WO2013161550A1 - Electrical power source system and method for controlling same - Google Patents

Electrical power source system and method for controlling same Download PDF

Info

Publication number
WO2013161550A1
WO2013161550A1 PCT/JP2013/060594 JP2013060594W WO2013161550A1 WO 2013161550 A1 WO2013161550 A1 WO 2013161550A1 JP 2013060594 W JP2013060594 W JP 2013060594W WO 2013161550 A1 WO2013161550 A1 WO 2013161550A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
power source
molten salt
load
Prior art date
Application number
PCT/JP2013/060594
Other languages
French (fr)
Japanese (ja)
Inventor
奥野 一樹
小林 英一
新田 耕司
藤川 裕之
洋平 山口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012098938A external-priority patent/JP2013229130A/en
Priority claimed from JP2012147759A external-priority patent/JP2014011061A/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013161550A1 publication Critical patent/WO2013161550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power supply system having a molten salt battery and a control method of the power supply system.
  • a molten salt battery As a high-energy density and high-efficiency storage battery, for example, a molten salt battery is known (see Patent Document 1).
  • a molten salt battery is a storage battery using a molten salt as an electrolyte, and can be charged / discharged only when the electrolyte is melted, and cannot be charged / discharged when the electrolyte is solidified.
  • a use of a molten salt battery unit obtained by unitizing one or a plurality of molten salt batteries so as to obtain a predetermined voltage a use as a “stationary power source” permanently installed in a general home or a factory, an electric vehicle, etc. It can be used as an “on-board power source” that is mounted on a moving object.
  • normal temperature refers to a normal temperature in a natural state where heating and cooling are not performed, and is, for example, about 1 ° C. to 30 ° C.
  • the molten salt battery unit When the molten salt battery unit is used as a “stationary power source”, it can be provided with a heater using external energy (external power source such as commercial power or external heat source such as mechanical exhaust heat). Therefore, if the molten salt battery is preheated by such a heater, a power supply system that can use the molten salt battery unit at any time can be constructed. That is, the molten salt battery unit can be used at a desired timing if the heater is controlled in advance so as to preheat the molten salt battery to the melting point or higher of the molten salt at a timing when the load needs to be driven.
  • external energy external power source such as commercial power or external heat source such as mechanical exhaust heat
  • the load cannot be driven by the molten salt battery unit immediately after the power supply system is started until the molten salt battery unit is activated.
  • the reason for this is that in the case of a moving body, it is difficult to employ a heater using external energy as described above, and the heater must be driven by an internal heater power source mounted on the moving body. This is because it is necessary to wait until the battery unit is heated to the operating state.
  • an object of the present invention is to enable a load to be driven immediately after system startup in a power supply system using a molten salt battery.
  • the power supply system of the present invention includes a first power source that can be charged / discharged at room temperature and one or more melts that can be charged / discharged when an electrolyte that is solid at room temperature melts above its melting point. If the second power source including the salt battery and the second power source operating condition are not satisfied, the first power source is driven with a load, and if the operating condition is satisfied, the second power source And a control unit for driving the load.
  • the control unit drives the load to the second power supply when the operating condition of the second power supply is satisfied, but the first power supply when the operating condition is not satisfied. To drive the load. Therefore, for example, even when the second power source is in a preparation state immediately after the system is started and before entering the operating state, the load can be driven by the first power source.
  • the control unit may charge the power of the first power source when the operating condition is satisfied and the second power source is fully operational. Is also preferably used.
  • the determination as to whether or not the vehicle is in full operation can be made, for example, based on whether or not the state in which the output power of the second power source is stable at a predetermined value or more has continued for a predetermined time (for example, 5 minutes) or more.
  • a predetermined time for example, 5 minutes
  • a power supply including at least one of a storage battery and a capacitor can be adopted as the first power supply.
  • a storage battery it is unsuitable for high-speed charging / discharging, but since the storage capacity is large, it is preferable to employ a storage battery in the case of the second power source with a relatively long preparation state.
  • the capacitor since the capacitor has a large energy density and can output a large current instantaneously, it is preferable to use the capacitor when the load needs to be driven with a large current (for example, when the vehicle is accelerated).
  • the first power source may be a combination of a storage battery and a capacitor.
  • the second power supply includes a molten salt battery unit including one or a plurality of molten salt batteries that can be charged / discharged when a solid electrolyte melts at room temperature.
  • the power supply system of this invention is further provided with the heater for heating and heat-retaining above the predetermined temperature which can operate
  • the control unit causes the first power source to drive the heater when the operating condition is not satisfied.
  • the molten salt battery can be heated faster and the second power supply can be operated faster than when the heater is driven only by the heater power supply. Can be in a state.
  • the heater can be driven by the first power source, there is an advantage that an inexpensive power source system can be obtained by omitting the heater power source.
  • a temperature that is higher than a predetermined temperature (for example, about 70 ° C.) at which the molten salt battery constituting the second power supply can operate is adopted.
  • a predetermined temperature for example, about 70 ° C.
  • the control unit drives the load to the first power source, and when the temperature of the molten salt battery is equal to or higher than the predetermined temperature, the control unit The load is driven by the power source.
  • the current or voltage output from the first power source is a predetermined value or more.
  • the control unit drives the load to the first power source, and when the current or voltage exceeds the predetermined value, The load is driven by the second power source.
  • the operating condition of the second power supply may be a combination of the above condition based on the temperature of the molten salt battery and the above condition based on the current or voltage output from the second power supply.
  • the temperature of the molten salt battery is equal to or higher than a predetermined temperature and the output current or output voltage of the second power source is equal to or higher than a predetermined value, it is determined that the second power source has entered the operating state. It is preferable. In this way, the operating state of the second power source can be determined more accurately than when only one of a plurality of conditions capable of estimating the operating state of the second power source is employed.
  • the control unit causes the first power supply to drive the load when the output power of the second power supply drops below a predetermined value after the operation condition is satisfied. It is preferable. In this way, even if the output power of the second power source decreases for some reason, the first power source drives the load, so that the power supply to the load is prevented from being stopped due to an unexpected situation. be able to.
  • the control method of the present invention is a control method of a power supply system provided with first and second power sources defined below, and the first power source is in a ready state while the first power source is in a ready state.
  • the load when the second power source shifts from the ready state to the operating state, the load is driven by the second power source (second step), but the second power source is in the ready state.
  • the first power supply drives the load (first step). Therefore, even when the second power source is in a preparation state immediately after starting the system and before entering the operating state, the load can be driven by the first power source, and the load can be driven immediately after starting the system. .
  • the power of the second power supply is also used for charging the first power supply.
  • the first power source is charged by the power of the second power source, it is possible to suppress a decrease in the remaining capacity of the first power source. Therefore, when the power supply system is stopped and then restarted, the load can be driven more reliably by the first power supply.
  • the first power supply drives a heater for heating and keeping the molten salt battery constituting the second power supply at or above a predetermined temperature at which the molten salt battery can operate. .
  • the molten salt battery can be heated faster and the second power supply can be operated faster than when the heater is driven only by the heater power supply. Can be in a state.
  • the heater can be driven by the first power source, there is an advantage that an inexpensive power source system can be obtained by omitting the heater power source.
  • the power source for driving the load is switched from the second power source to the first power source. It is preferable. In this way, even if the output power of the second power source decreases for some reason, the first power source drives the load, so that the power supply to the load is prevented from being stopped due to an unexpected situation. be able to.
  • a load in a power supply system using a molten salt battery, a load can be driven immediately after the system is started. Therefore, it is possible to provide an on-board power supply system suitable for driving a load on a moving object, even though a molten salt battery is used.
  • FIG. 1 is an explanatory diagram showing a usage pattern of the power supply system 1 according to the first embodiment.
  • the power supply system 1 according to the present embodiment is a type of on-board power source that is mounted on a vehicle 2 such as an electric vehicle and used as an in-vehicle battery.
  • An operation unit 3 is connected to the power supply system 1 via a signal line.
  • the operation unit 3 is used to transmit a power activation command to the power supply system 1 when a user (passenger of the vehicle 2) performs an operation input on the operation unit 3.
  • a load 4 is connected to the power supply system 1 via a power line.
  • the load 4 includes an electric device that is normally mounted on the vehicle 2 such as an electric motor serving as a drive source of the vehicle 2, a headlight, and a wiper.
  • FIG. 2 is a block diagram illustrating an internal configuration of the power supply system according to the first embodiment.
  • the power supply system 1 includes a power storage device 11 as a first power supply and a molten salt battery unit (hereinafter simply referred to as “battery unit”) as a second power supply having a molten salt battery 31. And a heater power supply 13 for supplying power to the heater 32 of the battery unit 12.
  • a power storage device 11 as a first power supply
  • a molten salt battery unit hereinafter simply referred to as “battery unit”
  • a heater power supply 13 for supplying power to the heater 32 of the battery unit 12.
  • the power supply system 1 measures the temperature of the input / output conversion unit 14 that can switch the output destination of each of the power supplies 11 to 13, the control unit 15 that switches and controls the input / output conversion unit 14, and the temperature of the molten salt battery 31. Temperature sensor 16 and a connection coupler 18 of an external power source 17 such as a commercial power source.
  • a connection line drawn by a solid line is a “power line”
  • a connection line drawn by a broken line is a “signal line”.
  • the input / output conversion unit 14 has a plurality of power terminals P0 to P3, Lf, and Lh.
  • P0 is the power terminal of the external power supply 17
  • P1 is the power terminal of the power storage device 11
  • P2 is the power terminal of the battery unit
  • P3 is the power supply 13 for the heater.
  • Lf is a power terminal of the load 4
  • “Lh” is a power terminal of the heater 32.
  • the power supplies 11 to 13, the load 4 and the heater 32 are respectively connected to predetermined terminals P0 to P3, Lf and Lh of the input / output conversion unit 14 through power lines.
  • the input / output conversion unit 14 includes therein a DC / DC conversion circuit having a bidirectional step-up / step-down function and an AC / DC conversion circuit that rectifies the alternating current of the external power supply 17.
  • a DC / DC conversion circuit having a bidirectional step-up / step-down function and an AC / DC conversion circuit that rectifies the alternating current of the external power supply 17.
  • the terminals for direct current for example, between P1 and Lf, between P2 and Lf, and between P1 and P2
  • the AC terminal and the DC terminal for example, between P0 and P1, between P0 and P2, and between P0 and P3 are connected via an AC / DC conversion circuit.
  • the input / output conversion unit 14 includes a plurality of switches that can turn on and off the conduction between the power terminals P0 to P3, Lf, and Lh.
  • the controller 15 can control the power path between the power terminals P0 to P3, Lf, and Lh by turning on / off these switches. For example, when the power storage device 11 drives the load 4, the control unit 15 controls the switch of the input / output conversion unit 14 so that the connection between P1 and Lf is conducted and the connection between P2 and Lf is disconnected. Further, when driving the load 4 with the battery unit 12, the control unit 15 controls the switch of the input / output conversion unit 14 so that the connection between P1 and Lf is disconnected and the connection between P2 and Lf is conducted.
  • control unit 15 when the power supply 11 to 13 in the system 1 is charged by the external power supply 17, the control unit 15 performs input / output conversion so that P0-P1, P0-P2, and P0-P3 are electrically connected.
  • the switch of the unit 14 is controlled.
  • the control unit 15 executes the “power supply switching process” by switching the power supply source and the power supply destination of the power supplies 11 to 13, the load 4, and the heater 32 by controlling the switches of the input / output conversion unit 14. The details of this process will be described later.
  • the control unit 15 includes a memory that stores various data and computer programs, and a CPU that executes a program read from the memory and realizes predetermined processing.
  • the control unit 15 controls the power supplies 11 to 13 and the input / output conversion unit 14 in accordance with an operation signal from the operation unit 3. For example, upon receiving an activation command from the operation unit 3, the control unit 15 performs activation of the heater power supply 13 and switch control for the input / output conversion unit 14, drives the heater 32 to drive the molten salt battery 31 of the battery unit 12. To heat.
  • the temperature sensor 16 is formed of a thermistor, a thermocouple, or the like, and is disposed inside the heat insulating material 33 (see FIG. 5).
  • the control unit 15 adjusts the power supply from the heater power supply 13 based on the internal temperature of the battery unit 12 obtained from the detection signal of the temperature sensor 16, thereby converging the temperature of the molten salt battery 31 within a substantially constant range. Temperature control can be performed. For example, the control unit 15 stops the power supply to the heater 32 when the measured temperature is equal to or higher than a predetermined temperature, and restarts the power supply when the measured temperature is lower than the predetermined temperature, and maintains the temperature of the molten salt battery 31.
  • the control unit 15 is also connected to the power storage device 11, the battery unit 12, and the heater power supply 13 via a signal line (not shown in FIG. 2), and the power supply 11 to 13 is either charged or discharged. You can switch to mode.
  • the control unit 15 is also connected to a current and voltage measurement sensor (not shown) provided in the input / output conversion unit 14, and is obtained from the current values and voltage values output from the respective power supplies 11 to 13, and from these values. The value of the output power of each of the power supplies 11 to 13 is calculated with a substantially real-time cycle.
  • FIG. 4 is a perspective view schematically showing the configuration of the molten salt battery 31.
  • the molten salt battery 31 includes a rectangular plate-shaped positive electrode 311, a sheet-shaped separator 313, and a rectangular plate-shaped negative electrode 312 arranged in parallel in the thickness direction in a rectangular parallelepiped box-shaped battery container 316. It is configured by A broken line in FIG. 3 is an outline of the battery case 316.
