JP4075487B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP4075487B2
JP4075487B2 JP2002197113A JP2002197113A JP4075487B2 JP 4075487 B2 JP4075487 B2 JP 4075487B2 JP 2002197113 A JP2002197113 A JP 2002197113A JP 2002197113 A JP2002197113 A JP 2002197113A JP 4075487 B2 JP4075487 B2 JP 4075487B2
Authority
JP
Japan
Prior art keywords
temperature
battery
lithium battery
power supply
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197113A
Other languages
Japanese (ja)
Other versions
JP2004039523A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002197113A priority Critical patent/JP4075487B2/en
Publication of JP2004039523A publication Critical patent/JP2004039523A/en
Application granted granted Critical
Publication of JP4075487B2 publication Critical patent/JP4075487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種類の異なる電池を並列に接続して構成した電源装置に関するものである。
【0002】
【従来の技術】
種類の異なる電池を並列に接続して構成した電源装置としては、特開平11−332023に開示されたものが知られている。
【0003】
この電源装置では、高出力密度型の電池と高エネルギー型の電池とを並列に接続しており、高出力特性を長時間維持することが可能となっている。
【0004】
【発明が解決しようとする課題】
ところで、一般的に高出力密度型電池の出力特性は比較的低温側でも良好であり、高エネルギー型電池は低温側での出力特性が特に悪い。また、高出力密度型電池は高エネルギー型電池よりも寿命特性で劣る場合が多い。
【0005】
しかしながら、上記の従来技術では、出力密度特性とエネルギー特性のみに着目して電池を組み合わせており、電池の温度特性と寿命特性は考慮されていないものであった。
【0006】
そこで本発明は、上記問題点に鑑みてなされたもので、電池寿命の増加が可能な電源装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、比較的低温側から良好な出力特性が得られる低温型のリチウム電池と比較的高温側で良好な出力特性が得られる高温型のリチウム電池とを並列に接続するとともに、前記低温型のリチウム電池に流れる電流を用いて前記高温型のリチウム電池を加熱するようにした。
【0008】
【発明の効果】
したがって、本発明では、低温型のリチウム電池と高温型のリチウム電池とを並列に接続し、低温型のリチウム電池に流れている電流を用いて高温型のリチウム電池を加熱するので、短時間で高温型のリチウム電池の出力特性を向上できる。
【0009】
しかも、高温型のリチウム電池を加熱することにより、寿命特性が優れている高温型のリチウム電池の作動範囲を拡大して寿命特性が相対的に低い低温型のリチウム電池の作動を抑制し、電源装置全体の寿命特性を向上できる。
【0010】
【発明の実施の形態】
以下、本発明による電源装置の実施形態を添付図面に基づいて説明する。
【0011】
図1、2は、本発明の電源装置の第1実施形態を示し、図1は電源装置の概略構成図、図2は電源装置の具体的構成を示す斜視図である。
【0012】
前記電源装置1は、高温型電池としての全固体リチウム電池SBと低温型電池としての電解液リチウム電池LBとを並列に接続して構成する。
【0013】
前記全固体リチウム電池SBは、例えば、PEO(ポリエチレンオキサイド)にリチウム塩を溶かしてなる高分子固体電解質のみを使用した電池である。この全固体リチウム電池SBは、低温では十分な出力特性が得られないが、高温では十分な出力特性が得られる高温型電池であり、しかも、寿命特性が優れている。
【0014】
前記電解液リチウム電池LBは、例えば、PC(プロピレンカーボネート)にリチウム塩を溶かしてなる電解液を使用した電池である。電解液リチウム電池LBは、高温では十分な出力特性が得られないが、低温では十分な出力特性を得られる低温型電池であり、全固体リチウム電池SBよりも寿命特性が劣る。
【0015】
前記2種類の電池SB、LBは、いずれもシート型電池であり、厚み方向に積層されて互いに密着している。即ち、2枚の全固体リチウム電池SBを2枚の電解液リチウム電池LBで挟み込むようにしている。
