JP2014089798A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2014089798A
JP2014089798A JP2011036760A JP2011036760A JP2014089798A JP 2014089798 A JP2014089798 A JP 2014089798A JP 2011036760 A JP2011036760 A JP 2011036760A JP 2011036760 A JP2011036760 A JP 2011036760A JP 2014089798 A JP2014089798 A JP 2014089798A
Authority
JP
Japan
Prior art keywords
heating element
polymer resistor
planar heating
battery
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011036760A
Other languages
Japanese (ja)
Inventor
Yukio Abe
幸夫 阿部
Koji Yoshimoto
弘次 吉本
Masaki Hanada
雅貴 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011036760A priority Critical patent/JP2014089798A/en
Priority to PCT/JP2012/001201 priority patent/WO2012114739A1/en
Publication of JP2014089798A publication Critical patent/JP2014089798A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means

Abstract

PROBLEM TO BE SOLVED: To provide a high-safety planar heating element superior in durability free from heating unevenness with a simple structure.SOLUTION: The planar heating element includes: a sheet-like polymer resistor 11; at least a pair or more of electrodes 12 disposed on one side of the polymer resistor 11 for supplying the power to the polymer resistor 11; electrical insulation base materials 13a and 13b that cover the polymer resistor 11 and the electrode 12 at both sides thereof; connection sections connecting a heating part of the polymer resistor 11, the polymer resistor 11 and the electrodes 12; and heat-conductive noncombustible materials 14a and 14b covering the outsides of the electrical insulation base materials 13a and 13b at both sides. Thus, the planar heating element 9 which is superior in the durability with high safety free from heating unevenness is achieved.

Description

本発明は、主に寒冷地における自動車等のバッテリー等を加熱する面状発熱体に関する。   The present invention relates to a planar heating element that heats a battery of an automobile or the like mainly in a cold region.

従来、例えば自動車に搭載されたバッテリーは−30℃以下となるような環境においては、バッテリー液が凍結したり、バッテリー液が凍結しない場合においてもバッテリーの電気容量の著しい低下によって、エンジンが始動できなく可能性が高くなることから、バッテリー自体を補助熱源によって加熱しバッテリーの能力低下を防止する手段が考えられている。   Conventionally, in an environment where, for example, a battery mounted on an automobile is -30 ° C or lower, the engine can be started due to a significant decrease in the battery's electric capacity even when the battery liquid freezes or the battery liquid does not freeze. Therefore, there is considered a means for heating the battery itself with an auxiliary heat source to prevent a decrease in battery capacity.

この種の面状発熱体は、図5から図6に示すように、セラミックPTC発熱体101,102を装着した放熱板103と断熱保温材104をバッテリー105の外周に配置し、前記バッテリー105を電源としてバッテリー105を加熱するものである(特許文献1参照)。   As shown in FIGS. 5 to 6, this type of planar heating element includes a radiator plate 103 on which ceramic PTC heating elements 101 and 102 are mounted and a heat insulating heat insulating material 104 arranged on the outer periphery of the battery 105. The battery 105 is heated as a power source (see Patent Document 1).

また、セラミックPTC発熱体の代わりに、導電性粉末と樹脂とを混合した樹脂系PTC発熱体を塗着した可撓性基板から成るPTC発熱体を用いた構成も提案されている(特許文献2参照)。   Also, a configuration using a PTC heating element made of a flexible substrate coated with a resin-based PTC heating element in which conductive powder and resin are mixed instead of a ceramic PTC heating element has been proposed (Patent Document 2). reference).

さらに、樹脂系PTC発熱体から成る面状発熱体において、高分子抵抗体に電力を供給する電極構成を工夫し実用性を高める提案(特許文献3参照)や、非加熱物への熱伝導を向上させる提案(特許文献4参照)もなされている。   Furthermore, in a planar heating element composed of a resin-based PTC heating element, a proposal for improving the practicality by devising an electrode configuration for supplying electric power to a polymer resistor (see Patent Document 3) and heat conduction to an unheated object Proposals for improvement (see Patent Document 4) have also been made.

