequency signal generation unit 10g and the high frequency signal generation unit 10g of the speech decoding device 11 according to the first embodiment is that the low frequency time envelope correction unit 10f has corrected the time envelope shape.
  • the high frequency signal is generated from the subband signal of the signal.
  • FIG. 13 is a diagram illustrating a configuration of the speech encoding device 21 according to the second embodiment.
  • the communication device of the audio encoding device 21 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 21 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, A quantization / encoding unit 20f, a time envelope information encoding unit 21a, an encoded sequence multiplexing unit 20h, a subband signal power calculation unit 20j, and a core decoded signal generation unit 20i are provided.
  • FIG. 14 is a flowchart showing the operation of the speech encoding apparatus 21 according to the second embodiment.
  • the time envelope information encoding unit 21a uses the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e, the power of the subband signal of the high frequency signal, and the time envelope of the low frequency signal and the high frequency signal. Calculate the time envelope, similarly calculate the time envelope of the core decoded signal using the power of the subband signal of the core decoded signal calculated by the subband signal power calculation unit 20j, the time envelope of the low frequency signal, Time envelope information is encoded from the time envelope of the high frequency signal and the time envelope of the core decoded signal (step S21-1).
  • the power of the subband signal of the low frequency signal when the power of the subband signal of the low frequency signal is not calculated, the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 21a. Where the power of the subband signal is calculated is not limited.
  • the power of the subband signal of the high frequency signal when the power of the subband signal of the high frequency signal is not calculated, the power of the subband signal of the high frequency signal may be calculated by the time envelope information encoding unit 21a. Where the power of the subband signal is calculated is not limited.
  • the time envelope E dec, LO (k, i) is calculated using the
  • B HI (m) (m 0,..., M HI , M HI ⁇ 1) (B HI (0) in any time segment t E (l) ⁇ i ⁇ t E (l + 1) ⁇ k x , B HI (M HI ) ⁇ k h ) is divided into M HI frequency bands whose boundaries are represented, and the sub-band signal X HI (k, i)
  • the time envelope E HI (k, i) of (B HI (m) ⁇ k ⁇ B HI (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated.
  • the time envelope of the subband signal of the high frequency signal is not limited to the above example as long as it is a parameter that can be used to understand the variation in the time direction of the size of the subband signal of the high frequency signal.
  • the time envelope information encoding unit 21a calculates information representing the degree of flatness as the time envelope information. For example, the variance of the time envelope of the subband signals of the low frequency signal, the core decoded signal, and the high frequency signal or a parameter equivalent thereto is calculated. In yet another example, the ratio of the arithmetic mean and geometric mean of the time envelopes of the subband signals of the low frequency signal, the core decoded signal, and the high frequency signal, or a parameter equivalent thereto is calculated. In this case, the time envelope information encoding unit 21a may calculate information representing the flatness of the time envelope of at least one subband signal of the low frequency signal and the high frequency signal as the time envelope information, It is not limited to the example. Then, the parameter is encoded.
  • the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded.
  • the parameter values or absolute values of the low frequency signal and the high frequency signal are encoded.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 21a calculates information representing the degree of rise as time envelope information. For example, in an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1), the maximum value of the time direction difference value of the time envelope of the subband signal of the low frequency signal is expressed by Equation (9). Use to calculate. Similarly, for example, within an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1), the maximum value of the difference value in the time direction of the time envelope of the subband signal of the high frequency signal is calculated.
  • the time envelope information encoding unit 21a may calculate information representing the degree of rising of the time envelope of at least one subband signal of the low frequency signal and the high frequency signal as the time envelope information, It is not limited to the above example.
  • the parameter is encoded.
  • the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded.
  • the parameter values of the low frequency signal and the high frequency signal are encoded.
  • time envelope information is not limited to the above example.
  • the time envelope information encoding unit 21a calculates information representing the degree of falling as the time envelope information. For example, in an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1), the minimum value of the time direction difference value of the time envelope of the subband signal of the low frequency signal is expressed by Equation (10). Use to calculate. Similarly, for example, in an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1), the minimum value of the difference value in the time direction of the time envelope of the subband signal of the high frequency signal is calculated.
  • the time envelope information encoding unit 21a may calculate information representing the degree of falling of the time envelope of at least one subband signal of the low frequency signal and the high frequency signal as the time envelope information. It is not limited to the above example.
  • the parameter is encoded. For example, the difference value of the parameter between the low frequency signal and the core decoded signal or the absolute value thereof is encoded. Further, for example, the parameter values of the low frequency signal and the high frequency signal are encoded. .
  • time envelope information is not limited to the above example.
  • FIG. 15 is a diagram showing a configuration of the first modification 21A of the speech encoding device according to the second embodiment.
  • FIG. 16 is a flowchart showing the operation of the first modification 21A of the speech coding apparatus according to the second embodiment.
  • the time envelope information encoding unit 21aA calculates the time envelope of the input audio signal using the power of the subband signal of the input audio signal calculated by the envelope calculation unit 20e, and encodes the time envelope information from the time envelope (Step S21-1a). In this process, when the power of the subband signal of the input audio signal is not calculated, the power of the subband signal of the input audio signal may be calculated by the time envelope information encoding unit 21aA. Where the power of the subband signal is calculated is not limited.
  • information representing the degree of flatness of the time envelope shape is calculated as the time envelope information.
  • the time envelope E LO (k, i) of (B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated by equation (7).
  • the method for calculating the time envelope E LO (k, i) is not limited to the equation (7).
  • the time envelope E HI (k, i) of (B HI (m) ⁇ k ⁇ B HI (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is expressed by Equation (11)
  • the method of calculating the time envelope E HI (k, i) is not limited to the equation (11).
  • information representing the degree of rise of the time envelope shape is calculated as time envelope information.
  • the difference value in the time direction of the time envelope E LO (k, i) is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated.
  • the difference value in the time direction of the time envelope E HI (k, i) is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated.
  • the parameters are encoded separately or in combination.
  • the method of calculating information representing the degree of rise of the time envelope shape of the low frequency signal is not limited to the above example.
  • information representing the degree of falling of the time envelope shape is calculated as time envelope information. For example, a difference value in the time direction of the time envelope E LO (k, i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated. Similarly, the difference value in the time direction of the time envelope E HI (k, i) is calculated, and the minimum value in an arbitrary time segment of the difference value is calculated.
  • the parameters are encoded separately or in combination.
  • the method of calculating information representing the degree of falling of the time envelope shape of the low frequency signal is not limited to the above example.
  • the speech decoding apparatus 11 of the second embodiment decodes the encoded sequence encoded by the speech encoding apparatus 20 of the first embodiment of the present invention and the speech encoding apparatus 20A of the first modification example. it can.
  • FIG. 17 is a diagram showing a configuration of the speech decoding apparatus 12 according to the third embodiment.
  • the communication device of the speech decoding device 12 receives the multiplexed encoded sequence output from the following speech encoding device 22, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding device 12 is functionally a coded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, a coded sequence analysis unit 10d, a low frequency time envelope shape A determination unit 10e, a low frequency time envelope correction unit 12a, a high frequency signal generation unit 10g, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, and a synthesis filter bank unit 10j are provided.
  • FIG. 18 is a flowchart showing the operation of the speech decoding apparatus 12 according to the third embodiment.
  • the low frequency time envelope correction unit 12a corrects the time envelope shape of the low frequency signal output from the core decoding unit 10b based on the time envelope shape determined by the low frequency time envelope shape determination unit 10e (step S12- 1).
  • the low frequency time envelope correction unit 12a performs the operation on the low frequency signal x dec, LO (i) in an arbitrary time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1)). Then, using the predetermined function F t (x dec, LO (i)), the following equation (14) X ′ dec, LO (i) obtained by the above is output as a low-frequency signal with a corrected time envelope shape.
  • the time envelope shape of the low frequency signal can be corrected by the following processing.
  • a predetermined function F t (x dec, LO (i)) X ′ dec, LO (i) is output as a low-frequency signal with a corrected time envelope shape.
  • a predetermined function F t (x dec, LO (i)) is subjected to a smoothing filter process on the low frequency signal x dec, LO (i). Define (N filt ⁇ 1) and output x ′ dec, LO (i) as a low-frequency signal with a modified time envelope shape.
  • the example of the process for correcting the time envelope shape to be flat can be implemented in combination.
  • the low frequency time envelope correction unit 10f performs a process of correcting the shape of the time envelope of the plurality of subband signals of the low frequency signal to be flat, and is not limited to the above example.
  • the time envelope shape of the low frequency signal can be corrected by the following processing. For example, using a function incr (i) that monotonically increases with respect to i, a predetermined function F t (x dec, LO (i)) X ′ dec, LO (i) is output as a low-frequency signal with a corrected time envelope shape.
  • the low frequency time envelope correction unit 10f performs a process of correcting the shape of the time envelope of the plurality of subband signals of the low frequency signal to rise, and is not limited to the above example.
  • the time envelope shape of the low frequency signal can be corrected by the following processing. For example, using a function decr (i) that monotonously decreases with respect to i, given function F t (x dec, LO (i)) X ′ dec, LO (i) is output as a low-frequency signal with a corrected time envelope shape.
  • the low frequency time envelope correction unit 10f performs a process of correcting the shape of the time envelope of the plurality of subband signals of the low frequency signal to fall, and is not limited to the above example.
  • a low-frequency signal is converted into a frequency domain transform coefficient X dec, LO (k) (0 ⁇ k ⁇ k) by time-frequency transform represented by discrete Fourier transform, discrete cosine transform, and modified discrete cosine transform. x ), using a predetermined function F f (X dec, LO (k)) X ′ dec, LO (k) obtained by the above is output as a transform coefficient in the frequency domain of the low frequency signal whose time envelope shape is corrected.
  • the time envelope shape of the low frequency signal can be corrected by the following processing.
  • N pred ⁇ 1 X ′ dec, LO (k, i) is output as a transform coefficient of the low-frequency signal whose time envelope shape is corrected.
  • FIG. 19 is a diagram illustrating a configuration of the speech encoding device 22 according to the third embodiment.
  • the communication device of the audio encoding device 22 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 22 is functionally a downsampling unit 20a, a core encoding unit 20b, an analysis filter bank unit 20c, a control parameter encoding unit 20d, an envelope calculation unit 20e, a quantization / Encoding unit 20f, time envelope calculation units 22a and 22a1, time envelope information encoding unit 22b, encoded sequence multiplexing unit 20h, and core decoded signal generation unit 20i.
  • FIG. 20 is a flowchart showing the operation of the speech encoding apparatus 22 according to the third embodiment.
  • the time envelope calculation unit 22a calculates the time envelope of the downsampled signal obtained from the downsampling unit 20a (step 22-1).
  • the time envelope E LO (i) of the downsample signal x LO (i) in an arbitrary time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1)) can be calculated as the power of the downsampled signal normalized by.
  • the time envelope of the downsample signal is not limited to the above example as long as it is a parameter that can be used to understand the variation in the magnitude of the downsample signal in the time direction.
  • the time envelope calculation unit 22a1 calculates the time envelope of the core decoded signal generated by the core decoded signal generation unit 20i (step 22-2).
  • the time envelope of the core decoded signal can be calculated in the same manner as the time envelope of the downsample signal.
  • the power of the core decoded signal normalized within the time segment can be calculated.
  • the time envelope of the core decoded signal is not limited to the above-described example as long as it is a parameter that allows the fluctuation of the size of the core decoded signal in the time direction to be understood.
  • the time envelope information encoding unit 22b uses the time envelope of the downsampled signal calculated by the time envelope calculation unit 22a and the time envelope of the core decoded signal calculated by the time envelope calculation unit 22a1 to generate time envelope information. Calculate and encode time envelope information from the time envelope (step S22-3).
  • the time envelope information encoding unit 22b calculates information representing the degree of flatness as the time envelope information. For example, the variance of the time envelope of the downsample signal and the core decoded signal or a parameter equivalent thereto is calculated. In yet another example, a ratio of an arithmetic mean and a geometric mean of time envelopes of subband signals of the downsample signal and the core decoded signal or a parameter equivalent thereto is calculated. In this case, the time envelope information encoding unit 22b may calculate information representing the flatness of the time envelope of the downsample signal as time envelope information, and is not limited to the above example. Then, the parameter is encoded.
  • the difference value or the absolute value of the parameter between the downsample signal and the core decoded signal is encoded.
  • the value or absolute value of the parameter of the downsample signal is encoded.
  • the flatness of the time envelope is expressed by whether or not it is flat, it can be encoded with 1 bit.
  • the arbitrary time segment can be encoded with 1 bit.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 22b calculates information representing the degree of rise as time envelope information. For example, in a given time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1), the maximum difference value in the time direction of the time envelope of the downsample signal is calculated. Furthermore, in Equation (23), the maximum value of the time direction difference value of the parameter obtained by smoothing the time envelope in the time direction instead of the time envelope can be calculated. In this case, the time envelope information encoding unit 22b may calculate information representing the degree of rise of the time envelope of the downsample signal as time envelope information, and is not limited to the above example. Then, the parameter is encoded.
  • the difference value or the absolute value of the parameter between the downsample signal and the core decoded signal is encoded.
  • the degree of rise of the time envelope is expressed by whether or not it is risen, it can be encoded with 1 bit.
  • the arbitrary time segment can be encoded with 1 bit.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information. For example, in any time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1), the minimum value of the time direction difference value of the time envelope of the subband signal of the low frequency signal is calculated. . Furthermore, in Equation (24), the minimum value of the difference value in the time direction of the parameter obtained by smoothing the time envelope in the time direction instead of the time envelope can be calculated. In this case, the time envelope information encoding unit 22b may calculate information indicating the degree of the fall of the time envelope of the downsample signal as time envelope information, and is not limited to the above example. Then, the parameter is encoded.
  • the difference value or the absolute value of the parameter between the downsample signal and the core decoded signal is encoded.
  • the degree of fall of the time envelope is expressed by whether or not it falls, it can be encoded with 1 bit.
  • the arbitrary time segment can be encoded with 1 bit.
  • the encoding method of time envelope information is not limited to the above example.
  • FIG. 21 is a diagram illustrating a configuration of the first modification 22A of the speech encoding device according to the third embodiment.
  • FIG. 22 is a flowchart showing the operation of the first modification 22A of the speech coding apparatus according to the third embodiment.
  • the time envelope information encoding unit 22bA calculates time envelope information from the time envelope of the downsample signal calculated by the time envelope calculation unit 22a, and encodes the time envelope information (step S22-3a).
  • time envelope information For example, information representing the degree of flatness of the time envelope shape is calculated as the time envelope information.
  • a downsample signal x LO (i) (t t, E (l) ⁇ i ⁇ t t, E in any time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1) the (l + 1)) time envelope E LO (i) is calculated by the equation (21).
  • the calculation method of time envelope ELO (i) is not limited to Formula (21).
  • a variance of time envelope E LO (i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the ratio of the arithmetic mean and geometric mean of the time envelope E LO (i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the calculation method of information indicating the degree of flatness of the time envelope shape of the downsample signal is not limited to the above example.
  • information representing the degree of rise of the time envelope shape is calculated as time envelope information.
  • the difference value in the time direction of the time envelope E LO (i) is calculated, and the maximum value of the difference value in an arbitrary time segment is calculated and encoded.
  • the method of calculating information representing the degree of rising of the time envelope shape of the downsample signal is not limited to the above example.
  • information representing the degree of falling of the time envelope shape is calculated as time envelope information.
  • a time-direction difference value of the time envelope E LO (i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the calculation method of information indicating the degree of falling of the time envelope shape of the downsample signal is not limited to the above example.
  • FIG. 23 is a diagram illustrating a configuration of the second modification 22B of the speech encoding device according to the third embodiment.
  • FIG. 24 is a flowchart showing the operation of the second modification 22B of the speech encoding apparatus according to the third embodiment.
  • the time envelope calculation unit 22aB calculates the time envelope of the input audio signal (step 22-1b).
  • the time envelope E (i) of the input signal x (i) in an arbitrary time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1)) is normalized in the time segment. It can be calculated as the power of the converted input signal.
  • the time envelope of the input signal is not limited to the above example as long as it is a parameter that can be used to understand the fluctuation in the time direction of the magnitude of the input signal.
  • the time envelope information encoding unit 22bB calculates time envelope information from the time envelope of the input speech signal calculated by the time envelope calculation unit 22aB, and encodes the time envelope information (step S22-3b).
  • information representing the degree of flatness of the time envelope shape is calculated as the time envelope information.
  • an input signal x (i) (t t, E (l) ⁇ i ⁇ t t, E (l in any time segment t t, E (l) ⁇ i ⁇ t t, E (l + 1) +1)) is calculated from the equation (25).
  • the method for calculating the time envelope E (i) is not limited to the equation (25).
  • a variance of time envelope E (i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the ratio of the arithmetic mean and geometric mean of the time envelope E (i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the calculation method of information indicating the degree of flatness of the time envelope shape of the input signal is not limited to the above example.
  • information representing the degree of rise of the time envelope shape is calculated as time envelope information.
  • the difference value in the time direction of the time envelope E (i) is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the method of calculating information representing the degree of rising of the time envelope shape of the input signal is not limited to the above example.
  • information representing the degree of falling of the time envelope shape is calculated as time envelope information.
  • a difference value in the time direction of the time envelope E (i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the calculation method of information representing the degree of falling of the time envelope shape of the input signal is not limited to the above example.
  • FIG. 25 is a diagram showing a configuration of the speech decoding apparatus 13 according to the fourth embodiment.
  • the communication device of the speech decoding device 13 receives the multiplexed encoded sequence output from the following speech encoding device 23, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 13 is functionally encoded coding demultiplexing unit 10aA, core decoding unit 10b, analysis filter bank unit 10c, coding sequence analysis unit 13c, high frequency time envelope A determination unit 13a, a time envelope correction unit 13b, a high frequency signal generation unit 10g, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, and a synthesis filter bank unit 10j are provided.
  • FIG. 26 is a flowchart showing the operation of the speech decoding apparatus 13 according to the fourth embodiment.
  • the encoded sequence analysis unit 13c analyzes the band extension portion of the encoded sequence divided by the encoded sequence demultiplexing unit 10aA, and generates a high frequency signal generation unit 10g, a decoding / inverse quantization unit 10h, and a high frequency time envelope.
  • the shape determining unit 13a divides the information into necessary information (step S13-3).
  • the high frequency time envelope shape determination unit 13a receives information on the high frequency time envelope shape from the encoded sequence analysis unit 13c, and determines the time envelope shape of the high frequency signal based on the information (step S13-1). For example, the time envelope shape of the high frequency signal is determined to be flat. Further, for example, the time envelope shape of the high-frequency signal is determined as rising. Further, for example, the time envelope shape of the high-frequency signal is determined as falling.
  • the time envelope correction unit 13b is output from the analysis filter bank unit 10c based on the time envelope shape determined by the high frequency time envelope shape determination unit 13a, and is used to generate a high frequency signal by the high frequency signal generation unit 10g.
  • the time envelope shape of the plurality of subband signals of the low frequency signal is corrected (step S13-2).
  • the low frequency time envelope correction unit 10f performs the time envelope of the low frequency signal.
  • the time envelope shape of the low frequency signal used for generating the high frequency signal can be corrected.
  • the low frequency time envelope correction unit 10f when it is determined that the time envelope shape of the high frequency signal is rising, for example, the low frequency time envelope correction unit 10f performs high processing by a process similar to the processing of rising the time envelope shape of the low frequency signal.
  • the time envelope shape of the low frequency signal used for generating the frequency signal can be corrected.
  • the low frequency time envelope correction unit 10f by the same process as the process of falling the time envelope shape of the low frequency signal
  • the time envelope shape of the low frequency signal used for generating the high frequency signal can be corrected.
  • the process of correcting the time envelope shape of the low frequency signal used for generating the high frequency signal is not limited to the above example.
  • FIG. 27 is a diagram illustrating a configuration of the speech encoding device 23 according to the fourth embodiment.
  • the communication device of the audio encoding device 23 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 23 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, A quantization / encoding unit 20f, a temporal envelope information encoding unit 23a, an encoded sequence multiplexing unit 20h, a subband signal power calculation unit 20j, and a core decoded signal generation unit 20i are provided.
  • FIG. 28 is a flowchart showing the operation of the speech encoding apparatus 23 according to the fourth embodiment.
  • the time envelope information encoding unit 23a calculates at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal used for generating the high frequency signal, and further, the subband signal power calculation unit 20j A time envelope of the core decoded signal is calculated using the power of the calculated subband signal of the core decoded signal, and at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal and the core decoded signal
  • the time envelope information is encoded from the time envelope (step S23-1). For the time envelope of the low frequency signal, the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal can be calculated by the time envelope information encoding unit 23a, and the subband signal of the low frequency signal can be calculated.
  • the power of is calculated is not limited.
  • the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 23a, and the subband signal of the high frequency signal can be calculated. Where the power is calculated is not limited.
  • the time envelope of the low frequency signal used for generating the high frequency signal can be calculated by the same process as the process of calculating the time envelope of the low frequency signal by the time envelope information encoding unit 20g.
  • the time envelope of the subband signal of the low frequency signal used for the generation of the high frequency signal may be a parameter that can be understood in the time direction of the magnitude of the subband signal of the low frequency signal, and is not limited to the above example. .
  • the time envelope of the high frequency signal can be calculated by the same process as the process of calculating the time envelope of the high frequency signal by the time envelope information encoding unit 21a.
  • the time envelope of the subband signal of the high frequency signal is not limited to the above example, as long as it is a parameter that can be understood in the time direction of the magnitude of the subband signal of the high frequency signal.
  • the time envelope information encoding unit 20g calculates information representing the degree of flatness as the time envelope information
  • the low frequency signal used for generating the high frequency signal is reduced.
  • information indicating the degree of flatness can be calculated as the time envelope information, and the time envelope information can be encoded.
  • the time envelope information encoding unit 20g calculates information representing the degree of flatness as time envelope information
  • the subband of the high frequency signal By using the time envelope of the signal, information representing the degree of flatness can be calculated as the time envelope information, and the time envelope information can be encoded. For example, if the degree of flatness of the time envelope is expressed by whether or not it is flat, it can be encoded with 1 bit.
  • the time envelope information encoding unit 20g calculates information representing the degree of rising as the time envelope information
  • it is used to generate the high frequency signal instead of the time envelope of the low frequency signal subband signal.
  • the time envelope information By using the time envelope of the sub-band signal of the low-frequency signal, information representing the degree of rise can be calculated as the time envelope information, and the time envelope information can be encoded.
  • the time envelope information encoding unit 20g calculates information representing the degree of rise as time envelope information, instead of the time envelope of the low frequency signal subband signal, the subband of the high frequency signal
  • the time envelope information By using the time envelope of the signal, information representing the degree of rising can be calculated as the time envelope information, and the time envelope information can be encoded. For example, if the degree of rise of the time envelope is expressed by whether or not it is risen, it can be encoded with 1 bit.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information
  • the high frequency signal is generated.
  • the time envelope of the subband signal of the low frequency signal By using the time envelope of the subband signal of the low frequency signal to be used, information indicating the degree of falling can be calculated as the time envelope information, and the time envelope information can be encoded.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information, instead of the time envelope of the low frequency signal subband signal, the subband of the high frequency signal
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information
  • the time envelope of the band signal By using the time envelope of the band signal, information indicating the degree of falling can be calculated as the time envelope information, and the time envelope information can be encoded. For example, if the degree of falling of the time envelope is expressed by whether or not it falls, it can be encoded with 1 bit.
  • calculation method and encoding method of time envelope information are not limited to the above example.
  • FIG. 29 is a diagram illustrating a configuration of the first modification 13A of the speech decoding device according to the fourth embodiment.
  • FIG. 30 is a flowchart showing the operation of the first modification 13A of the speech decoding apparatus according to the fourth embodiment.
  • the high frequency time envelope shape determination unit 13aA receives the low frequency signal from the core decoding unit 10b, and determines the high frequency time envelope shape based on the low frequency signal (step S13-1a).
  • the time envelope of the low frequency signal is calculated, and the high frequency time envelope shape is determined based on the shape of the low frequency time envelope. Further, for example, a time envelope of a signal obtained by performing a predetermined process on the low frequency signal is calculated, and the high frequency time envelope shape is determined based on the time envelope shape of the processed low frequency signal.
  • the predetermined process is, for example, a high-pass filter process, but is not limited thereto.
  • the time envelope shape of the high frequency signal is determined to be flat.
  • the time envelope shape of the high frequency signal can be determined to be flat as in the process in which the low frequency time envelope shape determination unit 10eA determines that the time envelope shape of the low frequency signal is flat.
  • the low frequency time envelope shape determination unit 10eA determines that the time envelope shape of the low frequency signal is flat
  • using the time envelope of the processed low frequency signal instead of the time envelope of the low frequency signal can be determined to be flat.
  • the process of determining the time envelope shape of the high frequency signal as flat is not limited to the above example.
  • the time envelope shape of the high frequency signal is determined as rising.
  • the time envelope shape of the high frequency signal can be determined to be rising in the same manner as the low frequency time envelope shape determining unit 10eA determines the time envelope shape of the low frequency signal to be rising.
  • the time envelope of the processed low frequency signal is used instead of the time envelope of the low frequency signal.
  • the time envelope shape of the high frequency signal can be determined as rising. The process of determining the time envelope shape of the high frequency signal as rising is not limited to the above example.
  • the time envelope shape of the high frequency signal is determined as falling.
  • the time envelope shape of the high-frequency signal can be determined as falling in the same manner as the low-frequency time envelope shape determination unit 10eA determines the time envelope shape of the low-frequency signal as falling.
  • the time envelope of the processed low frequency signal is used instead of the time envelope of the low frequency signal.
  • the time envelope shape of the high frequency signal can be determined as falling. The process of determining the time envelope shape of the high frequency signal as falling is not limited to the above example.
  • FIG. 31 is a diagram showing a configuration of the second modification 13B of the speech decoding apparatus according to the fourth embodiment.
  • the difference from the first modification 13A of the speech decoding device according to the fourth embodiment is that the high frequency time envelope shape determination unit 13aB receives a plurality of subband signals of low frequency signals from the analysis filter bank unit 10c. The point is that the time envelope shape of the high frequency signal is determined based on the plurality of subband signals of the low frequency signal (processing corresponding to step S13-1a).
  • the time envelope of at least one or more subband signals of the low frequency signal is calculated, and the high frequency time envelope shape is determined based on the shape of the low frequency subband signal time envelope.
  • the time envelope shape of the high frequency signal is determined to be flat.
  • the time envelope shape of the high frequency signal can be determined to be flat in the same manner as the low frequency time envelope shape determination unit 10eB determines the time envelope shape of the low frequency signal to be flat.
  • B LO (m) representing the boundary of the frequency band can be made different from that of the low frequency time envelope shape determination unit 10eB, for example, by defining only a relatively high frequency band.
  • the process of determining the time envelope shape of the high frequency signal as flat is not limited to the above example.
  • the time envelope shape of the high-frequency signal is determined as rising.
  • the time envelope shape of the high-frequency signal can be determined to be rising in the same manner as the low-frequency time envelope shape determining unit 10eB determines the time envelope shape of the low-frequency signal to be rising.
  • B LO (m) representing the boundary of the frequency band can be made different from that of the low frequency time envelope shape determination unit 10eB, for example, by defining only a relatively high frequency band.
  • the process of determining the time envelope shape of the high frequency signal as rising is not limited to the above example.
  • the time envelope shape of the high-frequency signal is determined as falling.
  • the time envelope shape of the high-frequency signal can be determined as falling in the same manner as the low-frequency time envelope shape determination unit 10eB determines the time envelope shape of the low-frequency signal as falling.
  • B LO (m) representing the boundary of the frequency band can be made different from that of the low frequency time envelope shape determination unit 10eB, for example, by defining only a relatively high frequency band.
  • the process of determining the time envelope shape of the high frequency signal as falling is not limited to the above example.
  • FIG. 32 is a diagram illustrating a configuration of the third modification 13C of the speech decoding device according to the fourth embodiment.
  • the high frequency time envelope shape determination unit 13aC includes information on the high frequency time envelope shape from the encoded sequence analysis unit 13c, a low frequency signal from the core decoding unit 10b, and a plurality of subband signals from the analysis filter bank unit 10c. At least one is received and the time envelope shape of the high frequency signal is determined (processing corresponding to step S13-1).
  • the time envelope of at least one or more subband signals of the low frequency signal is calculated, and the high frequency time envelope shape is determined based on the shape of the low frequency subband signal time envelope.
  • the time envelope shape of the high frequency signal is determined to be flat.
  • the time envelope shape is determined to be flat.
  • the method of determining the time envelope shape of the high frequency signal as flat is not limited to the above.
  • the time envelope shape of the high frequency signal is determined as rising.
  • the time envelope shape is determined as rising.
  • the method of determining the time envelope shape of the high frequency signal as rising is not limited to the above.
  • the time envelope shape of the high frequency signal is determined as falling.
  • the speech decoding device of the fourth embodiment a combination of at least one or more methods for determining the time envelope shape of the high-frequency signal described in the first and second modifications of the decoding device as falling
  • the time envelope shape is determined as falling.
  • the method of determining the time envelope shape of the high frequency signal as falling is not limited to the above.
  • FIG. 33 is a diagram illustrating the configuration of the first modification 23A of the speech encoding device according to the fourth embodiment.
  • FIG. 34 is a flowchart showing the operation of the first modification 23A of the speech encoding apparatus according to the fourth embodiment.
  • the time envelope information encoding unit 23aA calculates at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal, and from at least one of the time envelopes of the low frequency signal and the high frequency signal.
  • Time envelope information is calculated and encoded (step S23-1a).
  • the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 23aA. Where the power of the subband signal is calculated is not limited. Furthermore, when the power of the subband signal of the high frequency signal has not been calculated, the power of the subband signal of the high frequency signal may be calculated by the time envelope information encoding unit 23aA. Where the power of the band signal is calculated is not limited.
  • information representing the degree of flatness of the time envelope shape is calculated as the time envelope information.
  • the time envelope E LO (k, i) of (B LO (m) ⁇ k ⁇ B LO (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated by equation (7).
  • the method for calculating the time envelope E LO (k, i) is not limited to the equation (7).
  • a variance of time envelope E LO (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the ratio of the arithmetic mean and geometric mean of the time envelope E LO (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • B HI (m) (m 0,..., M HI , M H ⁇ 1) (B HI ( 0) ⁇ k x , B HI (M HI ) ⁇ k h ), which is divided into M HI frequency bands whose boundaries are represented, and the subband signal X HI ( k, i) (B HI ( m) ⁇ k ⁇ B HI (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) time envelope E HI (k, i) of formula ( 11).
  • the method of calculating the time envelope E HI (k, i) is not limited to the equation (11).
  • a variance of the time envelope E HI (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the ratio of the arithmetic mean and geometric mean of the time envelope E HI (k, i) or a parameter equivalent thereto is calculated, and the parameter is encoded.
  • the calculation method of information indicating the degree of flatness of the time envelope shape is not limited to the above example.
  • information representing the degree of rise of the time envelope shape is calculated as time envelope information.
  • a difference value in the time direction of the time envelope E LO (k, i) is calculated, and the maximum value in an arbitrary time segment of the difference value is calculated and encoded.
  • a time-direction difference value of the time envelope E HI (k, i) is calculated, and a maximum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the method of calculating information representing the degree of rise of the time envelope shape is not limited to the above example.
  • information representing the degree of falling of the time envelope shape is calculated as time envelope information.
  • a difference value in the time direction of the time envelope E LO (k, i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated and encoded.
  • a difference value in the time direction of the time envelope E HI (k, i) is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated and encoded.
  • the method for calculating the information representing the degree of falling of the time envelope shape is not limited to the above example.
  • the example of calculating information representing the degree of flatness, the degree of rise, and the degree of fall as the time envelope information in the case of using only one of the time envelopes of the subband signal of the low frequency signal and the high frequency signal, Each unit and each process relating only to the calculation of the other time envelope can be omitted.
  • FIG. 35 is a diagram showing the configuration of the speech decoding apparatus 14 according to the fifth embodiment.
  • the communication device of the audio decoding device 14 receives the multiplexed encoded sequence output from the audio encoding device 24 described below, and further outputs the decoded audio signal to the outside.
  • the speech decoding apparatus 14 functionally includes an encoded sequence demultiplexing unit 10aA, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, and a high frequency signal generation unit. 10g, a high frequency time envelope shape determination unit 13a, a time envelope correction unit 14a, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, and a synthesis filter bank unit 10j.
  • FIG. 36 is a flowchart showing the operation of the speech decoding apparatus 14 according to the fifth embodiment.
  • the time envelope correction unit 14a determines the time envelope shape of the plurality of subband signals of the high frequency signal output from the high frequency signal generation unit 10g. Correct (step S14-1).
  • B gen, HI (m) (m 0,..., M gen, HI , M gen, HI ⁇ 1) within an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1) ( B gen, HI (0) ⁇ k x , B gen, HI (M gen, HI ) ⁇ k h ) is divided into M HI frequency bands whose boundaries are represented, and the height included in the mth frequency band
  • X ′ gen, HI (k, i) obtained by the above is output as a subband signal of a high frequency signal whose time envelope shape
  • the time envelope shape of the high frequency signal can be corrected by the following processing.
  • X ′ gen, HI (k, i) is output as a subband signal of a high-frequency signal with
  • a predetermined function F (X gen, HI (k, i)) is subjected to smoothing filter processing on the subband signal X gen, HI (k, i).
  • X gen, HI (k, i) is subjected to smoothing filter processing on the subband signal X gen, HI (k, i).
  • N filt ⁇ 1 X ′ gen, HI (k, i) is output as a subband signal of a high frequency signal whose time envelope shape is corrected.
  • processing can be performed so that the powers of the subband signals before and after the filtering process are matched within each frequency band where the boundary is expressed using B gen, HI (m).
  • the subband signal X gen, HI (k, i) is linearly predicted in the frequency direction within each frequency band whose boundary is expressed using the B gen, HI (m).
  • the above examples of processing for correcting the time envelope shape to be flat can be implemented in combination.
  • the time envelope correction unit 14a performs processing for correcting the shape of the time envelope of the plurality of subband signals of the high frequency signal to be flat, and is not limited to the above example.
  • the time envelope shape of the high frequency signal can be corrected by the following processing. For example, using a function incr (i) that monotonically increases a predetermined function F (X gen, HI (k, i)) with respect to i. And X ′ gen, HI (k, i) is output as a subband signal of a high-frequency signal with a corrected time envelope shape. Furthermore, processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B gen, HI (m).
  • the time envelope correction unit 14a performs a process of correcting the time envelope shape of the plurality of subband signals of the high frequency signal to rise, and is not limited to the above example.
  • the time envelope shape of the high frequency signal can be corrected by the following processing.
  • a predetermined function F (X gen, HI (k, i)) is used by using a function decr (i) monotonically decreasing with respect to i.
  • X ′ gen, HI (k, i) is output as a subband signal of a high-frequency signal with a corrected time envelope shape.
  • processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B gen, HI (m).
  • the time envelope correction unit 14a performs a process of correcting the time envelope shape of the plurality of subband signals of the high frequency signal to fall, and is not limited to the above example.
  • the frequency envelope adjustment unit 10i in this embodiment is realized by “HF adjustment” in “SBR” and “Low Delay SBR” defined in “ISO / IEC 14496-3”, the time envelope correction is performed.
  • the amount of calculation can be reduced by performing the processing of the unit 14a in the frequency envelope adjusting unit 10i. Specifically, for example, when the time envelope shape is corrected by Expression (27), the power of the subband signal of the high frequency signal in Expression (27) This calculation can be omitted because it is calculated in the “HF adjustment”.
  • the sum in the time direction Is calculated in the “HF adjustment”.
  • the calculation amount can be reduced by omitting the calculation of the sum.
  • time envelope correction unit 14a Furthermore, in other examples of the time envelope correction unit 14a, it is obvious that some operations can be omitted in the same manner.
  • FIG. 37 is a diagram showing a configuration of the speech encoding device 24 according to the fifth embodiment.
  • the communication device of the audio encoding device 24 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 24 functionally includes a downsampling unit 20a, a core encoding unit 20b, an analysis filter bank unit 20c, a control parameter encoding unit 20d, an envelope calculation unit 20e, a quantization / Encoding unit 20f, pseudo high frequency signal generation unit 24a, subband signal power calculation unit 24b, time envelope information encoding unit 24c, and encoded sequence multiplexing unit 20h.
  • FIG. 38 is a flowchart showing the operation of the speech encoding apparatus 24 according to the fifth embodiment.
  • the pseudo high frequency signal generation unit 24a is a control necessary for generating the low frequency signal subband signal of the input speech signal obtained by the analysis filter bank unit 20c and the high frequency signal obtained by the control parameter encoding unit 20d. Based on the parameters, a pseudo high frequency signal is generated (step S24-1).
  • the pseudo high frequency signal generation processing is performed in the same manner as the processing in the high frequency signal generation unit 10g, but the high frequency signal generation unit 10g generates the low frequency signal subband signal decoded by the core decoding unit 10b.
  • the pseudo high frequency signal generation unit 24a is different in that it is generated from a subband signal of a low frequency signal of the input audio signal.
  • a part of the processing in the high frequency signal generation unit 10g can be omitted for the purpose of reducing the amount of calculation.
  • the adjustment process of the tonality of the generated high frequency signal can be omitted.
  • the subband signal power calculation unit 24b calculates the power of the subband signal of the pseudo high frequency signal generated by the pseudo high frequency signal generation unit 24a (step S24-2).
  • the time envelope information encoding unit 24c calculates the time envelope of the high frequency signal using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e, and calculated by the subband signal power calculation unit 24b.
  • the time envelope of the pseudo high frequency signal is calculated using the power of the subband signal of the pseudo high frequency signal, and the time envelope information is calculated and encoded from the time envelope of the high frequency signal and the time envelope of the pseudo high frequency signal ( Step S24-3).
  • the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 24c, and the subband signal of the high frequency signal can be calculated. Where the power of is calculated is not limited.
  • the time envelope of the high frequency signal can be calculated by a process similar to the process of calculating the time envelope of the high frequency signal by the time envelope information encoding unit 21a.
  • the time envelope of the subband signal of the high frequency signal is not limited to the above example, as long as it is a parameter that can be understood in the time direction of the magnitude of the subband signal of the high frequency signal.
  • B sim, gen, HI (m) (m 0,..., M sim, gen, HI , M sim, gen within an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1) , HI ⁇ 1) (B sim , gen, HI (0) ⁇ k x, B sim, gen, HI (M sim, gen, HI) ⁇ M sim represented bounded by k h), gen, HI pieces
  • a time envelope E sim, gen, HI (k, i) of gen, HI (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated.
  • the time envelope of the subband signal of the pseudo high frequency signal is not limited to the above example, as long as it is a parameter
  • the time envelope information encoding unit 20g calculates information representing the degree of flatness as time envelope information
  • the time of the subband signal of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • information representing the degree of flatness can be calculated as time envelope information
  • the time envelope information can be encoded.
  • the degree of flatness of the time envelope is expressed by whether or not it is flat, it can be encoded with 1 bit.
  • the information is stored for each of the M sim, gen, HI frequency bands in the arbitrary time segment. Can be encoded with sim, gen, and HI bits.
  • the time envelope information encoding unit 20g calculates information representing the degree of rising as time envelope information
  • the subband signal of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • the time envelope of the subband signal of the pseudo high frequency signal is used instead of the time envelope of the subband signal of the core decoded signal, and information representing the degree of rise is calculated as the time envelope information.
  • the time envelope information can be encoded. For example, if the degree of rise of the time envelope is expressed by whether or not it is risen, it can be encoded by 1 bit.For example, the information is stored for each of the M sim, gen, and HI frequency bands in the arbitrary time segment. Can be encoded with sim, gen, and HI bits.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information
  • the subband of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • Information representing the degree of falling as time envelope information by using the time envelope of the signal and using the time envelope of the subband signal of the pseudo high frequency signal instead of the time envelope of the subband signal of the core decoded signal
  • the time envelope information can be encoded.
  • the degree of falling of the time envelope is expressed by whether or not it falls, it can be encoded with 1 bit, for example, the information for each of the M sim, gen, HI frequency bands in the arbitrary time segment Can be encoded with M sim, gen, HI bits.
  • the calculation method and encoding method of time envelope information are not limited to the above example. Further, it is obvious that the first modification of the speech coding apparatus according to the fourth embodiment of the present invention can be applied to the speech coding apparatus according to the present embodiment.
  • FIG. 39 is a diagram showing a configuration of the first modification 14A of the speech decoding device according to the fifth embodiment.
  • FIG. 40 is a flowchart showing the operation of the first modification 14A of the speech decoding apparatus according to the fifth embodiment.
  • the high frequency time envelope shape determination unit 14b receives information on the high frequency time envelope shape from the encoded sequence analysis unit 13c, the low frequency signal from the core decoding unit 10b, and the plurality of subband signals of the low frequency signal from the analysis filter bank unit 10c. At least one of the plurality of subband signals of the high frequency signal is received from the frequency signal generation unit 10g, and the time envelope shape of the high frequency signal is determined (step S14-2). For example, the time envelope shape of the high frequency signal is determined to be flat. Further, for example, the time envelope shape of the high-frequency signal is determined as rising. Further, for example, the time envelope shape of the high-frequency signal is determined as falling.
  • the difference from the high frequency time envelope shape determination unit 13aC of the third modification 13C of the speech decoding apparatus according to the fourth embodiment of the present invention is that a plurality of high frequency signals are input from the high frequency signal generation unit 10g as an input.
  • the band signal is also allowed, and the high frequency time envelope shape can be determined from the subband signal of the high frequency signal by the same method as the subband signal of the low frequency signal.
  • FIG. 41 is a diagram showing the configuration of the speech decoding apparatus 15 according to the sixth embodiment.
  • the communication device of the speech decoding device 15 receives the multiplexed encoded sequence output from the following speech encoding device 25, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 15 functionally includes an encoded sequence demultiplexing unit 10aA, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, and a high frequency signal generation unit. 10g, a decoding / inverse quantization unit 10h, a frequency envelope adjustment unit 10i, a high frequency time envelope shape determination unit 13a, a time envelope correction unit 15a, and a synthesis filter bank unit 10j.
  • FIG. 42 is a flowchart showing the operation of the speech decoding apparatus 15 according to the sixth embodiment.
  • the time envelope correction unit 15a corrects the time envelope shape of the plurality of subband signals of the high frequency signal output from the frequency envelope adjustment unit 10i. (Step S15-1).
  • the predetermined function F (X adj, HI (k, i) the following equation (37) X ′ adj, HI (k, i) obtained by the above is output as a subband signal of a high-frequency signal with a corrected time envelope shape.
  • the time envelope shape of the high frequency signal can be corrected by the following processing.
  • it is output from the frequency envelope adjustment unit 10i instead of the subband signal of the high frequency signal output from the high frequency signal generation unit 10g.
  • high frequency signals of the sub-band signals X adj by using HI (k, i), the high frequency signal of the sub-band signals X adj output from the frequency envelope adjuster 10i, the time envelope of HI (k, i)
  • the shape can be corrected to be flat.
  • the time envelope correction unit 15a performs processing for correcting the shape of the time envelope of the plurality of subband signals of the high frequency signal to be flat, and is not limited to the above example.
  • the time envelope shape of the high frequency signal can be corrected by the following processing.
  • the time envelope correction unit 14a it is output from the frequency envelope adjustment unit 10i instead of the subband signal of the high frequency signal output from the high frequency signal generation unit 10g.
  • high frequency signals of the sub-band signals X adj by using HI (k, i), the high frequency signal of the sub-band signals X adj output from the frequency envelope adjuster 10i, the time envelope of HI (k, i)
  • the shape can be corrected to rise.
  • the time envelope correction unit 15a performs a process of correcting the shape of the time envelope of the plurality of subband signals of the high frequency signal to rise, and is not limited to the above example.
  • the time envelope shape of the high frequency signal can be corrected by the following processing.
  • the time envelope correction unit 15a performs a process of correcting the shape of the time envelope of the plurality of subband signals of the high frequency signal to fall, and is not limited to the above example.
  • the first, second, and third modifications of the speech decoding device of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the fifth embodiment of the present invention can be applied.
  • FIG. 43 is a diagram showing a configuration of the speech encoding device 25 according to the sixth embodiment.
  • the communication device of the audio encoding device 25 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 25 functionally includes a downsampling unit 20a, a core encoding unit 20b, an analysis filter bank unit 20c, a control parameter encoding unit 20d, an envelope calculation unit 20e, a quantization / Encoding unit 20f, pseudo high frequency signal generation unit 24a, subband signal power calculation unit 24b, frequency envelope adjustment unit 25a, time envelope information encoding unit 25b, and encoded sequence multiplexing unit 20h.
  • FIG. 44 is a flowchart showing the operation of the speech encoding apparatus 25 according to the sixth embodiment.
  • the frequency envelope adjustment unit 25a includes control parameters necessary for frequency envelope adjustment of the high frequency signal obtained by the control parameter encoding unit 20d, and gain and noise signals for the high frequency signal quantized by the quantization / encoding unit 20f.
  • the frequency envelope of the pseudo high frequency signal generated by the pseudo high frequency signal generation unit 24a is adjusted based on the magnitude of (step S25-1).
  • the frequency envelope adjustment processing of the pseudo high frequency signal is performed in the same manner as the processing in the frequency envelope adjustment unit 10i, but the frequency envelope adjustment unit 10i generates a subband signal of the high frequency signal generated by the high frequency signal generation unit 10g.
  • the frequency envelope adjustment unit 25a is different from the subband signal of the pseudo high frequency signal generated by the pseudo high frequency signal generation unit 24a.
  • part of the processing in the frequency envelope adjustment unit 10i can be omitted for the purpose of reducing the amount of calculation.
  • the process of adding a sine wave signal can be omitted.
  • the process of adding a noise signal can be omitted.
  • the process of adjusting the magnitude of the noise signal can be omitted.
  • the time envelope information encoding unit 25b calculates the time envelope of the high frequency signal using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e, and calculated by the subband signal power calculation unit 24b. Calculate the time envelope of the pseudo high frequency signal using the power of the subband signal of the pseudo high frequency signal that has been frequency envelope adjusted, and encode the time envelope information from the time envelope of the high frequency signal and the time envelope of the pseudo high frequency signal. (Step S25-2). In this process, when the power of the subband signal of the high frequency signal is not calculated, the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 25b, and the subband signal of the high frequency signal can be calculated. Where the power of is calculated is not limited.
  • the time envelope of the high frequency signal can be calculated by a process similar to the process of calculating the time envelope of the high frequency signal by the time envelope information encoding unit 21a.
  • the time envelope of the subband signal of the high frequency signal is not limited to the above example, as long as it is a parameter that can be understood in the time direction of the magnitude of the subband signal of the high frequency signal.
  • B sim, adj, HI (m) (m 0,..., M sim, adj, HI , M sim, adj within an arbitrary time segment t E (l) ⁇ i ⁇ t E (l + 1) , HI ⁇ 1) (B sim , adj, HI (0) ⁇ k x, B sim, adj, HI (M sim, adj, HI) ⁇ M sim represented bounded by k h), adj, HI pieces
  • the time envelope E sim, adj, HI (k, i) of adj, HI (m + 1), t E (l) ⁇ i ⁇ t E (l + 1)) is calculated.
  • the time envelope of the subband signal of the pseudo high frequency signal is not limited to the above example, as long as it is a parameter that can be understood in the time direction of the
  • the time envelope information encoding unit 20g calculates information representing the degree of flatness as time envelope information
  • the time of the subband signal of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • information representing the degree of flatness can be calculated as time envelope information
  • the time envelope information can be encoded.
  • the degree of flatness of the time envelope is expressed by whether or not it is flat, it can be encoded with one bit.
  • the information is stored in M arbitrary sim, adj, and HI frequency bands in the arbitrary time segment. Can be encoded with sim, adj, and HI bits.
  • the time envelope information encoding unit 20g calculates information representing the degree of rising as time envelope information
  • the subband signal of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • the time envelope of the subband signal of the pseudo high frequency signal is used instead of the time envelope of the subband signal of the core decoded signal, and information representing the degree of rise is calculated as the time envelope information.
  • the time envelope information can be encoded. For example, if the degree of rise of the time envelope is expressed by whether or not it is risen, it can be encoded by 1 bit.For example, the information is stored for each of the M sim, adj, and HI frequency bands in the arbitrary time segment. Can be encoded with sim, adj, and HI bits.
  • the time envelope information encoding unit 20g calculates information representing the degree of falling as the time envelope information
  • the subband of the high frequency signal instead of the time envelope of the subband signal of the low frequency signal
  • Information representing the degree of falling as time envelope information by using the time envelope of the signal and using the time envelope of the subband signal of the pseudo high frequency signal instead of the time envelope of the subband signal of the core decoded signal
  • the time envelope information can be encoded.
  • the degree of fall of the time envelope is expressed by whether or not it falls, it can be encoded with 1 bit, for example, the information for each of the M sim, adj, HI frequency bands in the arbitrary time segment Can be encoded with M sim, adj, HI bits.
  • the calculation method and encoding method of time envelope information are not limited to the above example. Further, it is obvious that the first modification of the speech coding apparatus according to the fourth embodiment of the present invention can be applied to the speech coding apparatus according to the present embodiment.
  • FIG. 45 is a diagram showing a configuration of the first modification 15A of the speech decoding device according to the sixth embodiment.
  • FIG. 46 is a flowchart showing the operation of the first modified example 15A of the speech decoding apparatus according to the sixth embodiment.
  • the frequency envelope adjustment unit 10i separates and outputs at least one of the components constituting the high frequency signal.
  • the components constituting the high frequency signal are a high frequency signal component, a noise signal component, and a sine wave signal component generated from the low frequency signal.
  • the time envelope correction unit 15aA is based on the time envelope shape determined by the high frequency time envelope shape determination unit 13a, and at least one of the components constituting the high frequency signal output in a form separated from the frequency envelope adjustment unit 10i.
  • the above time envelope shape is corrected, and a high frequency signal is synthesized from each component of the high frequency signal including the component whose time envelope shape is corrected (step S15-1a).
  • the subband signal X ′ shp, adj, HI (k, i) of the component obtained by correcting the time envelope shape of the subband signal X shp, dj, HI (k, i) of the arbitrary component signal of the high frequency signal.
  • the high-frequency signal is synthesized with the subband signal of the component whose time envelope shape is corrected and the signal of the other component which is not subjected to the correction of the time envelope shape, and outputs a high-frequency signal.
  • the signal of the component whose time envelope shape is corrected can be a sum signal of a plurality of component signals, for example, the sum of a high frequency signal component and a noise signal component generated from a low frequency signal. it can.
  • FIG. 47 is a diagram showing the configuration of the speech decoding apparatus 16 according to the seventh embodiment.
  • the communication device of the audio decoding device 16 receives the multiplexed encoded sequence output from the audio encoding device 26 described below, and further outputs the decoded audio signal to the outside. As shown in FIG.
  • the speech decoding device 16 functionally includes an encoded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, time envelope correction unit 13b, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 48 is a flowchart showing the operation of the speech decoding apparatus according to the seventh embodiment.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention is clear that is applicable.
  • FIG. 49 is a diagram showing a configuration of the speech encoding device 26 according to the seventh embodiment.
  • the communication device of the audio encoding device 26 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 26 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, A quantization / encoding unit 20f, a core decoded signal generation unit 20i, a subband signal power calculation unit 20j, a time envelope information encoding unit 26a, and an encoded sequence multiplexing unit 20h are provided.
  • FIG. 50 is a flowchart showing the operation of the speech encoding apparatus 26 according to the seventh embodiment.
  • the time envelope information encoding unit 26a calculates at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal, and further calculates the core decoded signal calculated by the subband signal power calculation unit 20j.
  • the time envelope of the core decoded signal is calculated using the power of the subband signal, and time envelope information is obtained from at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal and the time envelope of the core decoded signal.
  • Encoding is performed (step S26-1).
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information.
  • the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal can be calculated by the time envelope information encoding unit 26a, and the subband signal of the low frequency signal can be calculated.
  • the power of is calculated is not limited.
  • the power of the subband signal of the high frequency signal is not calculated, the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 26a. Where the power is calculated is not limited.
  • the low frequency time envelope information can be calculated and encoded in the same manner as the operation of the time envelope information encoding unit 20g, and the high frequency time envelope information is calculated and encoded in the same manner as the operation of the time envelope information encoding unit 23a.
  • the calculation encoding of the low frequency time envelope information and the high frequency time envelope information is not limited to the above example.
  • the low frequency time envelope information and the high frequency time envelope information can be encoded separately or can be encoded together.
  • the low frequency time envelope information and the high frequency time envelope information are encoded.
  • the method of conversion is not limited.
  • the low frequency time envelope information and the high frequency time envelope information can be handled as vectors and can be encoded by vector quantization.
  • the vector can be entropy encoded.
  • the low frequency time envelope information and the high frequency time envelope information can be the same time envelope information.
  • the same time envelope information is transmitted from the encoded sequence analysis unit 10d of the speech decoding device 16 to the low frequency. Output as time envelope information and high frequency time envelope information.
  • the form of the low frequency time envelope information and the high frequency time envelope information is not limited.
  • FIG. 51 is a diagram showing the configuration of the first modification 16A of the speech decoding device according to the seventh embodiment.
  • FIG. 52 is a flowchart showing the operation of the first modification 16A of the speech decoding apparatus according to the seventh embodiment.
  • the high frequency time envelope shape determination unit 16a receives information on the high frequency time envelope shape from the encoded sequence analysis unit 13c, the low frequency signal from the core decoding unit 10b, and the plurality of subband signals of the low frequency signal from the analysis filter bank unit 10c. At least one of the plurality of sub-band signals of the low frequency signal whose time envelope shape has been corrected is received from the frequency time envelope correction unit 10f, and the time envelope shape of the high frequency signal is determined (step S16-1). For example, there are a case where the time envelope shape of the high frequency signal is determined to be flat, a case where the time envelope shape of the high frequency signal is determined to be rising, and a case where the time envelope shape of the high frequency signal is determined to be falling.
  • the difference from the high-frequency time envelope shape determination unit 13aC of the third modification 13C of the speech decoding device according to the fourth embodiment is that the low-frequency time envelope correction unit 10f as an input has the low time envelope shape corrected.
  • a plurality of subband signals of a frequency signal are also allowed. From the subband signal of the low frequency signal, a high frequency time is obtained in the same manner as the subband signal of the low frequency signal from the analysis filter bank unit 10c.
  • the envelope shape can be determined.
  • FIG. 153 is a diagram illustrating a configuration of the second modification 16B of the speech decoding device according to the seventh embodiment.
  • FIG. 154 is a flowchart showing the operation of the second modification 16B of the speech decoding apparatus according to the seventh embodiment.
  • the difference between the low frequency time envelope shape determination unit 16b and the low frequency time envelope shape determination unit 10eC is that the determined low frequency envelope shape is also notified to the time envelope correction unit 16c.
  • the determination of the time envelope shape in the low frequency time envelope shape determination unit 16b may be based on, for example, the frequency power distribution of the low frequency signal in addition to the above example.
  • the difference between the time envelope correction unit 16c and the time envelope correction unit 13b is that the time envelope shape received from the high frequency time envelope shape determination unit 13aC (which may be 13a, 13aA, 13aB) and the low frequency time envelope shape determination Based on at least one of the time envelope shapes received from the unit 16b, the time envelope shape of a plurality of subband signals output from the analysis filter bank unit 10c and used to generate a high frequency signal in the high frequency signal generation unit 10g This is a point to correct (S16-2).
  • the analysis filter bank unit 10c when receiving time envelope shape information that is flat from the low frequency time envelope shape determining unit 16b, the analysis filter bank unit 10c regardless of the time envelope shape received from the high frequency time envelope shape determining unit 13aC.
  • the shape of the time envelope of the plurality of subband signals output from is corrected to be flat.
  • the analysis filter bank unit 10c regardless of the time envelope shape received from the high frequency time envelope shape determination unit 13aC.
  • the time envelope shape of the plurality of subband signals output from is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 155 is a diagram showing a configuration of the third modification 16C of the speech decoding device according to the seventh embodiment.
  • FIG. 156 is a flowchart showing the operation of the third modification 16C of the speech decoding apparatus according to the seventh embodiment.
  • the difference between the high frequency time envelope shape determination unit 16d and the high frequency time envelope shape determination unit 13aC is that the determined high frequency envelope shape is also notified to the low frequency time envelope correction unit 16e. is there.
  • the determination of the time envelope shape in the high frequency time envelope shape determination unit 16d can be based on, for example, the frequency power distribution of the low frequency signal in addition to the above example.
  • the frame length when generating a high-frequency signal obtained from the encoded sequence analysis unit 13c can be used. For example, it can be determined that the frame is flat when the frame length is long, and is rising or falling when the frame length is short.
  • the frame length when generating the high-frequency signal there is a length of “time segment” whose boundary is determined by “time border” defined in “ISO / IEC14496-3”. Further, it is obvious that the same modification can be applied to the high frequency time envelope shape determination units 13a, 13aA, and 13aB.
  • the difference between the low frequency time envelope correction unit 16e and the low frequency time envelope correction unit 10f is that the time envelope shape received from the low frequency time envelope shape determination unit 10eC (it is obvious that 10e, 10eA, 10eB may be used) and the high frequency
  • the point is to correct the time envelope shape of the plurality of subband signals output from the analysis filter bank unit 10c based on at least one of the time envelope shapes received from the time envelope shape determination unit 16d (S16-3). ).
  • the analysis filter bank unit 10c when receiving time envelope shape information that is flat from the high frequency time envelope shape determining unit 16d, the analysis filter bank unit 10c regardless of the time envelope shape received from the low frequency time envelope shape determining unit 10eC.
  • the shape of the time envelope of the plurality of subband signals output from is corrected to be flat.
  • the analysis filter bank unit when receiving time envelope shape information that is not flat from the high frequency time envelope shape determining unit 16d, the analysis filter bank unit regardless of the time envelope shape received from the low frequency time envelope shape determining unit 10eC
  • the time envelope shape of the plurality of subband signals output from 10c is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 157 is a diagram showing a configuration of the fourth modification 16D of the speech decoding device according to the seventh embodiment.
  • FIG. 158 is a flowchart showing the operation of the fourth modification 16D of the speech decoding apparatus according to the seventh embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 16c, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 159 is a diagram showing a configuration of the fifth modification 16E of the speech decoding device according to the seventh embodiment.
  • FIG. 160 is a flowchart showing the operation of the fifth modification 16E of the speech decoding apparatus according to the seventh embodiment.