【0016】
図2に示すように、シート型電池は、ラミネート式とも称され、板状にした電池要素(電池本体)を2枚のラミネートフィルム10、11の間に挟み、周囲を溶着して密封したものであり、正極および負極の端子12、13はラミネートフィルム10、11の間から外部へ引き出される。このようなシート型電池を厚み方向に積層して電池同士の接触面積を非常に大きくしている。
【0017】
以上の構成の電源装置においては、車両の始動時等の低温の条件で使用した場合、低温型である電解液リチウム電池LBの負荷分担が大きくなり、電解液リチウム電池LBに大きな電流が流れる。この電流による内部発熱で電解液リチウム電池LBの温度が上昇し、この熱が隣り合って接触している全固体リチウム電池SBに伝わり全固体リチウム電池SBの温度を上昇させる。このため、2種類の電池を単に並列接続しただけで熱の移動がない電源装置と比較した場合、この電源装置1は低温時の放電容量特性が良好となる。特に、シート型電池を厚み方向に積層して2種類の電池を接触させているので、伝熱面積が大きくなり、電解液リチウム電池LBから全固体リチウム電池SBへ効率よく熱を伝えることができる。
【0018】
また、電源装置1は、高温では、低温型の電解液リチウム電池LBに代わり、寿命特性の優れた高温型の全固体リチウム電池SBが電源装置の放電容量特性を良好とする。
【0019】
以上説明した本実施形態においては、以下に記載した効果を奏することができる。
【0020】
(ア)低温型電池としての電解液リチウム電池LBと高温型電池としての全固体リチウム電池SBとを並列に接続し、低温型の電解液リチウム電池LBに流れている電流を用いて高温型の全固体リチウム電池SBを加熱するので、短時間で高温型の全固体リチウム電池SBの出力特性を向上できる。
【0021】
(イ)しかも、高温型の全固体リチウム電池SBの加熱により、寿命特性が優れている高温型の全固体リチウム電池SBの作動範囲を拡大して寿命特性が相対的に低い低温型の電解液リチウム電池LBの作動を抑制し、電源装置1全体の寿命特性を向上できる。
【0022】
(ウ)また、高温型の全固体リチウム電池SBと低温型の電解液リチウム電池LBとを積層等によって接触させる等、隣接させているので、特に低温時に、電解液リチウム電池LBの熱が全固体リチウム電池SBに移り、短時間で全固体リチウム電池SBを昇温させることが可能である。
【0023】
(エ)高温型の全固体リチウム電池SBは、電源装置1として積層される電池間に挟んで内側に配置するため、全固体リチウム電池SBの加熱が容易となり、より一層短時間で電池の出力特性が向上する。
【0024】
(オ)高温型の全固体リチウム電池SBおよび低温型の電解液リチウム電池LBは、セルの外包体がラミネートフィルム10、11なので、外部との熱のやり取りが容易となり、全固体リチウム電池SBを早期に加熱することが可能となる。
【0025】
(カ)高温型電池および低温型電池が、全固体および電解液を用いたリチウム電池SB、LBであることで、上記した効果の有効性が向上する。
【0026】
図3は、本発明の電源装置の第2の実施形態を示す概略構成図を示し、全固体リチウム電池SBを低温時に加熱するに際して、電解液リチウム電池LBの内部発熱によるものに代えて加熱手段により加熱するようにしたものである。
【0027】
図3において、全固体リチウム電池SBと電解液リチウム電池LBとは、第1実施形態と同様に、並列に接続されている。電解液リチウム電池LBは、電力制御手段2、および、ヒータ5を直列接続して備え、これら電力制御手段2およびヒータ5は、全固体リチウム電池SBに対しては並列に位置する。前記ヒータ5は全固体リチウム電池SBに接触させて配置している。
【0028】
前記電力制御手段2は、電解液リチウム電池LBの入出力電力をオンオフするリレー、あるいは、入出力電力を調整する可変抵抗器により構成している。電力制御手段2は、電源装置1を制御するコントローラ3からの制御信号に応じて電解液リチウム電池LBの入出力電力を制御する。ヒータ5は直列に接続されている電力制御手段2により制御される電解液リチウム電池LBの入出力電力に応じて加熱作動する。
【0029】
前記コントローラ3は、全固体リチウム電池SBに近接して配置された温度センサ4の出力信号に基づいて電力制御手段2に対する制御信号を生成する。具体的には、全固体リチウム電池SBの温度が低い場合に、リレーを接続状態とする制御信号を送ったり可変抵抗器の抵抗値を小さくする制御信号を送ったりして、電解液リチウム電池LBの入出力電力を使用する、若しくは、増加させるよう電力制御手段2を制御する。前記温度センサ4は、全固体リチウム電池SBの温度を測定してコントローラ3に入力する。温度センサ4は全固体リチウム電池SBの温度と相関のある信号を出力すればよく、必ずしも全固体リチウム電池SBに密接させて配置する必要はない。
【0030】