  • the positive electrode 311, the separator 313, and the negative electrode 312 are stacked in that order in the thickness direction, and are erected vertically with respect to the bottom surface of the battery container 316.
  • the positive electrode 311 is formed by applying a positive electrode material containing a positive electrode active material such as NaCrO 2 on a rectangular plate-shaped current collector.
  • the negative electrode 312 is formed by plating a negative electrode material containing a negative electrode active material such as Sn (tin) on a rectangular plate-shaped current collector.
  • the separator 313 is made of an insulating material such as silicate glass or resin, and has a shape capable of holding an electrolyte therein and allowing ions serving as charge carriers to pass therethrough.
  • the separator 313 is, for example, a resin formed in a glass cloth or a porous shape.
  • the separator 313 separates the positive electrode 311 and the negative electrode 312, and the positive electrode 311, the negative electrode 312 and the separator 313 are impregnated with an electrolyte made of a molten salt.
  • the electrolyte is made of a molten salt that becomes a conductive liquid in a molten state. In order to lower the melting point as much as possible, it is desirable that the electrolyte is a mixture of a plurality of types of molten salts.
  • the electrolyte is a mixed salt of NaFSA with sodium ion as a cation and FSA (bisfluorosulfonylamide) as an anion and KFSA with potassium ion as a cation and FSA as an anion.
  • the molten salt that is an electrolyte may contain other anions such as TFSA (bistrifluoromethylsulfonylamide) or FTA (fluorotrifluoromethylsulfonylamide) and other cations such as organic ions. Also good.
  • a positive electrode connecting member 314 made of a conductive material is connected to the positive electrode 311, and a negative electrode connecting member 315 made of a conductive material is connected to the negative electrode 312.
  • These connecting members 314 and 315 are respectively connected to terminals not shown.
  • This terminal is connected to another molten salt battery 31 or the input / output conversion unit 14.
  • the structure of the molten salt battery shown in FIG. 4 is a schematic structure.
  • other members such as an elastic member for suppressing deformation of the positive electrode 311 or the negative electrode 312 at the time of charge / discharge are provided. Constituent members are included.
  • the molten salt battery 31 has a structure in which a plurality of positive electrodes 311 and negative electrodes 312 are alternately stacked with a separator 313 interposed therebetween. There may be. Furthermore, the shape of the molten salt battery 31 is not limited to a rectangular parallelepiped shape, and may be other shapes such as a columnar shape.
  • FIG. 5 is a perspective view schematically showing the configuration of the molten salt battery unit 12.
  • the battery unit 12 includes a plurality of (in the illustrated example, 36 in total) molten salt batteries 31 two-dimensionally arranged in the X direction and the Y direction, and a plurality of battery units 12 provided in contact with the batteries 31.
  • the heater 32 is provided.
  • the edge surface of the heater 32 is hatched so that the molten salt battery 31 and the heater 32 can be easily distinguished (the same applies to FIGS. 2 and 6).
  • the edge surface of the heater 32 is hatched so that the molten salt battery 31 and the heater 32 can be easily distinguished (the same applies to FIGS. 2 and 6).
  • the X direction four molten salt batteries 31 are connected linearly and in series.
  • the Y direction nine battery rows composed of four molten salt batteries 31 connected in series are arranged in parallel and connected in parallel to each other.
  • the positive electrode of each battery row is connected to the power supply terminal P2 of the input / output conversion unit 14 via a power line (see FIG. 2).
  • Rectangular plate heaters 32 are provided at both ends in the Y direction, and the heaters 32 are in contact with the side surfaces of the molten salt battery 31. Further, the same heater 32 is interposed between the third and fourth battery rows and between the sixth and seventh rows. That is, one molten salt battery unit 12 includes four heaters 32, and the first, third, fourth, sixth, seventh and ninth rows of molten salt batteries 31 are included. The heaters 32 are in contact with the battery rows.
  • each heater 32 is connected to the power supply terminal Lh of the input / output conversion unit 14 via a power line (see FIG. 2).
  • the heater 32 is a plate-like electric heater that generates heat when supplied with electric power, such as a rubber heater or a ceramic heater.
  • the heater 32 generates heat mainly by power supply from the heater power supply 13 and heats the molten salt battery 31 in the battery unit 12.
  • the outer peripheral portion of the molten salt battery unit 12 is entirely covered with a heat insulating material 33.
  • the broken line in FIG. 5 is the outline of the heat insulating material 33.
  • positioning and connection aspect of the some molten salt battery 31 shown in FIG. 5 arrangement
  • the power storage device 11 includes a secondary battery that can be charged and discharged at room temperature.
  • the positive electrode of the power storage device 11 is connected to the power supply terminal P1 of the input / output conversion unit 14 via a power line (see FIG. 2).
  • the power storage device 11 of the present embodiment can be configured by a storage battery or a capacitor.
  • the storage battery for example, a lead storage battery, a lithium ion secondary battery, a sodium secondary battery, a nickel hydride secondary battery, or the like can be employed.
  • an electric field double layer capacitor As the capacitor, an electric field double layer capacitor, a lithium ion capacitor, a sodium ion capacitor, or the like can be adopted.
  • a storage battery it is not suitable for high-speed charging / discharging, but has a large storage capacity. Therefore, when the battery unit 12 is in the preparation state for a relatively long time, it is preferable to employ a storage battery so that the load 4 can be driven in the preparation state in a relatively long time.
  • the capacitor has a large energy density and can instantaneously output a large current. Therefore, for example, when it is assumed that the load (electric motor) 4 needs to be driven with a large current, such as when the vehicle 2 is accelerated rapidly, it is preferable to employ a capacitor. But as the electrical storage apparatus 11 of this embodiment, what used both the said storage battery and a capacitor together may be used, and in this case, the electrical storage apparatus 11 which has those both advantages is obtained.
  • FIG. 3 is an explanatory diagram illustrating an example of a power supply switching process performed by the control unit 15.
  • the “prepared state” in FIG. 3A refers to a state from the stopped state of the battery unit 12 (the electrolyte of the molten salt battery 31 is solidified) to the operating state.
  • the “operating state” in FIG. 3B means a state in which the battery unit 12 can be charged and discharged (thus, the electrolyte of the molten salt battery 31 is liquefied).
  • the “full operation state” in FIG. 3C means that when the battery unit 12 is in an operating state, the state where the output power of the battery unit 12 is stable at a predetermined value or more continues for a predetermined time (for example, 5 minutes) or longer. It means the state that is doing.
  • the “power reduction state” in FIG. 3D refers to a state where the output power of the battery unit 12 has decreased below a predetermined value for some reason when the battery unit 12 is once activated.
  • the “external charging state” in FIG. 3E refers to a state in which the power supply system 1 of the present embodiment is charged from the external power supply 17.
  • the control unit 15 the power source switching process performed by the control unit 15 for each of the states (a) to (e) will be described.
  • the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path is in the preparation state illustrated in FIG. As shown in FIG. 3A, in the “preparation state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P1 of the power storage device 11 is connected to the power terminal Lf of the load 4. Connected.
  • the heater 32 heats the molten salt battery 31 so that the temperature of the molten salt battery 31 is increased by the power supply from the heater power supply 13, and the load 4 is driven by the power supply from the power storage device 11. Is done.
  • the control unit 15 maintains the power path in the ready state of FIG. 3A until the measured temperature based on the detection signal of the temperature sensor 16 reaches a predetermined temperature (for example, about 70 ° C.) at which the molten salt battery 31 can operate. To do.
  • the operating conditions of the battery unit 12 are not only that the temperature of the molten salt battery 31 exceeds a predetermined temperature, but are also provided in the input / output conversion unit 14. Alternatively, it may be adopted that the output current or output voltage of the battery unit 12 obtained from the detection signal of the current sensor or voltage sensor is a predetermined value or more. Moreover, you may decide to use together the conditions based on the temperature based on the temperature of the molten salt battery 31, and the conditions based on the electric current or voltage which the battery unit 12 outputs as the operating conditions of the battery unit 12.
  • the battery unit 12 When using these conditions together, when the temperature of the molten salt battery 31 is equal to or higher than a predetermined temperature and the output current or output voltage of the battery unit 12 is equal to or higher than a predetermined value, the battery unit 12 is in an operating state. It is preferable to determine that it has entered. The reason is that, for example, the battery unit 12 enters the operating state when the temperature condition and the current or voltage condition are satisfied at the same time as compared with the case where the temperature condition is satisfied and the current or voltage condition is satisfied at the same time. This is because it can be determined more accurately.
  • the power terminal P1 of the power storage device 11 is also connected to the power supply terminal Lh of the heater 32, and the heater 32 is connected to the heater power source 13 and the power storage device 11. It may be driven by supplying power. In this way, the molten salt battery 31 can be heated more quickly than when the heater 32 is driven only by the heater power supply 13, and the battery unit 12 can be shifted to the operating state earlier.
  • the control unit 15 When the control unit 15 detects that the operation condition of the battery unit 12 is established, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the operation state illustrated in FIG. As shown in FIG. 3B, in the “operating state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P2 of the battery unit 12 is connected to the power terminal Lf of the load 4. Connected.
  • the power supply from the heater power supply 13 generates heat to such an extent that the heater 32 can maintain the temperature of the molten salt battery 31, and the load 4 is driven by the power supply from the battery unit 12.
  • the control unit 15 monitors the output power of the unit 12 from the output current and output voltage of the battery unit 12, and a state where the output power is stable at a predetermined value or more is determined for a predetermined time (for example, If it continues for 5 minutes or more, it is determined that the battery unit 12 is in full operation.
  • control unit 15 determines whether or not a power decrease has occurred in the battery unit 12 depending on whether or not the monitored output power has decreased below a predetermined value. .
  • the control unit 15 determines that the battery unit 12 is in full operation
  • the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the full operation state illustrated in FIG.
  • the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32
  • the power terminal P2 of the battery unit 12 is connected to the power terminal Lf of the load 4.
  • the power supply from the battery unit 12 not only drives the load 4 but also charges the power storage device 11 at the same time.
  • the electric power of the battery unit 12 is used also for charge of the electrical storage apparatus 11 when the battery unit 12 will be in a full operation state, the fall of the remaining capacity of the electrical storage apparatus 11 can be suppressed. .
  • the load 4 is driven by the power storage device 11 (the load 4 in the preparation state of FIG. 3A). There is an advantage that it can be reliably performed.
  • the power terminal P2 of the battery unit 12 is also connected to the power supply terminal P3 of the heater power supply 13, and the heater power supply 13 is charged simultaneously. It may be. In this way, it is possible to suppress a decrease in the remaining capacity of the heater power supply 13. Therefore, when the power supply system 1 is restarted after the vehicle 2 is parked and stopped and then the power supply system 1 is restarted, the heater 32 is driven by the heater power supply 13 (the heater in the preparation state of FIG. 3A). 32 driving) can be performed reliably.
  • the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path is in the power reduction state illustrated in FIG.
  • the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32
  • the power terminal P1 of the power storage device 11 is connected to the power terminal Lf of the load 4. Connected to.
  • the power supply from the heater power supply 13 generates heat so that the heater 32 can maintain the temperature of the molten salt battery 31, and the power supply source of the load 4 is switched from the battery unit 12 to the power storage device 11.
  • the power storage device 11 drives the load 4 instead, so the power supply to the load 4 stops due to an unexpected situation. There is an advantage that can be prevented.
  • the power terminal P ⁇ b> 1 of the power storage device 11 is also connected to the power supply terminal P ⁇ b> 2 of the battery unit 12, so You may decide to charge. In this way, when the cause of the power reduction of the battery unit 12 is insufficient remaining capacity, the remaining capacity of the battery unit 12 can be increased, and the output power of the battery unit 12 can be recovered.
  • the control unit 15 detects whether or not the external power supply 17 is connected by a sensor (not shown) provided in the connection coupler 18. Then, when the external power supply 17 is connected, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the external charging state illustrated in FIG.
  • the battery terminal P0 of the external power source 17 is the power terminal P1 of the power storage device 11, the power terminal P2 of the battery unit 12, and the power terminal P3 of the heater power source 13.
  • the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32. Therefore, in this case, the heater 32 heats the molten salt battery 31 so that the temperature of the molten salt battery 31 is increased by the power supply from the heater power supply 13, and the power supply 11 from the power supply from the external power supply 17. Charging is performed for ⁇ 13.
  • the control unit 15 drives the load 4 by the battery unit 12 when the operation condition of the battery unit 12 is satisfied.
  • the load 4 is driven by the power storage device 11. Therefore, even when the battery unit 12 is in a preparation state immediately after starting the system and before entering the operation state, the load 4 can be driven, and despite being the power supply system 1 using the molten salt battery 31, An on-board power source suitable for driving the load 4 of the vehicle 2 can be realized.
  • FIG. 6 is a block diagram showing an internal configuration of the power supply system 1 according to the second embodiment.
  • the power supply system 1 of the second embodiment (FIG. 6) is different from that of the first embodiment (FIG. 2) in that the heater power supply 13 is omitted and a corresponding power terminal P3 is provided in the input / output conversion unit 14. It is in the point that is not done.
  • FIG. 7 is an explanatory diagram illustrating an example of a power supply switching process by the control unit 15 in the power supply system 1 of the second embodiment.
  • the control unit 15 connects the power supply terminal P1 of the power storage device 11 not only to the power supply terminal Lf of the load 4 but also to the power supply terminal Lh of the heater 32.
  • the heater 32 is driven.
  • the power storage device 11 supplies power to the heater 32 as described above, a system configuration in which the heater power supply 13 is omitted as shown in FIG. 6 can be adopted, and the manufacturing cost is correspondingly increased. There is an advantage that an inexpensive power supply system 1 can be obtained.
  • the embodiments disclosed herein are illustrative and non-restrictive in every respect.
  • the scope of rights of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope equivalent to the configurations described in the claims.
  • the power supply system 1 shown in the above embodiment is used not only as an on-board power source for the electric vehicle 2 but also as an on-board power source for a moving body other than the electric vehicle 2 such as a railway vehicle, an aircraft, or a ship. You can also.
  • Power supply system Vehicle (electric vehicle) 3 Operation unit 4 Load 11 Power storage device (first power supply) 12 Molten salt battery unit (second power supply) 13 Heater Power Supply 14 Input / Output Conversion Unit 15 Control Unit 16 Temperature Sensor 17 External Power Supply 18 Connection Coupler 31 Molten Salt Battery 32 Heater