  • the difference between the present modification and the speech decoding apparatus 16 according to the seventh embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • the time envelope shape determination unit 16f includes information on the low frequency time envelope shape from the coded sequence demultiplexing unit 10a, a low frequency signal from the core decoding unit 10b, and a plurality of sub frequencies of the low frequency signal from the analysis filter bank unit 10c.
  • the time envelope shape is determined based on at least one of the band signal and information on the high frequency time envelope shape from the coded sequence analysis unit 13c (S16-4). The determined time envelope shape is notified to the low frequency time envelope correction unit 10f and the time envelope correction unit 13b.
  • the time envelope shape is determined to be flat. Further, for example, the rising time is determined as the time envelope shape. Further, for example, the falling is determined as the time envelope shape.
  • the determined time envelope shape is not limited to the above example.
  • time envelope shape determining unit 16f for example, the low frequency time envelope shape determining units 10e, 10eA, 10eB, 10eC, and 16b, and the high frequency time envelope shape determining units 13a, 13aA, 13aB, 13aC, and 16d, for example.
  • the time envelope shape can be determined.
  • the method for determining the time envelope shape is not limited to the above example.
  • FIG. 53 is a diagram showing a configuration of the first modification 26A of the speech encoding device according to the seventh embodiment.
  • FIG. 54 is a flowchart showing the operation of the first modification 26A of the speech encoding apparatus according to the seventh embodiment.
  • the time envelope information encoding unit 26aA calculates at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal, and more than at least one of the time envelopes of the low frequency signal and the high frequency signal. Time envelope information is calculated and encoded (step S26-1a).
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information. Similar to the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 26aA. Where the power of the subband signal is calculated is not limited.
  • the power of the subband signal of the high frequency signal may be calculated by the time envelope information encoding unit 26aA, and the subband signal power of the high frequency signal may be calculated. Where the power of the band signal is calculated is not limited.
  • the low frequency time envelope information can be calculated and encoded in the same manner as the operation of the time envelope information encoding unit 20gA, and the high frequency time envelope information is calculated and encoded in the same manner as the operation of the time envelope information encoding unit 23aA.
  • the calculation encoding of the low frequency time envelope information and the high frequency time envelope information is not limited to the above example.
  • the low frequency time envelope information and the high frequency time envelope information can be the same time envelope information. .
  • FIG. 55 is a diagram showing the configuration of the speech decoding apparatus 17 according to the eighth embodiment.
  • the communication device of the speech decoding device 17 receives the multiplexed encoded sequence output from the following speech encoding device 27, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding device 17 is functionally encoded coding demultiplexing unit 10a, core decoding unit 10b, analysis filter bank unit 10c, encoded sequence analysis unit 13c, low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency signal generation unit 10g, high frequency time envelope shape determination unit 13a, time envelope correction unit 14a, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 56 is a flowchart showing the operation of the speech decoding apparatus according to the eighth embodiment.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the fifth embodiment of the present invention and the first modification of the speech decoding apparatus according to the seventh embodiment of the present invention can be applied.
  • FIG. 57 is a diagram showing a configuration of the speech encoding device 27 according to the eighth embodiment.
  • the communication device of the audio encoding device 27 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside. As shown in FIG.
  • the speech encoding device 27 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, Quantization / encoding unit 20f, pseudo high frequency signal generation unit 24a, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, time envelope information encoding unit 27a, and encoded sequence multiplexing unit 20h Prepare.
  • FIG. 58 is a flowchart showing the operation of the speech encoding device 27 according to the eighth embodiment.
  • the time envelope information encoding unit 27a calculates at least one of the time envelope of the low frequency signal of the input speech signal, the time envelope of the high frequency signal, the time envelope of the core decoded signal, and the time envelope of the pseudo high frequency signal. Then, the time envelope information is encoded from the calculated time envelope (step S27-1).
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information.
  • the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal can be calculated by the time envelope information encoding unit 27a, and the subband signal of the low frequency signal can be calculated. Where the power of is calculated is not limited.
  • the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 27a, and the subband signal of the high frequency signal can be calculated. Where the power is calculated is not limited.
  • the time envelope of the core decoded signal is calculated using the power of the subband signal of the core decoded signal calculated by the subband signal power calculation unit 20j.
  • the time envelope of the pseudo high frequency signal is calculated using the power of the sub band signal of the pseudo high frequency signal calculated by the sub band signal power calculation unit 24b.
  • the time envelope information of the low frequency signal can be calculated and encoded similarly to the operation of the time envelope information encoding unit 20g, and the time of the high frequency signal can be encoded similarly to the operation of the time envelope information encoding unit 24c.
  • Envelope information can be calculated and encoded.
  • the method of calculating and encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the low frequency time envelope information and the high frequency time envelope information may be the same time envelope information.
  • FIG. 161 is a diagram showing the configuration of the first modification 17A of the speech decoding device according to the eighth embodiment.
  • FIG. 162 is a flowchart showing the operation of the first modified example 17A of the speech decoding apparatus according to the eighth embodiment.
  • the difference between the time envelope correction unit 17a and the time envelope correction unit 14a is that the time envelope shape received from the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, 13aB may be used) Based on at least one of the time envelope shapes received from the low frequency time envelope shape determination unit 16b, the time envelope shape of the plurality of subband signals of the high frequency signal output from the high frequency signal generation unit 10g is corrected. It is a point (S17-1).
  • the high frequency signal generating unit when receiving time envelope shape information that is flat from the low frequency time envelope shape determining unit 16b, regardless of the time envelope shape received from the high frequency time envelope shape determining unit 13aC, the high frequency signal generating unit The time envelope shape of a plurality of subband signals output from 10g is corrected to be flat. Further, for example, when receiving information of the time envelope shape that is not flat from the low frequency time envelope shape determining unit 16b, regardless of the time envelope shape received from the high frequency time envelope shape determining unit 13aC, the high frequency signal generating unit The time envelope shape of multiple subband signals output from 10g is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 163 is a diagram illustrating a configuration of the second modification 17B of the speech decoding device according to the eighth embodiment.
  • FIG. 164 is a flowchart showing the operation of the second modified example 17B of the speech decoding apparatus according to the eighth embodiment.
  • the difference between the present modification and the speech decoding apparatus 17 according to the eighth embodiment is that a high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), a low frequency time envelope correction unit 10f Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 165 is a diagram showing a configuration of the third modification 17C of the speech decoding device according to the eighth embodiment.
  • FIG. 166 is a flowchart showing the operation of the third modified example 17C of the speech decoding apparatus according to the eighth embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 17a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 167 is a diagram illustrating a configuration of the fourth modification 17D of the speech decoding device according to the eighth embodiment.
  • FIG. 168 is a flowchart showing the operation of the fourth modification 17D of the speech decoding apparatus according to the eighth embodiment.
  • the difference between the present modification and the speech decoding apparatus 17 according to the eighth embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 59 is a diagram showing the configuration of the speech decoding apparatus 18 according to the ninth embodiment.
  • the communication device of the audio decoding device 18 receives the multiplexed encoded sequence output from the audio encoding device 28 described below, and further outputs the decoded audio signal to the outside. As shown in FIG.
  • the speech decoding apparatus 18 is functionally encoded coding demultiplexing unit 10a, core decoding unit 10b, analysis filter bank unit 10c, encoded sequence analysis unit 13c, low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, high frequency time envelope shape determination unit 13a, time envelope correction unit 14a, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 60 is a flowchart showing the operation of the speech decoding apparatus according to the ninth embodiment.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the fifth embodiment of the present invention and the first modification of the speech decoding apparatus according to the seventh embodiment of the present invention can be applied.
  • FIG. 61 is a diagram showing a configuration of the speech encoding device 28 according to the ninth embodiment.
  • the communication device of the audio encoding device 28 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside. As shown in FIG.
  • the speech encoding device 28 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, Quantization / encoding unit 20f, pseudo high frequency signal generation unit 24a, frequency envelope adjustment unit 25a, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, time envelope information encoding unit 27a, and encoding A sequence multiplexing unit 20h is provided.
  • FIG. 62 is a flowchart showing the operation of the speech encoding apparatus 28 according to the ninth embodiment.
  • the time envelope information encoding unit 28a includes at least one of the time envelope of the low frequency signal of the input speech signal, the time envelope of the high frequency signal, the time envelope of the core decoded signal, and the time envelope of the pseudo high frequency signal adjusted for frequency envelope. One or more are calculated, and time envelope information is encoded from the calculated time envelope (step S28-1).
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information. Similar to the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the time envelope of the low frequency signal is calculated using the power of the subband signal of the low frequency signal calculated by the envelope calculation unit 20e.
  • the time envelope of the high frequency signal is calculated using the power of the subband signal of the high frequency signal calculated by the envelope calculation unit 20e.
  • the power of the subband signal of the low frequency signal can be calculated by the time envelope information encoding unit 28a, and the subband signal of the low frequency signal can be calculated. Where the power of is calculated is not limited.
  • the power of the subband signal of the high frequency signal can be calculated by the time envelope information encoding unit 28a, and the subband signal of the high frequency signal can be calculated. Where the power is calculated is not limited.
  • the time envelope of the core decoded signal is calculated using the power of the subband signal of the core decoded signal calculated by the subband signal power calculation unit 20j.
  • the time envelope of the pseudo high frequency signal that has been subjected to the frequency envelope adjustment is calculated using the power of the sub band signal of the pseudo high frequency signal calculated by the sub band signal power calculation unit 24b.
  • the time envelope information of the low frequency signal can be calculated and encoded in the same manner as the operation of the time envelope information encoding unit 20g, and the time of the high frequency signal can be calculated in the same manner as the operation of the time envelope information encoding unit 25b.
  • Envelope information can be calculated and encoded.
  • the method of calculating and encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the low frequency time envelope information and the high frequency time envelope information may be the same time envelope information.
  • the first modification of the speech encoding apparatus according to the seventh embodiment of the present invention can be applied to the speech encoding apparatus 28 according to the present embodiment.
  • FIG. 63 is a diagram showing the configuration of the first modification 18A of the speech decoding device according to the ninth embodiment.
  • FIG. 64 is a flowchart showing the operation of the first modification 18A of the speech decoding apparatus according to the ninth embodiment.
  • the first, second, and third modifications of the speech decoding apparatus of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the fifth embodiment of the present invention and the first modification of the speech decoding apparatus according to the seventh embodiment of the present invention can be applied.
  • FIG. 169 is a diagram illustrating a configuration of the second modification 18B of the speech decoding device according to the ninth embodiment.
  • FIG. 170 is a flowchart showing the operation of the second modification 18B of the speech decoding apparatus according to the ninth embodiment.
  • the difference between the time envelope correction unit 18a and the time envelope correction unit 15a is the time envelope shape received from the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, 13aB may be used)
  • the frequency envelope adjustment unit 10i regardless of the time envelope shape received from the high frequency time envelope shape determination unit 13aC.
  • the shape of the time envelope of the plurality of subband signals output from is corrected to be flat.
  • the frequency envelope adjustment unit 10i regardless of the time envelope shape received from the high frequency time envelope shape determination unit 13aC.
  • the time envelope shape of the plurality of subband signals output from is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 171 is a diagram showing a configuration of the third modification 18C of the speech decoding device according to the ninth embodiment.
  • FIG. 172 is a flowchart showing the operation of the third modification 18C of the speech decoding device according to the ninth embodiment.
  • the difference between the present modification and the speech decoding apparatus 18 according to the ninth embodiment is that the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), and the low frequency time envelope correction unit 10f. Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 173 is a diagram illustrating a configuration of the fourth modification 18D of the speech decoding device according to the ninth embodiment.
  • FIG. 174 is a flowchart showing the operation of the fourth modification 18D of the speech decoding apparatus according to the ninth embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 18a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 175 is a diagram showing the configuration of the fifth modification 18E of the speech decoding device according to the ninth embodiment.
  • FIG. 176 is a flowchart showing the operation of the fifth modification 18E of the speech decoding apparatus according to the ninth embodiment.
  • the difference between the present modification and the speech decoding apparatus 18 according to the ninth embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 177 is a diagram illustrating the configuration of the sixth modification 18F of the speech decoding device according to the ninth embodiment.
  • FIG. 178 is a flowchart showing the operation of the sixth modification 18F of the speech decoding apparatus according to the ninth embodiment.
  • the difference between the time envelope correction unit 18aA and the time envelope correction unit 15aA is the time envelope shape received from the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, 13aB may be used)
  • the time envelope shape is corrected, and the high frequency signal is synthesized from each component of the high frequency signal including the component whose time envelope shape is corrected (S18-1a).
  • the frequency envelope adjustment unit 10i regardless of the time envelope shape received from the high frequency time envelope shape determination unit 13aC. At least one time envelope shape among the components constituting the high frequency signal output in a more separated form is corrected to be flat. Further, for example, when the information of the time envelope shape that is not flat is received from the low frequency time envelope shape determination unit 16b, the frequency envelope adjustment unit 10i regardless of the time envelope shape received from the high frequency time envelope shape determination unit 13aC. The time envelope shape of at least one of the components constituting the high frequency signal output in a more separated form is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 179 is a diagram illustrating a configuration of the seventh modification 18G of the speech decoding device according to the ninth embodiment.
  • FIG. 180 is a flowchart showing the operation of the seventh modification 18G of the speech decoding apparatus according to the ninth embodiment.
  • the difference between the present modification and the speech decoding apparatus 18A according to the first modification of the ninth embodiment is that the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), low Instead of the frequency time envelope correction unit 10f, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 181 is a diagram illustrating the configuration of the eighth modification 18H of the speech decoding device according to the ninth embodiment.
  • FIG. 182 is a flowchart showing the operation of the eighth modification 18H of the speech decoding apparatus according to the ninth embodiment.
  • the low frequency time envelope shape determination unit 16b, the time envelope correction unit 18aA, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 183 is a diagram illustrating a configuration of the ninth modification 18I of the speech decoding device according to the ninth embodiment.
  • FIG. 184 is a flowchart showing the operation of the ninth modification 18I of the speech decoding apparatus according to the ninth embodiment.
  • the difference between the present modification and the speech decoding apparatus 18A according to Modification 1 of the ninth embodiment is that the time envelope shape determination is performed instead of the low frequency time envelope shape determination unit 10e and the high frequency time envelope shape determination unit 13a.
  • the point is that it includes a part 16f.
  • FIG. 65 is a diagram showing the configuration of the speech decoding apparatus 1 according to the tenth embodiment.
  • the communication device of the speech decoding device 1 receives the multiplexed encoded sequence output from the following speech encoding device 2, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 1 functionally includes an encoded sequence analysis unit 1a, a speech decoding unit 1b, a time envelope shape determination unit 1c, and a time envelope correction unit 1d.
  • FIG. 66 is a flowchart showing the operation of the speech decoding apparatus 1 according to the tenth embodiment.
  • the encoded sequence analysis unit 1a analyzes the encoded sequence and divides it into information related to the speech encoded portion and the time envelope shape (step S1-1).
  • Speech decoding unit 1b decodes the speech encoded part of the encoded sequence to obtain a decoded signal (step S1-2).
  • the time envelope shape determination unit 1c is based on at least one of the information about the time envelope shape divided by the coding sequence analysis unit 1a and the decoded signal obtained by the speech decoding unit 1b, and the time envelope shape of the decoded signal Is determined (step S1-3).
  • the time envelope shape of the decoded signal is determined to be flat.
  • the power of the decoded signal or a parameter equivalent thereto is calculated, and the variance of the parameter or a parameter equivalent thereto is calculated.
  • the calculated parameter is compared with a predetermined threshold value to determine whether or not the time envelope shape is flat or the degree of flatness.
  • the ratio of the arithmetic mean and geometric mean of the decoded signal power or a parameter equivalent thereto or a parameter equivalent thereto is calculated and compared with a predetermined threshold value to determine whether the time envelope shape is flat or flat. Determine the degree of.
  • the method of determining the time envelope shape of the decoded signal as flat is not limited to the above example.
  • the time envelope shape of the decoded signal is determined as rising.
  • the power of the decoded signal or a parameter equivalent thereto is calculated, a difference value in the time direction of the parameter is calculated, and a maximum value in an arbitrary time segment of the difference value is calculated.
  • the maximum value is compared with a predetermined threshold value to determine whether or not the time envelope shape rises or the degree of rise.
  • the method for determining the time envelope shape of the decoded signal as rising is not limited to the above example.
  • the time envelope shape of the low frequency signal is determined as falling.
  • the power of the decoded signal or a parameter equivalent thereto is calculated, a difference value in the time direction of the parameter is calculated, and a minimum value in an arbitrary time segment of the difference value is calculated.
  • the minimum value is compared with a predetermined threshold value to determine whether or not the time envelope shape falls or the extent of the fall.
  • the method of determining the time envelope shape of the decoded number signal as falling is not limited to the above example.
  • the above example can be applied even when the decoded signal is output as a time domain signal from the audio decoding unit 1b, and can be applied even when the decoded signal is output as a plurality of subband signals.
  • the time envelope correction unit 1d corrects the time envelope shape of the decoded signal output from the speech decoding unit 1b based on the time envelope shape determined by the time envelope shape determination unit 1c (step S1-4).
  • the time envelope correction unit 1d includes a plurality of subband signals X dec (k, i) (0 ⁇ k) of the decoded signal in an arbitrary time segment. ⁇ k h , t (l) ⁇ i ⁇ t (l + 1)), using a predetermined function F (X dec (k, i)), the following equation (40) X ′ dec (k, i) obtained by the above is calculated as a subband signal of the decoded signal whose time envelope shape is corrected, and a signal in the time domain is synthesized from the subband signal and output.
  • the time envelope shape of the decoded signal can be corrected by the following processing.
  • the predetermined function F (X dec (k, i)) is subjected to a smoothing filter process on the subband signal X dec (k, i).
  • X dec (k, i) is calculated as a subband signal of the decoded signal whose time envelope shape is corrected.
  • processing can be performed so that the powers of the subband signals before and after the filtering process are matched in each frequency band where the boundary is expressed using B dec (m).
  • N pred ⁇ 1 X ′ dec (k, i) is calculated as a subband signal of the decoded signal whose time envelope shape is corrected.
  • the time envelope correction unit 1d performs a process of correcting the time envelope shape of the decoded signal to be flat, and is not limited to the above example.
  • the time envelope shape of the decoded signal can be corrected by the following processing. For example, using a function incr (i) that monotonically increases a predetermined function F (X dec (k, i)) with respect to i. And X ′ dec (k, i) is calculated as a subband signal of the decoded signal whose time envelope shape is corrected. Furthermore, processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B dec (m).
  • the time envelope correction unit 1d performs a process of correcting the time envelope shape of the plurality of subband signals of the decoded signal to rise, and is not limited to the above example.
  • the time envelope shape of the decoded signal can be corrected by the following processing. For example, using a function decr (i) that monotonically decreases a predetermined function F (X dec (k, i)) with respect to i. And X ′ dec (k, i) is calculated as a subband signal of a low frequency signal whose time envelope shape is corrected. Furthermore, processing can be performed so that the powers of the subband signals before and after the correction of the time envelope shape are matched within each frequency band where the boundary is expressed using the B dec (m).
  • the time envelope correction unit 1d performs processing for correcting the shape of the time envelope of the plurality of subband signals of the decoded signal to fall, and is not limited to the above example.
  • the time envelope correction unit 1d uses the decoded signal x dec (i) (t (l) ⁇ i ⁇ t (l + 1) in an arbitrary time segment. )) For a given function F t (x dec (i)) X ′ dec (i) obtained by the above is output as a decoded signal with a corrected time envelope shape.
  • the time envelope shape of the decoded signal can be corrected by the following processing. For example, for the decoded signal x dec (i), a predetermined function F t (x dec (i)) X ′ dec (i) is output as a decoded signal whose time envelope shape is corrected.
  • the predetermined function F t (x dec (i)) is subjected to smoothing filter processing on the decoded signal x dec (i). Define (N filt ⁇ 1) and output x ′ dec (i) as a decoded signal with a modified time envelope shape.
  • the time envelope shape of the decoded signal can be corrected by the following processing. For example, using a function incr (i) that monotonically increases with respect to a given function F t (x dec (i)) And x ′ dec (i) is output as a decoded signal whose time envelope shape is corrected.
  • the time envelope correction unit 1d performs a process of correcting the time envelope shape of the decoded signal to rise, and is not limited to the above example.
  • the time envelope shape of the decoded signal can be corrected by the following processing. For example, given a function F t (x dec (i)) using a function decr (i) monotonically decreasing with respect to i And x ′ dec (i) is output as a decoded signal whose time envelope shape is corrected.
  • the time envelope correction unit 1d performs processing for correcting the time envelope shape of the decoded signal to fall, and is not limited to the above example.
  • the time envelope shape of the decoded signal can be corrected by the following processing.
  • the time envelope correction unit 1d performs a process of correcting the time envelope shape of the decoded signal to be flat, and is not limited to the above example.
  • FIG. 67 is a diagram showing a configuration of the speech encoding apparatus 2 according to the tenth embodiment.
  • the communication device of the audio encoding device 2 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech coding apparatus 2 functionally includes a speech coding unit 2a, a time envelope information coding unit 2b, and a coded sequence multiplexing unit 2c.
  • FIG. 68 is a flowchart showing the operation of the speech encoding apparatus 2 according to the tenth embodiment.
  • Speech encoding unit 2a encodes the input speech signal (step S2-1).
  • the time envelope information encoding unit 2b calculates time envelope information based on at least one of the input speech signal and the information obtained in the encoding process including the encoding result of the input speech signal in the speech encoding unit 2a. And encoding (step S2-2).
  • Subband signal X (k, i) (B (m) ⁇ k ⁇ B (m + 1), t (l) of the input audio signal divided into M frequency bands and included in the mth frequency band ⁇ i ⁇ t (l + 1)) can be calculated as the power of the subband signal of the input speech signal normalized within the time segment.
  • the time envelope of the input voice signal may be a parameter that can be used to understand the fluctuation in the time direction of the magnitude of the input voice signal, and is not limited to the above example.
  • the decoded signal x dec (i) is calculated based on the encoding result of the input audio signal in the audio encoding unit 2a, and an arbitrary time segment t (l) ⁇ i ⁇ t (l + 1))
  • the time envelope E dec, t (i) of the decoded signal x dec (i) can be calculated as the power of the decoded signal normalized within the time segment.
  • Subband signal X dec (k, i) (B (m) ⁇ B) of the input audio signal is divided into M frequency bands whose boundaries are represented by M) ⁇ k h ) and included in the mth frequency band.
  • time envelope information encoding unit 2b calculates information representing the degree of flatness as the time envelope information. For example, at least one of the variance of the time envelope of the input speech signal and the decoded signal or a parameter equivalent thereto is calculated. In yet another example, at least one or more of the ratio of the arithmetic mean and the geometric mean of the time envelopes of the input speech signal and the decoded signal or a parameter equivalent thereto is calculated.
  • the time envelope information encoding unit 2b may calculate information indicating the flatness of the time envelope of the input speech signal as the time envelope information, and is not limited to the above example.
  • the parameter is encoded.
  • the difference value or the absolute value of the parameter between the input audio signal and the decoded signal is encoded.
  • at least one or more of the parameter value or absolute value of the input audio signal is encoded.
  • the flatness of the time envelope is expressed as flat or not, it can be encoded with 1 bit, for example, the input speech signal in the time domain can be encoded with 1 bit in the arbitrary time segment,
  • the information can be encoded with M bits.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 2b calculates information representing the degree of rise as time envelope information.
  • the maximum value of the time direction difference value of the time envelope of the input audio signal is calculated within an arbitrary time segment t (l) ⁇ i ⁇ t (l + 1).
  • the maximum value of the difference value in the time direction of the parameter obtained by smoothing the time envelope in the time direction can be calculated.
  • the time envelope information encoding unit 2b may calculate information representing the degree of rise of the time envelope of the input speech signal as time envelope information, and is not limited to the above example.
  • the parameter is encoded. For example, at least one of the difference value of the parameter between the input speech signal and the decoded signal or the absolute value thereof is encoded. For example, if the rise of the time envelope is expressed by whether or not it can be encoded with 1 bit, for example, the input speech signal in the time domain can be encoded with 1 bit in the arbitrary time segment, and further, for example, When the information is encoded for each of the M frequency bands of the subband signal of the input audio signal, the information can be encoded with M bits.
  • the encoding method of time envelope information is not limited to the above example.
  • the time envelope information encoding unit 2b calculates information representing the degree of falling as the time envelope information. For example, the minimum value of the time direction difference value of the time envelope of the input speech signal is calculated within an arbitrary time segment t (l) ⁇ i ⁇ t (l + 1). Furthermore, in these equations, instead of the time envelope, the minimum value of the difference value in the time direction of the parameter obtained by smoothing the time envelope in the time direction can be calculated. In this case, the time envelope information encoding unit 2b may calculate information indicating the degree of the fall of the time envelope of the subband signal of the input speech signal as the time envelope information, and is not limited to the above example. Then, the parameter is encoded.
  • the difference value of the parameter between the input speech signal and the decoded signal or the absolute value thereof is encoded.
  • the falling edge of the time envelope is expressed by whether it falls, it can be encoded with 1 bit, for example, the input speech signal in the time domain can be encoded with 1 bit in the arbitrary time segment, and
  • the information can be encoded with M bits.
  • the encoding method of time envelope information is not limited to the above example.
  • the power of the time segment shorter than the time segment within an arbitrary time segment t (l) ⁇ i ⁇ t (l + 1) in the speech coder 2a can be used (for example, codebook gain in CELP coding).
  • the encoded sequence multiplexing unit 2c receives the encoded sequence of the input audio signal from the audio encoding unit 2a, receives the time envelope shape information encoded from the time envelope information encoding unit 2b, multiplexes and encodes the encoded sequence (Step S2-3).
  • FIG. 69 is a diagram showing the configuration of the speech decoding apparatus 100 according to the eleventh embodiment.
  • the communication device of speech decoding apparatus 100 receives the multiplexed encoded sequence output from speech encoding apparatus 200 below, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 100 functionally includes an encoded sequence demultiplexing unit 100a, a low frequency decoding unit 100b, a low frequency time envelope shape determination unit 100c, a low frequency time envelope correction unit 100d, A high frequency decoding unit 100e and a low frequency / high frequency signal synthesis unit 100f are provided.
  • FIG. 70 is a flowchart showing the operation of the speech decoding apparatus according to the eleventh embodiment.
  • the encoded sequence demultiplexing unit 100a divides the encoded sequence into a low frequency encoded portion that encodes a low frequency signal and a high frequency encoded portion that encodes a high frequency signal (step S100-1).
  • the low frequency decoding unit 100b decodes the low frequency encoded part divided by the encoded sequence demultiplexing unit 100a to obtain a low frequency signal (step S100-2).
  • the low frequency time envelope shape determination unit 100c includes at least one of the information about the low frequency time envelope shape divided by the encoded sequence demultiplexing unit 100a and the low frequency signal obtained by the low frequency decoding unit 100b. Based on this, the time envelope shape of the low frequency signal is determined (step S100-3).
  • time envelope shape of the low frequency signal is determined to be flat
  • time envelope shape of the low frequency signal is determined as rising
  • time envelope shape of the low frequency signal is determined as falling
  • the determination of the time envelope shape of the low-frequency signal is obtained by, for example, the decoded signal obtained by the speech decoding unit 1b in the time envelope shape determination process of the decoded signal by the time envelope shape determining unit 1c by the low-frequency decoding unit 100b. It can be realized by replacing with a low frequency signal.
  • the low frequency time envelope correction unit 100d corrects the time envelope shape of the low frequency signal output from the low frequency decoding unit 100b based on the time envelope shape determined by the low frequency time envelope shape determination unit 100c (step S100). -Four).
  • the correction of the time envelope shape of the low-frequency signal is obtained by, for example, the decoded signal obtained by the speech decoding unit 1b in the correction process of the time envelope shape of the decoded signal in the time envelope correction unit 1d by the low-frequency decoding unit 100b. This can be realized by replacing with a low frequency signal.
  • the high frequency decoding unit 100e decodes the high frequency encoded part divided by the encoded sequence demultiplexing unit 100a to obtain a high frequency signal (step S100-5).
  • the high-frequency signal is decoded by the high-frequency decoding unit 100e by encoding an encoded sequence obtained by encoding a high-frequency signal with a signal in at least one of a time-domain signal, a subband signal, and a frequency-domain signal. This can be realized by a decoding method.
  • a high-frequency signal is generated by a band extension method that generates a high-frequency signal using a decoding result obtained by the low-frequency decoding unit. Can be generated.
  • a portion including the information in the encoded sequence becomes a high frequency encoded portion.
  • the high frequency encoded portion divided by the encoded sequence demultiplexing unit 100a is decoded to obtain information necessary for the band extension method, and a high frequency signal is generated.
  • the low frequency / high frequency signal synthesis unit 100f combines the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d with the high frequency signal obtained by the high frequency decoding unit 100e.
  • An audio signal including the component and the high frequency component is output (step S100-6).
  • FIG. 71 is a diagram showing a configuration of speech encoding apparatus 200 according to the eleventh embodiment.
  • the communication device of speech coding apparatus 200 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • speech coding apparatus 200 is functionally composed of a low-frequency coding unit 200a, a high-frequency coding unit 200b, a low-frequency time envelope information coding unit 200c, and a coded sequence multiplexing unit. With 200d.
  • FIG. 72 is a flowchart showing the operation of the speech encoding apparatus 200 according to the eleventh embodiment.
  • the low frequency encoding unit 200a encodes a low frequency signal corresponding to a low frequency component of the input audio signal (step S200-1).
  • the high frequency encoding unit 200b encodes the high frequency signal corresponding to the high frequency component of the input voice signal (step S200-2).
  • the low frequency time envelope information encoding unit 200c is based on at least one of the input speech signal and the information obtained in the encoding process including the encoding result of the input speech signal in the low frequency encoding unit 200a.
  • Frequency time envelope shape information is calculated and encoded (step S200-3).
  • the calculation and encoding process of the low frequency time envelope shape information is performed by, for example, calculating the time envelope information of the input audio signal in the time envelope information encoding unit 2b and performing the encoding process of the input audio signal instead of the input audio signal.
  • the frequency signal can be realized in the same manner by using a low-frequency decoded signal obtained by decoding the encoding result in the low-frequency encoding unit 200a instead of the decoded signal.
  • the encoded sequence multiplexing unit 200d receives the encoded sequence of the low frequency speech signal from the low frequency encoding unit 200a, receives the encoded sequence of the high frequency speech signal from the high frequency encoding unit 200b, and receives the low frequency time envelope information
  • the encoded low frequency time envelope shape information is received from the encoding unit 200c, multiplexed and output as an encoded sequence (step S200-4).
  • FIG. 73 is a diagram showing the configuration of the first modification 100A of the speech decoding device according to the eleventh embodiment.
  • FIG. 74 is a flowchart showing the operation of the first modification 100A of the speech decoding apparatus according to the eleventh embodiment.
  • the high frequency decoding unit 100eA decodes the high frequency encoded part divided by the encoded sequence demultiplexing unit 100a to obtain a high frequency signal (step S100-5A).
  • the high frequency decoding unit 100eA when using the low frequency decoded signal obtained by the low frequency decoding unit in decoding of the high frequency signal, the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correcting unit 100d is used. It is different from the high frequency decoding unit 100e in that it is used.
  • FIG. 75 is a diagram showing the configuration of the first modification 100A of the speech encoding device according to the eleventh embodiment.
  • the difference from the first modification of the speech decoding apparatus according to the eleventh embodiment is that the low frequency signal input to the low frequency / high frequency signal synthesis unit 100f is not output from the low frequency time envelope correction unit 100d. The output is from the low frequency decoding unit 100b.
  • FIG. 76 is a diagram showing the configuration of the speech decoding device 110 according to the twelfth embodiment.
  • the communication device of the audio decoding device 110 receives the multiplexed encoded sequence output from the audio encoding device 210 below, and further outputs the decoded audio signal to the outside.
  • the speech decoding apparatus 110 functionally includes a coded sequence demultiplexing unit 110a, a low frequency decoding unit 100b, a high frequency decoding unit 100e, a high frequency time envelope shape determination unit 110b, a high frequency A time envelope correction unit 110c and a low frequency / high frequency signal synthesis unit 100f are provided.
  • FIG. 77 is a flowchart showing the operation of the speech decoding apparatus according to the twelfth embodiment.
  • the encoded sequence demultiplexing unit 110a divides the encoded sequence into information relating to the low frequency encoded portion, the high frequency encoded portion, and the high frequency time envelope shape (step S110-1).
  • the high frequency time envelope shape determination unit 110b obtains information on the high frequency time envelope shape divided by the coded sequence demultiplexing unit 110a, the high frequency signal obtained by the high frequency decoding unit 100e, and the low frequency decoding unit 100b. Based on at least one of the obtained low frequency signals, the time envelope shape of the high frequency signal is determined (step S110-2).
  • time envelope shape of the high frequency signal is determined to be flat
  • time envelope shape of the high frequency signal is determined as rising
  • time envelope shape of the high frequency signal is determined as falling
  • the determination of the time envelope shape of the high-frequency signal is obtained, for example, by the high-frequency decoding unit 100e using the decoded signal obtained by the speech decoding unit 1b in the determination process of the time envelope shape of the decoded signal in the time envelope shape determining unit 1c. It can be realized by replacing with a high frequency signal. Similarly, this can be realized by replacing the decoded signal obtained by the speech decoding unit 1b with the low frequency signal obtained by the low frequency decoding unit 100b.
  • the high frequency time envelope correction unit 110c corrects the time envelope shape of the high frequency signal output from the high frequency decoding unit 110e based on the time envelope shape determined by the high frequency time envelope shape determination unit 110b (step S110). -3). For example, when the time envelope shape of the high frequency signal is determined to be flat, the time envelope shape of the high frequency signal can be corrected by the following processing.
  • the correction of the time envelope shape of the high frequency signal is, for example, the decoding signal obtained by the speech decoding unit 1b obtained by the high frequency decoding unit 100e in the correction process of the time envelope shape of the decoded signal by the time envelope correction unit 1d. This can be realized by replacing with a high frequency signal.
  • FIG. 78 is a diagram showing the configuration of the speech encoding apparatus 210 according to the twelfth embodiment.
  • the communication device of speech coding apparatus 210 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech coding apparatus 210 is functionally composed of a low frequency coding unit 200a, a high frequency coding unit 200b, a high frequency time envelope information coding unit 210a, and a coded sequence multiplexing unit. 210b is provided.
  • FIG. 79 is a flowchart showing the operation of the speech encoding apparatus 210 according to the twelfth embodiment.
  • the high frequency time envelope information encoding unit 210a is configured to input the audio signal, the information obtained in the encoding process including the encoding result of the input audio signal in the low frequency encoding unit 200a, and the input audio in the high frequency encoding unit 200b. Based on at least one of the information obtained in the encoding process including the signal encoding result, high frequency time envelope shape information is calculated and encoded (step S210-1).
  • the calculation and encoding processing of the high frequency time envelope shape information is performed, for example, in the calculation and encoding processing of the time envelope information of the input speech signal in the time envelope information encoding unit 2b in place of the input speech signal.
  • the frequency signal can be realized in the same manner by using a high-frequency decoded signal obtained by decoding the encoding result in the high-frequency encoding unit 200b instead of the decoded signal.
  • the encoded sequence multiplexing unit 210b receives the encoded sequence of the low frequency speech signal from the low frequency encoding unit 200a, receives the encoded sequence of the high frequency speech signal from the high frequency encoding unit 200b, and receives the high frequency time envelope information
  • the high frequency time envelope shape information encoded by the encoding unit 210a is received, multiplexed, and output as an encoded sequence (step S210-2).
  • FIG. 80 is a diagram illustrating the configuration of the speech decoding device 120 according to the thirteenth embodiment.
  • the communication device of the audio decoding device 120 receives the multiplexed encoded sequence output from the audio encoding device 220 below, and further outputs the decoded audio signal to the outside.
  • the speech decoding apparatus 120 functionally includes a coded sequence demultiplexing unit 120a, a low frequency decoding unit 100b, a low frequency time envelope shape determination unit 100c, a low frequency time envelope correction unit 100d, A high frequency decoding unit 100e, a high frequency time envelope shape determination unit 120b, a high frequency time envelope correction unit 110c, and a low frequency / high frequency signal synthesis unit 100f are provided.
  • FIG. 81 is a flowchart showing the operation of the speech decoding apparatus 120 according to the thirteenth embodiment.
  • the encoded sequence demultiplexing unit 120a divides the encoded sequence into a low-frequency encoded part, a high-frequency encoded part, information about a low-frequency time envelope shape, and information about a high-frequency time envelope shape (Step S120-1). ).
  • a code including information on the low frequency time envelope shape encoded separately and information on the high frequency time envelope shape It is also possible to divide from an encoded sequence, and it is also possible to divide from an encoded sequence including information related to frequency time envelope shapes encoded in combination and information related to high frequency time envelope shapes. Furthermore, for example, information on the low frequency time envelope shape and information on the high frequency time envelope shape can be divided from an encoded sequence including the information represented and encoded by a single information.
  • the high frequency time envelope shape determination unit 120b includes information on the high frequency time envelope shape divided by the encoded sequence demultiplexing unit 120a, the low frequency signal obtained by the low frequency decoding unit 100b, and the low frequency time envelope correction unit 100d.
  • the time envelope shape of the high frequency signal is determined based on at least one of the low frequency signals whose time envelope shape has been corrected in step S120-2.
  • time envelope shape of the high frequency signal is determined to be flat
  • time envelope shape of the high frequency signal is determined as rising
  • time envelope shape of the high frequency signal is determined as falling
  • the decoding in the time envelope shape determination unit 1c In the determination process of the time envelope shape of the signal, it can be realized by replacing the decoded signal obtained by the speech decoding unit 1b with a low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d.
  • FIG. 82 is a diagram showing the configuration of the speech encoding apparatus 220 according to the thirteenth embodiment.
  • the communication device of the audio encoding device 220 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech coding apparatus 220 is functionally low frequency coding unit 200a, high frequency coding unit 200b, low frequency time envelope information coding unit 200c, high frequency time envelope information coding Unit 220a and coded sequence multiplexing unit 220b.
  • FIG. 83 is a flowchart showing the operation of the speech encoding apparatus 220 according to the thirteenth embodiment.
  • the high frequency time envelope information encoding unit 220a is configured to input the audio signal, the information obtained in the encoding process including the encoding result of the input audio signal in the low frequency encoding unit 200a, and the input audio in the high frequency encoding unit 200b. At least of the information obtained in the coding process including the coding result of the signal, the information obtained in the coding process including the coding result of the low frequency time envelope information in the low frequency time envelope information coding unit 200c Based on one or more, high frequency time envelope shape information is calculated and encoded (step S220-1).
  • the calculation and encoding processing of the high frequency time envelope shape information can be realized, for example, in the same manner as the calculation and encoding processing of the high frequency signal time envelope information in the high frequency time envelope information encoding unit 210a. Further, for example, it may be based on the encoding result of the low frequency time envelope information. For example, only when the result that the low frequency time envelope is flat is obtained as a result of encoding the low frequency time envelope information, the high frequency time envelope is encoded as whether the high frequency time envelope is flat or not. can do.
  • the encoded sequence multiplexing unit 220b receives the encoded sequence of the low frequency audio signal from the low frequency encoding unit 200a, receives the encoded sequence of the high frequency audio signal from the high frequency encoding unit 200b, and receives the low frequency time envelope information Receives low frequency time envelope shape information encoded from the encoding unit 200c, receives high frequency time envelope shape information encoded from the high frequency time envelope information encoding unit 210a, multiplexes and outputs as an encoded sequence (Step S220-2).
  • the information regarding the low frequency time envelope shape and the information regarding the high frequency time envelope shape for example, the information regarding the low frequency time envelope shape encoded separately and the information regarding the high frequency time envelope shape are received. It is also possible to receive information about frequency time envelope shapes encoded in combination and information about high frequency time envelope shapes. Furthermore, for example, information on the low frequency time envelope shape represented and encoded by a single piece of information and information on the high frequency time envelope shape can be received.
  • FIG. 84 is a diagram illustrating a configuration of the first modification 120A of the speech decoding device according to the thirteenth embodiment.
  • the difference from the speech decoding apparatus 120 of the thirteenth embodiment is that the high frequency decoding unit 100eA uses the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d for decoding the high frequency signal. It is a point to do.
  • FIG. 85 is a flowchart showing the operation of the first modification 120A of the speech decoding apparatus according to the thirteenth embodiment.
  • step 100-5A in FIG. 85 when the low frequency decoded signal obtained by the low frequency decoding unit 100b is used in the decoding of the high frequency signal, the low frequency time envelope correction unit 100d has corrected the time envelope shape. Use frequency signals.
  • FIG. 86 is a diagram illustrating the configuration of the second modification 120B of the speech decoding device according to the thirteenth embodiment.
  • the difference from the first modified example of the speech decoding apparatus according to the thirteenth embodiment is that the low frequency signal input to the low frequency / high frequency signal synthesis unit 100f is not output from the low frequency time envelope correction unit 100d. The output is from the low frequency decoding unit 100b.
  • FIG. 87 is a flowchart showing the operation of the second modification 120B of the speech decoding apparatus according to the thirteenth embodiment.
  • step S100-6 in FIG. 87 the low frequency signal from the low frequency decoding unit 100b and the high frequency signal from the high frequency time envelope correction unit 110c are synthesized.
  • FIG. 185 is a diagram showing a configuration of the third modification 120C of the speech decoding device according to the thirteenth embodiment.
  • FIG. 186 is a flowchart showing the operation of the third modification 120C of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 120 according to the thirteenth embodiment is that the low frequency time envelope shape determination unit 120c is replaced with the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c.
  • the high frequency time envelope correction unit 120d is provided.
  • the difference between the low frequency time envelope shape determination unit 120c and the low frequency time envelope shape determination unit 100c is that the determined time envelope shape is also notified to the high frequency time envelope correction unit 120d.
  • the difference between the high frequency time envelope correction unit 120d and the high frequency time envelope correction unit 110c is determined by the time envelope shape determined by the high frequency time envelope shape determination unit 120b and the low frequency time envelope shape determination unit 120c.
  • the time envelope shape of the high frequency signal output from the high frequency decoding unit 100e is corrected based on at least one of the time envelope shapes (S120-3).
  • the high frequency decoding is performed regardless of the time envelope shape determined by the high frequency time envelope shape determination unit 120b.
  • the time envelope shape of the high-frequency signal output from the unit 100e is corrected to be flat.
  • the low frequency time envelope shape determination unit 120c determines that the time envelope shape is not flat
  • the high frequency decoding is performed regardless of the time envelope shape determined by the high frequency time envelope shape determination unit 120b.
  • the shape of the time envelope of the high frequency signal output from the unit 100e is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 187 is a diagram illustrating a configuration of the fourth modification 120D of the speech decoding device according to the thirteenth embodiment.
  • FIG. 188 is a flowchart showing the operation of the fourth modification 120D of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 120 according to the thirteenth embodiment is that, instead of the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d, a high frequency time envelope shape determination unit 120bA The low frequency time envelope correction unit 120e is provided.
  • the difference between the high frequency time envelope shape determination unit 120bA and the high frequency time envelope shape determination unit 120b is that the determined time envelope shape is also notified to the low frequency time envelope correction unit 120e. .
  • the determination of the time envelope shape in the high frequency time envelope shape determination unit 120bA can be based on, for example, the frequency power distribution of the low frequency signal in addition to the above example.
  • the frame length when decoding a high frequency signal obtained from the coded sequence demultiplexing unit 120a can be used. For example, when the frame length is long, it can be determined to be flat, and when the frame length is short, it can be determined to be rising or falling, and the high frequency time envelope shape determination unit 120b can determine the same.
  • the difference between the low frequency time envelope correction unit 120e and the low frequency time envelope correction unit 100d is determined by the time envelope shape determined by the low frequency time envelope shape determination unit 100c and the high frequency time envelope shape determination unit 120bA.
  • the time envelope shape of the low frequency signal output from the low frequency decoding unit 100b is corrected based on at least one of the time envelope shapes (S120-4).
  • the low frequency decoding is performed regardless of the time envelope shape determined by the low frequency time envelope shape determination unit 100c.
  • the time envelope shape of the low-frequency signal output from the unit 100b is corrected to be flat.
  • the high frequency time envelope shape determining unit 120bA determines that the time envelope shape is flat
  • the low frequency time envelope shape determining unit 100c does not depend on the time envelope shape determined by the low frequency
  • the shape of the time envelope of the low frequency signal output from the decoding unit 100b is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 189 is a diagram illustrating a configuration of the fifth modification 120E of the speech decoding device according to the thirteenth embodiment.
  • FIG. 190 is a flowchart showing the operation of the fifth modification 120E of the speech decoding apparatus according to the thirteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 191 is a diagram showing a configuration of the sixth modification 120F of the speech decoding device according to the thirteenth embodiment.
  • FIG. 192 is a flowchart showing the operation of the sixth modification 120F of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 120 according to the thirteenth embodiment is that a time envelope shape determining unit 120f is provided instead of the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. It is a point to do.
  • the time envelope shape determination unit 120f includes information on the low frequency time envelope shape from the encoded sequence demultiplexing unit 120a, information on the high frequency time envelope shape, the low frequency signal from the low frequency decoding unit 100b, and the high frequency decoding unit 100e.
  • a time envelope shape is determined based on at least one of the high frequency signals from (S120-5). The determined time envelope shape is notified to the low frequency time envelope correction unit 100d and the high frequency time envelope correction unit 110c.
  • the time envelope shape is determined to be flat. Further, for example, the rising time is determined as the time envelope shape. Further, for example, the falling is determined as the time envelope shape.
  • the determined time envelope shape is not limited to the above example.
  • the time envelope shape determination unit 120f can determine the time envelope shape in the same manner as the low frequency time envelope shape determination units 100c and 120c and the high frequency time envelope shape determination units 120b and 120bA, for example.
  • the method for determining the time envelope shape is not limited to the above example.
  • FIG. 193 is a diagram illustrating a configuration of the seventh modification 120G of the speech decoding device according to the thirteenth embodiment.
  • FIG. 194 is a flowchart showing the operation of the seventh modification 120G of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between the present modification and the first modification 120A of the speech decoding apparatus according to the thirteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c are replaced with a low frequency signal.
  • a time envelope shape determining unit 120c and a high frequency time envelope correcting unit 120d are provided.
  • FIG. 195 is a diagram showing a configuration of an eighth modification 120H of the speech decoding device according to the thirteenth embodiment.
  • FIG. 196 is a flowchart showing the operation of the eighth modification 120H of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between this modification and the first modification 120A of the speech decoding apparatus according to the thirteenth embodiment is that the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 197 is a diagram illustrating a configuration of the ninth modification 120I of the speech decoding device according to the thirteenth embodiment.
  • FIG. 198 is a flowchart showing the operation of the ninth modification 120I of the speech decoding apparatus according to the thirteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 199 is a diagram illustrating a configuration of a tenth modification 120J of the speech decoding device according to the thirteenth embodiment.
  • FIG. 200 is a flowchart showing the operation of the tenth modification 120J of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between this modification and the first modification 120A of the speech decoding apparatus according to the thirteenth embodiment is that the time envelope instead of the low frequency time envelope shape determination unit 100c and the high frequency time envelope shape determination unit 120b This is the point that a shape determining unit 120f is provided.
  • FIG. 201 is a diagram illustrating a configuration of an eleventh modification 120K of the speech decoding device according to the thirteenth embodiment.
  • FIG. 202 is a flowchart showing the operation of the eleventh modification 120K of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between this variation and the second variation 120B of the speech decoding apparatus according to the thirteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c are replaced with a low frequency signal.
  • a time envelope shape determining unit 120c and a high frequency time envelope correcting unit 120d are provided.
  • FIG. 203 is a diagram showing a configuration of a twelfth modification 120L of the speech decoding device according to the thirteenth embodiment.
  • FIG. 204 is a flowchart showing the operation of the twelfth modification 120L of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between this modification and the second modification 120B of the speech decoding apparatus according to the thirteenth embodiment is that the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 205 is a diagram showing the configuration of the thirteenth modification 120M of the speech decoding device according to the thirteenth embodiment.
  • FIG. 206 is a flowchart showing the operation of the thirteenth modification 120M of the speech decoding apparatus according to the thirteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 207 is a diagram illustrating a configuration of a fourteenth modification 120N of the speech decoding device according to the thirteenth embodiment.
  • FIG. 208 is a flowchart showing the operation of the fourteenth modification 120N of the speech decoding apparatus according to the thirteenth embodiment.
  • the difference between this modification and the second modification 120B of the speech decoding apparatus according to the thirteenth embodiment is that the time envelope is replaced with the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. This is the point that a shape determining unit 120f is provided.
  • FIG. 88 is a diagram illustrating the configuration of the speech decoding device 130 according to the fourteenth embodiment.
  • the communication device of speech decoding apparatus 130 receives the multiplexed encoded sequence output from speech encoding apparatus 230 below, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 130 functionally includes a coded sequence demultiplexing unit 110a, a low frequency decoding unit 100b, a high frequency time envelope shape determination unit 110b, a high frequency time envelope correction unit 130a, A high frequency decoding unit 130b and a low frequency / high frequency signal synthesis unit 100f are provided.
  • FIG. 89 is a flowchart showing the operation of the speech decoding apparatus according to the thirteenth embodiment.
  • the high frequency time envelope correction unit 130a corrects the time envelope shape of the low frequency signal input to the high frequency decoding unit 130b based on the time envelope shape determined by the high frequency time envelope shape determination unit 110b (step S130). -1).
  • the correction of the time envelope shape in the high frequency time envelope correction unit 130a is performed by, for example, decoding the decoded signal obtained by the speech decoding unit 1b in the process of correcting the time envelope shape of the decoded signal in the time envelope correction unit 1d. This can be realized by replacing with the low-frequency signal obtained in (1).
  • the high frequency decoding unit 130b decodes the high frequency encoded part divided by the encoded sequence demultiplexing unit 100a to obtain a high frequency signal (step S130-2).
  • the high frequency decoding unit 130b when using the low frequency decoded signal obtained by the low frequency decoding unit in the decoding of the high frequency signal, the low frequency signal whose time envelope shape is corrected by the high frequency time envelope correcting unit 130a is used. It is different from the high frequency decoding unit 100e in that it is used.
  • FIG. 90 is a diagram showing the configuration of the speech encoding device 230 according to the fourteenth embodiment.
  • the communication device of speech coding apparatus 230 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding device 230 is functionally a low frequency encoding unit 200a, a high frequency encoding unit 200b, a high frequency time envelope information encoding unit 230a, and an encoded sequence multiplexing unit. 210b is provided.
  • FIG. 91 is a flowchart showing the operation of the speech encoding apparatus 230 according to the fourteenth embodiment.
  • the high-frequency time envelope information encoding unit 230a includes an input speech signal, information obtained in the process of encoding including the encoding result of the input speech signal in the low-frequency encoding unit 200a, and the input speech in the high-frequency encoding unit 200b. Based on at least one of the information obtained in the encoding process including the signal encoding result, high frequency time envelope shape information is calculated and encoded (step S230-1).
  • the calculation and encoding processing of the high frequency time envelope shape information can be realized in the same manner as the calculation and encoding processing of the low frequency signal time envelope information in the low frequency time envelope information encoding unit 200c, for example.
  • the calculation and encoding processing of the high frequency time envelope shape information can also use information obtained in the process of encoding including the encoding result of the input speech signal in the high frequency encoding unit 200b. This is different from the calculation and encoding processing of the time envelope information of the low frequency signal using the low frequency decoded signal of the input speech signal.
  • FIG. 92 is a diagram showing the configuration of the speech decoding apparatus 140 according to the fifteenth embodiment.
  • the communication device of the speech decoding device 140 receives the multiplexed encoded sequence output from the following speech encoding device 240, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 140 functionally includes a coded sequence demultiplexing unit 120a, a low frequency decoding unit 100b, a low frequency time envelope shape determination unit 100c, a low frequency time envelope correction unit 100d, A high frequency time envelope shape determination unit 120b, a high frequency time envelope correction unit 130a, a high frequency decoding unit 130b, and a low frequency / high frequency signal synthesis unit 100f are provided.
  • FIG. 93 is a flowchart showing the operation of the speech decoding apparatus according to the fifteenth embodiment.
  • the encoded sequence demultiplexing unit 120a and the high frequency time envelope shape determining unit 120b perform the same operations as the encoded sequence demultiplexing unit 120a and the high frequency time envelope shape determining unit 120b in the thirteenth embodiment (steps). S120-1, S120-2).
  • the high frequency time envelope correction unit 130a and the high frequency decoding unit 130b perform the same operations as the high frequency time envelope correction unit 130a and the high frequency decoding unit 130b in the fourteenth embodiment (steps S130-1 and S130-2). .
  • FIG. 94 is a diagram showing the configuration of the speech encoding apparatus 240 according to the fifteenth embodiment.
  • the communication device of the audio encoding device 240 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 240 functionally includes a low-frequency encoding unit 200a, a high-frequency encoding unit 200b, a low-frequency temporal envelope information encoding unit 200c, and a high-frequency temporal envelope information encoding.
  • Unit 220a and coded sequence multiplexing unit 220b are examples of the speech encoding apparatus 240.
  • FIG. 95 is a flowchart showing the operation of the speech encoding apparatus 240 according to the fifteenth embodiment.
  • FIG. 96 is a diagram illustrating the configuration of the first modification 140A of the speech decoding device according to the fifteenth embodiment.
  • FIG. 97 is a flowchart showing the operation of the first modification 140A of the speech decoding apparatus according to the fifteenth embodiment.
  • the high frequency time envelope correction unit 140a is based on the time envelope shape determined by the high frequency time envelope shape determination unit 120b, and the time envelope of the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d.
  • the shape is corrected (step S140-1).
  • the difference from the high frequency time envelope correction unit 130a is that the input signal is a low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d.
  • FIG. 98 is a diagram illustrating a configuration of the second modification 140B of the speech decoding device according to the fifteenth embodiment.
  • the difference from the first modification of the speech decoding apparatus of the present embodiment is that the low frequency signal used for the synthesis processing in the low frequency / high frequency signal synthesis unit 100f is the time envelope in the low frequency time envelope correction unit 100d. Instead of the low-frequency signal whose shape has been corrected, the low-frequency signal is decoded by the low-frequency decoding unit 100b.
  • FIG. 209 is a diagram illustrating a configuration of the third modification 140C of the speech decoding device according to the fifteenth embodiment.
  • FIG. 210 is a flowchart showing the operation of the third modified example 140C of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 140 according to the fifteenth embodiment is that the low frequency time envelope shape determination unit 120c is replaced with the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 130a.
  • the high frequency time envelope correction unit 140b is provided.
  • the difference between the high frequency time envelope correction unit 140b and the high frequency time envelope correction unit 130a is determined by the time envelope shape determined by the high frequency time envelope shape determination unit 120b and the low frequency time envelope shape determination unit 120c.
  • the time envelope shape of the low-frequency signal input to the high-frequency decoding unit 130b is corrected based on at least one of the time envelope shapes (S140-2).
  • the high frequency decoding is performed regardless of the time envelope shape determined by the high frequency time envelope shape determination unit 120b.
  • the time envelope shape of the low-frequency signal input to the unit 130b is corrected to be flat.
  • the high frequency decoding is performed regardless of the time envelope shape determined by the high frequency time envelope shape determination unit 120b.
  • the time envelope shape of the low-frequency signal input to the unit 130b is not corrected flatly. The same applies to the rise and fall, and the time envelope shape is not limited.
  • FIG. 211 is a diagram showing a configuration of a fourth modification 140D of the speech decoding device according to the fifteenth embodiment.
  • FIG. 212 is a flowchart showing the operation of the fourth modification 140D of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 140 according to the fifteenth embodiment is that, instead of the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d, a high frequency time envelope shape determination unit 120bA The low frequency time envelope correction unit 120e is provided.
  • FIG. 213 is a diagram showing a configuration of the fifth modification 140E of the speech decoding device according to the fifteenth embodiment.
  • FIG. 214 is a flowchart showing the operation of the fifth modification 140E of the speech decoding apparatus according to the fifteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 215 is a diagram showing the configuration of the sixth modification 140F of the speech decoding device according to the fifteenth embodiment.
  • FIG. 216 is a flowchart showing the operation of the sixth modification 140F of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 140 according to the fifteenth embodiment is that a time envelope shape determining unit 120f is provided instead of the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. It is a point to do.
  • FIG. 217 is a diagram illustrating a configuration of a seventh modification 140G of the speech decoding device according to the fifteenth embodiment.
  • FIG. 218 is a flowchart showing the operation of the seventh modification 140G of the speech decoding device according to the fifteenth embodiment.
  • the difference between this modification and the first modification 140A of the speech decoding apparatus according to the fifteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 140a are replaced with a low frequency signal.
  • the time envelope shape determining unit 120c and the high frequency time envelope correcting unit 140b are provided.
  • the high frequency time envelope correction unit 140b includes at least one of the time envelope shape determined by the high frequency time envelope shape determination unit 120b and the time envelope shape determined by the low frequency time envelope shape determination unit 120c. Based on one or more, the time envelope shape of the low frequency signal whose time envelope shape input to the high frequency decoding unit 130b is corrected is corrected (S140-2).
  • FIG. 219 is a diagram showing a configuration of an eighth modification 140H of the speech decoding device according to the fifteenth embodiment.
  • FIG. 220 is a flowchart showing the operation of the eighth modification 140H of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modification and the first modification 140A of the speech decoding apparatus according to the fifteenth embodiment is that the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 221 is a diagram illustrating the configuration of the ninth modification 140I of the speech decoding device according to the fifteenth embodiment.
  • FIG. 222 is a flowchart showing the operation of the ninth modification 140I of the speech decoding apparatus according to the fifteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 223 is a diagram illustrating a configuration of the tenth modification 140J of the speech decoding device according to the fifteenth embodiment.
  • FIG. 224 is a flowchart showing the operation of the tenth modification 140J of the speech decoding device according to the fifteenth embodiment.
  • the difference between this modified example and the first modified example 140A of the speech decoding apparatus according to the fifteenth embodiment is that the time envelope is replaced with the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. This is the point that a shape determining unit 120f is provided.
  • FIG. 225 is a diagram showing a configuration of an eleventh modification 140K of the speech decoding device according to the fifteenth embodiment.
  • FIG. 226 is a flowchart showing the operation of the eleventh modification 140K of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modification and the second modification 140B of the speech decoding apparatus according to the fifteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 140a are replaced with a low frequency signal.
  • the time envelope shape determining unit 120c and the high frequency time envelope correcting unit 140b are provided.
  • FIG. 227 is a diagram showing a configuration of a twelfth modification 140L of the speech decoding device according to the fifteenth embodiment.
  • FIG. 228 is a flowchart showing the operation of the twelfth modification 140L of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between this modification and the second modification 140B of the speech decoding apparatus according to the fifteenth embodiment is that the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 229 is a diagram showing a configuration of a thirteenth modification 140M of the speech decoding device according to the fifteenth embodiment.