以上の構成になる電源装置1においては、車両の始動時等の低温の条件で使用した場合、コントローラ3は温度センサ4により全固体リチウム電池SBの温度が低いことを判定して、電解液リチウム電池LBを使用するよう電力制御手段2を制御する。即ち、コントローラ3は、リレーを接続状態とする制御信号を送ったり可変抵抗器の抵抗値を小さくする制御信号を送ったりする。これにより、全固体リチウム電池SBだけでは十分な出力特性が得られない温度以下のときにおいても、電源装置1の出力特性を十分に確保することができる。
【0031】
上記の作動により、電解液リチウム電池LBの入出力電力は、ヒータ5にも通電されて加熱され、全固体リチウム電池SBの温度を上昇させる。この作動が継続されると、雰囲気温度が低い場合でも、全固体リチウム電池SBの温度が十分な出力特性が得られる温度条件に達し、温度センサ4により検出され、コントローラ3に入力される。コントローラ3は電力制御手段2を制御して電解液リチウム電池LBの使用を制限し、全固体リチウム電池SBの入出力電力を負荷に供給する。
【0032】
また、全固体リチウム電池SBだけで十分な出力特性が得られる温度条件では、前記と同様に、電解液リチウム電池LBの使用を制限し、全固体リチウム電池SBよりも寿命特性が劣る電解液リチウム電池LBの使用時間をできるだけ抑制する。
【0033】
前記電解液リチウム電池LBとヒータ5とは、使用すべき条件が、全固体リチウム電池SBが作動温度以下の場合であるので、単一の電力制御手段2を共通に使用することができる。
【0034】
図4は、第2実施形態の電源装置の変形例を示し、加熱手段としてPTC素子を用いた電源装置である。
【0035】
PTC素子Pは、チタン酸バリウム(BaTiO3)を主成分とした半導体セラミックスであり、材料組成を調整することで任意にキュリー温度(電気抵抗が急変する温度)を設定できる。
【0036】
PTC素子Pは、電解液リチウム電池LBに対し直列に接続され、全固体リチウム電池SBに隣接配置し、全固体リチウム電池SBだけでは十分な出力特性が得られなくなる温度にPTC素子のキュリー温度を一致させてある。
【0037】
従って、全固体リチウム電池SBだけでは十分な出力特性が得られない低温時はPTC素子Pの抵抗が小さくなって電解液リチウム電池LBの入出力電力が使用され、高温時はPTC素子Pの抵抗が大きくなって電解液リチウム電池LBの使用が制限される。
【0038】
また、低温時に電解液リチウム電池LBが使用される場合、PTC素子Pの抵抗によってPTC素子P自体が発熱し、この熱によって全固体リチウム電池SBを加熱する。
【0039】
以上のように、PTC素子Pは、図3に示す電源装置1の電力制御手段2、温度センサ4、コントローラ3、および、ヒータ5の各機能を兼備えている。
【0040】
本実施形態においては、第1実施形態における(ア)、(イ)、(オ)、(カ)の効果に加えて以下に記載する効果を奏することができる。
【0041】
(キ)低温型の電解液リチウム電池LBは、高温型の全固体リチウム電池SBを加熱する加熱手段としてのヒータ5若しくは半導体セラミックPTC素子Pを直列に接続して備えるため、低温時に電解液リチウム電池LBを使用中に全固体リチウム電池SBの加熱ができ、短時間で出力特性を向上できる。
【0042】
(ク)図3の電源装置1では、低温型の電解液リチウム電池LBは直列にその入出力電力を制御する電力制御手段2を備えているため、全固体リチウム電池SBが暖まった時に電解液リチウム電池LBの電力を制限することができ、電解液リチウム電池LBの寿命を増加させることができる。
【0043】
(ケ)図3の電源装置1では、低温型電池は前記加熱手段と直列にその入出力電力を制御する電力制御手段2を備えているため、全固体リチウム電池SBが暖まった時に電解液リチウム電池LBの電力を制限することができ、電解液リチウム電池LBの寿命を増加させることができる。また無駄な加熱を防ぎ、エネルギー効率を向上することが可能となる。
【0044】
(コ)図4の電源装置1では、加熱手段を温度が高くなると抵抗が大きくなる素子、例えば、PTC素子Pで形成したため、電解液リチウム電池LBの電力制御と全固体リチウム電池SBの加熱の各機能を兼ね備え、構造を簡単化できる。
【0045】
(サ)図4の電源装置1のPTC素子PがセラミックPTC素子であることにより、PTC素子Pの発熱が大きく、全固体リチウム電池SBの加熱が容易となる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す電源装置の概略構成図。
【図2】同じく電源装置の具体的構成を示す斜視図。
【図3】本発明の第2実施形態を示す電源装置の概略構成図。
【図4】第2実施形態の変形例の電源装置の概略構成図。
【符号の説明】
SB 高温型電池としての全固体リチウム電池
LB 低温型電池としての電解液リチウム電池
P PTC素子としてのセラミックPTC素子
1 電源装置
2 電力制御手段
3 コントローラ
4 温度センサ
5 加熱手段としてのヒータ
10,11 ラミネートフィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device configured by connecting different types of batteries in parallel.