Abstract

An electrical power source system using a molten salt battery is able to drive a load immediately after start-up of the system. The electrical power source system of the present invention is provided with a first electrical power source (electrical storage device) that is able to charge and discharge electricity at a normal temperature, a second electrical power source (molten salt battery unit) that includes one or a plurality of molten salt batteries that are able to charge and discharge electricity when an electrolyte that is solid at the normal temperature melts at a temperature equal to or higher than the melting point of the electrolyte, and a control unit. The control unit drives the load with the first electrical power source when operating conditions of the second electrical power source are not satisfied, and drives the load with the second electrical power source when the operating conditions are satisfied.

Description

電源システムとその制御方法Power supply system and control method thereof
 本発明は、溶融塩電池を有する電源システムと、その電源システムの制御方法に関するものである。 The present invention relates to a power supply system having a molten salt battery and a control method of the power supply system.
 高エネルギー密度でかつ高効率の蓄電池として、例えば溶融塩電池が知られている(特許文献1参照)。かかる溶融塩電池は、電解質に溶融塩を用いた蓄電池であり、電解質が溶融した状態でのみ充放電が可能であり、電解質が固化している場合は充放電できない。
 また、1又は複数の溶融塩電池を所定電圧が得られるようにユニット化した溶融塩電池ユニットの用途として、一般家庭や工場などに常設する「定置型電源」としての用途と、電気自動車などの移動体に搭載して使用する「搭載型電源」としての用途が考えられる。
As a high-energy density and high-efficiency storage battery, for example, a molten salt battery is known (see Patent Document 1). Such a molten salt battery is a storage battery using a molten salt as an electrolyte, and can be charged / discharged only when the electrolyte is melted, and cannot be charged / discharged when the electrolyte is solidified.
In addition, as a use of a molten salt battery unit obtained by unitizing one or a plurality of molten salt batteries so as to obtain a predetermined voltage, a use as a “stationary power source” permanently installed in a general home or a factory, an electric vehicle, etc. It can be used as an “on-board power source” that is mounted on a moving object.
特開2011-228176号公報JP 2011-228176 A
 溶融塩電池ユニットを適切に動作させるには、溶融塩電池の内部を溶融塩の融点以上に保持する温度制御を行う必要がある。溶融塩の融点は、現段階では常温よりも高温であるため、常温で停止中の溶融塩電池ユニットを充放電可能となるように作動させるには、溶融塩電池内の温度を常温から溶融塩の融点以上まで昇温させる必要がある。
 なお、本明細書にいう「常温」とは、加熱及び冷却を行わいない自然状態での平常の温度のことをいい、例えば1℃ ~30℃程度である。
In order to properly operate the molten salt battery unit, it is necessary to perform temperature control to maintain the inside of the molten salt battery at or above the melting point of the molten salt. Since the melting point of the molten salt is higher than the normal temperature at this stage, in order to operate the molten salt battery unit that is stopped at the normal temperature so that it can be charged / discharged, the temperature in the molten salt battery is changed from the normal temperature to the molten salt battery. It is necessary to raise the temperature to above the melting point.
As used herein, “normal temperature” refers to a normal temperature in a natural state where heating and cooling are not performed, and is, for example, about 1 ° C. to 30 ° C.
 溶融塩電池ユニットを「定置型電源」として使用する場合は、外部エネルギー(商用電力などの外部電源や、機械排熱などの外部熱源)を用いたヒータとの併設が可能である。
 従って、かかるヒータにより溶融塩電池を予め加熱すれば、溶融塩電池ユニットを何時でも使用可能な電源システムを構築できる。すなわち、負荷の駆動が必要なタイミングで、溶融塩の融点以上まで溶融塩電池を予め加熱するようにヒータを事前に制御すれば、溶融塩電池ユニットを所望のタイミングで使用できるようになる。
When the molten salt battery unit is used as a “stationary power source”, it can be provided with a heater using external energy (external power source such as commercial power or external heat source such as mechanical exhaust heat).
Therefore, if the molten salt battery is preheated by such a heater, a power supply system that can use the molten salt battery unit at any time can be constructed. That is, the molten salt battery unit can be used at a desired timing if the heater is controlled in advance so as to preheat the molten salt battery to the melting point or higher of the molten salt at a timing when the load needs to be driven.
 これに対して、溶融塩電池ユニットを「搭載型電源」として使用する場合は、電源システムの起動直後から溶融塩電池ユニットの作動状態になるまでの間は、溶融塩電池ユニットによって負荷を駆動できないという問題がある。
 その理由は、移動体の場合は、上記のような外部エネルギーを用いたヒータの採用が困難であり、移動体に搭載した内部のヒータ用電源でヒータを駆動せざるを得ないため、溶融塩電池ユニットが作動状態に加熱されるまで待つ必要があるからである。
On the other hand, when the molten salt battery unit is used as an “on-board power source”, the load cannot be driven by the molten salt battery unit immediately after the power supply system is started until the molten salt battery unit is activated. There is a problem.
The reason for this is that in the case of a moving body, it is difficult to employ a heater using external energy as described above, and the heater must be driven by an internal heater power source mounted on the moving body. This is because it is necessary to wait until the battery unit is heated to the operating state.
 本発明は、上記従来の問題点に鑑み、溶融塩電池を利用した電源システムにおいて、システムの起動直後から負荷を駆動できるようにすることを目的とする。 In view of the above-described conventional problems, an object of the present invention is to enable a load to be driven immediately after system startup in a power supply system using a molten salt battery.
 (1) 本発明の電源システムは、常温での充放電が可能な第1の電源と、常温では固体である電解質がその融点以上の温度で溶融すると充放電が可能となる1又は複数の溶融塩電池を含む第2の電源と、前記第2の電源の作動条件が成立しない場合は、前記第1の電源に負荷を駆動させ、前記作動条件が成立する場合は、前記第2の電源に前記負荷を駆動させる制御部と、を備えていることを特徴とする。 (1) The power supply system of the present invention includes a first power source that can be charged / discharged at room temperature and one or more melts that can be charged / discharged when an electrolyte that is solid at room temperature melts above its melting point. If the second power source including the salt battery and the second power source operating condition are not satisfied, the first power source is driven with a load, and if the operating condition is satisfied, the second power source And a control unit for driving the load.
 本発明の電源システムによれば、制御部が、第2の電源の作動条件が成立する場合は、第2の電源に負荷を駆動させるが、その作動条件が成立しない場合は、第1の電源に負荷を駆動させる。
 従って、例えば、第2の電源がシステムの起動直後から作動状態に入る前の準備状態である場合でも、第1の電源によって負荷を駆動することができる。
According to the power supply system of the present invention, the control unit drives the load to the second power supply when the operating condition of the second power supply is satisfied, but the first power supply when the operating condition is not satisfied. To drive the load.
Therefore, for example, even when the second power source is in a preparation state immediately after the system is started and before entering the operating state, the load can be driven by the first power source.
 (2) 本発明の電源システムにおいて、前記制御部は、前記作動条件が成立しかつ前記第2の電源が本格稼働した場合は、前記第2の電源の電力を前記第1の電源の充電にも使用することが好ましい。なお、本格稼働か否かの判定は、例えば、第2の電源の出力電力が所定値以上で安定した状態が、所定時間(例えば5分)以上継続したか否かによって行うことができる。
 この場合、第2の電源の電力により第1の電源が充電されるので、第1の電源の残容量の低下を抑制することができる。従って、電源システムを停止してから次に再起動する場合に、第1の電源による負荷の駆動をより確実に行うことができる。
(2) In the power supply system according to the present invention, the control unit may charge the power of the first power source when the operating condition is satisfied and the second power source is fully operational. Is also preferably used. The determination as to whether or not the vehicle is in full operation can be made, for example, based on whether or not the state in which the output power of the second power source is stable at a predetermined value or more has continued for a predetermined time (for example, 5 minutes) or more.
In this case, since the first power source is charged by the power of the second power source, it is possible to suppress a decrease in the remaining capacity of the first power source. Therefore, when the power supply system is stopped and then restarted, the load can be driven more reliably by the first power supply.
 (3) 本発明の電源システムにおいて、前記第1の電源は、例えば、蓄電池及びキャパシタのうちの少なくとも1つを含む電源を採用することができる。
 蓄電池の場合は、高速の充放電には不向きであるが蓄電容量が大きいので、準備状態が比較的長い第2の電源の場合には、蓄電池を採用することが好ましい。一方、キャパシタは、エネルギー密度が大きく瞬間的な大電流出力が可能であるから、負荷を大電流で駆動する必要性がある場合(車両の加速時など)には、キャパシタを採用することが好ましい。なお、第1の電源は、蓄電池とキャパシタを併用したものであってもよい。
(3) In the power supply system of the present invention, for example, a power supply including at least one of a storage battery and a capacitor can be adopted as the first power supply.
In the case of a storage battery, it is unsuitable for high-speed charging / discharging, but since the storage capacity is large, it is preferable to employ a storage battery in the case of the second power source with a relatively long preparation state. On the other hand, since the capacitor has a large energy density and can output a large current instantaneously, it is preferable to use the capacitor when the load needs to be driven with a large current (for example, when the vehicle is accelerated). . The first power source may be a combination of a storage battery and a capacitor.
 (4) 本発明の電源システムでは、第2の電源が、常温で固体の電解質が溶融すると充放電が可能となる1又は複数の溶融塩電池を含む溶融塩電池ユニットよりなる。
 このため、本発明の電源システムは、前記第2の電源を構成する前記溶融塩電池を作動可能な所定温度以上に加熱及び保温するためのヒータを更に備えている。
(4) In the power supply system of the present invention, the second power supply includes a molten salt battery unit including one or a plurality of molten salt batteries that can be charged / discharged when a solid electrolyte melts at room temperature.
For this reason, the power supply system of this invention is further provided with the heater for heating and heat-retaining above the predetermined temperature which can operate | move the said molten salt battery which comprises said 2nd power supply.
 (5) この場合、前記制御部は、前記作動条件が成立しない場合は、前記第1の電源に前記ヒータを駆動させることが好ましい。
 このようにすれば、電源システムにヒータ用電源がある場合には、当該ヒータ用電源だけでヒータを駆動する場合に比べて、溶融塩電池をより早く加熱でき、第2の電源をより早く作動状態にすることができる。また、第1の電源でヒータを駆動できるので、ヒータ用電源を省略することにより、安価な電源システムが得られるという利点もある。
(5) In this case, it is preferable that the control unit causes the first power source to drive the heater when the operating condition is not satisfied.
In this way, when the power supply system has a heater power supply, the molten salt battery can be heated faster and the second power supply can be operated faster than when the heater is driven only by the heater power supply. Can be in a state. Further, since the heater can be driven by the first power source, there is an advantage that an inexpensive power source system can be obtained by omitting the heater power source.
 (6) 本発明の電源システムにおいて、前記作動条件の例としては、例えば、前記第2の電源を構成する前記溶融塩電池が作動可能な所定温度(例えば70℃程度)以上であることを採用するこができる。
 この場合、制御部は、溶融塩電池の温度が上記所定温度未満である場合は、第1の電源に負荷を駆動させ、溶融塩電池の温度が上記所定温度以上である場合は、第2の電源に負荷を駆動させることになる。
(6) In the power supply system of the present invention, as an example of the operating condition, for example, a temperature that is higher than a predetermined temperature (for example, about 70 ° C.) at which the molten salt battery constituting the second power supply can operate is adopted. Can do.
In this case, when the temperature of the molten salt battery is lower than the predetermined temperature, the control unit drives the load to the first power source, and when the temperature of the molten salt battery is equal to or higher than the predetermined temperature, the control unit The load is driven by the power source.
 (7) また、前記作動条件の他の例としては、前記第1の電源が出力する電流又は電圧が所定値以上であることを採用することにしてもよい。
 この場合、制御部は、第2の電源が出力する電流又は電圧が所定値未満である場合は、第1の電源に負荷を駆動させ、その電流又は電圧が所定値以上である場合は、第2の電源に負荷を駆動させることになる。
(7) Further, as another example of the operating condition, it may be adopted that the current or voltage output from the first power source is a predetermined value or more.
In this case, when the current or voltage output from the second power source is less than a predetermined value, the control unit drives the load to the first power source, and when the current or voltage exceeds the predetermined value, The load is driven by the second power source.
 第2の電源の作動条件は、溶融塩電池の温度に基づく上記条件と、第2の電源が出力する電流又は電圧に基づく上記条件を併用したものでもよい。この場合、例えば、溶融塩電池の温度が所定温度以上であり、かつ、第2の電源の出力電流又は出力電圧が所定値以上である場合に、第2の電源が作動状態に入ったと判定することが好ましい。
 このようにすれば、第2の電源の作動状態を推定できる複数の条件のうちの1つだけを採用する場合に比べて、第2の電源の作動状態をより正確に判定することができる。
The operating condition of the second power supply may be a combination of the above condition based on the temperature of the molten salt battery and the above condition based on the current or voltage output from the second power supply. In this case, for example, when the temperature of the molten salt battery is equal to or higher than a predetermined temperature and the output current or output voltage of the second power source is equal to or higher than a predetermined value, it is determined that the second power source has entered the operating state. It is preferable.
In this way, the operating state of the second power source can be determined more accurately than when only one of a plurality of conditions capable of estimating the operating state of the second power source is employed.
 (8) 本発明の電源システムにおいて、前記制御部は、前記作動条件の成立後に前記第2の電源の出力電力が所定値未満に低下した場合は、前記第1の電源に前記負荷を駆動させることが好ましい。
 このようにすれば、何らかの原因で第2の電源の出力電力が低下しても、第1の電源が負荷を駆動するので、負荷に対する電力供給が不測の事態で停止するのを未然に防止することができる。
(8) In the power supply system of the present invention, the control unit causes the first power supply to drive the load when the output power of the second power supply drops below a predetermined value after the operation condition is satisfied. It is preferable.
In this way, even if the output power of the second power source decreases for some reason, the first power source drives the load, so that the power supply to the load is prevented from being stopped due to an unexpected situation. be able to.
 (9) 本発明の制御方法は、下記に定義する第1及び第2の電源を備えた電源システムの制御方法であって、前記第2の電源が準備状態である間は、前記第1の電源により負荷を駆動する第1のステップと、前記第2の電源が準備状態から作動状態に移行した場合は、前記第2の電源により前記負荷を駆動する第2のステップと、を含むことを特徴とする。 (9) The control method of the present invention is a control method of a power supply system provided with first and second power sources defined below, and the first power source is in a ready state while the first power source is in a ready state. A first step of driving a load by a power source, and a second step of driving the load by the second power source when the second power source has shifted from a ready state to an operating state. Features.
 本発明の制御方法によれば、第2の電源が準備状態から作動状態に移行した場合は、第2の電源により負荷を駆動するが(第2のステップ)、第2の電源が準備状態である間は、第1の電源が負荷を駆動する(第1のステップ)。
 従って、第2の電源がシステムの起動直後から作動状態に入る前の準備状態である場合でも、第1の電源によって負荷を駆動することができ、システムの起動直後から負荷を駆動することができる。
According to the control method of the present invention, when the second power source shifts from the ready state to the operating state, the load is driven by the second power source (second step), but the second power source is in the ready state. For some time, the first power supply drives the load (first step).
Therefore, even when the second power source is in a preparation state immediately after starting the system and before entering the operating state, the load can be driven by the first power source, and the load can be driven immediately after starting the system. .
 (10) 前記第2のステップにおいて、前記第2の電源が本格稼働した場合は、当該第2の電源の電力を前記第1の電源の充電にも使用することが好ましい。
 この場合、第2の電源の電力により第1の電源が充電されるので、第1の電源の残容量の低下を抑制することができる。従って、電源システムを停止してから次に再起動する場合に、第1の電源による負荷の駆動をより確実に行うことができる。
(10) In the second step, when the second power supply is in full operation, it is preferable that the power of the second power supply is also used for charging the first power supply.
In this case, since the first power source is charged by the power of the second power source, it is possible to suppress a decrease in the remaining capacity of the first power source. Therefore, when the power supply system is stopped and then restarted, the load can be driven more reliably by the first power supply.
 (11) 前記第1のステップにおいて、前記第1の電源により、前記第2の電源を構成する前記溶融塩電池を作動可能な所定温度以上に加熱及び保温するためのヒータを駆動することが好ましい。
 このようにすれば、電源システムにヒータ用電源がある場合には、当該ヒータ用電源だけでヒータを駆動する場合に比べて、溶融塩電池をより早く加熱でき、第2の電源をより早く作動状態にすることができる。また、第1の電源でヒータを駆動できるので、ヒータ用電源を省略することにより、安価な電源システムが得られるという利点もある。
(11) In the first step, it is preferable that the first power supply drives a heater for heating and keeping the molten salt battery constituting the second power supply at or above a predetermined temperature at which the molten salt battery can operate. .
In this way, when the power supply system has a heater power supply, the molten salt battery can be heated faster and the second power supply can be operated faster than when the heater is driven only by the heater power supply. Can be in a state. Further, since the heater can be driven by the first power source, there is an advantage that an inexpensive power source system can be obtained by omitting the heater power source.
 (12) 前記第2のステップにおいて、前記第2の電源の出力電力が所定値以下に低下した場合は、前記負荷の駆動のための電源を前記第2の電源から前記第1の電源に切り替えることが好ましい。
 このようにすれば、何らかの原因で第2の電源の出力電力が低下しても、第1の電源が負荷を駆動するので、負荷に対する電力供給が不測の事態で停止するのを未然に防止することができる。
(12) In the second step, when the output power of the second power source drops below a predetermined value, the power source for driving the load is switched from the second power source to the first power source. It is preferable.
In this way, even if the output power of the second power source decreases for some reason, the first power source drives the load, so that the power supply to the load is prevented from being stopped due to an unexpected situation. be able to.
 以上の通り、本発明によれば、溶融塩電池を利用した電源システムにおいて、システムの起動直後から負荷を駆動することができる。従って、溶融塩電池を利用しているにも拘わらず、移動体の負荷の駆動に適した搭載型電源の電源システムを提供可能となる。 As described above, according to the present invention, in a power supply system using a molten salt battery, a load can be driven immediately after the system is started. Therefore, it is possible to provide an on-board power supply system suitable for driving a load on a moving object, even though a molten salt battery is used.
第1実施形態に係る電源システムの利用形態を示す説明図である。It is explanatory drawing which shows the utilization form of the power supply system which concerns on 1st Embodiment. 第1実施形態に係る電源システムの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the power supply system which concerns on 1st Embodiment. 制御部による電源切り替え処理の一例を示す説明図である。It is explanatory drawing which shows an example of the power supply switching process by a control part. 溶融塩電池の構成を模式的に示す斜視図である。It is a perspective view which shows the structure of a molten salt battery typically. 溶融塩電池ユニットの構成を模式的に示す斜視図である。It is a perspective view which shows the structure of a molten salt battery unit typically. 第2実施形態に係る電源システムの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the power supply system which concerns on 2nd Embodiment. 制御部による電源切り替え処理の一例を示す説明図である。It is explanatory drawing which shows an example of the power supply switching process by a control part.
 以下、図面を参照しつつ、本発明の実施形態を説明する。
 〔第1実施形態〕
 (システムの利用形態)
 図1は、第1実施形態に係る電源システム1の利用形態を示す説明図である。
 図1に示すように、本実施形態の電源システム1は、電気自動車などの車両2に搭載されて車載バッテリとして利用される搭載型電源の一種である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
(System usage)
FIG. 1 is an explanatory diagram showing a usage pattern of the power supply system 1 according to the first embodiment.
As shown in FIG. 1, the power supply system 1 according to the present embodiment is a type of on-board power source that is mounted on a vehicle 2 such as an electric vehicle and used as an in-vehicle battery.
 電源システム1には、操作部3が信号線を介して接続されている。操作部3は、利用者(車両2の搭乗者)がこれに対する操作入力を行うことにより、電源起動の指令を電源システム1に送信するためのものである。
 また、電源システム1には、負荷4が電力線を介して接続されている。負荷4は、車両2の駆動源となる電気モータや、ヘッドライト及びワイパーなど、車両2に通常搭載される電気機器よりなる。
An operation unit 3 is connected to the power supply system 1 via a signal line. The operation unit 3 is used to transmit a power activation command to the power supply system 1 when a user (passenger of the vehicle 2) performs an operation input on the operation unit 3.
In addition, a load 4 is connected to the power supply system 1 via a power line. The load 4 includes an electric device that is normally mounted on the vehicle 2 such as an electric motor serving as a drive source of the vehicle 2, a headlight, and a wiper.
 (システムの全体構成)
 図2は、第1実施形態に係る電源システムの内部構成を示すブロック図である。
 図2に示すように、電源システム1は、第1の電源である蓄電装置11と、溶融塩電池31を有する第2の電源である溶融塩電池ユニット(以下、単に「電池ユニット」と略称する場合がある。)12と、電池ユニット12のヒータ32に電力を供給するためのヒータ用電源13とを備えている。
(Overall system configuration)
FIG. 2 is a block diagram illustrating an internal configuration of the power supply system according to the first embodiment.
As shown in FIG. 2, the power supply system 1 includes a power storage device 11 as a first power supply and a molten salt battery unit (hereinafter simply referred to as “battery unit”) as a second power supply having a molten salt battery 31. And a heater power supply 13 for supplying power to the heater 32 of the battery unit 12.
 また、電源システム1は、各電源11~13の出力先を切り替え可能な入出力変換部14と、入出力変換部14を切り替え制御する制御部15と、溶融塩電池31の温度を計測するための温度センサ16と、商用電源等よりなる外部電源17の接続カプラ18とを備えている。
 なお、図2において、実線で描かれた接続線は「電力線」であり、破線で描かれた接続線は「信号線」である。
The power supply system 1 measures the temperature of the input / output conversion unit 14 that can switch the output destination of each of the power supplies 11 to 13, the control unit 15 that switches and controls the input / output conversion unit 14, and the temperature of the molten salt battery 31. Temperature sensor 16 and a connection coupler 18 of an external power source 17 such as a commercial power source.
In FIG. 2, a connection line drawn by a solid line is a “power line”, and a connection line drawn by a broken line is a “signal line”.
 入出力変換部14は複数の電力端子P0~P3,Lf,Lhを有する。このうち、「P0」は外部電源17の電力端子であり、「P1」は蓄電装置11の電力端子であり、「P2」は電池ユニットの電力端子であり、「P3」はヒータ用電源13の電力端子である。また、「Lf」は負荷4の電力端子であり、「Lh」はヒータ32の電力端子である。各電源11~13、負荷4及びヒータ32は、入出力変換部14の所定の端子P0~P3,Lf,Lhに電力線を介してそれぞれ接続されている。 The input / output conversion unit 14 has a plurality of power terminals P0 to P3, Lf, and Lh. Among these, “P0” is the power terminal of the external power supply 17, “P1” is the power terminal of the power storage device 11, “P2” is the power terminal of the battery unit, and “P3” is the power supply 13 for the heater. Power terminal. “Lf” is a power terminal of the load 4, and “Lh” is a power terminal of the heater 32. The power supplies 11 to 13, the load 4 and the heater 32 are respectively connected to predetermined terminals P0 to P3, Lf and Lh of the input / output conversion unit 14 through power lines.
 入出力変換部14は、双方向の昇降圧機能を有するDC/DC変換回路と、外部電源17の交流を整流するAC/DC変換回路とを内部に有する。
 各電力端子P0~P3,Lf,Lhのうち、直流用の端子同士間(例えば、P1-Lf間、P2-Lf間及びP1-P2間など)はDC/DC変換回路を介して接続され、交流用の端子と直流用の端子間(例えば、P0-P1間、P0-P2間及びP0-P3間など)はAC/DC変換回路を介して接続されている。
The input / output conversion unit 14 includes therein a DC / DC conversion circuit having a bidirectional step-up / step-down function and an AC / DC conversion circuit that rectifies the alternating current of the external power supply 17.
Among the power terminals P0 to P3, Lf, and Lh, the terminals for direct current (for example, between P1 and Lf, between P2 and Lf, and between P1 and P2) are connected via a DC / DC conversion circuit, The AC terminal and the DC terminal (for example, between P0 and P1, between P0 and P2, and between P0 and P3) are connected via an AC / DC conversion circuit.
 入出力変換部14は、電力端子P0~P3,Lf,Lh間の導通を入り切り可能な複数のスイッチを内部に有する。制御部15は、これらのスイッチをオン/オフすることにより、電力端子P0~P3,Lf,Lh間の電力経路を制御することができる。
 例えば、制御部15は、蓄電装置11にて負荷4を駆動する場合は、P1-Lf間が導通しかつP2-Lf間が切断するように、入出力変換部14のスイッチを制御する。また、制御部15は、電池ユニット12にて負荷4を駆動する場合は、P1-Lf間が切断しかつP2-Lf間が導通するように、入出力変換部14のスイッチを制御する。
The input / output conversion unit 14 includes a plurality of switches that can turn on and off the conduction between the power terminals P0 to P3, Lf, and Lh. The controller 15 can control the power path between the power terminals P0 to P3, Lf, and Lh by turning on / off these switches.
For example, when the power storage device 11 drives the load 4, the control unit 15 controls the switch of the input / output conversion unit 14 so that the connection between P1 and Lf is conducted and the connection between P2 and Lf is disconnected. Further, when driving the load 4 with the battery unit 12, the control unit 15 controls the switch of the input / output conversion unit 14 so that the connection between P1 and Lf is disconnected and the connection between P2 and Lf is conducted.
 更に、制御部15は、外部電源17にてシステム1内の電源11~13を充電する場合は、P0-P1間、P0-P2間及びP0-P3間がそれぞれ導通するように、入出力変換部14のスイッチを制御する。
 このように、制御部15は、入出力変換部14のスイッチを制御することにより、電源11~13、負荷4及びヒータ32の電力供給元や電力供給先を切り替える、「電源切り替え処理」を実行できるが、この処理の詳細は後述する。
Further, when the power supply 11 to 13 in the system 1 is charged by the external power supply 17, the control unit 15 performs input / output conversion so that P0-P1, P0-P2, and P0-P3 are electrically connected. The switch of the unit 14 is controlled.
As described above, the control unit 15 executes the “power supply switching process” by switching the power supply source and the power supply destination of the power supplies 11 to 13, the load 4, and the heater 32 by controlling the switches of the input / output conversion unit 14. The details of this process will be described later.
 制御部15は、各種のデータ及びコンピュータプログラムを記憶するメモリと、メモリから読み出したプログラムを実行して所定の処理を実現するCPUとを有する。
 制御部15は、操作部3からの操作信号に応じて、各電源11~13及び入出力変換部14を制御する。例えば、操作部3からの起動指令を受信すると、制御部15は、ヒータ用電源13の起動と入出力変換部14に対するスイッチ制御を行い、ヒータ32を駆動して電池ユニット12の溶融塩電池31を加熱させる。
The control unit 15 includes a memory that stores various data and computer programs, and a CPU that executes a program read from the memory and realizes predetermined processing.
The control unit 15 controls the power supplies 11 to 13 and the input / output conversion unit 14 in accordance with an operation signal from the operation unit 3. For example, upon receiving an activation command from the operation unit 3, the control unit 15 performs activation of the heater power supply 13 and switch control for the input / output conversion unit 14, drives the heater 32 to drive the molten salt battery 31 of the battery unit 12. To heat.
 温度センサ16は、サーミスタ又は熱電対等よりなり、断熱材33(図5参照)の内側に配置されている。制御部15は、温度センサ16の検出信号から求まる電池ユニット12の内部温度に基づいて、ヒータ用電源13からの電力供給を調整することにより、溶融塩電池31の温度をほぼ一定範囲内に収束させる温度制御を実行可能である。
 例えば、制御部15は、測定温度が所定温度以上の場合はヒータ32への電力供給を停止し、所定温度未満の場合は電力供給を再開し、溶融塩電池31の温度を保持する。
The temperature sensor 16 is formed of a thermistor, a thermocouple, or the like, and is disposed inside the heat insulating material 33 (see FIG. 5). The control unit 15 adjusts the power supply from the heater power supply 13 based on the internal temperature of the battery unit 12 obtained from the detection signal of the temperature sensor 16, thereby converging the temperature of the molten salt battery 31 within a substantially constant range. Temperature control can be performed.
For example, the control unit 15 stops the power supply to the heater 32 when the measured temperature is equal to or higher than a predetermined temperature, and restarts the power supply when the measured temperature is lower than the predetermined temperature, and maintains the temperature of the molten salt battery 31.
 制御部15は、蓄電装置11、電池ユニット12及びヒータ用電源13とも信号線(図2では図示せず)を介して繋がっており、これらの電源11~13を充電又は放電のいずれかの動作モードに切り替えることができる。
 また、制御部15は、入出力変換部14に設けた電流及び電圧の測定センサ(図示せず)とも繋がっており、各電源11~13が出力する電流値及び電圧値と、この値から求まる各電源11~13の出力電力の値をほぼリアルタイムの周期で演算している。
The control unit 15 is also connected to the power storage device 11, the battery unit 12, and the heater power supply 13 via a signal line (not shown in FIG. 2), and the power supply 11 to 13 is either charged or discharged. You can switch to mode.
The control unit 15 is also connected to a current and voltage measurement sensor (not shown) provided in the input / output conversion unit 14, and is obtained from the current values and voltage values output from the respective power supplies 11 to 13, and from these values. The value of the output power of each of the power supplies 11 to 13 is calculated with a substantially real-time cycle.
 (溶融塩電池の構成)
 図4は、溶融塩電池31の構成を模式的に示す斜視図である。
 図4に示すように、溶融塩電池31は、直方体の箱状の電池容器316内に、矩形板状の正極311、シート状のセパレータ313及び矩形板状の負極312を厚さ方向に並設することによって構成されている。図3中の破線は、電池容器316の外形線である。
 正極311、セパレータ313及び負極312はその順で厚さ方向に重ね合わされ、電池容器316の底面に対して縦に立設されている。
(Configuration of molten salt battery)
FIG. 4 is a perspective view schematically showing the configuration of the molten salt battery 31.