特開平9−190841号公報Japanese Patent Laid-Open No. 9-190841 特開平9−213459号公報Japanese Patent Laid-Open No. 9-213459 特開2008−213661号公報JP 2008-213661 A 実開平4−74893号公報Japanese Utility Model Publication No. 4-74893

近年では省エネやCO2削減への対応のため、自動車はエンジンとモーターとを組み合わせたハイブリット車やモーターのみを動力源とする電気自動車等への関心が高まっている。これらの自動車に搭載されるバッテリーは、モーターを駆動するために電気容量の大容量化が必要となり、バッテリーの形態も数個の電池セルを直列に接続した電池モジュールを1ユニットとしてケースに収容した電池ユニットを、さらに多数個直列に接続(必要に応じてさらに並列接続)することで高電圧化で大容量のバッテリーを実現している。   In recent years, in order to cope with energy saving and CO2 reduction, automobiles are increasingly interested in hybrid cars that combine an engine and a motor, electric cars that use only a motor as a power source, and the like. The batteries installed in these automobiles require a large electric capacity in order to drive the motor, and the battery is also housed in a case as a battery module in which several battery cells are connected in series. By connecting a large number of battery units in series (and connecting them in parallel if necessary), a high-voltage and large-capacity battery is realized.

これらのバッテリーにおいても、従来同様に厳しい低温環境下では電気容量低下が課題となり、特許文献1や特許文献2に記載するような手段でバッテリーを加熱することが考えられる。しかし、図5から図6に示すように放熱板3に発熱体としてセラミックPTC発熱体101,102を配置した構成では、放熱板103の発熱体近傍と周辺部とでは温度差が発生しやすく、ハイブリット車や電気自動車等で使用される多層ユニット構造の電池ユニットから成るバッテリーを加熱する場合、各電池ユニット間で温度差が発生するため、バッテリー全体としての電気容量の回復が不十分となる可能性があった。また、特許
文献2に示す構成では、面状発熱体型のPTCヒータを加熱源として用いているが、クシ型電極部上のPTC発熱体は非発熱部となるため、PTC発熱体の電極位置と各電池ユニットとの位置関係によって、電池ユニット間に加熱ムラが生じるため、前記同様の課題を残していた。また、面状発熱体型のPTCヒータでは、面状発熱体自体に温度ムラが発生すると、発熱体の温度が高い箇所が抵抗値が高くなるため、温度が高い箇所に電力が集中し局部的に異常過熱(ホットスポット現象)する場合があり、温度ムラによって面状発熱体の寿命を損なう可能性もあった。
Even in these batteries, reduction of the electric capacity becomes a problem in a severe low-temperature environment as in the past, and it is conceivable to heat the batteries by means as described in Patent Document 1 and Patent Document 2. However, in the configuration in which the ceramic PTC heating elements 101 and 102 are arranged as the heating elements on the heat radiating plate 3 as shown in FIGS. When heating a battery consisting of a battery unit having a multi-layer unit structure used in a hybrid vehicle or an electric vehicle, a temperature difference occurs between the battery units, so that the electrical capacity of the battery as a whole may be insufficiently restored. There was sex. Further, in the configuration shown in Patent Document 2, a planar heating element type PTC heater is used as a heating source. However, since the PTC heating element on the comb-shaped electrode part is a non-heating part, Due to the positional relationship with each battery unit, heating unevenness occurs between the battery units, so that the same problem as described above remains. In addition, in a planar heating element type PTC heater, when temperature unevenness occurs in the planar heating element itself, a portion where the temperature of the heating element is high has a high resistance value. Abnormal overheating (hot spot phenomenon) may occur, and the life of the planar heating element may be impaired due to temperature unevenness.

また、特許文献3に記載の面状発熱体は、シート状の薄膜抵抗体の両面に電極を配設する構成であり、電極自体が均熱板として作用するため面状発熱体の均熱効果は高まるが、電極間隔が非常に狭い構造のため12V系等の低電圧電源では問題とはならなくても、前記ハイブリット車や電気自動車等の高電圧電源に対しては電極間短絡が懸念される。   In addition, the planar heating element described in Patent Document 3 has a configuration in which electrodes are disposed on both surfaces of a sheet-like thin film resistor, and the electrode itself acts as a soaking plate, so that the soaking effect of the planar heating element. Although the electrode spacing is very narrow, there is a concern about short-circuiting between electrodes for high voltage power supplies such as hybrid cars and electric cars, even though this is not a problem with low voltage power supplies such as 12V systems. The