[0002]
[Prior art]
As a power supply device configured by connecting different types of batteries in parallel, one disclosed in JP-A-11-332023 is known.
[0003]
In this power supply device, a high output density type battery and a high energy type battery are connected in parallel, and high output characteristics can be maintained for a long time.
[0004]
[Problems to be solved by the invention]
By the way, in general, the output characteristics of a high power density type battery are good at a relatively low temperature side, and the high energy type battery has a particularly bad output characteristic at a low temperature side. In addition, high power density batteries often have poorer life characteristics than high energy batteries.
[0005]
However, in the above prior art, the batteries are combined by paying attention only to the power density characteristics and the energy characteristics, and the temperature characteristics and life characteristics of the batteries are not considered.
[0006]
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a power supply device capable of increasing battery life.
[0007]
[Means for Solving the Problems]
The present invention connects in parallel a low temperature type lithium battery capable of obtaining good output characteristics from a relatively low temperature side and a high temperature type lithium battery capable of obtaining good output characteristics on a relatively high temperature side. The high temperature type lithium battery was heated using a current flowing through the lithium battery .
[0008]
【The invention's effect】
Therefore, in the present invention, the low temperature type lithium battery and the high temperature type lithium battery are connected in parallel, and the high temperature type lithium battery is heated using the current flowing in the low temperature type lithium battery. The output characteristics of the high temperature type lithium battery can be improved.
[0009]
Moreover, by heating the high-temperature type lithium battery, by suppressing the operation of the lithium battery life characteristics is relatively low low temperature to expand the operating range of the high temperature type lithium battery that has excellent cycle life characteristics, power supply The life characteristics of the entire device can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a power supply device according to the present invention will be described below with reference to the accompanying drawings.
[0011]
1 and 2 show a first embodiment of a power supply apparatus according to the present invention, FIG. 1 is a schematic configuration diagram of the power supply apparatus, and FIG. 2 is a perspective view showing a specific configuration of the power supply apparatus.
[0012]
The power supply device 1 is configured by connecting an all-solid-state lithium battery SB as a high-temperature battery and an electrolyte lithium battery LB as a low-temperature battery in parallel.
[0013]
The all solid lithium battery SB is a battery using only a polymer solid electrolyte obtained by dissolving a lithium salt in PEO (polyethylene oxide), for example. This all-solid-state lithium battery SB is a high-temperature battery that does not provide sufficient output characteristics at low temperatures but can provide sufficient output characteristics at high temperatures, and has excellent life characteristics.
[0014]
The electrolyte lithium battery LB is, for example, a battery using an electrolyte obtained by dissolving a lithium salt in PC (propylene carbonate). The electrolyte lithium battery LB is a low-temperature battery that cannot obtain sufficient output characteristics at a high temperature, but can obtain sufficient output characteristics at a low temperature, and has inferior life characteristics as compared with the all-solid-state lithium battery SB.
[0015]
The two types of batteries SB and LB are both sheet-type batteries, which are stacked in the thickness direction and are in close contact with each other. That is, two all solid lithium batteries SB are sandwiched between two electrolyte lithium batteries LB.