  • FIG. 230 is a flowchart showing the operation of the thirteenth modification 140M of the speech decoding apparatus according to the fifteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 231 is a diagram illustrating a configuration of a fourteenth modification 140N of the speech decoding device according to the fifteenth embodiment.
  • FIG. 232 is a flowchart showing the operation of the fourteenth modification 140N of the speech decoding apparatus according to the fifteenth embodiment.
  • the difference between the present modified example and the second modified example 140B of the speech decoding apparatus according to the fifteenth embodiment is that the time envelope instead of the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b is used. This is the point that a shape determining unit 120f is provided.
  • FIG. 99 is a diagram showing the configuration of the speech decoding device 150 according to the sixteenth embodiment.
  • the communication device of speech decoding apparatus 150 receives the multiplexed encoded sequence output from speech encoding apparatus 250 below, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 150 functionally includes a coded sequence demultiplexing unit 150a, a switch group 150b, a low frequency decoding unit 100b, a low frequency time envelope shape determining unit 100c, a low frequency time envelope.
  • a correction unit 100d, a high frequency decoding unit 100e, a high frequency time envelope shape determination unit 120b, a high frequency time envelope correction unit 110c, and a low frequency / high frequency signal synthesis unit 150c are provided.
  • FIG. 100 is a flowchart showing the operation of the speech decoding apparatus according to the sixteenth embodiment.
  • the encoded sequence demultiplexing unit 150a divides the encoded sequence into high frequency signal generation control information, a low frequency encoded part, and information related to the time envelope shape (step S150-1).
  • step S150-2 Based on the high frequency signal generation control information obtained by the encoded sequence demultiplexing unit 150a, it is determined whether or not to generate a high frequency signal (step S150-2).
  • the encoded sequence demultiplexing unit 150a When generating a high frequency signal, the encoded sequence demultiplexing unit 150a extracts a high frequency encoded portion from the encoded sequence (step S150-3). Then, a high-frequency signal is generated using the high-frequency encoded portion of the encoded sequence, a time envelope shape of the high-frequency signal is determined, and a time envelope shape of the high-frequency signal is corrected.
  • steps S150-2 and S150-3 are performed is not limited to the determination of the high-frequency time envelope shape and the high-frequency encoded part before the decoding process, and is limited to the order of the flowchart in FIG. Not.
  • the low frequency / high frequency signal synthesis unit 150c When it is determined that the low frequency / high frequency signal synthesis unit 150c generates a high frequency signal based on the high frequency signal generation information, the low frequency signal whose time envelope shape is corrected and the high frequency whose time envelope shape is corrected An output audio signal is synthesized from the signal, and if it is determined not to generate a high frequency signal based on the high frequency signal generation information, an output audio signal is synthesized from the low frequency signal whose time envelope shape is corrected (step S150- Four). However, if it is determined not to generate a high-frequency signal and it is input to the low-frequency / high-frequency signal synthesis unit 150c in a state where a low-frequency signal with a corrected time envelope shape can be output, the input low frequency The signal can also be output as it is.
  • FIG. 101 is a diagram showing the configuration of the speech encoding apparatus 250 according to the 16th embodiment.
  • the communication device of speech coding apparatus 250 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech coding apparatus 250 is functionally composed of a high frequency signal generation control information coding unit 250a, a low frequency coding unit 200a, a high frequency coding unit 200b, a low frequency time envelope information code. 200c, a high frequency time envelope information encoding unit 220a, and an encoded sequence multiplexing unit 250b.
  • FIG. 102 is a flowchart showing the operation of the speech encoding apparatus 250 according to the sixteenth embodiment.
  • the high frequency signal generation control information encoding unit 250a determines whether to generate a high frequency signal based on at least one of the input voice signal and the high frequency signal generation control instruction signal, and the high frequency signal generation control information Is encoded (step S250-1). For example, when the input speech signal includes a signal in a frequency band that is encoded by the high frequency encoding unit 200b, it can be determined to generate a high frequency signal. Furthermore, for example, when it is instructed to generate a high-frequency signal by a high-frequency signal generation control instruction signal, it can be determined to generate a high-frequency signal. Further, for example, the two methods can be combined. For example, when it is determined that the high frequency signal is generated by at least one of the two methods, it can be determined that the high frequency signal is generated.
  • the high frequency signal generation control information can be encoded by expressing, for example, whether to generate a high frequency signal by 1 bit.
  • the determination of whether or not to generate a high frequency signal and the encoding method of the high frequency signal generation control information are not limited.
  • the high frequency signal generation control information encoding unit 250a decides to generate a high frequency signal
  • the high frequency encoding unit 200b encodes the high frequency signal corresponding to the high frequency component of the input speech signal and generates a high frequency time envelope.
  • the information encoding unit 220a calculates and encodes the high frequency time envelope shape information.
  • the high frequency signal generation control information encoding unit 250a determines not to generate a high frequency signal
  • the high frequency signal is not encoded, and the high frequency time envelope shape information is not calculated or encoded (step S250). -2).
  • the encoded sequence multiplexing unit 250c receives the high frequency signal generation control information encoded from the high frequency signal generation control information encoding unit 250a, and receives the encoded sequence of the low frequency speech signal from the low frequency encoding unit 200a.
  • the high frequency signal generation control information encoding unit 250a determines to generate a high frequency signal.
  • the high frequency signal generation control information encoding unit 250a When it is determined that the high frequency signal generation control information encoding unit 250a generates a high frequency signal, for example, information regarding the low frequency time envelope shape and information regarding the high frequency time envelope shape are encoded separately. Can be received information on the low frequency time envelope shape and information on the high frequency time envelope shape, and can be received by combining the information on the low frequency time envelope shape and the information on the high frequency time envelope shape. You can also receive it at Furthermore, for example, information on the low frequency time envelope shape represented and encoded by a single piece of information and information on the high frequency time envelope shape can be received.
  • FIG. 103 is a diagram showing the configuration of the first modification 150A of the speech decoding device according to the sixteenth embodiment.
  • FIG. 104 is a flowchart showing the operation of the first modification 150A of the speech decoding apparatus according to the sixteenth embodiment.
  • the high frequency decoding unit 100eA uses the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d for decoding the high frequency signal. It is a point to do.
  • step 100-5A in FIG. 104 when using the low-frequency decoded signal obtained by the low-frequency decoding unit 100b in decoding the high-frequency signal, the low-frequency time envelope correcting unit 100d has corrected the time envelope shape. Use frequency signals.
  • steps S150-2 and S150-3 are performed is not limited to the determination of the high frequency time envelope shape and the decoding process of the high frequency encoded part, and is limited to the order of the flowchart in FIG. Not.
  • FIG. 105 is a diagram showing the configuration of the second modification 150B of the speech decoding device according to the sixteenth embodiment.
  • the difference from the first modification of the speech decoding apparatus according to the sixteenth embodiment is that the low-frequency signal input to the low-frequency / high-frequency signal synthesis unit 150c is not output from the low-frequency time envelope correction unit 100d.
  • the output is from the low frequency decoding unit 100b.
  • FIG. 233 is a diagram illustrating a configuration of the third modification 150C of the speech decoding device according to the sixteenth embodiment.
  • FIG. 234 is a flowchart showing the operation of the third modification 150C of the speech decoding device according to the sixteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 150 according to the sixteenth embodiment is that the low frequency time envelope shape determination unit 120c is replaced with the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c.
  • the high frequency time envelope correction unit 120d is provided.
  • FIG. 235 is a diagram showing a configuration of the fourth modification 150D of the speech decoding device according to the sixteenth embodiment.
  • FIG. 236 is a flowchart showing the operation of the fourth modification 150D of the speech decoding device according to the sixteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 150 according to the sixteenth embodiment is that, instead of the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d, a high frequency time envelope shape determination unit 120bA The low frequency time envelope correction unit 120e is provided.
  • FIG. 237 is a diagram illustrating a configuration of a fifth modification 150E of the speech decoding device according to the sixteenth embodiment.
  • FIG. 238 is a flowchart showing the operation of the fifth modification 150E of the speech decoding device according to the sixteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 239 is a diagram showing a configuration of a sixth modification 150F of the speech decoding device according to the sixteenth embodiment.
  • FIG. 240 is a flowchart showing the operation of the sixth modification 150F of the speech decoding apparatus according to the sixteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 150 according to the sixteenth embodiment is that a time envelope shape determining unit 120f is provided instead of the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. It is a point to do.
  • FIG. 241 is a diagram showing a configuration of the seventh modification 150G of the speech decoding device according to the sixteenth embodiment.
  • FIG. 242 is a flowchart showing the operation of the seventh modification 150G of the speech decoding device according to the sixteenth embodiment.
  • the difference between this variation and the first variation 150A of the speech decoding apparatus according to the sixteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c are replaced with a low frequency signal.
  • a time envelope shape determining unit 120c and a high frequency time envelope correcting unit 120d are provided.
  • FIG. 243 is a diagram illustrating a configuration of an eighth modification 150H of the speech decoding device according to the sixteenth embodiment.
  • FIG. 244 is a flowchart showing the operation of the eighth modification 150H of the speech decoding apparatus according to the sixteenth embodiment.
  • the difference between the present modified example and the first modified example 150A of the speech decoding apparatus according to the sixteenth embodiment is that the high frequency time envelope shape determining unit 120b and the low frequency time envelope correcting unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 245 is a diagram showing a configuration of the ninth modification 150I of the speech decoding device according to the sixteenth embodiment.
  • FIG. 246 is a flowchart showing the operation of the ninth modification 150I of the speech decoding apparatus according to the sixteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 247 is a diagram showing a configuration of the tenth modification 150J of the speech decoding device according to the sixteenth embodiment.
  • FIG. 248 is a flowchart showing the operation of the tenth modification 150J of the speech decoding device according to the sixteenth embodiment.
  • the difference between the present modification and the first modification 150A of the speech decoding apparatus according to the sixteenth embodiment is that the time envelope is replaced with the low frequency time envelope shape determination unit 100c and the high frequency time envelope shape determination unit 120b. This is the point that a shape determining unit 120f is provided.
  • FIG. 249 is a diagram showing a configuration of an eleventh modification 150K of the speech decoding device according to the sixteenth embodiment.
  • FIG. 250 is a flowchart showing the operation of the eleventh modification 150K of the speech decoding apparatus according to the sixteenth embodiment.
  • the difference between the present modification and the second modification 150B of the speech decoding apparatus according to the sixteenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 110c are replaced with a low frequency signal.
  • a time envelope shape determining unit 120c and a high frequency time envelope correcting unit 120d are provided.
  • FIG. 251 is a diagram showing a configuration of a twelfth modification 150L of the speech decoding device according to the sixteenth embodiment.
  • FIG. 252 is a flowchart showing the operation of the twelfth modification 150L of the speech decoding apparatus according to the sixteenth embodiment.
  • the difference between the present modified example and the second modified example 150B of the speech decoding apparatus according to the sixteenth embodiment is that the high frequency time envelope shape determining unit 120b and the low frequency time envelope correcting unit 100d are replaced with a high frequency signal.
  • a time envelope shape determining unit 120bA and a low frequency time envelope correcting unit 120e are provided.
  • FIG. 253 is a diagram showing a configuration of a thirteenth modification 150M of the speech decoding device according to the sixteenth embodiment.
  • FIG. 254 is a flowchart showing the operation of the thirteenth modification 150M of the speech decoding apparatus according to the sixteenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 120d, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 255 is a diagram showing a configuration of a fourteenth modification 150N of the speech decoding device according to the sixteenth embodiment.
  • FIG. 256 is a flowchart showing the operation of the fourteenth modification 150N of the speech decoding apparatus according to the sixteenth embodiment.
  • the difference between this modification and the second modification 150B of the speech decoding apparatus according to the sixteenth embodiment is that the time envelope instead of the low frequency time envelope shape determination unit 100c and the high frequency time envelope shape determination unit 120b This is the point that a shape determining unit 120f is provided.
  • FIG. 106 is a diagram showing the configuration of the speech decoding device 160 according to the 17th embodiment.
  • the communication device of the speech decoding device 160 receives the multiplexed encoded sequence output from the following speech encoding device 260, and further outputs the decoded speech signal to the outside.
  • the speech decoding apparatus 160 functionally includes a coded sequence demultiplexing unit 150a, a switch group 150b, a low frequency decoding unit 100b, a low frequency time envelope shape determining unit 100c, a low frequency time envelope.
  • a correction unit 100d, a high frequency time envelope shape determination unit 120b, a high frequency time envelope correction unit 130a, a high frequency decoding unit 130b, and a low frequency / high frequency signal synthesis unit 150c are provided.
  • FIG. 107 is a flowchart showing the operation of the speech decoding apparatus according to the seventeenth embodiment. Note that the order in which the processes of steps S150-2 and S150-3 are performed is not limited to the determination of the high-frequency time envelope shape and the high-frequency encoded part before the decoding process, and is limited to the order of the flowchart in FIG. Not.
  • FIG. 108 is a diagram showing the configuration of the speech encoding apparatus 260 according to the 17th embodiment.
  • the communication device of speech coding apparatus 260 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding device 260 is functionally configured to include a high frequency signal generation control information encoding unit 250a, a low frequency encoding unit 200a, a high frequency encoding unit 200b, and a low frequency time envelope information code. 200c, a high frequency time envelope information encoding unit 220a, and an encoded sequence multiplexing unit 250b.
  • FIG. 109 is a flowchart showing the operation of the speech encoding apparatus 260 according to the seventeenth embodiment.
  • FIG. 110 is a diagram illustrating a configuration of the first modification 160A of the speech decoding device according to the seventeenth embodiment.
  • FIG. 111 is a flowchart showing the operation of the first modification 160A of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference from the speech decoding apparatus 160 of the present embodiment is that, instead of the high frequency time envelope correction section 130a, the high frequency time envelope correction section 140a described in the first modification of the speech decoding apparatus of the fifteenth embodiment. It is a point using.
  • steps S150-2 and S150-3 are performed is not limited to the determination of the high-frequency time envelope shape and the high-frequency encoded part before the decoding process, and is limited to the order of the flowchart in FIG. Not.
  • FIG. 112 is a diagram illustrating a configuration of the second modification 170B of the speech decoding device according to the seventeenth embodiment.
  • the difference from the first modification 160A of the speech decoding device of the present embodiment is that the low-frequency / high-frequency signal synthesis unit 150c is similar to the second modification of the speech decoding device of the fifteenth embodiment.
  • the low frequency signal used for the synthesis processing is a low frequency signal decoded by the low frequency decoding unit 100b instead of the low frequency signal whose time envelope shape is corrected by the low frequency time envelope correction unit 100d.
  • FIG. 257 is a diagram showing a configuration of the third modification 160C of the speech decoding device according to the seventeenth embodiment.
  • FIG. 258 is a flowchart showing the operation of the third modification 160C of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between this variation and the speech decoding apparatus 160 according to the seventeenth embodiment is that the low frequency time envelope shape determining unit 120c is replaced with the low frequency time envelope shape determining unit 100c and the high frequency time envelope correcting unit 130a.
  • the high frequency time envelope correction unit 140b is provided.
  • FIG. 259 is a diagram showing the configuration of the fourth modification 160D of the speech decoding device according to the seventeenth embodiment.
  • FIG. 260 is a flowchart showing the operation of the fourth modification 160D of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 160 according to the seventeenth embodiment is that, instead of the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d, a high frequency time envelope shape determination unit 120bA The low frequency time envelope correction unit 120e is provided.
  • FIG. 261 is a diagram illustrating a configuration of a fifth modification 160E of the speech decoding device according to the seventeenth embodiment.
  • FIG. 262 is a flowchart showing the operation of the fifth modification 160E of the speech decoding apparatus according to the seventeenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 263 is a diagram illustrating a configuration of the sixth modification 160F of the speech decoding device according to the seventeenth embodiment.
  • FIG. 264 is a flowchart showing the operation of the sixth modification 160F of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 160 according to the seventeenth embodiment is that a time envelope shape determining unit 120f is provided instead of the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. It is a point to do.
  • FIG. 265 is a diagram illustrating a configuration of a seventh modification 160G of the speech decoding device according to the seventeenth embodiment.
  • FIG. 266 is a flowchart showing the operation of the seventh modification 160G of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between this modification and the first modification 160A of the speech decoding apparatus according to the seventeenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 140a are replaced with a low frequency signal.
  • the time envelope shape determining unit 120c and the high frequency time envelope correcting unit 140b are provided.
  • the high frequency time envelope correction unit 140b includes at least one of the time envelope shape determined by the high frequency time envelope shape determination unit 120b and the time envelope shape determined by the low frequency time envelope shape determination unit 120c. Based on one or more, the time envelope shape of the low frequency signal whose time envelope shape input to the high frequency decoding unit 130b is corrected is corrected (S140-2).
  • FIG. 267 is a diagram showing a configuration of an eighth modification 160H of the speech decoding device according to the seventeenth embodiment.
  • FIG. 268 is a flowchart showing the operation of the eighth modification 160H of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modification and the first modification 160A of the speech decoding apparatus according to the seventeenth embodiment is that the high frequency time envelope shape determination unit 120b and the low frequency time envelope correction unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 269 is a diagram illustrating a configuration of the ninth modification 160I of the speech decoding device according to the seventeenth embodiment.
  • FIG. 270 is a flowchart showing the operation of the ninth modification 160I of the speech decoding apparatus according to the seventeenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 271 is a diagram showing a configuration of the tenth modification 160J of the speech decoding device according to the seventeenth embodiment.
  • FIG. 272 is a flowchart showing the operation of the tenth modification 160J of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between this modified example and the first modified example 160A of the speech decoding apparatus according to the seventeenth embodiment is that the time envelope is replaced with the low frequency time envelope shape determining unit 100c and the high frequency time envelope shape determining unit 120b. This is the point that a shape determining unit 120f is provided.
  • FIG. 273 is a diagram illustrating a configuration of an eleventh modification 160K of the speech decoding device according to the seventeenth embodiment.
  • FIG. 274 is a flowchart showing the operation of the eleventh modification 160K of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modification and the second modification 160B of the speech decoding apparatus according to the seventeenth embodiment is that the low frequency time envelope shape determination unit 100c and the high frequency time envelope correction unit 140a are replaced by a low frequency signal.
  • the time envelope shape determining unit 120c and the high frequency time envelope correcting unit 140b are provided.
  • FIG. 275 is a diagram showing a configuration of a twelfth modification 160L of the speech decoding device according to the seventeenth embodiment.
  • FIG. 276 is a flowchart showing the operation of the twelfth modification 160L of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modified example and the second modified example 160B of the speech decoding apparatus according to the seventeenth embodiment is that the high frequency time envelope shape determining unit 120b and the low frequency time envelope correcting unit 100d are replaced with a high frequency signal.
  • the time envelope shape determining unit 120bA and the low frequency time envelope correcting unit 120e are provided.
  • FIG. 277 is a diagram showing a configuration of a thirteenth modification 160M of the speech decoding device according to the seventeenth embodiment.
  • FIG. 278 is a flowchart showing the operation of the thirteenth modified example 160M of the speech decoding apparatus according to the seventeenth embodiment.
  • the present modification includes the low frequency time envelope shape determination unit 120c, the high frequency time envelope correction unit 140b, the high frequency time envelope shape determination unit 120bA, and the low frequency time envelope correction unit 120e.
  • FIG. 279 is a diagram showing a configuration of a fourteenth modification 160N of the speech decoding device according to the seventeenth embodiment.
  • FIG. 280 is a flowchart showing the operation of the fourteenth modification 160N of the speech decoding apparatus according to the seventeenth embodiment.
  • the difference between the present modification and the second modification 160B of the speech decoding apparatus according to the seventeenth embodiment is that the time envelope is replaced with the low frequency time envelope shape determination unit 100c and the high frequency time envelope shape determination unit 120b. This is the point that a shape determining unit 120f is provided.
  • FIG. 113 is a diagram showing the configuration of the speech decoding apparatus 170 according to the 18th embodiment.
  • the communication device of the speech decoding device 170 receives the multiplexed encoded sequence output from the following speech encoding device 270, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 170 functionally includes an encoded sequence demultiplexing unit 170a, a switch group 170b, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low Frequency time envelope shape determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, time envelope correction unit 13b, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i and a synthesis filter bank unit 170c.
  • FIG. 114 is a flowchart showing the operation of the speech decoding apparatus according to the eighteenth embodiment.
  • the encoded sequence demultiplexing unit 170a is a high-frequency signal generation control information, a core-encoded portion obtained by encoding a low-frequency signal, and information related to a time envelope shape necessary for the low-frequency time envelope shape determining unit 10e. (Step S170-1).
  • step S170-2 Based on the high frequency signal generation control information obtained by the encoded sequence demultiplexing unit 170a, it is determined whether or not to generate a high frequency signal (step S170-2).
  • the encoded sequence demultiplexing unit 170a When generating a high frequency signal, the encoded sequence demultiplexing unit 170a extracts a band extension part for generating a high frequency signal from the low frequency signal from the encoded sequence, and the encoded sequence analyzing unit 13c Analyzing the band extension portion of the encoded sequence extracted by the demultiplexing sequence demultiplexing unit 170a, the information necessary for the high frequency signal generation unit 10g and the decoding / dequantization unit 10h, the high frequency time envelope shape determination unit 13a Is divided into information related to the necessary time envelope shape (step S170-3). Then, a high-frequency signal is generated using the high-frequency encoded portion of the encoded sequence, a time envelope shape of the high-frequency signal is determined, and a time envelope shape of the high-frequency signal is corrected.
  • steps S170-2 and S170-3 may be before the determination of the time envelope shape of the high-frequency signal and the process of decoding / inverse quantization of the band extension portion, and the flowchart of FIG. The order is not limited.
  • the synthesis filter bank unit 170c When it is determined that the synthesis filter bank unit 170c generates a high frequency signal based on the high frequency signal generation information, the low frequency subband signal whose time envelope shape is corrected and the high frequency subband whose time envelope shape is corrected.
  • the output audio signal is synthesized from the signal and it is determined not to produce the high frequency signal based on the high frequency signal generation information, the output audio signal is synthesized from the low frequency subband signal whose time envelope shape is corrected (step S170-4).
  • the high frequency time envelope shape determination unit 13a of the speech decoding apparatus 170 for the high frequency time envelope shape determination unit 13a of the speech decoding apparatus 170 according to the present embodiment, the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the seventh embodiment of the present invention can be applied.
  • FIG. 115 is a diagram showing the configuration of the speech encoding device 270 according to the eighteenth embodiment.
  • the communication device of speech coding apparatus 270 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding device 270 is functionally controlled by a high frequency signal generation control information encoding unit 270a, a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, and a control.
  • Parameter encoding unit 20d envelope calculation unit 20e, quantization / encoding unit 20f, core decoded signal generation unit 20i, subband signal power calculation unit 20j, time envelope information encoding unit 270b, and encoded sequence multiplexing unit 270c Is provided.
  • FIG. 116 is a flowchart showing the operation of the speech encoding device 270 according to the eighteenth embodiment.
  • the high frequency signal generation control information encoding unit 270a determines whether to generate a high frequency signal based on at least one of the input voice signal and the high frequency signal generation control instruction signal, and the high frequency signal generation control information Is encoded (step S270-1). For example, when the input speech signal includes a signal in a frequency band generated by band expansion that is quantized and encoded by the quantization / encoding unit 20f, it can be determined to generate a high-frequency signal. Furthermore, for example, when it is instructed to generate a high-frequency signal by a high-frequency signal generation control instruction signal, it can be determined to generate a high-frequency signal. Further, for example, the two methods can be combined. For example, when it is determined that the high frequency signal is generated by at least one of the two methods, it can be determined that the high frequency signal is generated.
  • the high frequency signal generation control information can be encoded by expressing, for example, whether to generate a high frequency signal by 1 bit.
  • the determination of whether or not to generate a high frequency signal and the encoding method of the high frequency signal generation control information are not limited.
  • the high-frequency signal generation control information encoding unit 270a determines to generate a high-frequency signal, information necessary for generating a high-frequency signal is calculated and encoded by band extension. On the other hand, when the high frequency signal generation control information encoding unit 270a determines not to generate a high frequency signal, calculation and encoding of information necessary for generating the high frequency signal is not performed (step S270-2). ).
  • the time-envelope information encoding unit 270b is at least one of a low-frequency signal time envelope and a high-frequency signal time envelope. Further, the time envelope of the core decoded signal is calculated using the power of the subband signal of the core decoded signal calculated by the subband signal power calculation unit 20j, and the time envelope and the high frequency of the low frequency signal are calculated.
  • the time envelope information is encoded from at least one of the time envelopes of the signal and the time envelope of the core decoded signal.
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information.
  • the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the time envelope of the low frequency signal is calculated, and the core calculated by the subband signal power calculation unit 20j is calculated.
  • the time envelope of the core decoded signal is calculated using the power of the subband signal of the decoded signal, and the time envelope information about the low frequency signal is encoded from the time envelope of the low frequency signal and the time envelope of the core decoded signal (step) S270-3).
  • the envelope calculation unit 270d can calculate only the power of the subband signal of the low frequency signal, and Can also send the subband signal of the low frequency signal to the time envelope information encoding unit 270b without calculating the power of the subband signal of the low frequency signal.
  • the power of the subband signal of the low frequency signal may be calculated by the time envelope information encoding unit 270b. Where the power is calculated is not limited.
  • the encoded sequence multiplexing unit 270c receives the high frequency signal generation control information encoded from the high frequency signal generation control information encoding unit 270a, receives the encoded sequence of the low frequency signal from the core encoding unit 20b, When the time envelope information encoded from the envelope information encoding unit 20g is received and the high frequency signal generation control information encoding unit 270a determines to generate a high frequency signal, it is encoded by the control parameter encoding unit 20d. The control parameter is further received, the gain for the high frequency signal encoded by the quantization / encoding unit 20f and the magnitude of the noise signal are further received, and these are multiplexed and output as an encoded sequence (step S270-4). ).
  • FIG. 281 is a diagram illustrating a configuration of a first modification 170A of the speech decoding device according to the eighteenth embodiment.
  • FIG. 282 is a flowchart showing the operation of the first modification 170A of the speech decoding apparatus according to the eighteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 170 according to the eighteenth embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used) and the time envelope correction unit 13b.
  • the low frequency time envelope shape determination unit 16b and the time envelope correction unit 16c are provided.
  • FIG. 283 is a diagram illustrating a configuration of the second modification 170B of the speech decoding device according to the eighteenth embodiment.
  • FIG. 284 is a flowchart showing the operation of the second modification 170B of the speech decoding apparatus according to the eighteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 170 according to the eighteenth embodiment is that a high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), a low frequency time envelope correction unit 10f Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 285 is a diagram illustrating a configuration of a third modification 170C of the speech decoding device according to the eighteenth embodiment.
  • FIG. 286 is a flowchart showing the operation of the third modification 170C of the speech decoding device according to the eighteenth embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 16c, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 287 is a diagram illustrating a configuration of a fourth modification 170D of the speech decoding device according to the eighteenth embodiment.
  • FIG. 288 is a flowchart showing the operation of the fourth modification 170D of the speech decoding device according to the eighteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 170 according to the eighteenth embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 117 is a diagram showing the configuration of the speech decoding apparatus 180 according to the nineteenth embodiment.
  • the communication device of the audio decoding device 180 receives the multiplexed encoded sequence output from the audio encoding device 280 described below, and further outputs the decoded audio signal to the outside. As shown in FIG.
  • the speech decoding apparatus 180 functionally includes an encoded sequence demultiplexing unit 170a, a switch group 170b, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low Frequency time envelope shape determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, high frequency signal generation unit 10g, time envelope correction unit 14a, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i and a synthesis filter bank unit 170c.
  • FIG. 118 is a flowchart showing the operation of the speech decoding apparatus according to the nineteenth embodiment. Note that the order in which the processes of steps S170-2 and S170-3 are performed may be prior to the determination of the time envelope shape of the high-frequency signal and the process of decoding / inverse quantization of the band extension portion, and the flowchart of FIG. The order is not limited.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention It is obvious that the first modification of the speech decoding apparatus according to the fifth embodiment of the present invention and the first modification of the speech decoding apparatus according to the seventh embodiment of the present invention can be applied.
  • FIG. 119 is a diagram showing the configuration of the speech encoding device 280 according to the nineteenth embodiment.
  • the communication device of the audio encoding device 280 receives an audio signal to be encoded from the outside, and further outputs an encoded encoded sequence to the outside.
  • the speech encoding device 280 is functionally controlled by a high frequency signal generation control information encoding unit 270a, a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, and a control.
  • Parameter encoding unit 20d envelope calculation unit 270d, quantization / encoding unit 20f, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, pseudo high frequency signal generation unit 24a, time envelope information encoding unit 280a and a coded sequence multiplexing unit 270c.
  • FIG. 120 is a flowchart showing the operation of the speech encoding apparatus 280 according to the nineteenth embodiment.
  • the high frequency signal generation control information encoding unit 270a determines to generate a high frequency signal, it calculates and encodes information necessary for generating the high frequency signal by band extension, and further generates a pseudo high frequency signal. Generate a time envelope of the pseudo high frequency signal.
  • the high frequency signal generation control information encoding unit 270a determines not to generate a high frequency signal, it calculates and encodes information necessary to generate a high frequency signal by the band extension, and Generation of a high frequency signal and calculation of a time envelope are not performed (step S280-1).
  • the time envelope information encoding unit 280a determines that the high frequency signal generation control information encoding unit 270a generates a high frequency signal, the time envelope of the low frequency signal of the input speech signal, the time envelope of the high frequency signal, At least one of the time envelope of the core decoded signal and the time envelope of the pseudo high frequency signal is calculated, and the time envelope information is encoded from the calculated time envelope.
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information. Similar to the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the high frequency signal generation control information encoding unit 270a determines not to generate the high frequency signal, at least one of the time envelope of the low frequency signal of the input speech signal and the time envelope of the core decoded signal is set.
  • the time envelope information relating to the low frequency signal is encoded from the calculated time envelope (step S280-2).
  • the first modification of the speech encoding apparatus according to the seventh embodiment of the present invention can be applied to the speech encoding apparatus 280 according to the present embodiment.
  • FIG. 289 is a diagram illustrating a configuration of a first modification 180A of the speech decoding device according to the nineteenth embodiment.
  • FIG. 290 is a flowchart showing the operation of the first modification 180A of the speech decoding apparatus according to the nineteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 180 according to the nineteenth embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used), and the time envelope correction unit 14a.
  • a low frequency time envelope shape determination unit 16b and a time envelope correction unit 17a are provided.
  • FIG. 291 is a diagram showing a configuration of the second modification 180B of the speech decoding device according to the nineteenth embodiment.
  • FIG. 292 is a flowchart showing the operation of the second modification 180B of the speech decoding apparatus according to the nineteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 180 according to the nineteenth embodiment is that the high-frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), and the low-frequency time envelope correction unit 10f Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 293 is a diagram illustrating a configuration of the third modification 180C of the speech decoding device according to the nineteenth embodiment.
  • FIG. 294 is a flowchart showing the operation of the third modification 180C of the speech decoding apparatus according to the nineteenth embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 17a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 295 is a diagram showing a configuration of the fourth modification 180D of the speech decoding device according to the nineteenth embodiment.
  • FIG. 296 is a flowchart showing the operation of the fourth modification 180D of the speech decoding apparatus according to the nineteenth embodiment.
  • the difference between the present modification and the speech decoding apparatus 180 according to the nineteenth embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 121 is a diagram showing the structure of the speech decoding apparatus 190 according to the twentieth embodiment.
  • the communication device of speech decoding apparatus 190 receives the multiplexed encoded sequence output from speech encoding apparatus 290 described below, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 190 functionally includes an encoded sequence demultiplexing unit 170a, a switch group 170b, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low Frequency time envelope shape determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, time envelope correction unit 15a and a synthesis filter bank unit 170c.
  • FIG. 122 is a flowchart showing the operation of the speech decoding apparatus according to the twentieth embodiment. Note that the order in which the processes in steps S170-2 and S170-3 are performed may be before the determination of the time envelope shape of the high-frequency signal and the decoding / inverse quantization process of the band extension portion, and the flowchart of FIG. The order is not limited.
  • the first, second, and third modified examples of the speech decoding apparatus according to the first embodiment of the present invention are provided for the low frequency time envelope shape determination unit 10e of the speech decoding apparatus 190 according to the present embodiment. It is obvious that it can be applied.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention can be applied.
  • FIG. 123 is a diagram showing the configuration of the speech encoding apparatus 290 according to the twentieth embodiment.
  • the communication device of speech coding apparatus 290 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding device 290 functionally includes a high-frequency signal generation control information encoding unit 270a, a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, and control.
  • Parameter encoding unit 20d envelope calculation unit 270d, quantization / encoding unit 20f, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, pseudo high frequency signal generation unit 24a, time envelope information encoding unit 280a and a coded sequence multiplexing unit 270c.
  • FIG. 124 is a flowchart showing the operation of the speech encoding apparatus 290 according to the twentieth embodiment.
  • the time envelope information encoding unit 290a determines that the high frequency signal generation control information encoding unit 270a generates a high frequency signal
  • the time envelope of the low frequency signal of the input speech signal the time envelope of the high frequency signal
  • At least one of the time envelope of the core decoded signal and the time envelope of the pseudo high frequency signal that has been subjected to frequency envelope adjustment is calculated, and the time envelope information is encoded from the calculated time envelope.
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information. Similar to the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the high frequency signal generation control information encoding unit 270a determines not to generate the high frequency signal, at least one of the time envelope of the low frequency signal of the input speech signal and the time envelope of the core decoded signal is set.
  • the time envelope information relating to the low frequency signal is encoded from the calculated time envelope (step S290-1).
  • the first modification of the speech coding apparatus according to the seventh embodiment of the present invention can be applied to the speech coding apparatus 290 according to the present embodiment.
  • FIG. 297 is a diagram illustrating a configuration of a first modification 190A of the speech decoding device according to the twentieth embodiment.
  • FIG. 298 is a flowchart showing the operation of the first modification 190A of the speech decoding apparatus according to the twentieth embodiment.
  • a time envelope correction unit 15aA is provided instead of the time envelope correction unit 13a.
  • FIG. 299 is a diagram illustrating a configuration of the second modification 190B of the speech decoding device according to the twentieth embodiment.
  • FIG. 300 is a flowchart showing the operation of the second modification 190B of the speech decoding apparatus according to the twentieth embodiment.
  • the difference between the present modification and the speech decoding apparatus 190 according to the twentieth embodiment is that the low-frequency time envelope shape determining unit 10eC (obviously, 10e, 10eA, and 10eB may be used), and the time envelope correcting unit 15a.
  • a low frequency time envelope shape determination unit 16b and a time envelope correction unit 18a are provided.
  • FIG. 301 is a diagram illustrating a configuration of the third modification 190C of the speech decoding device according to the twentieth embodiment.
  • FIG. 302 is a flowchart showing the operation of the third modification 190C of the speech decoding device according to the twentieth embodiment.
  • the difference between the present modification and the speech decoding apparatus 190 according to the twentieth embodiment is that the high-frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), and the low-frequency time envelope correction unit 10f. Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 303 is a diagram illustrating a configuration of the fourth modification 190D of the speech decoding device according to the twentieth embodiment.
  • FIG. 304 is a flowchart showing the operation of the fourth modification 190D of the speech decoding apparatus according to the twentieth embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 18a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 305 is a diagram illustrating a configuration of the fifth modification 190E of the speech decoding device according to the twentieth embodiment.
  • FIG. 306 is a flowchart showing the operation of the fifth modification 190E of the speech decoding apparatus according to the twentieth embodiment.
  • the difference between the present modification and the speech decoding apparatus 190 according to the twentieth embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 307 is a diagram illustrating a configuration of the sixth modification 190F of the speech decoding device according to the twentieth embodiment.
  • FIG. 308 is a flowchart showing the operation of the sixth modification 190F of the speech decoding apparatus according to the twentieth embodiment.
  • the difference between the present modification and the speech decoding apparatus 190A according to the first modification of the twentieth embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used), time Instead of the envelope correction unit 15aA, a low frequency time envelope shape determination unit 16b and a time envelope correction unit 18aA are provided.
  • FIG. 309 is a diagram illustrating a configuration of a seventh modification 190G of the speech decoding device according to the twentieth embodiment.
  • FIG. 310 is a flowchart showing the operation of the seventh modification 190G of the speech decoding apparatus according to the twentieth embodiment.
  • the difference between the present modification and the speech decoding apparatus 190A according to the first modification of the twentieth embodiment is that the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), low Instead of the frequency time envelope correction unit 10f, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 311 is a diagram illustrating a configuration of an eighth modification 190H of the speech decoding device according to the twentieth embodiment.
  • FIG. 312 is a flowchart showing the operation of the eighth modification 190H of the speech decoding apparatus according to the twentieth embodiment.
  • the low frequency time envelope shape determination unit 16b, the time envelope correction unit 18aA, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 313 is a diagram illustrating a configuration of the ninth modification 190I of the speech decoding device according to the twentieth embodiment.
  • FIG. 314 is a flowchart showing the operation of the ninth modification 190I of the speech decoding apparatus according to the twentieth embodiment.
  • the difference between this variation and the speech decoding apparatus 190A according to the first variation of the twentieth embodiment is that the time envelope is replaced with the low frequency time envelope shape determination unit 10e and the high frequency time envelope shape determination unit 13a.
  • the point is that a shape determining unit 16f is provided.
  • FIG. 125 is a diagram showing the configuration of the speech decoding apparatus 300 according to the 21st embodiment.
  • the communication device of speech decoding apparatus 300 receives the multiplexed encoded sequence output from speech encoding apparatus 400 described below, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 300 functionally includes an encoded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, time envelope correction unit 300a, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 126 is a flowchart showing the operation of the speech decoding apparatus according to the twenty-first embodiment.
  • the time envelope correction unit 300a is output from the low frequency time envelope correction unit 10f based on the time envelope shape determined by the high frequency time envelope shape determination unit 13a, and the high frequency signal generation unit 10g generates a high frequency signal.
  • the time envelope shape of the plurality of subband signals of the low frequency signal whose time envelope shape to be used is corrected is corrected (step S300-1).
  • the difference from the time envelope correction unit 13b is that the time when the input signal is output from the low frequency time envelope correction unit 10f instead of the plurality of subband signals of the low frequency signal output from the analysis filter bank unit 10c. This is a point that is a plurality of subband signals of a low frequency signal whose envelope shape is corrected.
  • a plurality of subband signals of the low frequency signal output from the analysis filter bank unit 10c are corrected in the time envelope shape output from the low frequency time envelope correction unit 10f. It can be realized by changing to a plurality of subband signals of low frequency signals.
  • the first, second, and third modified examples of the speech decoding apparatus according to the first embodiment of the present invention are provided for the low frequency time envelope shape determination unit 10e of the speech decoding apparatus 300 according to the present embodiment. It is obvious that it can be applied.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention can be applied.
  • FIG. 127 is a diagram showing the configuration of the speech encoding apparatus 400 according to the 21st embodiment.
  • the communication device of speech coding apparatus 400 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding apparatus 400 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, A quantization / encoding unit 20f, a core decoded signal generation unit 20i, a subband signal power calculation unit 20j, a time envelope information encoding unit 400a, and an encoded sequence multiplexing unit 20h are provided.
  • FIG. 128 is a flowchart showing the operation of the speech encoding apparatus 400 according to the 21st embodiment.
  • the time envelope information encoding unit 400a calculates at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal, and further sub-codes the core decoded signal calculated by the subband signal power calculation unit 20j.
  • the time envelope of the core decoded signal is calculated using the power of the band signal, and the time envelope information is encoded from at least one of the time envelope of the low frequency signal and the time envelope of the high frequency signal and the time envelope of the core decoded signal. (Step S400-1).
  • the time envelope information includes low frequency time envelope information and high frequency time envelope information.
  • the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited.
  • the difference from the time envelope information encoding unit 26a is that when calculating the time envelope information related to the high frequency signal, at least one of the time envelope information related to the core decoded signal and the time envelope information related to the low frequency signal is used.
  • the time envelope of the core decoded signal whose time envelope shape is modified can be used. Note that the time envelope information of the high frequency signal can be generated based on the time envelope information of the low frequency signal.
  • FIG. 315 is a diagram illustrating a configuration of a first modification 300A of the speech decoding device according to the twenty-first embodiment.
  • FIG. 316 is a flowchart showing operations of the first modification 300A of the speech decoding apparatus according to the twenty-first embodiment.
  • the difference between the present modification and the speech decoding apparatus 300 according to the twenty-first embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used) and the time envelope correction unit 300a.
  • the low frequency time envelope shape determination unit 16b and the time envelope correction unit 300aA are provided.
  • the difference between the time envelope correction unit 300aA and the time envelope correction unit 300a is that the time envelope shape received from the high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, 13aB may be used) Based on at least one of the time envelope shapes received from the low frequency time envelope shape determination unit 16b, the low frequency time envelope correction unit 10f outputs the high frequency signal that is output from the low frequency time envelope correction unit 10f.
  • the time envelope shape of the plurality of subband signals of the low frequency signal whose time envelope shape is corrected is corrected (S300-1a).
  • FIG. 317 is a diagram illustrating a configuration of the second modification 300B of the speech decoding device according to the twenty-first embodiment.
  • FIG. 318 is a flowchart showing operations of the second modification 300B of the speech decoding apparatus according to the twenty-first embodiment.
  • the difference between the present modification and the speech decoding apparatus 300 according to the twenty-first embodiment is that a high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), a low frequency time envelope correction unit 10f Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 319 is a diagram illustrating a configuration of the third modification 300C of the speech decoding device according to the twenty-first embodiment.
  • FIG. 320 is a flowchart showing the operation of the third modification 300C of the speech decoding device according to the twenty-first embodiment.
  • the low frequency time envelope shape determination unit 16b, the time envelope correction unit 300aA, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 321 is a diagram illustrating a configuration of a fourth modification 300D of the speech decoding device according to the twenty-first embodiment.
  • FIG. 322 is a flowchart showing the operation of the fourth modification 300D of the speech decoding device according to the twenty-first embodiment.
  • the difference between the present modification and the speech decoding apparatus 300 according to the twenty-first embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 129 is a diagram illustrating a configuration of the speech decoding apparatus 310 according to the twenty-second embodiment.
  • the communication device of speech decoding apparatus 310 receives the multiplexed encoded sequence output from speech encoding apparatus 410 below, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 310 functionally includes an encoded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, high frequency signal generation unit 10g, time envelope correction unit 14a, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 130 is a flowchart showing the operation of the speech decoding apparatus according to the twenty-second embodiment.
  • the difference from the speech decoding apparatus 17 according to the eighth embodiment of the present invention is that the high frequency signal generation unit 10g is replaced with a plurality of subband signals of the low frequency signal output from the analysis filter bank unit 10c.
  • the high frequency signal is generated using a plurality of subband signals of the low frequency signal whose time envelope shape is corrected that is output from the time envelope correction unit 10f.
  • the first, second, and third modified examples of the speech decoding apparatus of the fourth embodiment of the present invention can be applied.
  • FIG. 131 is a diagram showing the configuration of the speech encoding device 410 according to the 19th embodiment.
  • the communication device of speech coding apparatus 410 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded. As shown in FIG.
  • the speech encoding apparatus 410 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 270d, Quantization / encoding unit 20f, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, pseudo high frequency signal generation unit 410b, time envelope information encoding unit 410a, and encoded sequence multiplexing unit 270c Prepare.
  • FIG. 132 is a flowchart showing the operation of the speech encoding apparatus 410 according to the twenty-second embodiment.
  • the time envelope information encoding unit 410a calculates at least one of the time envelope of the low frequency signal of the input speech signal and the time envelope of the core decoded signal, and the time envelope information related to the low frequency signal from the calculated time envelope Is encoded (step S410-1).
  • the pseudo high frequency signal generation unit 410b is a control necessary for generating the low frequency signal subband signal of the input speech signal obtained by the analysis filter bank unit 20c and the high frequency signal obtained by the control parameter encoding unit 20d. Based on the parameter, a pseudo high frequency signal is generated (step S410-2).
  • the difference from the pseudo high frequency signal generation unit 24a is that, when generating the pseudo high frequency signal, the time envelope information related to the low frequency signal encoded by the time envelope information encoding unit 410a is used, and the analysis filter bank This is because the subband signal of the low frequency signal of the input audio signal obtained by the unit 20c can be corrected.
  • the time envelope information encoding unit 410a calculates at least one of the time envelope of the high frequency signal of the input speech signal and the time envelope of the pseudo high frequency signal, and the time envelope related to the high frequency signal from the calculated time envelope. Information is encoded (step S410-3).
  • the time envelope information encoding unit 410a can output the time envelope information related to the low frequency signal and the time envelope information related to the high frequency signal as encoded sequences separately encoded, and the time envelope information related to the low frequency signal. It is also possible to output an encoded sequence obtained by combining the envelope information and the time envelope information related to the high frequency signal, and the format of the encoded sequence of the time envelope information is not limited in the present invention. Further, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited as in the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment.
  • the time envelope information regarding the low frequency signal encoded by the time envelope information encoding unit 410a can perform the processes of steps S410-1 and S410-3 together.
  • the time envelope information encoding unit 27a similarly to the time envelope information encoding unit 27a, at least one of the time envelope of the low frequency signal of the input speech signal, the time envelope of the high frequency signal, the time envelope of the core decoded signal, and the time envelope of the pseudo high frequency signal.
  • One or more can be calculated, and the time envelope information can be encoded from the calculated time envelope.
  • the first modification of the speech encoding apparatus according to the seventh embodiment of the present invention can be applied to the speech encoding apparatus 410 according to the present embodiment. Further, the time envelope information of the high frequency signal can be generated based on the time envelope information of the low frequency signal.
  • FIG. 323 is a diagram illustrating a configuration of the first modification 310A of the speech decoding device according to the twenty-second embodiment.
  • FIG. 324 is a flowchart showing the operation of the first modification 310A of the speech decoding apparatus according to the twenty-second embodiment.
  • the difference between the present modification and the speech decoding apparatus 310 according to the twenty-second embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used) and the time envelope correction unit 14a.
  • the low frequency time envelope shape determination unit 16b and the time envelope correction unit 17a are provided.
  • FIG. 325 is a diagram illustrating a configuration of the second modification 310B of the speech decoding device according to the twenty-second embodiment.
  • FIG. 326 is a flowchart showing operations of the second modification 310B of the speech decoding apparatus according to the twenty-second embodiment.
  • the difference between the present modification and the speech decoding apparatus 310 according to the twenty-second embodiment is that a high frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), and a low frequency time envelope correction unit 10f. Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 327 is a diagram illustrating a configuration of the third modification 310C of the speech decoding device according to the twenty-second embodiment.
  • FIG. 328 is a flowchart showing the operation of the third modification 310C of the speech decoding device according to the twenty-second embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 17a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 329 is a diagram illustrating a configuration of a fourth modification 310D of the speech decoding device according to the twenty-second embodiment.
  • FIG. 330 is a flowchart showing the operation of the fourth modification 310D of the speech decoding apparatus according to the twenty-second embodiment.
  • the difference between the present modification and the speech decoding apparatus 310 according to the twenty-second embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 133 is a diagram showing the structure of the speech decoding apparatus 320 according to the 23rd embodiment.
  • the communication device of speech decoding apparatus 320 receives the multiplexed encoded sequence output from speech encoding apparatus 420 described below, and further outputs the decoded speech signal to the outside. As shown in FIG.
  • the speech decoding apparatus 320 functionally includes an encoded sequence demultiplexing unit 10a, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low frequency time envelope shape Determination unit 10e, low frequency time envelope correction unit 10f, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i, high frequency time envelope shape determination unit 13a, time envelope correction unit 14a, and synthesis
  • a filter bank unit 10j is provided.
  • FIG. 134 is a flowchart showing the operation of the speech decoding apparatus according to the twenty-third embodiment.
  • the difference from the speech decoding apparatus 18 of the ninth embodiment is that the high frequency signal generation unit 10g is replaced with a plurality of subband signals of the low frequency signal output from the analysis filter bank unit 10c.
  • the high frequency signal is generated using a plurality of subband signals of the low frequency signal whose time envelope shape is corrected and output from the envelope correction unit 10f.
  • the first, second, and third modified examples of the speech decoding apparatus according to the first embodiment of the present invention are provided for the low frequency time envelope shape determination unit 10e of the speech decoding apparatus 320 according to the present embodiment. It is obvious that it can be applied.
  • FIG. 135 is a diagram showing the configuration of the speech encoding apparatus 420 according to the 23rd embodiment.
  • the communication device of speech coding apparatus 420 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded. As shown in FIG.
  • the speech encoding apparatus 420 functionally includes a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, a control parameter encoding unit 20d, an envelope calculation unit 20e, Quantization / encoding unit 20f, pseudo high frequency signal generation unit 410b, frequency envelope adjustment unit 25a, core decoded signal generation unit 20i, subband signal power calculation units 20j and 24b, time envelope information encoding unit 420a, and encoding A sequence multiplexing unit 20h is provided.
  • FIG. 136 is a flowchart showing the operation of the speech encoding apparatus 420 according to the 23rd embodiment.
  • the time envelope information encoding unit 420a calculates at least one of the time envelope of the high frequency signal of the input speech signal and the time envelope of the pseudo high frequency signal whose wave number envelope is adjusted.
  • the time envelope information related to the frequency signal is encoded (step S420-1).
  • the time envelope information encoding unit 420a can output the time envelope information related to the low frequency signal and the time envelope information related to the high frequency signal as an encoded sequence separately encoded, and can also output the time envelope information related to the low frequency signal. It is also possible to output an encoded sequence obtained by combining the envelope information and the time envelope information related to the high frequency signal, and the format of the encoded sequence of the time envelope information is not limited in the present invention. Further, the method of encoding the low frequency time envelope information and the high frequency time envelope information is not limited as in the operation of the time envelope information encoding unit 26a of the speech encoding device 26 of the seventh embodiment.
  • the time envelope information encoding unit 420a can perform the processing of steps S410-1 and S420-1 together. Further, it is obvious that the first modification of the speech coding apparatus according to the seventh embodiment of the present invention can be applied to the speech coding apparatus 420 according to the present embodiment. Further, the time envelope information of the high frequency signal can be generated based on the time envelope information of the low frequency signal.
  • FIG. 137 is a diagram illustrating a configuration of a speech decoding device 320A according to a first modification example of the 23rd embodiment.
  • FIG. 138 is a flowchart showing the operation of the speech decoding apparatus 320A according to the first modification of the 23rd embodiment.
  • the difference from the speech decoding apparatus 320 according to the twenty-third embodiment is that a time envelope correction unit 15aA is used instead of the time envelope correction unit 15a.
  • the first, second, and third modifications of the speech decoding apparatus according to the first embodiment of the present invention are provided for the low frequency time envelope shape determination unit 10e of the speech decoding apparatus 320A according to the present modification. It is obvious that it can be applied.
  • the first, second, and third modifications of the speech decoding apparatus of the fourth embodiment of the present invention can be applied.
  • FIG. 331 is a diagram illustrating a configuration of the second modification 320B of the speech decoding device according to the twenty-third embodiment.
  • FIG. 332 is a flowchart showing the operation of the second modification 320B of the speech decoding apparatus according to the twenty-third embodiment.
  • the difference between the present modification and the speech decoding apparatus 320 according to the twenty-third embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used) and the time envelope correction unit 15a.
  • a low frequency time envelope shape determination unit 16b and a time envelope correction unit 18a are provided.
  • FIG. 333 is a diagram illustrating a configuration of the third modification 320C of the speech decoding device according to the twenty-third embodiment.
  • FIG. 334 is a flowchart showing the operation of the third modification 320C of the speech decoding device according to the twenty-third embodiment.
  • the difference between the present modification and the speech decoding apparatus 320 according to the twenty-third embodiment is that the high-frequency time envelope shape determination unit 13aC (it is obvious that 13a, 13aA, and 13aB may be used), and the low-frequency time envelope correction unit 10f Instead, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 335 is a diagram illustrating a configuration of a fourth modification 320D of the speech decoding device according to the twenty-third embodiment.
  • FIG. 336 is a flowchart showing the operation of the fourth modification 320D of the speech decoding device according to the twenty-third embodiment.
  • the low frequency time envelope shape determination unit 16b the time envelope correction unit 18a, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 337 is a diagram illustrating a configuration of the fifth modification 320E of the speech decoding device according to the twenty-third embodiment.
  • FIG. 338 is a flowchart showing the operation of the fifth modification 320E of the speech decoding apparatus according to the twenty-third embodiment.
  • the difference between the present modification and the speech decoding apparatus 320 according to the twenty-third embodiment is that a time envelope shape determining unit 16f is provided instead of the low frequency time envelope shape determining unit 10e and the high frequency time envelope shape determining unit 13a. It is a point to do.
  • FIG. 339 is a diagram showing a configuration of the sixth modification 320F of the speech decoding device according to the twenty-third embodiment.
  • FIG. 340 is a flowchart showing the operation of the sixth modification 320F of the speech decoding apparatus according to the twenty-third embodiment.
  • the difference between this modification and the speech decoding apparatus 320A according to the first modification of the twenty-third embodiment is that the low-frequency time envelope shape determination unit 10eC (it is obvious that 10e, 10eA, and 10eB may be used), time Instead of the envelope correction unit 15aA, a low frequency time envelope shape determination unit 16b and a time envelope correction unit 18aA are provided.
  • FIG. 341 is a diagram showing a configuration of the seventh modification 320G of the speech decoding device according to the twenty-third embodiment.
  • FIG. 342 is a flowchart showing the operation of the seventh modification 320G of the speech decoding device according to the twenty-third embodiment.
  • the difference between the present modification and the speech decoding apparatus 320A according to the first modification of the twenty-third embodiment is that the high-frequency time envelope shape determination unit 13aC (obviously, 13a, 13aA, and 13aB may be used), low Instead of the frequency time envelope correction unit 10f, a high frequency time envelope shape determination unit 16d and a low frequency time envelope correction unit 16e are provided.
  • FIG. 343 is a diagram illustrating a configuration of the eighth modification 320H of the speech decoding device according to the twenty-third embodiment.
  • FIG. 344 is a flowchart showing the operation of the eighth modification 320H of the speech decoding apparatus according to the twenty-third embodiment.
  • the low frequency time envelope shape determination unit 16b, the time envelope correction unit 18aA, the high frequency time envelope shape determination unit 16d, and the low frequency time envelope correction unit 16e are provided.
  • FIG. 345 is a diagram illustrating a configuration of the ninth modification 320I of the speech decoding device according to the twenty-third embodiment.
  • FIG. 346 is a flowchart showing the operation of the ninth modification 320I of the speech decoding apparatus according to the twenty-third embodiment.
  • the difference between the present modification and the speech decoding apparatus 320A according to the first modification of the twenty-third embodiment is that the time envelope is replaced with the low frequency time envelope shape determination unit 10e and the high frequency time envelope shape determination unit 13a.
  • the point is that a shape determining unit 16f is provided.
  • FIG. 139 is a diagram illustrating a configuration of a speech decoding device 330 according to the 24th embodiment.
  • the communication device of the audio decoding device 330 receives the multiplexed encoded sequence output from the audio encoding device 430 described below, and further outputs the decoded audio signal to the outside. As shown in FIG.
  • the speech decoding apparatus 330 functionally includes an encoded sequence demultiplexing unit 170a, a switch group 170b, a core decoding unit 10b, an analysis filter bank unit 10c, an encoded sequence analysis unit 13c, a low Frequency time envelope shape determination unit 10e, low frequency time envelope correction unit 10f, high frequency time envelope shape determination unit 13a, time envelope correction unit 300a, high frequency signal generation unit 10g, decoding / inverse quantization unit 10h, frequency envelope adjustment unit 10i and a synthesis filter bank unit 170c.
  • FIG. 140 is a flowchart showing the operation of the speech decoding apparatus according to the twenty-fourth embodiment. Note that the order in which the processes of steps S170-2 and S170-3 are performed may be before the determination of the time envelope shape of the high-frequency signal and the process of decoding / inverse quantization of the band extension portion, and the flowchart of FIG. The order is not limited.
  • the first, second, and third modified examples of the speech decoding apparatus according to the first embodiment of the present invention are provided for the low frequency time envelope shape determining unit 10e of the speech decoding apparatus 330 according to the present modified example. It is obvious that it can be applied.
  • the first, second, and third modifications of the speech decoding apparatus of the fourth embodiment of the present invention can be applied.
  • FIG. 141 is a diagram showing a configuration of a speech encoding device 430 according to the 24th embodiment.
  • the communication device of speech coding apparatus 430 receives a speech signal to be coded from the outside, and further outputs a coded sequence that has been coded.
  • the speech encoding device 430 functionally includes a high-frequency signal generation control information encoding unit 270a, a downsampling unit 20a, a core encoding unit 20b, analysis filter bank units 20c and 20c1, and control.
  • Parameter encoding unit 20d envelope calculation unit 20e, quantization / encoding unit 20f, core decoded signal generation unit 20i, subband signal power calculation unit 20j, time envelope information encoding unit 400a, and encoded sequence multiplexing unit 270c Is provided.
  • FIG. 142 is a flowchart showing the operation of the speech encoding apparatus 430 according to the 24th embodiment.
  • Time envelope information encoding section 400a calculates and encodes time envelope information in step S400-1. Note that the time envelope information of the high frequency signal can be generated based on the time envelope information of the low frequency signal.
  • FIG. 347 is a diagram showing a configuration of the first modification 330A of the speech decoding device according to the twenty-fourth embodiment.
  • FIG. 348 is a flowchart showing the operation of the first modification 330A of the speech decoding apparatus according to the twenty-fourth embodiment.
  • the difference between the present modification and the speech decoding apparatus 330 according to the twenty-fourth embodiment is that the low-frequency time envelope shape determination unit 10eC (obviously, 10e, 10eA, and 10eB may be used) and the time envelope correction unit 300a.
  • the low frequency time envelope shape determination unit 16b and the time envelope correction unit 300aA are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Telephone Function (AREA)