一方、特許文献4に記載の保温用ヒータは、面状発熱体を両面から覆う絶縁材の一方の表面に熱伝導材を貼り付けており、被加熱物と接する面の熱伝導性を向上させているが、片面だけに熱伝導材を設けているためヒータの発熱量が大きい場合には絶縁材によって保温され易く、面状発熱体の自己温度上昇によって抵抗値が上昇し、結果的に抵抗体の単位面積当たりの発熱量が制限され高出力化が難しい欠点を有していた。   On the other hand, the heater for heat insulation described in Patent Document 4 has a heat conductive material attached to one surface of an insulating material that covers the planar heating element from both sides, thereby improving the thermal conductivity of the surface in contact with the object to be heated. However, since the heat conduction material is provided only on one side, if the heating value of the heater is large, it is easy to keep warm by the insulating material, and the resistance value rises due to the self-temperature rise of the planar heating element, resulting in resistance The calorific value per unit area of the body is limited and it is difficult to increase the output.

また、PTC特性を有する面状発熱体は、温度が高くなると抵抗値が上昇する正の温度係数を有するため結果的に自己温度制御が働き、他の温度制御手段を用いること無しで安全性の高いヒータとして利用されることが多いが、特許文献4のように電極をパターン形成した面状発熱体では、抵抗体と接する電極部に万一断線が生じると、断線した電極近傍の抵抗体が電極の代用として作用し、抵抗体の一部に電流が集中することにより異常過熱を引き起こすという問題点があった。   In addition, the planar heating element having the PTC characteristic has a positive temperature coefficient in which the resistance value increases as the temperature rises. As a result, self-temperature control works, and safety can be achieved without using other temperature control means. Although it is often used as a high heater, in the sheet heating element in which electrodes are patterned as in Patent Document 4, if a break occurs in the electrode part in contact with the resistor, the resistor near the broken electrode is There was a problem that it acted as a substitute for the electrode and caused abnormal overheating by concentrating current on a part of the resistor.

本発明は、前記従来の課題を解決するもので、容易な構成で加熱ムラが少なく耐久性に優れ安全性の高い面状発熱体を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a planar heating element that has an easy configuration, has little heating unevenness, has excellent durability, and high safety.

前記課題を解決するために、シート状の高分子抵抗体と、前記高分子抵抗体の片面に配設され前記高分子抵抗体に給電する少なくとも一対以上の電極と、前記高分子抵抗体と前記電極とを両面から覆う電気絶縁性基材と、前記高分子抵抗体の発熱部ならびに前記高分子抵抗体と前記電極との接続部を、前記電気絶縁性基材の外側の両面から熱伝導性不燃材で覆う構成としている。これによって、加熱ムラが少なく耐久性に優れ安全性の高い面状発熱体を提供することが可能となる。   In order to solve the above problems, a sheet-like polymer resistor, at least a pair of electrodes disposed on one side of the polymer resistor and supplying power to the polymer resistor, the polymer resistor, and the polymer resistor An electrically insulating substrate covering the electrode from both sides, a heat generating portion of the polymer resistor, and a connecting portion between the polymer resistor and the electrode are thermally conductive from both sides of the electrically insulating substrate. The structure is covered with non-combustible material. As a result, it is possible to provide a planar heating element with less unevenness in heating and excellent durability and high safety.

本発明の面状発熱体によれば、高分子抵抗体の両面に設けた熱伝導性不燃材が面状発熱体の均熱効果を高めることで加熱ムラを抑制することが出来る。また、面状発熱体の両面より熱交換が行えることにより、面状発熱体自身の温度上昇の抑制が可能となり面状発熱体の単位面積当たりの発熱量の向上が図れる。更に、高分子抵抗体の外郭部を両面より熱伝導性不燃材で覆うことにより、高分子抵抗体が万一異常発熱しても発火する可能性が極めて少なくなり安全性の高い面状発熱体が提供可能となる。   According to the planar heating element of the present invention, the heat conductive incombustible material provided on both surfaces of the polymer resistor can enhance the soaking effect of the planar heating element, thereby suppressing heating unevenness. Further, since heat exchange can be performed from both sides of the sheet heating element, it is possible to suppress the temperature rise of the sheet heating element itself, and the amount of heat generated per unit area of the sheet heating element can be improved. Furthermore, the outer surface of the polymer resistor is covered with a thermally conductive incombustible material from both sides, so that the possibility of ignition is extremely low even if the polymer resistor is abnormally heated, and a highly safe planar heating element. Can be provided.