[0016]
As shown in FIG. 2, the sheet type battery is also referred to as a laminate type, in which a plate-shaped battery element (battery body) is sandwiched between two laminate films 10 and 11, and the periphery is welded and sealed. The positive and negative terminals 12 and 13 are drawn out from between the laminate films 10 and 11. Such sheet-type batteries are stacked in the thickness direction to greatly increase the contact area between the batteries.
[0017]
In the power supply device having the above configuration, when used under a low temperature condition such as when the vehicle is started, the load sharing of the low-temperature electrolyte lithium battery LB increases, and a large current flows through the electrolyte lithium battery LB. The temperature of the electrolyte lithium battery LB rises due to internal heat generation due to this current, and this heat is transferred to the all solid lithium batteries SB that are in contact with each other, thereby raising the temperature of the all solid lithium batteries SB. For this reason, when compared with a power supply device in which two types of batteries are simply connected in parallel and does not transfer heat, the power supply device 1 has good discharge capacity characteristics at low temperatures. In particular, since two types of batteries are brought into contact with each other by stacking sheet-type batteries in the thickness direction, the heat transfer area is increased, and heat can be efficiently transferred from the electrolyte lithium battery LB to the all-solid-state lithium battery SB. .
[0018]
Further, in the power supply device 1, at a high temperature, instead of the low-temperature electrolyte lithium battery LB, the high-temperature all-solid lithium battery SB having excellent life characteristics makes the discharge capacity characteristics of the power supply device good.
[0019]
In the present embodiment described above, the following effects can be obtained.
[0020]
(A) An electrolyte lithium battery LB as a low temperature type battery and an all solid lithium battery SB as a high temperature type battery are connected in parallel, and a high temperature type battery is used by using the current flowing in the low temperature type electrolyte lithium battery LB. Since the all solid lithium battery SB is heated, the output characteristics of the high temperature all solid lithium battery SB can be improved in a short time.
[0021]
(A) Moreover, the operating range of the high-temperature type all-solid lithium battery SB, which has excellent life characteristics, is expanded by heating the high-temperature type all-solid-state lithium battery SB, and the low-temperature type electrolyte solution having relatively low life characteristics The operation of the lithium battery LB can be suppressed and the life characteristics of the entire power supply device 1 can be improved.
[0022]
(C) Since the high-temperature all-solid lithium battery SB and the low-temperature electrolyte lithium battery LB are adjacent to each other by stacking or the like, the heat of the electrolyte lithium battery LB is completely reduced particularly at low temperatures. Moving to the solid lithium battery SB, it is possible to raise the temperature of the all solid lithium battery SB in a short time.
[0023]
(D) Since the high-temperature all-solid lithium battery SB is placed inside the batteries stacked as the power supply device 1, the all-solid lithium battery SB can be easily heated, and the output of the battery can be output in a shorter time. Improved characteristics.
[0024]
(E) The high-temperature type all-solid lithium battery SB and the low-temperature type electrolyte lithium battery LB are made of laminated films 10 and 11 so that the heat exchange with the outside becomes easy. It becomes possible to heat early.
[0025]
(F) Since the high-temperature battery and the low-temperature battery are the lithium batteries SB and LB using all solids and an electrolyte, the effectiveness of the above-described effect is improved.
[0026]
FIG. 3 is a schematic configuration diagram showing a second embodiment of the power supply device of the present invention. When the all-solid lithium battery SB is heated at a low temperature, the heating means is used instead of the internal heat generation of the electrolyte lithium battery LB. It is made to heat by.
[0027]
In FIG. 3, the all solid lithium battery SB and the electrolyte lithium battery LB are connected in parallel as in the first embodiment. The electrolyte lithium battery LB includes a power control unit 2 and a heater 5 connected in series. The power control unit 2 and the heater 5 are positioned in parallel to the all solid lithium battery SB. The heater 5 is disposed in contact with the all solid lithium battery SB.
[0028]
The power control means 2 includes a relay that turns on / off the input / output power of the electrolyte lithium battery LB or a variable resistor that adjusts the input / output power. The power control unit 2 controls the input / output power of the electrolyte lithium battery LB in accordance with a control signal from the controller 3 that controls the power supply device 1. The heater 5 is heated according to the input / output power of the electrolyte lithium battery LB controlled by the power control means 2 connected in series.