Abstract

 少ない情報量で復号信号の時間包絡形状を修正し知覚される歪みを軽減することを目的とする。符号化された音声信号を復号して音声信号を出力する音声復号装置は、上記符号化された音声信号を含む符号化系列を解析する符号化系列解析部と、上記符号化系列解析部から上記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号部と、上記符号化系列解析部及び上記音声復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定部と、上記時間包絡形状決定部にて決定された時間包絡形状に基づき上記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正部と、を備える。

Description

音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム
 本発明は、音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム及び音声符号化プログラムに関する。
 音声信号、音響信号のデータ量を数十分の一に圧縮する音声符号化技術は、信号の伝送・蓄積において極めて重要な技術である。広く利用されている音声符号化技術の例として、時間領域にて信号を符号化する符号励振線形予測符号化(CELP)、周波数領域にて信号を符号化する変換符号励振符号化(TCX)、“ISO/IEC MPEG”で標準化された“MPEG4 AAC”などを挙げることができる。
 音声符号化の性能をさらに向上させ、低いビットレートで高い音声品質を得る方法として、音声の低周波成分を用いて高周波成分を生成する帯域拡張技術が近年広く用いられるようになった。帯域拡張技術の代表的な例は“MPEG4 AAC”で利用されるSBR(Spectral Band Replication)技術が挙げられる。
 音声符号化においては、入力信号を符号化して得られた符号化系列を復号して得られる復号信号の時間包絡形状が入力信号の時間包絡形状と大きく異なり、歪みとして知覚される場合がある。また、帯域拡張技術を用いる場合には、音声信号の低周波数成分を上記のような音声符号化技術で符号化・復号して得られた信号を用いて高周波数成分を生成するため、同様に高周波数成分の時間包絡形状も異なり、歪みとして知覚される場合がある。
 この課題に対する解決手法として、以下の手法が知られている(下記特許文献1参照)。すなわち、高周波数成分を生成するために、任意の時間セグメント内において高周波数成分を周波数帯域に分割し、当該周波数帯域ごとのエネルギーの情報を算出し符号化する際に、当該周波数帯域ごとのエネルギーの情報を上記時間セグメントよりも短い時間セグメント毎に算出・符号化する。この際、上記分割する周波数帯域、及び短い時間セグメントについて、各周波数帯域の帯域幅、及び短い時間セグメントの長さを柔軟に設定できる。これにより、復号装置においては、時間方向については、短い時間セグメント毎に高周波数成分のエネルギーを制御する、すなわち短い時間セグメント毎に高周波数成分の時間包絡を制御することができる。
米国特許第7,191,121号
 しかし、上記特許文献1の方法によると、高周波数成分の時間包絡を詳細に制御するためには、非常に短い時間セグメントに区切り、当該短い時間セグメント毎に周波数帯域毎のエネルギー情報を算出・符号化する必要があるため、当該情報の情報量が非常に大きくなり低ビットレートでの符号化が困難になるという問題がある。
 上記の問題に鑑み、本発明は、少ない情報量で復号信号の時間包絡形状を修正し知覚される歪みを軽減することを目的とする。
 出願人は、上記の目的を達成するために、以下の第1~第4の態様に係る音声復号装置を発明した。
 第1の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を解析する符号化系列解析部と、前記符号化系列解析部から前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号部と、前記符号化系列解析部及び前記音声復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正部と、を備える。
 第2の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号部から高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、を備える。
 第3の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数復号部から低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、を備える。
 第4の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、を備える。
 なお、第2又は第4の態様に係る音声復号装置において、前記高周波数復号部は、前記符号化系列逆多重化部、前記低周波数復号部及び前記低周波数時間包絡修正部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成してもよい。
 また、第1~第4の態様に係る音声復号装置において、前記高周波数時間包絡修正部は、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施してもよい。
 ここで、前記高周波数復号部は、前記低周波数復号部にて復号された低周波数信号を受け取り、当該信号をサブバンド信号に分割する分析フィルタ部と、少なくとも前記分析フィルタ部で分割されたサブバンド信号を用いて高周波数信号を生成する高周波数信号生成部と、前記高周波数信号生成部で生成された高周波数信号の周波数包絡を調整する周波数包絡調整部と、を備え、前記中間信号は、前記高周波数信号生成部で生成された高周波数信号であってもよい。
 上述した第1~第4の態様に係る音声復号装置の発明は、音声復号方法の発明として捉えることができ、以下のように記述することができる。
 第1の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を解析する符号化系列解析ステップと、解析後の前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号ステップと、前記符号化系列解析ステップ及び前記音声復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定ステップと、前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正ステップと、を備える。
 第2の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定ステップと、前記低周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、前記低周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号ステップで得られた高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、を備える。
 第3の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定ステップと、前記高周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、前記低周波数復号ステップで得られた低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、を備える。
 第4の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、前記符号化系列逆多重化ステップで得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定ステップと、前記低周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定ステップと、前記高周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、前記低周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、を備える。
 また、上述した第1~第4の態様に係る音声復号装置の発明は、音声復号プログラムの発明として捉えることができ、以下のように記述することができる。
 第1の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を解析する符号化系列解析部と、前記符号化系列解析部から前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号部と、前記符号化系列解析部及び前記音声復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正部、として機能させる。
 第2の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号部から高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、として機能させる。
 第3の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数復号部から低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、として機能させる。
 第4の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、として機能させる。
 出願人は、上記の目的を達成するために、以下の第1~第4の態様に係る音声符号化装置を発明した。
 第1の態様に係る音声符号化装置は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、前記音声信号を符号化する音声符号化部と、前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化部と、前記音声符号化部で得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化部で得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、を備える。
 第2の態様に係る音声符号化装置は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、を備える。
 第3の態様に係る音声符号化装置は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、を備える。
 第4の態様に係る音声符号化装置は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、を備える。
 上述した第1~第4の態様に係る音声符号化装置の発明は、音声符号化方法の発明として捉えることができ、以下のように記述することができる。
 第1の態様に係る音声符号化方法は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、前記音声信号を符号化する音声符号化ステップと、前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化ステップと、前記音声符号化ステップで得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化ステップで得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、を備える。
 第2の態様に係る音声符号化方法は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、前記音声信号、前記低周波数符号化ステップの符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化ステップと、前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化ステップで得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、を備える。
 第3の態様に係る音声符号化方法は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、前記音声信号、前記低周波数符号化ステップの符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化ステップの符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化ステップと、前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化ステップで得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、を備える。
 第4の態様に係る音声符号化方法は、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、前記音声信号、前記低周波数符号化ステップの符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化ステップと、前記音声信号、前記低周波数符号化ステップの符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化ステップの符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化ステップと、前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化ステップで得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化ステップで得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、を備える。
 また、上述した第1~第4の態様に係る音声符号化装置の発明は、音声符号化プログラムの発明として捉えることができ、以下のように記述することができる。
 第1の態様に係る音声符号化プログラムは、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、前記音声信号を符号化する音声符号化部と、前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化部と、前記音声符号化部で得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化部で得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化部、として機能させる。
 第2の態様に係る音声符号化プログラムは、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、として機能させる。
 第3の態様に係る音声符号化プログラムは、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、として機能させる。
 第4の態様に係る音声符号化プログラムは、入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、前記音声信号の低周波数成分を符号化する低周波数符号化部と、前記音声信号の高周波数成分を符号化する高周波数符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、として機能させる。
 出願人は、上記の目的を達成するために、さらに以下の第5及び第6の態様に係る音声復号装置を発明した。
 第5の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部と、を備える。
 第6の態様に係る音声復号装置は、符号化された音声信号を復号して音声信号を出力する音声復号装置であって、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、前記低周波数復号部から復号された低周波数信号を受け取り、前記高周波数復号部から生成された高周波数信号を受け取り、前記時間包絡形状決定部にて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正部と、前記時間包絡修正部から時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部と、を備える。
 なお、第5の態様に係る音声復号装置において、前記高周波数復号部は、前記符号化系列逆多重化部、前記低周波数復号部及び前記低周波数時間包絡修正部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成してもよい。
 また、第5の態様に係る音声復号装置において、前記高周波数時間包絡修正部は、前記時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施してもよい。
 また、第6の態様に係る音声復号装置において、前記高周波数復号部は、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成してもよい。
 また、第6の態様に係る音声復号装置において、前記時間包絡修正部は、前記時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施してもよい。
 ここで、前記高周波数復号部は、前記低周波数復号部にて復号された低周波数信号を受け取り、当該信号をサブバンド信号に分割する分析フィルタ部と、少なくとも前記分析フィルタ部で分割されたサブバンド信号を用いて高周波数信号を生成する高周波数信号生成部と、前記高周波数信号生成部で生成された高周波数信号の周波数包絡を調整する周波数包絡調整部と、を備え、前記中間信号は、前記高周波数信号生成部で生成された高周波数信号であってもよい。
 上述した第5及び第6の態様に係る音声復号装置の発明は、音声復号方法の発明として捉えることができ、以下のように記述することができる。
 第5の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化ステップと、分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号ステップと、前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定ステップと、前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、前記低周波数時間包絡修正ステップで得られた時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成ステップと、を備える。
 第6の態様に係る音声復号方法は、符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化ステップと、分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号ステップと、前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定ステップと、前記低周波数復号ステップで得られた復号された低周波数信号を受け取り、前記高周波数復号ステップで得られた生成された高周波数信号を受け取り、前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正ステップと、前記時間包絡修正ステップで得られた時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成ステップと、を備える。
 また、上述した第5及び第6の態様に係る音声復号装置の発明は、音声復号プログラムの発明として捉えることができ、以下のように記述することができる。
 第5の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、前記低周波数時間包絡修正部から時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部、として機能させる。
 第6の態様に係る音声復号プログラムは、符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、前記低周波数復号部から復号された低周波数信号を受け取り、前記高周波数復号部から生成された高周波数信号を受け取り、前記時間包絡形状決定部にて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正部と、前記時間包絡修正部から時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部、として機能させる。
 少ない情報量で復号信号の時間包絡形状を修正し知覚される歪みを軽減することができる。
第1の実施形態に係る音声復号装置10の構成を示す図である。 第1の実施形態に係る音声復号装置10の動作を示すフローチャートである。 第1の実施形態に係る音声符号化装置20の構成を示す図である。 第1の実施形態に係る音声符号化装置20の動作を示すフローチャートである。 第1の実施形態に係る音声復号装置の第1の変形例10Aの構成を示す図である。 第1の実施形態に係る音声復号装置の第1の変形例10Aの動作を示すフローチャートである。 第1の実施形態に係る音声復号装置の第2の変形例10Bの構成を示す図である。 第1の実施形態に係る音声復号装置の第3の変形例10Cの構成を示す図である。 第1の実施形態に係る音声符号化装置の第1の変形例20Aの構成を示す図である。 第1の実施形態に係る音声符号化装置の第1の変形例20Aの動作を示すフローチャートである。 第2の実施形態に係る音声復号装置11の構成を示す図である。 第2の実施形態に係る音声復号装置11の動作を示すフローチャートである。 第2の実施形態に係る音声符号化装置21の構成を示す図である。 第2の実施形態に係る音声符号化装置21の動作を示すフローチャートである。 第2の実施形態に係る音声符号化装置の第1の変形例21Aの構成を示す図である。 第2の実施形態に係る音声符号化装置の第1の変形例21Aの動作を示すフローチャートである。 第3の実施形態に係る音声復号装置12の構成を示す図である。 第3の実施形態に係る音声復号装置12の動作を示すフローチャートである。 第3の実施形態に係る音声符号化装置22の構成を示す図である。 第3の実施形態に係る音声符号化装置22の動作を示すフローチャートである。 第3の実施形態に係る音声符号化装置の第1の変形例22Aの構成を示す図である。 第3の実施形態に係る音声符号化装置の第1の変形例22Aの動作を示すフローチャートである。 第3の実施形態に係る音声符号化装置の第2の変形例22Bの構成を示す図である。 第3の実施形態に係る音声符号化装置の第1の変形例22Bの動作を示すフローチャートである。 第4の実施形態に係る音声復号装置13の構成を示す図である。 第4の実施形態に係る音声復号装置13の動作を示すフローチャートである。 第4の実施形態に係る音声符号化装置23の構成を示す図である。 第4の実施形態に係る音声符号化装置23の動作を示すフローチャートである。 第4の実施形態に係る音声復号装置の第1の変形例13Aの構成を示す図である。 第4の実施形態に係る音声復号装置の第1の変形例13Aの動作を示すフローチャートである。 第4の実施形態に係る音声復号装置の第2の変形例13Bの構成を示す図である。 第4の実施形態に係る音声復号装置の第3の変形例13Cの構成を示す図である。 第4の実施形態に係る音声符号化装置の第1の変形例23Aの構成を示す図である。 第4の実施形態に係る音声符号化装置の第1の変形例23Aの動作を示すフローチャートである。 第5の実施形態に係る音声復号装置14の構成を示す図である。 第5の実施形態に係る音声復号装置14の動作を示すフローチャートである。 第5の実施形態に係る音声符号化装置24の構成を示す図である。 第5の実施形態に係る音声符号化装置24の動作を示すフローチャートである。 第5の実施形態に係る音声復号装置の第1の変形例14Aの構成を示す図である。 第5の実施形態に係る音声復号装置の第1の変形例14Aの動作を示すフローチャートである。 第6の実施形態に係る音声復号装置15の構成を示す図である。 第6の実施形態に係る音声復号装置15の動作を示すフローチャートである。 第6の実施形態に係る音声符号化装置25の構成を示す図である。 第6の実施形態に係る音声符号化装置25の動作を示すフローチャートである。 第6の実施形態に係る音声復号装置の第1の変形例15Aの構成を示す図である。 第6の実施形態に係る音声復号装置の第1の変形例15Aの動作を示すフローチャートである。 第7の実施形態に係る音声復号装置16の構成を示す図である。 第7の実施形態に係る音声復号装置の動作を示すフローチャートである。 第7の実施形態に係る音声符号化装置26の構成を示す図である。 第7の実施形態に係る音声符号化装置26の動作を示すフローチャートである。 第7の実施形態に係る音声復号装置の第1の変形例16Aの構成を示す図である。 第7の実施形態に係る音声復号装置の第1の変形例16Aの動作を示すフローチャートである。 第7の実施形態に係る音声符号化装置の第1の変形例26Aの構成を示す図である。 第7の実施形態に係る音声符号化装置の第1の変形例26Aの動作を示すフローチャートである。 第8の実施形態に係る音声復号装置17の構成を示す図である。 第8の実施形態に係る音声復号装置の動作を示すフローチャートである。 第8の実施形態に係る音声符号化装置27の構成を示す図である。 第8の実施形態に係る音声符号化装置27の動作を示すフローチャートである。 第9の実施形態に係る音声復号装置18の構成を示す図である。 第9の実施形態に係る音声復号装置の動作を示すフローチャートである。 第9の実施形態に係る音声符号化装置28の構成を示す図である。 第9の実施形態に係る音声符号化装置28の動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第1の変形例18Aの構成を示す図である。 第9の実施形態に係る音声復号装置の第1の変形例18Aの動作を示すフローチャートである。 第10の実施形態に係る音声復号装置1の構成を示す図である。 第10の実施形態に係る音声復号装置の動作を示すフローチャートである。 第10の実施形態に係る音声符号化装置2の構成を示す図である。 第10の実施形態に係る音声符号化装置2の動作を示すフローチャートである。 第11の実施形態に係る音声復号装置100の構成を示す図である。 第11の実施形態に係る音声復号装置の動作を示すフローチャートである。 第11の実施形態に係る音声符号化装置200の構成を示す図である。 第11の実施形態に係る音声符号化装置200の動作を示すフローチャートである。 第11の実施形態に係る音声復号装置の第1の変形例100Aの構成を示す図である。 第11の実施形態に係る音声復号装置の第1の変形例100Aの動作を示すフローチャートである。 第11の実施形態に係る音声符号化装置の第1の変形例100Aの構成を示す図である。 第12の実施形態に係る音声復号装置110の構成を示す図である。 第12の実施形態に係る音声復号装置の動作を示すフローチャートである。 第12の実施形態に係る音声符号化装置210の構成を示す図である。 第12の実施形態に係る音声符号化装置210の動作を示すフローチャートである。 第13の実施形態に係る音声復号装置120の構成を示す図である。 第13の実施形態に係る音声復号装置120の動作を示すフローチャートである。 第13の実施形態に係る音声符号化装置220の構成を示す図である。 第13の実施形態に係る音声符号化装置220の動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第1の変形例120Aの構成を示す図である。 第13の実施形態に係る音声復号装置の第1の変形例120Aの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第2の変形例120Bの構成を示す図である。 第13の実施形態に係る音声復号装置の第2の変形例120Bの動作を示すフローチャートである。 第14の実施形態に係る音声復号装置130の構成を示す図である。 第14の実施形態に係る音声復号装置の動作を示すフローチャートである。 第14の実施形態に係る音声符号化装置230の構成を示す図である。 第14の実施形態に係る音声符号化装置230の動作を示すフローチャートである。 第15の実施形態に係る音声復号装置140の構成を示す図である。 第15の実施形態に係る音声復号装置の動作を示すフローチャートである。 第15の実施形態に係る音声符号化装置240の構成を示す図である。 第15の実施形態に係る音声符号化装置240の動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第1の変形例140Aの構成を示す図である。 第15の実施形態に係る音声復号装置の第1の変形例140Aの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第2の変形例140Bの構成を示す図である。 第16の実施形態に係る音声復号装置150の構成を示す図である。 第16の実施形態に係る音声復号装置の動作を示すフローチャートである。 第16の実施形態に係る音声符号化装置250の構成を示す図である。 第16の実施形態に係る音声符号化装置250の動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第1の変形例150Aの構成を示す図である。 第16の実施形態に係る音声復号装置の第1の変形例150Aの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第2の変形例150Bの構成を示す図である。 第17の実施形態に係る音声復号装置160の構成を示す図である。 第17の実施形態に係る音声復号装置の動作を示すフローチャートである。 第17の実施形態に係る音声符号化装置260の構成を示す図である。 第17の実施形態に係る音声符号化装置260の動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第1の変形例160Aの構成を示す図である。 第17の実施形態に係る音声復号装置の第1の変形例160Aの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第2の変形例160Bの構成を示す図である。 第18の実施形態に係る音声復号装置170の構成を示す図である。 第18の実施形態に係る音声復号装置の動作を示すフローチャートである。 第18の実施形態に係る音声符号化装置270の構成を示す図である。 第18の実施形態に係る音声符号化装置270の動作を示すフローチャートである。 第19の実施形態に係る音声復号装置180の構成を示す図である。 第19の実施形態に係る音声復号装置の動作を示すフローチャートである。 第19の実施形態に係る音声符号化装置280の構成を示す図である。 第19の実施形態に係る音声符号化装置280の動作を示すフローチャートである。 第20の実施形態に係る音声復号装置190の構成を示す図である。 第20の実施形態に係る音声復号装置の動作を示すフローチャートである。 第20の実施形態に係る音声符号化装置290の構成を示す図である。 第20の実施形態に係る音声符号化装置290の動作を示すフローチャートである。 第21の実施形態に係る音声復号装置300の構成を示す図である。 第21の実施形態に係る音声復号装置の動作を示すフローチャートである。 第21の実施形態に係る音声符号化装置400の構成を示す図である。 第21の実施形態に係る音声符号化装置400の動作を示すフローチャートである。 第22の実施形態に係る音声復号装置310の構成を示す図である。 第22の実施形態に係る音声復号装置の動作を示すフローチャートである。 第22の実施形態に係る音声符号化装置410の構成を示す図である。 第22の実施形態に係る音声符号化装置410の動作を示すフローチャートである。 第23の実施形態に係る音声復号装置320の構成を示す図である。 第23の実施形態に係る音声復号装置の動作を示すフローチャートである。 第23の実施形態に係る音声符号化装置420の構成を示す図である。 第23の実施形態に係る音声符号化装置420の動作を示すフローチャートである。 第23の実施形態の第1の変形例に係る音声復号装置320Aの構成を示す図である。 第23の実施形態の第1の変形例に係る音声復号装置320Aの動作を示すフローチャートである。 第24の実施形態に係る音声復号装置330の構成を示す図である。 第24の実施形態に係る音声復号装置の動作を示すフローチャートである。 第24の実施形態に係る音声符号化装置430の構成を示す図である。 第24の実施形態に係る音声符号化装置430の動作を示すフローチャートである。 第25の実施形態に係る音声復号装置340の構成を示す図である。 第25の実施形態に係る音声復号装置の動作を示すフローチャートである。 第25の実施形態に係る音声符号化装置440の構成を示す図である。 第25の実施形態に係る音声符号化装置440の動作を示すフローチャートである。 第26の実施形態に係る音声復号装置350の構成を示す図である。 第26の実施形態に係る音声復号装置の動作を示すフローチャートである。 第26の実施形態に係る音声符号化装置450の構成を示す図である。 第26の実施形態に係る音声符号化装置450の動作を示すフローチャートである。 第26の実施形態の第1の変形例に係る音声復号装置350Aの構成を示す図である。 第26の実施形態の第1の変形例に係る音声復号装置350Aの動作を示すフローチャートである。 第7の実施形態に係る音声復号装置の第2の変形例16Bの構成を示す図である。 第7の実施形態に係る音声復号装置の第2の変形例16Bの動作を示すフローチャートである。 第7の実施形態に係る音声復号装置の第3の変形例16Cの構成を示す図である。 第7の実施形態に係る音声復号装置の第3の変形例16Cの動作を示すフローチャートである。 第7の実施形態に係る音声復号装置の第4の変形例16Dの構成を示す図である。 第7の実施形態に係る音声復号装置の第4の変形例16Dの動作を示すフローチャートである。 第7の実施形態に係る音声復号装置の第5の変形例16Eの構成を示す図である。 第7の実施形態に係る音声復号装置の第5の変形例16Eの動作を示すフローチャートである。 第8の実施形態に係る音声復号装置の第1の変形例17Aの構成を示す図である。 第8の実施形態に係る音声復号装置の第1の変形例17Aの動作を示すフローチャートである。 第8の実施形態に係る音声復号装置の第2の変形例17Bの構成を示す図である。 第8の実施形態に係る音声復号装置の第2の変形例17Bの動作を示すフローチャートである。 第8の実施形態に係る音声復号装置の第3の変形例17Cの構成を示す図である。 第8の実施形態に係る音声復号装置の第3の変形例17Cの動作を示すフローチャートである。 第8の実施形態に係る音声復号装置の第4の変形例17Dの構成を示す図である。 第8の実施形態に係る音声復号装置の第4の変形例17Dの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第2の変形例18Bの構成を示す図である。 第9の実施形態に係る音声復号装置の第2の変形例18Bの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第3の変形例18Cの構成を示す図である。 第9の実施形態に係る音声復号装置の第3の変形例18Cの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第4の変形例18Dの構成を示す図である。 第9の実施形態に係る音声復号装置の第4の変形例18Dの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第5の変形例18Eの構成を示す図である。 第9の実施形態に係る音声復号装置の第5の変形例18Eの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第6の変形例18Fの構成を示す図である。 第9の実施形態に係る音声復号装置の第6の変形例18Fの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第7の変形例18Gの構成を示す図である。 第9の実施形態に係る音声復号装置の第7の変形例18Gの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第8の変形例18Hの構成を示す図である。 第9の実施形態に係る音声復号装置の第8の変形例18Hの動作を示すフローチャートである。 第9の実施形態に係る音声復号装置の第9の変形例18Iの構成を示す図である。 第9の実施形態に係る音声復号装置の第9の変形例18Iの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第3の変形例120Cの構成を示す図である。 第13の実施形態に係る音声復号装置の第3の変形例120Cの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第4の変形例120Dの構成を示す図である。 第13の実施形態に係る音声復号装置の第4の変形例120Dの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第5の変形例120Eの構成を示す図である。 第13の実施形態に係る音声復号装置の第5の変形例120Eの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第6の変形例120Fの構成を示す図である。 第13の実施形態に係る音声復号装置の第6の変形例120Fの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第7の変形例120Gの構成を示す図である。 第13の実施形態に係る音声復号装置の第7の変形例120Gの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第8の変形例120Hの構成を示す図である。 第13の実施形態に係る音声復号装置の第8の変形例120Hの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第9の変形例120Iの構成を示す図である。 第13の実施形態に係る音声復号装置の第9の変形例120Iの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第10の変形例120Jの構成を示す図である。 第13の実施形態に係る音声復号装置の第10の変形例120Jの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第11の変形例120Kの構成を示す図である。 第13の実施形態に係る音声復号装置の第11の変形例120Kの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第12の変形例120Lの構成を示す図である。 第13の実施形態に係る音声復号装置の第12の変形例120Lの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第13の変形例120Mの構成を示す図である。 第13の実施形態に係る音声復号装置の第13の変形例120Mの動作を示すフローチャートである。 第13の実施形態に係る音声復号装置の第14の変形例120Nの構成を示す図である。 第13の実施形態に係る音声復号装置の第14の変形例120Nの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第3の変形例140Cの構成を示す図である。 第15の実施形態に係る音声復号装置の第3の変形例140Cの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第4の変形例140Dの構成を示す図である。 第15の実施形態に係る音声復号装置の第4の変形例140Dの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第5の変形例140Eの構成を示す図である。 第15の実施形態に係る音声復号装置の第5の変形例140Eの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第6の変形例140Fの構成を示す図である。 第15の実施形態に係る音声復号装置の第6の変形例140Fの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第7の変形例140Gの構成を示す図である。 第15の実施形態に係る音声復号装置の第7の変形例140Gの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第8の変形例140Hの構成を示す図である。 第15の実施形態に係る音声復号装置の第8の変形例140Hの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第9の変形例140Iの構成を示す図である。 第15の実施形態に係る音声復号装置の第9の変形例140Iの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第10の変形例140Jの構成を示す図である。 第15の実施形態に係る音声復号装置の第10の変形例140Jの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第11の変形例140Kの構成を示す図である。 第15の実施形態に係る音声復号装置の第11の変形例140Kの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第12の変形例140Lの構成を示す図である。 第15の実施形態に係る音声復号装置の第12の変形例140Lの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第13の変形例140Mの構成を示す図である。 第15の実施形態に係る音声復号装置の第13の変形例140Mの動作を示すフローチャートである。 第15の実施形態に係る音声復号装置の第14の変形例140Nの構成を示す図である。 第15の実施形態に係る音声復号装置の第14の変形例140Nの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第3の変形例150Cの構成を示す図である。 第16の実施形態に係る音声復号装置の第3の変形例150Cの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第4の変形例150Dの構成を示す図である。 第16の実施形態に係る音声復号装置の第4の変形例150Dの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第5の変形例150Eの構成を示す図である。 第16の実施形態に係る音声復号装置の第5の変形例150Eの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第6の変形例150Fの構成を示す図である。 第16の実施形態に係る音声復号装置の第6の変形例150Fの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第7の変形例150Gの構成を示す図である。 第16の実施形態に係る音声復号装置の第7の変形例150Gの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第8の変形例150Hの構成を示す図である。 第16の実施形態に係る音声復号装置の第8の変形例150Hの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第9の変形例150Iの構成を示す図である。 第16の実施形態に係る音声復号装置の第9の変形例150Iの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第10の変形例150Jの構成を示す図である。 第16の実施形態に係る音声復号装置の第10の変形例150Jの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第11の変形例150Kの構成を示す図である。 第16の実施形態に係る音声復号装置の第11の変形例150Kの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第12の変形例150Lの構成を示す図である。 第16の実施形態に係る音声復号装置の第12の変形例150Lの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第13の変形例150Mの構成を示す図である。 第16の実施形態に係る音声復号装置の第13の変形例150Mの動作を示すフローチャートである。 第16の実施形態に係る音声復号装置の第14の変形例150Nの構成を示す図である。 第16の実施形態に係る音声復号装置の第14の変形例150Nの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第3の変形例160Cの構成を示す図である。 第17の実施形態に係る音声復号装置の第3の変形例160Cの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第4の変形例160Dの構成を示す図である。 第17の実施形態に係る音声復号装置の第4の変形例160Dの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第5の変形例160Eの構成を示す図である。 第17の実施形態に係る音声復号装置の第5の変形例160Eの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第6の変形例160Fの構成を示す図である。 第17の実施形態に係る音声復号装置の第6の変形例160Fの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第7の変形例160Gの構成を示す図である。 第17の実施形態に係る音声復号装置の第7の変形例160Gの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第8の変形例160Hの構成を示す図である。 第17の実施形態に係る音声復号装置の第8の変形例160Hの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第9の変形例160Iの構成を示す図である。 第17の実施形態に係る音声復号装置の第9の変形例160Iの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第10の変形例160Jの構成を示す図である。 第17の実施形態に係る音声復号装置の第10の変形例160Jの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第11の変形例160Kの構成を示す図である。 第17の実施形態に係る音声復号装置の第11の変形例160Kの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第12の変形例160Lの構成を示す図である。 第17の実施形態に係る音声復号装置の第12の変形例160Lの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第13の変形例160Mの構成を示す図である。 第17の実施形態に係る音声復号装置の第13の変形例160Mの動作を示すフローチャートである。 第17の実施形態に係る音声復号装置の第14の変形例160Nの構成を示す図である。 第17の実施形態に係る音声復号装置の第14の変形例160Nの動作を示すフローチャートである。 第18の実施形態に係る音声復号装置の第1の変形例170Aの構成を示す図である。 第18の実施形態に係る音声復号装置の第1の変形例170Aの動作を示すフローチャートである。 第18の実施形態に係る音声復号装置の第2の変形例170Bの構成を示す図である。 第18の実施形態に係る音声復号装置の第2の変形例170Bの動作を示すフローチャートである。 第18の実施形態に係る音声復号装置の第3の変形例170Cの構成を示す図である。 第18の実施形態に係る音声復号装置の第3の変形例170Cの動作を示すフローチャートである。 第18の実施形態に係る音声復号装置の第4の変形例170Dの構成を示す図である。 第18の実施形態に係る音声復号装置の第4の変形例170Dの動作を示すフローチャートである。 第19の実施形態に係る音声復号装置の第1の変形例180Aの構成を示す図である。 第19の実施形態に係る音声復号装置の第1の変形例180Aの動作を示すフローチャートである。 第19の実施形態に係る音声復号装置の第2の変形例180Bの構成を示す図である。 第19の実施形態に係る音声復号装置の第2の変形例180Bの動作を示すフローチャートである。 第19の実施形態に係る音声復号装置の第3の変形例180Cの構成を示す図である。 第19の実施形態に係る音声復号装置の第3の変形例180Cの動作を示すフローチャートである。 第19の実施形態に係る音声復号装置の第4の変形例180Dの構成を示す図である。 第19の実施形態に係る音声復号装置の第4の変形例180Dの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第1の変形例190Aの構成を示す図である。 第20の実施形態に係る音声復号装置の第1の変形例190Aの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第2の変形例190Bの構成を示す図である。 第20の実施形態に係る音声復号装置の第2の変形例190Bの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第3の変形例190Cの構成を示す図である。 第20の実施形態に係る音声復号装置の第3の変形例190Cの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第4の変形例190Dの構成を示す図である。 第20の実施形態に係る音声復号装置の第4の変形例190Dの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第5の変形例190Eの構成を示す図である。 第20の実施形態に係る音声復号装置の第5の変形例190Eの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第6の変形例190Fの構成を示す図である。 第20の実施形態に係る音声復号装置の第6の変形例190Fの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第7の変形例190Gの構成を示す図である。 第20の実施形態に係る音声復号装置の第7の変形例190Gの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第8の変形例190Hの構成を示す図である。 第20の実施形態に係る音声復号装置の第8の変形例190Hの動作を示すフローチャートである。 第20の実施形態に係る音声復号装置の第9の変形例190Iの構成を示す図である。 第20の実施形態に係る音声復号装置の第9の変形例190Iの動作を示すフローチャートである。 第21の実施形態に係る音声復号装置の第1の変形例300Aの構成を示す図である。 第21の実施形態に係る音声復号装置の第1の変形例300Aの動作を示すフローチャートである。 第21の実施形態に係る音声復号装置の第2の変形例300Bの構成を示す図である。 第21の実施形態に係る音声復号装置の第2の変形例300Bの動作を示すフローチャートである。 第21の実施形態に係る音声復号装置の第3の変形例300Cの構成を示す図である。 第21の実施形態に係る音声復号装置の第3の変形例300Cの動作を示すフローチャートである。 第21の実施形態に係る音声復号装置の第4の変形例300Dの構成を示す図である。 第21の実施形態に係る音声復号装置の第4の変形例300Dの動作を示すフローチャートである。 第22の実施形態に係る音声復号装置の第1の変形例310Aの構成を示す図である。 第22の実施形態に係る音声復号装置の第1の変形例310Aの動作を示すフローチャートである。 第22の実施形態に係る音声復号装置の第2の変形例310Bの構成を示す図である。 第22の実施形態に係る音声復号装置の第2の変形例310Bの動作を示すフローチャートである。 第22の実施形態に係る音声復号装置の第3の変形例310Cの構成を示す図である。 第22の実施形態に係る音声復号装置の第3の変形例310Cの動作を示すフローチャートである。 第22の実施形態に係る音声復号装置の第4の変形例310Dの構成を示す図である。 第22の実施形態に係る音声復号装置の第4の変形例310Dの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第2の変形例320Bの構成を示す図である。 第23の実施形態に係る音声復号装置の第2の変形例320Bの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第3の変形例320Cの構成を示す図である。 第23の実施形態に係る音声復号装置の第3の変形例320Cの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第4の変形例320Dの構成を示す図である。 第23の実施形態に係る音声復号装置の第4の変形例320Dの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第5の変形例320Eの構成を示す図である。 第23の実施形態に係る音声復号装置の第5の変形例320Eの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第6の変形例320Fの構成を示す図である。 第23の実施形態に係る音声復号装置の第6の変形例320Fの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第7の変形例320Gの構成を示す図である。 第23の実施形態に係る音声復号装置の第7の変形例320Gの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第8の変形例320Hの構成を示す図である。 第23の実施形態に係る音声復号装置の第8の変形例320Hの動作を示すフローチャートである。 第23の実施形態に係る音声復号装置の第9の変形例320Iの構成を示す図である。 第23の実施形態に係る音声復号装置の第9の変形例320Iの動作を示すフローチャートである。 第24の実施形態に係る音声復号装置の第1の変形例330Aの構成を示す図である。 第24の実施形態に係る音声復号装置の第1の変形例330Aの動作を示すフローチャートである。 第24の実施形態に係る音声復号装置の第2の変形例330Bの構成を示す図である。 第24の実施形態に係る音声復号装置の第2の変形例330Bの動作を示すフローチャートである。 第24の実施形態に係る音声復号装置の第3の変形例330Cの構成を示す図である。 第24の実施形態に係る音声復号装置の第3の変形例330Cの動作を示すフローチャートである。 第24の実施形態に係る音声復号装置の第4の変形例330Dの構成を示す図である。 第24の実施形態に係る音声復号装置の第4の変形例330Dの動作を示すフローチャートである。 第25の実施形態に係る音声復号装置の第1の変形例340Aの構成を示す図である。 第25の実施形態に係る音声復号装置の第1の変形例340Aの動作を示すフローチャートである。 第25の実施形態に係る音声復号装置の第2の変形例340Bの構成を示す図である。 第25の実施形態に係る音声復号装置の第2の変形例340Bの動作を示すフローチャートである。 第25の実施形態に係る音声復号装置の第3の変形例340Cの構成を示す図である。 第25の実施形態に係る音声復号装置の第3の変形例340Cの動作を示すフローチャートである。 第25の実施形態に係る音声復号装置の第4の変形例340Dの構成を示す図である。 第25の実施形態に係る音声復号装置の第4の変形例340Dの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第2の変形例350Bの構成を示す図である。 第26の実施形態に係る音声復号装置の第2の変形例350Bの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第3の変形例350Cの構成を示す図である。 第26の実施形態に係る音声復号装置の第3の変形例350Cの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第4の変形例350Dの構成を示す図である。 第26の実施形態に係る音声復号装置の第4の変形例350Dの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第5の変形例350Eの構成を示す図である。 第26の実施形態に係る音声復号装置の第5の変形例350Eの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第6の変形例350Fの構成を示す図である。 第26の実施形態に係る音声復号装置の第6の変形例350Fの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第7の変形例350Gの構成を示す図である。 第26の実施形態に係る音声復号装置の第7の変形例350Gの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第8の変形例350Hの構成を示す図である。 第26の実施形態に係る音声復号装置の第8の変形例350Hの動作を示すフローチャートである。 第26の実施形態に係る音声復号装置の第9の変形例350Iの構成を示す図である。 第26の実施形態に係る音声復号装置の第9の変形例350Iの動作を示すフローチャートである。 第27の実施形態に係る音声復号装置360の構成を示す図である。 第27の実施形態に係る音声復号装置360の動作を示すフローチャートである。 第27の実施形態に係る音声復号装置の第1の変形例360Aの構成を示す図である。 第27の実施形態に係る音声復号装置の第1の変形例360Aの動作を示すフローチャートである。 第28の実施形態に係る音声復号装置370の構成を示す図である。 第28の実施形態に係る音声復号装置370の動作を示すフローチャートである。 第28の実施形態に係る音声復号装置の第1の変形例370Aの構成を示す図である。 第28の実施形態に係る音声復号装置の第1の変形例370Aの動作を示すフローチャートである。 第29の実施形態に係る音声復号装置380の構成を示す図である。 第29の実施形態に係る音声復号装置380の動作を示すフローチャートである。 第29の実施形態に係る音声復号装置の第1の変形例380Aの構成を示す図である。 第29の実施形態に係る音声復号装置の第1の変形例380Aの動作を示すフローチャートである。 第30の実施形態に係る音声復号装置390の構成を示す図である。 第30の実施形態に係る音声復号装置390の動作を示すフローチャートである。
 添付図面を参照しながら各種の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
 [第1の実施形態]
 図1は、第1の実施形態に係る音声復号装置10の構成を示す図である。音声復号装置10の通信装置は、下記音声符号化装置20から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置10は、図1に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部10d、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。各部の機能・動作は、以下、説明する。
 図2は、第1の実施形態に係る音声復号装置10の動作を示すフローチャートである。
 符号化系列逆多重化部10aは、符号化系列を、低周波数信号を符号化したコア符号化部分、低周波数信号から高周波数信号を生成するための帯域拡張部分、及び低周波数時間包絡形状決定部10eで必要な情報(低周波時間包絡形状に関する情報)に分割する(ステップS10-1)。
 符号化系列解析部10dは、符号化系列逆多重化部10aで分割された符号化系列の帯域拡張部分を解析し、高周波数信号生成部10g、及び復号/逆量子化部10hで必要な情報に分割する(ステップS10-2)。
 コア復号部10bは、符号化系列逆多重化部10aから符号化系列のコア符号化部分を受け取り復号し、低周波数信号を生成する(ステップS10-3)。
 分析フィルタバンク部10cは、前記低周波数信号を複数のサブバンド信号に分割する(ステップS10-4)。
 低周波数時間包絡形状決定部10eは、符号化系列解析部10dから低周波時間包絡形状に関する情報を受け取り、当該情報に基づき低周波数信号の時間包絡形状を決定する(ステップS10-5)。例えば、低周波数信号の時間包絡形状を平坦と決定するケース、低周波数信号の時間包絡形状を立ち上がりと決定するケース、低周波数信号の時間包絡形状を立ち下がりと決定するケースが挙げられる。
 低周波数時間包絡修正部10fは、低周波数時間包絡形状決定部10eで決定した時間包絡形状に基づいて、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(ステップS10-6)。
 例えば、低周波数時間包絡修正部10fは、任意の時間セグメント内の前記低周波数信号の複数のサブバンド信号Xdec,LO(k,i) (0≦k<kx, tE(l)≦i<tE(l+1))に対して、所定の関数F(Xdec,LO(k,i))を用いて以下の式(1)
Figure JPOXMLDOC01-appb-M000001
により得られるX’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。
 例えば、前記低周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。
例えば、当該サブバンド信号Xdec,LO(k,i)をBdec,LO(m) (m=0,…,MLO, MLO≧1) (Bdec,LO(0)≧0, Bdec,LO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれるサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))に対して、所定の関数F(Xdec,LO(k,i))を、
Figure JPOXMLDOC01-appb-M000002
として、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。
また別の例によれば、所定の関数F(Xdec,LO(k,i))を、サブバンド信号Xdec,LO(k,i)に対して平滑化フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000003
(Nfilt≧1)で定義して、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。さらに、前記Bdec,LO(m)を用いて境界が表される各周波数帯域内で、フィルタ処理前後のサブバンド信号のパワーをあわせるように処理できる。
また別の例によれば、サブバンド信号Xdec,LO(k,i)を前記Bdec,LO(m)を用いて境界が表される各周波数帯域内で周波数方向に線形予測して線形予測係数αp(m) (m=0,…,MLO-1)を得て、所定の関数F(Xdec,LO(k,i))を、サブバンド信号Xdec,LO(k,i)に対して線形予測逆フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000004
(Npred≧1)で定義して、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。
 上記の時間包絡形状を平坦に修正する処理の例は、それぞれを組み合わせて実施できる。低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記低周波数信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。
例えば、所定の関数F(Xdec,LO(k,i))をiに対して単調増加する関数incr(i)を用いて
Figure JPOXMLDOC01-appb-M000005
で定義して、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。さらに、前記Bdec,LO(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記低周波数信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。
例えば、所定の関数F(Xdec,LO(k,i))を、iに対して単調減少する関数decr(i)を用いて
Figure JPOXMLDOC01-appb-M000006
で定義して、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として出力する。さらに、前記Bdec,LO(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 復号/逆量子化部10hは、符号化系列解析部10dから出力された時間/周波数分解能の情報より、高周波数信号の生成/調整処理におけるスケールファクタバンドのデザイン、時間セグメントの長さを決定し、さらに、高周波数信号生成部10gにて生成される高周波数信号に対する、ゲインの情報および当該高周波数信号に付加するノイズ信号の情報を符号化系列解析部10dより受け取り,復号/逆量子化して高周波数信号に対するゲインおよびノイズ信号の大きさを取得する(ステップS10-7)。なお、上記スケールファクタバンドのデザイン、時間セグメントの長さについてあらかじめ決められている場合は決定する必要は無い。
 高周波数信号生成部10gは、入力される低周波数信号のサブバンド信号から、符号化系列解析部10dから出力された情報、復号/逆量子化部10hから出力されたスケールファクタバンドのデザイン、時間セグメントの長さのうち少なくとも一つに基づいて、高周波数信号を生成する(ステップS10-8)。本実施形態においては、分析フィルタバンク部10cで分割された低周波数信号のサブバンド信号が入力される。
 周波数包絡調整部10iは、復号/逆量子化部10hで取得したゲインおよびノイズ信号の大きさに基づいて、高周波数信号生成部10gにて生成された高周波数信号に対してゲイン調整およびノイズ信号の付加をして高周波数信号の周波数包絡を調整する(ステップS10-9)。さらに、正弦波信号を付加することもでき、当該正弦波信号の付加は符号化系列の帯域拡張部分に含まれる情報に基づいても良い。
 合成フィルタバンク部10jは、低周波数時間包絡修正部10fから出力された低周波数信号のサブバンド信号と、周波数包絡調整部10iから出力された高周波数信号のサブバンド信号から時間信号を合成し、出力音声信号として出力する(ステップS10-10)。
 ステップS10-1~S10-4、S10-7~S10-10の処理は、“ISO/IEC 14496-3”に規定される“SBR”および“Low Delay SBR”の各処理にて対応できる。
 図3は、第1の実施形態に係る音声符号化装置20の構成を示す図である。音声符号化装置20の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置20は、図3に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、時間包絡情報符号化部20g、符号化系列多重化部20h、サブバンド信号パワー算出部20j、及びコア復号信号生成部20iを備える。各部の機能・動作は、以下、説明する。
 図4は、第1の実施形態に係る音声符号化装置20の動作を示すフローチャートである。
 ダウンサンプリング部20aは、入力音声信号をダウンサンプルし、入力音声信号の低周波数信号に相当するダウンサンプル入力音声信号を得る(ステップS20-1)。
 コア符号化部20bは、ダウンサンプリング部20aで得られたダウンサンプル信号を符号化し、低周波数信号の符号化系列を生成する(ステップS20-2)。
 分析フィルタバンク部20cは、入力音声信号を複数のサブバンド信号に分割する(ステップS20-3)。
 制御パラメータ符号化部20dは、音声復号装置10において高周波数信号を生成するために必要な制御パラメータを符号化する(ステップS20-4)。当該パラメータは、例えば時間/周波数分解能の情報を含む。例えば、音声復号装置10の復号/逆量子化部10hでスケールファクタバンドのデザイン、時間セグメントの長さを決定する際に用いる情報を含む。
 包絡算出部20eは、分析フィルタバンク部20cで得られたサブバンド信号から、音声復号装置10の復号/逆量子化部10hで復号/逆量子化される高周波数信号に対するゲインおよびノイズ信号の大きさを算出する(ステップS20-5)。
 量子化/符号化部20fは、包絡算出部20eにて算出された高周波数信号に対するゲインおよびノイズ信号の大きさを量子化および符号化する(ステップS20-6)。
 コア復号信号生成部20iは、コア符号化部20bで符号化された情報を用いて、コア復号信号を生成する(ステップS20-7)。当該処理は、音声復号装置10のコア復号部10bと同様に実施されてもよい。また、コア符号化部20bにおける符号化される前の量子化された情報を用いて、コア復号信号を生成してもよい。また、一部の情報は音声復号装置10のコア復号部10bと異なってもよく、例えばCELP符号化の場合、復号装置における適応符号帳に保持される信号は、過去に復号された励振信号またはそれに所定の処理を施した信号であるが、当該コア復号信号生成部20iでは、入力音声信号を線形予測した後の残差信号であってもよい。
 分析フィルタバンク部20c1は、コア復号信号生成部20iで生成されたコア復号信号を複数のサブバンド信号に分割する(ステップS20-8)。当該処理において、コア復号信号からサブバンド信号に分割する際の分解能は、分析フィルタバンク部20cと同じであってもよい。
 サブバンド信号パワー算出部20jは、分析フィルタバンク部20c1で得られたコア復号信号のサブバンド信号のパワーを算出する(ステップS20-9)。当該処理は、包絡算出部20eにおける低周波数信号のサブバンド信号のパワーの算出と同様に実施される。
 時間包絡情報符号化部20gは、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出し、同様にコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号及びコア復号信号の時間包絡より時間包絡情報を算出し符号化する(ステップS20-10)。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部20gにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XLO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡ELO(k,i)は、前記時間セグメント及び周波数帯域内で正規化した当該低周波数信号のサブバンド信号XLO(k,i)のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000007
 同様に、コア復号信号の時間包絡Edec,LO(k,i)を前記時間セグメント及び周波数帯域内で正規化した当該コア復号信号のサブバンド信号Xdec,LO(k,i)のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000008
 低周波数信号及びコア復号信号のサブバンド信号の時間包絡は、低周波数信号及びコア復号信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、時間包絡情報符号化部20gは時間包絡情報として平坦の程度を表す情報を算出する。例えば、低周波数信号及びコア復号信号のサブバンド信号の時間包絡の分散またはそれに準ずるパラメータを算出する。さらに別の例では、低周波数信号及びコア復号信号のサブバンド信号の時間包絡の相加平均と相乗平均の比またはそれに準ずるパラメータを算出する。この場合、時間包絡情報符号化部20gは、時間包絡情報として当該低周波数信号のサブバンド信号の時間包絡の平坦さを表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、低周波数信号の当該パラメータの値または絶対値を符号化する。例えば、時間包絡の平坦さを平坦か否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部20gは時間包絡情報として立ち上がりの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、低周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最大値を算出する。
Figure JPOXMLDOC01-appb-M000009
さらには、式(9)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最大値を算出できる。
 この場合、時間包絡情報符号化部20gは、時間包絡情報として当該低周波数信号のサブバンド信号の時間包絡の立ち上がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部20gは時間包絡情報として立ち下がりの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、低周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最小値を算出する。
Figure JPOXMLDOC01-appb-M000010
さらには、式(10)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最小値を算出できる。
 この場合、時間包絡情報符号化部20gは、時間包絡情報として当該低周波数信号のサブバンド信号の時間包絡の立ち下がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 前記時間包絡情報として平坦の程度、立ち上がりの程度、及び立下りの程度を表す情報を算出する例において、低周波数信号及びコア復号信号の時間包絡のうち一方のみを用いる場合においては、他方の時間包絡の算出のみに係る各部及び各処理を省略することができる。
 符号化系列多重化部20hは、入力される一つ以上の符号化系列または符号化された情報または符号化されたパラメータを多重化して、符号化系列として出力する(ステップS20-11)。ここでは、コア符号化部20bより低周波数信号の符号化系列を受け取り、制御パラメータ符号化部20dより符号化された制御パラメータを受け取り、量子化/符号化部20fより符号化された高周波数信号に対するゲインおよびノイズ信号の大きさを受け取り、時間包絡情報符号化部20gより符号化された時間包絡情報を受け取り、これらを多重化して符号化系列として出力する。
 ステップS20-1~S20-6およびS20-80の処理は、“ISO/IEC 14496-3”に規定される“SBR”および“Low Delay SBR”の符号化器の各処理にて対応できる。
 [第1の実施形態の音声復号装置の第1の変形例]
 図5は、第1の実施形態に係る音声復号装置の第1の変形例10Aの構成を示す図である。なお、これ以降は、該当の変形例及び実施形態における特徴的な機能・動作について説明し、重複した説明は可能な範囲で省略する。
 符号化系列逆多重化部10aAは、符号化系列を、低周波数信号を符号化したコア符号化部分、低周波数信号から高周波数信号を生成するための帯域拡張部分に分割する(ステップS10-1a)。
 図6は、第1の実施形態に係る音声復号装置の第1の変形例10Aの動作を示すフローチャートである。
 低周波数時間包絡形状決定部10eAは、コア復号部10bから低周波数信号を受け取り、低周波数信号の時間包絡形状を決定する(ステップS10-5a)。
 例えば、低周波数信号の時間包絡形状を平坦と決定する。例えば、低周波数信号xdec(t)のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの分散またはそれに準ずるパラメータを算出する。算出したパラメータと所定の閾値とを比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。さらに別の例では、低周波数信号xdec(t)のパワーまたはそれに準ずるパラメータの相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、所定の閾値とを比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。低周波数信号の時間包絡形状を平坦と決定する方法は上記の例に限定されない。
 さらに例えば、低周波数信号の時間包絡形状を立ち上がりと決定する。例えば、低周波数信号xdec(t)のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出する。当該最大値と所定の閾値とを比較して、時間包絡形状が立ち上がりか否かまたは立ち上がりの程度を決定する。低周波数信号の時間包絡形状を立ち上がりと決定する方法は上記の例に限定されない。
 さらに例えば、低周波数信号の時間包絡形状を立ち下がりと決定する。例えば、低周波数信号xdec(t)のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出する。当該最小値と所定の閾値とを比較して、時間包絡形状が立ち下がりか否かまたは立ち下がりの程度を決定する。低周波数信号の時間包絡形状を立ち下がりと決定する方法は上記の例に限定されない。
 [第1の実施形態の音声復号装置の第2の変形例]
 図7は、第1の実施形態に係る音声復号装置の第2の変形例10Bの構成を示す図である。
 第1の実施形態に係る音声復号装置の第1の変形例との相違点は、低周波数時間包絡形状決定部10eBが、分析フィルタバンク部10cから低周波数信号の複数のサブバンド信号を受け取り、低周波数信号の時間包絡形状を決定する点である(ステップS10-5a相当処理)。
 例えば、低周波数信号の時間包絡形状を平坦と決定する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡Edec,LO(k,i)またはそれに準ずるパラメータを求め、所定の閾値と比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。時間包絡Edec,LO(k,i)は、例えば式(8)により算出できるが、これに限定されない。さらに別の例では、低周波数信号のサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡Edec,LO(k,i)またはそれに準ずるパラメータの相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、所定の閾値とを比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。時間包絡Edec,LO(k,i)は、例えば式(8)により算出できるが、これに限定されない。低周波数信号の時間包絡形状を平坦と決定する方法は上記の例に限定されない。
 さらに例えば、低周波数信号の時間包絡形状を立ち上がりと決定する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、低周波数信号のサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡Edec,LO(k,i)の差分値の最大値を算出する。例えば式(9)により算出できる。当該差分値の最大値を所定の閾値と比較して時間包絡形状が立ち上がりか否かまたは立ち上がりの程度を決定する。さらには、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータを用いることができる。低周波数信号の時間包絡形状を立ち上がりと決定する方法は上記の例に限定されない。
 さらに例えば、低周波数信号の時間包絡形状を立ち下がりと決定する。低周波数信号のサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡Edec,LO(k,i)の差分値の最小値を算出する。例えば式(10)により算出できる。当該差分値の最小値を所定の閾値と比較して時間包絡形状が立ち下がりか否かまたは立ち下がりの程度を決定する。さらには、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータを用いることができる。低周波数信号の時間包絡形状を立ち下がりと決定する方法は上記の例に限定されない。
 [第1の実施形態の音声復号装置の第3の変形例]
 図8は、第1の実施形態に係る音声復号装置の第3の変形例10Cの構成を示す図である。
 低周波数時間包絡形状決定部10eCは、符号化系列解析部10dからの低周波時間包絡形状に関する情報、コア復号部10bからの低周波数信号、分析フィルタバンク部10cからの低周波数信号の複数のサブバンド信号のうち少なくとも一つを受け取り、低周波数信号の時間包絡形状を決定する(図2のステップS10-5に相当)。
 例えば、低周波数信号の時間包絡形状を平坦と決定する。この場合、上記第1の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の低周波数信号の時間包絡形状を平坦と決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を平坦と決定する。低周波数信号の時間包絡形状を平坦と決定する方法は上記に限定されない。
 例えば、低周波数信号の時間包絡形状を立ち上がりと決定する。この場合、上記第1の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の低周波数信号の時間包絡形状を立ち上がりと決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を立ち上がりと決定する。低周波数信号の時間包絡形状を立ち上がりと決定する方法は上記に限定されない。
 例えば、低周波数信号の時間包絡形状を立ち下がりと決定する。この場合、上記第1の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の低周波数信号の時間包絡形状を立ち下がりと決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を立ち下がりと決定する。低周波数信号の時間包絡形状を立ち下がりと決定する方法は上記に限定されない。
 [第1の実施形態の音声符号化装置の第1の変形例]
 図9は、第1の実施形態に係る音声符号化装置の第1の変形例20Aの構成を示す図である。
 図10は、第1の実施形態に係る音声符号化装置の第1の変形例20Aの動作を示すフローチャートである。