As shown in FIG. 4, the molten salt battery 31 includes a rectangular plate-shaped positive electrode 311, a sheet-shaped separator 313, and a rectangular plate-shaped negative electrode 312 arranged in parallel in the thickness direction in a rectangular parallelepiped box-shaped battery container 316. It is configured by A broken line in FIG. 3 is an outline of the battery case 316.
The positive electrode 311, the separator 313, and the negative electrode 312 are stacked in that order in the thickness direction, and are erected vertically with respect to the bottom surface of the battery container 316.
 正極311は、矩形板状の集電体上に、NaCrO等の正極活物質を含む正極材を塗布することによって形成されている。
 負極312は、矩形板状の集電体上に、Sn(すず)等の負極活物質を含む負極材をメッキすることによって形成されている。セパレータ313は、ケイ酸ガラス又は樹脂等の絶縁性の材料よりなり、内部に電解質を保持でき、電荷のキャリアとなるイオンが通過できる形状に形成されている。
The positive electrode 311 is formed by applying a positive electrode material containing a positive electrode active material such as NaCrO 2 on a rectangular plate-shaped current collector.
The negative electrode 312 is formed by plating a negative electrode material containing a negative electrode active material such as Sn (tin) on a rectangular plate-shaped current collector. The separator 313 is made of an insulating material such as silicate glass or resin, and has a shape capable of holding an electrolyte therein and allowing ions serving as charge carriers to pass therethrough.
 具体的には、セパレータ313は、例えばガラスクロス又は多孔質の形状に形成された樹脂である。セパレータ313は、正極311と負極312の間を離隔するものであり、正極311、負極312及びセパレータ313には、溶融塩からなる電解質が含浸されている。
 電解質は、溶融状態で導電性の液体となる溶融塩よりなる。融点をできるだけ低下させるために、電解質は複数種類の溶融塩が混合していることが望ましい。
Specifically, the separator 313 is, for example, a resin formed in a glass cloth or a porous shape. The separator 313 separates the positive electrode 311 and the negative electrode 312, and the positive electrode 311, the negative electrode 312 and the separator 313 are impregnated with an electrolyte made of a molten salt.
The electrolyte is made of a molten salt that becomes a conductive liquid in a molten state. In order to lower the melting point as much as possible, it is desirable that the electrolyte is a mixture of a plurality of types of molten salts.
 例えば、電解質は、ナトリウムイオンをカチオンとしFSA(ビスフルオロスルフォニルアミド) をアニオンとしたNaFSAと、カリウムイオンをカチオンとしFSA をアニオンとしたKFSAとの混合塩である。
 なお、電解質である溶融塩は、TFSA(ビストリフルオロメチルスルフォニルアミド)又はFTA(フルオロトリフルオロメチルスルフォニルアミド)等の他のアニオンを含んでいてもよく、有機イオン等の他のカチオンを含んでいてもよい。
For example, the electrolyte is a mixed salt of NaFSA with sodium ion as a cation and FSA (bisfluorosulfonylamide) as an anion and KFSA with potassium ion as a cation and FSA as an anion.
The molten salt that is an electrolyte may contain other anions such as TFSA (bistrifluoromethylsulfonylamide) or FTA (fluorotrifluoromethylsulfonylamide) and other cations such as organic ions. Also good.
 正極311には、導電材製の正極用接続部材314が接続され、負極312には、導電材製の負極用接続部材315が接続されている。これらの接続部材314,315は、それぞれ図示しない端子に接続されている。この端子は、他の溶融塩電池31又は入出力変換部14に接続されている。
 なお、図4に示す溶融塩電池の構成は模式的ものであり、溶融塩電池31内には、充放電時の正極311又は負極312の変形を抑制するための弾性部材など、図示しないその他の構成部材が含まれている。
A positive electrode connecting member 314 made of a conductive material is connected to the positive electrode 311, and a negative electrode connecting member 315 made of a conductive material is connected to the negative electrode 312. These connecting members 314 and 315 are respectively connected to terminals not shown. This terminal is connected to another molten salt battery 31 or the input / output conversion unit 14.
The structure of the molten salt battery shown in FIG. 4 is a schematic structure. In the molten salt battery 31, other members (not shown) such as an elastic member for suppressing deformation of the positive electrode 311 or the negative electrode 312 at the time of charge / discharge are provided. Constituent members are included.
 また、図4では、正極311及び負極312を一対備える構造のものを例示したが、溶融塩電池31は、セパレータ313を間に介して複数の正極311及び負極312を交互に重ねてある構造であってもよい。
 更に、溶融塩電池31の形状は、直方体の形状に限るものではなく、円柱状等のその他の形状であってもよい。
4 illustrates a structure having a pair of the positive electrode 311 and the negative electrode 312, the molten salt battery 31 has a structure in which a plurality of positive electrodes 311 and negative electrodes 312 are alternately stacked with a separator 313 interposed therebetween. There may be.
Furthermore, the shape of the molten salt battery 31 is not limited to a rectangular parallelepiped shape, and may be other shapes such as a columnar shape.
 (電池ユニットの構成)
 図5は、溶融塩電池ユニット12の構成を模式的に示す斜視図である。
 図5に示すように、電池ユニット12は、X方向とY方向に2次元配列された複数(図例では合計36個)の溶融塩電池31と、この電池31に接触させて設けられた複数のヒータ32とを備えている。
(Battery unit configuration)
FIG. 5 is a perspective view schematically showing the configuration of the molten salt battery unit 12.
As shown in FIG. 5, the battery unit 12 includes a plurality of (in the illustrated example, 36 in total) molten salt batteries 31 two-dimensionally arranged in the X direction and the Y direction, and a plurality of battery units 12 provided in contact with the batteries 31. The heater 32 is provided.
 なお、図5においては、溶融塩電池31とヒータ32とを区別し易いように、ヒータ32の端縁面にハッチングを施してある(図2及び図6についても同様)。
 X方向では、4個の溶融塩電池31が直線状にかつ直列に接続されている。また、Y方向では、直列接続された4個の溶融塩電池31からなる電池列が、9列並行に並べて互いに並列に接続されている。各電池列の正極は、電力線を介して入出力変換部14の電源端子P2に接続されている(図2参照)。
In FIG. 5, the edge surface of the heater 32 is hatched so that the molten salt battery 31 and the heater 32 can be easily distinguished (the same applies to FIGS. 2 and 6).
In the X direction, four molten salt batteries 31 are connected linearly and in series. Further, in the Y direction, nine battery rows composed of four molten salt batteries 31 connected in series are arranged in parallel and connected in parallel to each other. The positive electrode of each battery row is connected to the power supply terminal P2 of the input / output conversion unit 14 via a power line (see FIG. 2).
 Y方向の両端には、それぞれ矩形平板状のヒータ32が設けられ、ヒータ32は溶融塩電池31の側面に接触している。また、3列目と4列目の電池列の間と、6列目と7列目の間には、同じヒータ32が介在されている。
 すなわち、1つの溶融塩電池ユニット12には4個のヒータ32が含まれており、1列目、3列目、4列目、6列目、7列目及び9列目の溶融塩電池31の電池列に、それぞれヒータ32が接触している。
Rectangular plate heaters 32 are provided at both ends in the Y direction, and the heaters 32 are in contact with the side surfaces of the molten salt battery 31. Further, the same heater 32 is interposed between the third and fourth battery rows and between the sixth and seventh rows.
That is, one molten salt battery unit 12 includes four heaters 32, and the first, third, fourth, sixth, seventh and ninth rows of molten salt batteries 31 are included. The heaters 32 are in contact with the battery rows.
 各ヒータ32の正極は、電力線を介して入出力変換部14の電源端子Lhに接続されている(図2参照)。ヒータ32は、ラバーヒータ又はセラミックヒータなど、電力供給されると発熱する板状の電熱ヒータよりなる。
 ヒータ32は、主としてヒータ用電源13からの電力供給により発熱し、電池ユニット12内の溶融塩電池31を加熱する。溶融塩電池ユニット12の外周部分は、断熱材33で全体的に覆われている。図5中の破線は、その断熱材33の外形線である。
The positive electrode of each heater 32 is connected to the power supply terminal Lh of the input / output conversion unit 14 via a power line (see FIG. 2). The heater 32 is a plate-like electric heater that generates heat when supplied with electric power, such as a rubber heater or a ceramic heater.
The heater 32 generates heat mainly by power supply from the heater power supply 13 and heats the molten salt battery 31 in the battery unit 12. The outer peripheral portion of the molten salt battery unit 12 is entirely covered with a heat insulating material 33. The broken line in FIG. 5 is the outline of the heat insulating material 33.
 なお、図5に示した複数の溶融塩電池31の配置及び接続態様や、複数のヒータ32の配置はあくまでも一例であり、溶融塩電池ユニット12の構成は、図示のものに限定されるものではない。 In addition, arrangement | positioning and connection aspect of the some molten salt battery 31 shown in FIG. 5, arrangement | positioning of the some heater 32 are an example to the last, and the structure of the molten salt battery unit 12 is not limited to the thing of illustration. Absent.
 (蓄電装置の構成)
 蓄電装置11は、常温での充放電が可能な二次電池よりなる。蓄電装置11の正極は、電力線を介して入出力変換部14の電源端子P1に接続されている(図2参照)。
 本実施形態の蓄電装置11は、蓄電池又はキャパシタにより構成することができる。蓄電池としては、例えば、鉛蓄電池、リチウムイオン二次電池、ナトリウム二次電池、ニッケル水素二次電池などを採用することができる。
(Configuration of power storage device)
The power storage device 11 includes a secondary battery that can be charged and discharged at room temperature. The positive electrode of the power storage device 11 is connected to the power supply terminal P1 of the input / output conversion unit 14 via a power line (see FIG. 2).
The power storage device 11 of the present embodiment can be configured by a storage battery or a capacitor. As the storage battery, for example, a lead storage battery, a lithium ion secondary battery, a sodium secondary battery, a nickel hydride secondary battery, or the like can be employed.
 キャパシタしては、電界二層キャパシタ、リチウムイオンキャパシタ、ナトリウムイオンキャパシタなどを採用することができる。
 蓄電池の場合は、高速の充放電には不向きであるが蓄電容量が大きい。そこで、電池ユニット12の準備状態が比較的長くかかる場合には、準備状態における負荷4の駆動を比較的長時間で行えるようにするため、蓄電池を採用することが好ましい。
As the capacitor, an electric field double layer capacitor, a lithium ion capacitor, a sodium ion capacitor, or the like can be adopted.
In the case of a storage battery, it is not suitable for high-speed charging / discharging, but has a large storage capacity. Therefore, when the battery unit 12 is in the preparation state for a relatively long time, it is preferable to employ a storage battery so that the load 4 can be driven in the preparation state in a relatively long time.
 一方、キャパシタは、エネルギー密度が大きく瞬間的な大電流出力が可能である。そこで、例えば、車両2が急加速する場合など、負荷(電動モータ)4を大電流で駆動する必要性を想定する場合には、キャパシタを採用することが好ましい。
 もっとも、本実施形態の蓄電装置11としては、上記蓄電池とキャパシタの双方を併用したものであってもよく、この場合には、それらの双方の利点を兼ね備えた蓄電装置11が得られる。
On the other hand, the capacitor has a large energy density and can instantaneously output a large current. Therefore, for example, when it is assumed that the load (electric motor) 4 needs to be driven with a large current, such as when the vehicle 2 is accelerated rapidly, it is preferable to employ a capacitor.
But as the electrical storage apparatus 11 of this embodiment, what used both the said storage battery and a capacitor together may be used, and in this case, the electrical storage apparatus 11 which has those both advantages is obtained.
 (制御部による電源切り替え処理)
 図3は、制御部15による電源切り替え処理の一例を示す説明図である。
 ここで、図3(a)の「準備状態」とは、電池ユニット12の停止状態(従って、溶融塩電池31の電解質は固化している。)から作動状態に至るまでの状態のことをいい、図3(b)の「作動状態」とは、当該電池ユニット12に対する充放電が可能な状態(従って、溶融塩電池31の電解質は液化している。)のことをいう。
(Power switching process by the control unit)
FIG. 3 is an explanatory diagram illustrating an example of a power supply switching process performed by the control unit 15.
Here, the “prepared state” in FIG. 3A refers to a state from the stopped state of the battery unit 12 (the electrolyte of the molten salt battery 31 is solidified) to the operating state. The “operating state” in FIG. 3B means a state in which the battery unit 12 can be charged and discharged (thus, the electrolyte of the molten salt battery 31 is liquefied).
 図3(c)の「本格稼働状態」とは、電池ユニット12が作動状態である場合において、電池ユニット12の出力電力が所定値以上で安定した状態が、所定時間(例えば5分)以上継続している状態のことをいう。
 図3(d)の「電力低下状態」とは、電池ユニット12がいったん作動状態となった場合において、何らかの原因で電池ユニット12の出力電力が所定値未満に低下した状態のことをいう。
The “full operation state” in FIG. 3C means that when the battery unit 12 is in an operating state, the state where the output power of the battery unit 12 is stable at a predetermined value or more continues for a predetermined time (for example, 5 minutes) or longer. It means the state that is doing.
The “power reduction state” in FIG. 3D refers to a state where the output power of the battery unit 12 has decreased below a predetermined value for some reason when the battery unit 12 is once activated.
 また、図3(e)の「外部充電状態」とは、本実施形態の電源システム1に対して、外部電源17からの充電を行う状態のことをいう。
 以下、図2及び図3を参照して、上記(a)~(e)の状態ごとに、制御部15が行う電源切り替え処理について説明する。
In addition, the “external charging state” in FIG. 3E refers to a state in which the power supply system 1 of the present embodiment is charged from the external power supply 17.
Hereinafter, with reference to FIG. 2 and FIG. 3, the power source switching process performed by the control unit 15 for each of the states (a) to (e) will be described.
  <準備状態の電力経路>
 制御部15は、操作部3からシステムの起動指令を受信すると、図3(a)に示す準備状態の電力経路となるように、入出力変換部14のスイッチを制御する。
 図3(a)に示すように、「準備状態」では、ヒータ用電源13の電力端子P3がヒータ32の電源端子Lhに接続され、蓄電装置11の電力端子P1が負荷4の電力端子Lfに接続される。
<Prepared power path>
When receiving the system activation command from the operation unit 3, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path is in the preparation state illustrated in FIG.
As shown in FIG. 3A, in the “preparation state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P1 of the power storage device 11 is connected to the power terminal Lf of the load 4. Connected.
 従って、この場合、ヒータ用電源13からの電力供給により、溶融塩電池31の温度が上昇するようにヒータ32が溶融塩電池31を加熱するとともに、負荷4は蓄電装置11からの電力供給によって駆動される。
 制御部15は、温度センサ16の検出信号に基づく測定温度が、溶融塩電池31が作動可能な所定温度(例えば70℃程度)になるまで、図3(a)の準備状態の電力経路を維持する。
Therefore, in this case, the heater 32 heats the molten salt battery 31 so that the temperature of the molten salt battery 31 is increased by the power supply from the heater power supply 13, and the load 4 is driven by the power supply from the power storage device 11. Is done.
The control unit 15 maintains the power path in the ready state of FIG. 3A until the measured temperature based on the detection signal of the temperature sensor 16 reaches a predetermined temperature (for example, about 70 ° C.) at which the molten salt battery 31 can operate. To do.
 電池ユニット12の作動条件(電池ユニット12に対する充放電が可能な作動状態となるための条件)は、溶融塩電池31の温度が所定温度以上になることだけでなく、入出力変換部14に設けた電流センサ又は電圧センサの検出信号から求まる電池ユニット12の出力電流又は出力電圧が、所定値以上であることを採用することにしてもよい。
 また、電池ユニット12の作動条件は、溶融塩電池31の温度に基づく条件と、電池ユニット12が出力する電流又は電圧に基づく条件の双方を併用することにしてもよい。
The operating conditions of the battery unit 12 (conditions for enabling the battery unit 12 to be charged / discharged) are not only that the temperature of the molten salt battery 31 exceeds a predetermined temperature, but are also provided in the input / output conversion unit 14. Alternatively, it may be adopted that the output current or output voltage of the battery unit 12 obtained from the detection signal of the current sensor or voltage sensor is a predetermined value or more.
Moreover, you may decide to use together the conditions based on the temperature based on the temperature of the molten salt battery 31, and the conditions based on the electric current or voltage which the battery unit 12 outputs as the operating conditions of the battery unit 12.
 かかる条件の併用を行う場合には、溶融塩電池31の温度が所定温度以上であり、かつ、電池ユニット12の出力電流又は出力電圧が所定値以上である場合に、電池ユニット12が作動状態に入ったと判定することが好ましい。
 その理由は、例えば、温度条件が成立しただけで作動状態と見なす場合に比べて、温度条件と電流又は電圧条件が同時に成立した場合に作動状態と見なす方が、電池ユニット12が作動状態に入ったことをより正確に判定できるからである。
When using these conditions together, when the temperature of the molten salt battery 31 is equal to or higher than a predetermined temperature and the output current or output voltage of the battery unit 12 is equal to or higher than a predetermined value, the battery unit 12 is in an operating state. It is preferable to determine that it has entered.
The reason is that, for example, the battery unit 12 enters the operating state when the temperature condition and the current or voltage condition are satisfied at the same time as compared with the case where the temperature condition is satisfied and the current or voltage condition is satisfied at the same time. This is because it can be determined more accurately.
 なお、図3(a)に破線で示すように、準備状態において、蓄電装置11の電力端子P1をヒータ32の電源端子Lhにも接続し、ヒータ32を、ヒータ用電源13と蓄電装置11からの電源供給によって駆動することにしてもよい。
 このようにすれば、ヒータ用電源13だけでヒータ32を駆動する場合に比べて、溶融塩電池31をより早く加熱でき、電池ユニット12をより早く作動状態に遷移させることができる。
3A, in the preparation state, the power terminal P1 of the power storage device 11 is also connected to the power supply terminal Lh of the heater 32, and the heater 32 is connected to the heater power source 13 and the power storage device 11. It may be driven by supplying power.
In this way, the molten salt battery 31 can be heated more quickly than when the heater 32 is driven only by the heater power supply 13, and the battery unit 12 can be shifted to the operating state earlier.
  <作動状態の電力経路>
 制御部15は、電池ユニット12の作動条件が成立したことを検出すると、図3(b)に示す作動状態の電力経路となるように、入出力変換部14のスイッチを制御する。
 図3(b)に示すように、「作動状態」では、ヒータ用電源13の電力端子P3がヒータ32の電源端子Lhに接続され、電池ユニット12の電力端子P2が負荷4の電力端子Lfに接続される。
<Electric power path>
When the control unit 15 detects that the operation condition of the battery unit 12 is established, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the operation state illustrated in FIG.
As shown in FIG. 3B, in the “operating state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P2 of the battery unit 12 is connected to the power terminal Lf of the load 4. Connected.
 従って、この場合、ヒータ用電源13からの電力供給により、ヒータ32が溶融塩電池31の温度を保持できる程度に発熱するとともに、負荷4は電池ユニット12からの電力供給によって駆動される。
 制御部15は、電池ユニット12が作動状態になると、電池ユニット12の出力電流と出力電圧から当該ユニット12の出力電力をモニタリングし、その出力電力が所定値以上で安定した状態が所定時間(例えば5分)以上継続した場合には、電池ユニット12が本格稼働になったと判定する。
Therefore, in this case, the power supply from the heater power supply 13 generates heat to such an extent that the heater 32 can maintain the temperature of the molten salt battery 31, and the load 4 is driven by the power supply from the battery unit 12.
When the battery unit 12 is in an operating state, the control unit 15 monitors the output power of the unit 12 from the output current and output voltage of the battery unit 12, and a state where the output power is stable at a predetermined value or more is determined for a predetermined time (for example, If it continues for 5 minutes or more, it is determined that the battery unit 12 is in full operation.
 また、制御部15は、電池ユニット12が作動状態である場合において、モニタリングした出力電力が所定値未満に低下したか否かにより、電池ユニット12に電力低下が発生したか否かについても判定する。 In addition, when the battery unit 12 is in an operating state, the control unit 15 also determines whether or not a power decrease has occurred in the battery unit 12 depending on whether or not the monitored output power has decreased below a predetermined value. .
  <本格稼働状態の電力経路>
 制御部15は、電池ユニット12が本格稼働になったと判定すると、図3(c)に示す本格稼働状態の電力経路となるように、入出力変換部14のスイッチを制御する。
 図3(c)に示すように、「本格稼働状態」では、ヒータ用電源13の電力端子P3がヒータ32の電源端子Lhに接続され、電池ユニット12の電力端子P2が負荷4の電力端子Lfだけでなく、蓄電装置11の電力端子P1にも接続される。
<Power path in full operation>
When the control unit 15 determines that the battery unit 12 is in full operation, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the full operation state illustrated in FIG.
As shown in FIG. 3C, in the “full operation state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P2 of the battery unit 12 is connected to the power terminal Lf of the load 4. As well as being connected to the power terminal P <b> 1 of the power storage device 11.
 従って、この場合、電池ユニット12からの電力供給により、負荷4が駆動されるだけでなく、蓄電装置11に対する充電が同時に行われる。
 このように、本実施形態では、電池ユニット12が本格稼働状態になると、電池ユニット12の電力を蓄電装置11の充電にも使用するので、蓄電装置11の残容量の低下を抑制することができる。このため、車両2が駐停車して電源システム1が停止したあと、次に電源システム1を再起動させる場合に、蓄電装置11による負荷4の駆動(図3(a)の準備状態における負荷4の駆動)を確実に行えるという利点がある。
Therefore, in this case, the power supply from the battery unit 12 not only drives the load 4 but also charges the power storage device 11 at the same time.
Thus, in this embodiment, since the electric power of the battery unit 12 is used also for charge of the electrical storage apparatus 11 when the battery unit 12 will be in a full operation state, the fall of the remaining capacity of the electrical storage apparatus 11 can be suppressed. . For this reason, when the power supply system 1 is restarted after the vehicle 2 is parked and stopped and the power supply system 1 is stopped, the load 4 is driven by the power storage device 11 (the load 4 in the preparation state of FIG. 3A). There is an advantage that it can be reliably performed.
 なお、図3(c)に破線で示すように、本格稼働状態において、電池ユニット12の電力端子P2をヒータ用電源13の電源端子P3にも接続し、ヒータ用電源13に対する充電を同時に行うことにしてもよい。
 このようにすれば、ヒータ用電源13の残容量の低下を抑制することができる。このため、車両2が駐停車して電源システム1が停止したあと、次に電源システム1を再起動させる場合に、ヒータ用電源13によるヒータ32の駆動(図3(a)の準備状態におけるヒータ32の駆動)を確実に行うことができる。
In addition, as shown with a broken line in FIG.3 (c), in the full-scale operation state, the power terminal P2 of the battery unit 12 is also connected to the power supply terminal P3 of the heater power supply 13, and the heater power supply 13 is charged simultaneously. It may be.
In this way, it is possible to suppress a decrease in the remaining capacity of the heater power supply 13. Therefore, when the power supply system 1 is restarted after the vehicle 2 is parked and stopped and then the power supply system 1 is restarted, the heater 32 is driven by the heater power supply 13 (the heater in the preparation state of FIG. 3A). 32 driving) can be performed reliably.
  <電力低下状態の電力経路>
 制御部15は、電池ユニット12に電力低下が生じた場合には、図3(d)に示す電力低下状態の電力経路となるように、入出力変換部14のスイッチを制御する。
 図3(d)に示すように、「電力低下状態」では、ヒータ用電源13の電力端子P3がヒータ32の電源端子Lhに接続され、蓄電装置11の電力端子P1が負荷4の電力端子Lfに接続される。
<Power path when power is reduced>
When power reduction occurs in the battery unit 12, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path is in the power reduction state illustrated in FIG.
As shown in FIG. 3D, in the “power reduction state”, the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32, and the power terminal P1 of the power storage device 11 is connected to the power terminal Lf of the load 4. Connected to.
 従って、この場合、ヒータ用電源13からの電力供給により、ヒータ32が溶融塩電池31の温度を保持できる程度に発熱し、負荷4の電力供給源が電池ユニット12から蓄電装置11に切り替わる。
 このように、本実施形態では、何らかの原因で電池ユニット12の出力電力が低下しても、蓄電装置11が代わりに負荷4を駆動するので、負荷4に対する電力供給が不測の事態で停止するのを未然に防止できるという利点がある。
Therefore, in this case, the power supply from the heater power supply 13 generates heat so that the heater 32 can maintain the temperature of the molten salt battery 31, and the power supply source of the load 4 is switched from the battery unit 12 to the power storage device 11.
Thus, in this embodiment, even if the output power of the battery unit 12 decreases for some reason, the power storage device 11 drives the load 4 instead, so the power supply to the load 4 stops due to an unexpected situation. There is an advantage that can be prevented.
 なお、図3(d)に破線で示すように、電力低下状態において、蓄電装置11の電力端子P1を電池ユニット12の電源端子P2にも接続し、蓄電装置11の電力供給により電池ユニット12を充電することにしてもよい。
 このようにすれば、電池ユニット12の電力低下の原因が残容量不足である場合に、電池ユニット12の残容量を増加させることができ、電池ユニット12の出力電力を回復させることができる。
Note that, as indicated by a broken line in FIG. 3D, in a power reduction state, the power terminal P <b> 1 of the power storage device 11 is also connected to the power supply terminal P <b> 2 of the battery unit 12, so You may decide to charge.
In this way, when the cause of the power reduction of the battery unit 12 is insufficient remaining capacity, the remaining capacity of the battery unit 12 can be increased, and the output power of the battery unit 12 can be recovered.
  <外部充電状態の電力経路>
 制御部15は、接続カプラ18に設けたセンサ(図示せず)により、外部電源17が接続されたか否かを検出している。
 そして、制御部15は、外部電源17が接続された場合は、図3(e)に示す外部充電状態の電力経路となるように、入出力変換部14のスイッチを制御する。
<Power path of external charging state>
The control unit 15 detects whether or not the external power supply 17 is connected by a sensor (not shown) provided in the connection coupler 18.
Then, when the external power supply 17 is connected, the control unit 15 controls the switch of the input / output conversion unit 14 so that the power path in the external charging state illustrated in FIG.
 図3(e)に示すように、「外部充電状態」では、外部電源17の電池端子P0が、蓄電装置11の電力端子P1、電池ユニット12の電力端子P2及びヒータ用電源13の電力端子P3にそれぞれ接続され、ヒータ用電源13の電力端子P3がヒータ32の電源端子Lhに接続される。
 従って、この場合、ヒータ用電源13からの電力供給により、溶融塩電池31の温度が上昇するようにヒータ32が溶融塩電池31を加熱するとともに、外部電源17からの電力供給により、各電源11~13に対する充電が行われる。
As shown in FIG. 3E, in the “external charging state”, the battery terminal P0 of the external power source 17 is the power terminal P1 of the power storage device 11, the power terminal P2 of the battery unit 12, and the power terminal P3 of the heater power source 13. And the power terminal P3 of the heater power supply 13 is connected to the power supply terminal Lh of the heater 32.
Therefore, in this case, the heater 32 heats the molten salt battery 31 so that the temperature of the molten salt battery 31 is increased by the power supply from the heater power supply 13, and the power supply 11 from the power supply from the external power supply 17. Charging is performed for ˜13.
 〔電源システムの効果〕
 以上の通り、本実施形態の電源システム1によれば、制御部15が、電池ユニット12の作動条件が成立する作動状態である場合は、電池ユニット12によって負荷4を駆動させるが、電池ユニット12の作動条件が成立しない準備状態である場合は、蓄電装置11によって負荷4を駆動させる。
 従って、電池ユニット12がシステムの起動直後から作動状態に入る前の準備状態である場合でも、負荷4を駆動することができ、溶融塩電池31を利用した電源システム1であるにも拘わらず、車両2の負荷4の駆動に適した搭載型電源を実現することができる。
[Effect of power supply system]
As described above, according to the power supply system 1 of the present embodiment, the control unit 15 drives the load 4 by the battery unit 12 when the operation condition of the battery unit 12 is satisfied. When the operation condition is not established, the load 4 is driven by the power storage device 11.
Therefore, even when the battery unit 12 is in a preparation state immediately after starting the system and before entering the operation state, the load 4 can be driven, and despite being the power supply system 1 using the molten salt battery 31, An on-board power source suitable for driving the load 4 of the vehicle 2 can be realized.
 〔第2実施形態〕
 図6は、第2実施形態に係る電源システム1の内部構成を示すブロック図である。
 第2実施形態(図6)の電源システム1が第1実施形態(図2)のそれと異なる点は、ヒータ用電源13が省略され、これに対応する電力端子P3が入出力変換部14に設けられていない点にある。
 図7は、第2実施形態の電源システム1における、制御部15による電源切り替え処理の一例を示す説明図である。
[Second Embodiment]
FIG. 6 is a block diagram showing an internal configuration of the power supply system 1 according to the second embodiment.
The power supply system 1 of the second embodiment (FIG. 6) is different from that of the first embodiment (FIG. 2) in that the heater power supply 13 is omitted and a corresponding power terminal P3 is provided in the input / output conversion unit 14. It is in the point that is not done.
FIG. 7 is an explanatory diagram illustrating an example of a power supply switching process by the control unit 15 in the power supply system 1 of the second embodiment.
 第2実施形態に係る図7の処理と第1実施形態に係る図3の処理を対比すれば明らかな通り、第2実施形態では、ヒータ用電源13(電力端子P3)の省略に伴い、図7(a)~(e)の各状態におけるヒータ32に対する電力供給を、蓄電装置11が担うようになっている。
 例えば、図7(a)の準備状態では、制御部15は、蓄電装置11の電源端子P1を負荷4の電源端子Lfだけでなく、ヒータ32の電源端子Lhにも接続し、蓄電装置11によってヒータ32を駆動させる。
As apparent from comparing the process of FIG. 7 according to the second embodiment with the process of FIG. 3 according to the first embodiment, in the second embodiment, as the heater power supply 13 (power terminal P3) is omitted, The power storage device 11 is responsible for supplying power to the heater 32 in each of the states 7 (a) to 7 (e).
For example, in the preparation state of FIG. 7A, the control unit 15 connects the power supply terminal P1 of the power storage device 11 not only to the power supply terminal Lf of the load 4 but also to the power supply terminal Lh of the heater 32. The heater 32 is driven.
 このように、蓄電装置11がヒータ32にも電力供給を行うようにすれば、図6に示すような、ヒータ用電源13を省略したシステム構成を採用することができ、その分だけ製造コストが安価な電源システム1が得られるという利点がある。 If the power storage device 11 supplies power to the heater 32 as described above, a system configuration in which the heater power supply 13 is omitted as shown in FIG. 6 can be adopted, and the manufacturing cost is correspondingly increased. There is an advantage that an inexpensive power supply system 1 can be obtained.
 〔その他の変形例〕
 今回開示した実施形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 例えば、上述の実施形態で示した電源システム1は、電気自動車2用の搭載型電源だけでなく、鉄道車両、航空機又は船舶などの電気自動車2以外の移動体のための搭載型電源として利用することもできる。
[Other variations]
The embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of rights of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope equivalent to the configurations described in the claims.
For example, the power supply system 1 shown in the above embodiment is used not only as an on-board power source for the electric vehicle 2 but also as an on-board power source for a moving body other than the electric vehicle 2 such as a railway vehicle, an aircraft, or a ship. You can also.
  1  電源システム
  2  車両(電気自動車)
  3  操作部
  4  負荷
 11  蓄電装置(第1の電源)
 12  溶融塩電池ユニット(第2の電源)
 13  ヒータ用電源
 14  入出力変換部
 15  制御部
 16  温度センサ
 17  外部電源
 18  接続カプラ
 31  溶融塩電池
 32  ヒータ
1 Power supply system 2 Vehicle (electric vehicle)
3 Operation unit 4 Load 11 Power storage device (first power supply)
12 Molten salt battery unit (second power supply)
13 Heater Power Supply 14 Input / Output Conversion Unit 15 Control Unit 16 Temperature Sensor 17 External Power Supply 18 Connection Coupler 31 Molten Salt Battery 32 Heater

Claims (9)

  1.  常温での充放電が可能な第1の電源と、
     常温では固体である電解質がその融点以上の温度で溶融すると充放電が可能となる1又は複数の溶融塩電池を含む第2の電源と、
     前記第2の電源の作動条件が成立しない場合は、前記第1の電源に負荷を駆動させ、前記作動条件が成立する場合は、前記第2の電源に前記負荷を駆動させる制御部と、
     を備えていることを特徴とする電源システム。
    A first power source capable of charging and discharging at room temperature;
    A second power source including one or more molten salt batteries that can be charged and discharged when an electrolyte that is solid at room temperature is melted at a temperature equal to or higher than its melting point;
    When the operating condition of the second power source is not satisfied, the controller drives the first power source to drive a load, and when the operating condition is satisfied, the control unit drives the second power source to drive the load;
    A power supply system comprising:
  2.  前記制御部は、前記作動条件が成立しかつ前記第2の電源が本格稼働した場合は、前記第2の電源の電力を前記第1の電源の充電にも使用する請求項1に記載の電源システム。 2. The power source according to claim 1, wherein the control unit also uses the power of the second power source for charging the first power source when the operating condition is satisfied and the second power source is fully operated. system.
  3.  前記第1の電源は、蓄電池及びキャパシタのうちの少なくとも1つを含む電源である請求項1又は2に記載の電源システム。 The power supply system according to claim 1 or 2, wherein the first power supply is a power supply including at least one of a storage battery and a capacitor.
  4.  前記第2の電源を構成する前記溶融塩電池を作動可能な所定温度以上に加熱及び保温するためのヒータを更に備えている請求項1~3のいずれか1項に記載の電源システム。 The power supply system according to any one of claims 1 to 3, further comprising a heater for heating and keeping the molten salt battery constituting the second power supply above a predetermined operable temperature.
  5.  前記制御部は、前記作動条件が成立しない場合は、前記第1の電源に前記ヒータを駆動させる請求項4に記載の電源システム。 The power supply system according to claim 4, wherein the control unit drives the heater to the first power supply when the operating condition is not satisfied.
  6.  前記作動条件には、前記第2の電源を構成する前記溶融塩電池が作動可能な所定温度以上であることが含まれる請求項1~5のいずれか1項に記載の電源システム。 The power supply system according to any one of claims 1 to 5, wherein the operating condition includes a temperature higher than a predetermined temperature at which the molten salt battery constituting the second power supply can operate.
  7.  前記作動条件には、前記第2の電源が出力する電流又は電圧が所定値以上であることが含まれる請求項1~6のいずれか1項に記載の電源システム。 The power supply system according to any one of claims 1 to 6, wherein the operating condition includes a current or voltage output from the second power supply being a predetermined value or more.
  8.  前記制御部は、前記作動条件の成立後に前記第2の電源の出力電力が所定値未満に低下した場合は、前記第1の電源に前記負荷を駆動させる請求項1~7のいずれか1項に記載の電源システム。 8. The control unit according to claim 1, wherein when the output power of the second power source drops below a predetermined value after the operation condition is satisfied, the control unit drives the load to the first power source. Power supply system as described in.
  9.  下記に定義する第1及び第2の電源を備えた電源システムの制御方法であって、
     前記第2の電源が準備状態である間は、前記第1の電源により負荷を駆動する第1のステップと、
     前記第2の電源が準備状態から作動状態に移行した場合は、前記第2の電源により前記負荷を駆動する第2のステップと、
     を含むことを特徴とする電源システムの制御方法。
     第1の電源:常温での充放電が可能な電源
     第2の電源:常温では固体である電解質がその融点以上の温度で溶融すると充放電が可能となる1又は複数の溶融塩電池を含む電源
    A method for controlling a power supply system having first and second power supplies defined below,
    A first step of driving a load with the first power supply while the second power supply is in a ready state;
    A second step of driving the load by the second power source when the second power source has transitioned from the ready state to the operating state;
    A control method for a power supply system, comprising:
    First power source: a power source capable of charging / discharging at room temperature Second power source: a power source including one or more molten salt batteries that can be charged / discharged when an electrolyte that is solid at normal temperature melts at a temperature higher than its melting point
PCT/JP2013/060594 2012-04-24 2013-04-08 Electrical power source system and method for controlling same WO2013161550A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-098938 2012-04-24
JP2012098938A JP2013229130A (en) 2012-04-24 2012-04-24 Electric power source system and control method of the same
JP2012147759A JP2014011061A (en) 2012-06-29 2012-06-29 Molten salt battery system
JP2012-147759 2012-06-29

Publications (1)

Publication Number Publication Date
WO2013161550A1 true WO2013161550A1 (en) 2013-10-31

Family

ID=49482880

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/060594 WO2013161550A1 (en) 2012-04-24 2013-04-08 Electrical power source system and method for controlling same
PCT/JP2013/060592 WO2013161549A1 (en) 2012-04-24 2013-04-08 Molten salt cell system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060592 WO2013161549A1 (en) 2012-04-24 2013-04-08 Molten salt cell system

Country Status (1)

Country Link
WO (2) WO2013161550A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004916A (en) * 2014-12-01 2017-08-01 丰田自动车株式会社 Accumulating system and its control method
JP2017537596A (en) * 2014-11-28 2017-12-14 ヒタチ レール イタリー ソチエタ ペル アツィオニ Power supply and energy harvesting auxiliary system for electric vehicle and method of operating power supply and energy harvesting assistance system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242388B (en) * 2014-09-01 2017-06-30 广东欧珀移动通信有限公司 Charging circuit, battery core and mobile terminal
CN106063072B (en) 2014-09-01 2022-03-01 Oppo广东移动通信有限公司 Terminal device
CN104638727A (en) * 2015-02-07 2015-05-20 山东省滨州市火努鸟新能源科技有限公司 Electric automobile intelligent charging module
WO2017191679A1 (en) * 2016-05-02 2017-11-09 株式会社 東芝 Lithium ion battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568306A (en) * 1991-09-06 1993-03-19 Honda Motor Co Ltd Battery switching system
JPH06189413A (en) * 1992-12-15 1994-07-08 Suzuki Motor Corp Hybrid vehicle
WO2010092692A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Power storage device system, motor driver and mobile body using this system
JP2010257722A (en) * 2009-04-23 2010-11-11 Denso Corp Battery system
JP2012075241A (en) * 2010-09-28 2012-04-12 Honda Motor Co Ltd Controller for electric vehicles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155869A (en) * 1997-07-29 1999-02-26 Matsushita Electric Ind Co Ltd Automatic temperature regulation battery charger
JP2002075469A (en) * 2000-08-24 2002-03-15 Nippon Yusoki Co Ltd Battery heat retaining device
JP4075487B2 (en) * 2002-07-05 2008-04-16 日産自動車株式会社 Power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568306A (en) * 1991-09-06 1993-03-19 Honda Motor Co Ltd Battery switching system
JPH06189413A (en) * 1992-12-15 1994-07-08 Suzuki Motor Corp Hybrid vehicle
WO2010092692A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Power storage device system, motor driver and mobile body using this system
JP2010257722A (en) * 2009-04-23 2010-11-11 Denso Corp Battery system
JP2012075241A (en) * 2010-09-28 2012-04-12 Honda Motor Co Ltd Controller for electric vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537596A (en) * 2014-11-28 2017-12-14 ヒタチ レール イタリー ソチエタ ペル アツィオニ Power supply and energy harvesting auxiliary system for electric vehicle and method of operating power supply and energy harvesting assistance system
CN107004916A (en) * 2014-12-01 2017-08-01 丰田自动车株式会社 Accumulating system and its control method
CN107004916B (en) * 2014-12-01 2019-07-05 丰田自动车株式会社 Accumulating system and its control method

Also Published As

Publication number Publication date
WO2013161549A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2013161550A1 (en) Electrical power source system and method for controlling same
JP4400414B2 (en) Power supply device and vehicle equipped with the same
WO2013061979A2 (en) Molten salt battery device, and control method for molten salt battery device
US20130183565A1 (en) Casing for an electrochemical cell
JP5835136B2 (en) In-vehicle charging controller
CN105730258B (en) The Iganition control system and automobile of automobile
JP5484557B2 (en) Cell capacity adjustment device
JP2012069496A (en) Battery heating device
CN102870272A (en) Battery pack
KR20070083173A (en) Hybrid-typed battery pack operated in high efficiency
JP2012214060A (en) Power source supply system for preheat
RU2018133589A (en) POWER SUPPLY SYSTEM AND SYSTEM MANAGEMENT METHOD
US10940768B2 (en) Main relay protection device
US9634350B2 (en) Energy storage device
JP2013229130A (en) Electric power source system and control method of the same
JP2014089915A (en) Power supply system and electric vehicle
JP6094389B2 (en) Power supply device, electric propulsion vehicle, and secondary battery temperature raising method
JP2015201303A (en) battery heating system
JP2017117637A (en) Power supply device
JP2012190543A (en) Molten-salt battery device and control method of molten-salt battery
JP2013013245A (en) Power storage system
KR102122854B1 (en) Auxiliary battery
JP6000657B2 (en) Power supply device and electric vehicle equipped with this power supply device
JP2012243732A (en) Molten salt battery pack and warm-up method thereof
WO2013180018A1 (en) Power supply device, and electric vehicle equipped with said power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780684

Country of ref document: EP

Kind code of ref document: A1