[0029]
The controller 3 generates a control signal for the power control means 2 based on the output signal of the temperature sensor 4 disposed in the vicinity of the all solid lithium battery SB. Specifically, when the temperature of the all-solid-state lithium battery SB is low, a control signal for connecting the relay is sent or a control signal for reducing the resistance value of the variable resistor is sent, so that the electrolyte lithium battery LB The power control means 2 is controlled to use or increase the input / output power. The temperature sensor 4 measures the temperature of the all solid lithium battery SB and inputs it to the controller 3. The temperature sensor 4 only needs to output a signal having a correlation with the temperature of the all-solid lithium battery SB, and is not necessarily arranged in close contact with the all-solid lithium battery SB.
[0030]
In the power supply device 1 having the above configuration, when used under a low temperature condition such as when the vehicle is started, the controller 3 determines that the temperature of the all-solid lithium battery SB is low by the temperature sensor 4, and the electrolyte lithium The power control means 2 is controlled to use the battery LB. That is, the controller 3 sends a control signal for connecting the relay and sends a control signal for reducing the resistance value of the variable resistor. Thereby, even when the temperature is below a temperature at which sufficient output characteristics cannot be obtained with only the all-solid-state lithium battery SB, the output characteristics of the power supply device 1 can be sufficiently ensured.
[0031]
With the above operation, the input / output power of the electrolyte lithium battery LB is also energized and heated by the heater 5 to raise the temperature of the all-solid lithium battery SB. If this operation is continued, even when the ambient temperature is low, the temperature of the all-solid lithium battery SB reaches a temperature condition that provides sufficient output characteristics, is detected by the temperature sensor 4, and is input to the controller 3. The controller 3 controls the power control means 2 to restrict the use of the electrolyte lithium battery LB, and supplies the input / output power of the all solid lithium battery SB to the load.
[0032]
Further, under the temperature conditions where sufficient output characteristics can be obtained only with the all solid lithium battery SB, similarly to the above, the use of the electrolyte lithium battery LB is limited, and the electrolyte lithium having inferior life characteristics than the all solid lithium battery SB. The usage time of the battery LB is suppressed as much as possible.
[0033]
Since the electrolyte lithium battery LB and the heater 5 should be used when the all-solid lithium battery SB is below the operating temperature, a single power control means 2 can be used in common.
[0034]
FIG. 4 shows a modification of the power supply device of the second embodiment, which is a power supply device using a PTC element as a heating means.
[0035]
The PTC element P is a semiconductor ceramic mainly composed of barium titanate (BaTiO 3 ), and the Curie temperature (temperature at which the electrical resistance changes suddenly) can be arbitrarily set by adjusting the material composition.
[0036]
The PTC element P is connected in series to the electrolyte lithium battery LB and is disposed adjacent to the all solid lithium battery SB. The Curie temperature of the PTC element is set to a temperature at which sufficient output characteristics cannot be obtained with the all solid lithium battery SB alone. It is matched.
[0037]
Therefore, the resistance of the PTC element P becomes small at low temperatures when the all-solid lithium battery SB alone cannot provide sufficient output characteristics, and the input / output power of the electrolyte lithium battery LB is used, and the resistance of the PTC element P at high temperatures. Increases and the use of the electrolyte lithium battery LB is restricted.
[0038]
Further, when the electrolyte lithium battery LB is used at a low temperature, the PTC element P itself generates heat due to the resistance of the PTC element P, and the all solid lithium battery SB is heated by this heat.
[0039]
As described above, the PTC element P has the functions of the power control unit 2, the temperature sensor 4, the controller 3, and the heater 5 of the power supply device 1 shown in FIG.
[0040]
In the present embodiment, in addition to the effects (a), (b), (e), and (f) in the first embodiment, the following effects can be achieved.
[0041]
(G) The low-temperature electrolyte lithium battery LB includes the heater 5 or the semiconductor ceramic PTC element P connected in series as a heating means for heating the high-temperature all-solid lithium battery SB. The all-solid lithium battery SB can be heated while using the battery LB, and the output characteristics can be improved in a short time.
[0042]
(H) In the power supply device 1 of FIG. 3, the low-temperature electrolyte lithium battery LB includes power control means 2 for controlling its input / output power in series, so that when the all-solid lithium battery SB is warmed, the electrolyte solution The power of the lithium battery LB can be limited, and the life of the electrolyte lithium battery LB can be increased.