 時間包絡情報符号化部20gAは、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出し、当該時間包絡より時間包絡情報を符号化する(ステップS20-10a)。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部20gAにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報として、時間包絡形状の平坦さの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XLO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡ELO(k,i)を式(7)により算出する。また時間包絡ELO(k,i)の算出方法は式(7)に限定されない。時間包絡ELO(k,i)の分散またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらに別の例では、時間包絡ELO(k,i)の相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。低周波数信号の時間包絡形状の平坦さの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち上がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出し符号化する。低周波数信号の時間包絡形状を立ち上がりの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち下がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出し符号化する。低周波数信号の時間包絡形状を立ち下がりの程度を表す情報の算出方法は上記の例に限定されない。
 [第2の実施形態]
 図11は、第2の実施形態に係る音声復号装置11の構成を示す図である。音声復号装置11の通信装置は、下記音声符号化装置21から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置11は、図11に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部10d、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図12は、第2の実施形態に係る音声復号装置11の動作を示すフローチャートである。
 高周波数信号生成部10gの動作における第1の実施形態に係る音声復号装置11の高周波数信号生成部10gとの相違点は、低周波数時間包絡修正部10fで時間包絡形状を修正された低周波数信号のサブバンド信号から高周波数信号を生成する点である。
 図13は、第2の実施形態に係る音声符号化装置21の構成を示す図である。音声符号化装置21の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置21は、図13に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、時間包絡情報符号化部21a、符号化系列多重化部20h、サブバンド信号パワー算出部20j、及びコア復号信号生成部20iを備える。
 図14は、第2の実施形態に係る音声符号化装置21の動作を示すフローチャートである。
 時間包絡情報符号化部21aは、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワー、高周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡及び高周波数信号の時間包絡を算出し、同様にサブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡、高周波数信号の時間包絡、及びコア復号信号の時間包絡より時間包絡情報を符号化する(ステップS21-1)。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部21aにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。当該処理において、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部21aにて高周波数信号のサブバンド信号のパワーを算出してもよく、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 具体的には、例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XLO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡ELO(k,i)、及びコア復号信号のサブバンド信号Xdec,LO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡Edec,LO(k,i)を、それぞれ式(7)及び式(8)を用いて算出する。同様に、任意の時間セグメントtE(l)≦i<tE(l+1)内でBHI(m) (m=0,…,MHI, MHI≧1) (BHI(0)≧kx, BHI(MHI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれる高周波数信号のサブバンド信号XHI(k,i) (BHI(m)≦k<BHI(m+1), tE(l)≦i<tE(l+1))の時間包絡EHI(k,i)を算出する。
Figure JPOXMLDOC01-appb-M000011
高周波数信号のサブバンド信号の時間包絡は、高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、時間包絡情報符号化部21aは時間包絡情報として平坦の程度を表す情報を算出する。例えば、低周波数信号、コア復号信号及び高周波数信号のサブバンド信号の時間包絡の分散またはそれに準ずるパラメータを算出する。さらに別の例では、低周波数信号、コア復号信号及び高周波数信号のサブバンド信号の時間包絡の相加平均と相乗平均の比またはそれに準ずるパラメータを算出する。この場合、時間包絡情報符号化部21aは、時間包絡情報として当該低周波数信号及び高周波数信号のうち少なくとも1つ以上のサブバンド信号の時間包絡の平坦さを表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、低周波数信号と高周波数信号の当該パラメータの値または絶対値を符号化する。例えば、時間包絡の平坦さを平坦か否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに、例えば、時間包絡情報符号化部21aは時間包絡情報として立ち上がりの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、低周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最大値を、式(9)を用いて算出する。同様に、例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、高周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最大値を算出する。
Figure JPOXMLDOC01-appb-M000012
さらには、式(12)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最大値を算出できる。この場合、時間包絡情報符号化部21aは、時間包絡情報として当該低周波数信号及び高周波数信号のうち少なくとも1つ以上のサブバンド信号の時間包絡の立ち上がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、低周波数信号と高周波数信号の当該パラメータの値を符号化する。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部21aは時間包絡情報として立ち下がりの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、低周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最小値を、式(10)を用いて算出する。同様に、例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内において、高周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最小値を算出する。
Figure JPOXMLDOC01-appb-M000013
さらには、式(13)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最小値を算出できる。この場合、時間包絡情報符号化部21aは、時間包絡情報として当該低周波数信号及び高周波数信号のうち少なくとも1つ以上のサブバンド信号の時間包絡の立ち下がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、低周波数信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、低周波数信号と高周波数信号の当該パラメータの値を符号化する。。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記MLO個の周波数帯域毎に当該情報をMLOビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 [第2の実施形態の音声符号化装置の第1の変形例]
 図15は、第2の実施形態に係る音声符号化装置の第1の変形例21Aの構成を示す図である。
 図16は、第2の実施形態に係る音声符号化装置の第1の変形例21Aの動作を示すフローチャートである。
 時間包絡情報符号化部21aAは、包絡算出部20eにて算出した入力音声信号のサブバンド信号のパワーを用いて入力音声信号の時間包絡を算出し、当該時間包絡より時間包絡情報を符号化する(ステップS21-1a)。当該処理において、入力音声信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部21aAにて入力音声信号のサブバンド信号のパワーを算出してもよく、入力音声信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報として、時間包絡形状の平坦さの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XLO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡ELO(k,i)を式(7)により算出する。また時間包絡ELO(k,i)の算出方法は式(7)に限定されない。同様に、任意の時間セグメントtE(l)≦i<tE(l+1)内でBHI(m) (m=0,…,MHI, MHI≧1) (BHI(0)≧kx, BHI(MHI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XHI(k,i) (BHI(m)≦k<BHI(m+1), tE(l)≦i<tE(l+1))の時間包絡EHI(k,i)を式(11)により算出する。また時間包絡EHI(k,i)の算出方法は式(11)に限定されない。時間包絡ELO(k,i)の分散またはそれに準ずるパラメータ、及び時間包絡EHI(k,i)の分散またはそれに準ずるパラメータのうち少なくとも1つ以上を算出し、当該パラメータをそれぞれ別々にまたは組み合わせて符号化する。さらに別の例では、時間包絡ELO(k,i)の相加平均と相乗平均の比またはそれに準ずるパラメータ、及び時間包絡EHI(k,i)の相加平均と相乗平均の比またはそれに準ずるパラメータを少なくとも1つ以上算出し、当該パラメータをそれぞれ別々にまたは組み合わせて符号化する。時間包絡形状の平坦さの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち上がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出する。同様に、時間包絡EHI(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出する。当該パラメータをそれぞれ別々にまたは組み合わせて符号化する。低周波数信号の時間包絡形状を立ち上がりの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち下がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出する。同様に、時間包絡EHI(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出する。当該パラメータをそれぞれ別々にまたは組み合わせて符号化する。低周波数信号の時間包絡形状を立ち下がりの程度を表す情報の算出方法は上記の例に限定されない。
 当該第2の実施形態の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の第1、第2および第3の変形例が適用できることは明白である。
 当該第2の実施形態の音声復号装置11は、本発明の第1の実施形態の音声符号化装置20及びその第1の変形例の音声符号化装置20Aにより符号化された符号化系列を復号できる。
 [第3の実施形態]
 図17は、第3の実施形態に係る音声復号装置12の構成を示す図である。音声復号装置12の通信装置は、下記音声符号化装置22から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置12は、図17に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部10d、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部12a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図18は、第3の実施形態に係る音声復号装置12の動作を示すフローチャートである。
 低周波数時間包絡修正部12aは、低周波数時間包絡形状決定部10eで決定した時間包絡形状に基づいて、コア復号部10bから出力される低周波数信号の時間包絡の形状を修正する(ステップS12-1)。
 例えば、低周波数時間包絡修正部12aは、任意の時間セグメントtt,E(l)≦i<tt,E(l+1))内の前記低周波数信号xdec,LO(i)に対して、所定の関数Ft(xdec,LO(i))を用いて以下の式(14)
Figure JPOXMLDOC01-appb-M000014
により得られるx’dec,LO(i)を時間包絡形状が修正された低周波数信号として出力する。
 例えば、前記低周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。例えば、当該低周波数信号xdec,LO(i)に対して、所定の関数Ft(xdec,LO(i))を、
Figure JPOXMLDOC01-appb-M000015
として、x’dec,LO(i)を時間包絡形状が修正された低周波数信号として出力する。
また別の例によれば、所定の関数Ft(xdec,LO(i))を、低周波数信号xdec,LO(i)に対して平滑化フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000016
(Nfilt≧1)で定義して、x’dec,LO(i)を時間包絡形状が修正された低周波数信号として出力する。上記の時間包絡形状を平坦に修正する処理の例は、それぞれを組み合わせて実施できる。低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記低周波数信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。例えば、所定の関数Ft(xdec,LO(i))を、iに対して単調増加する関数incr(i)を用いて
Figure JPOXMLDOC01-appb-M000017
で定義して、x’dec,LO(i)を時間包絡形状が修正された低周波数信号として出力する。低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記低周波数信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。例えば、所定の関数Ft(xdec,LO(i))を、iに対して単調減少する関数decr(i)を用いて
Figure JPOXMLDOC01-appb-M000018
で定義して、x’dec,LO(i)を時間包絡形状が修正された低周波数信号として出力する。低周波数時間包絡修正部10fは、低周波数信号の複数のサブバンド信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 また別の例によれば、低周波数信号が離散フーリエ変換,離散コサイン変換,修正離散コサイン変換に代表される時間周波数変換により周波数領域の変換係数Xdec,LO(k) (0≦k<kx)で表されたときは、所定の関数Ff(Xdec,LO(k))を用いて
Figure JPOXMLDOC01-appb-M000019
により得られるX’dec,LO(k)を時間包絡形状が修正された低周波数信号の周波数領域の変換係数として出力する。
 例えば、前記低周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、低周波数信号の時間包絡形状を修正できる。
BLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の任意の周波数帯域Bdec,LO(m)をにおいて、周波数方向に線形予測して線形予測係数αp(m) (m=0,…,MLO-1)を得て、所定の関数Ft(Xdec,LO(k))を、変換係数Xdec,LO(k)に対して線形予測逆フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000020
(Npred≧1)で定義して、X’dec,LO(k,i)を時間包絡形状が修正された低周波数信号の変換係数として出力する。
 図19は、第3の実施形態に係る音声符号化装置22の構成を示す図である。音声符号化装置22の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置22は、図19に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、時間包絡算出部22a及び22a1、時間包絡情報符号化部22b、符号化系列多重化部20h、及びコア復号信号生成部20iを備える。
 図20は、第3の実施形態に係る音声符号化装置22の動作を示すフローチャートである。
 時間包絡算出部22aは、ダウンサンプリング部20aから得られるダウンサンプル信号の時間包絡を算出する(ステップ22-1)。
 例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1))内のダウンサンプル信号xLO(i)の時間包絡ELO(i)を、当該時間セグメント内で正規化したダウンサンプル信号のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000021
ダウンサンプル信号の時間包絡は、ダウンサンプル信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 時間包絡算出部22a1は、コア復号信号生成部20iにて生成されたコア復号信号の時間包絡を算出する(ステップ22-2)。コア復号信号の時間包絡は、前記ダウンサンプル信号の時間包絡と同様に算出できる。
 例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1))内の前記コア復号信号xdec,LO(i)の時間包絡Edec,LO(i)を、当該時間セグメント内で正規化したコア復号信号のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000022
コア復号信号の時間包絡は、コア復号信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 時間包絡情報符号化部22bは、時間包絡算出部22aで算出されたダウンサンプル信号の時間包絡と、時間包絡算出部22a1で算出されたコア復号信号の時間包絡とを用いて、時間包絡情報を算出し、当該時間包絡より時間包絡情報を符号化する(ステップS22-3)。
 例えば、時間包絡情報符号化部22bは時間包絡情報として平坦の程度を表す情報を算出する。例えば、ダウンサンプル信号及びコア復号信号の時間包絡の分散またはそれに準ずるパラメータを算出する。さらに別の例では、ダウンサンプル信号及びコア復号信号のサブバンド信号の時間包絡の相加平均と相乗平均の比またはそれに準ずるパラメータを算出する。この場合、時間包絡情報符号化部22bは、時間包絡情報として当該ダウンサンプル信号の時間包絡の平坦さを表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、ダウンサンプル信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、ダウンサンプル信号の当該パラメータの値または絶対値を符号化する。例えば、時間包絡の平坦さを平坦か否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメントについては1ビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部22bは時間包絡情報として立ち上がりの程度を表す情報を算出する。例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1)内において、ダウンサンプル信号の時間包絡の時間方向の差分値の最大値を算出する。
Figure JPOXMLDOC01-appb-M000023
さらには、式(23)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最大値を算出できる。この場合、時間包絡情報符号化部22bは、時間包絡情報として当該ダウンサンプル信号の時間包絡の立ち上がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、ダウンサンプル信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメントについては1ビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部20gは時間包絡情報として立ち下がりの程度を表す情報を算出する。例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1)内において、低周波数信号のサブバンド信号の時間包絡の時間方向の差分値の最小値を算出する。
Figure JPOXMLDOC01-appb-M000024
さらには、式(24)において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最小値を算出できる。この場合、時間包絡情報符号化部22bは、時間包絡情報として当該ダウンサンプル信号の時間包絡の立ち下がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、ダウンサンプル信号とコア復号信号の当該パラメータの差分値またはその絶対値を符号化する。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメントについては1ビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 前記時間包絡情報として平坦の程度、立ち上がりの程度、及び立下りの程度を表す情報を算出する例において、ダウンサンプル信号及びコア復号信号の時間包絡のうち一方のみを用いる場合においては、他方の時間包絡の算出のみに係る各部及び各処理を省略することができる。
 [第3の実施形態の音声符号化装置の第1の変形例]
 図21は、第3の実施形態に係る音声符号化装置の第1の変形例22Aの構成を示す図である。
 図22は、第3の実施形態に係る音声符号化装置の第1の変形例22Aの動作を示すフローチャートである。
 時間包絡情報符号化部22bAは、時間包絡算出部22aにて算出されたダウンサンプル信号の時間包絡より時間包絡情報を算出し、当該時間包絡情報を符号化する(ステップS22-3a)。
 例えば、時間包絡情報として、時間包絡形状の平坦さの程度を表す情報を算出する。例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1)内のダウンサンプル信号xLO(i) (tt,E(l)≦i<tt,E(l+1))の時間包絡ELO(i)を式(21)により算出する。また時間包絡ELO(i)の算出方法は式(21)に限定されない。時間包絡ELO(i)の分散またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらに別の例では、時間包絡ELO(i)の相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。ダウンサンプル信号の時間包絡形状の平坦さの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち上がりの程度を表す情報を算出する。例えば、時間包絡ELO(i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出し符号化する。ダウンサンプル信号の時間包絡形状を立ち上がりの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち下がりの程度を表す情報を算出する。例えば、時間包絡ELO(i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出し符号化する。ダウンサンプル信号の時間包絡形状を立ち下がりの程度を表す情報の算出方法は上記の例に限定されない。
 [第3の実施形態の音声符号化装置の第2の変形例]
 図23は、第3の実施形態に係る音声符号化装置の第2の変形例22Bの構成を示す図である。
 図24は、第3の実施形態に係る音声符号化装置の第2の変形例22Bの動作を示すフローチャートである。
 時間包絡算出部22aBは、入力音声信号の時間包絡を算出する(ステップ22-1b)。
 例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1))内の前記入力信号x(i)の時間包絡E(i)を、当該時間セグメント内で正規化した入力信号のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000025
入力信号の時間包絡は、入力信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 時間包絡情報符号化部22bBは、時間包絡算出部22aBにて算出された入力音声信号の時間包絡より時間包絡情報を算出し、当該時間包絡情報を符号化する(ステップS22-3b)。
 例えば、時間包絡情報として、時間包絡形状の平坦さの程度を表す情報を算出する。例えば、任意の時間セグメントtt,E(l)≦i<tt,E(l+1)内の入力信号x(i) (tt,E(l)≦i<tt,E(l+1))の時間包絡E(i)を式(25)により算出する。また時間包絡E(i)の算出方法は式(25)に限定されない。時間包絡E(i)の分散またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらに別の例では、時間包絡E(i)の相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。入力信号の時間包絡形状の平坦さの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち上がりの程度を表す情報を算出する。例えば、時間包絡E(i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出し符号化する。入力信号の時間包絡形状を立ち上がりの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち下がりの程度を表す情報を算出する。例えば、時間包絡E(i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出し符号化する。入力信号の時間包絡形状を立ち下がりの程度を表す情報の算出方法は上記の例に限定されない。
 当該第3の実施形態の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の第1、第2、および第3の変形例が適用できることは明白である。
 [第4の実施形態]
 図25は、第4の実施形態に係る音声復号装置13の構成を示す図である。音声復号装置13の通信装置は、下記音声符号化装置23から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置13は、図25に示すように、機能的には、符号化系列逆多重化部10aA、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、高周波数時間包絡形状決定部13a、時間包絡修正部13b、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図26は、第4の実施形態に係る音声復号装置13の動作を示すフローチャートである。
 符号化系列解析部13cは、符号化系列逆多重化部10aAで分割された符号化系列の帯域拡張部分を解析し、高周波数信号生成部10g、復号/逆量子化部10h、高周波数時間包絡形状決定部13aで必要な情報に分割する(ステップS13-3)。
 高周波数時間包絡形状決定部13aは、符号化系列解析部13cから高周波時間包絡形状に関する情報を受け取り、当該情報に基づき高周波数信号の時間包絡形状を決定する(ステップS13-1)。例えば、高周波数信号の時間包絡形状を平坦と決定する。さらに、例えば、高周波数信号の時間包絡形状を立ち上がりと決定する。さらに、例えば、高周波数信号の時間包絡形状を立ち下がりと決定する。
 時間包絡修正部13bは、高周波数時間包絡形状決定部13aで決定した時間包絡形状に基づいて、分析フィルタバンク部10cから出力され、高周波数信号生成部10gにて高周波数信号の生成に利用する低周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(ステップS13-2)。
 例えば、前記高周波数信号の時間包絡形状が平坦と決定された場合、例えば、高周波数信号の生成に利用する低周波数信号に対して、低周波数時間包絡修正部10fが前記低周波数信号の時間包絡形状を平坦にする処理と同様の処理により、高周波数信号の生成に利用する低周波数信号の時間包絡形状を修正できる。
 さらに、例えば、前記高周波数信号の時間包絡形状が立ち上がりと決定された場合、例えば、低周波数時間包絡修正部10fが前記低周波数信号の時間包絡形状を立ち上がりにする処理と同様の処理により、高周波数信号の生成に利用する低周波数信号の時間包絡形状を修正できる。
 さらに、例えば、前記高周波数信号の時間包絡形状が立ち下がりと決定された場合、例えば、低周波数時間包絡修正部10fが前記低周波数信号の時間包絡形状を立ち下がりにする処理と同様の処理により、高周波数信号の生成に利用する低周波数信号の時間包絡形状を修正できる。
 高周波数信号の生成に利用する低周波数信号の時間包絡形状を修正する処理は、上記の例に限定されない。
 図27は、第4の実施形態に係る音声符号化装置23の構成を示す図である。音声符号化装置23の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置23は、図27に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、時間包絡情報符号化部23a、符号化系列多重化部20h、サブバンド信号パワー算出部20j、及びコア復号信号生成部20iを備える。
 図28は、第4の実施形態に係る音声符号化装置23の動作を示すフローチャートである。
 時間包絡情報符号化部23aは、高周波数信号の生成に利用する低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、さらにサブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡及び高周波数信号の時間包絡のうち少なくとも一つ以上とコア復号信号の時間包絡より時間包絡情報を符号化する(ステップS23-1)。低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部23aにて低周波数信号のサブバンド信号のパワーを算出でき、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部23aにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報符号化部20gが前記低周波数信号の時間包絡を算出する処理と同様の処理により、当該高周波数信号の生成に利用する低周波数信号の時間包絡を算出できる。高周波数信号の生成に利用する低周波数信号のサブバンド信号の時間包絡は、当該低周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 また、例えば、時間包絡情報符号化部21aが前記高周波数信号の時間包絡を算出する処理と同様の処理により、当該高周波数信号の時間包絡を算出できる。高周波数信号のサブバンド信号の時間包絡は、当該高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、時間包絡情報符号化部20gが時間包絡情報として平坦の程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号の生成に利用する低周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として平坦の程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。さらには、例えば、時間包絡情報符号化部20gが時間包絡情報として平坦の程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として平坦の程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の平坦の程度を平坦か否かで表現すれば1ビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち上がりの程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号の生成に利用する低周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち上がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。さらには、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち上がりの程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち上がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち下がりの程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号の生成に利用する低周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち下がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。さらには、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち下がりの程度を表す情報を算出する処理において、前記低周波数信号サブバンド信号の時間包絡の代わりに、当該高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち下がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化できる。
 なお、時間包絡情報の算出方法、及び符号化方法は前記の例に限定されない。
 [第4の実施形態の音声復号装置の第1の変形例]
 図29は、第4の実施形態に係る音声復号装置の第1の変形例13Aの構成を示す図である。
 図30は、第4の実施形態に係る音声復号装置の第1の変形例13Aの動作を示すフローチャートである。
 高周波数時間包絡形状決定部13aAは、コア復号部10bから低周波数信号を受け取り、当該低周波数信号に基づいて高周波数時間包絡形状を決定する(ステップS13-1a)。
 例えば、低周波数信号の時間包絡を算出し、当該低周波数時間包絡の形状に基づいて高周波数時間包絡形状を決定する。さらに、例えば、低周波数信号に所定の処理を施した信号の時間包絡を算出し、当該処理済低周波数信号の時間包絡の形状に基づいて高周波数時間包絡形状を決定する。前記所定の処理は、例えばハイパスフィルタ処理であるが、これに限定されない。
 例えば、高周波数信号の時間包絡形状を平坦と決定する。例えば、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を平坦と決定する処理と同様に高周波数信号の時間包絡形状を平坦と決定できる。さらに、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を平坦と決定する処理において、前記低周波数信号の時間包絡の代わりに、前記処理済低周波数信号の時間包絡を用いて、高周波数信号の時間包絡形状を平坦と決定できる。高周波数信号の時間包絡形状を平坦と決定する処理は上記の例に限定されない。
 さらに、例えば、高周波数信号の時間包絡形状を立ち上がりと決定する。例えば、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を立ち上がりと決定する処理と同様に高周波数信号の時間包絡形状を立ち上がりと決定できる。さらに、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を立ち上がりと決定する処理において、前記低周波数信号の時間包絡の代わりに、前記処理済低周波数信号の時間包絡を用いて、高周波数信号の時間包絡形状を立ち上がりと決定できる。高周波数信号の時間包絡形状を立ち上がりと決定する処理は上記の例に限定されない。
 さらに、例えば、高周波数信号の時間包絡形状を立ち下がりと決定する。例えば、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を立ち下がりと決定する処理と同様に高周波数信号の時間包絡形状を立ち下がりと決定できる。さらに、低周波数時間包絡形状決定部10eAが前記低周波数信号の時間包絡形状を立ち下がりと決定する処理において、前記低周波数信号の時間包絡の代わりに、前記処理済低周波数信号の時間包絡を用いて、高周波数信号の時間包絡形状を立ち下がりと決定できる。高周波数信号の時間包絡形状を立ち下がりと決定する処理は上記の例に限定されない。
 [第4の実施形態の音声復号装置の第2の変形例]
 図31は、第4の実施形態に係る音声復号装置の第2の変形例13Bの構成を示す図である。
 第4の実施形態に係る音声復号装置の第1の変形例13Aとの相違点は、高周波数時間包絡形状決定部13aBは、分析フィルタバンク部10cから低周波数信号の複数のサブバンド信号を受け取り、当該低周波数信号の複数のサブバンド信号に基づいて高周波数信号の時間包絡形状を決定する点である(ステップS13-1aに相当の処理)。
 例えば、低周波数信号の少なくとも一つ以上のサブバンド信号の時間包絡を算出し、当該低周波数サブバンド信号時間包絡の形状に基づいて高周波数時間包絡形状を決定する。
 例えば、高周波数信号の時間包絡形状を平坦と決定する。例えば、低周波数時間包絡形状決定部10eBが前記低周波数信号の時間包絡形状を平坦と決定する処理と同様にして、高周波数信号の時間包絡形状を平坦と決定できる。この際、周波数帯域の境界を表すBLO(m)は、例えば、比較的高い周波数の周波数帯域のみを定義するなどとして、低周波数時間包絡形状決定部10eBと異ならせることができる。高周波数信号の時間包絡形状を平坦と決定する処理は上記の例に限定されない。
 さらに、例えば、高周波数信号の時間包絡形状を立ち上がりと決定する。例えば、低周波数時間包絡形状決定部10eBが前記低周波数信号の時間包絡形状を立ち上がりと決定する処理と同様にして、高周波数信号の時間包絡形状を立ち上がりと決定できる。この際、周波数帯域の境界を表すBLO(m)は、例えば、比較的高い周波数の周波数帯域のみを定義するなどとして、低周波数時間包絡形状決定部10eBと異ならせることができる。高周波数信号の時間包絡形状を立ち上がりと決定する処理は上記の例に限定されない。
 さらに、例えば、高周波数信号の時間包絡形状を立ち下がりと決定する。例えば、低周波数時間包絡形状決定部10eBが前記低周波数信号の時間包絡形状を立ち下がりと決定する処理と同様にして、高周波数信号の時間包絡形状を立ち下がりと決定できる。この際、周波数帯域の境界を表すBLO(m)は、例えば、比較的高い周波数の周波数帯域のみを定義するなどとして、低周波数時間包絡形状決定部10eBと異ならせることができる。高周波数信号の時間包絡形状を立ち下がりと決定する処理は上記の例に限定されない。
 [第4の実施形態の音声復号装置の第3の変形例]
 図32は、第4の実施形態に係る音声復号装置の第3の変形例13Cの構成を示す図である。
 高周波数時間包絡形状決定部13aCは、符号化系列解析部13cから高周波時間包絡形状に関する情報、コア復号部10bから低周波数信号、分析フィルタバンク部10cから低周波数信号の複数のサブバンド信号のうち少なくとも一つを受け取り、高周波数信号の時間包絡形状を決定する(ステップS13-1に相当の処理)。
 例えば、低周波数信号の少なくとも一つ以上のサブバンド信号の時間包絡を算出し、当該低周波数サブバンド信号時間包絡の形状に基づいて高周波数時間包絡形状を決定する。
 例えば、高周波数信号の時間包絡形状を平坦と決定する。この場合、上記第4の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の高周波数信号の時間包絡形状を平坦と決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を平坦と決定する。高周波数信号の時間包絡形状を平坦と決定する方法は上記に限定されない。
 また、例えば、高周波数信号の時間包絡形状を立ち上がりと決定する。この場合、上記第4の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の高周波数信号の時間包絡形状を立ち上がりと決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を立ち上がりと決定する。高周波数信号の時間包絡形状を立ち上がりと決定する方法は上記に限定されない。
 さらに、例えば、高周波数信号の時間包絡形状を立ち下がりと決定する。この場合、上記第4の実施形態の音声復号装置、当該復号装置の第1及び第2の変形例にて記載の高周波数信号の時間包絡形状を立ち下がりと決定する方法を少なくとも一つ以上組み合わせて時間包絡形状を立ち下がりと決定する。高周波数信号の時間包絡形状を立ち下がりと決定する方法は上記に限定されない。
 [第4の実施形態の音声符号化装置の第1の変形例]
 図33は、第4の実施形態に係る音声符号化装置の第1の変形例23Aの構成を示す図である。
 図34は、第4の実施形態に係る音声符号化装置の第1の変形例23Aの動作を示すフローチャートである。
 時間包絡情報符号化部23aAは、低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、当該低周波数信号及び高周波数信号の時間包絡のうち少なくとも一つ以上より時間包絡情報を算出し符号化する(ステップS23-1a)。低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部23aAにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部23aAにて高周波数信号のサブバンド信号のパワーを算出してもよく、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報として、時間包絡形状の平坦さの程度を表す情報を算出する。例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBLO(m) (m=0,…,MLO, MLO≧1) (BLO(0)≧0, BLO(MLO)<kx)で境界を表されるMLO個の周波数帯域に分割し、m番目の周波数帯域に含まれる低周波数信号のサブバンド信号XLO(k,i) (BLO(m)≦k<BLO(m+1), tE(l)≦i<tE(l+1))の時間包絡ELO(k,i)を式(7)により算出する。また時間包絡ELO(k,i)の算出方法は式(7)に限定されない。時間包絡ELO(k,i)の分散またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらに別の例では、時間包絡ELO(k,i)の相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらには、例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBHI(m) (m=0,…,MHI, MH≧1) (BHI(0)≧kx, BHI(MHI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれる高周波数信号のサブバンド信号XHI(k,i) (BHI(m)≦k<BHI(m+1), tE(l)≦i<tE(l+1))の時間包絡EHI(k,i)を式(11)により算出する。また時間包絡EHI(k,i)の算出方法は式(11)に限定されない。時間包絡EHI(k,i)の分散またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。さらに別の例では、時間包絡EHI(k,i)の相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、当該パラメータを符号化する。時間包絡形状の平坦さの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち上がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出し符号化する。さらには、例えば、時間包絡EHI(k,i)の時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出し符号化する。時間包絡形状を立ち上がりの程度を表す情報の算出方法は上記の例に限定されない。
 さらに、例えば、時間包絡情報として、時間包絡形状の立ち下がりの程度を表す情報を算出する。例えば、時間包絡ELO(k,i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出し符号化する。さらには、例えば、時間包絡EHI(k,i)のの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出し符号化する。
 なお、時間包絡形状を立ち下がりの程度を表す情報の算出方法は上記の例に限定されない。前記時間包絡情報として平坦の程度、立ち上がりの程度、及び立下りの程度を表す情報を算出する例において、低周波数信号及び高周波数信号のサブバンド信号の時間包絡のうち一方のみを用いる場合においては、他方の時間包絡の算出のみに係る各部及び各処理を省略することができる。
 [第5の実施形態]
 図35は、第5の実施形態に係る音声復号装置14の構成を示す図である。音声復号装置14の通信装置は、下記音声符号化装置24から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置14は、図35に示すように、機能的には、符号化系列逆多重化部10aA、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、高周波数信号生成部10g、高周波数時間包絡形状決定部13a、時間包絡修正部14a、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図36は、第5の実施形態に係る音声復号装置14の動作を示すフローチャートである。
 時間包絡修正部14aは、高周波数時間包絡形状決定部13aで決定した時間包絡形状に基づいて、高周波数信号生成部10gから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(ステップS14-1)。
 例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBgen,HI(m) (m=0,…,Mgen,HI, Mgen,HI≧1) (Bgen,HI(0)≧kx, Bgen,HI(Mgen,HI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれる高周波数信号生成部10gから出力される高周波数信号のサブバンド信号Xgen,HI(k,i) (BHI(m)≦k<BHI(m+1), tE(l)≦i<tE(l+1))に対して、所定の関数F(Xgen,HI(k,i))を用いて以下の式(26)
Figure JPOXMLDOC01-appb-M000026
により得られるX’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。
 例えば、前記高周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、当該サブバンド信号Xgen,HI(k,i)をBgen,HI(m) (m=0,…,MHI, MHI≧1) (Bgen,HI(0)≧kx, Bgen,HI(MHI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれるサブバンド信号Xgen,HI(k,i) (BHI(m)≦k<BHI(m+1), tE(l)≦i<tE(l+1))に対して、所定の関数F(Xgen,HI(k,i))を、
Figure JPOXMLDOC01-appb-M000027
(これらを式(27)という。)
として、X’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。
また別の例によれば、所定の関数F(Xgen,HI(k,i))を、サブバンド信号Xgen,HI(k,i)に対して平滑化フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000028
(Nfilt≧1)で定義して、X’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。さらに、前記Bgen,HI(m)を用いて境界が表される各周波数帯域内で、フィルタ処理前後のサブバンド信号のパワーをあわせるように処理できる。
また別の例によれば、前記Bgen,HI(m)を用いて境界が表される各周波数帯域内で、サブバンド信号Xgen,HI(k,i)を周波数方向に線形予測して線形予測係数αp(m) (m=0,…,MHI-1)を得て、所定の関数F(Xgen,HI(k,i))をサブバンド信号Xgen,HI(k,i)に対して線形予測逆フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000029
(Npred≧1)で定義して、X’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。
 上記の時間包絡形状を平坦に修正する処理の例は、それぞれを組み合わせて実施できる。時間包絡修正部14aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記高周波数信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、所定の関数F(Xgen,HI(k,i))をiに対して単調増加する関数incr(i)を用いて
Figure JPOXMLDOC01-appb-M000030
で定義して、X’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。さらに、前記Bgen,HI(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 時間包絡修正部14aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記高周波数信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、所定の関数F(Xgen,HI(k,i))を、iに対して単調減少する関数decr(i)を用いて
Figure JPOXMLDOC01-appb-M000031
で定義して、X’gen,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。さらに、前記Bgen,HI(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 時間包絡修正部14aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 なお、本実施形態における周波数包絡調整部10iを、“ISO/IEC 14496-3”に規定される“SBR”および“Low Delay SBR”における“HF adjustment”にて実現される場合は、時間包絡修正部14aの処理を周波数包絡調整部10iにおいて行うことで演算量の削減ができる。具体的には、例えば、式(27)により時間包絡形状を修正する際に、式(27)内の高周波数信号のサブバンド信号のパワー
Figure JPOXMLDOC01-appb-M000032
の算出は、前記“HF adjustment”において算出されるために省略できる。さらに、前記“HF adjustment”にて“interpolation”を利用しない場合(すなわち、bs_interpol_freq=0の場合)は、式(27)内の高周波数信号のサブバンド信号のパワーの周波数方向の和
Figure JPOXMLDOC01-appb-M000033
の算出は、前記“HF adjustment”において算出されるため、さらに省略できる。
 一方、前記“HF adjustment”において前記“interpolation”を利用し時間方向の和、
Figure JPOXMLDOC01-appb-M000034
が算出される場合には、上記和を、前記“HF adjustment”において算出される
Figure JPOXMLDOC01-appb-M000035
の代替量、あるいは近似量として用いることができ、上記和の算出を省略することにより演算量が削減できる。
 さらに、時間包絡修正部14aの他の例においても、同様に一部の演算を省略できることは明白である。
 なお、本実施形態に係る音声復号装置14の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 図37は、第5の実施形態に係る音声符号化装置24の構成を示す図である。音声符号化装置24の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置24は、図37に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、擬似高周波数信号生成部24a、サブバンド信号パワー算出部24b、時間包絡情報符号化部24c、及び符号化系列多重化部20hを備える。
 図38は、第5の実施形態に係る音声符号化装置24の動作を示すフローチャートである。
 擬似高周波数信号生成部24aは、分析フィルタバンク部20cで得られる入力音声信号の低周波数信号のサブバンド信号と、制御パラメータ符号化部20dで得られる高周波数信号を生成するために必要な制御パラメータに基づいて、擬似高周波数信号を生成する(ステップS24-1)。当該擬似高周波数信号の生成処理は、高周波数信号生成部10gにおける処理と同様に行われるが、高周波数信号生成部10gではコア復号部10bにて復号された低周波数信号のサブバンド信号から生成されるのに対し、擬似高周波数信号生成部24aでは入力音声信号の低周波数信号のサブバンド信号から生成される点が異なる。なお、擬似高周波数信号生成部24aでは、演算量の削減を目的として、高周波数信号生成部10gでの処理の一部を省略できる。例えば、生成される高周波数信号のトーナリティの調整処理を省略できる。
 サブバンド信号パワー算出部24bは、擬似高周波数信号生成部24aにて生成された擬似高周波数信号のサブバンド信号のパワーを算出する(ステップS24-2)。
 時間包絡情報符号化部24cは、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出し、サブバンド信号パワー算出部24bにて算出した擬似高周波数信号のサブバンド信号のパワーを用いて擬似高周波数信号の時間包絡を算出し、当該高周波数信号の時間包絡と擬似高周波数信号の時間包絡より時間包絡情報を算出し符号化する(ステップS24-3)。当該処理において、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部24cにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報符号化部21aが前記高周波数信号の時間包絡を算出する処理と同様の処理により、当該高周波数信号の時間包絡を算出できる。高周波数信号のサブバンド信号の時間包絡は、当該高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBsim,gen,HI(m) (m=0,…,Msim,gen,HI, Msim,gen,HI≧1) (Bsim,gen,HI(0)≧kx, Bsim,gen,HI(Msim,gen,HI)<kh)で境界を表されるMsim,gen,HI個の周波数帯域に分割し、m番目の周波数帯域に含まれる擬似高周波数信号のサブバンド信号Xsim,gen,HI(k,i) (Bsim,gen,HI(m)≦k<Bsim,gen,HI(m+1), tE(l)≦i<tE(l+1))の時間包絡Esim,gen,HI(k,i)を算出する。
Figure JPOXMLDOC01-appb-M000036
擬似高周波数信号のサブバンド信号の時間包絡は、擬似高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、時間包絡情報符号化部20gが時間包絡情報として平坦の程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として平坦の程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の平坦の程度を平坦か否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,gen,HI個の周波数帯域毎に当該情報をMsim,gen,HIビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち上がりの程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち上がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,gen,HI個の周波数帯域毎に当該情報をMsim,gen,HIビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち下がりの程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち下がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,gen,HI個の周波数帯域毎に当該情報をMsim,gen,HIビットで符号化できる。
 なお、時間包絡情報の算出方法、及び符号化方法は前記の例に限定されない。また、本実施形態の音声符号化装置に対して、本発明の第4の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第5の実施形態の音声復号装置の第1の変形例]
 図39は、第5の実施形態に係る音声復号装置の第1の変形例14Aの構成を示す図である。
 図40は、第5の実施形態に係る音声復号装置の第1の変形例14Aの動作を示すフローチャートである。
 高周波数時間包絡形状決定部14bは、符号化系列解析部13cから高周波時間包絡形状に関する情報、コア復号部10bから低周波数信号、分析フィルタバンク部10cから低周波数信号の複数のサブバンド信号、高周波数信号生成部10gから高周波数信号の複数のサブバンド信号、のうち少なくとも一つを受け取り、高周波数信号の時間包絡形状を決定する(ステップS14-2)。例えば、高周波数信号の時間包絡形状を平坦と決定する。さらに、例えば、高周波数信号の時間包絡形状を立ち上がりと決定する。さらに、例えば、高周波数信号の時間包絡形状を立ち下がりと決定する。本発明第4の実施形態に係る音声復号装置の第3の変形例13Cの高周波数時間包絡形状決定部13aCとの相違点は、入力として高周波数信号生成部10gから高周波数信号の複数のサブバンド信号も許容される点であり、当該高周波数信号のサブバンド信号からも、低周波数信号のサブバンド信号と同様の方法により、高周波数時間包絡形状を決定することができる。
 [第6の実施形態]
 図41は、第6の実施形態に係る音声復号装置15の構成を示す図である。音声復号装置15の通信装置は、下記音声符号化装置25から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置15は、図41に示すように、機能的には、符号化系列逆多重化部10aA、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、高周波数時間包絡形状決定部13a、時間包絡修正部15a、及び合成フィルタバンク部10jを備える。
 図42は、第6の実施形態に係る音声復号装置15の動作を示すフローチャートである。
 時間包絡修正部15aは、高周波数時間包絡形状決定部13aで決定した時間包絡形状に基づいて、周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(ステップS15-1)。
 例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBHI(m) (m=0,…,MHI, MHI≧1) (BHI(0)≧kx, BHI(MHI)<kh)で境界を表されるMHI個の周波数帯域に分割し、m番目の周波数帯域に含まれる周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i) (Badj,HI(m)≦k<Badj,HI(m+1), tE(l)≦i<tE(l+1))に対して、所定の関数F(Xadj,HI(k,i))を用いて以下の式(37)
Figure JPOXMLDOC01-appb-M000037
により得られるX’adj,HI(k,i)を時間包絡形状が修正された高周波数信号のサブバンド信号として出力する。
 例えば、前記高周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、時間包絡修正部14aにおける時間包絡形状を平坦に修正する処理において、高周波数信号生成部10gから出力される高周波数信号のサブバンド信号の代わりに、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)を用いることにより、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)の時間包絡形状を平坦に修正できる。時間包絡修正部15aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 さらに、例えば、前記高周波数信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、時間包絡修正部14aにおける時間包絡形状を立ち上がりに修正する処理において、高周波数信号生成部10gから出力される高周波数信号のサブバンド信号の代わりに、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)を用いることにより、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)の時間包絡形状を立ち上がりに修正できる。時間包絡修正部15aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらに、例えば、前記高周波数信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、当該高周波数信号の時間包絡形状を修正できる。例えば、時間包絡修正部14aにおける時間包絡形状を立ち下がりに修正する処理において、高周波数信号生成部10gから出力される高周波数信号のサブバンド信号の代わりに、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)を用いることにより、当該周波数包絡調整部10iから出力される高周波数信号のサブバンド信号Xadj,HI(k,i)の時間包絡形状を立ち下がりに修正できる。時間包絡修正部15aは、高周波数信号の複数のサブバンド信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 なお、本実施形態に係る音声復号装置15の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、及び本発明第5の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図43は、第6の実施形態に係る音声符号化装置25の構成を示す図である。音声符号化装置25の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置25は、図43に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、擬似高周波数信号生成部24a、サブバンド信号パワー算出部24b、周波数包絡調整部25a、時間包絡情報符号化部25b、及び符号化系列多重化部20hを備える。
 図44は、第6の実施形態に係る音声符号化装置25の動作を示すフローチャートである。
 周波数包絡調整部25aは、制御パラメータ符号化部20dで得られる高周波数信号の周波数包絡調整に必要な制御パラメータと、量子化/符号化部20fで量子化された高周波数信号に対するゲインおよびノイズ信号の大きさに基づいて、擬似高周波数信号生成部24aで生成された擬似高周波数信号の周波数包絡を調整する(ステップS25-1)。当該擬似高周波数信号の周波数包絡調整処理は、周波数包絡調整部10iにおける処理と同様に行われるが、周波数包絡調整部10iでは高周波数信号生成部10gにて生成された高周波数信号のサブバンド信号に対して行うのに対し、周波数包絡調整部25aでは擬似高周波数信号生成部24aにて生成された擬似高周波数信号のサブバンド信号に対して行う点が異なる。なお、周波数包絡調整部25aでは、演算量の削減を目的として、周波数包絡調整部10iでの処理の一部を省略できる。例えば、正弦波信号の付加の処理を省略できる。さらには、例えば、ノイズ信号の付加の処理を省略できる。この場合、ノイズ信号の大きさを調整する処理も省略できる。
 時間包絡情報符号化部25bは、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出し、サブバンド信号パワー算出部24bにて算出した周波数包絡調整された擬似高周波数信号のサブバンド信号のパワーを用いて擬似高周波数信号の時間包絡を算出し、当該高周波数信号の時間包絡と擬似高周波数信号の時間包絡より時間包絡情報を符号化する(ステップS25-2)。当該処理において、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部25bにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報符号化部21aが前記高周波数信号の時間包絡を算出する処理と同様の処理により、当該高周波数信号の時間包絡を算出できる。高周波数信号のサブバンド信号の時間包絡は、当該高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、任意の時間セグメントtE(l)≦i<tE(l+1)内でBsim,adj,HI(m) (m=0,…,Msim,adj,HI, Msim,adj,HI≧1) (Bsim,adj,HI(0)≧kx, Bsim,adj,HI(Msim,adj,HI)<kh)で境界を表されるMsim,adj,HI個の周波数帯域に分割し、m番目の周波数帯域に含まれる擬似高周波数信号のサブバンド信号Xsim,adj,HI(k,i) (Bsim,adj,HI(m)≦k<Bsim,adj,HI(m+1), tE(l)≦i<tE(l+1))の時間包絡Esim,adj,HI(k,i)を算出する。
Figure JPOXMLDOC01-appb-M000038
擬似高周波数信号のサブバンド信号の時間包絡は、擬似高周波数信号のサブバンド信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 例えば、時間包絡情報符号化部20gが時間包絡情報として平坦の程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として平坦の程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の平坦の程度を平坦か否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,adj,HI個の周波数帯域毎に当該情報をMsim,adj,HIビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち上がりの程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち上がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち上がりの程度を立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,adj,HI個の周波数帯域毎に当該情報をMsim,adj,HIビットで符号化できる。
 さらに、例えば、時間包絡情報符号化部20gが時間包絡情報として立ち下がりの程度を表す情報を算出する処理において、前記低周波数信号のサブバンド信号の時間包絡の代わりに当該高周波数信号のサブバンド信号の時間包絡を用い、さらに前記コア復号信号のサブバンド信号の時間包絡の代わりに当該擬似高周波数信号のサブバンド信号の時間包絡を用いることにより、時間包絡情報として立ち下がりの程度を表す情報を算出でき、また当該時間包絡情報を符号化できる。例えば、時間包絡の立ち下がりの程度を立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記任意の時間セグメント内において前記Msim,adj,HI個の周波数帯域毎に当該情報をMsim,adj,HIビットで符号化できる。
 なお、時間包絡情報の算出方法、及び符号化方法は前記の例に限定されない。また、本実施形態の音声符号化装置に対して、本発明の第4の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第6の実施形態の音声復号装置の第1の変形例]
 図45は、第6の実施形態に係る音声復号装置の第1の変形例15Aの構成を示す図である。
 図46は、第6の実施形態に係る音声復号装置の第1の変形例15Aの動作を示すフローチャートである。
 本変形例においては、周波数包絡調整部10iは高周波数信号を構成する成分のうち少なくとも一つ以上を分離して出力する。例えば、高周波数信号を構成する成分は、低周波数信号より生成された高周波数信号成分、ノイズ信号成分、正弦波信号成分である。
 時間包絡修正部15aAは、高周波数時間包絡形状決定部13aで決定した時間包絡形状に基づいて、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正し、時間包絡形状を修正された成分を含む高周波数信号の各成分から高周波数信号を合成する(ステップS15-1a)。
 例えば、周波数包絡調整部10iより分離した形で出力された高周波数信号のうち任意の成分の信号のサブバンド信号Xshp,dj,HI(k,i) (Bshp,adj,HI(m)≦k<Bshp,adj,HI(m+1), tE(l)≦i<tE(l+1))に対して、所定の関数F(Xshp,adj,HI(k,i))を用いて以下の式(39)
Figure JPOXMLDOC01-appb-M000039
により、前記高周波数信号のうち任意の成分の信号のサブバンド信号Xshp,dj,HI(k,i)の時間包絡形状を修正した成分のサブバンド信号X’shp,adj,HI(k,i)を得る。そして、当該時間包絡形状を修正した成分のサブバンド信号と時間包絡形状の修正が施されない他の成分の信号とで高周波数信号を合成し、高周波数信号を出力する。
 なお、時間包絡形状が修正される成分が複数の場合、それぞれまたはそのうちの一部は異なる時間包絡形状に修正できる。さらに、時間包絡形状が修正される成分の信号は複数の成分の信号の和の信号とすることができ、例えば低周波数信号より生成された高周波数信号成分とノイズ信号成分の和とすることができる。
 なお、本変形例に係る音声復号装置15Aの高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、及び本発明第5の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 [第7の実施形態]
 図47は、第7の実施形態に係る音声復号装置16の構成を示す図である。音声復号装置16の通信装置は、下記音声符号化装置26から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置16は、図47に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、時間包絡修正部13b、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図48は、第7の実施形態に係る音声復号装置の動作を示すフローチャートである。
 なお、本実施形態に係る音声復号装置16の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置16の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 図49は、第7の実施形態に係る音声符号化装置26の構成を示す図である。音声符号化装置26の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置26は、図49に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j、時間包絡情報符号化部26a、及び符号化系列多重化部20hを備える。
 図50は、第7の実施形態に係る音声符号化装置26の動作を示すフローチャートである。
 時間包絡情報符号化部26aは、低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、さらに前記サブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡及び高周波数信号の時間包絡のうち少なくとも一つ以上とコア復号信号の時間包絡より時間包絡情報を符号化する(ステップS26-1)。
 当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。
 低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部26aにて低周波数信号のサブバンド信号のパワーを算出でき、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部26aにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報符号化部20gの動作と同様に低周波数時間包絡情報を算出し符号化することができ、時間包絡情報符号化部23aの動作と同様に高周波数時間包絡情報を算出し符号化することができる。当該低周波数時間包絡情報、及び高周波数時間包絡情報の算出符号化は、前記の例に限定されない。
 当該低周波数時間包絡情報と当該高周波数時間包絡情報は別々に符号化することもでき、また一緒に符号化することもでき、本発明においては低周波数時間包絡情報及び高周波数時間包絡情報の符号化の方法は限定されない。
 例えば、当該低周波数時間包絡情報と当該高周波数時間包絡情報をベクトルとして扱い、ベクトル量子化により符号化することができる。さらに、例えば、当該ベクトルをエントロピー符号化することもできる。
 さらには、低周波数時間包絡情報と高周波数時間包絡情報を同一の時間包絡情報とすることもでき、この場合、音声復号装置16の符号化系列解析部10dからは同一の時間包絡情報が低周波数時間包絡情報及び高周波数時間包絡情報として出力される。本発明においては、低周波数時間包絡情報及び高周波数時間包絡情報の形態は限定されない。
 [第7の実施形態の音声復号装置の第1の変形例]
 図51は、第7の実施形態に係る音声復号装置の第1の変形例16Aの構成を示す図である。
 図52は、第7の実施形態に係る音声復号装置の第1の変形例16Aの動作を示すフローチャートである。
 高周波数時間包絡形状決定部16aは、符号化系列解析部13cから高周波時間包絡形状に関する情報、コア復号部10bから低周波数信号、分析フィルタバンク部10cから低周波数信号の複数のサブバンド信号、低周波数時間包絡修正部10fから時間包絡形状を修正済みの低周波数信号の複数のサブバンド信号、のうち少なくとも一つを受け取り、高周波数信号の時間包絡形状を決定する(ステップS16-1)。例えば、高周波数信号の時間包絡形状を平坦と決定するケース、高周波数信号の時間包絡形状を立ち上がりと決定するケース、高周波数信号の時間包絡形状を立ち下がりと決定するケースが挙げられる。第4の実施形態に係る音声復号装置の第3の変形例13Cの高周波数時間包絡形状決定部13aCとの相違点は、入力として低周波数時間包絡修正部10fから時間包絡形状を修正済みの低周波数信号の複数のサブバンド信号も許容される点であり、当該低周波数信号のサブバンド信号からも、分析フィルタバンク部10cからの低周波数信号のサブバンド信号と同様の方法により、高周波数時間包絡形状を決定することができる。
 [第7の実施形態の音声復号装置の第2の変形例]
 図153は、第7の実施形態に係る音声復号装置の第2の変形例16Bの構成を示す図である。
 図154は、第7の実施形態に係る音声復号装置の第2の変形例16Bの動作を示すフローチャートである。
 本変形例においては、低周波数時間包絡形状決定部16bと前記低周波数時間包絡形状決定部10eCとの相違点は、決定した低周波数包絡形状を時間包絡修正部16cへも通知する点である。低周波数時間包絡形状決定部16bにおける時間包絡形状の決定は、前記の例に加えて、例えば、前記低周波数信号の周波数パワー分布に基づくこともできる。
 さらには、前記低周波数時間包絡形状決定部10e、10eA、及び10eBに対しても同様の変形を加えることが可能なことは明白である。
 時間包絡修正部16cと前記時間包絡修正部13bとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状と低周波数時間包絡形状決定部16bから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、分析フィルタバンク部10cから出力され高周波数信号生成部10gにて高周波数信号の生成に用いる複数のサブバンド信号の時間包絡の形状を修正する点である(S16-2)。
 例えば、低周波数時間包絡形状決定部16bから平坦であるとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、分析フィルタバンク部10cから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部16bから平坦でないとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、分析フィルタバンク部10cから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第7の実施形態の音声復号装置の第3の変形例]
 図155は、第7の実施形態に係る音声復号装置の第3の変形例16Cの構成を示す図である。
 図156は、第7の実施形態に係る音声復号装置の第3の変形例16Cの動作を示すフローチャートである。
 本変形例においては、高周波数時間包絡形状決定部16dと前記高周波数時間包絡形状決定部13aCとの相違点は、決定した高周波数包絡形状を低周波数時間包絡修正部16eへも通知する点である。
 高周波数時間包絡形状決定部16dにおける時間包絡形状の決定は、前記の例に加えて、例えば、前記低周波数信号の周波数パワー分布に基づくこともできる。更には、例えば符号化系列解析部13cから得られる高周波数信号の生成の際のフレーム長を用いることができる。例えば、フレーム長が長い場合は平坦である、フレーム長が短い場合は立ち上がりまたは立ち下がりであると決定できる。前記高周波数信号の生成の際のフレーム長の例としては、“ISO/IEC14496-3”に規定される“time border”にて境界を決められる“time segment”の長さが挙げられる。さらには、前記高周波数時間包絡形状決定部13a、13aA、及び13aBに対しても同様の変形を加えることが可能なことは明白である。
 低周波数時間包絡修正部16eと前記低周波数時間包絡修正部10fとの相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、10eBでもよいことは明白)から受け取る時間包絡形状と高周波数時間包絡形状決定部16dから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、分析フィルタバンク部10cから出力される複数のサブバンド信号の時間包絡の形状を修正する点である(S16-3)。
 例えば、高周波数時間包絡形状決定部16dから平坦であるとの時間包絡形状の情報を受け取った場合には、低周波数時間包絡形状決定部10eCから受け取る時間包絡形状によらず、分析フィルタバンク部10cから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正する。更に例えば、高周波数時間包絡形状決定部16dから平坦ではないとの時間包絡形状の情報を受け取った場合には、低周波数時間包絡形状決定部10eCから受け取る時間包絡形状によらず、分析フィルタバンク部10cから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第7の実施形態の音声復号装置の第4の変形例]
 図157は、第7の実施形態に係る音声復号装置の第4の変形例16Dの構成を示す図である。
 図158は、第7の実施形態に係る音声復号装置の第4の変形例16Dの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部16c、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第7の実施形態の音声復号装置の第5の変形例]
 図159は、第7の実施形態に係る音声復号装置の第5の変形例16Eの構成を示す図である。
 図160は、第7の実施形態に係る音声復号装置の第5の変形例16Eの動作を示すフローチャートである。
 本変形例と前記第7の実施形態に係る音声復号装置16との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 時間包絡形状決定部16fは、符号化系列逆多重化部10aからの低周波数時間包絡形状に関する情報、コア復号部10bからの低周波数信号、分析フィルタバンク部10cからの低周波数信号の複数のサブバンド信号、符号化系列解析部13cからの高周波数時間包絡形状に関する情報のうち少なくとも一つ以上に基づいて時間包絡形状を決定する(S16-4)。決定した時間包絡形状は、低周波数時間包絡修正部10f、時間包絡修正部13bに通知される。