本発明の実施の形態1における面状発熱体の斜視図The perspective view of the planar heating element in Embodiment 1 of this invention 本発明の実施の形態1における面状発熱体が実装される電池モジュール内の電池セル接続図Battery cell connection diagram in the battery module on which the sheet heating element according to Embodiment 1 of the present invention is mounted 本発明の実施の形態1における面状発熱体の分解斜視図1 is an exploded perspective view of a sheet heating element according to Embodiment 1 of the present invention. 本発明の実施の形態1における面状発熱体の要部断面図Sectional drawing of the principal part of the planar heating element in Embodiment 1 of this invention 従来の面状発熱体の側面図Side view of a conventional sheet heating element 従来の面状発熱体の要部断面図Sectional view of the main part of a conventional sheet heating element

本発明は、シート状の高分子抵抗体と、前記高分子抵抗体の片面に配設され前記高分子抵抗体に給電する少なくとも一対以上の電極と、前記高分子抵抗体と前記電極とを両面から覆う電気絶縁性基材と、前記高分子抵抗体の発熱部ならびに前記高分子抵抗体と前記電極との接続部を、前記電気絶縁性基材の外側の両面から熱伝導性不燃材で覆う構成とするものであり、前記電気絶縁性基材の外側より前記高分子抵抗体の両面を熱伝導性不燃材で覆う構成としているため、高分子抵抗体の両面に設けた熱伝導性不燃材が面状発熱体の均熱効果を高め、更に熱交換が効率的に行えるため単位面積当たりの面状発熱体の高出力化が可能となり、かつ面状発熱体の外郭部を両面より不燃化することで、万一の異常発熱に対しても安全性の高い面状発熱体が提供可能となる。   The present invention provides a sheet-like polymer resistor, at least a pair of electrodes disposed on one side of the polymer resistor and supplying power to the polymer resistor, and the polymer resistor and the electrode on both sides. The electrically insulating base material covered from the heat generating portion of the polymer resistor and the connecting portion between the polymer resistor and the electrode are covered with a thermally conductive non-combustible material from both outside surfaces of the electrically insulating base material. A heat conductive non-combustible material provided on both surfaces of the polymer resistor, because both the surfaces of the polymer resistor are covered with a heat conductive non-combustible material from the outside of the electrically insulating substrate. Increases the soaking effect of the sheet heating element and allows more efficient heat exchange, making it possible to increase the output of the sheet heating element per unit area and making the outer surface of the sheet heating element nonflammable from both sides. By doing so, even in the unlikely event of abnormal heat generation, surface heat generation is highly safe But it is possible to provide.

また、面状発熱体の熱伝導性不燃材料に、金属シートを用いる構成とすることが好ましい。これにより、薄い材料で均熱効果と不燃効果が得られるため、薄型で安価で安全性に優れた面状発熱体が提供出来る。   In addition, it is preferable that a metal sheet is used for the thermally conductive noncombustible material of the planar heating element. Thereby, since a soaking effect and a nonflammable effect can be obtained with a thin material, a planar heating element that is thin, inexpensive, and excellent in safety can be provided.

また、面状発熱体の熱伝導不燃材の一方は、他の面の熱伝導不燃材の厚みより厚くする構成とすることがさらに好ましい。これにより、高分子抵抗体の両面に設けた電気絶縁性基材の厚みや材質等が異なる場合に、熱伝導性不燃材への熱伝導効率のアンバランスを熱伝導性不燃材の厚みに差を設けることで、面状発熱体の両面からの放熱効果のバランス補正が可能となる。   Further, it is more preferable that one of the heat conductive non-combustible materials of the planar heating element is thicker than the thickness of the heat conductive non-combustible material on the other surface. As a result, when the thickness and material of the electrically insulating base material provided on both sides of the polymer resistor are different, the thermal conductivity efficiency imbalance to the thermally conductive incombustible material is different from the thickness of the thermally conductive incombustible material. By providing this, it becomes possible to correct the balance of the heat dissipation effect from both sides of the planar heating element.

また、面状発熱体における、電気絶縁性基材の一方の外面を平坦に構成し、前記電気絶縁性基材の平坦面と接する熱伝導性不燃材は剛性を有する金属シートとし、他方の熱伝導性不燃材は金属箔で構成することがさらに好ましい。これにより、曲面を有する面状発熱体においても、均熱効果に優れ外力による変形が発生しにくく信頼性に優れた面状発熱体を提供することが出来る。   Further, in the planar heating element, one outer surface of the electrically insulating substrate is configured to be flat, the thermally conductive noncombustible material in contact with the flat surface of the electrically insulating substrate is a rigid metal sheet, and the other heat More preferably, the conductive incombustible material is composed of a metal foil. As a result, even in a planar heating element having a curved surface, it is possible to provide a planar heating element that is excellent in the soaking effect and is less likely to be deformed by an external force and excellent in reliability.

(実施の形態1)
本発明の実施の形態の面状発熱体を図1から図4を参照して説明する。
(Embodiment 1)
A planar heating element according to an embodiment of the present invention will be described with reference to FIGS.

図1は同発熱体の斜視図、図2は同発熱体が実装される電池モジュール内の電池セル接続図、図3は同発熱体の分解斜視図、図4は同発熱体の要部断面図である。被加熱物であるバッテリー6は複数の電池セル7を直列接続した電池モジュール8を積層して構成される。このバッテリー6の1面に対向して面状発熱体9が、支持部材10によりバッテリー6との間に隙間を設けて固定されている。   1 is a perspective view of the heating element, FIG. 2 is a connection diagram of battery cells in a battery module in which the heating element is mounted, FIG. 3 is an exploded perspective view of the heating element, and FIG. FIG. A battery 6 that is an object to be heated is configured by stacking battery modules 8 in which a plurality of battery cells 7 are connected in series. A planar heating element 9 is fixed to the battery 6 so as to face one surface of the battery 6 with a gap provided between the battery 6 and the support member 10.

面状発熱体9は、薄肉状(約100μメートル)にシート加工された高分子抵抗体11と、高分子抵抗体11の片面上に平行に配置され高分子抵抗体11に電気的に接続された一対の電極12と、高分子抵抗体11と電極12とを両面から覆いポリエチレンテレフタレート等の材料から成る電気絶縁性基材13a,13bと、さらに高分子抵抗体11の発熱部全域ならびに高分子抵抗体11と電極12との接続部とを覆うように、電気絶縁性基材13a,13bの外側には、熱伝導性不燃材14a,14bを配設している。高分子抵抗体11は、PTC(Positive Temperature Coefficient)特性を有する材料から成り、温度が上昇すると高分子抵抗体11の抵抗値が上昇し、所定の温度で安定化する自己温度調節機能を有している。電気絶縁性基材13a,13bには高分子抵抗体11との接合面にホットメルト材が塗布されており、ラミネート加工
により高分子抵抗体11ならびに電極12に接着加工されている。熱伝導性不燃材14a,14bは、熱伝導性に優れた金属材からなる。高分子抵抗体11と電極12とが接合し凸部を有する一方の面側には、フレキシブル性を有する金属箔(例えばアルミテープ等)が熱伝導性不燃材14aとして貼り付けられ、他方の面側(つまり平坦面側)には金属シート(アルミニウム等の薄板等)が熱伝導性不燃材14bとして貼り付けられている。バッテリー6には温度検出手段15が装着され、面状発熱体9への供給電力は温度検出手段15の温度情報を受けて制御手段16で制御される。さらに、バッテリー6と面状発熱体9との周囲を囲むように、バッテリー収納ボックス17が配設されている。
The sheet heating element 9 is a thin film (about 100 μm) polymer resistor 11, which is arranged in parallel on one side of the polymer resistor 11 and is electrically connected to the polymer resistor 11. The pair of electrodes 12, the polymer resistor 11 and the electrode 12 are covered from both sides, the electrically insulating bases 13a and 13b made of a material such as polyethylene terephthalate, and the heat generating region of the polymer resistor 11 as well as the entire polymer. Thermally conductive incombustible materials 14a and 14b are disposed outside the electrically insulating base materials 13a and 13b so as to cover the connection portion between the resistor 11 and the electrode 12. The polymer resistor 11 is made of a material having PTC (Positive Temperature Coefficient) characteristics, and the resistance value of the polymer resistor 11 increases as the temperature rises, and has a self-temperature adjusting function that stabilizes at a predetermined temperature. ing. The electrically insulating bases 13a and 13b are coated with a hot melt material on the joint surface with the polymer resistor 11, and are bonded to the polymer resistor 11 and the electrode 12 by laminating. The heat conductive incombustible materials 14a and 14b are made of a metal material having excellent heat conductivity. On one surface side where the polymer resistor 11 and the electrode 12 are joined and have a convex portion, a flexible metal foil (such as an aluminum tape) is attached as a heat conductive non-combustible material 14a, and the other surface. A metal sheet (a thin plate such as aluminum) is attached to the side (that is, the flat surface side) as the heat conductive non-combustible material 14b. The battery 6 is provided with a temperature detection means 15, and the power supplied to the planar heating element 9 is controlled by the control means 16 in response to temperature information from the temperature detection means 15. Further, a battery storage box 17 is disposed so as to surround the periphery of the battery 6 and the planar heating element 9.

以上のように構成された面状発熱体において、以下その動作、作用を説明する。   In the planar heating element configured as described above, the operation and action will be described below.

制御手段16は温度検出手段15によりモニターされたバッテリー温度が、予め設定された温度条件以下になると面状発熱体9への通電を開始し、バッテリー6が所定の温度に達すると面状発熱体9への通電を遮断する。   The control means 16 starts energization of the sheet heating element 9 when the battery temperature monitored by the temperature detection means 15 falls below a preset temperature condition, and the sheet heating element when the battery 6 reaches a predetermined temperature. Shut off the power to 9.

高分子抵抗体11で発生した熱は、電気絶縁性基材13a,13bを介して熱伝導性不燃材14a,14bに伝達される。ここで、高分子抵抗体11と電極12とが接合し電気絶縁性基材13aが凸部を成す一方の面には、フレキシブル性を有する金属箔が貼り付けられているので電気絶縁性基材13aとの密着性が確保される。また、面状発熱体においては、一方の面側だけでなく、他方の平坦面側には剛性を有する金属シートが配設されることにより、面状発熱体9の両面から均熱化が促進されるため、面状発熱体9の温度ムラから発生する局部的な電力集中(ホットスポット現象)が発生しにくくなり、面状発熱体9の信頼性や耐久性を向上させることが出来る。熱伝導性不燃材14a,14bに伝達された熱は、熱伝導性不燃材14a,14bの表面からの輻射や対流によりバッテリー6を直接温めたり、バッテリー収納ボックス17内の空気を暖めることで間接的にバッテリー6を暖めることが出来る。   The heat generated in the polymer resistor 11 is transmitted to the heat conductive non-combustible materials 14a and 14b through the electrically insulating base materials 13a and 13b. Here, since the polymer resistor 11 and the electrode 12 are joined to each other and the electrically insulating base material 13a forms a convex portion, a flexible metal foil is attached to the surface, so that the electrically insulating base material is attached. Adhesiveness with 13a is ensured. Further, in the planar heating element, not only one surface side but also the other flat surface side is provided with a rigid metal sheet, so that soaking is promoted from both sides of the planar heating element 9. Therefore, local power concentration (hot spot phenomenon) generated due to temperature unevenness of the planar heating element 9 is less likely to occur, and the reliability and durability of the planar heating element 9 can be improved. The heat transmitted to the heat conductive non-combustible materials 14a and 14b is indirectly heated by directly heating the battery 6 by radiation or convection from the surfaces of the heat conductive non-combustible materials 14a and 14b or by heating the air in the battery storage box 17. Thus, the battery 6 can be warmed.

また、熱伝導性不燃材14b(金属シート)の肉厚を、部品の取り扱いで変形をきたさない程度に剛性持たせることにより、高分子抵抗体11や電極12との接合部に変形応力が印加されにくくなるため、組立時のハンドリングの応力に対する耐力が増し信頼性の高い面状発熱体が提供可能となる。また、電極12の間隔を広く設定可能な構成のため、高電圧仕様の面状発熱体として使用しても電極間短絡の危険性を排除でき、安全で使い勝手の良い面状発熱体を提供することが出来る。さらに、高分子抵抗体11の両面を覆うように熱伝導性不燃材14a,14bが配設されているため、万一、高分子抵抗体11と接する電極12の一部が断線し、その周囲の高分子抵抗体11に電流集中が発生しても面状発熱体9が燃焼することがないため、安全性の高い面状発熱体が提供できる。   Further, by imparting rigidity to the thickness of the heat conductive non-combustible material 14b (metal sheet) to such an extent that deformation does not occur when handling parts, a deformation stress is applied to the junction with the polymer resistor 11 and the electrode 12. Therefore, it is possible to provide a highly reliable planar heating element with increased resistance to handling stress during assembly. In addition, since the distance between the electrodes 12 can be set widely, the risk of short-circuit between electrodes can be eliminated even when used as a high-voltage-specific planar heating element, and a safe and easy-to-use planar heating element is provided. I can do it. Furthermore, since the heat conductive incombustible materials 14a and 14b are disposed so as to cover both surfaces of the polymer resistor 11, in the unlikely event, a part of the electrode 12 in contact with the polymer resistor 11 is disconnected, Even if current concentration occurs in the polymer resistor 11, the planar heating element 9 does not burn, so that a highly safe planar heating element can be provided.

以上のように、本発明にかかる面状発熱体は、面状発熱体の温度ムラが改善されると共に面状発熱体の冷却効率が高まり、面状発熱体の単位面積当たりの発熱量の向上が図れ、さらに高電圧電源でも安全で信頼性の高い面状発熱体が提供出来るため、寒冷地向けのハイブリット車や電気自動車等のバッテリー加熱は勿論のこと、その他の加熱用ヒータとして幅広く適用することができる。   As described above, in the planar heating element according to the present invention, the temperature unevenness of the planar heating element is improved and the cooling efficiency of the planar heating element is improved, and the heat generation amount per unit area of the planar heating element is improved. In addition, it is possible to provide a safe and reliable planar heating element even with a high-voltage power supply, so that it can be widely applied as a heater for other heating as well as battery heating in hybrid cars and electric cars for cold regions. be able to.

6 バッテリー
8 電池モジュール
9 面状発熱体
11 高分子抵抗体
12 電極
13a、13b 電気絶縁性基材
14a、14b 熱伝導性不燃材
6 Battery 8 Battery Module 9 Planar Heating Element 11 Polymer Resistor 12 Electrode 13a, 13b Electrical Insulating Base Material 14a, 14b Thermal Conductive Nonflammable Material

Claims (4)

シート状の高分子抵抗体と、前記高分子抵抗体の片面に配設され前記高分子抵抗体に給電する少なくとも一対以上の電極と、前記高分子抵抗体と前記電極とを両面から覆う電気絶縁性基材と、前記高分子抵抗体の発熱部ならびに前記高分子抵抗体と前記電極との接続部を、前記電気絶縁性基材の外側の両面から熱伝導性不燃材で覆う構成とする面状発熱体。 Sheet-like polymer resistor, at least one pair of electrodes disposed on one side of the polymer resistor and supplying power to the polymer resistor, and electrical insulation covering the polymer resistor and the electrode from both sides A surface configured to cover the conductive substrate, the heat generating portion of the polymer resistor, and the connection portion between the polymer resistor and the electrode with a thermally conductive non-combustible material from both outer surfaces of the electrically insulating substrate Heating element. 熱伝導体不燃材料は、金属シートを用いる構成とした請求項1に記載の面状発熱体。 The planar heating element according to claim 1, wherein the heat conductor non-combustible material uses a metal sheet. 熱伝導性不燃材の一方は、他の面の熱伝導性不燃材の厚みより厚くする構成とした請求項1から請求項2に記載する面状発熱体。 3. The planar heating element according to claim 1, wherein one of the heat conductive incombustible materials is configured to be thicker than the thickness of the heat conductive incombustible material on the other surface. 電気絶縁性基材の一方の外面を平坦に構成し、前記電気絶縁性基材の平坦面と接する熱伝導性不燃材は剛性を有する金属シートを配設し、他方の熱伝導性不燃材は金属箔で構成した請求項1から請求項3に記載する面状発熱体。 One outer surface of the electrically insulating substrate is configured to be flat, the thermally conductive noncombustible material in contact with the flat surface of the electrically insulating substrate is provided with a rigid metal sheet, and the other thermally conductive noncombustible material is The planar heating element according to claim 1, which is made of a metal foil.
JP2011036760A 2011-02-23 2011-02-23 Planar heating element Withdrawn JP2014089798A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011036760A JP2014089798A (en) 2011-02-23 2011-02-23 Planar heating element
PCT/JP2012/001201 WO2012114739A1 (en) 2011-02-23 2012-02-22 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036760A JP2014089798A (en) 2011-02-23 2011-02-23 Planar heating element

Publications (1)

Publication Number Publication Date
JP2014089798A true JP2014089798A (en) 2014-05-15

Family

ID=46720531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036760A Withdrawn JP2014089798A (en) 2011-02-23 2011-02-23 Planar heating element

Country Status (2)

Country Link
JP (1) JP2014089798A (en)
WO (1) WO2012114739A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755919B1 (en) * 2015-12-08 2017-07-07 현대자동차주식회사 Heating device for battery
JP2018504736A (en) * 2016-01-06 2018-02-15 広東天物新材料科技有限公司 Thick film heating element with high thermal conductivity on both sides
JPWO2017104343A1 (en) * 2015-12-17 2018-03-22 株式会社デンソー Heater device
JP2018073544A (en) * 2016-10-26 2018-05-10 本田技研工業株式会社 Heater module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350796Y2 (en) * 1985-09-27 1988-12-27
JPH0927385A (en) * 1995-07-13 1997-01-28 Idemitsu Kosan Co Ltd Surface heater element
JP2004193114A (en) * 2002-11-25 2004-07-08 Ibiden Co Ltd Metal heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755919B1 (en) * 2015-12-08 2017-07-07 현대자동차주식회사 Heating device for battery
JPWO2017104343A1 (en) * 2015-12-17 2018-03-22 株式会社デンソー Heater device
JP2018504736A (en) * 2016-01-06 2018-02-15 広東天物新材料科技有限公司 Thick film heating element with high thermal conductivity on both sides
JP2018073544A (en) * 2016-10-26 2018-05-10 本田技研工業株式会社 Heater module

Also Published As

Publication number Publication date
WO2012114739A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP2011014436A (en) Battery heating device
JP5462711B2 (en) Battery module
WO2014010252A1 (en) Battery heating apparatus
US20170025722A1 (en) Heater for electric vehicle batteries
JP5825264B2 (en) Battery system
US20110117463A1 (en) Battery temperature control method and assembly
KR20120053476A (en) Battery assembly having radiant heat and heating function
US20130220994A1 (en) Planar heating element and manufacturing method for same
US9539881B2 (en) Insulated heating module for a supplemental heating device
JP2011243358A (en) Battery pack
JPH11354166A (en) Battery temperature controller
CN106058382B (en) A kind of battery modules heating system and battery modules
WO2012114739A1 (en) Planar heating element
CN112397812A (en) Battery heating film and lithium ion power battery
JP5077163B2 (en) Power storage device
CN106450581B (en) Heating system for cylindrical battery module and battery module
US20210057794A1 (en) Battery module for electric vehicle
CN210142675U (en) Battery module, battery system with same and electric vehicle
JP7085555B2 (en) Battery pack
CN110120288B (en) PPTC (polymeric positive temperature coefficient) resistive film and battery applying same
CN110571373A (en) Temperature sensing fire protection device, electric core module, battery system and vehicle
KR101462978B1 (en) A heater for vehicles
CN220021301U (en) Battery heating assembly, battery pack and electric device
CN210744114U (en) Power battery heating structure
CN220208955U (en) Battery module curb plate and battery module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513