[0043]
(K) In the power supply device 1 of FIG. 3, since the low temperature type battery includes the power control means 2 for controlling the input / output power in series with the heating means, the electrolyte lithium is used when the all solid lithium battery SB is warmed. The power of the battery LB can be limited, and the life of the electrolyte lithium battery LB can be increased. In addition, useless heating can be prevented and energy efficiency can be improved.
[0044]
(G) In the power supply device 1 of FIG. 4, since the heating means is formed of an element whose resistance increases as the temperature increases, for example, the PTC element P, the power control of the electrolyte lithium battery LB and the heating of the all solid lithium battery SB Combined with each function, the structure can be simplified.
[0045]
(S) Since the PTC element P of the power supply device 1 in FIG. 4 is a ceramic PTC element, the PTC element P generates a large amount of heat, and the all-solid lithium battery SB can be easily heated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a power supply device according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a specific configuration of the power supply device.
FIG. 3 is a schematic configuration diagram of a power supply device showing a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a power supply device according to a modification of the second embodiment.
[Explanation of symbols]
SB All solid-state lithium battery LB as a high-temperature type battery LB Electrolyte lithium battery P as a low-temperature type battery Ceramic PTC element as a PTC element 1 Power supply device 2 Power control means 3 Controller 4 Temperature sensor 5 Heaters 10 and 11 as heating means Laminate the film

Claims (9)

比較的低温側から良好な出力特性が得られる低温型のリチウム電池と比較的高温側で良好な出力特性が得られる高温型のリチウム電池とを並列に接続するとともに、前記低温型のリチウム電池に流れる電流を用いて前記高温型のリチウム電池を加熱するようにしたことを特徴とする電源装置。With connecting the relatively low comparatively high temperature that good output characteristics at high temperature side is obtained with a lithium battery low temperature that good output characteristics can be obtained from the side lithium battery in parallel, the lithium battery of the low temperature A power supply device characterized in that the high-temperature lithium battery is heated using a flowing current. 前記高温型電池と低温型電池とは、隣接して配置されていることを特徴とする請求項1に記載の電源装置。  The power supply device according to claim 1, wherein the high-temperature battery and the low-temperature battery are disposed adjacent to each other. 前記高温型電池は、電源装置として積層される電池間に挟んで内側に配置することを特徴とする請求項1または請求項2に記載の電源装置。  The power supply device according to claim 1, wherein the high-temperature battery is disposed on the inner side between batteries stacked as a power supply device. 前記低温型電池は、直列にその入出力電力を制御する電力制御手段を備えていることを特徴とする請求項1ないし請求項3のいずれか一つに記載の電源装置。  The power supply apparatus according to any one of claims 1 to 3, wherein the low-temperature battery includes power control means for controlling input / output power in series. 前記低温型電池は、高温型電池を加熱する加熱手段を直列に接続して備えることを特徴とする請求項1に記載の電源装置。  The power supply apparatus according to claim 1, wherein the low-temperature battery includes heating means for heating the high-temperature battery connected in series. 比較的低温側から良好な出力特性が得られる低温型電池と比較的高温側で良好な出力特性が得られる高温型電池とを並列に接続して備えるとともに、
前記低温型電池は、高温型電池を加熱する加熱手段とその入出力電力を制御する電力制御手段とを直列に接続して備えることを特徴とする電源装置。
A low temperature battery that provides good output characteristics from a relatively low temperature side and a high temperature battery that provides good output characteristics from a relatively high temperature side are connected in parallel,
The low-temperature battery, the high temperature type battery is heated heating means and power control means and wherein the to that power supplies to be provided by connecting in series a to control the input and output power.
比較的低温側から良好な出力特性が得られる低温型電池と比較的高温側で良好な出力特性が得られる高温型電池とを並列に接続して備えるとともに、
前記低温型電池は、温度が高くなると抵抗が大きくなる素子を高温型電池を加熱する加熱手段として直列に接続して備えることを特徴とする電源装置。
A low temperature battery that provides good output characteristics from a relatively low temperature side and a high temperature battery that provides good output characteristics from a relatively high temperature side are connected in parallel,
The low-temperature batteries, power supplies you, comprising connected in series a device resistance at higher temperatures increases as a heating means for heating the high-temperature battery.