 例えば、時間包絡形状として平坦と決定する。さらに例えば、時間包絡形状として立ち上がりと決定する。さらに例えば、時間包絡形状として立下りと決定する。決定される時間包絡形状は、上記の例に限定されない。
 時間包絡形状決定部16fでは、例えば、前記低周波数時間包絡形状決定部10e、10eA、10eB、10eC、及び16b、前記高周波数時間包絡形状決定部13a、13aA、13aB、13aC、及び16dと同様に時間包絡形状を決定できる。時間包絡形状の決定方法は上記の例に限定されない。
 [第7の実施形態の音声符号化装置の第1の変形例]
 図53は、第7の実施形態に係る音声符号化装置の第1の変形例26Aの構成を示す図である。
 図54は、第7の実施形態に係る音声符号化装置の第1の変形例26Aの動作を示すフローチャートである。
 時間包絡情報符号化部26aAは、低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、当該低周波数信号及び高周波数信号の時間包絡のうち少なくとも一つ以上より時間包絡情報を算出し符号化する(ステップS26-1a)。
 当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。
 低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。
 高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。
 当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部26aAにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部26aAにて高周波数信号のサブバンド信号のパワーを算出してもよく、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 例えば、時間包絡情報符号化部20gAの動作と同様に低周波数時間包絡情報を算出し符号化することができ、時間包絡情報符号化部23aAの動作と同様に高周波数時間包絡情報を算出し符号化することができる。当該低周波数時間包絡情報、及び高周波数時間包絡情報の算出符号化は、前記の例に限定されない。
 さらには、第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、低周波数時間包絡情報と高周波数時間包絡情報を同一の時間包絡情報とすることもできる。
 [第8の実施形態]
 図55は、第8の実施形態に係る音声復号装置17の構成を示す図である。音声復号装置17の通信装置は、下記音声符号化装置27から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置17は、図55に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数信号生成部10g、高周波数時間包絡形状決定部13a、時間包絡修正部14a、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図56は、第8の実施形態に係る音声復号装置の動作を示すフローチャートである。
 なお、本実施形態に係る音声復号装置17の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置17の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図57は、第8の実施形態に係る音声符号化装置27の構成を示す図である。音声符号化装置27の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置27は、図57に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、擬似高周波数信号生成部24a、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、時間包絡情報符号化部27a、及び符号化系列多重化部20hを備える。
 図58は、第8の実施形態に係る音声符号化装置27の動作を示すフローチャートである。
 時間包絡情報符号化部27aは、入力音声信号の低周波数信号の時間包絡、高周波数信号の時間包絡、コア復号信号の時間包絡、擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より時間包絡情報を符号化する(ステップS27-1)。
 当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。
 低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部27aにて低周波数信号のサブバンド信号のパワーを算出でき、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部27aにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 コア復号信号の時間包絡は、前記サブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いて算出する。
 擬似高周波数信号の時間包絡は、前記サブバンド信号パワー算出部24bにて算出された擬似高周波数信号のサブバンド信号のパワーを用いて算出する。
 例えば、時間包絡情報符号化部20gの動作と同様に当該低周波数信号の時間包絡情報を算出し符号化することができ、時間包絡情報符号化部24cの動作と同様に当該高周波数信号の時間包絡情報を算出し符号化することができる。
 第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の算出及び符号化の方法は限定されない。
 さらには、第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aと同様に、低周波数時間包絡情報と高周波数時間包絡情報を同一の時間包絡情報とすることもできる。
 なお、本実施形態に係る音声符号化装置27に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第8の実施形態の音声復号装置の第1の変形例]
 図161は、第8の実施形態に係る音声復号装置の第1の変形例17Aの構成を示す図である。
 図162は、第8の実施形態に係る音声復号装置の第1の変形例17Aの動作を示すフローチャートである。
 本変形例においては、時間包絡修正部17aと前記時間包絡修正部14aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状と低周波数時間包絡形状決定部16bから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、高周波数信号生成部10gから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する点である(S17-1)。
 例えば、低周波数時間包絡形状決定部16bから平坦であるとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、高周波数信号生成部10gから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部16bから平坦でないとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、高周波数信号生成部10gから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第8の実施形態の音声復号装置の第2の変形例]
 図163は、第8の実施形態に係る音声復号装置の第2の変形例17Bの構成を示す図である。
 図164は、第8の実施形態に係る音声復号装置の第2の変形例17Bの動作を示すフローチャートである。
 本変形例と第8の実施形態に係る音声復号装置17との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第8の実施形態の音声復号装置の第3の変形例]
 図165は、第8の実施形態に係る音声復号装置の第3の変形例17Cの構成を示す図である。
 図166は、第8の実施形態に係る音声復号装置の第3の変形例17Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部17a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第8の実施形態の音声復号装置の第4の変形例]
 図167は、第8の実施形態に係る音声復号装置の第4の変形例17Dの構成を示す図である。
 図168は、第8の実施形態に係る音声復号装置の第4の変形例17Dの動作を示すフローチャートである。
 本変形例と前記第8の実施形態に係る音声復号装置17との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第9の実施形態]
 図59は、第9の実施形態に係る音声復号装置18の構成を示す図である。音声復号装置18の通信装置は、下記音声符号化装置28から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置18は、図59に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、高周波数時間包絡形状決定部13a、時間包絡修正部14a、及び合成フィルタバンク部10jを備える。
 図60は、第9の実施形態に係る音声復号装置の動作を示すフローチャートである。
 なお、本実施形態に係る音声復号装置18の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置18の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図61は、第9の実施形態に係る音声符号化装置28の構成を示す図である。音声符号化装置28の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置28は、図61に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、擬似高周波数信号生成部24a、周波数包絡調整部25a、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、時間包絡情報符号化部27a、及び符号化系列多重化部20hを備える。
 図62は、第9の実施形態に係る音声符号化装置28の動作を示すフローチャートである。
 時間包絡情報符号化部28aは、入力音声信号の低周波数信号の時間包絡、高周波数信号の時間包絡、コア復号信号の時間包絡、及び周波数包絡調整された擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より時間包絡情報を符号化する(ステップS28-1)。
 当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。
 低周波数信号の時間包絡は、包絡算出部20eにて算出した低周波数信号のサブバンド信号のパワーを用いて低周波数信号の時間包絡を算出する。高周波数信号の時間包絡は、包絡算出部20eにて算出した高周波数信号のサブバンド信号のパワーを用いて高周波数信号の時間包絡を算出する。当該処理において、低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部28aにて低周波数信号のサブバンド信号のパワーを算出でき、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。さらには、高周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部28aにて高周波数信号のサブバンド信号のパワーを算出でき、高周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 コア復号信号の時間包絡は、サブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いて算出する。
 周波数包絡調整された擬似高周波数信号の時間包絡は、サブバンド信号パワー算出部24bにて算出された擬似高周波数信号のサブバンド信号のパワーを用いて算出する。
 例えば、時間包絡情報符号化部20gの動作と同様に当該低周波数信号の時間包絡情報を算出し符号化することができ、時間包絡情報符号化部25bの動作と同様に当該高周波数信号の時間包絡情報を算出し符号化することができる。
 第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の算出及び符号化の方法は限定されない。
 さらには、第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aと同様に、低周波数時間包絡情報と高周波数時間包絡情報を同一の時間包絡情報とすることもできる。
 なお、本実施形態に係る音声符号化装置28に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第9の実施形態の音声復号装置の第1の変形例]
 図63は、第9の実施形態に係る音声復号装置の第1の変形例18Aの構成を示す図である。
 図64は、第9の実施形態に係る音声復号装置の第1の変形例18Aの動作を示すフローチャートである。
 なお、本変形例に係る音声復号装置18Aの低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本変形例に係る音声復号装置18Aの高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 [第9の実施形態の音声復号装置の第2の変形例]
 図169は、第9の実施形態に係る音声復号装置の第2の変形例18Bの構成を示す図である。
 図170は、第9の実施形態に係る音声復号装置の第2の変形例18Bの動作を示すフローチャートである。
 本変形例においては、時間包絡修正部18aと前記時間包絡修正部15aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状と低周波数時間包絡形状決定部16bから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する点である(S18-1)。
 例えば、低周波数時間包絡形状決定部16bから平坦であるとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、周波数包絡調整部10iから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部16bから平坦でないとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、周波数包絡調整部10iから出力される複数のサブバンド信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第9の実施形態の音声復号装置の第3の変形例]
 図171は、第9の実施形態に係る音声復号装置の第3の変形例18Cの構成を示す図である。
 図172は、第9の実施形態に係る音声復号装置の第3の変形例18Cの動作を示すフローチャートである。
 本変形例と第9の実施形態に係る音声復号装置18との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第9の実施形態の音声復号装置の第4の変形例]
 図173は、第9の実施形態に係る音声復号装置の第4の変形例18Dの構成を示す図である。
 図174は、第9の実施形態に係る音声復号装置の第4の変形例18Dの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第9の実施形態の音声復号装置の第5の変形例]
 図175は、第9の実施形態に係る音声復号装置の第5の変形例18Eの構成を示す図である。
 図176は、第9の実施形態に係る音声復号装置の第5の変形例18Eの動作を示すフローチャートである。
 本変形例と前記第9の実施形態に係る音声復号装置18との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第9の実施形態の音声復号装置の第6の変形例]
 図177は、第9の実施形態に係る音声復号装置の第6の変形例18Fの構成を示す図である。
 図178は、第9の実施形態に係る音声復号装置の第6の変形例18Fの動作を示すフローチャートである。
 本変形例においては、時間包絡修正部18aAと前記時間包絡修正部15aAとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状と低周波数時間包絡形状決定部16bから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正し、時間包絡形状を修正された成分を含む高周波数信号の各成分から高周波数信号を合成し出力する点である(S18-1a)。
 例えば、低周波数時間包絡形状決定部16bから平坦であるとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部16bから平坦でないとの時間包絡形状の情報を受け取った場合には、高周波数時間包絡形状決定部13aCから受け取る時間包絡形状によらず、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第9の実施形態の音声復号装置の第7の変形例]
 図179は、第9の実施形態に係る音声復号装置の第7の変形例18Gの構成を示す図である。
 図180は、第9の実施形態に係る音声復号装置の第7の変形例18Gの動作を示すフローチャートである。
 本変形例と第9の実施形態の第1の変形例に係る音声復号装置18Aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第9の実施形態の音声復号装置の第8の変形例]
 図181は、第9の実施形態に係る音声復号装置の第8の変形例18Hの構成を示す図である。
 図182は、第9の実施形態に係る音声復号装置の第8の変形例18Hの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第9の実施形態の音声復号装置の第9の変形例]
 図183は、第9の実施形態に係る音声復号装置の第9の変形例18Iの構成を示す図である。
 図184は、第9の実施形態に係る音声復号装置の第9の変形例18Iの動作を示すフローチャートである。
 本変形例と前記第9の実施形態の変形例1に係る音声復号装置18Aとの相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第10の実施形態]
 図65は、第10の実施形態に係る音声復号装置1の構成を示す図である。音声復号装置1の通信装置は、下記音声符号化装置2から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置1は、図65に示すように、機能的には、符号化系列解析部1a、音声復号部1b、時間包絡形状決定部1c、及び時間包絡修正部1dを備える。
 図66は、第10の実施形態に係る音声復号装置1の動作を示すフローチャートである。
 符号化系列解析部1aは、符号化系列を解析し、音声符号化部分と時間包絡形状に関する情報に分割する(ステップS1-1)。
 音声復号部1bは、符号化系列の音声符号化部分を復号し、復号信号を得る(ステップS1-2)。
 時間包絡形状決定部1cは、符号化系列解析部1aで分割された時間包絡形状に関する情報、及び音声復号部1bで得られた復号信号のうち少なくとも一つ以上に基づき、復号信号の時間包絡形状を決定する(ステップS1-3)。
 例えば、復号信号の時間包絡形状を平坦と決定する。例えば、復号信号のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの分散またはそれに準ずるパラメータを算出する。算出したパラメータと所定の閾値とを比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。さらに別の例では、復号信号のパワーまたはそれに準ずるパラメータの相加平均と相乗平均の比またはそれに準ずるパラメータを算出し、所定の閾値とを比較して時間包絡形状が平坦か否かまたは平坦さの程度を決定する。復号信号の時間包絡形状を平坦と決定する方法は上記の例に限定されない。
 さらに、例えば、復号信号の時間包絡形状を立ち上がりと決定する。例えば、復号信号のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最大値を算出する。当該最大値と所定の閾値とを比較して、時間包絡形状が立ち上がりか否かまたは立ち上がりの程度を決定する。復号信号の時間包絡形状を立ち上がりと決定する方法は上記の例に限定されない。
 さらに、例えば、低周波数信号の時間包絡形状を立ち下がりと決定する。例えば、復号信号のパワーまたはそれに準ずるパラメータを算出し、当該パラメータの時間方向の差分値を算出し、当該差分値の任意の時間セグメント内の最小値を算出する。当該最小値と所定の閾値とを比較して、時間包絡形状が立ち下がりか否かまたは立ち下がりの程度を決定する。復号数信号の時間包絡形状を立ち下がりと決定する方法は上記の例に限定されない。
 上記の例は、音声復号部1bより、当該復号信号が時間領域の信号として出力されても適用でき、当該復号信号が複数のサブバンド信号として出力されても適用できる。
 時間包絡修正部1dは、時間包絡形状決定部1cで決定した時間包絡形状に基づいて、音声復号部1bから出力される復号信号の時間包絡の形状を修正する(ステップS1-4)。
 例えば、前記復号信号が複数のサブバンド信号で表される場合、時間包絡修正部1dは、任意の時間セグメント内の前記復号信号の複数のサブバンド信号Xdec(k,i) (0≦k<kh, t(l)≦i<t(l+1))に対して、所定の関数F(Xdec(k,i))を用いて以下の式(40)
Figure JPOXMLDOC01-appb-M000040
により得られるX’dec(k,i)を時間包絡形状が修正された復号信号のサブバンド信号として算出し,当該サブバンド信号より時間領域の信号を合成して出力する。
 例えば、前記復号信号の時間包絡形状が平坦と決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。例えば、当該サブバンド信号Xdec(k,i)をBdec(m) (m=0,…,Mdec, Mdec≧1) (Bdec(0)≧0, Bdec(Mdec)<kh)で境界を表されるMdec個の周波数帯域に分割し、m番目の周波数帯域に含まれるサブバンド信号Xdec(k,i) (Bdec(m)≦k<Bdec(m+1), t(l)≦i<t(l+1))に対して、所定の関数F(Xdec(k,i))を、
Figure JPOXMLDOC01-appb-M000041
として、X’dec(k,i)を時間包絡形状が修正された復号信号のサブバンド信号として算出する。
また別の例によれば、所定の関数F(Xdec(k,i))をサブバンド信号Xdec(k,i)に対して平滑化フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000042
(Nfilt≧1)で定義して、X’dec(k,i)を時間包絡形状が修正された復号信号のサブバンド信号として算出する。さらに、前記Bdec(m)を用いて境界が表される各周波数帯域内で、フィルタ処理前後のサブバンド信号のパワーをあわせるように処理できる。
また別の例によれば、サブバンド信号をXdec(k,i)を前記Bdec(m)を用いて境界が表される各周波数帯域内で周波数方向に線形予測して線形予測係数αp(m) (m=0,…,Mdec-1)を得て、所定の関数F(Xdec(k,i))をサブバンド信号Xdec(k,i)に対して線形予測逆フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000043
(Npred≧1)で定義して、X’dec(k,i)を時間包絡形状が修正された復号信号のサブバンド信号として算出する。
 上記の時間包絡形状を平坦に修正する処理の例は、それぞれを組み合わせて実施できる。
 時間包絡修正部1dは、復号信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記復号信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
例えば、所定の関数F(Xdec(k,i))をiに対して単調増加する関数incr(i)を用いて
Figure JPOXMLDOC01-appb-M000044
で定義して、X’dec(k,i)を時間包絡形状が修正された復号信号のサブバンド信号として算出する。さらに、前記Bdec(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 時間包絡修正部1dは、復号信号の複数のサブバンド信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記復号信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
例えば、所定の関数F(Xdec(k,i))をiに対して単調減少する関数decr(i)を用いて
Figure JPOXMLDOC01-appb-M000045
で定義して、X’dec(k,i)を時間包絡形状が修正された低周波数信号のサブバンド信号として算出する。さらに、前記Bdec(m)を用いて境界が表される各周波数帯域内で、時間包絡形状の修正前後のサブバンド信号のパワーをあわせるように処理できる。
 時間包絡修正部1dは、復号信号の複数のサブバンド信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 例えば、前記復号信号が時間領域の信号で表される場合、時間包絡修正部1dは、任意の時間セグメント内の前記復号信号xdec(i) (t(l)≦i<t(l+1))に対して、所定の関数Ft(xdec(i))を用いて
Figure JPOXMLDOC01-appb-M000046
により得られるx’dec(i)を時間包絡形状が修正された復号信号として出力する。
 例えば、前記復号信号の時間包絡形状が平坦と決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
例えば、当該復号信号xdec(i)に対して、所定の関数Ft(xdec(i))を、
Figure JPOXMLDOC01-appb-M000047
として、x’dec(i)を時間包絡形状が修正された復号信号として出力する。
 また別の例によれば、所定の関数Ft(xdec(i))を復号信号xdec(i)に対して平滑化フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000048
(Nfilt≧1)で定義して、x’dec(i)を時間包絡形状が修正された復号信号として出力する。
 上記の時間包絡形状を平坦に修正する処理の例は、それぞれを組み合わせて実施できる。
 さらには、例えば、前記復号信号の時間包絡形状が立ち上がりと決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
例えば、所定の関数Ft(xdec(i))を、iに対して単調増加する関数incr(i)を用いて
Figure JPOXMLDOC01-appb-M000049
で定義して、x’dec(i)を時間包絡形状が修正された復号信号として出力する。
 時間包絡修正部1dは、復号信号の時間包絡の形状を立ち上がりに修正する処理を実施し、上記の例に限定されない。
 さらには、例えば、前記復号信号の時間包絡形状が立ち下がりと決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
例えば、所定の関数Ft(xdec(i))を、iに対して単調減少する関数decr(i)を用いて
Figure JPOXMLDOC01-appb-M000050
で定義して、x’dec(i)を時間包絡形状が修正された復号信号として出力する。時間包絡修正部1dは、復号信号の時間包絡の形状を立ち下がりに修正する処理を実施し、上記の例に限定されない。
 例えば、前記復号信号が離散フーリエ変換,離散コサイン変換,修正離散コサイン変換に代表される時間周波数変換による周波数領域の変換係数Xdec(k) (0≦k<kh)で表されたときは、所定の関数Ff(Xdec(k))を用いて以下の式(51)
Figure JPOXMLDOC01-appb-M000051
により得られるX’dec(k)を時間包絡形状が修正された復号信号の周波数領域の変換係数として算出し、所定の周波数間変換により時間領域の信号に変換して出力する。
 例えば、前記復号信号の時間包絡形状が平坦と決定された場合、以下の処理により、復号信号の時間包絡形状を修正できる。
Bdec(m) (m=0,…,Mdec, Mdec≧1) (Bdec(0)≧0, Bdec(Mdec)<kh)で境界を表されるMdec個の任意の周波数帯域Bdec(m)をにおいて、周波数方向に線形予測して線形予測係数αp(m) (m=0,…,Mdec-1)を得て、所定の関数Ff(Xdec(k))を、変換係数Xdec(k)に対して線形予測逆フィルタ処理を施す
Figure JPOXMLDOC01-appb-M000052
(Npred≧1)で定義して、X’dec(k,i)を時間包絡形状が修正された復号信号の変換係数として算出する。
 時間包絡修正部1dは、復号信号の時間包絡の形状を平坦に修正する処理を実施し、上記の例に限定されない。
 図67は、第10の実施形態に係る音声符号化装置2の構成を示す図である。音声符号化装置2の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置2は、図67に示すように、機能的には、音声符号化部2a、時間包絡情報符号化部2b、及び符号化系列多重化部2cを備える。
 図68は、第10の実施形態に係る音声符号化装置2の動作を示すフローチャートである。
 音声符号化部2aは、入力音声信号を符号化する(ステップS2-1)。
 時間包絡情報符号化部2bは、入力音声信号、音声符号化部2aにおける入力音声信号の符号化結果を含む符号化過程で得られた情報のうち少なくとも一つ以上に基づき、時間包絡情報を算出し符号化する(ステップS2-2)。
 例えば、任意の時間セグメントt(l)≦i<t(l+1))内の時間領域の信号である前記入力音声信号x(i)の時間包絡Et(i)を、当該時間セグメント内で正規化した復号信号のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000053
 さらに、例えば、音声符号化部2aにおいて前記入力音声信号が複数のサブバンドの信号X(k,i)が算出される場合、入力音声信号の時間包絡として、任意の時間セグメントt(l)≦i<t(l+1))内でB(m) (m=0,…,M, M≧1) (B(0)≧0, B(M)<kh)で境界を表されるM個の周波数帯域に分割され、m番目の周波数帯域に含まれる当該入力音声信号のサブバンド信号X(k,i) (B(m)≦k<B(m+1), t(l)≦i<t(l+1))の時間包絡E(k,i)を、当該時間セグメント内で正規化した入力音声信号のサブバンド信号のパワーとして算出できる。
 入力音声信号の時間包絡は、入力音声信号の大きさの時間方向の変動がわかるパラメータであれば良く、前記の例に限定されない。
 さらに、例えば、音声符号化部2aにおける前記入力音声信号の符号化結果に基づいて復号信号xdec(i)を算出し、任意の時間セグメントt(l)≦i<t(l+1))内の当該復号信号xdec(i)の時間包絡Edec,t(i)を、当該時間セグメント内で正規化した復号信号のパワーとして算出できる。
 さらに、例えば、音声符号化部2aにおける前記入力音声信号の符号化過程で、または符号化結果に基づいて復号信号のサブバンド信号Xdec(k,i)が算出される場合、復号信号の時間包絡として、任意の時間セグメントt(l)≦i<t(l+1))内でB(m) (m=0,…,M, M≧1) (B(0)≧0, B(M)<kh)で境界を表されるM個の周波数帯域に分割され、m番目の周波数帯域に含まれる当該入力音声信号のサブバンド信号Xdec(k,i) (B(m)≦k<B(m+1), t(l)≦i<t(l+1))の時間包絡Edec(k,i)を、当該時間セグメント内で正規化した入力音声信号のサブバンド信号のパワーとして算出できる。
Figure JPOXMLDOC01-appb-M000056
 例えば、時間包絡情報符号化部2bは時間包絡情報として平坦の程度を表す情報を算出する。例えば、入力音声信号及び復号信号の時間包絡の分散またはそれに準ずるパラメータのうち少なくとも一つ以上を算出する。さらに別の例では、入力音声信号及び復号信号の時間包絡の相加平均と相乗平均の比またはそれに準ずるパラメータのうち少なくとも一つ以上を算出する。この場合、時間包絡情報符号化部2bは、時間包絡情報として当該入力音声信号の時間包絡の平坦さを表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、入力音声信号と復号信号の当該パラメータの差分値またはその絶対値を符号化する。さらに、例えば、入力音声信号の当該パラメータの値または絶対値のうち少なくとも一つ以上を符号化する。例えば、時間包絡の平坦さを平坦か否かで表現すれば1ビットで符号化でき、例えば、前記時間領域の入力音声信号については前記任意の時間セグメント内において1ビットで符号化でき、さらに例えば、前記入力音声信号のサブバンド信号の前記M個の周波数帯域毎に当該情報を符号化する際にはMビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部2bは時間包絡情報として立ち上がりの程度を表す情報を算出する。例えば、任意の時間セグメントt(l)≦i<t(l+1)内において、入力音声信号の時間包絡の時間方向の差分値の最大値を算出する。
Figure JPOXMLDOC01-appb-M000057
さらには、これらの式において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最大値を算出できる。
 この場合、時間包絡情報符号化部2bは、時間包絡情報として当該入力音声信号の時間包絡の立ち上がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、入力音声信号と復号信号の当該パラメータの差分値またはその絶対値のうち少なくとも一つ以上を符号化する。例えば、時間包絡の立ち上がりを立ち上がりか否かで表現すれば1ビットで符号化でき、例えば、前記時間領域の入力音声信号については前記任意の時間セグメント内において1ビットで符号化でき、さらに例えば、前記入力音声信号のサブバンド信号の前記M個の周波数帯域毎に当該情報を符号化する際にはMビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 さらに例えば、時間包絡情報符号化部2bは時間包絡情報として立ち下がりの程度を表す情報を算出する。例えば、任意の時間セグメントt(l)≦i<t(l+1)内において、入力音声信号の時間包絡の時間方向の差分値の最小値を算出する。
Figure JPOXMLDOC01-appb-M000058
さらには、これらの式において、時間包絡に代えて当該時間包絡を時間方向に平滑化したパラメータの時間方向の差分値の最小値を算出できる。この場合、時間包絡情報符号化部2bは、時間包絡情報として当該入力音声信号のサブバンド信号の時間包絡の立ち下がりの程度を表す情報を算出すればよく、前記の例に限定されない。そして、前記パラメータを符号化する。例えば、入力音声信号と復号信号の当該パラメータの差分値またはその絶対値のうち少なくとも一つ以上を符号化する。例えば、時間包絡の立ち下がりを立ち下がりか否かで表現すれば1ビットで符号化でき、例えば、前記時間領域の入力音声信号については前記任意の時間セグメント内において1ビットで符号化でき、さらに例えば、前記入力音声信号のサブバンド信号の前記M個の周波数帯域毎に当該情報を符号化する際にはMビットで符号化できる。時間包絡情報の符号化方法は前記の例に限定されない。
 上記の例では、入力音声信号の時間包絡の代わりに、音声符号化部2aにおいて任意の時間セグメントt(l)≦i<t(l+1)内で当該時間セグメントよりも短い時間セグメントのパワーと相関のある符号化パラメータ(例えば、CELP符号化における符号帳の利得)を用いることができる。
 符号化系列多重化部2cは、音声符号化部2aより入力音声信号の符号化系列を受け取り、時間包絡情報符号化部2bより符号化された時間包絡形状情報を受け取り、多重化して符号化系列として出力する(ステップS2-3)。
 [第11の実施形態]
 図69は、第11の実施形態に係る音声復号装置100の構成を示す図である。音声復号装置100の通信装置は、下記音声符号化装置200から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置100は、図69に示すように、機能的には、符号化系列逆多重化部100a、低周波数復号部100b、低周波数時間包絡形状決定部100c、低周波数時間包絡修正部100d、高周波数復号部100e、及び低周波数/高周波数信号合成部100fを備える。
 図70は、第11の実施形態に係る音声復号装置の動作を示すフローチャートである。
 符号化系列逆多重化部100aは、符号化系列を、低周波数信号を符号化した低周波数符号化部分と高周波数信号を符号化した高周波数符号化部分に分割する(ステップS100-1)。
 低周波数復号部100bは、符号化系列逆多重化部100aにて分割された低周波数符号化部分を復号し、低周波数信号を得る(ステップS100-2)。
 低周波数時間包絡形状決定部100cは、符号化系列逆多重化部100aで分割された低周波時間包絡形状に関する情報、及び低周波数復号部100bで得られた低周波数信号のうち少なくとも一つ以上に基づき、低周波数信号の時間包絡形状を決定する(ステップS100-3)。
 例えば、低周波数信号の時間包絡形状を平坦と決定するケース、低周波数信号の時間包絡形状を立ち上がりと決定するケース、低周波数信号の時間包絡形状を立ち下がりと決定するケースが挙げられる。
 低周波数信号の時間包絡形状の決定は、例えば、時間包絡形状決定部1cにおける復号信号の時間包絡形状の決定処理において、音声復号部1bで得られる復号信号を、低周波数復号部100bで得られた低周波数信号に置き換えることにより実現できる。
 低周波数時間包絡修正部100dは、低周波数時間包絡形状決定部100cで決定した時間包絡形状に基づいて、低周波数復号部100bから出力される低周波数信号の時間包絡の形状を修正する(ステップS100-4)。
 低周波数信号の時間包絡形状の修正は、例えば、時間包絡修正部1dにおける復号信号の時間包絡形状の修正処理において、音声復号部1bで得られる復号信号を、低周波数復号部100bで得られた低周波数信号に置き換えることにより実現できる。
 高周波数復号部100eは、符号化系列逆多重化部100aにて分割された高周波数符号化部分を復号し、高周波数信号を得る(ステップS100-5)。
 高周波数復号部100eでの高周波数信号の復号は、高周波数信号を時間領域の信号、サブバンド信号、及び周波数領域の信号のうち少なくとも一つ以上の領域の信号で符号化した符号化系列を復号する方法で実現できる。
 さらには、例えば前記第1~第9の実施形態の音声復号装置のように、低周波数復号部で得られた復号結果を利用して高周波数信号を生成する帯域拡張方式で、高周波数信号を生成できる。この際には、帯域拡張方式にて高周波数信号を生成するために必要な情報が符号化系列に含まれる場合、符号化系列のうち当該情報が含まれる部分が高周波数符号化部分となる。そして、符号化系列逆多重化部100aにて分割された当該高周波数符号化部分を復号して帯域拡張方式に必要な情報を得て、高周波数信号を生成する。一方、域拡張方式にて高周波数信号を生成するために必要な情報が符号化系列に含まれない場合、符号化系列逆多重化部100aより高周波数復号部100eに入力は無く、所定の処理または低周波数復号部で得られた復号結果を利用した処理によって高周波数信号を生成する。
 低周波数/高周波数信号合成部100fは、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号と、高周波数復号部100eで得られた高周波数信号とを合成して低周波数成分および高周波数成分を含む音声信号を出力する(ステップS100-6)。
 図71は、第11の実施形態に係る音声符号化装置200の構成を示す図である。音声符号化装置200の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置200は、図65に示すように、機能的には、低周波数符号化部200a、高周波数符号化部200b、低周波数時間包絡情報符号化部200c、及び符号化系列多重化部200dを備える。
 図72は、第11の実施形態に係る音声符号化装置200の動作を示すフローチャートである。
 低周波数符号化部200aは、入力音声信号の低周波数成分にあたる低周波数信号を符号化する(ステップS200-1)。
 高周波数符号化部200bは、入力音声信号の高周波数成分にあたる高周波数信号を符号化する(ステップS200-2)。
 低周波数時間包絡情報符号化部200cは、入力音声信号、低周波数符号化部200aにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報のうち少なくとも一つ以上に基づき、低周波数時間包絡形状情報を算出し符号化する(ステップS200-3)。
 低周波数時間包絡形状情報の算出、符号化処理は、例えば、時間包絡情報符号化部2bにおける入力音声信号の時間包絡情報の算出、符号化処理において、入力音声信号に代えて入力音声信号の低周波数信号を、復号信号に代えて低周波数符号化部200aにおける符号化結果を復号して得られる低周波数復号信号を用いることで、同様にして実現できる。
 符号化系列多重化部200dは、低周波数符号化部200aより低周波数音声信号の符号化系列を受け取り、高周波数符号化部200bより高周波数音声信号の符号化系列を受け取り、低周波数時間包絡情報符号化部200cより符号化された低周波数時間包絡形状情報を受け取り、多重化して符号化系列として出力する(ステップS200-4)。
 [第11の実施形態の音声復号装置の第1の変形例]
 図73は、第11の実施形態に係る音声復号装置の第1の変形例100Aの構成を示す図である。
 図74は、第11の実施形態に係る音声復号装置の第1の変形例100Aの動作を示すフローチャートである。
 高周波数復号部100eAは、符号化系列逆多重化部100aにて分割された高周波数符号化部分を復号し、高周波数信号を得る(ステップS100-5A)。
 高周波数復号部100eAでは、高周波数信号の復号において低周波数復号部で得られた低周波数復号信号を利用する際に、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号を利用する点が、高周波数復号部100eと異なる点である。
 [第11の実施形態の音声復号装置の第2の変形例]
 図75は、第11の実施形態に係る音声符号化装置の第1の変形例100Aの構成を示す図である。
 第11の実施形態の音声復号装置の第1の変形例との相違点は、低周波数/高周波数信号合成部100fに入力される低周波数信号が、低周波数時間包絡修正部100dからの出力ではなく、低周波数復号部100bからの出力である点である。
 [第12の実施形態]
 図76は、第12の実施形態に係る音声復号装置110の構成を示す図である。音声復号装置110の通信装置は、下記音声符号化装置210から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置110は、図76に示すように、機能的には、符号化系列逆多重化部110a、低周波数復号部100b、高周波数復号部100e、高周波数時間包絡形状決定部110b、高周波数時間包絡修正部110c、及び低周波数/高周波数信号合成部100fを備える。
 図77は、第12の実施形態に係る音声復号装置の動作を示すフローチャートである。
 符号化系列逆多重化部110aは、符号化系列を、低周波数符号化部分、高周波数符号化部分、高周波数時間包絡形状に関する情報に分割する(ステップS110-1)。
 高周波数時間包絡形状決定部110bは、符号化系列逆多重化部110aで分割された高周波時間包絡形状に関する情報、高周波数復号部100eで得られた高周波数信号、及び低周波数復号部100bで得られた低周波数信号のうち少なくとも一つ以上に基づき、高周波数信号の時間包絡形状を決定する(ステップS110-2)。
 例えば、高周波数信号の時間包絡形状を平坦と決定するケース、高周波数信号の時間包絡形状を立ち上がりと決定するケース、高周波数信号の時間包絡形状を立ち下がりと決定するケースが挙げられる。
 高周波数信号の時間包絡形状の決定は、例えば、時間包絡形状決定部1cにおける復号信号の時間包絡形状の決定処理において、音声復号部1bで得られる復号信号を、高周波数復号部100eで得られた高周波数信号に置き換えることにより実現できる。また、同様に、音声復号部1bで得られる復号信号を、低周波数復号部100bで得られた低周波数信号に置き換えることにより実現できる。
 高周波数時間包絡修正部110cは、高周波数時間包絡形状決定部110bで決定した時間包絡形状に基づいて、高周波数復号部110eから出力される高周波数信号の時間包絡の形状を修正する(ステップS110-3)。例えば、前記高周波数信号の時間包絡形状が平坦と決定された場合、以下の処理により、高周波数信号の時間包絡形状を修正できる。
 高周波数信号の時間包絡形状の修正は、例えば、時間包絡修正部1dにおける復号信号の時間包絡形状の修正処理において、音声復号部1bで得られる復号信号を、高周波数復号部100eで得られた高周波数信号に置き換えることにより実現できる。
 図78は、第12の実施形態に係る音声符号化装置210の構成を示す図である。音声符号化装置210の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置210は、図78に示すように、機能的には、低周波数符号化部200a、高周波数符号化部200b、高周波数時間包絡情報符号化部210a、及び符号化系列多重化部210bを備える。
 図79は、第12の実施形態に係る音声符号化装置210の動作を示すフローチャートである。
 高周波数時間包絡情報符号化部210aは、入力音声信号、低周波数符号化部200aにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報、高周波数符号化部200bにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報のうち少なくとも一つ以上に基づき、高周波数時間包絡形状情報を算出し符号化する(ステップS210-1)。
 高周波数時間包絡形状情報の算出、符号化処理は、例えば、時間包絡情報符号化部2bにおける入力音声信号の時間包絡情報の算出、符号化処理において、入力音声信号に代えて入力音声信号の高周波数信号を、復号信号に代えて高周波数符号化部200bにおける符号化結果を復号して得られる高周波数復号信号を用いることで、同様にして実現できる。
 符号化系列多重化部210bは、低周波数符号化部200aより低周波数音声信号の符号化系列を受け取り、高周波数符号化部200bより高周波数音声信号の符号化系列を受け取り、高周波数時間包絡情報符号化部210aより符号化された高周波数時間包絡形状情報を受け取り、多重化して符号化系列として出力する(ステップS210-2)。
 [第13の実施形態]
 図80は、第13の実施形態に係る音声復号装置120の構成を示す図である。音声復号装置120の通信装置は、下記音声符号化装置220から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置120は、図80に示すように、機能的には、符号化系列逆多重化部120a、低周波数復号部100b、低周波数時間包絡形状決定部100c、低周波数時間包絡修正部100d、高周波数復号部100e、高周波数時間包絡形状決定部120b、高周波数時間包絡修正部110c、及び低周波数/高周波数信号合成部100fを備える。
 図81は、第13の実施形態に係る音声復号装置120の動作を示すフローチャートである。
 符号化系列逆多重化部120aは、符号化系列を、低周波数符号化部分、高周波数符号化部分、低周波数時間包絡形状に関する情報、高周波数時間包絡形状に関する情報に分割する(ステップS120-1)。
 この際、低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報の分割に関して、例えば、別々に符号化された低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を含む符号化系列から分割することもでき、また組み合わせて符号化された周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を含む符号化系列から分割することもできる。さらには、例えば、当該低周波数時間包絡形状に関する情報、及び当該高周波数時間包絡形状に関する情報が単一の情報により表され符号化された当該情報を含む符号化系列から分割することもできる。
 高周波数時間包絡形状決定部120bは、符号化系列逆多重化部120aで分割された高周波時間包絡形状に関する情報、低周波数復号部100bで得られた低周波数信号、及び低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号のうち少なくとも一つ以上に基づき、高周波数信号の時間包絡形状を決定する(ステップS120-2)。
 例えば、高周波数信号の時間包絡形状を平坦と決定するケース、高周波数信号の時間包絡形状を立ち上がりと決定するケース、高周波数信号の時間包絡形状を立ち下がりと決定するケースが挙げられる。
 高周波数時間包絡形状決定部120bにおける高周波数時間包絡形状の決定処理において、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号に基づく場合は、時間包絡形状決定部1cにおける復号信号の時間包絡形状の決定処理において、音声復号部1bで得られる復号信号を、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号に置き換えることにより実現できる。
 図82は、第13の実施形態に係る音声符号化装置220の構成を示す図である。音声符号化装置220の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置220は、図82に示すように、機能的には、低周波数符号化部200a、高周波数符号化部200b、低周波数時間包絡情報符号化部200c、高周波数時間包絡情報符号化部220a、及び符号化系列多重化部220bを備える。
 図83は、第13の実施形態に係る音声符号化装置220の動作を示すフローチャートである。
 高周波数時間包絡情報符号化部220aは、入力音声信号、低周波数符号化部200aにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報、高周波数符号化部200bにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報、低周波数時間包絡情報符号化部200cにおける低周波数時間包絡情報の符号化結果を含む符号化の過程で得られた情報のうち少なくとも一つ以上に基づき、高周波数時間包絡形状情報を算出し符号化する(ステップS220-1)。
 高周波数時間包絡形状情報の算出、符号化処理は、例えば、高周波数時間包絡情報符号化部210aにおける高周波数信号の時間包絡情報の算出、符号化処理と同様にして実現できる。更には、例えば、低周波数時間包絡情報の符号化結果に基づいてもよい。例えば、低周波数時間包絡情報の符号化結果として低周波数時間包絡が平坦であるという結果が得られた場合にのみ、高周波数時間包絡情報として高周波数時間包絡が平坦であるか否かを符号化することができる。
 符号化系列多重化部220bは、低周波数符号化部200aより低周波数音声信号の符号化系列を受け取り、高周波数符号化部200bより高周波数音声信号の符号化系列を受け取り、低周波数時間包絡情報符号化部200cより符号化された低周波数時間包絡形状情報を受け取り、高周波数時間包絡情報符号化部210aより符号化された高周波数時間包絡形状情報を受け取り、多重化して符号化系列として出力する(ステップS220-2)。
 この際、低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報の符号化に関して、例えば、別々に符号化された低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を受け取ることもでき、また組み合わせて符号化された周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を受け取ることもできる。さらには、例えば、単一の情報により表され符号化された当該低周波数時間包絡形状に関する情報、及び当該高周波数時間包絡形状に関する情報を受け取ることもできる。
 [第13の実施形態の音声復号装置の第1の変形例]
 図84は、第13の実施形態に係る音声復号装置の第1の変形例120Aの構成を示す図である。第13の実施形態の音声復号装置120との相違点は、高周波数復号部100eAにて、高周波数信号の復号に低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号を利用する点である。
 図85は、第13の実施形態に係る音声復号装置の第1の変形例120Aの動作を示すフローチャートである。図85のステップ100-5Aでは、高周波数信号の復号において低周波数復号部100bで得られた低周波数復号信号を利用する際に、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号を利用する。
 [第13の実施形態の音声復号装置の第2の変形例]
 図86は、第13の実施形態に係る音声復号装置の第2の変形例120Bの構成を示す図である。第13の実施形態の音声復号装置の第1の変形例との相違点は、低周波数/高周波数信号合成部100fに入力される低周波数信号が、低周波数時間包絡修正部100dからの出力ではなく、低周波数復号部100bからの出力である点である。
 図87は、第13の実施形態に係る音声復号装置の第2の変形例120Bの動作を示すフローチャートである。図87のステップS100-6では、低周波数復号部100bからの低周波数信号と高周波数時間包絡修正部110cからの高周波数信号とが合成される。
 [第13の実施形態の音声復号装置の第3の変形例]
 図185は、第13の実施形態に係る音声復号装置の第3の変形例120Cの構成を示す図である。
 図186は、第13の実施形態に係る音声復号装置の第3の変形例120Cの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置120との相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 本変形例においては、低周波数時間包絡形状決定部120cと前記低周波数時間包絡形状決定部100cとの相違点は、決定した時間包絡形状を高周波数時間包絡修正部120dへも通知する点である。
 高周波数時間包絡修正部120dと前記高周波数時間包絡修正部110cとの相違点は、高周波数時間包絡形状決定部120bにて決定された時間包絡形状と低周波数時間包絡形状決定部120cで決定された時間包絡形状のうち少なくとも一つ以上に基づいて、高周波数復号部100eから出力される高周波数信号の時間包絡の形状を修正する点である(S120-3)。
 例えば、低周波数時間包絡形状決定部120cにて時間包絡形状が平坦であると決定された場合には、高周波数時間包絡形状決定部120bにて決定される時間包絡形状によらず、高周波数復号部100eから出力される高周波数信号の時間包絡の形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部120cにて時間包絡形状が平坦でないと決定された場合には、高周波数時間包絡形状決定部120bにて決定される時間包絡形状によらず、高周波数復号部100eから出力される高周波数信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第13の実施形態の音声復号装置の第4の変形例]
 図187は、第13の実施形態に係る音声復号装置の第4の変形例120Dの構成を示す図である。
 図188は、第13の実施形態に係る音声復号装置の第4の変形例120Dの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置120との相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 本変形例においては、高周波数時間包絡形状決定部120bAと前記高周波数時間包絡形状決定部120bとの相違点は、決定した時間包絡形状を低周波数時間包絡修正部120eへも通知する点である。
 高周波数時間包絡形状決定部120bAにおける時間包絡形状の決定は、前記の例に加えて、例えば、前記低周波数信号の周波数パワー分布に基づくこともできる。更には、例えば符号化系列逆多重化部120aから得られる高周波数信号の復号の際のフレーム長を用いることができる。例えば、フレーム長が長い場合は平坦である、フレーム長が短い場合は立ち上がりまたは立ち下がりであると決定でき、前記高周波数時間包絡形状決定部120bでも同様に決定できる。
 低周波数時間包絡修正部120eと前記低周波数時間包絡修正部100dとの相違点は、低周波数時間包絡形状決定部100cにて決定された時間包絡形状と高周波数時間包絡形状決定部120bAで決定された時間包絡形状のうち少なくとも一つ以上に基づいて、低周波数復号部100bから出力される低周波数信号の時間包絡の形状を修正する点である(S120-4)。
 例えば、高周波数時間包絡形状決定部120bAにて時間包絡形状が平坦であると決定された場合には、低周波数時間包絡形状決定部100cにて決定される時間包絡形状によらず、低周波数復号部100bから出力される低周波数信号の時間包絡の形状を平坦に修正する。更に例えば、高周波数時間包絡形状決定部120bAにて時間包絡形状が平坦であると決定された場合には、低周波数時間包絡形状決定部100cにて決定される時間包絡形状によらず、低周波数復号部100bから出力される低周波数信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第13の実施形態の音声復号装置の第5の変形例]
 図189は、第13の実施形態に係る音声復号装置の第5の変形例120Eの構成を示す図である。
 図190は、第13の実施形態に係る音声復号装置の第5の変形例120Eの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第13の実施形態の音声復号装置の第6の変形例]
 図191は、第13の実施形態に係る音声復号装置の第6の変形例120Fの構成を示す図である。
 図192は、第13の実施形態に係る音声復号装置の第6の変形例120Fの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置120との相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 時間包絡形状決定部120fは、符号化系列逆多重化部120aからの低周波数時間包絡形状に関する情報、高周波数時間包絡形状に関する情報、低周波数復号部100bからの低周波数信号、高周波数復号部100eからの高周波数信号のうち少なくとも一つ以上に基づいて時間包絡形状を決定する(S120-5)。決定した時間包絡形状は、低周波数時間包絡修正部100d、高周波数時間包絡修正部110cに通知される。
 例えば、時間包絡形状として平坦と決定する。さらに例えば、時間包絡形状として立ち上がりと決定する。さらに例えば、時間包絡形状として立下りと決定する。決定される時間包絡形状は、上記の例に限定されない。
 時間包絡形状決定部120fでは、例えば、前記低周波数時間包絡形状決定部100c、及び120c、前記高周波数時間包絡形状決定部120b、及び120bAと同様に時間包絡形状を決定できる。時間包絡形状の決定方法は上記の例に限定されない。
 [第13の実施形態の音声復号装置の第7の変形例]
 図193は、第13の実施形態に係る音声復号装置の第7の変形例120Gの構成を示す図である。
 図194は、第13の実施形態に係る音声復号装置の第7の変形例120Gの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第1の変形例120Aとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 [第13の実施形態の音声復号装置の第8の変形例]
 図195は、第13の実施形態に係る音声復号装置の第8の変形例120Hの構成を示す図である。
 図196は、第13の実施形態に係る音声復号装置の第8の変形例120Hの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第1の変形例120Aとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第13の実施形態の音声復号装置の第9の変形例]
 図197は、第13の実施形態に係る音声復号装置の第9の変形例120Iの構成を示す図である。
 図198は、第13の実施形態に係る音声復号装置の第9の変形例120Iの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第13の実施形態の音声復号装置の第10の変形例]
 図199は、第13の実施形態に係る音声復号装置の第10の変形例120Jの構成を示す図である。
 図200は、第13の実施形態に係る音声復号装置の第10の変形例120Jの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第1の変形例120Aとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第13の実施形態の音声復号装置の第11の変形例]
 図201は、第13の実施形態に係る音声復号装置の第11の変形例120Kの構成を示す図である。
 図202は、第13の実施形態に係る音声復号装置の第11の変形例120Kの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第2の変形例120Bとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 [第13の実施形態の音声復号装置の第12の変形例]
 図203は、第13の実施形態に係る音声復号装置の第12の変形例120Lの構成を示す図である。
 図204は、第13の実施形態に係る音声復号装置の第12の変形例120Lの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第2の変形例120Bとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第13の実施形態の音声復号装置の第13の変形例]
 図205は、第13の実施形態に係る音声復号装置の第13の変形例120Mの構成を示す図である。
 図206は、第13の実施形態に係る音声復号装置の第13の変形例120Mの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第13の実施形態の音声復号装置の第14の変形例]
 図207は、第13の実施形態に係る音声復号装置の第14の変形例120Nの構成を示す図である。
 図208は、第13の実施形態に係る音声復号装置の第14の変形例120Nの動作を示すフローチャートである。
 本変形例と前記第13の実施形態に係る音声復号装置の第2の変形例120Bとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第14の実施形態]
 図88は、第14の実施形態に係る音声復号装置130の構成を示す図である。音声復号装置130の通信装置は、下記音声符号化装置230から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置130は、図88に示すように、機能的には、符号化系列逆多重化部110a、低周波数復号部100b、高周波数時間包絡形状決定部110b、高周波数時間包絡修正部130a、高周波数復号部130b、及び低周波数/高周波数信号合成部100fを備える。
 図89は、第13の実施形態に係る音声復号装置の動作を示すフローチャートである。
 高周波数時間包絡修正部130aは、高周波数時間包絡形状決定部110bで決定した時間包絡形状に基づいて、高周波数復号部130bに入力される低周波数信号の時間包絡の形状を修正する(ステップS130-1)。高周波数時間包絡修正部130aにおける時間包絡形状の修正は、例えば、時間包絡修正部1dにおける復号信号の時間包絡形状の修正処理において、音声復号部1bで得られる復号信号を、低周波数復号部100bで得られた低周波数信号に置き換えることにより実現できる。
 高周波数復号部130bは、符号化系列逆多重化部100aにて分割された高周波数符号化部分を復号し、高周波数信号を得る(ステップS130-2)。
 高周波数復号部130bでは、高周波数信号の復号において低周波数復号部で得られた低周波数復号信号を利用する際に、高周波数時間包絡修正部130aで時間包絡形状を修正された低周波数信号を利用する点が高周波数復号部100eと異なる点である。
 図90は、第14の実施形態に係る音声符号化装置230の構成を示す図である。音声符号化装置230の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置230は、図90に示すように、機能的には、低周波数符号化部200a、高周波数符号化部200b、高周波数時間包絡情報符号化部230a、及び符号化系列多重化部210bを備える。
 図91は、第14の実施形態に係る音声符号化装置230の動作を示すフローチャートである。
 高周波数時間包絡情報符号化部230aは、入力音声信号、低周波数符号化部200aにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報、高周波数符号化部200bにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報のうち少なくとも一つ以上に基づき、高周波数時間包絡形状情報を算出し符号化する(ステップS230-1)。
 高周波数時間包絡形状情報の算出、符号化処理は、例えば、低周波数時間包絡情報符号化部200cにおける低周波数信号の時間包絡情報の算出、符号化処理と同様にして実現できる。ただし、高周波数時間包絡形状情報の算出、符号化処理は、高周波数符号化部200bにおける入力音声信号の符号化結果を含む符号化の過程で得られた情報をも用いることができる点で、入力音声信号の低周波数復号信号を用いる低周波数信号の時間包絡情報の算出、符号化処理とは異なる。
 [第15の実施形態]
 図92は、第15の実施形態に係る音声復号装置140の構成を示す図である。音声復号装置140の通信装置は、下記音声符号化装置240から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置140は、図92に示すように、機能的には、符号化系列逆多重化部120a、低周波数復号部100b、低周波数時間包絡形状決定部100c、低周波数時間包絡修正部100d、高周波数時間包絡形状決定部120b、高周波数時間包絡修正部130a、高周波数復号部130b、及び低周波数/高周波数信号合成部100fを備える。
 図93は、第15の実施形態に係る音声復号装置の動作を示すフローチャートである。符号化系列逆多重化部120a及び高周波数時間包絡形状決定部120bは、第13の実施形態における符号化系列逆多重化部120a及び高周波数時間包絡形状決定部120bと同様の動作を行う(ステップS120-1、S120-2)。高周波数時間包絡修正部130a及び高周波数復号部130bは、第14の実施形態における高周波数時間包絡修正部130a及び高周波数復号部130bと同様の動作を行う(ステップS130-1、S130-2)。
 図94は、第15の実施形態に係る音声符号化装置240の構成を示す図である。音声符号化装置240の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置240は、図94に示すように、機能的には、低周波数符号化部200a、高周波数符号化部200b、低周波数時間包絡情報符号化部200c、高周波数時間包絡情報符号化部220a、及び符号化系列多重化部220bを備える。
 図95は、第15の実施形態に係る音声符号化装置240の動作を示すフローチャートである。
 [第15の実施形態の音声復号装置の第1の変形例]
 図96は、第15の実施形態に係る音声復号装置の第1の変形例140Aの構成を示す図である。
 図97は、第15の実施形態に係る音声復号装置の第1の変形例140Aの動作を示すフローチャートである。
 高周波数時間包絡修正部140aは、高周波数時間包絡形状決定部120bで決定した時間包絡形状に基づいて、低周波数時間包絡修正部100dにて時間包絡形状を修正された低周波数信号の時間包絡の形状を修正する(ステップS140-1)。高周波数時間包絡修正部130aとの相違点は、入力信号が低周波数時間包絡修正部100dにて時間包絡形状を修正された低周波数信号である点である。
 [第15の実施形態の音声復号装置の第2の変形例]
 図98は、第15の実施形態に係る音声復号装置の第2の変形例140Bの構成を示す図である。
 当該実施形態の音声復号装置の第1の変形例との相違点は、低周波数/高周波数信号合成部100fでの合成処理に用いられる低周波数信号が、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号に代えて、低周波数復号部100bで復号された低周波数信号である点である。
 [第15の実施形態の音声復号装置の第3の変形例]
 図209は、第15の実施形態に係る音声復号装置の第3の変形例140Cの構成を示す図である。
 図210は、第15の実施形態に係る音声復号装置の第3の変形例140Cの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置140との相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部130aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 高周波数時間包絡修正部140bと前記高周波数時間包絡修正部130aとの相違点は、高周波数時間包絡形状決定部120bにて決定された時間包絡形状と低周波数時間包絡形状決定部120cで決定された時間包絡形状のうち少なくとも一つ以上に基づいて、高周波数復号部130bへ入力される低周波数信号の時間包絡の形状を修正する点である(S140-2)。
 例えば、低周波数時間包絡形状決定部120cにて時間包絡形状が平坦であると決定された場合には、高周波数時間包絡形状決定部120bにて決定される時間包絡形状によらず、高周波数復号部130bへ入力される低周波数信号の時間包絡の形状を平坦に修正する。更に例えば、低周波数時間包絡形状決定部120cにて時間包絡形状が平坦でないと決定された場合には、高周波数時間包絡形状決定部120bにて決定される時間包絡形状によらず、高周波数復号部130bへ入力される低周波数信号の時間包絡の形状を平坦に修正しない。立ち上がり、立ち下がりの場合も同様であり、時間包絡形状は限定されない。
 [第15の実施形態の音声復号装置の第4の変形例]
 図211は、第15の実施形態に係る音声復号装置の第4の変形例140Dの構成を示す図である。
 図212は、第15の実施形態に係る音声復号装置の第4の変形例140Dの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置140との相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第15の実施形態の音声復号装置の第5の変形例]
 図213は、第15の実施形態に係る音声復号装置の第5の変形例140Eの構成を示す図である。
 図214は、第15の実施形態に係る音声復号装置の第5の変形例140Eの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第15の実施形態の音声復号装置の第6の変形例]
 図215は、第15の実施形態に係る音声復号装置の第6の変形例140Fの構成を示す図である。
 図216は、第15の実施形態に係る音声復号装置の第6の変形例140Fの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置140との相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第15の実施形態の音声復号装置の第7の変形例]
 図217は、第15の実施形態に係る音声復号装置の第7の変形例140Gの構成を示す図である。
 図218は、第15の実施形態に係る音声復号装置の第7の変形例140Gの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第1の変形例140Aとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部140aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 本変形例においては、高周波数時間包絡修正部140bは、高周波数時間包絡形状決定部120bにて決定された時間包絡形状と低周波数時間包絡形状決定部120cで決定された時間包絡形状のうち少なくとも一つ以上に基づいて、高周波数復号部130bへ入力される時間包絡形状を修正された低周波数信号の時間包絡の形状を修正する(S140-2)。
 [第15の実施形態の音声復号装置の第8の変形例]
 図219は、第15の実施形態に係る音声復号装置の第8の変形例140Hの構成を示す図である。
 図220は、第15の実施形態に係る音声復号装置の第8の変形例140Hの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第1の変形例140Aとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第15の実施形態の音声復号装置の第9の変形例]
 図221は、第15の実施形態に係る音声復号装置の第9の変形例140Iの構成を示す図である。
 図222は、第15の実施形態に係る音声復号装置の第9の変形例140Iの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第15の実施形態の音声復号装置の第10の変形例]
 図223は、第15の実施形態に係る音声復号装置の第10の変形例140Jの構成を示す図である。
 図224は、第15の実施形態に係る音声復号装置の第10の変形例140Jの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第1の変形例140Aとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第15の実施形態の音声復号装置の第11の変形例]
 図225は、第15の実施形態に係る音声復号装置の第11の変形例140Kの構成を示す図である。
 図226は、第15の実施形態に係る音声復号装置の第11の変形例140Kの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第2の変形例140Bとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部140aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 [第15の実施形態の音声復号装置の第12の変形例]
 図227は、第15の実施形態に係る音声復号装置の第12の変形例140Lの構成を示す図である。
 図228は、第15の実施形態に係る音声復号装置の第12の変形例140Lの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第2の変形例140Bとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第15の実施形態の音声復号装置の第13の変形例]
 図229は、第15の実施形態に係る音声復号装置の第13の変形例140Mの構成を示す図である。
 図230は、第15の実施形態に係る音声復号装置の第13の変形例140Mの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第15の実施形態の音声復号装置の第14の変形例]
 図231は、第15の実施形態に係る音声復号装置の第14の変形例140Nの構成を示す図である。
 図232は、第15の実施形態に係る音声復号装置の第14の変形例140Nの動作を示すフローチャートである。
 本変形例と前記第15の実施形態に係る音声復号装置の第2の変形例140Bとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第16の実施形態]
 図99は、第16の実施形態に係る音声復号装置150の構成を示す図である。音声復号装置150の通信装置は、下記音声符号化装置250から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置150は、図99に示すように、機能的には、符号化系列逆多重化部150a、スイッチ群150b,低周波数復号部100b、低周波数時間包絡形状決定部100c、低周波数時間包絡修正部100d、高周波数復号部100e、高周波数時間包絡形状決定部120b、高周波数時間包絡修正部110c、及び低周波数/高周波数信号合成部150cを備える。
 図100は、第16の実施形態に係る音声復号装置の動作を示すフローチャートである。
 符号化系列逆多重化部150aは、符号化系列を、高周波数信号生成制御情報、低周波数符号化部分、時間包絡形状に関する情報に分割する(ステップS150-1)。
 符号化系列逆多重化部150aで得られた高周波数信号生成制御情報に基づき、高周波数信号を生成するか否かを判断する(ステップS150-2)。
 高周波数信号を生成する場合、符号化系列逆多重化部150aは、符号化系列から高周波数符号化部分を抽出する(ステップS150-3)。そして、当該符号化系列の高周波数符号化部分を用いて高周波数信号を生成し、さらに高周波数信号の時間包絡形状を決定して、高周波数信号の時間包絡形状を修正する。
 なお、ステップS150-2およびS150-3の処理を行う順番については、高周波数時間包絡形状の決定及び高周波数符号化部分を復号の処理の前であればよく、図100のフローチャートの順番に制限されない。
 低周波数/高周波数信号合成部150cは、前記高周波数信号生成情報に基づき高周波数信号を生成すると判断された場合、時間包絡形状を修正された低周波数信号と時間包絡形状を修正された高周波数信号から出力音声信号を合成し、前記高周波数信号生成情報に基づき高周波数信号を生成しないと判断された場合、時間包絡形状を修正された低周波数信号から出力音声信号を合成する(ステップS150-4)。ただし、高周波数信号を生成しないと判断された場合で、時間包絡形状を修正された低周波数信号が出力できる状態で低周波数/高周波数信号合成部150cに入力された場合、入力された低周波数信号をそのまま出力することもできる。
 図101は、第16の実施形態に係る音声符号化装置250の構成を示す図である。音声符号化装置250の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置250は、図101に示すように、機能的には、高周波数信号生成制御情報符号化部250a、低周波数符号化部200a、高周波数符号化部200b、低周波数時間包絡情報符号化部200c、高周波数時間包絡情報符号化部220a、及び符号化系列多重化部250bを備える。
 図102は、第16の実施形態に係る音声符号化装置250の動作を示すフローチャートである。
 高周波数信号生成制御情報符号化部250aは、入力音声信号、高周波数信号生成制御指示信号のうち少なくとも一つに基づいて高周波数信号を生成するか否かを決定し、高周波数信号生成制御情報を符号化する(ステップS250-1)。例えば、入力音声信号が高周波数符号化部200bにて符号化する周波数帯域の信号を含む場合は、高周波数信号を生成すると決定することができる。さらに例えば、高周波数信号生成制御指示信号により高周波数信号を生成することを指示された場合は、高周波数信号を生成すると決定することができる。さらに例えば、前記2つの方法を組み合わせることもでき、例えば前記2つの方法のうち少なくとも一つの方法にて高周波数信号を生成すると判断した場合には、高周波数信号を生成すると決定できる。
 高周波数信号生成制御情報は、例えば高周波数信号を生成するか否かを1ビットで表すことで符号化できる。
 ただし、高周波数信号を生成するか否かの決定、及び高周波数信号生成制御情報の符号化方法は限定されない。
 高周波数信号生成制御情報符号化部250aにて高周波数信号を生成すると決定した場合は、高周波数符号化部200bにて入力音声信号の高周波数成分にあたる高周波数信号を符号化し、高周波数時間包絡情報符号化部220aにて高周波数時間包絡形状情報を算出し符号化する。一方、高周波数信号生成制御情報符号化部250aにて高周波数信号を生成しないと判断した場合、前記高周波数信号の符号化及び高周波数時間包絡形状情報の算出、符号化は実施されない(ステップS250-2)。
 符号化系列多重化部250cは、高周波数信号生成制御情報符号化部250aより符号化された高周波数信号生成制御情報を受け取り、低周波数符号化部200aより低周波数音声信号の符号化系列を受け取り、低周波数時間包絡情報符号化部200cより符号化された低周波数時間包絡形状情報を受け取り、これらに加えて高周波数信号生成制御情報符号化部250aにて高周波数信号を生成すると決定した場合には、高周波数符号化部200bより高周波数音声信号の符号化系列を、高周波数時間包絡情報符号化部210aより符号化された高周波数時間包絡形状情報を受け取り、多重化して符号化系列として出力する(ステップS250-3)。
 高周波数信号生成制御情報符号化部250aにて高周波数信号を生成すると決定した場合には、低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報の符号化に関して、例えば、別々に符号化された低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を受け取ることもでき、また低周波数時間包絡形状に関する情報、及び高周波数時間包絡形状に関する情報を組み合わせて符号化された形式で受け取ることもできる。さらには、例えば、単一の情報により表され符号化された当該低周波数時間包絡形状に関する情報、及び当該高周波数時間包絡形状に関する情報を受け取ることもできる。
 [第16の実施形態の音声復号装置の第1の変形例]
 図103は、第16の実施形態に係る音声復号装置の第1の変形例150Aの構成を示す図である。
 図104は、第16の実施形態に係る音声復号装置の第1の変形例150Aの動作を示すフローチャートである。第16の実施形態の音声復号装置150との相違点は、高周波数復号部100eAにて、高周波数信号の復号に低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号を利用する点である。図104のステップ100-5Aでは、高周波数信号の復号において低周波数復号部100bで得られた低周波数復号信号を利用する際に、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号を利用する。
 なお、ステップS150-2およびS150-3の処理を行う順番については、高周波数時間包絡形状の決定及び高周波数符号化部分を復号の処理の前であればよく、図104のフローチャートの順番に制限されない。
 [第16の実施形態の音声復号装置の第2の変形例]
 図105は、第16の実施形態に係る音声復号装置の第2の変形例150Bの構成を示す図である。第16の実施形態の音声復号装置の第1の変形例との相違点は、低周波数/高周波数信号合成部150cに入力される低周波数信号が、低周波数時間包絡修正部100dからの出力ではなく、低周波数復号部100bからの出力である点である。
 [第16の実施形態の音声復号装置の第3の変形例]
 図233は、第16の実施形態に係る音声復号装置の第3の変形例150Cの構成を示す図である。
 図234は、第16の実施形態に係る音声復号装置の第3の変形例150Cの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置150との相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 [第16の実施形態の音声復号装置の第4の変形例]
 図235は、第16の実施形態に係る音声復号装置の第4の変形例150Dの構成を示す図である。
 図236は、第16の実施形態に係る音声復号装置の第4の変形例150Dの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置150との相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第16の実施形態の音声復号装置の第5の変形例]
 図237は、第16の実施形態に係る音声復号装置の第5の変形例150Eの構成を示す図である。
 図238は、第16の実施形態に係る音声復号装置の第5の変形例150Eの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第16の実施形態の音声復号装置の第6の変形例]
 図239は、第16の実施形態に係る音声復号装置の第6の変形例150Fの構成を示す図である。
 図240は、第16の実施形態に係る音声復号装置の第6の変形例150Fの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置150との相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第16の実施形態の音声復号装置の第7の変形例]
 図241は、第16の実施形態に係る音声復号装置の第7の変形例150Gの構成を示す図である。
 図242は、第16の実施形態に係る音声復号装置の第7の変形例150Gの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第1の変形例150Aとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 [第16の実施形態の音声復号装置の第8の変形例]
 図243は、第16の実施形態に係る音声復号装置の第8の変形例150Hの構成を示す図である。
 図244は、第16の実施形態に係る音声復号装置の第8の変形例150Hの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第1の変形例150Aとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第16の実施形態の音声復号装置の第9の変形例]
 図245は、第16の実施形態に係る音声復号装置の第9の変形例150Iの構成を示す図である。
 図246は、第16の実施形態に係る音声復号装置の第9の変形例150Iの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第16の実施形態の音声復号装置の第10の変形例]
 図247は、第16の実施形態に係る音声復号装置の第10の変形例150Jの構成を示す図である。
 図248は、第16の実施形態に係る音声復号装置の第10の変形例150Jの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第1の変形例150Aとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第16の実施形態の音声復号装置の第11の変形例]
 図249は、第16の実施形態に係る音声復号装置の第11の変形例150Kの構成を示す図である。
 図250は、第16の実施形態に係る音声復号装置の第11の変形例150Kの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第2の変形例150Bとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部110cにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部120dを具備する点である。
 [第16の実施形態の音声復号装置の第12の変形例]
 図251は、第16の実施形態に係る音声復号装置の第12の変形例150Lの構成を示す図である。
 図252は、第16の実施形態に係る音声復号装置の第12の変形例150Lの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第2の変形例150Bとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第16の実施形態の音声復号装置の第13の変形例]
 図253は、第16の実施形態に係る音声復号装置の第13の変形例150Mの構成を示す図である。
 図254は、第16の実施形態に係る音声復号装置の第13の変形例150Mの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部120d、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第16の実施形態の音声復号装置の第14の変形例]
 図255は、第16の実施形態に係る音声復号装置の第14の変形例150Nの構成を示す図である。
 図256は、第16の実施形態に係る音声復号装置の第14の変形例150Nの動作を示すフローチャートである。
 本変形例と前記第16の実施形態に係る音声復号装置の第2の変形例150Bとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第17の実施形態]
 図106は、第17の実施形態に係る音声復号装置160の構成を示す図である。音声復号装置160の通信装置は、下記音声符号化装置260から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置160は、図106に示すように、機能的には、符号化系列逆多重化部150a、スイッチ群150b、低周波数復号部100b、低周波数時間包絡形状決定部100c、低周波数時間包絡修正部100d、高周波数時間包絡形状決定部120b、高周波数時間包絡修正部130a、高周波数復号部130b、及び低周波数/高周波数信号合成部150cを備える。
 図107は、第17の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS150-2およびS150-3の処理を行う順番については、高周波数時間包絡形状の決定及び高周波数符号化部分を復号の処理の前であればよく、図107のフローチャートの順番に制限されない。
 図108は、第17の実施形態に係る音声符号化装置260の構成を示す図である。音声符号化装置260の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置260は、図108に示すように、機能的には、高周波数信号生成制御情報符号化部250a、低周波数符号化部200a、高周波数符号化部200b、低周波数時間包絡情報符号化部200c、高周波数時間包絡情報符号化部220a、及び符号化系列多重化部250bを備える。
 図109は、第17の実施形態に係る音声符号化装置260の動作を示すフローチャートである。
 [第17の実施形態の音声復号装置の第1の変形例]
 図110は、第17の実施形態に係る音声復号装置の第1の変形例160Aの構成を示す図である。
 図111は、第17の実施形態に係る音声復号装置の第1の変形例160Aの動作を示すフローチャートである。
 当該実施形態の音声復号装置160との相違点は、高周波数時間包絡修正部130aに代えて、第15の実施形態の音声復号装置の第1の変形例で説明した高周波数時間包絡修正部140aを用いている点である。
 なお、ステップS150-2およびS150-3の処理を行う順番については、高周波数時間包絡形状の決定及び高周波数符号化部分を復号の処理の前であればよく、図111のフローチャートの順番に制限されない。
 [第17の実施形態の音声復号装置の第2の変形例]
 図112は、第17の実施形態に係る音声復号装置の第2の変形例170Bの構成を示す図である。
 当該実施形態の音声復号装置の第1の変形例160Aとの相違点は、第15の実施形態の音声復号装置の第2の変形例と同様に、低周波数/高周波数信号合成部150cでの合成処理に用いられる低周波数信号が、低周波数時間包絡修正部100dで時間包絡形状を修正された低周波数信号に代えて、低周波数復号部100bで復号された低周波数信号である点である。
 [第17の実施形態の音声復号装置の第3の変形例]
 図257は、第17の実施形態に係る音声復号装置の第3の変形例160Cの構成を示す図である。
 図258は、第17の実施形態に係る音声復号装置の第3の変形例160Cの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置160との相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部130aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 [第17の実施形態の音声復号装置の第4の変形例]
 図259は、第17の実施形態に係る音声復号装置の第4の変形例160Dの構成を示す図である。
 図260は、第17の実施形態に係る音声復号装置の第4の変形例160Dの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置160との相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第17の実施形態の音声復号装置の第5の変形例]
 図261は、第17の実施形態に係る音声復号装置の第5の変形例160Eの構成を示す図である。
 図262は、第17の実施形態に係る音声復号装置の第5の変形例160Eの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第17の実施形態の音声復号装置の第6の変形例]
 図263は、第17の実施形態に係る音声復号装置の第6の変形例160Fの構成を示す図である。
 図264は、第17の実施形態に係る音声復号装置の第6の変形例160Fの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置160との相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第17の実施形態の音声復号装置の第7の変形例]
 図265は、第17の実施形態に係る音声復号装置の第7の変形例160Gの構成を示す図である。
 図266は、第17の実施形態に係る音声復号装置の第7の変形例160Gの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第1の変形例160Aとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部140aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 本変形例においては、高周波数時間包絡修正部140bは、高周波数時間包絡形状決定部120bにて決定された時間包絡形状と低周波数時間包絡形状決定部120cで決定された時間包絡形状のうち少なくとも一つ以上に基づいて、高周波数復号部130bへ入力される時間包絡形状を修正された低周波数信号の時間包絡の形状を修正する(S140-2)。
 [第17の実施形態の音声復号装置の第8の変形例]
 図267は、第17の実施形態に係る音声復号装置の第8の変形例160Hの構成を示す図である。
 図268は、第17の実施形態に係る音声復号装置の第8の変形例160Hの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第1の変形例160Aとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第17の実施形態の音声復号装置の第9の変形例]
 図269は、第17の実施形態に係る音声復号装置の第9の変形例160Iの構成を示す図である。
 図270は、第17の実施形態に係る音声復号装置の第9の変形例160Iの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第17の実施形態の音声復号装置の第10の変形例]
 図271は、第17の実施形態に係る音声復号装置の第10の変形例160Jの構成を示す図である。
 図272は、第17の実施形態に係る音声復号装置の第10の変形例160Jの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第1の変形例160Aとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第17の実施形態の音声復号装置の第11の変形例]
 図273は、第17の実施形態に係る音声復号装置の第11の変形例160Kの構成を示す図である。
 図274は、第17の実施形態に係る音声復号装置の第11の変形例160Kの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第2の変形例160Bとの相違点は、低周波数時間包絡形状決定部100c、高周波数時間包絡修正部140aにかえて、低周波数時間包絡形状決定部120c、高周波数時間包絡修正部140bを具備する点である。
 [第17の実施形態の音声復号装置の第12の変形例]
 図275は、第17の実施形態に係る音声復号装置の第12の変形例160Lの構成を示す図である。
 図276は、第17の実施形態に係る音声復号装置の第12の変形例160Lの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第2の変形例160Bとの相違点は、高周波数時間包絡形状決定部120b、低周波数時間包絡修正部100dにかえて、高周波数時間包絡形状決定部120bA、低周波数時間包絡修正部120eを具備する点である。
 [第17の実施形態の音声復号装置の第13の変形例]
 図277は、第17の実施形態に係る音声復号装置の第13の変形例160Mの構成を示す図である。
 図278は、第17の実施形態に係る音声復号装置の第13の変形例160Mの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部120c、前記高周波数時間包絡修正部140b、前記高周波数時間包絡形状決定部120bA、及び前記低周波数時間包絡修正部120eを具備する。
 [第17の実施形態の音声復号装置の第14の変形例]
 図279は、第17の実施形態に係る音声復号装置の第14の変形例160Nの構成を示す図である。
 図280は、第17の実施形態に係る音声復号装置の第14の変形例160Nの動作を示すフローチャートである。
 本変形例と前記第17の実施形態に係る音声復号装置の第2の変形例160Bとの相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部120bにかえて時間包絡形状決定部120fを具備する点である。
 [第18の実施形態]
 図113は、第18の実施形態に係る音声復号装置170の構成を示す図である。音声復号装置170の通信装置は、下記音声符号化装置270から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置170は、図113に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、時間包絡修正部13b、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部170cを備える。
 図114は、第18の実施形態に係る音声復号装置の動作を示すフローチャートである。
 符号化系列逆多重化部170aは、符号化系列を、高周波数信号生成制御情報、低周波数信号を符号化したコア符号化部分、低周波数時間包絡形状決定部10eで必要な時間包絡形状に関する情報に分割する(ステップS170-1)。
 符号化系列逆多重化部170aで得られた高周波数信号生成制御情報に基づき,高周波数信号を生成するか否かを判断する(ステップS170-2)。
 高周波数信号を生成する場合、符号化系列逆多重化部170aは、符号化系列から低周波数信号から高周波数信号を生成するための帯域拡張部分を抽出し、符号化系列解析部13cは、符号化系列逆多重化部170aで抽出された符号化系列の帯域拡張部分を解析し、高周波数信号生成部10g、及び復号/逆量子化部10hで必要な情報、高周波数時間包絡形状決定部13aで必要な時間包絡形状に関する情報に分割する(ステップS170-3)。そして、当該符号化系列の高周波数符号化部分を用いて高周波数信号を生成し、さらに高周波数信号の時間包絡形状を決定して、高周波数信号の時間包絡形状を修正する。
 なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図114のフローチャートの順番に制限されない。
 合成フィルタバンク部170cは、前記高周波数信号生成情報に基づき高周波数信号を生成すると判断された場合、時間包絡形状を修正された低周波数サブバンド信号と時間包絡形状を修正された高周波数サブバンド信号から出力音声信号を合成し、前記高周波数信号生成情報に基づき高周波数信号を生成しないと判断された場合、時間包絡形状を修正された低周波数サブバンド信号から出力音声信号を合成する(ステップS170-4)。
 なお、本実施形態に係る音声復号装置170の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置170の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図115は、第18の実施形態に係る音声符号化装置270の構成を示す図である。音声符号化装置270の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置270は、図115に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j、時間包絡情報符号化部270b、及び符号化系列多重化部270cを備える。
 図116は、第18の実施形態に係る音声符号化装置270の動作を示すフローチャートである。
 高周波数信号生成制御情報符号化部270aは、入力音声信号、高周波数信号生成制御指示信号のうち少なくとも一つに基づいて高周波数信号を生成するか否かを決定し、高周波数信号生成制御情報を符号化する(ステップS270-1)。例えば、入力音声信号が量子化/符号化部20fにて量子化・符号化する帯域拡張にて生成される周波数帯域の信号を含む場合は、高周波数信号を生成すると決定することができる。さらに例えば、高周波数信号生成制御指示信号により高周波数信号を生成することを指示された場合は、高周波数信号を生成すると決定することができる。さらに例えば、前記2つの方法を組み合わせることもでき、例えば前記2つの方法のうち少なくとも一つの方法にて高周波数信号を生成すると判断した場合には、高周波数信号を生成すると決定できる。
 高周波数信号生成制御情報は、例えば高周波数信号を生成するか否かを1ビットで表すことで符号化できる。
 ただし、高周波数信号を生成するか否かの決定、及び高周波数信号生成制御情報の符号化方法は限定されない。
 高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、帯域拡張にて高周波数信号を生成するのに必要な情報を算出・符号化する。一方、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと判断した場合、前記高周波数信号を生成するのに必要な情報の算出・符号化は実施されない(ステップS270-2)。
 時間包絡情報符号化部270bは、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、さらにサブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡及び高周波数信号の時間包絡のうち少なくとも一つ以上とコア復号信号の時間包絡より時間包絡情報を符号化する。当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。一方、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと判断した場合は、低周波数信号の時間包絡を算出し、さらにサブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡とコア復号信号の時間包絡より、低周波数信号に関する時間包絡情報を符号化する(ステップS270-3)。ここで高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと判断した場合は、包絡算出部270dは、低周波数信号のサブバンド信号のパワーのみを算出することができ、さらには低周波数信号のサブバンド信号のパワーを算出せずに低周波数信号のサブバンド信号を時間包絡情報符号化部270bに送ることもできる。低周波数信号のサブバンド信号のパワーが算出されていない場合は、時間包絡情報符号化部270bにて低周波数信号のサブバンド信号のパワーを算出してもよく、低周波数信号のサブバンド信号のパワーがどこで算出されるかは限定されない。
 符号化系列多重化部270cは、高周波数信号生成制御情報符号化部270aより符号化された高周波数信号生成制御情報を受け取り、コア符号化部20bより低周波数信号の符号化系列を受け取り、時間包絡情報符号化部20gより符号化された時間包絡情報を受け取り、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、制御パラメータ符号化部20dより符号化された制御パラメータをさらに受け取り、量子化/符号化部20fより符号化された高周波数信号に対するゲインおよびノイズ信号の大きさをさらに受け取り、これらを多重化して符号化系列として出力する(ステップS270-4)。
 [第18の実施形態の音声復号装置の第1の変形例]
 図281は、第18の実施形態に係る音声復号装置の第1の変形例170Aの構成を示す図である。
 図282は、第18の実施形態に係る音声復号装置の第1の変形例170Aの動作を示すフローチャートである。
 本変形例と第18の実施形態に係る音声復号装置170との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部13bにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部16cを具備する点である。
 [第18の実施形態の音声復号装置の第2の変形例]
 図283は、第18の実施形態に係る音声復号装置の第2の変形例170Bの構成を示す図である。
 図284は、第18の実施形態に係る音声復号装置の第2の変形例170Bの動作を示すフローチャートである。
 本変形例と第18の実施形態に係る音声復号装置170との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第18の実施形態の音声復号装置の第3の変形例]
 図285は、第18の実施形態に係る音声復号装置の第3の変形例170Cの構成を示す図である。
 図286は、第18の実施形態に係る音声復号装置の第3の変形例170Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部16c、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第18の実施形態の音声復号装置の第4の変形例]
 図287は、第18の実施形態に係る音声復号装置の第4の変形例170Dの構成を示す図である。
 図288は、第18の実施形態に係る音声復号装置の第4の変形例170Dの動作を示すフローチャートである。
 本変形例と前記第18の実施形態に係る音声復号装置170との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第19の実施形態]
 図117は、第19の実施形態に係る音声復号装置180の構成を示す図である。音声復号装置180の通信装置は、下記音声符号化装置280から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置180は、図117に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、高周波数信号生成部10g、時間包絡修正部14a、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部170cを備える。
 図118は、第19の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図118のフローチャートの順番に制限されない。
 なお、本実施形態に係る音声復号装置180の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置180の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図119は、第19の実施形態に係る音声符号化装置280の構成を示す図である。音声符号化装置280の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置280は、図119に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部270d、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、擬似高周波数信号生成部24a、時間包絡情報符号化部280a、及び符号化系列多重化部270cを備える。
 図120は、第19の実施形態に係る音声符号化装置280の動作を示すフローチャートである。
 高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、帯域拡張にて高周波数信号を生成するのに必要な情報を算出・符号化し、さらに擬似高周波数信号を生成し当該擬似高周波数信号の時間包絡を算出する。一方、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと判断した場合、前記帯域拡張にて高周波数信号を生成するのに必要な情報を算出・符号化、及び前記擬似高周波数信号の生成・時間包絡の算出は実施されない(ステップS280-1)。
 時間包絡情報符号化部280aは、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、入力音声信号の低周波数信号の時間包絡、高周波数信号の時間包絡、コア復号信号の時間包絡、擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より時間包絡情報を符号化する。当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。一方、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと決定した場合は、入力音声信号の低周波数信号の時間包絡、コア復号信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、低周波数信号に関する時間包絡情報を符号化する(ステップS280-2)。
 なお、本実施形態に係る音声符号化装置280に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第19の実施形態の音声復号装置の第1の変形例]
 図289は、第19の実施形態に係る音声復号装置の第1の変形例180Aの構成を示す図である。
 図290は、第19の実施形態に係る音声復号装置の第1の変形例180Aの動作を示すフローチャートである。
 本変形例と第19の実施形態に係る音声復号装置180との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部14aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部17aを具備する点である。
 [第19の実施形態の音声復号装置の第2の変形例]
 図291は、第19の実施形態に係る音声復号装置の第2の変形例180Bの構成を示す図である。
 図292は、第19の実施形態に係る音声復号装置の第2の変形例180Bの動作を示すフローチャートである。
 本変形例と第19の実施形態に係る音声復号装置180との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第19の実施形態の音声復号装置の第3の変形例]
 図293は、第19の実施形態に係る音声復号装置の第3の変形例180Cの構成を示す図である。
 図294は、第19の実施形態に係る音声復号装置の第3の変形例180Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部17a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第19の実施形態の音声復号装置の第4の変形例]
 図295は、第19の実施形態に係る音声復号装置の第4の変形例180Dの構成を示す図である。
 図296は、第19の実施形態に係る音声復号装置の第4の変形例180Dの動作を示すフローチャートである。
 本変形例と前記第19の実施形態に係る音声復号装置180との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第20の実施形態]
 図121は、第20の実施形態に係る音声復号装置190の構成を示す図である。音声復号装置190の通信装置は、下記音声符号化装置290から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置190は、図121に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、時間包絡修正部15a、及び合成フィルタバンク部170cを備える。
 図122は、第20の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図122のフローチャートの順番に制限されない。
 なお、本実施形態に係る音声復号装置190の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置190の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図123は、第20の実施形態に係る音声符号化装置290の構成を示す図である。音声符号化装置290の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置290は、図123に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部270d、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、擬似高周波数信号生成部24a、時間包絡情報符号化部280a、及び符号化系列多重化部270cを備える。
 図124は、第20の実施形態に係る音声符号化装置290の動作を示すフローチャートである。
 時間包絡情報符号化部290aは、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成すると決定した場合は、入力音声信号の低周波数信号の時間包絡、高周波数信号の時間包絡、コア復号信号の時間包絡、周波数包絡調整された擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より時間包絡情報を符号化する。当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。
一方、高周波数信号生成制御情報符号化部270aにて高周波数信号を生成しないと決定した場合は、入力音声信号の低周波数信号の時間包絡、コア復号信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、低周波数信号に関する時間包絡情報を符号化する(ステップS290-1)。
 なお、本実施形態に係る音声符号化装置290に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。
 [第20の実施形態の音声復号装置の第1の変形例]
 図297は、第20の実施形態に係る音声復号装置の第1の変形例190Aの構成を示す図である。
 図298は、第20の実施形態に係る音声復号装置の第1の変形例190Aの動作を示すフローチャートである。
 本変形例と前記第20の実施形態に係る音声復号装置190との相違点は、時間包絡修正部13aにかえて時間包絡修正部15aAを具備する点である。
 [第20の実施形態の音声復号装置の第2の変形例]
 図299は、第20の実施形態に係る音声復号装置の第2の変形例190Bの構成を示す図である。
 図300は、第20の実施形態に係る音声復号装置の第2の変形例190Bの動作を示すフローチャートである。
 本変形例と第20の実施形態に係る音声復号装置190との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aを具備する点である。
 [第20の実施形態の音声復号装置の第3の変形例]
 図301は、第20の実施形態に係る音声復号装置の第3の変形例190Cの構成を示す図である。
 図302は、第20の実施形態に係る音声復号装置の第3の変形例190Cの動作を示すフローチャートである。
 本変形例と第20の実施形態に係る音声復号装置190との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第20の実施形態の音声復号装置の第4の変形例]
 図303は、第20の実施形態に係る音声復号装置の第4の変形例190Dの構成を示す図である。
 図304は、第20の実施形態に係る音声復号装置の第4の変形例190Dの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第20の実施形態の音声復号装置の第5の変形例]
 図305は、第20の実施形態に係る音声復号装置の第5の変形例190Eの構成を示す図である。
 図306は、第20の実施形態に係る音声復号装置の第5の変形例190Eの動作を示すフローチャートである。
 本変形例と前記第20の実施形態に係る音声復号装置190との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第20の実施形態の音声復号装置の第6の変形例]
 図307は、第20の実施形態に係る音声復号装置の第6の変形例190Fの構成を示す図である。
 図308は、第20の実施形態に係る音声復号装置の第6の変形例190Fの動作を示すフローチャートである。
 本変形例と第20の実施形態の第1の変形例に係る音声復号装置190Aとの相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aAにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aAを具備する点である。
 [第20の実施形態の音声復号装置の第7の変形例]
 図309は、第20の実施形態に係る音声復号装置の第7の変形例190Gの構成を示す図である。
 図310は、第20の実施形態に係る音声復号装置の第7の変形例190Gの動作を示すフローチャートである。
 本変形例と第20の実施形態の第1の変形例に係る音声復号装置190Aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第20の実施形態の音声復号装置の第8の変形例]
 図311は、第20の実施形態に係る音声復号装置の第8の変形例190Hの構成を示す図である。
 図312は、第20の実施形態に係る音声復号装置の第8の変形例190Hの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第20の実施形態の音声復号装置の第9の変形例]
 図313は、第20の実施形態に係る音声復号装置の第9の変形例190Iの構成を示す図である。
 図314は、第20の実施形態に係る音声復号装置の第9の変形例190Iの動作を示すフローチャートである。
 本変形例と前記第20の実施形態の第1の変形例に係る音声復号装置190Aとの相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第21の実施形態]
 図125は、第21の実施形態に係る音声復号装置300の構成を示す図である。音声復号装置300の通信装置は、下記音声符号化装置400から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置300は、図125に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、時間包絡修正部300a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図126は、第21の実施形態に係る音声復号装置の動作を示すフローチャートである。
 時間包絡修正部300aは、高周波数時間包絡形状決定部13aで決定した時間包絡形状に基づいて、低周波数時間包絡修正部10fから出力され、高周波数信号生成部10gにて高周波数信号の生成に利用する時間包絡形状を修正された低周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(ステップS300-1)。時間包絡修正部13bとの相違点は、入力される信号が分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号に代わって、低周波数時間包絡修正部10fから出力される時間包絡形状を修正された低周波数信号の複数のサブバンド信号である点である。時間包絡修正部13bにおける時間包絡の修正処理において、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号を、低周波数時間包絡修正部10fから出力される時間包絡形状を修正された低周波数信号の複数のサブバンド信号にかえることにより実現できる。
 なお、本実施形態に係る音声復号装置300の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置300の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図127は、第21の実施形態に係る音声符号化装置400の構成を示す図である。音声符号化装置400の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置400は、図127に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j、時間包絡情報符号化部400a、及び符号化系列多重化部20hを備える。
 図128は、第21の実施形態に係る音声符号化装置400の動作を示すフローチャートである。
 時間包絡情報符号化部400aは、低周波数信号の時間包絡と高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、さらにサブバンド信号パワー算出部20jにて算出されたコア復号信号のサブバンド信号のパワーを用いてコア復号信号の時間包絡を算出し、当該低周波数信号の時間包絡及び高周波数信号の時間包絡のうち少なくとも一つ以上とコア復号信号の時間包絡より時間包絡情報を符号化する(ステップS400-1)。当該時間包絡情報は、低周波数時間包絡情報と高周波数時間包絡情報を含む。第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。時間包絡情報符号化部26aとの相違点は、高周波数信号に関する時間包絡情報を算出する場合には、コア復号信号の時間包絡と低周波数信号に関する時間包絡情報のうち少なくとも一つ以上を用いて、時間包絡形状を修正されたコア復号信号の時間包絡を用いることができる点である。なお、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第21の実施形態の音声復号装置の第1の変形例]
 図315は、第21の実施形態に係る音声復号装置の第1の変形例300Aの構成を示す図である。
 図316は、第21の実施形態に係る音声復号装置の第1の変形例300Aの動作を示すフローチャートである。
 本変形例と第21の実施形態に係る音声復号装置300との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部300aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部300aAを具備する点である。
 本変形例においては、時間包絡修正部300aAと前記時間包絡修正部300aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状と低周波数時間包絡形状決定部16bから受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、低周波数時間包絡修正部10fから出力され、高周波数信号生成部10gにて高周波数信号の生成に利用する時間包絡形状を修正された低周波数信号の複数のサブバンド信号の時間包絡の形状を修正する点である(S300-1a)。
 [第21の実施形態の音声復号装置の第2の変形例]
 図317は、第21の実施形態に係る音声復号装置の第2の変形例300Bの構成を示す図である。
 図318は、第21の実施形態に係る音声復号装置の第2の変形例300Bの動作を示すフローチャートである。
 本変形例と第21の実施形態に係る音声復号装置300との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第21の実施形態の音声復号装置の第3の変形例]
 図319は、第21の実施形態に係る音声復号装置の第3の変形例300Cの構成を示す図である。
 図320は、第21の実施形態に係る音声復号装置の第3の変形例300Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部300aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第21の実施形態の音声復号装置の第4の変形例]
 図321は、第21の実施形態に係る音声復号装置の第4の変形例300Dの構成を示す図である。
 図322は、第21の実施形態に係る音声復号装置の第4の変形例300Dの動作を示すフローチャートである。
 本変形例と前記第21の実施形態に係る音声復号装置300との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第22の実施形態]
 図129は、第22の実施形態に係る音声復号装置310の構成を示す図である。音声復号装置310の通信装置は、下記音声符号化装置410から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置310は、図129に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、高周波数信号生成部10g、時間包絡修正部14a、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部10jを備える。
 図130は、第22の実施形態に係る音声復号装置の動作を示すフローチャートである。
 本発明第8の実施形態の音声復号装置17との相違点は、高周波数信号生成部10gが、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号に代えて、低周波数時間包絡修正部10fから出力される時間包絡形状を修正された低周波数信号の複数のサブバンド信号を用いて高周波数信号を生成する点である。
 なお、本実施形態に係る音声復号装置310の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置310の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図131は、第19の実施形態に係る音声符号化装置410の構成を示す図である。音声符号化装置410の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置410は、図131に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部270d、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、擬似高周波数信号生成部410b、時間包絡情報符号化部410a、及び符号化系列多重化部270cを備える。
 図132は、第22の実施形態に係る音声符号化装置410の動作を示すフローチャートである。
 時間包絡情報符号化部410aは、入力音声信号の低周波数信号の時間包絡、コア復号信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、低周波数信号に関する時間包絡情報を符号化する(ステップS410-1)。
 擬似高周波数信号生成部410bは、分析フィルタバンク部20cで得られる入力音声信号の低周波数信号のサブバンド信号と、制御パラメータ符号化部20dで得られる高周波数信号を生成するために必要な制御パラメータに基づいて、擬似高周波数信号を生成する(ステップS410-2)。擬似高周波数信号生成部24aとの相違点は、擬似高周波数信号を生成する際に、時間包絡情報符号化部410aにて符号化された低周波数信号に関する時間包絡情報を用いて、分析フィルタバンク部20cで得られる入力音声信号の低周波数信号のサブバンド信号を修正することができる点である。
 時間包絡情報符号化部410aは、入力音声信号の高周波数信号の時間包絡、擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、高周波数信号に関する時間包絡情報を符号化する(ステップS410-3)。
 なお、時間包絡情報符号化部410aは、低周波数信号に関する時間包絡情報と高周波数信号に関する時間包絡情報とを別々に符号化した符号化系列として出力することができ、また当該低周波数信号に関する時間包絡情報と高周波数信号に関する時間包絡情報とをあわせて符号化した符号化系列として出力することもでき、本発明において時間包絡情報の符号化系列の形式は限定されない。また、第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。
 なお、擬似高周波数信号生成部410bにて擬似高周波数信号を生成する際に、時間包絡情報符号化部410aにて符号化された低周波数信号に関する時間包絡情報を用いない場合は、時間包絡情報符号化部410aはステップS410-1及びS410-3の処理を一緒に実施することができる。例えば、時間包絡情報符号化部27aと同様にして、入力音声信号の低周波数信号の時間包絡、高周波数信号の時間包絡、コア復号信号の時間包絡、擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、時間包絡情報を符号化することができる。
 なお、本実施形態に係る音声符号化装置410に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。また、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第22の実施形態の音声復号装置の第1の変形例]
 図323は、第22の実施形態に係る音声復号装置の第1の変形例310Aの構成を示す図である。
 図324は、第22の実施形態に係る音声復号装置の第1の変形例310Aの動作を示すフローチャートである。
 本変形例と第22の実施形態に係る音声復号装置310との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部14aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部17aを具備する点である。
 [第22の実施形態の音声復号装置の第2の変形例]
 図325は、第22の実施形態に係る音声復号装置の第2の変形例310Bの構成を示す図である。
 図326は、第22の実施形態に係る音声復号装置の第2の変形例310Bの動作を示すフローチャートである。
 本変形例と第22の実施形態に係る音声復号装置310との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第22の実施形態の音声復号装置の第3の変形例]
 図327は、第22の実施形態に係る音声復号装置の第3の変形例310Cの構成を示す図である。
 図328は、第22の実施形態に係る音声復号装置の第3の変形例310Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部17a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第22の実施形態の音声復号装置の第4の変形例]
 図329は、第22の実施形態に係る音声復号装置の第4の変形例310Dの構成を示す図である。
 図330は、第22の実施形態に係る音声復号装置の第4の変形例310Dの動作を示すフローチャートである。
 本変形例と前記第22の実施形態に係る音声復号装置310との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第23の実施形態]
 図133は、第23の実施形態に係る音声復号装置320の構成を示す図である。音声復号装置320の通信装置は、下記音声符号化装置420から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置320は、図133に示すように、機能的には、符号化系列逆多重化部10a、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、高周波数時間包絡形状決定部13a、時間包絡修正部14a、及び合成フィルタバンク部10jを備える。
 図134は、第23の実施形態に係る音声復号装置の動作を示すフローチャートである。
 前記第9の実施形態の音声復号装置18との相違点は、高周波数信号生成部10gが、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号に代えて、低周波数時間包絡修正部10fから出力される時間包絡形状を修正された低周波数信号の複数のサブバンド信号を用いて高周波数信号を生成する点である。
 なお、本実施形態に係る音声復号装置320の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置320の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図135は、第23の実施形態に係る音声符号化装置420の構成を示す図である。音声符号化装置420の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置420は、図135に示すように、機能的には、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、擬似高周波数信号生成部410b、周波数包絡調整部25a、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、時間包絡情報符号化部420a、及び符号化系列多重化部20hを備える。
 図136は、第23の実施形態に係る音声符号化装置420の動作を示すフローチャートである。
 時間包絡情報符号化部420aは、入力音声信号の高周波数信号の時間包絡、波数包絡調整された擬似高周波数信号の時間包絡のうち少なくとも一つ以上を算出し、算出された時間包絡より、高周波数信号に関する時間包絡情報を符号化する(ステップS420-1)。
 なお、時間包絡情報符号化部420aは、低周波数信号に関する時間包絡情報と高周波数信号に関する時間包絡情報とを別々に符号化した符号化系列として出力することができ、また当該低周波数信号に関する時間包絡情報と高周波数信号に関する時間包絡情報とをあわせて符号化した符号化系列として出力することもでき、本発明において時間包絡情報の符号化系列の形式は限定されない。また、第7の実施形態の音声符号化装置26の時間包絡情報符号化部26aの動作と同様に、当該低周波数時間包絡情報と高周波数時間包絡情報の符号化の方法は限定されない。
 なお、前記第22の実施形態に係る音声符号化装置410と同様に、時間包絡情報符号化部420aはステップS410-1及びS420-1の処理を一緒に実施することができる。また、本実施形態に係る音声符号化装置420に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。また、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第23の実施形態の音声復号装置の第1の変形例]
 図137は、第23の実施形態の第1の変形例に係る音声復号装置320Aの構成を示す図である。
 図138は、第23の実施形態の第1の変形例に係る音声復号装置320Aの動作を示すフローチャートである。
 前記第23の実施形態に係る音声復号装置320との相違点は、時間包絡修正部15aに代えて、時間包絡修正部15aAを用いている点である。
 なお、本変形例に係る音声復号装置320Aの低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本変形例に係る音声復号装置320Aの高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 [第23の実施形態の音声復号装置の第2の変形例]
 図331は、第23の実施形態に係る音声復号装置の第2の変形例320Bの構成を示す図である。
 図332は、第23の実施形態に係る音声復号装置の第2の変形例320Bの動作を示すフローチャートである。
 本変形例と第23の実施形態に係る音声復号装置320との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aを具備する点である。
 [第23の実施形態の音声復号装置の第3の変形例]
 図333は、第23の実施形態に係る音声復号装置の第3の変形例320Cの構成を示す図である。
 図334は、第23の実施形態に係る音声復号装置の第3の変形例320Cの動作を示すフローチャートである。
 本変形例と第23の実施形態に係る音声復号装置320との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第23の実施形態の音声復号装置の第4の変形例]
 図335は、第23の実施形態に係る音声復号装置の第4の変形例320Dの構成を示す図である。
 図336は、第23の実施形態に係る音声復号装置の第4の変形例320Dの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第23の実施形態の音声復号装置の第5の変形例]
 図337は、第23の実施形態に係る音声復号装置の第5の変形例320Eの構成を示す図である。
 図338は、第23の実施形態に係る音声復号装置の第5の変形例320Eの動作を示すフローチャートである。
 本変形例と前記第23の実施形態に係る音声復号装置320との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第23の実施形態の音声復号装置の第6の変形例]
 図339は、第23の実施形態に係る音声復号装置の第6の変形例320Fの構成を示す図である。
 図340は、第23の実施形態に係る音声復号装置の第6の変形例320Fの動作を示すフローチャートである。
 本変形例と第23の実施形態の第1の変形例に係る音声復号装置320Aとの相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aAにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aAを具備する点である。
 [第23の実施形態の音声復号装置の第7の変形例]
 図341は、第23の実施形態に係る音声復号装置の第7の変形例320Gの構成を示す図である。
 図342は、第23の実施形態に係る音声復号装置の第7の変形例320Gの動作を示すフローチャートである。
 本変形例と第23の実施形態の第1の変形例に係る音声復号装置320Aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第23の実施形態の音声復号装置の第8の変形例]
 図343は、第23の実施形態に係る音声復号装置の第8の変形例320Hの構成を示す図である。
 図344は、第23の実施形態に係る音声復号装置の第8の変形例320Hの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第23の実施形態の音声復号装置の第9の変形例]
 図345は、第23の実施形態に係る音声復号装置の第9の変形例320Iの構成を示す図である。
 図346は、第23の実施形態に係る音声復号装置の第9の変形例320Iの動作を示すフローチャートである。
 本変形例と前記第23の実施形態の第1の変形例に係る音声復号装置320Aとの相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第24の実施形態]
 図139は、第24の実施形態に係る音声復号装置330の構成を示す図である。音声復号装置330の通信装置は、下記音声符号化装置430から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置330は、図139に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、時間包絡修正部300a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部170cを備える。
 図140は、第24の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図140のフローチャートの順番に制限されない。
 なお、本変形例に係る音声復号装置330の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本変形例に係る音声復号装置330の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図141は、第24の実施形態に係る音声符号化装置430の構成を示す図である。音声符号化装置430の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置430は、図141に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j、時間包絡情報符号化部400a、及び符号化系列多重化部270cを備える。
 図142は、第24の実施形態に係る音声符号化装置430の動作を示すフローチャートである。時間包絡情報符号化部400aは、ステップS400-1にて時間包絡情報を算出・符号化する。なお、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第24の実施形態の音声復号装置の第1の変形例]
 図347は、第24の実施形態に係る音声復号装置の第1の変形例330Aの構成を示す図である。
 図348は、第24の実施形態に係る音声復号装置の第1の変形例330Aの動作を示すフローチャートである。
 本変形例と第24の実施形態に係る音声復号装置330との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部300aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部300aAを具備する点である。
 [第24の実施形態の音声復号装置の第2の変形例]
 図349は、第24の実施形態に係る音声復号装置の第2の変形例330Bの構成を示す図である。
 図350は、第24の実施形態に係る音声復号装置の第2の変形例330Bの動作を示すフローチャートである。
 本変形例と第24の実施形態に係る音声復号装置330との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第24の実施形態の音声復号装置の第3の変形例]
 図351は、第24の実施形態に係る音声復号装置の第3の変形例330Cの構成を示す図である。
 図352は、第24の実施形態に係る音声復号装置の第3の変形例330Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部300aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第24の実施形態の音声復号装置の第4の変形例]
 図353は、第24の実施形態に係る音声復号装置の第4の変形例330Dの構成を示す図である。
 図354は、第24の実施形態に係る音声復号装置の第4の変形例330Dの動作を示すフローチャートである。
 本変形例と前記第24の実施形態に係る音声復号装置330との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第25の実施形態]
 図143は、第25の実施形態に係る音声復号装置340の構成を示す図である。音声復号装置340の通信装置は、下記音声符号化装置440から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置340は、図143に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、時間包絡修正部14a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、及び合成フィルタバンク部170cを備える。
 図144は、第25の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図144のフローチャートの順番に制限されない。
 なお、本変形例に係る音声復号装置340の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本変形例に係る音声復号装置340の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図145は、第25の実施形態に係る音声符号化装置440の構成を示す図である。音声符号化装置440の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置440は、図145に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部20e、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、擬似高周波数信号生成部410b、時間包絡情報符号化部410a、並びに、符号化系列多重化部270cを備える。
 図146は、第25の実施形態に係る音声符号化装置440の動作を示すフローチャートである。なお、本実施形態に係る音声符号化装置440に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。また、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第25の実施形態の音声復号装置の第1の変形例]
 図355は、第25の実施形態に係る音声復号装置の第1の変形例340Aの構成を示す図である。
 図356は、第25の実施形態に係る音声復号装置の第1の変形例340Aの動作を示すフローチャートである。
 本変形例と第25の実施形態に係る音声復号装置340との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部14aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部17aを具備する点である。
 [第25の実施形態の音声復号装置の第2の変形例]
 図357は、第25の実施形態に係る音声復号装置の第2の変形例340Bの構成を示す図である。
 図358は、第25の実施形態に係る音声復号装置の第2の変形例340Bの動作を示すフローチャートである。
 本変形例と第25の実施形態に係る音声復号装置340との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第25の実施形態の音声復号装置の第3の変形例]
 図359は、第25の実施形態に係る音声復号装置の第3の変形例340Cの構成を示す図である。
 図360は、第25の実施形態に係る音声復号装置の第3の変形例340Cの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部17a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第25の実施形態の音声復号装置の第4の変形例]
 図361は、第25の実施形態に係る音声復号装置の第4の変形例340Dの構成を示す図である。
 図362は、第25の実施形態に係る音声復号装置の第4の変形例340Dの動作を示すフローチャートである。
 本変形例と前記第25の実施形態に係る音声復号装置340との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第26の実施形態]
 図147は、第26の実施形態に係る音声復号装置350の構成を示す図である。音声復号装置350の通信装置は、下記音声符号化装置450から出力される多重化された符号化系列を受信し、更に、復号した音声信号を外部に出力する。音声復号装置350は、図147に示すように、機能的には、符号化系列逆多重化部170a、スイッチ群170b、コア復号部10b、分析フィルタバンク部10c、符号化系列解析部13c、低周波数時間包絡形状決定部10e、低周波数時間包絡修正部10f、高周波数時間包絡形状決定部13a、高周波数信号生成部10g、復号/逆量子化部10h、周波数包絡調整部10i、時間包絡修正部15a、及び合成フィルタバンク部170cを備える。
 図148は、第26の実施形態に係る音声復号装置の動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図148のフローチャートの順番に制限されない。
 なお、本実施形態に係る音声復号装置350の低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本実施形態に係る音声復号装置350の高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 図149は、第26の実施形態に係る音声符号化装置450の構成を示す図である。音声符号化装置450の通信装置は、符号化の対象となる音声信号を外部から受信し、更に、符号化された符号化系列を外部に出力する。音声符号化装置450は、図149に示すように、機能的には、高周波数信号生成制御情報符号化部270a、ダウンサンプリング部20a、コア符号化部20b、分析フィルタバンク部20c及び20c1、制御パラメータ符号化部20d、包絡算出部270d、量子化/符号化部20f、コア復号信号生成部20i、サブバンド信号パワー算出部20j及び24b、擬似高周波数信号生成部410b、時間包絡情報符号化部420a、並びに、符号化系列多重化部270cを備える。
 図150は、第26の実施形態に係る音声符号化装置450の動作を示すフローチャートである。なお、本実施形態に係る音声符号化装置450に対して、本発明の第7の実施形態の音声符号化装置の第1の変形例が適用できることは明白である。また、高周波数信号の時間包絡情報は、低周波数信号の時間包絡情報を元に生成可能である。
 [第26の実施形態の音声復号装置の第1の変形例]
 図151は、第26の実施形態の第1の変形例に係る音声復号装置350Aの構成を示す図である。
 図152は、第26の実施形態の第1の変形例に係る音声復号装置350Aの動作を示すフローチャートである。なお、ステップS170-2およびS170-3の処理を行う順番については、高周波数信号の時間包絡形状の決定および帯域拡張部分の復号・逆量子化の処理の前であればよく、図152のフローチャートの順番に制限されない。
 前記第26の実施形態に係る音声復号装置350との相違点は、時間包絡修正部15aに代えて、時間包絡修正部15aAを用いている点である。
 なお、本変形例に係る音声復号装置350Aの低周波数時間包絡形状決定部10eに対して、本発明の第1の実施形態の音声復号装置の第1、第2、及び第3の変形例が適用できることは明白である。
 さらには、本変形例に係る音声復号装置350Aの高周波数時間包絡形状決定部13aに対して、本発明の第4の実施形態の音声復号装置の第1、第2、及び第3の変形例、本発明第5の実施形態の音声復号装置の第1の変形例、及び本発明第7の実施形態の音声復号装置の第1の変形例が適用できることは明白である。
 [第26の実施形態の音声復号装置の第2の変形例]
 図363は、第26の実施形態に係る音声復号装置の第2の変形例350Bの構成を示す図である。
 図364は、第26の実施形態に係る音声復号装置の第2の変形例350Bの動作を示すフローチャートである。
 本変形例と第26の実施形態に係る音声復号装置350との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aを具備する点である。
 [第26の実施形態の音声復号装置の第3の変形例]
 図365は、第26の実施形態に係る音声復号装置の第3の変形例350Cの構成を示す図である。
 図366は、第26の実施形態に係る音声復号装置の第3の変形例350Cの動作を示すフローチャートである。
 本変形例と第26の実施形態に係る音声復号装置350との相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第26の実施形態の音声復号装置の第4の変形例]
 図367は、第26の実施形態に係る音声復号装置の第4の変形例350Dの構成を示す図である。
 図368は、第26の実施形態に係る音声復号装置の第4の変形例350Dの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18a、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第26の実施形態の音声復号装置の第5の変形例]
 図369は、第26の実施形態に係る音声復号装置の第5の変形例350Eの構成を示す図である。
 図370は、第26の実施形態に係る音声復号装置の第5の変形例350Eの動作を示すフローチャートである。
 本変形例と前記第26の実施形態に係る音声復号装置350との相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第26の実施形態の音声復号装置の第6の変形例]
 図371は、第26の実施形態に係る音声復号装置の第6の変形例350Fの構成を示す図である。
 図372は、第26の実施形態に係る音声復号装置の第6の変形例350Fの動作を示すフローチャートである。
 本変形例と第26の実施形態の第1の変形例に係る音声復号装置350Aとの相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、及び10eBでもよいことは明白)、時間包絡修正部15aAにかえて、低周波数時間包絡形状決定部16b、時間包絡修正部18aAを具備する点である。
 [第26の実施形態の音声復号装置の第7の変形例]
 図373は、第26の実施形態に係る音声復号装置の第7の変形例350Gの構成を示す図である。
 図374は、第26の実施形態に係る音声復号装置の第7の変形例350Gの動作を示すフローチャートである。
 本変形例と第26の実施形態の第1の変形例に係る音声復号装置350Aとの相違点は、高周波数時間包絡形状決定部13aC(13a、13aA、及び13aBでもよいことは明白)、低周波数時間包絡修正部10fにかえて、高周波数時間包絡形状決定部16d、低周波数時間包絡修正部16eを具備する点である。
 [第26の実施形態の音声復号装置の第8の変形例]
 図375は、第26の実施形態に係る音声復号装置の第8の変形例350Hの構成を示す図である。
 図376は、第26の実施形態に係る音声復号装置の第8の変形例350Hの動作を示すフローチャートである。
 本変形例においては、前記低周波数時間包絡形状決定部16b、前記時間包絡修正部18aA、前記高周波数時間包絡形状決定部16d、及び前記低周波数時間包絡修正部16eを具備する。
 [第26の実施形態の音声復号装置の第9の変形例]
 図377は、第26の実施形態に係る音声復号装置の第9の変形例350Iの構成を示す図である。
 図378は、第26の実施形態に係る音声復号装置の第9の変形例350Iの動作を示すフローチャートである。
 本変形例と前記第26の実施形態の第1の変形例に係る音声復号装置350Aとの相違点は、低周波数時間包絡形状決定部10e及び高周波数時間包絡形状決定部13aにかえて時間包絡形状決定部16fを具備する点である。
 [第27の実施形態の音声復号装置]
 図379は、第27の実施形態に係る音声復号装置360の構成を示す図である。
 図380は、第27の実施形態に係る音声復号装置360の動作を示すフローチャートである。
 時間包絡修正部360aは、低周波数時間包絡形状決定部10eC(10e、10eA、10eBでも良いことは明白)から受け取る時間包絡形状と、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号と周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(S360-1)。
 周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡形状の修正では、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正してもよい。
 低周波数時間包絡形状決定部10eC(10e、10eA、10eBでも良いことは明白)から受け取る時間包絡形状と高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状は同一であってもよく、異なってもよい。
 [第27の実施形態の音声復号装置の第1の変形例]
 図381は、第27の実施形態に係る音声復号装置の第1の変形例360Aの構成を示す図である。
 図382は、第27の実施形態に係る音声復号装置の第1の変形例360Aの動作を示すフローチャートである。
 本変形例と前記第27の実施形態に係る音声復号装置360との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、10eBでも良いことは明白)及び高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)にかえて時間包絡形状決定部360bを具備する点である。
 時間包絡決定部360bは、符号化系列逆多重化部10aからの低周波時間包絡形状に関する情報、コア復号部10bからの低周波数信号、分析フィルタバンク部10cからの低周波数信号の複数のサブバンド信号、符号化系列解析部13cからの高周波時間包絡形状に関する情報のうち少なくとも一つに基づいて時間包絡形状を決定する(S360-2)。
 決定される時間包絡形状は、低周波数信号と高周波数信号のそれぞれに対して異なってもよく、また低周波数信号と高周波数信号に対して同一で単一の時間包絡形状であってもよい。
 時間包絡修正部360aAは、前記時間包絡形状決定部360bから受け取る時間包絡形状に基づいて、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号と周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(S360-1a)。
 周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡形状の修正では、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正してもよい。
 [第28の実施形態の音声復号装置]
 図383は、第28の実施形態に係る音声復号装置370の構成を示す図である。
 図384は、第28の実施形態に係る音声復号装置370の動作を示すフローチャートである。
 時間包絡修正部370aは、低周波数時間包絡形状決定部10eC(10e、10eA、10eBでも良いことは明白)から受け取る時間包絡形状と、高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)から受け取る時間包絡形状のうち少なくとも一つ以上に基づいて、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号の時間包絡の形状を修正し、前記高周波数信号生成情報に基づき高周波数信号を生成すると判断された場合、周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状も修正する(S370-1)。
 周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡形状の修正では、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正してもよい。
 [第28の実施形態の音声復号装置の第1の変形例]
 図385は、第28の実施形態に係る音声復号装置の第1の変形例370Aの構成を示す図である。
 図386は、第28の実施形態に係る音声復号装置の第1の変形例370Aの動作を示すフローチャートである。
 本変形例と前記第28の実施形態に係る音声復号装置370との相違点は、低周波数時間包絡形状決定部10eC(10e、10eA、10eBでも良いことは明白)及び高周波数時間包絡形状決定部13aC(13a、13aA、13aBでもよいことは明白)にかえて時間包絡形状決定部360bを具備する点である。
 時間包絡修正部370aAは、前記時間包絡形状決定部360bから受け取る時間包絡形状に基づいて、分析フィルタバンク部10cから出力される低周波数信号の複数のサブバンド信号の時間包絡の形状を修正し、前記高周波数信号生成情報に基づき高周波数信号を生成すると判断された場合、周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡の形状を修正する(S360-1a)。
 周波数包絡調整部10iから出力される高周波数信号の複数のサブバンド信号の時間包絡形状の修正では、周波数包絡調整部10iより分離した形で出力された高周波数信号を構成する成分のうち少なくとも一つ以上の時間包絡形状を修正してもよい。
 [第29の実施形態の音声復号装置]
 図387は、第29の実施形態に係る音声復号装置380の構成を示す図である。
 図388は、第29の実施形態に係る音声復号装置380の動作を示すフローチャートである。
 時間包絡修正部380aは、低周波数時間包絡形状決定部100cで決定される時間包絡形状と、高周波数時間包絡形状決定部110bで決定される時間包絡形状のうち少なくとも一つ以上に基づいて、低周波数復号部100bから出力される低周波数信号と高周波数復号部100eから出力される高周波数信号の時間包絡の形状を修正する(S380-1)。
 低周波数時間包絡形状決定部100cで決定される時間包絡形状と高周波数時間包絡形状決定部110bで決定される時間包絡形状は同一であってもよく、異なってもよい。
 [第29の実施形態の音声復号装置の第1の変形例]
 図389は、第29の実施形態に係る音声復号装置の第1の変形例380Aの構成を示す図である。
 図390は、第29の実施形態に係る音声復号装置の第1の変形例380Aの動作を示すフローチャートである。
 本変形例と前記第29の実施形態に係る音声復号装置380との相違点は、低周波数時間包絡形状決定部100c及び高周波数時間包絡形状決定部110bにかえて時間包絡形状決定部120fを、時間包絡修正部380aにかえて時間包絡修正部380aAを具備する点である。
 時間包絡修正部380aAは、前記時間包絡形状決定部120fにて決定される時間包絡形状に基づいて、低周波数復号部100bから出力される低周波数信号と高周波数復号部100eから出力される高周波数信号の時間包絡の形状を修正する(S380-1a)。
 [第30の実施形態の音声復号装置]
 図391は、第30の実施形態に係る音声復号装置390の構成を示す図である。
 図392は、第30の実施形態に係る音声復号装置390の動作を示すフローチャートである。
 本変形例においては、時間包絡修正部380aAは、時間包絡形状決定部120fにて決定される時間包絡形状に基づいて、低周波数復号部100bから出力される低周波数信号の時間包絡の形状を修正し、前記高周波数信号生成情報に基づき高周波数信号を生成すると判断された場合、高周波数復号部100eから出力される高周波数信号の時間包絡の形状も修正する(S380-1a)。
 1、10、11、12、13、14、15、15A、16、17、18、18A、100、110、120、130、140、150、160、170、180、190、190A、300、310、320、320A、330、340、350、350A、360、370、380、390…音声復号装置、1a、10d、13c…符号化系列解析部、1b…音声復号部、1c、16f、120f、360b…時間包絡形状決定部、1d、13a、13b、14a、15a、15aA、16c、17a、18a、18aA、300a、300aA、360a、360aA、370a、370aA、380a、380aA…時間包絡修正部、2、20、20A、21、22、23、24、25、26、27、28、200、210、220、230、240、250、260、270、280、290、400、410、420、430、440、450…音声符号化装置、2a…音声符号化部、2b、20g、20gA、21a、21aA、22b、22bA、22bB、23a、23aA、24c、25b、26a、26aA、27a、28a、270b、280a、290a、400a、410a、420a…時間包絡情報符号化部、2c、20h、200d、210b、220b、250b、250c、270c…符号化系列多重化部、10a、10aA、100a、110a、120a、150a、170a…符号化系列逆多重化部、10b…コア復号部、10c、20c、20c1…分析フィルタバンク部、10e、10eA、10eB、10eC、16b、100c、120c…低周波数時間包絡形状決定部、10f、12a、16e、100d、120e…低周波数時間包絡修正部、10g…高周波数信号生成部、10h…復号/逆量子化部、10i、25a…周波数包絡調整部、10j、170c…合成フィルタバンク部、13a、13aA、13aB、13aC、14b、16a、16d、110b、120b、120bA…高周波数時間包絡形状決定部、20a…ダウンサンプリング部、20b…コア符号化部、20d…制御パラメータ符号化部、20e、270d…包絡算出部、20f…量子化/符号化部、20i…コア復号信号生成部、20j、24b…サブバンド信号パワー算出部、22a、22a1、22aB…時間包絡算出部、24a、410b…擬似高周波数信号生成部、100b…低周波数復号部、100e、110e、130b…高周波数復号部、100f、150c…低周波数/高周波数信号合成部、110c、120d、130a、140a、140b…高周波数時間包絡修正部、150b、170b…スイッチ群、200a…低周波数符号化部、200b…高周波数符号化部、200c…低周波数時間包絡情報符号化部、210a、220a、230a…高周波数信号生成制御情報符号化部、250a、270a…高周波数信号生成制御情報符号化部、360b…時間包絡決定部。

Claims (38)

  1.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を解析する符号化系列解析部と、
     前記符号化系列解析部から前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号部と、
     前記符号化系列解析部及び前記音声復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正部と、
     を備える音声復号装置。
  2.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、
     前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号部から高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、
     を備える音声復号装置。
  3.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、
     前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数復号部から低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、
     を備える音声復号装置。
  4.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、
     前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、
     前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部と、
     を備える音声復号装置。
  5.  前記高周波数復号部は、前記符号化系列逆多重化部、前記低周波数復号部及び前記低周波数時間包絡修正部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する、
     請求項2又は4に記載の音声復号装置。
  6.  前記高周波数時間包絡修正部は、前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、
     前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施する、
     請求項3又は4に記載の音声復号装置。
  7.  前記高周波数復号部は、
     前記低周波数復号部にて復号された低周波数信号を受け取り、当該信号をサブバンド信号に分割する分析フィルタ部と、
     少なくとも前記分析フィルタ部で分割されたサブバンド信号を用いて高周波数信号を生成する高周波数信号生成部と、
     前記高周波数信号生成部で生成された高周波数信号の周波数包絡を調整する周波数包絡調整部と、
     を備え、
     前記中間信号は、前記高周波数信号生成部で生成された高周波数信号である、
     請求項6に記載の音声復号装置。
  8.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、
     前記音声信号を符号化する音声符号化部と、
     前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化部と、
     前記音声符号化部で得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化部で得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、
     を備える音声符号化装置。
  9.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、
     を備える音声符号化装置。
  10.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、
     を備える音声符号化装置。
  11.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部と、
     を備える音声符号化装置。
  12.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を解析する符号化系列解析ステップと、
     解析後の前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号ステップと、
     前記符号化系列解析ステップ及び前記音声復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定ステップと、
     前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正ステップと、
     を備える音声復号方法。
  13.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、
     分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定ステップと、
     前記低周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、
     前記低周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号ステップで得られた高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、
     を備える音声復号方法。
  14.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、
     分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、
     前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定ステップと、
     前記高周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、
     前記低周波数復号ステップで得られた低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、
     を備える音声復号方法。
  15.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化ステップと、
     前記符号化系列逆多重化ステップで得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定ステップと、
     前記低周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、
     前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定ステップと、
     前記高周波数時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、
     前記低周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた前記時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成ステップと、
     を備える音声復号方法。
  16.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、
     前記音声信号を符号化する音声符号化ステップと、
     前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化ステップと、
     前記音声符号化ステップで得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化ステップで得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、
     を備える音声符号化方法。
  17.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、
     前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、
     前記音声信号、前記低周波数符号化ステップの符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化ステップと、
     前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化ステップで得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、
     を備える音声符号化方法。
  18.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、
     前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、
     前記音声信号、前記低周波数符号化ステップの符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化ステップの符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化ステップと、
     前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化ステップで得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、
     を備える音声符号化方法。
  19.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、により実行される音声符号化方法であって、
     前記音声信号の低周波数成分を符号化する低周波数符号化ステップと、
     前記音声信号の高周波数成分を符号化する高周波数符号化ステップと、
     前記音声信号、前記低周波数符号化ステップの符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化ステップと、
     前記音声信号、前記低周波数符号化ステップの符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化ステップの符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化ステップと、
     前記低周波数符号化ステップで得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化ステップで得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化ステップで得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化ステップで得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化ステップと、
     を備える音声符号化方法。
  20.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を解析する符号化系列解析部と、
     前記符号化系列解析部から前記符号化された音声信号を含む符号化系列を受け取り、復号して音声信号を得る音声復号部と、
     前記符号化系列解析部及び前記音声復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて、復号された音声信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された音声信号の時間包絡形状を修正し出力する時間包絡修正部、
     として機能させるための音声復号プログラム。
  21.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、
     前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数復号部から高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、
     として機能させるための音声復号プログラム。
  22.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、
     前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数復号部から低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、
     として機能させるための音声復号プログラム。
  23.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を、少なくとも、符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列とに分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第1の情報を受け取り、当該第1の情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより第2の情報を受け取り、当該第2の情報に基づいて、復号された低周波数信号の時間包絡形状を決定する低周波数時間包絡形状決定部と、
     前記低周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより第3の情報を受け取り、当該第3の情報に基づいて、生成された高周波数信号の時間包絡形状を決定する高周波数時間包絡形状決定部と、
     前記高周波数時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡形状を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡形状を修正された高周波数信号を受け取り、前記時間包絡形状を修正された低周波数信号と前記時間包絡形状を修正された高周波数信号とを合成することで、出力する音声信号を得る低周波数/高周波数信号合成部、
     として機能させるための音声復号プログラム。
  24.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、
     前記音声信号を符号化する音声符号化部と、
     前記音声信号の時間包絡情報を算出し符号化する時間包絡情報符号化部と、
     前記音声符号化部で得られる前記音声信号を含む符号化系列と、前記時間包絡情報符号化部で得られる時間包絡情報の符号化系列とを多重化する符号化系列多重化部、
     として機能させるための音声符号化プログラム。
  25.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、
     として機能させるための音声符号化プログラム。
  26.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、
     として機能させるための音声符号化プログラム。
  27.  入力される音声信号を符号化して符号化系列を出力する音声符号化装置、に設けられたコンピュータを、
     前記音声信号の低周波数成分を符号化する低周波数符号化部と、
     前記音声信号の高周波数成分を符号化する高周波数符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、及び当該低周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、低周波数成分の時間包絡情報を算出し符号化する低周波数時間包絡情報符号化部と、
     前記音声信号、前記低周波数符号化部の符号化結果、当該低周波数符号化過程で得られる情報、前記高周波数符号化部の符号化結果、及び当該高周波数符号化過程で得られる情報のうち少なくとも一つ以上に基づいて、高周波数成分の時間包絡情報を算出し符号化する高周波数時間包絡情報符号化部と、
     前記低周波数符号化部で得られる前記低周波数成分を含む符号化系列と、前記高周波数符号化部で得られる前記高周波数成分を含む符号化系列と、前記低周波数時間包絡情報符号化部で得られる低周波数成分の時間包絡情報の符号化系列と、前記高周波数時間包絡情報符号化部で得られる高周波数成分の時間包絡情報の符号化系列とを多重化する符号化系列多重化部、
     として機能させるための音声符号化プログラム。
  28.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部と、
     を備える音声復号装置。
  29.  符号化された音声信号を復号して音声信号を出力する音声復号装置であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記低周波数復号部から復号された低周波数信号を受け取り、前記高周波数復号部から生成された高周波数信号を受け取り、前記時間包絡形状決定部にて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正部と、
     前記時間包絡修正部から時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部と、
     を備える音声復号装置。
  30.  前記高周波数復号部は、前記符号化系列逆多重化部、前記低周波数復号部及び前記低周波数時間包絡修正部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する、
     請求項28に記載の音声復号装置。
  31.  前記高周波数時間包絡修正部は、前記時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、
     前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施する、
     請求項28又は30に記載の音声復号装置。
  32.  前記高周波数復号部は、前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する、
     請求項29に記載の音声復号装置。
  33.  前記時間包絡修正部は、前記時間包絡形状決定部にて決定された時間包絡形状に基づいて、前記高周波数復号部にて高周波数信号を生成する際の中間信号の時間包絡形状を修正し、
     前記高周波数復号部は、前記時間包絡形状を修正された前記中間信号を用いて、残存する高周波数信号を生成する処理を実施する、
     請求項29又は32に記載の音声復号装置。
  34.  前記高周波数復号部は、
     前記低周波数復号部にて復号された低周波数信号を受け取り、当該信号をサブバンド信号に分割する分析フィルタ部と、
     少なくとも前記分析フィルタ部で分割されたサブバンド信号を用いて高周波数信号を生成する高周波数信号生成部と、
     前記高周波数信号生成部で生成された高周波数信号の周波数包絡を調整する周波数包絡調整部と、
     を備え、
     前記中間信号は、前記高周波数信号生成部で生成された高周波数信号である、
     請求項31又は33に記載の音声復号装置。
  35.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化ステップと、
     分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号ステップと、
     前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定ステップと、
     前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正ステップと、
     前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正ステップと、
     前記低周波数時間包絡修正ステップで得られた時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正ステップで得られた時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成ステップと、
     を備える音声復号方法。
  36.  符号化された音声信号を復号して音声信号を出力する音声復号装置、により実行される音声復号方法であって、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化ステップと、
     分割により得られた前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号ステップと、
     前記符号化系列逆多重化ステップ及び前記低周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号ステップと、
     前記符号化系列逆多重化ステップ、前記低周波数復号ステップ、及び前記高周波数復号ステップのうち少なくとも一つで得られた情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定ステップと、
     前記低周波数復号ステップで得られた復号された低周波数信号を受け取り、前記高周波数復号ステップで得られた生成された高周波数信号を受け取り、前記時間包絡形状決定ステップにて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正ステップと、
     前記時間包絡修正ステップで得られた時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成ステップと、
     を備える音声復号方法。
  37.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記復号された低周波数信号の時間包絡形状を修正し出力する低周波数時間包絡修正部と、
     前記時間包絡形状決定部にて決定された時間包絡形状に基づき前記生成された高周波数信号の時間包絡形状を修正し出力する高周波数時間包絡修正部と、
     前記低周波数時間包絡修正部から時間包絡を修正された低周波数信号を受け取り、前記高周波数時間包絡修正部から時間包絡を修正された高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部、
     として機能させるための音声復号プログラム。
  38.  符号化された音声信号を復号して音声信号を出力する音声復号装置、に設けられたコンピュータを、
     前記符号化された音声信号を含む符号化系列を、少なくとも符号化された前記音声信号の低周波数信号の情報を含む符号化系列と、符号化された前記音声信号の高周波数信号の情報を含む符号化系列に分割する符号化系列逆多重化部と、
     前記符号化系列逆多重化部から前記符号化された低周波数信号の情報を含む符号化系列を受け取り、復号して低周波数信号を得る低周波数復号部と、
     前記符号化系列逆多重化部及び前記低周波数復号部のうち少なくとも一つより情報を受け取り、当該情報に基づいて高周波数信号を生成する高周波数復号部と、
     前記符号化系列逆多重化部、前記低周波数復号部、及び前記高周波数復号部のうち少なくとも一つより情報を受け取り、復号された低周波数信号及び生成された高周波数信号の時間包絡形状を決定する時間包絡形状決定部と、
     前記低周波数復号部から復号された低周波数信号を受け取り、前記高周波数復号部から生成された高周波数信号を受け取り、前記時間包絡形状決定部にて決定された時間包絡形状に基づき、前記復号された低周波数信号及び前記生成された高周波数信号の時間包絡形状を修正し出力する時間包絡修正部と、
     前記時間包絡修正部から時間包絡を修正された低周波数信号及び高周波数信号を受け取り、出力する音声信号を合成する低周波数/高周波数信号合成部、
     として機能させるための音声復号プログラム。
PCT/JP2013/061105 2012-04-27 2013-04-12 音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム WO2013161592A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22178627.0A EP4086898A1 (en) 2012-04-27 2013-04-12 Audio decoding device
EP13781215.2A EP2843658A4 (en) 2012-04-27 2013-04-12 AUDIO DECODING DEVICE, AUDIO ENCODING DEVICE, AUDIO DECODING METHOD, AUDIO ENCODING METHOD, AUDIO DECODING PROGRAM, AND AUDIO CODING PROGRAM
CN201380021992.XA CN104246876B (zh) 2012-04-27 2013-04-12 声音解码装置、声音编码装置、声音解码方法及声音编码方法
US14/523,260 US9761240B2 (en) 2012-04-27 2014-10-24 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US15/635,191 US10068584B2 (en) 2012-04-27 2017-06-27 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US16/047,904 US10714113B2 (en) 2012-04-27 2018-07-27 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US16/894,748 US11562760B2 (en) 2012-04-27 2020-06-05 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012103519 2012-04-27
JP2012-103519 2012-04-27
JP2012254496A JP5997592B2 (ja) 2012-04-27 2012-11-20 音声復号装置
JP2012-254496 2012-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/523,260 Continuation US9761240B2 (en) 2012-04-27 2014-10-24 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program

Publications (1)

Publication Number Publication Date
WO2013161592A1 true WO2013161592A1 (ja) 2013-10-31

Family

ID=49482918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061105 WO2013161592A1 (ja) 2012-04-27 2013-04-12 音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム

Country Status (6)

Country Link
US (4) US9761240B2 (ja)
EP (2) EP4086898A1 (ja)
JP (1) JP5997592B2 (ja)
CN (2) CN107068159B (ja)
TW (1) TWI576827B (ja)
WO (1) WO2013161592A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023495A1 (en) * 2014-08-15 2016-02-18 Huawei Technologies Co., Ltd. System and method for generating waveforms and utilization thereof
CN106663449A (zh) * 2014-08-06 2017-05-10 索尼公司 编码装置和方法、解码装置和方法以及程序
US10410647B2 (en) 2014-03-24 2019-09-10 Ntt Docomo, Inc. Audio decoding device, audio encoding device, audio decoding method, audio encoding method, audio decoding program, and audio encoding program
WO2020019879A1 (zh) * 2018-07-26 2020-01-30 厦门声连网信息科技有限公司 一种声波信号编码、解码方法及装置
US11562760B2 (en) 2012-04-27 2023-01-24 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754899B2 (ja) 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5850216B2 (ja) 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5707842B2 (ja) 2010-10-15 2015-04-30 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
JP6037156B2 (ja) 2011-08-24 2016-11-30 ソニー株式会社 符号化装置および方法、並びにプログラム
JP5975243B2 (ja) * 2011-08-24 2016-08-23 ソニー株式会社 符号化装置および方法、並びにプログラム
JP6200034B2 (ja) * 2012-04-27 2017-09-20 株式会社Nttドコモ 音声復号装置
JP6531649B2 (ja) 2013-09-19 2019-06-19 ソニー株式会社 符号化装置および方法、復号化装置および方法、並びにプログラム
CN105849801B (zh) 2013-12-27 2020-02-14 索尼公司 解码设备和方法以及程序
BR112017018145B1 (pt) * 2015-02-26 2023-11-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V Aparelho e método para processamento de um sinal de áudio para obter um sinal de áudio processado utilizando um envelope de domínio de tempo alvo
JP6511033B2 (ja) * 2016-10-31 2019-05-08 株式会社Nttドコモ 音声符号化装置および音声符号化方法
CN111092667B (zh) * 2019-12-18 2023-09-01 公安部第三研究所 一种对讲终端音频建立时间的测试方法及测试系统
CN115171709B (zh) * 2022-09-05 2022-11-18 腾讯科技(深圳)有限公司 语音编码、解码方法、装置、计算机设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191121B2 (en) 1999-10-01 2007-03-13 Coding Technologies Sweden Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
JP2009545778A (ja) * 2006-07-31 2009-12-24 クゥアルコム・インコーポレイテッド 非アクティブフレームの広帯域符号化および復号化を行うためのシステム、方法、および装置
JP2011034046A (ja) * 2009-04-03 2011-02-17 Ntt Docomo Inc 音声符号化装置、音声復号装置、音声符号化方法、音声復号方法、音声符号化プログラム及び音声復号プログラム

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684920A (en) * 1994-03-17 1997-11-04 Nippon Telegraph And Telephone Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein
DE19526366A1 (de) * 1995-07-20 1997-01-23 Bosch Gmbh Robert Verfahren zur Redundanzreduktion bei der Codierung von mehrkanaligen Signalen und Vorrichtung zur Dekodierung von redundanzreduzierten, mehrkanaligen Signalen
JP3283413B2 (ja) 1995-11-30 2002-05-20 株式会社日立製作所 符号化復号方法、符号化装置および復号装置
US5737716A (en) * 1995-12-26 1998-04-07 Motorola Method and apparatus for encoding speech using neural network technology for speech classification
US5825320A (en) * 1996-03-19 1998-10-20 Sony Corporation Gain control method for audio encoding device
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
AUPP829899A0 (en) * 1999-01-27 1999-02-18 Motorola Australia Pty Ltd Method and apparatus for time-warping a digitised waveform to have an approximately fixed period
JP3660599B2 (ja) 2001-03-09 2005-06-15 日本電信電話株式会社 音響信号の立ち上がり・立ち下がり検出方法及び装置並びにプログラム及び記録媒体
SE0202159D0 (sv) * 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
JP3469567B2 (ja) * 2001-09-03 2003-11-25 三菱電機株式会社 音響符号化装置、音響復号化装置、音響符号化方法及び音響復号化方法
WO2003042979A2 (en) * 2001-11-14 2003-05-22 Matsushita Electric Industrial Co., Ltd. Encoding device and decoding device
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
US7447631B2 (en) * 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
US7069212B2 (en) * 2002-09-19 2006-06-27 Matsushita Elecric Industrial Co., Ltd. Audio decoding apparatus and method for band expansion with aliasing adjustment
CN101656075B (zh) * 2004-05-14 2012-08-29 松下电器产业株式会社 音频解码装置、音频解码方法以及通信终端和基站装置
GB0421346D0 (en) * 2004-09-24 2004-10-27 Smith Jonathan S R Product representations of amplitude and frequency modulated signals
US8204261B2 (en) * 2004-10-20 2012-06-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Diffuse sound shaping for BCC schemes and the like
ATE480050T1 (de) * 2005-01-11 2010-09-15 Agency Science Tech & Res Kodierer, dekodierer, verfahren zum kodieren/dekodieren, maschinell lesbare medien und computerprogramm-elemente
CN102163429B (zh) * 2005-04-15 2013-04-10 杜比国际公司 用于处理去相干信号或组合信号的设备和方法
TWI317933B (en) * 2005-04-22 2009-12-01 Qualcomm Inc Methods, data storage medium,apparatus of signal processing,and cellular telephone including the same
DE102005032724B4 (de) * 2005-07-13 2009-10-08 Siemens Ag Verfahren und Vorrichtung zur künstlichen Erweiterung der Bandbreite von Sprachsignalen
KR101373207B1 (ko) 2006-03-20 2014-03-12 오렌지 오디오 디코더에서 신호를 사후-프로세싱하는 방법
GB0617086D0 (en) 2006-08-30 2006-10-11 K9 Ind Ltd Bicycle suspension
DE102006049154B4 (de) * 2006-10-18 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kodierung eines Informationssignals
JP4871894B2 (ja) * 2007-03-02 2012-02-08 パナソニック株式会社 符号化装置、復号装置、符号化方法および復号方法
JP4984983B2 (ja) * 2007-03-09 2012-07-25 富士通株式会社 符号化装置および符号化方法
US7885819B2 (en) * 2007-06-29 2011-02-08 Microsoft Corporation Bitstream syntax for multi-process audio decoding
KR101475724B1 (ko) * 2008-06-09 2014-12-30 삼성전자주식회사 오디오 신호 품질 향상 장치 및 방법
BRPI0910517B1 (pt) * 2008-07-11 2022-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Um aparelho e um método para calcular um número de envelopes espectrais a serem obtidos por um codificador de replicação de banda espectral (sbr)
JP5203077B2 (ja) 2008-07-14 2013-06-05 株式会社エヌ・ティ・ティ・ドコモ 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
US8352279B2 (en) * 2008-09-06 2013-01-08 Huawei Technologies Co., Ltd. Efficient temporal envelope coding approach by prediction between low band signal and high band signal
WO2010028297A1 (en) * 2008-09-06 2010-03-11 GH Innovation, Inc. Selective bandwidth extension
WO2010111876A1 (zh) * 2009-03-31 2010-10-07 华为技术有限公司 一种信号去噪的方法和装置及音频解码系统
JP4921611B2 (ja) 2009-04-03 2012-04-25 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
KR101764926B1 (ko) * 2009-12-10 2017-08-03 삼성전자주식회사 음향 통신을 위한 장치 및 방법
US9294060B2 (en) * 2010-05-25 2016-03-22 Nokia Technologies Oy Bandwidth extender
FR2961980A1 (fr) * 2010-06-24 2011-12-30 France Telecom Controle d'une boucle de retroaction de mise en forme de bruit dans un codeur de signal audionumerique
US9047875B2 (en) * 2010-07-19 2015-06-02 Futurewei Technologies, Inc. Spectrum flatness control for bandwidth extension
CN103098131B (zh) * 2010-08-24 2015-03-11 杜比国际公司 调频立体声无线电接收器的间歇单声道接收的隐藏
TWI516138B (zh) * 2010-08-24 2016-01-01 杜比國際公司 從二聲道音頻訊號決定參數式立體聲參數之系統與方法及其電腦程式產品
CA3055514C (en) * 2011-02-18 2022-05-17 Ntt Docomo, Inc. Speech decoder, speech encoder, speech decoding method, speech encoding method, speech decoding program, and speech encoding program
US10515643B2 (en) * 2011-04-05 2019-12-24 Nippon Telegraph And Telephone Corporation Encoding method, decoding method, encoder, decoder, program, and recording medium
KR101835327B1 (ko) * 2011-11-18 2018-04-19 엘지전자 주식회사 디스플레이기기 및 디스플레이기기의 컨텐츠 제공 방법
JP5997592B2 (ja) 2012-04-27 2016-09-28 株式会社Nttドコモ 音声復号装置
JP6035270B2 (ja) 2014-03-24 2016-11-30 株式会社Nttドコモ 音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191121B2 (en) 1999-10-01 2007-03-13 Coding Technologies Sweden Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
JP2009545778A (ja) * 2006-07-31 2009-12-24 クゥアルコム・インコーポレイテッド 非アクティブフレームの広帯域符号化および復号化を行うためのシステム、方法、および装置
JP2011034046A (ja) * 2009-04-03 2011-02-17 Ntt Docomo Inc 音声符号化装置、音声復号装置、音声符号化方法、音声復号方法、音声符号化プログラム及び音声復号プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843658A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11562760B2 (en) 2012-04-27 2023-01-24 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US10410647B2 (en) 2014-03-24 2019-09-10 Ntt Docomo, Inc. Audio decoding device, audio encoding device, audio decoding method, audio encoding method, audio decoding program, and audio encoding program
US11437053B2 (en) 2014-03-24 2022-09-06 Ntt Docomo, Inc. Audio decoding device, audio encoding device, audio decoding method, audio encoding method, audio decoding program, and audio encoding program
CN106663449A (zh) * 2014-08-06 2017-05-10 索尼公司 编码装置和方法、解码装置和方法以及程序
CN106663449B (zh) * 2014-08-06 2021-03-16 索尼公司 编码装置和方法、解码装置和方法以及程序
WO2016023495A1 (en) * 2014-08-15 2016-02-18 Huawei Technologies Co., Ltd. System and method for generating waveforms and utilization thereof
WO2020019879A1 (zh) * 2018-07-26 2020-01-30 厦门声连网信息科技有限公司 一种声波信号编码、解码方法及装置

Also Published As

Publication number Publication date
CN104246876A (zh) 2014-12-24
US10068584B2 (en) 2018-09-04
US10714113B2 (en) 2020-07-14
JP5997592B2 (ja) 2016-09-28
US20200302945A1 (en) 2020-09-24
EP2843658A4 (en) 2015-10-28
CN104246876B (zh) 2017-03-01
EP4086898A1 (en) 2022-11-09
US9761240B2 (en) 2017-09-12
US11562760B2 (en) 2023-01-24
TWI576827B (zh) 2017-04-01
US20150051904A1 (en) 2015-02-19
CN107068159A (zh) 2017-08-18
US20180336909A1 (en) 2018-11-22
TW201411603A (zh) 2014-03-16
US20170301363A1 (en) 2017-10-19
JP2013242514A (ja) 2013-12-05
EP2843658A1 (en) 2015-03-04
CN107068159B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP5997592B2 (ja) 音声復号装置
JP6673957B2 (ja) 帯域幅拡張のための高周波数符号化/復号化方法及びその装置
US10366696B2 (en) Speech decoder with high-band generation and temporal envelope shaping
JP6980871B2 (ja) 信号符号化方法及びその装置、並びに信号復号方法及びその装置
JP2016505168A (ja) 音声信号復号化または符号化の時間領域レベル調整
EP3128513B1 (en) Encoder, decoder, encoding method, decoding method, and program
JP6200034B2 (ja) 音声復号装置
EP1497631A1 (en) Generating lsf vectors
JP2003233397A (ja) オーディオ符号化装置、オーディオ符号化プログラム及びオーディオ符号化データ伝送装置
Nagisetty et al. Super-wideband fine spectrum quantization for low-rate high-quality MDCT coding mode of the 3GPP EVS codec
Wang et al. A new bit-allocation algorithm for AAC encoder based on linear prediction
CN110998722A (zh) 低复杂性密集瞬态事件检测和译码

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013781215

Country of ref document: EP