前記温度が高くなると抵抗が大きくなる素子は、セラミックPTC素子であることを特徴とする請求項7に記載の電源装置。  The power supply device according to claim 7, wherein the element whose resistance increases as the temperature increases is a ceramic PTC element. 前記高温型電池および低温型電池は、ラミネートフィルムによりセルが外包されていることを特徴とする請求項1ないし請求項8のいずれか一つに記載の電源装置。  The power supply apparatus according to any one of claims 1 to 8, wherein the high-temperature battery and the low-temperature battery have a cell enveloped by a laminate film.
JP2002197113A 2002-07-05 2002-07-05 Power supply Expired - Fee Related JP4075487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197113A JP4075487B2 (en) 2002-07-05 2002-07-05 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197113A JP4075487B2 (en) 2002-07-05 2002-07-05 Power supply

Publications (2)

Publication Number Publication Date
JP2004039523A JP2004039523A (en) 2004-02-05
JP4075487B2 true JP4075487B2 (en) 2008-04-16

Family

ID=31704970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197113A Expired - Fee Related JP4075487B2 (en) 2002-07-05 2002-07-05 Power supply

Country Status (1)

Country Link
JP (1) JP4075487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419102A1 (en) 2017-06-19 2018-12-26 Panasonic Intellectual Property Management Co., Ltd. Battery module that comprises liquid battery and solid battery
EP3591734A1 (en) 2018-07-05 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Battery module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067903A1 (en) * 2004-12-20 2006-06-29 Nec Corporation Device case, battery cell and assembled battery
JP5169715B2 (en) * 2007-10-17 2013-03-27 株式会社デンソー Heating device for vehicle power storage means
CN101884133A (en) * 2009-02-16 2010-11-10 丰田自动车株式会社 Power storage device system, motor driver and mobile body using this system
JP6066255B2 (en) * 2011-09-30 2017-01-25 株式会社Gsユアサ Electricity storage element
WO2013161549A1 (en) * 2012-04-24 2013-10-31 住友電気工業株式会社 Molten salt cell system
CN107431237B (en) 2014-12-01 2020-04-21 美国电化学动力公司 All-solid-state lithium battery
TWI591877B (en) * 2015-11-18 2017-07-11 Fu-Zi Xu Resonance type lithium battery device with damping function
WO2017191679A1 (en) * 2016-05-02 2017-11-09 株式会社 東芝 Lithium ion battery pack
JP7101655B2 (en) * 2019-12-16 2022-07-15 本田技研工業株式会社 Battery pack
CN113733976B (en) * 2021-08-06 2023-05-09 岚图汽车科技有限公司 Battery pack and control method thereof
WO2023052900A1 (en) * 2021-10-01 2023-04-06 株式会社半導体エネルギー研究所 Electric storage device and vehicle
CN114142108A (en) * 2021-10-19 2022-03-04 上汽大众汽车有限公司 Battery system integrating different chemical systems and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419102A1 (en) 2017-06-19 2018-12-26 Panasonic Intellectual Property Management Co., Ltd. Battery module that comprises liquid battery and solid battery
EP3591734A1 (en) 2018-07-05 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Battery module

Also Published As

Publication number Publication date
JP2004039523A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4075487B2 (en) Power supply
JP6721586B2 (en) All solid lithium battery
JP3858986B2 (en) Power supply
JP5169715B2 (en) Heating device for vehicle power storage means
JP5314872B2 (en) Secondary battery with heat generation mechanism
CN105765777B (en) The battery of variable internal resistance
US20170025722A1 (en) Heater for electric vehicle batteries
JP2002260745A (en) Battery
JP2008204764A (en) Temperature control mechanism, and vehicle
JP2012234749A (en) Battery temperature regulation system
KR20150059247A (en) Battery temperature rising system and control method therof
JP2011014436A (en) Battery heating device
JP2004030979A (en) Fuel cell system
JP3677266B2 (en) Fuel cell stack and its warm-up method
JP2005057006A (en) Temperature management device for electric double layer capacitor
JP5082577B2 (en) Control device for hybrid system
CN104716401A (en) Power battery heating device
KR101288467B1 (en) Cooling and heating box for a vehicle using thermoelectric element module and its control method
JP2007035410A (en) Fuel cell system
CN215451549U (en) Heating film and battery pack
JP2005057007A (en) Electric storage device
JP2014089798A (en) Planar heating element
KR20110062276A (en) Battery heating system using pct heater
JP2010228686A (en) Control device for hybrid system
CN218919057U (en) Battery preheating device and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees