WO2013161492A1 - Wavelength cut filter - Google Patents

Wavelength cut filter Download PDF

Info

Publication number
WO2013161492A1
WO2013161492A1 PCT/JP2013/058986 JP2013058986W WO2013161492A1 WO 2013161492 A1 WO2013161492 A1 WO 2013161492A1 JP 2013058986 W JP2013058986 W JP 2013058986W WO 2013161492 A1 WO2013161492 A1 WO 2013161492A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut filter
wavelength
wavelength cut
group
dye
Prior art date
Application number
PCT/JP2013/058986
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 前田
清水 正晶
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49482826&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013161492(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201380003842.6A priority Critical patent/CN103930806B/en
Priority to JP2014512430A priority patent/JP6305331B2/en
Priority to KR1020147012499A priority patent/KR101987926B1/en
Publication of WO2013161492A1 publication Critical patent/WO2013161492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a wavelength cut filter formed by laminating a coating layer containing a dye, a glass substrate, and an infrared reflecting film.
  • the sensitivity of solid-state image sensors ranges from the ultraviolet region to the infrared region of the wavelength of light.
  • human visibility is only in the visible region of the wavelength of light. Therefore, by providing an infrared cut filter between the imaging lens and the solid-state imaging device, the sensitivity of the solid-state imaging device is corrected so as to approach human visibility (see, for example, Patent Documents 1 to 3). .
  • an infrared cut filter is a reflection type filter using a combination of layers containing substances having no absorption characteristics and laminated in multiple layers and utilizing the difference in refractive index, or a light absorber is contained in a transparent substrate, or It was a combined absorption filter.
  • Reflective filters have problems such as changes in color between the center and the periphery of the screen because the characteristics change depending on the incident angle of light. In addition, the reflected light becomes stray light in the optical path, leading to a problem that causes a reduction in resolution, image spots, unevenness, multiple images called ghosts, and the like.
  • the absorption type filter does not change the characteristics depending on the incident angle of light, it needs a considerable thickness in order to obtain the desired characteristics.
  • an object of the present invention is to provide a wavelength cut filter that has low incidence angle dependency, high heat resistance, and can be thinned.
  • the inventor has a coating layer (B) containing a dye on one surface of the glass substrate (A), and an infrared reflective film (on the other surface of the glass substrate (A)).
  • the present inventors have found that a wavelength cut filter characterized by being formed by laminating C) has low incident angle dependency, and has reached the present invention.
  • the present invention has a coating layer (B) containing a dye on one surface of a glass substrate (A) and an infrared reflective film (C) laminated on the other surface of the glass substrate (A).
  • the wavelength cut filter characterized by this is provided.
  • the present invention also provides a solid-state imaging device comprising the wavelength cut filter.
  • the present invention also provides a camera module having the wavelength cut filter.
  • the wavelength cut filter of the present invention is excellent in that the incident angle dependency is low.
  • the wavelength cut filter of the present invention is suitable for a solid-state imaging device and a camera module.
  • wavelength cut filter of the present invention will be described based on preferred embodiments.
  • the wavelength cut filter of the present invention has a coating layer (B) containing a dye on one surface of a glass substrate (A), and an infrared ray on the other surface of the glass substrate (A).
  • the layer structure is formed by laminating the reflective film (C), and the side having the coating layer (B) is the light incident side.
  • each layer will be described in order.
  • the glass substrate (A) used for the wavelength cut filter of the present invention can be used by appropriately selecting from a glass material transparent in the visible range, but soda lime glass, white plate glass, borosilicate glass, tempered glass, Quartz glass, phosphate glass, and the like can be used. Among them, soda lime glass is preferable because it is inexpensive and easily available, and white plate glass, borosilicate glass, and tempered glass are easily available and have high hardness and high workability. It is preferable because it is excellent.
  • the coating liquid is applied to form a coating layer (B) containing a dye described later, and then the dye after drying the coating liquid Adhesiveness to the glass substrate of the coating layer (B) containing bismuth increases.
  • silane coupling agent examples include epoxy-functional alkoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Amino-functional alkoxysilanes such as N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxy Examples include mercapto functional alkoxysilanes such as silane.
  • the thickness of the glass substrate (A) is not particularly limited, but is preferably 0.05 to 8 mm, and more preferably 0.05 to 1 mm from the viewpoint of weight reduction and strength.
  • the substrate is a glass plate, it can be directly coated on the substrate, dried and then cut, and the structure and process are simplified. Moreover, since a board
  • substrate is a glass plate, heat resistance (260 degreeC reflow tolerance) is higher than the case where it is a plastic.
  • the coating layer (B) containing a dye used in the wavelength cut filter of the present invention is prepared by dissolving or dispersing a dye, a resin, and other components to be blended as necessary in a suitable solvent to prepare a coating solution. It can form by apply
  • Application methods include spin coating, dip coating, spray coating, bead coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, die coating, and hopper. Examples include the extrusion coating method.
  • the dye is not particularly limited, and known dyes can be used.
  • oxazole and oxadiazole compounds coumarin compounds, quinolinol compounds, phthalocyanine compounds, naphtholactam compounds, fluorenes and derivatives thereof, anthracene and derivatives thereof, xanthene compounds ( (Pyronine, rhodamine, fluorescein), stilbene compounds, cyanine compounds, azo compounds, azomethine compounds, indigo compounds, thioindigo compounds, oxonol compounds, squarylium compounds, indole compounds, styryl compounds, porphine compounds, azurenium compounds, croconic methine compounds , Pyrylium compounds, thiopyrylium compounds, triarylmethane compounds, diphenylmethane compounds, tetrahydrocholine compounds, And phenol compounds, anthraquinone compounds, naphthoquinone compounds, thiazin
  • acidic dyes such as xanthene compounds, phthalocyanine compounds, cyanine compounds, azo compounds, oxonol compounds, and anthraquinone compounds are preferable from the viewpoint of solubility.
  • acid dyes a cyanine compound is more preferable from the viewpoint of ease of synthesis and molecular design.
  • Examples of the cyanine compound include those represented by the following general formula (1).
  • A represents a group selected from (a) to (m) of the following group I
  • a ′ represents a group selected from (a ′) to (m ′) of the following group II
  • Q represents a methine chain having 1 to 9 carbon atoms, and represents a linking group that may contain a ring structure in the chain, and the hydrogen atom in the methine chain is a hydroxyl group, a halogen atom, a cyano group, —NRR ′, aryl Group, an arylalkyl group or an alkyl group, and the —NRR ′, aryl group, arylalkyl group and alkyl group may be further substituted with a hydroxyl group, a halogen atom, a cyano group or —NRR ′.
  • R and R ′ represent an aryl group, an arylalkyl group or an alkyl group, An q ⁇ represents a q-valent anion, q represents 1 or 2, and p represents a coefficient for keeping the charge neutral.
  • R 1 and R 1 ′ are a hydroxyl group, a halogen atom, a nitro group, a cyano group, —SO 3 H, a carboxyl group, an amino group, an amide group, a ferrocenyl group, an aryl group having 6 to 30 carbon atoms, or a carbon atom number of 7 Represents an arylalkyl group of ⁇ 30 or an alkyl group of 1 to 8 carbon atoms,
  • the aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms and the alkyl group having 1 to 8 carbon atoms in the above R 1 and R 1 ′ are a hydroxyl group, a halogen atom, a nitro group, a cyano group
  • R 2 to R 9 and R 2 ′ to R 9 ′ represent the same group or hydrogen atom as R 1 and R 1 ′
  • X and X ′ represent an oxygen atom, a sulfur atom, a selenium atom, —CR 51 R 52 —, a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms, —NH— or —NY 2 —
  • R 51 and R 52 represent the same group or hydrogen atom as R 1 and R 1 ′
  • Y, Y ′ and Y 2 are each a hydrogen atom, or a hydroxyl group, a halogen atom, a cyano group, a carboxyl group, an amino group, an amide group, a ferrocenyl group, —SO 3 H or a nitro group, which may be substituted with 1 carbon atom.
  • the methylene group in the alkyl group having 1 to 8 carbon atoms, the aryl group having 6 to 30 carbon atoms and the arylalkyl group having 7 to 30 carbon atoms in the above Y, Y ′ and Y 2 is —O—, Even when interrupted by —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH—, —NHCO—, —N ⁇ CH— or —CH ⁇ CH—.
  • r and r ′ are 0 or (a) to (e), (g) to (j), (l), (m), (a ′) to (e ′), (g ′) to (j ′) ), (L ′) and (m ′) represent the number that can be substituted. )
  • Examples of the halogen atom represented by R 51 and R 52 in R 1 to R 9 and R 1 ′ to R 9 ′ and X and X ′ in the general formula (1) include fluorine, chlorine, bromine and iodine.
  • Examples of the aryl group having 6 to 30 carbon atoms include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, 3-iso-propylphenyl, 4-iso-propylphenyl, 4-butylphenyl, 4-iso-butylphenyl, 4-tert-butylphenyl, 4-hexylphenyl, 4-cyclohexylphenyl, 4-octylphenyl, 4- (2-ethylhexyl) phenyl, 4-stearylphenyl, 2, 3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, tert-butyl, iso-butyl, amyl, iso-amyl, tert-amyl, hexyl, 2- Examples include hexyl, 3-hexyl, cyclohexyl, 1-methylcyclohexyl, heptyl, 2-heptyl, 3-heptyl, iso-heptyl, tert-heptyl, 1-octyl, iso-octyl, tert-octyl and the like.
  • the aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms and the alkyl group having 1 to 8 carbon atoms are a hydroxyl group, a halogen atom, a nitro group, a cyano group, —SO 3 H, carboxyl Group, amino group, amido group or ferrocenyl group, which may be substituted, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH— , —NHCO—, —N ⁇ CH— or —CH ⁇ CH—, and the number and position of these substitutions and interruptions are arbitrary.
  • examples of the group in which the alkyl group having 1 to 8 carbon atoms is substituted with a halogen atom include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, nonafluorobutyl and the like.
  • Examples of the group in which the alkyl group having 1 to 8 carbon atoms is interrupted by —O— include methyloxy, ethyloxy, iso-propyloxy, propyloxy, butyloxy, pentyloxy, iso-pentyloxy, hexyloxy, heptyl Alkoxy groups such as oxy, octyloxy, 2-ethylhexyloxy, 2-methoxyethyl, 2- (2-methoxy) ethoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, 4-methoxybutyl, 3-methoxybutyl, etc.
  • alkoxyalkyl group of Examples of the group in which the alkyl group having 1 to 8 carbon atoms is substituted with a halogen atom and interrupted by —O— include, for example, chloromethyloxy, dichloromethyloxy, trichloromethyloxy, fluoromethyloxy, difluoromethyloxy , Trifluoromethyloxy, nonafluorobutyloxy and the like.
  • the cycloalkane-1,1-diyl group having 3 to 6 carbon atoms represented by X and X ′ is cyclopropane-1,1-diyl, cyclobutane-1,1- Examples thereof include diyl, 2,4-dimethylcyclobutane-1,1-diyl, 3,3-dimethylcyclobutane-1,1-diyl, cyclopentane-1,1-diyl, cyclohexane-1,1-diyl and the like.
  • a halogen atom represented by Y, Y ′ and Y 2 an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms and an aryl having 7 to 30 carbon atoms
  • alkyl group examples include groups exemplified in the description of R 1 and the like.
  • the hydrogen atom in these substituents is a hydroxyl group, a halogen atom, a cyano group, a carboxyl group, an amino group, an amide group, a ferrocenyl group,- Any number of SO 3 H or nitro groups may be substituted.
  • alkyl group, the aryl group and the methylene group in the arylalkyl group in Y, Y ′, and Y 2 are —O—, —S—, —CO—, —COO—, —OCO—, —SO. It may be interrupted with 2 —, —NH—, —CONH—, —NHCO—, —N ⁇ CH— or —CH ⁇ CH—.
  • ether bonds are interrupted by ether bonds, thioether bonds, etc.
  • ether bonds such as 2-methoxye 3-methoxypropyl, 4-methoxybutyl, 2-butoxyethyl, methoxyethoxyethyl, methoxyethoxyethoxyethyl, 3-methoxybutyl, 2-phenoxyethyl, 3-phenoxypropyl, 2-methylthioethyl, 2-phenylthio And ethyl.
  • Examples of the linking group constituting the methine chain having 1 to 9 carbon atoms represented by Q in the general formula (1) and including a ring structure in the chain include the following (Q-1) to (Q-11):
  • the group represented by any of the above is preferable because it is easy to produce.
  • the number of carbon atoms in the methine chain having 1 to 9 carbon atoms is the carbon atom of the methine chain or a group that further substitutes the ring structure contained in the methine chain (for example, linking groups (Q-1) to (Q-11). ), Carbon atoms at both ends in Z), or when Z 14 or R 14 to R 19 contain a carbon atom, are not included.
  • R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and Z ′ are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a cyano group, —NRR ′, an aryl group, an arylalkyl
  • the —NRR ′, aryl group, arylalkyl group and alkyl group may be substituted with a hydroxyl group, a halogen atom, a cyano group or —NRR ′, and —O—, —S—, May be interrupted by —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH—, —NHCO—, —N ⁇ CH— or —CH ⁇ CH—, R and R ′ represent an aryl group, an arylalkyl group or an alkyl group.
  • Examples of the halogen atom, aryl group, arylalkyl or alkyl group represented by R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and Z ′ include those exemplified in the description of R 1 and the like.
  • Examples of the aryl group, arylalkyl group or alkyl group represented by R and R ′ those exemplified in the description of R 1 and the like can be mentioned.
  • Examples of the q-valent anion represented by pAn q- in the general formula (1) include methanesulfonate anion, dodecylsulfonate anion, benzenesulfonate anion, toluenesulfonate anion, trifluoromethanesulfonate anion, naphthalenesulfone. Acid anion, diphenylamine-4-sulfonate anion, 2-amino-4-methyl-5-chlorobenzenesulfonate anion, 2-amino-5-nitrobenzenesulfonate anion, JP-A-10-235999, JP-A-10-337959, Japanese Laid-Open Patent Publication No.
  • cyanine compound used in the present invention include the following compound No. 1-102. In the following examples, cyanine cations without anions are shown.
  • the production method of the cyanine compound is not particularly limited, and can be obtained by a method using a well-known general reaction.
  • a compound having a corresponding structure such as a route described in JP2010-209191A And a method of synthesis by reaction with an imine derivative.
  • the dye used in the present invention preferably has a maximum absorption wavelength ( ⁇ max) of the coating film of 650 to 1200 nm, and more preferably 650 to 900 nm.
  • ⁇ max maximum absorption wavelength of the coating film
  • the maximum absorption wavelength ( ⁇ max) of the coating film is 1200 nm or more of the present invention, the effect of the present invention is not exhibited, and when it is less than 650 nm, visible light is absorbed.
  • the content of the dye is single or a total of a plurality of types, preferably 0.01 to 50% by mass, more preferably 0.1%. ⁇ 30% by mass. When the content of the dye is less than 0.01% by mass, sufficient characteristics may not be obtained. When the content is more than 50% by mass, the dye may precipitate in the coating layer.
  • the content of the dye alone or in total of a plurality of types is preferably 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the resin solid content, More preferably, it is 0.25 to 5.0 parts by mass.
  • the resin examples include natural polymer materials such as gelatin, casein, starch, cellulose derivatives, and alginic acid, or polymethyl methacrylate, polyvinyl butyral, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl chloride, styrene-butadiene copolymer, polystyrene, Synthetic polymer materials such as polycarbonate and polyamide are used.
  • natural polymer materials such as gelatin, casein, starch, cellulose derivatives, and alginic acid, or polymethyl methacrylate
  • polyvinyl butyral polyvinyl pyrrolidone
  • polyvinyl alcohol polyvinyl chloride
  • styrene-butadiene copolymer polystyrene
  • Synthetic polymer materials such as polycarbonate and polyamide are used.
  • benzotriazole, triazine, and benzoate UV absorbers include benzotriazole, triazine, and benzoate UV absorbers; phenol, phosphorus, and sulfur antioxidants; cationic surfactants and anionic surfactants Agents, nonionic surfactants, amphoteric surfactants, etc .; halogen compounds, phosphate ester compounds, phosphate amide compounds, melamine compounds, fluororesins or metal oxides, (poly) phosphorus Flame retardants such as melamine acid, piperazine phosphate (poly); hydrocarbon-based, fatty acid-based, aliphatic alcohol-based, aliphatic ester-based, aliphatic amide-based or metal soap-based lubricants; fumed silica, fine particle silica, silica Stone, diatomaceous earth, clay, kaolin, diatomaceous earth, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar
  • the solvent is not particularly limited and various known solvents can be used as appropriate. Examples thereof include alcohols such as isopropanol; ether alcohols such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and butyl diglycol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diacetone alcohol; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; acrylic acid esters such as ethyl acrylate and butyl acrylate; Fluorinated alcohols such as 3-tetrafluoropropanol; hydrocarbons such as hexane, benzene, toluene, xylene; chlorinated hydrocarbons such as methylene dichloride, dichloroethane, and chloroform. These organic solvents can be used alone or in combination.
  • the thickness of the coating layer (B) containing the dye is preferably 1 to 200 ⁇ m because a uniform film can be obtained and it is advantageous for thinning. If the thickness is less than 1 ⁇ m, the function cannot be sufficiently exhibited, and if it exceeds 200 ⁇ m, the solvent may remain during coating.
  • the infrared reflective film (C) used in the cut filter of the present invention has a function of blocking light in a wavelength region of 700 to 1200 nm, and a low refractive index layer and a high refractive index layer are alternately laminated. It is formed of a dielectric multilayer film.
  • a material constituting the low refractive index layer a material having a refractive index of 1.2 to 1.6 can be used.
  • silica, alumina, lanthanum fluoride, magnesium fluoride, aluminum hexafluoride sodium, etc. can be mentioned.
  • a material having a refractive index of 1.7 to 2.5 can be used as the material constituting the high refractive index layer.
  • the method for laminating the low refractive index layer and the high refractive index layer is not particularly limited as long as a dielectric multilayer film in which these layers are laminated is formed.
  • a CVD method a sputtering method on a glass substrate.
  • the number of laminated layers is 10 to 80, and 25 to 50 is preferable from the viewpoint of process and strength.
  • the thickness of the low refractive index layer and the high refractive index layer is usually 1/10 to 1/2 of the wavelength ⁇ (nm) of the light beam to be blocked.
  • the thickness is less than 0.1 ⁇ or greater than 0.5 ⁇ , the product (nd) of the refractive index (n) and the physical film thickness (d) is significantly different from the optical film thickness expressed as a multiple of ⁇ / 4. There is a risk that the wavelength cannot be blocked or transmitted.
  • the infrared reflective film (C) in addition to the above dielectric multilayer film, a film containing a dye having a maximum absorption wavelength of 700 to 1100 nm, a film in which a polymer is laminated, or a film formed by applying a cholesteric liquid crystal
  • a film containing a dye having a maximum absorption wavelength of 700 to 1100 nm, a film in which a polymer is laminated, or a film formed by applying a cholesteric liquid crystal The thing using organic materials, such as these, can also be used.
  • the wavelength cut filter of the present invention preferably has a transmittance satisfying the following (i) to (iii).
  • the upper transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer V-570 manufactured by JASCO Corporation.
  • V-570 ultraviolet-visible near-infrared spectrophotometer manufactured by JASCO Corporation.
  • the average transmittance when measured from the vertical direction of the wavelength cut filter is 75% or more.
  • the average transmittance when measured from the vertical direction of the wavelength cut filter is 5% or less.
  • the wavelength value (Ya) at which the transmittance is 80% when measured from the vertical direction of the wavelength cut filter, and an angle of 35 ° with respect to the vertical direction of the wavelength cut filter The absolute value of the difference in wavelength value (Yb) at which the transmittance is 80% when measured from is 30 nm or less.
  • the wavelength cut filter if the average value of the transmittance in the wavelength range of 430 to 580 nm of (i) is less than 75%, light in the visible light region is hardly transmitted, and the wavelength 800 of (ii) above.
  • a heat ray cut filter mounted on a window glass of an automobile or a building; a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, a web camera, a mobile phone
  • a solid-state imaging device such as a CCD or CMOS
  • a solid-state imaging device such as a camera
  • an automatic exposure meter a display device
  • a plasma display such as a plasma display.
  • the solid-state imaging device of the present invention is configured in the same manner as a conventionally known solid-state imaging device except that the wavelength cut filter of the present invention is provided on the front surface of the imaging element.
  • the wavelength cut filter 1 of the present invention may be fixed to a part other than the solid-state image sensor on the light incident side of the solid-state image sensor 2, or as shown in FIG. It may be fixed directly to the front of the.
  • an optical low-pass filter In the solid-state imaging device of the present invention, an optical low-pass filter, an antireflection filter, a color filter, and the like can be arranged as necessary, and the order of stacking these is not particularly limited.
  • FIG. 2 is a cross-sectional view showing an embodiment of the configuration of a camera module that is one of the solid-state imaging devices of the present invention.
  • the camera module includes a solid-state imaging device 2 formed in a rectangular shape in plan view on a semiconductor substrate, and a coating layer (B) / glass substrate containing a dye from the light incident side on the opposite side of the light-receiving unit 3 of the solid-state imaging device 2 (A)
  • the wavelength cut filter 1 laminated in the order of the infrared reflective film (C) and the solid-state image sensor 2 are formed in a region excluding the light-receiving unit 3 on one surface, and the solid-state image sensor 2 and the wavelength cut filter 1 are bonded.
  • a camera module which is a solid-state imaging device, takes in light from the outside through the wavelength cut filter 1 and receives the light with a light-receiving element disposed in the light-receiving unit 3 of the solid-state imaging element 2.
  • a UV curable adhesive such as an acrylic resin or an epoxy resin, or a thermosetting resin can be used.
  • a known photolithography may be used as necessary.
  • the adhesive 4 is patterned using a technique and bonded by thermosetting. When joining, vacuum pressurization may be performed after bonding in a vacuum environment.
  • the mounting substrate 8 is a rigid substrate using a glass epoxy substrate, a ceramic substrate, or the like, and is provided with a control circuit for controlling the solid-state imaging device 2.
  • the solid-state imaging device 2 is disposed on the mounting substrate 8, and then the adhesive 4 is applied in advance to a position where the lens holder 7 of the mounting substrate 8 is fixed.
  • the lens cap 6 protects the lens 5.
  • the lens holder 7 holds the lens 5, and is attached to the mounting substrate 8 to cover the solid-state imaging device 2.
  • a box-shaped base portion 7 a and a cylindrical lens barrel portion 7 b that holds the lens 5 are provided. It has.
  • the lens holder 7 is disposed on the mounting substrate 8 so that the lower end surface of the lens holder 7 is in contact with the applied adhesive 4, and the light receiving unit 3 of the solid-state imaging device 2 and the lens 5 in the lens holder 7 are arranged.
  • the position of the lens holder 7 is adjusted such that the distance of the lens 5 coincides with the focal length of the lens 5.
  • the adhesive 4 can be irradiated with ultraviolet rays to cure the adhesive 4, and a camera module can be manufactured.
  • the entire mounting substrate 8 to which the lens holder 7 is fixed may be heated at about 85 ° C. and the adhesive 4 may be sufficiently cured by thermal curing.
  • the camera module manufacturing method includes a step of heating the entire mounting substrate 8 after the step of irradiating ultraviolet rays, the lens holder 7, the lens 5 and the wavelength cut filter 1 are all materials having high heat resistance. Is required. Specifically, in addition to heating for thermosetting the adhesive 4 as described above, a plurality of solders disposed on the lower surface of the mounting substrate 8 are heated and melted at about 260 ° C. to be soldered to other substrates. For this reason, it is desirable that the material is made of a material having reflow resistance.
  • Production Examples 1 to 11 show preparation examples of coating solutions for forming the coating layer (B) containing the dye used in the wavelength cut filter of the present invention, and Comparative Production Examples 2 to 4 show comparative wavelengths. Examples of preparation of a comparative coating solution for forming a coating layer (B) containing a dye used for a cut filter are shown. Examples 1 to 11 show examples of production of the wavelength cut filter of the present invention. 1 to 4 show comparative wavelength cut filter manufacturing examples. In evaluation examples 1 to 11, the wavelength cut filters of the present invention manufactured in Examples 1 to 11 were evaluated, and in comparative evaluation examples 1 to 4, comparisons were made. The comparative wavelength cut filters produced in Examples 1-4 were evaluated.
  • the wavelength cut filter of Comparative Example 1 having no dye-containing coating layer (B) has a high incident angle dependency and has an infrared reflection film (C).
  • the wavelength cut filters of Comparative Examples 2 to 4 have low incident angle dependency, the transmittance is low in the wavelength range of 430 to 580 nm or high in the wavelength range of 800 to 1000 nm, that is, in the visible light region. Since light is not transmitted and light is not cut in the infrared region, the sensitivity cannot be corrected to approach human visibility.
  • the wavelength cut filter of the present invention has high transmittance in the wavelength range of 430 to 580 nm, low transmittance in the wavelength range of 800 to 1000 nm, and low incident angle dependency.
  • the glass substrate (A) has a coating layer (B) containing a dye on one surface, and the infrared reflection film (C) is laminated on the other surface of the glass substrate (A).
  • the wavelength cut filter according to the present invention which is characterized by this, has low incident angle dependency. Therefore, the wavelength cut filter of the present invention is useful for a solid-state imaging device and a camera module.

Abstract

The present invention provides a wavelength cut filter which has low incident angle dependency and high heat resistance and can have a reduced thickness. Specifically provided is a wavelength cut filter characterized by having such a structure that a coating layer (B) containing a dye is formed on one surface of a glass substrate (A) and an infrared ray-reflecting film (C) is laminated on the other surface of the glass substrate (A), wherein the coating layer (B) containing a dye preferably contains a dye, particularly a cyanine compound which is an acidic dye, in an amount of 0.01 to 10.0 parts by mass relative to 100 parts by mass of a resin solid content.

Description

波長カットフィルタWavelength cut filter
 本発明は、染料を含有するコーティング層、ガラス基板及び赤外線反射膜を積層してなる波長カットフィルタに関する。 The present invention relates to a wavelength cut filter formed by laminating a coating layer containing a dye, a glass substrate, and an infrared reflecting film.
 デジタルスチルカメラ、ビデオカメラ、携帯電話用カメラ等に使用される固体撮像素子(CCDやC-MOS等)の感度は、光の波長の紫外領域から赤外領域にわたっている。一方、人間の視感度は光の波長の可視領域のみである。そのため、撮像レンズと固体撮像素子との間に、赤外線カットフィルタを設けることで、人間の視感度に近づくように固体撮像素子の感度を補正している(例えば、特許文献1~3参照。)。 The sensitivity of solid-state image sensors (CCD, C-MOS, etc.) used in digital still cameras, video cameras, mobile phone cameras, etc., ranges from the ultraviolet region to the infrared region of the wavelength of light. On the other hand, human visibility is only in the visible region of the wavelength of light. Therefore, by providing an infrared cut filter between the imaging lens and the solid-state imaging device, the sensitivity of the solid-state imaging device is corrected so as to approach human visibility (see, for example, Patent Documents 1 to 3). .
 従来、赤外線カットフィルタは、吸収特性を持たない物質を含有する層を組み合わせて多層に積層しそれらの屈折率の差を利用した反射型フィルターか、光吸収剤を透明な基板に含有させるか又は結合させた吸収型フィルターであった。 Conventionally, an infrared cut filter is a reflection type filter using a combination of layers containing substances having no absorption characteristics and laminated in multiple layers and utilizing the difference in refractive index, or a light absorber is contained in a transparent substrate, or It was a combined absorption filter.
 反射型フィルターは、光の入射角により特性が変化するため、画面の中心と周辺で色合いが変化する等の弊害がある。また、反射された光が光路中において迷光となって解像度の低下や画像のシミ・ムラ、ゴーストと呼ばれる多重像等を引き起こす原因となる弊害がある。 Reflective filters have problems such as changes in color between the center and the periphery of the screen because the characteristics change depending on the incident angle of light. In addition, the reflected light becomes stray light in the optical path, leading to a problem that causes a reduction in resolution, image spots, unevenness, multiple images called ghosts, and the like.
 一方、吸収型フィルターは、光の入射角による特性の変化が無いものの、目的の特性を得るためには、かなりの厚さが必要になる。 On the other hand, although the absorption type filter does not change the characteristics depending on the incident angle of light, it needs a considerable thickness in order to obtain the desired characteristics.
 近年、様々な機器、装置に大幅な小型化の要求があり、従来の吸収型フィルターでは、その小型化の要求に応えられなくなっている。また、反射型フィルターでは、特に入射角依存性により要求される特性に到達することが難しくなっている。 In recent years, various devices and devices have been required to be greatly reduced in size, and conventional absorption filters cannot meet the requirements for downsizing. In addition, it is difficult for the reflection type filter to reach the required characteristics, particularly due to the incident angle dependency.
米国特許出願公開2005/253048号公報明細書US Patent Application Publication No. 2005/253048 特開2011-118255号公報JP 2011-118255 A 特開2012-008532号公報JP 2012-008532 A
 従って、本発明の目的は、入射角依存性が低く、耐熱性が高く薄型化が可能な波長カットフィルタを提供することにある。 Therefore, an object of the present invention is to provide a wavelength cut filter that has low incidence angle dependency, high heat resistance, and can be thinned.
 本発明者は、鋭意検討を重ねた結果、ガラス基板(A)の一方の面に染料を含有するコーティング層(B)を有し、且つガラス基板(A)の他方の面に赤外線反射膜(C)を積層してなることを特徴とする波長カットフィルタが、入射角依存性が低いことを知見し、本発明に到達した。 As a result of intensive studies, the inventor has a coating layer (B) containing a dye on one surface of the glass substrate (A), and an infrared reflective film (on the other surface of the glass substrate (A)). The present inventors have found that a wavelength cut filter characterized by being formed by laminating C) has low incident angle dependency, and has reached the present invention.
 本発明は、ガラス基板(A)の一方の面に染料を含有するコーティング層(B)を有し、且つガラス基板(A)の他方の面に赤外線反射膜(C)を積層してなることを特徴とする波長カットフィルタを提供するものである。 The present invention has a coating layer (B) containing a dye on one surface of a glass substrate (A) and an infrared reflective film (C) laminated on the other surface of the glass substrate (A). The wavelength cut filter characterized by this is provided.
 また、本発明は、上記波長カットフィルタを具備する固体撮像装置を提供するものである。 The present invention also provides a solid-state imaging device comprising the wavelength cut filter.
 また、本発明は、上記波長カットフィルタを具備するカメラモジュールを提供するものである。 The present invention also provides a camera module having the wavelength cut filter.
 本発明の波長カットフィルタは入射角依存性が低い点で優れるものである。また、本発明の波長カットフィルタは、固体撮像装置及びカメラモジュールに好適なものである。 The wavelength cut filter of the present invention is excellent in that the incident angle dependency is low. The wavelength cut filter of the present invention is suitable for a solid-state imaging device and a camera module.
本発明の波長カットフィルタの層構造の概略を示す断面図である。It is sectional drawing which shows the outline of the layer structure of the wavelength cut filter of this invention. 本発明のカメラモジュールの構成の一形態を示す断面図である。It is sectional drawing which shows one form of a structure of the camera module of this invention. 本発明のカメラモジュールの構成の別の一形態を示す断面図である。It is sectional drawing which shows another one form of a structure of the camera module of this invention.
 以下、本発明の波長カットフィルタについて、好ましい実施形態に基づき説明する。 Hereinafter, the wavelength cut filter of the present invention will be described based on preferred embodiments.
 本発明の波長カットフィルタは、図1に示すように、ガラス基板(A)の一方の面に染料を含有するコーティング層(B)を有し、且つガラス基板(A)の他方の面に赤外線反射膜(C)を積層してなる層構造をとるものであり、コーティング層(B)を有する側を、光の入射側とする。以下、各層について順に説明する。 As shown in FIG. 1, the wavelength cut filter of the present invention has a coating layer (B) containing a dye on one surface of a glass substrate (A), and an infrared ray on the other surface of the glass substrate (A). The layer structure is formed by laminating the reflective film (C), and the side having the coating layer (B) is the light incident side. Hereinafter, each layer will be described in order.
<ガラス基板(A)>
 本発明の波長カットフィルタに用いられるガラス基板(A)としては、可視域で透明なガラス材料から適宜選択して使用することができるが、ソーダ石灰ガラス、白板ガラス、硼珪酸ガラス、強化ガラス、石英ガラス、リン酸塩系ガラス等を用いることができ、中でも、ソーダ石灰ガラスは、安価で入手容易なため好ましく、白板ガラス、硼珪酸ガラス及び強化ガラスは、入手容易で硬度が高く加工性に優れるため好ましい。
<Glass substrate (A)>
As the glass substrate (A) used for the wavelength cut filter of the present invention, it can be used by appropriately selecting from a glass material transparent in the visible range, but soda lime glass, white plate glass, borosilicate glass, tempered glass, Quartz glass, phosphate glass, and the like can be used. Among them, soda lime glass is preferable because it is inexpensive and easily available, and white plate glass, borosilicate glass, and tempered glass are easily available and have high hardness and high workability. It is preferable because it is excellent.
 更に、ガラス基板(A)にシランカップリング剤等の前処理を施した後に、塗工液を塗布して後述の染料を含有するコーティング層(B)を形成すると、塗工液乾燥後の染料を含有するコーティング層(B)のガラス基板に対する密着性が高まる。 Furthermore, after pre-treating the glass substrate (A) with a silane coupling agent or the like, the coating liquid is applied to form a coating layer (B) containing a dye described later, and then the dye after drying the coating liquid Adhesiveness to the glass substrate of the coating layer (B) containing bismuth increases.
上記シランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性アルコキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ官能性アルコキシシラン、γ-メルカプトプロピルトリメトキシシラン等のメルカプト官能性アルコキシシラン等が挙げられる。 Examples of the silane coupling agent include epoxy-functional alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Amino-functional alkoxysilanes such as N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxy Examples include mercapto functional alkoxysilanes such as silane.
 ガラス基板(A)の厚さは、特に限定されないが、0.05~8mmが好ましく、軽量化及び強度の点から、0.05~1mmが更に好ましい。 The thickness of the glass substrate (A) is not particularly limited, but is preferably 0.05 to 8 mm, and more preferably 0.05 to 1 mm from the viewpoint of weight reduction and strength.
 本発明では、基板がガラス板のため、基板上に直接塗工、乾燥した後切断加工することが可能であり、構造やプロセスが簡易となる。また、基板がガラス板のため、プラスチックである場合より耐熱性(260℃リフロー耐性)が高い。 In the present invention, since the substrate is a glass plate, it can be directly coated on the substrate, dried and then cut, and the structure and process are simplified. Moreover, since a board | substrate is a glass plate, heat resistance (260 degreeC reflow tolerance) is higher than the case where it is a plastic.
<コーティング層(B)>
 本発明の波長カットフィルタに用いられる染料を含有するコーティング層(B)は、染料、樹脂及び必要に応じて配合される他の成分を適当な溶媒に溶解又は分散させて塗工液を調製し、得られた塗工液をガラス基板(A)上に塗布することにより形成することができる。
 塗布方法としては、スピンコート法、ディップコート法、スプレーコート法、ビードコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法、ホッパーを使用するエクストルージョンコート法等が挙げられる。
<Coating layer (B)>
The coating layer (B) containing a dye used in the wavelength cut filter of the present invention is prepared by dissolving or dispersing a dye, a resin, and other components to be blended as necessary in a suitable solvent to prepare a coating solution. It can form by apply | coating the obtained coating liquid on a glass substrate (A).
Application methods include spin coating, dip coating, spray coating, bead coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, die coating, and hopper. Examples include the extrusion coating method.
 上記染料としては、特に制限されず公知の染料を用いることができ、例えば、オキサゾール及びオキザジアゾール化合物、クマリン化合物、キノリノール化合物、フタロシアニン化合物、ナフトラクタム化合物、フルオレン及びその誘導体、アントラセン及びその誘導体、キサンテン化合物(ピロニン系、ローダミン系、フルオレセイン系)、スチルベン化合物、シアニン化合物、アゾ化合物、アゾメチン化合物、インジゴ化合物、チオインジゴ化合物、オキソノール化合物、スクアリリウム化合物、インドール化合物、スチリル化合物、ポルフィン化合物、アズレニウム化合物、クロコニックメチン化合物、ピリリウム化合物、チオピリリウム化合物、トリアリールメタン化合物、ジフェニルメタン化合物、テトラヒドロコリン化合物、インドフェノール化合物、アントラキノン化合物、ナフトキノン化合物、チアジン化合物、スピロピラン化合物、ベンジリデン化合物、インダン化合物、アズレン化合物、ペリレン化合物、フタロペリン化合物、アジン化合物、アクリジン化合物、チアジン化合物、オキサジン化合物、ポリアセチレン化合物、フェニレンビニレン化合物、フェニレンエチニレン化合物、五員環及び六員環の複素環化合物等が挙げられ、これらは複数を混合して用いてもよい。 The dye is not particularly limited, and known dyes can be used. For example, oxazole and oxadiazole compounds, coumarin compounds, quinolinol compounds, phthalocyanine compounds, naphtholactam compounds, fluorenes and derivatives thereof, anthracene and derivatives thereof, xanthene compounds ( (Pyronine, rhodamine, fluorescein), stilbene compounds, cyanine compounds, azo compounds, azomethine compounds, indigo compounds, thioindigo compounds, oxonol compounds, squarylium compounds, indole compounds, styryl compounds, porphine compounds, azurenium compounds, croconic methine compounds , Pyrylium compounds, thiopyrylium compounds, triarylmethane compounds, diphenylmethane compounds, tetrahydrocholine compounds, And phenol compounds, anthraquinone compounds, naphthoquinone compounds, thiazine compounds, spiropyran compounds, benzylidene compounds, indane compounds, azulene compounds, perylene compounds, phthaloperine compounds, azine compounds, acridine compounds, thiazine compounds, oxazine compounds, polyacetylene compounds, phenylene vinylene compounds, Examples thereof include phenylene ethynylene compounds, 5-membered and 6-membered heterocyclic compounds, and a plurality of these compounds may be used in combination.
 上記染料の中でも、キサンテン化合物、フタロシアニン化合物、シアニン化合物、アゾ化合物、オキソノール化合物、アントラキノン化合物等の酸性染料が、溶解性の点から好ましい。
 上記酸性染料の中でも、合成の容易さ及び分子設計の点から、シアニン化合物が更に好ましい。
Among the above dyes, acidic dyes such as xanthene compounds, phthalocyanine compounds, cyanine compounds, azo compounds, oxonol compounds, and anthraquinone compounds are preferable from the viewpoint of solubility.
Among the acid dyes, a cyanine compound is more preferable from the viewpoint of ease of synthesis and molecular design.
 上記シアニン化合物としては、例えば、下記一般式(1)で表されるものが挙げられる。 Examples of the cyanine compound include those represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
(式中、Aは下記の群Iの(a)~(m)から選ばれる基を表し、A’は下記の群IIの(a’)~(m’)から選ばれる基を表し、
 Qは炭素原子数1~9のメチン鎖を構成し、鎖中に環構造を含んでもよい連結基を表し、該メチン鎖中の水素原子は水酸基、ハロゲン原子、シアノ基、-NRR’、アリール基、アリールアルキル基又はアルキル基で置換されていてもよく、該-NRR’、アリール基、アリールアルキル基及びアルキル基は更に水酸基、ハロゲン原子、シアノ基又は-NRR’で置換されていてもよく、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されてもよく、
 R及びR’は、アリール基、アリールアルキル基又はアルキル基を表し、
 Anq-はq価のアニオンを表し、qは1又は2を表し、pは電荷を中性に保つ係数を表す。)
Figure JPOXMLDOC01-appb-C000001
(Wherein A represents a group selected from (a) to (m) of the following group I, A ′ represents a group selected from (a ′) to (m ′) of the following group II;
Q represents a methine chain having 1 to 9 carbon atoms, and represents a linking group that may contain a ring structure in the chain, and the hydrogen atom in the methine chain is a hydroxyl group, a halogen atom, a cyano group, —NRR ′, aryl Group, an arylalkyl group or an alkyl group, and the —NRR ′, aryl group, arylalkyl group and alkyl group may be further substituted with a hydroxyl group, a halogen atom, a cyano group or —NRR ′. , —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH—, —NHCO—, —N═CH— or —CH═CH—. May be interrupted,
R and R ′ represent an aryl group, an arylalkyl group or an alkyl group,
An q− represents a q-valent anion, q represents 1 or 2, and p represents a coefficient for keeping the charge neutral. )
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(式中、環C及び環C’は、ベンゼン環、ナフタレン環、フェナントレン環又はピリジン環を表し、
 R1及びR1’は、水酸基、ハロゲン原子、ニトロ基、シアノ基、-SO3H、カルボキシル基、アミノ基、アミド基、フェロセニル基、炭素原子数6~30のアリール基、炭素原子数7~30のアリールアルキル基又は炭素原子数1~8のアルキル基を表し、
 上記R1及びR1’中の炭素原子数6~30のアリール基、炭素原子数7~30のアリールアルキル基及び炭素原子数1~8のアルキル基は、水酸基、ハロゲン原子、ニトロ基、シアノ基、-SO3H、カルボキシル基、アミノ基、アミド基又はフェロセニル基で置換されていてもよく、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されていてもよく、
 R2~R9及びR2’~R9’は、R1及びR1’と同様の基又は水素原子を表し、
 X及びX’は、酸素原子、硫黄原子、セレン原子、-CR5152-、炭素原子数3~6のシクロアルカン-1,1-ジイル基、-NH-又は-NY2-を表し、
 R51及びR52は、R1及びR1’と同様の基又は水素原子を表し、
 Y、Y’及びY2は、水素原子、又は水酸基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、アミド基、フェロセニル基、-SO3H若しくはニトロ基で置換されてもよい炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基若しくは炭素原子数7~30のアリールアルキル基を表し、
 上記Y、Y’及びY2中の炭素原子数1~8のアルキル基、炭素原子数6~30のアリール基及び炭素原子数7~30のアリールアルキル基中のメチレン基は、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されていてもよく、
 r及びr’は、0又は(a)~(e)、(g)~(j)、(l)、(m)、(a’)~(e’)、(g’)~(j’)、(l’)及び(m’)において置換可能な数を表す。)
Figure JPOXMLDOC01-appb-C000003
(Wherein, ring C and ring C ′ represent a benzene ring, a naphthalene ring, a phenanthrene ring or a pyridine ring,
R 1 and R 1 ′ are a hydroxyl group, a halogen atom, a nitro group, a cyano group, —SO 3 H, a carboxyl group, an amino group, an amide group, a ferrocenyl group, an aryl group having 6 to 30 carbon atoms, or a carbon atom number of 7 Represents an arylalkyl group of ˜30 or an alkyl group of 1 to 8 carbon atoms,
The aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms and the alkyl group having 1 to 8 carbon atoms in the above R 1 and R 1 ′ are a hydroxyl group, a halogen atom, a nitro group, a cyano group. Group, —SO 3 H, carboxyl group, amino group, amide group or ferrocenyl group, and may be substituted with —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —. , —NH—, —CONH—, —NHCO—, —N═CH— or —CH═CH—
R 2 to R 9 and R 2 ′ to R 9 ′ represent the same group or hydrogen atom as R 1 and R 1 ′,
X and X ′ represent an oxygen atom, a sulfur atom, a selenium atom, —CR 51 R 52 —, a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms, —NH— or —NY 2 —,
R 51 and R 52 represent the same group or hydrogen atom as R 1 and R 1 ′,
Y, Y ′ and Y 2 are each a hydrogen atom, or a hydroxyl group, a halogen atom, a cyano group, a carboxyl group, an amino group, an amide group, a ferrocenyl group, —SO 3 H or a nitro group, which may be substituted with 1 carbon atom. Represents an alkyl group having ˜20, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms,
The methylene group in the alkyl group having 1 to 8 carbon atoms, the aryl group having 6 to 30 carbon atoms and the arylalkyl group having 7 to 30 carbon atoms in the above Y, Y ′ and Y 2 is —O—, Even when interrupted by —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH—, —NHCO—, —N═CH— or —CH═CH—. Often,
r and r ′ are 0 or (a) to (e), (g) to (j), (l), (m), (a ′) to (e ′), (g ′) to (j ′) ), (L ′) and (m ′) represent the number that can be substituted. )
 上記一般式(1)におけるR1~R9及びR1’ ~R9’並びにX及びX’中のR51及びR52で表されるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、
 炭素原子数6~30のアリール基としては、フェニル、ナフチル、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、4-ビニルフェニル、3-iso-プロピルフェニル、4-iso-プロピルフェニル、4-ブチルフェニル、4-iso-ブチルフェニル、4-tert-ブチルフェニル、4-ヘキシルフェニル、4-シクロヘキシルフェニル、4-オクチルフェニル、4-(2-エチルヘキシル)フェニル、4-ステアリルフェニル、2,3-ジメチルフェニル、2,4-ジメチルフェニル、2,5-ジメチルフェニル、2,6-ジメチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2,4-ジ-tert-ブチルフェニル、2,5-ジ-tert-ブチルフェニル、2,6-ジ-tert-ブチルフェニル、2,4-ジ-tert-ペンチルフェニル、2,5-ジ-tert-アミルフェニル、2,5-ジ-tert-オクチルフェニル、2,4-ジクミルフェニル、4-シクロヘキシルフェニル、(1,1’-ビフェニル)-4-イル、2,4,5-トリメチルフェニル、フェロセニル等が挙げられ、
 炭素原子数7~30のアリールアルキル基としては、ベンジル、フェネチル、2-フェニルプロパン-2-イル、ジフェニルメチル、トリフェニルメチル、スチリル、シンナミル、フェロセニルメチル、フェロセニルプロピル等が挙げられ、
 炭素原子数1~8のアルキル基としては、メチル、エチル、プロピル、iso-プロピル、ブチル、sec-ブチル、tert-ブチル、iso-ブチル、アミル、iso-アミル、tert-アミル、ヘキシル、2-ヘキシル、3-ヘキシル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、2-ヘプチル、3-ヘプチル、iso-ヘプチル、tert-ヘプチル、1-オクチル、iso-オクチル、tert-オクチル等が挙げられる。
 上記炭素原子数6~30のアリール基、炭素原子数7~30のアリールアルキル基及び炭素原子数1~8のアルキル基は、水酸基、ハロゲン原子、ニトロ基、シアノ基、-SO3H、カルボキシル基、アミノ基、アミド基又はフェロセニル基で置換されていてもよく、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されてもよく、これらの置換及び中断の数及び位置は任意である。
 例えば、上記炭素原子数1~8のアルキル基がハロゲン原子で置換された基としては、例えば、クロロメチル、ジクロロメチル、トリクロロメチル、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ノナフルオロブチル等が挙げられ、
 上記炭素原子数1~8のアルキル基が、-O-で中断された基としては、メチルオキシ、エチルオキシ、iso-プロピルオキシ、プロピルオキシ、ブチルオキシ、ペンチルオキシ、iso-ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2-エチルヘキシルオキシ等のアルコキシ基や、2-メトキシエチル、2-(2-メトキシ)エトキシエチル、2-エトキシエチル、2-ブトキシエチル、4-メトキシブチル、3-メトキシブチル等のアルコキシアルキル基等が挙げられ、
 上記炭素原子数1~8のアルキル基がハロゲン原子で置換され、且つ-O-で中断された基としては、例えば、クロロメチルオキシ、ジクロロメチルオキシ、トリクロロメチルオキシ、フルオロメチルオキシ、ジフルオロメチルオキシ、トリフルオロメチルオキシ、ノナフルオロブチルオキシ等が挙げられる。
Examples of the halogen atom represented by R 51 and R 52 in R 1 to R 9 and R 1 ′ to R 9 ′ and X and X ′ in the general formula (1) include fluorine, chlorine, bromine and iodine. And
Examples of the aryl group having 6 to 30 carbon atoms include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, 3-iso-propylphenyl, 4-iso-propylphenyl, 4-butylphenyl, 4-iso-butylphenyl, 4-tert-butylphenyl, 4-hexylphenyl, 4-cyclohexylphenyl, 4-octylphenyl, 4- (2-ethylhexyl) phenyl, 4-stearylphenyl, 2, 3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2,4-di-tert-butylphenyl 2,5-di-tert-butylphenyl, 2,6-di-tert-butyl Ruphenyl, 2,4-di-tert-pentylphenyl, 2,5-di-tert-amylphenyl, 2,5-di-tert-octylphenyl, 2,4-dicumylphenyl, 4-cyclohexylphenyl, (1 , 1′-biphenyl) -4-yl, 2,4,5-trimethylphenyl, ferrocenyl and the like,
Examples of the arylalkyl group having 7 to 30 carbon atoms include benzyl, phenethyl, 2-phenylpropan-2-yl, diphenylmethyl, triphenylmethyl, styryl, cinnamyl, ferrocenylmethyl, ferrocenylpropyl and the like. ,
Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, tert-butyl, iso-butyl, amyl, iso-amyl, tert-amyl, hexyl, 2- Examples include hexyl, 3-hexyl, cyclohexyl, 1-methylcyclohexyl, heptyl, 2-heptyl, 3-heptyl, iso-heptyl, tert-heptyl, 1-octyl, iso-octyl, tert-octyl and the like.
The aryl group having 6 to 30 carbon atoms, the arylalkyl group having 7 to 30 carbon atoms and the alkyl group having 1 to 8 carbon atoms are a hydroxyl group, a halogen atom, a nitro group, a cyano group, —SO 3 H, carboxyl Group, amino group, amido group or ferrocenyl group, which may be substituted, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH— , —NHCO—, —N═CH— or —CH═CH—, and the number and position of these substitutions and interruptions are arbitrary.
For example, examples of the group in which the alkyl group having 1 to 8 carbon atoms is substituted with a halogen atom include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, nonafluorobutyl and the like. And
Examples of the group in which the alkyl group having 1 to 8 carbon atoms is interrupted by —O— include methyloxy, ethyloxy, iso-propyloxy, propyloxy, butyloxy, pentyloxy, iso-pentyloxy, hexyloxy, heptyl Alkoxy groups such as oxy, octyloxy, 2-ethylhexyloxy, 2-methoxyethyl, 2- (2-methoxy) ethoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, 4-methoxybutyl, 3-methoxybutyl, etc. An alkoxyalkyl group of
Examples of the group in which the alkyl group having 1 to 8 carbon atoms is substituted with a halogen atom and interrupted by —O— include, for example, chloromethyloxy, dichloromethyloxy, trichloromethyloxy, fluoromethyloxy, difluoromethyloxy , Trifluoromethyloxy, nonafluorobutyloxy and the like.
 上記一般式(1)において、X及びX’で表される炭素原子数3~6のシクロアルカン-1,1-ジイル基としては、シクロプロパン-1,1-ジイル、シクロブタン-1,1-ジイル、2,4-ジメチルシクロブタン-1,1-ジイル、3,3-ジメチルシクロブタン-1,1-ジイル、シクロペンタン-1,1-ジイル、シクロヘキサン-1,1-ジイル等が挙げられる。 In the above general formula (1), the cycloalkane-1,1-diyl group having 3 to 6 carbon atoms represented by X and X ′ is cyclopropane-1,1-diyl, cyclobutane-1,1- Examples thereof include diyl, 2,4-dimethylcyclobutane-1,1-diyl, 3,3-dimethylcyclobutane-1,1-diyl, cyclopentane-1,1-diyl, cyclohexane-1,1-diyl and the like.
 上記一般式(1)において、Y、Y’及びY2で表されるハロゲン原子、炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基及び炭素原子数7~30のアリールアルキル基としては、上記R1等の説明で例示した基が挙げられ、これらの置換基中の水素原子は、水酸基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基、アミド基、フェロセニル基、-SO3H又はニトロ基で任意の数で置換されてもよい。
 また、これらのY、Y’、Y2中のアルキル基、アリール基及びアリールアルキル基中のメチレン基は、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されてもよい。例えば、メチル、エチル、プロピル、iso-プロピル、ブチル、sec-ブチル、tert-ブチル、iso-ブチル、アミル、iso-アミル、tert-アミル、ヘキシル、2-ヘキシル、3-ヘキシル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、2-ヘプチル、3-ヘプチル、iso-ヘプチル、tert-ヘプチル、1-オクチル、iso-オクチル、tert-オクチル、2-エチルヘキシル、ノニル、iso-ノニル、デシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル等のアルキル基;フェニル、ナフチル、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、4-ビニルフェニル、3-iso-プロピルフェニル、4-iso-プロピルフェニル、4-ブチルフェニル、4-iso-ブチルフェニル、4-tert-ブチルフェニル、4-ヘキシルフェニル、4-シクロヘキシルフェニル、4-オクチルフェニル、4-(2-エチルヘキシル)フェニル、4-ステアリルフェニル、2,3-ジメチルフェニル、2,4-ジメチルフェニル、2,5-ジメチルフェニル、2,6-ジメチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2,4-ジ-tert-ブチルフェニル、シクロヘキシルフェニル等のアリール基;ベンジル、フェネチル、2-フェニルプロパン-2-イル、ジフェニルメチル、トリフェニルメチル、スチリル、シンナミル等のアリールアルキル基等が、エーテル結合、チオエーテル結合等で中断されたもの、例えば、2-メトキシエチル、3-メトキシプロピル、4-メトキシブチル、2-ブトキシエチル、メトキシエトキシエチル、メトキシエトキシエトキシエチル、3-メトキシブチル、2-フェノキシエチル、3-フェノキシプロピル、2-メチルチオエチル、2-フェニルチオエチル等が挙げられる。
In the general formula (1), a halogen atom represented by Y, Y ′ and Y 2 , an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms and an aryl having 7 to 30 carbon atoms Examples of the alkyl group include groups exemplified in the description of R 1 and the like. The hydrogen atom in these substituents is a hydroxyl group, a halogen atom, a cyano group, a carboxyl group, an amino group, an amide group, a ferrocenyl group,- Any number of SO 3 H or nitro groups may be substituted.
In addition, the alkyl group, the aryl group and the methylene group in the arylalkyl group in Y, Y ′, and Y 2 are —O—, —S—, —CO—, —COO—, —OCO—, —SO. It may be interrupted with 2 —, —NH—, —CONH—, —NHCO—, —N═CH— or —CH═CH—. For example, methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, tert-butyl, iso-butyl, amyl, iso-amyl, tert-amyl, hexyl, 2-hexyl, 3-hexyl, cyclohexyl, 1- Methylcyclohexyl, heptyl, 2-heptyl, 3-heptyl, iso-heptyl, tert-heptyl, 1-octyl, iso-octyl, tert-octyl, 2-ethylhexyl, nonyl, iso-nonyl, decyl, dodecyl, tridecyl, tetradecyl Alkyl groups such as pentadecyl, hexadecyl, heptadecyl, octadecyl; phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, 3-iso-propylphenyl, 4-iso-propi Phenyl, 4-butylphenyl, 4-iso-butylphenyl, 4-tert-butylphenyl, 4-hexylphenyl, 4-cyclohexylphenyl, 4-octylphenyl, 4- (2-ethylhexyl) phenyl, 4-stearylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2,4-di-tert- Aryl groups such as butylphenyl and cyclohexylphenyl; arylalkyl groups such as benzyl, phenethyl, 2-phenylpropan-2-yl, diphenylmethyl, triphenylmethyl, styryl, cinnamyl, etc. are interrupted by ether bonds, thioether bonds, etc. Such as 2-methoxye 3-methoxypropyl, 4-methoxybutyl, 2-butoxyethyl, methoxyethoxyethyl, methoxyethoxyethoxyethyl, 3-methoxybutyl, 2-phenoxyethyl, 3-phenoxypropyl, 2-methylthioethyl, 2-phenylthio And ethyl.
 上記一般式(1)におけるQで表わされる炭素原子数1~9のメチン鎖を構成し、鎖中に環構造を含んでもよい連結基としては、下記(Q-1)~(Q-11)の何れかで表される基が、製造が容易であるため好ましい。炭素原子数1~9のメチン鎖における炭素原子数には、メチン鎖又はメチン鎖中に含まれる環構造をさらに置換する基の炭素原子(例えば、連結基(Q-1)~(Q-11)における両末端の炭素原子、Z’又はR14~R19が炭素原子を含む場合はその炭素原子)を含まない。 Examples of the linking group constituting the methine chain having 1 to 9 carbon atoms represented by Q in the general formula (1) and including a ring structure in the chain include the following (Q-1) to (Q-11): The group represented by any of the above is preferable because it is easy to produce. The number of carbon atoms in the methine chain having 1 to 9 carbon atoms is the carbon atom of the methine chain or a group that further substitutes the ring structure contained in the methine chain (for example, linking groups (Q-1) to (Q-11). ), Carbon atoms at both ends in Z), or when Z 14 or R 14 to R 19 contain a carbon atom, are not included.
Figure JPOXMLDOC01-appb-C000004
(式中、R14、R15、R16、R17、R18、R19及びZ’は、各々独立に、水素原子、水酸基、ハロゲン原子、シアノ基、-NRR’、アリール基、アリールアルキル基又はアルキル基を表し、該-NRR’、アリール基、アリールアルキル基及びアルキル基は、水酸基、ハロゲン原子、シアノ基又は-NRR’で置換されていてもよく、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-又は-CH=CH-で中断されていてもよく、
 R及びR’は、アリール基、アリールアルキル基又はアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000004
Wherein R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and Z ′ are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a cyano group, —NRR ′, an aryl group, an arylalkyl The —NRR ′, aryl group, arylalkyl group and alkyl group may be substituted with a hydroxyl group, a halogen atom, a cyano group or —NRR ′, and —O—, —S—, May be interrupted by —CO—, —COO—, —OCO—, —SO 2 —, —NH—, —CONH—, —NHCO—, —N═CH— or —CH═CH—,
R and R ′ represent an aryl group, an arylalkyl group or an alkyl group. )
 上記R14、R15、R16、R17、R18、R19及びZ’で表わされるハロゲン原子、アリール基、アリールアルキル又はアルキル基としては、R1等の説明で例示したものが挙げられ、R及びR’で表されるアリール基、アリールアルキル基又はアルキル基としてはR1等の説明で例示したものが挙げられる。 Examples of the halogen atom, aryl group, arylalkyl or alkyl group represented by R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and Z ′ include those exemplified in the description of R 1 and the like. As the aryl group, arylalkyl group or alkyl group represented by R and R ′, those exemplified in the description of R 1 and the like can be mentioned.
 上記一般式(1)中のpAnq-で表されるq価のアニオンとしては、メタンスルホン酸アニオン、ドデシルスルホン酸アニオン、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ナフタレンスルホン酸アニオン、ジフェニルアミン-4-スルホン酸アニオン、2-アミノ-4-メチル-5-クロロベンゼンスルホン酸アニオン、2-アミノ-5-ニトロベンゼンスルホン酸アニオン、特開平10-235999、特開平10-337959、特開平11-102088、特開2000-108510、特開2000-168223、特開2001-209969、特開2001-322354、特開2006-248180、特開2006-297907、特開平8-253705号公報、特表2004-503379号公報、特開2005-336150号公報、国際公開2006/28006号公報等に記載されたスルホン酸アニオン等の有機スルホン酸アニオンの他、塩化物イオン、臭化物イオン、ヨウ化物イオン、フッ化物イオン、塩素酸イオン、チオシアン酸イオン、過塩素酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロアンチモン酸イオン、テトラフルオロホウ酸イオン、オクチルリン酸イオン、ドデシルリン酸イオン、オクタデシルリン酸イオン、フェニルリン酸イオン、ノニルフェニルリン酸イオン、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)ホスホン酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、励起状態にある活性分子を脱励起させる(クエンチングさせる)機能を有するクエンチャー陰イオンやシクロペンタジエニル環にカルボキシル基やホスホン酸基、スルホン酸基等の陰イオン性基を有するフェロセン、ルテオセン等のメタロセン化合物陰イオン等が挙げられる。 Examples of the q-valent anion represented by pAn q- in the general formula (1) include methanesulfonate anion, dodecylsulfonate anion, benzenesulfonate anion, toluenesulfonate anion, trifluoromethanesulfonate anion, naphthalenesulfone. Acid anion, diphenylamine-4-sulfonate anion, 2-amino-4-methyl-5-chlorobenzenesulfonate anion, 2-amino-5-nitrobenzenesulfonate anion, JP-A-10-235999, JP-A-10-337959, Japanese Laid-Open Patent Publication No. 11-102208, Japanese Laid-Open Patent Publication No. 2000-108510, Japanese Laid-open Patent Publication No. 2000-168223, Japanese Laid-Open Patent Publication No. 2001-209969, Japanese Laid-Open Patent Publication No. 2001-248180, Japanese Laid-Open Patent Publication No. 2006-297907, Japanese Laid-Open Patent Publication No. 8-253705 In addition to organic sulfonate anions such as sulfonate anions described in JP-T-2004-503379, JP-A-2005-336150, and International Publication No. 2006/28006, chloride ions, bromide ions, and iodides. Ion, fluoride ion, chlorate ion, thiocyanate ion, perchlorate ion, hexafluorophosphate ion, hexafluoroantimonate ion, tetrafluoroborate ion, octyl phosphate ion, dodecyl phosphate ion, octadecyl phosphate ion , Phenylphosphate ion, nonylphenylphosphate ion, 2,2'-methylenebis (4,6-di-t-butylphenyl) phosphonate ion, tetrakis (pentafluorophenyl) borate ion, active molecule in excited state Is deexcited (quenched Carboxyl group or a phosphonic acid quencher anion or a cyclopentadienyl ring having the function, ferrocene having anionic groups such as sulfonic acid group, a metallocene compound anion such as Ruteosen like.
 本発明で用いられるシアニン化合物の具体例としては、下記化合物No.1~102が挙げられる。なお、以下の例示では、アニオンを省いたシアニンカチオンで示している。 Specific examples of the cyanine compound used in the present invention include the following compound No. 1-102. In the following examples, cyanine cations without anions are shown.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記シアニン化合物は、その製造方法は特に限定されず、周知一般の反応を利用した方法で得ることができ、例えば、特開2010-209191に記載されているルートの如く、該当する構造を有する化合物と、イミン誘導体との反応により合成する方法が挙げられる。 The production method of the cyanine compound is not particularly limited, and can be obtained by a method using a well-known general reaction. For example, a compound having a corresponding structure such as a route described in JP2010-209191A And a method of synthesis by reaction with an imine derivative.
 本発明で用いられる染料は、塗膜の極大吸収波長(λmax)が650~1200nmであるのが好ましく、650~900nmが更に好ましい。塗膜の極大吸収波長(λmax)が本発明の1200nm以上であると、本願発明の効果を発揮せず、650nm未満であると、可視光線を吸収するため好ましくない。 The dye used in the present invention preferably has a maximum absorption wavelength (λmax) of the coating film of 650 to 1200 nm, and more preferably 650 to 900 nm. When the maximum absorption wavelength (λmax) of the coating film is 1200 nm or more of the present invention, the effect of the present invention is not exhibited, and when it is less than 650 nm, visible light is absorbed.
 上記染料を含有するコーティング層(B)を形成するための塗工液において、染料の含有量は、単独又は複数種の合計で、好ましくは0.01~50質量%、より好ましくは0.1~30質量%である。染料の含有量が0.01質量%より小さいと、十分な特性が得られない場合があり、50質量%より大きいと、コーティング層中で染料の析出が起こる場合がある。
 また、上記染料を含有するコーティング層(B)において、染料の含有量は、単独又は複数種の合計で、樹脂固形分100質量部に対して、好ましくは0.01~10.0質量部、より好ましくは0.25~5.0質量部である。
In the coating liquid for forming the coating layer (B) containing the dye, the content of the dye is single or a total of a plurality of types, preferably 0.01 to 50% by mass, more preferably 0.1%. ~ 30% by mass. When the content of the dye is less than 0.01% by mass, sufficient characteristics may not be obtained. When the content is more than 50% by mass, the dye may precipitate in the coating layer.
In the coating layer (B) containing the above dye, the content of the dye alone or in total of a plurality of types is preferably 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the resin solid content, More preferably, it is 0.25 to 5.0 parts by mass.
 上記樹脂としては、例えば、ゼラチン、カゼイン、澱粉、セルロース誘導体、アルギン酸等の天然高分子材料、あるいは、ポリメチルメタクリレート、ポリビニルブチラール、ポリビニルピロリドン、ポリビニルアルコール、ポリ塩化ビニル、スチレン-ブタジエンコポリマー、ポリスチレン、ポリカーボネート、ポリアミド等の合成高分子材料が用いられる。 Examples of the resin include natural polymer materials such as gelatin, casein, starch, cellulose derivatives, and alginic acid, or polymethyl methacrylate, polyvinyl butyral, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl chloride, styrene-butadiene copolymer, polystyrene, Synthetic polymer materials such as polycarbonate and polyamide are used.
 上記必要に応じて配合される他の成分としては、ベンゾトリアゾール系、トリアジン系、ベンゾエート系の紫外線吸収剤;フェノール系、リン系、硫黄系酸化防止剤;カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等からなる帯電防止剤;ハロゲン系化合物、リン酸エステル系化合物、リン酸アミド系化合物、メラミン系化合物、フッ素樹脂又は金属酸化物、(ポリ)リン酸メラミン、(ポリ)リン酸ピペラジン等の難燃剤;炭化水素系、脂肪酸系、脂肪族アルコール系、脂肪族エステル系、脂肪族アマイド系又は金属石けん系の滑剤;フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、珪藻土、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト、シリカ等の珪酸系無機添加剤;ガラス繊維、炭酸カルシウム等の充填剤;造核剤、結晶促進剤等の結晶化剤、シランカップリング剤、可撓性ポリマー等のゴム弾性付与剤等が挙げられる。これらの他の成分の使用量は、染料を含有するコーティング層(B)を形成するための塗工液中、合計で、50質量%以下とする。 Other components that may be blended as necessary include benzotriazole, triazine, and benzoate UV absorbers; phenol, phosphorus, and sulfur antioxidants; cationic surfactants and anionic surfactants Agents, nonionic surfactants, amphoteric surfactants, etc .; halogen compounds, phosphate ester compounds, phosphate amide compounds, melamine compounds, fluororesins or metal oxides, (poly) phosphorus Flame retardants such as melamine acid, piperazine phosphate (poly); hydrocarbon-based, fatty acid-based, aliphatic alcohol-based, aliphatic ester-based, aliphatic amide-based or metal soap-based lubricants; fumed silica, fine particle silica, silica Stone, diatomaceous earth, clay, kaolin, diatomaceous earth, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar Silica-based inorganic additives such as silica, talc, mica, minesotite, pyrophyllite, and silica; fillers such as glass fiber and calcium carbonate; crystallization agents such as nucleating agents and crystal accelerators, silane cups Examples thereof include rubber elasticity imparting agents such as a ring agent and a flexible polymer. The amount of these other components used is 50% by mass or less in total in the coating liquid for forming the coating layer (B) containing the dye.
 上記溶媒としては、特に限定されることなく公知の種々の溶媒を適宜用いることができ、例えば、イソプロパノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ブチルジグリコール等のエーテルアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等のケトン類、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等のエステル類;アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステル類、2,2,3,3-テトラフルオロプロパノール等のフッ化アルコール類;ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素類;メチレンジクロライド、ジクロロエタン、クロロホルム等の塩素化炭化水素類等が挙げられる。これらの有機溶媒は、単独で又は混合して用いることができる。 The solvent is not particularly limited and various known solvents can be used as appropriate. Examples thereof include alcohols such as isopropanol; ether alcohols such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and butyl diglycol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diacetone alcohol; esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; acrylic acid esters such as ethyl acrylate and butyl acrylate; Fluorinated alcohols such as 3-tetrafluoropropanol; hydrocarbons such as hexane, benzene, toluene, xylene; chlorinated hydrocarbons such as methylene dichloride, dichloroethane, and chloroform. These organic solvents can be used alone or in combination.
 染料を含有するコーティング層(B)の厚さは1~200μmであるのが、均一な膜が得られ薄膜化に有利であるため好ましい。1μm未満だと機能を十分に発現することができず、200μmを超えると、塗布時に溶媒が残留する恐れがある。 The thickness of the coating layer (B) containing the dye is preferably 1 to 200 μm because a uniform film can be obtained and it is advantageous for thinning. If the thickness is less than 1 μm, the function cannot be sufficiently exhibited, and if it exceeds 200 μm, the solvent may remain during coating.
<赤外線反射膜(C)>
 本発明のカットフィルタに用いられる赤外線反射膜(C)は、700~1200nmの波長域の光を遮断する機能を有するものであり、低屈折率層と高屈折率層とが交互に積層された誘電体多層膜により形成される。
<Infrared reflective film (C)>
The infrared reflective film (C) used in the cut filter of the present invention has a function of blocking light in a wavelength region of 700 to 1200 nm, and a low refractive index layer and a high refractive index layer are alternately laminated. It is formed of a dielectric multilayer film.
 上記低屈折率層を構成する材料としては、屈折率1.2~1.6の材料を用いることができ、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウム、六フッ化アルミニウムナトリウム等が挙げられる。 As a material constituting the low refractive index layer, a material having a refractive index of 1.2 to 1.6 can be used. For example, silica, alumina, lanthanum fluoride, magnesium fluoride, aluminum hexafluoride sodium, etc. Can be mentioned.
 上記高屈折率層を構成する材料としては、屈折率が1.7~2.5の材料を用いることができ、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、酸化インジウム等が挙げられる他、これらを主成分とし、酸化チタン、酸化錫、酸化セリウム等を少量含有させたもの等が挙げられる。 As the material constituting the high refractive index layer, a material having a refractive index of 1.7 to 2.5 can be used. For example, titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, oxidation Examples thereof include yttrium, zinc oxide, zinc sulfide, indium oxide, and the like, and those containing these as main components and containing a small amount of titanium oxide, tin oxide, cerium oxide, and the like.
 上記低屈折率層と高屈折率層を積層する方法については、これらの層を積層した誘電体多層膜が形成される限り特に制限はないが、例えば、ガラス基板上に、CVD法、スパッタ法、真空蒸着法等により低屈折率層と高屈折率層を交互に積層した誘電体多層膜を形成する方法が挙げられる。また、あらかじめ誘電体多層膜を形成し、これをガラス基板に接着剤で貼り合わせることもできる。
 積層数は、10~80層であり、25~50層であるのが、プロセス及び強度の点から好ましい。
The method for laminating the low refractive index layer and the high refractive index layer is not particularly limited as long as a dielectric multilayer film in which these layers are laminated is formed. For example, a CVD method, a sputtering method on a glass substrate. And a method of forming a dielectric multilayer film in which a low refractive index layer and a high refractive index layer are alternately laminated by a vacuum deposition method or the like. It is also possible to form a dielectric multilayer film in advance and attach it to the glass substrate with an adhesive.
The number of laminated layers is 10 to 80, and 25 to 50 is preferable from the viewpoint of process and strength.
 上記低屈折率層と高屈折率層の厚みは、それぞれ、通常、遮断しようとする光線の波長λ(nm)の1/10~1/2の厚みである。厚みが0.1λ未満あるいは0.5λより大きくなると、屈折率(n)と物理膜厚(d)との積(nd)がλ/4の倍数で表される光学膜厚と大きく異なって特定波長の遮断・透過ができない恐れがある。 The thickness of the low refractive index layer and the high refractive index layer is usually 1/10 to 1/2 of the wavelength λ (nm) of the light beam to be blocked. When the thickness is less than 0.1λ or greater than 0.5λ, the product (nd) of the refractive index (n) and the physical film thickness (d) is significantly different from the optical film thickness expressed as a multiple of λ / 4. There is a risk that the wavelength cannot be blocked or transmitted.
 上記赤外線反射膜(C)としては、上記の誘電体多層膜の他、極大吸収波長が700~1100nmの染料を含有する膜、高分子を積層させたもの、コレステリック液晶を塗布して形成した膜等の有機材料を用いたものを使用することもできる。 As the infrared reflective film (C), in addition to the above dielectric multilayer film, a film containing a dye having a maximum absorption wavelength of 700 to 1100 nm, a film in which a polymer is laminated, or a film formed by applying a cholesteric liquid crystal The thing using organic materials, such as these, can also be used.
 本発明の波長カットフィルターは、透過率が下記(i)~(iii)を満たすことが好ましい。尚、上透過率の測定は、日本分光(株)製紫外可視近赤外分光光度計V-570で測定した。
(i)波長430~580nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率の平均値が75%以上である。
(ii)波長800~1000nmにおいて、波長カットフィルタの垂直方向から測定した場合の透過率の平均値が5%以下である。
(iii)波長560~800nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率が80%となる波長の値(Ya)と、波長カットフィルタの垂直方向に対して35°の角度から測定した場合の透過率が80%となる波長の値(Yb)の差の絶対値が30nm以下である。
 波長カットフィルターにおいて、上記(i)の波長430~580nmの範囲における透過率の平均値が75%未満であると、可視光領域における光をほとんど透過しないことになり、上記(ii)の波長800~1000nmにおける透過率の平均値が5%を超えると、赤外線領域における光をほとんどカットしないため、人間の視感度に近づくよう感度を補正することが困難になる恐れがある。
 また、上記(iii)のYaとYbの差の絶対値が30nmを超えると、光の入射角による依存性が高くなり、光の入射角によって波長カットフィルタの特性が変化するため、画面の中心と周辺で色合いが変化する等の弊害が生じる恐れがある。
The wavelength cut filter of the present invention preferably has a transmittance satisfying the following (i) to (iii). The upper transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer V-570 manufactured by JASCO Corporation.
(I) In the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the wavelength cut filter is 75% or more.
(Ii) At a wavelength of 800 to 1000 nm, the average transmittance when measured from the vertical direction of the wavelength cut filter is 5% or less.
(Iii) In the wavelength range of 560 to 800 nm, the wavelength value (Ya) at which the transmittance is 80% when measured from the vertical direction of the wavelength cut filter, and an angle of 35 ° with respect to the vertical direction of the wavelength cut filter The absolute value of the difference in wavelength value (Yb) at which the transmittance is 80% when measured from is 30 nm or less.
In the wavelength cut filter, if the average value of the transmittance in the wavelength range of 430 to 580 nm of (i) is less than 75%, light in the visible light region is hardly transmitted, and the wavelength 800 of (ii) above. If the average value of transmittance at ˜1000 nm exceeds 5%, light in the infrared region is hardly cut, so that it may be difficult to correct the sensitivity so that it approaches human visual sensitivity.
If the absolute value of the difference between Ya and Yb in (iii) exceeds 30 nm, the dependence on the incident angle of light increases, and the characteristics of the wavelength cut filter change depending on the incident angle of light. There is a risk of adverse effects such as a change in color around.
 本発明の波長カットフィルタの具体的な用途としては、自動車や建物の窓ガラス等に装着される熱線カットフィルター;デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ、携帯電話用カメラ等の固体撮像装置におけるCCDやCMOS等の固体撮像素子用視感度補正用;自動露出計;プラズマディスプレイ等の表示装置等を挙げることができる。 As a specific use of the wavelength cut filter of the present invention, a heat ray cut filter mounted on a window glass of an automobile or a building; a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, a web camera, a mobile phone For example, for a visibility correction for a solid-state imaging device such as a CCD or CMOS in a solid-state imaging device such as a camera; an automatic exposure meter; a display device such as a plasma display.
 次に、本発明の固体撮像装置及びカメラモジュールについて説明する。
 本発明の固体撮像装置は、本発明の波長カットフィルタを撮像素子の前面に備える以外は、従来公知の固体撮像装置と同様に構成される。図2に示すように、本発明の波長カットフィルタ1は、固体撮像素子2の光入射側で固体撮像素子以外の部分に固定してもよいし、図3に示すように、固体撮像素子2の前面に直接固定してもよい。
Next, the solid-state imaging device and camera module of the present invention will be described.
The solid-state imaging device of the present invention is configured in the same manner as a conventionally known solid-state imaging device except that the wavelength cut filter of the present invention is provided on the front surface of the imaging element. As shown in FIG. 2, the wavelength cut filter 1 of the present invention may be fixed to a part other than the solid-state image sensor on the light incident side of the solid-state image sensor 2, or as shown in FIG. It may be fixed directly to the front of the.
 本発明の固体撮像装置には、必要に応じて、光学ローパスフィルタ、反射防止フィルタ、カラーフィルタ等を配置することができ、これらを積層する順序に特に制限はない。 In the solid-state imaging device of the present invention, an optical low-pass filter, an antireflection filter, a color filter, and the like can be arranged as necessary, and the order of stacking these is not particularly limited.
 以下、本発明の固体撮像装置の一つであるカメラモジュールに関し、本発明の波長カットフィルタ1が、固体撮像素子2の光入射側で固体撮像素子以外の部分に固定されている場合について具体的に説明する。
 図2は、本発明の固体撮像装置の一つであるカメラモジュールの構成の一形態を示す断面図である。カメラモジュールは、半導体基板に平面視矩形状に形成された固体撮像素子2と、固体撮像素子2の受光部3の反対側に、光入射側から染料を含有するコーティング層(B)・ガラス基板(A)・赤外線反射膜(C)の順に積層された波長カットフィルタ1と、固体撮像素子2の一面において受光部3を除いた領域に形成され、固体撮像素子2及び波長カットフィルタ1を接着剤4で接合する。固体撮像装置であるカメラモジュールは、波長カットフィルタ1を通して外部からの光を取り込み、固体撮像素子2の受光部3に配置された受光素子によって受光する。
Hereinafter, the present invention relates to a camera module which is one of the solid-state imaging devices, and specifically relates to a case where the wavelength cut filter 1 of the present invention is fixed to a portion other than the solid-state imaging device on the light incident side of the solid-state imaging device 2. Explained.
FIG. 2 is a cross-sectional view showing an embodiment of the configuration of a camera module that is one of the solid-state imaging devices of the present invention. The camera module includes a solid-state imaging device 2 formed in a rectangular shape in plan view on a semiconductor substrate, and a coating layer (B) / glass substrate containing a dye from the light incident side on the opposite side of the light-receiving unit 3 of the solid-state imaging device 2 (A) The wavelength cut filter 1 laminated in the order of the infrared reflective film (C) and the solid-state image sensor 2 are formed in a region excluding the light-receiving unit 3 on one surface, and the solid-state image sensor 2 and the wavelength cut filter 1 are bonded. Join with Agent 4. A camera module, which is a solid-state imaging device, takes in light from the outside through the wavelength cut filter 1 and receives the light with a light-receiving element disposed in the light-receiving unit 3 of the solid-state imaging element 2.
 接着剤4としては、アクリル系樹脂、エポキシ系樹脂等のUV硬化性接着剤あるいは熱硬化性樹脂を用いることができ、該接着剤4を均一に塗布した後、必要に応じて周知のフォトリソグラフィ技術を用いて接着剤4をパターニングし、熱硬化により接合する。接合する際には、真空環境内で貼り合せ後に真空加圧を行ってもよい。 As the adhesive 4, a UV curable adhesive such as an acrylic resin or an epoxy resin, or a thermosetting resin can be used. After the adhesive 4 is uniformly applied, a known photolithography may be used as necessary. The adhesive 4 is patterned using a technique and bonded by thermosetting. When joining, vacuum pressurization may be performed after bonding in a vacuum environment.
 実装基板8は、ガラスエポキシ基板やセラミック基板等を用いたリジッド基板であり、固体撮像素子2を制御する制御回路が設けられているものである。
 実装基板8上に固体撮像素子2を配置し、続いて、実装基板8のレンズホルダ7が固着される位置に予め接着剤4を塗布しておく。
 レンズキャップ6は、レンズ5を保護するものである。また、レンズホルダー7は、レンズ5を保持するものであり、実装基板8に取り付けられて固体撮像素子2を覆う箱状のベース部7aと、レンズ5を保持する円筒形状の鏡筒部7bとを備えている。
The mounting substrate 8 is a rigid substrate using a glass epoxy substrate, a ceramic substrate, or the like, and is provided with a control circuit for controlling the solid-state imaging device 2.
The solid-state imaging device 2 is disposed on the mounting substrate 8, and then the adhesive 4 is applied in advance to a position where the lens holder 7 of the mounting substrate 8 is fixed.
The lens cap 6 protects the lens 5. The lens holder 7 holds the lens 5, and is attached to the mounting substrate 8 to cover the solid-state imaging device 2. A box-shaped base portion 7 a and a cylindrical lens barrel portion 7 b that holds the lens 5 are provided. It has.
 続いて、レンズホルダ7の下端面が塗布された接着剤4に接するようにレンズホルダ7を実装基板8上に配置し、更に固体撮像素子2の受光部3とレンズホルダ7内のレンズ5との距離が、レンズ5の焦点距離に一致するようにレンズホルダ7の位置の調節を行う。 Subsequently, the lens holder 7 is disposed on the mounting substrate 8 so that the lower end surface of the lens holder 7 is in contact with the applied adhesive 4, and the light receiving unit 3 of the solid-state imaging device 2 and the lens 5 in the lens holder 7 are arranged. The position of the lens holder 7 is adjusted such that the distance of the lens 5 coincides with the focal length of the lens 5.
 レンズホルダ7の位置調節を行った後、接着剤4に対して紫外線を照射し、接着剤4を硬化させ、カメラモジュールを製造することができる。
 レンズホルダ7が固定された実装基板8全体を、約85℃ で加熱して、熱硬化により更に接着剤4の硬化を十分に行ってもよい。
After adjusting the position of the lens holder 7, the adhesive 4 can be irradiated with ultraviolet rays to cure the adhesive 4, and a camera module can be manufactured.
The entire mounting substrate 8 to which the lens holder 7 is fixed may be heated at about 85 ° C. and the adhesive 4 may be sufficiently cured by thermal curing.
 尚、カメラモジュールの製造方法においては、紫外線を照射する工程の後に、実装基板8全体を加熱する工程を含むため、レンズホルダ7、レンズ5及び波長カットフィルタ1はいずれも、耐熱性の高い材料を用いることが必要とされる。具体的には、前述のように接着剤4の熱硬化のための加熱の他、実装基板8の下面に配置される複数のはんだを、約260℃ で加熱溶融処理して他の基板にはんだ付けするため、リフロー耐性を持った材
料で形成されていることが望ましい。
Since the camera module manufacturing method includes a step of heating the entire mounting substrate 8 after the step of irradiating ultraviolet rays, the lens holder 7, the lens 5 and the wavelength cut filter 1 are all materials having high heat resistance. Is required. Specifically, in addition to heating for thermosetting the adhesive 4 as described above, a plurality of solders disposed on the lower surface of the mounting substrate 8 are heated and melted at about 260 ° C. to be soldered to other substrates. For this reason, it is desirable that the material is made of a material having reflow resistance.
 以下、実施例等を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to these examples and the like.
 製造例1~11は、本発明の波長カットフィルタに用いられる染料を含有するコーティング層(B)を形成するための塗工液の調製例を示し、比較製造例2~4は、比較の波長カットフィルタに用いられる染料を含有するコーティング層(B)を形成するための比較塗工液の調製例を示し、実施例1~11は、本発明の波長カットフィルタの製造例を示し、比較例1~4は、比較の波長カットフィルタの製造例を示し、評価例1~11では、実施例1~11で製造した本発明の波長カットフィルタを評価し、比較評価例1~4では、比較例1~4で製造した比較の波長カットフィルタを評価した。 Production Examples 1 to 11 show preparation examples of coating solutions for forming the coating layer (B) containing the dye used in the wavelength cut filter of the present invention, and Comparative Production Examples 2 to 4 show comparative wavelengths. Examples of preparation of a comparative coating solution for forming a coating layer (B) containing a dye used for a cut filter are shown. Examples 1 to 11 show examples of production of the wavelength cut filter of the present invention. 1 to 4 show comparative wavelength cut filter manufacturing examples. In evaluation examples 1 to 11, the wavelength cut filters of the present invention manufactured in Examples 1 to 11 were evaluated, and in comparative evaluation examples 1 to 4, comparisons were made. The comparative wavelength cut filters produced in Examples 1-4 were evaluated.
[製造例1~11及び比較製造例2~4]塗工液No.1~No.11及び比較塗工液No.2~No.4の調製
 [表1]及び[表2]に示す配合で各成分を混合し、塗工液No.1~No.11及び比較塗工液No.2~No.4を得た。
[Production Examples 1 to 11 and Comparative Production Examples 2 to 4] Coating liquid No. 1-No. 11 and comparative coating solution no. 2 to No. Preparation of No. 4 Each component was mixed with the formulation shown in [Table 1] and [Table 2]. 1-No. 11 and comparative coating solution no. 2 to No. 4 was obtained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[実施例1~11及び比較例1~4]波長カットフィルタNo.1~No.11及び比較波長カットフィルタNo.1~No.4の製造
 厚さ100μmのガラス基板(B)の一方の面に、真空蒸着法によりシリカ(SiO2)層と酸化チタン(TiO2)層とを交互に積層して、全層数が30層で厚さ約3μmの赤外線反射膜(C)を形成した。
 得られた赤外反射膜(C)を形成したガラス基板(B)の該赤外反射膜(C)とは異なる面に、製造例1~11で得られた塗工液No.1~No.11を、バーコーター#30により塗布(膜厚10μm)した後、100℃で10分間乾燥させてコーティング層を形成し、本発明の波長カットフィルターNo.1~No.11を作製した。
 上記で得られた、赤外反射膜(C)を形成したガラス基板を比較の波長カットフィルタNo.1とした。
 また、厚さ100μmのガラス基板(B)の一方の面に、比較塗工液No.2~No.4を、バーコーター#30により塗布(膜厚10μm)した後、100℃で10分間乾燥させてコーティング層(A)を形成し、比較の波長カットフィルタNo.2~No.4を作製した。
[Examples 1 to 11 and Comparative Examples 1 to 4] Wavelength cut filter No. 1-No. 11 and comparative wavelength cut filter No. 1-No. Production of 4 A silica (SiO 2 ) layer and a titanium oxide (TiO 2 ) layer are alternately laminated on one surface of a glass substrate (B) having a thickness of 100 μm by a vacuum deposition method, and the total number of layers is 30 layers. An infrared reflective film (C) having a thickness of about 3 μm was formed.
On the surface of the glass substrate (B) on which the obtained infrared reflective film (C) was formed, a surface different from the infrared reflective film (C), the coating liquid Nos. Obtained in Production Examples 1 to 11 were used. 1-No. 11 was coated with a bar coater # 30 (film thickness: 10 μm) and then dried at 100 ° C. for 10 minutes to form a coating layer. 1-No. 11 was produced.
The above-obtained glass substrate on which the infrared reflective film (C) was formed was compared with a comparative wavelength cut filter No. It was set to 1.
Further, on one surface of the glass substrate (B) having a thickness of 100 μm, a comparative coating solution No. 2 to No. 4 was coated with a bar coater # 30 (film thickness 10 μm), and then dried at 100 ° C. for 10 minutes to form a coating layer (A). 2 to No. 4 was produced.
[評価例1~11及び比較評価例1~4]
 実施例1~11で得られた本発明の波長カットフィルタNo.1~No.11及び比較例1~4で得られた比較の波長カットフィルタNo.1~No.4について、i)波長430~580nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率の平均値、ii)波長800~1000nmにおいて、波長カットフィルタの垂直方向から測定した場合の透過率の平均値及びiii)波長560~800nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率が80%となる波長の値(Ya)と、波長カットフィルタの垂直方向に対して35°の角度から測定した場合の透過率が80%となる波長の値(Yb)の差の絶対値を求めた。結果を[表1]及び[表2]に示す。尚、上透過率の測定は、日本分光(株)製紫外可視近赤外分光光度計V-570で測定した。
[Evaluation Examples 1 to 11 and Comparative Evaluation Examples 1 to 4]
The wavelength cut filter No. 1 of the present invention obtained in Examples 1 to 11 was used. 1-No. 11 and comparative wavelength cut filters No. 1 obtained in Comparative Examples 1 to 4. 1-No. 4) i) Average transmittance when measured from the vertical direction of the wavelength cut filter in the wavelength range of 430 to 580 nm, ii) Transmission when measured from the vertical direction of the wavelength cut filter at the wavelength of 800 to 1000 nm Average value of the rate and iii) In the wavelength range of 560 to 800 nm, the wavelength value (Ya) at which the transmittance is 80% when measured from the vertical direction of the wavelength cut filter, and the vertical direction of the wavelength cut filter The absolute value of the difference in wavelength value (Yb) at which the transmittance was 80% when measured from an angle of 35 ° was determined. The results are shown in [Table 1] and [Table 2]. The upper transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer V-570 manufactured by JASCO Corporation.
 上記〔表1〕及び[表2]の結果より、染料を含有するコーティング層(B)を有しない比較例1の波長カットフィルターは入射角依存性が高く、赤外線反射膜(C)を有していない比較例2~4の波長カットフィルターは、入射角依存性が低いものの、波長430~580nmの範囲において透過率が低いかあるいは波長800~1000nmにおいて透過率が高い、すなわち可視光領域においては光を透過せず、赤外線領域においては光をカットしないため人間の視感度に近づくよう感度を補正することができない。
 一方、本発明の波長カットフィルタは、波長430~580nmの範囲において透過率が高く、波長800~1000nmにおいて透過率が低く、且つ入射角依存性が低い。
From the results of the above [Table 1] and [Table 2], the wavelength cut filter of Comparative Example 1 having no dye-containing coating layer (B) has a high incident angle dependency and has an infrared reflection film (C). Although the wavelength cut filters of Comparative Examples 2 to 4 have low incident angle dependency, the transmittance is low in the wavelength range of 430 to 580 nm or high in the wavelength range of 800 to 1000 nm, that is, in the visible light region. Since light is not transmitted and light is not cut in the infrared region, the sensitivity cannot be corrected to approach human visibility.
On the other hand, the wavelength cut filter of the present invention has high transmittance in the wavelength range of 430 to 580 nm, low transmittance in the wavelength range of 800 to 1000 nm, and low incident angle dependency.
 以上の結果より、ガラス基板(A)の一方の面に染料を含有するコーティング層(B)を有し、且つガラス基板(A)の他方の面に赤外線反射膜(C)を積層してなることを特徴とする本発明の波長カットフィルタは、入射角依存性が低い。よって、本発明の波長カットフィルタは、固体撮像装置及びカメラモジュールに有用である。 From the above results, the glass substrate (A) has a coating layer (B) containing a dye on one surface, and the infrared reflection film (C) is laminated on the other surface of the glass substrate (A). The wavelength cut filter according to the present invention, which is characterized by this, has low incident angle dependency. Therefore, the wavelength cut filter of the present invention is useful for a solid-state imaging device and a camera module.
(A).ガラス基板
(B).コーティング層
(C).赤外線反射膜(蒸着膜)
1.波長カットフィルタ
2.固体撮像素子
3.受光部
4.接着剤
5.レンズ
6.レンズキャップ
7.レンズホルダ
7a.ベース部
7b.鏡筒部
8.実装基板
(A). Glass substrate (B). Coating layer (C). Infrared reflective film (deposited film)
1. 1. Wavelength cut filter 2. Solid-state imaging device Light receiving unit 4. 4. Adhesive Lens 6. Lens cap 7. Lens holder 7a. Base part 7b. Lens barrel 8. Mounting board

Claims (7)

  1.  ガラス基板(A)の一方の面に染料を含有するコーティング層(B)を有し、且つガラス基板(A)の他方の面に赤外線反射膜(C)を積層してなることを特徴とする波長カットフィルタ。 It has a coating layer (B) containing a dye on one surface of a glass substrate (A), and an infrared reflective film (C) is laminated on the other surface of the glass substrate (A). Wavelength cut filter.
  2.  上記染料が酸性染料であることを特徴とする請求項1記載の波長カットフィルタ。 The wavelength cut filter according to claim 1, wherein the dye is an acid dye.
  3.  透過率が下記(i)~(iii)を満たすことを特徴とする請求項1又は2記載の波長カットフィルタ。
    (i)波長430~580nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率の平均値が75%以上である。
    (ii)波長800~1000nmにおいて、波長カットフィルタの垂直方向から測定した場合の透過率の平均値が5%以下である。
    (iii)波長560~800nmの範囲において、波長カットフィルタの垂直方向から測定した場合の透過率が80%となる波長の値(Ya)と、波長カットフィルタの垂直方向に対して35°の角度から測定した場合の透過率が80%となる波長の値(Yb)の差の絶対値が30nm以下である。
    3. The wavelength cut filter according to claim 1, wherein the transmittance satisfies the following (i) to (iii):
    (I) In the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the wavelength cut filter is 75% or more.
    (Ii) At a wavelength of 800 to 1000 nm, the average transmittance when measured from the vertical direction of the wavelength cut filter is 5% or less.
    (Iii) In the wavelength range of 560 to 800 nm, the wavelength value (Ya) at which the transmittance is 80% when measured from the vertical direction of the wavelength cut filter, and an angle of 35 ° with respect to the vertical direction of the wavelength cut filter The absolute value of the difference in wavelength value (Yb) at which the transmittance is 80% when measured from is 30 nm or less.
  4.  上記染料を含有するコーティング層(B)が、樹脂固形分100質量部に対して染料を0.01~10.0質量部含有されてなることを特徴とする請求項1~3の何れか1項に記載の波長カットフィルタ。 4. The coating layer (B) containing the dye contains 0.01 to 10.0 parts by mass of the dye with respect to 100 parts by mass of the resin solid content. The wavelength cut filter according to item.
  5.  上記染料がシアニン化合物であることを特徴とする請求項1~4の何れか1項に記載の波長カットフィルタ。 The wavelength cut filter according to any one of claims 1 to 4, wherein the dye is a cyanine compound.
  6.  請求項1~5の何れか1項に記載の波長カットフィルタを具備することを特徴とする固体撮像装置。 A solid-state imaging device comprising the wavelength cut filter according to any one of claims 1 to 5.
  7.  請求項1~5の何れか1項に記載の波長カットフィルタを具備することを特徴とするカメラモジュール。 A camera module comprising the wavelength cut filter according to any one of claims 1 to 5.
PCT/JP2013/058986 2012-04-25 2013-03-27 Wavelength cut filter WO2013161492A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380003842.6A CN103930806B (en) 2012-04-25 2013-03-27 Wavelength cut-off light filter
JP2014512430A JP6305331B2 (en) 2012-04-25 2013-03-27 Wavelength cut filter
KR1020147012499A KR101987926B1 (en) 2012-04-25 2013-03-27 Wavelength cut filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-100275 2012-04-25
JP2012100275 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161492A1 true WO2013161492A1 (en) 2013-10-31

Family

ID=49482826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058986 WO2013161492A1 (en) 2012-04-25 2013-03-27 Wavelength cut filter

Country Status (5)

Country Link
JP (1) JP6305331B2 (en)
KR (1) KR101987926B1 (en)
CN (1) CN103930806B (en)
TW (1) TWI634352B (en)
WO (1) WO2013161492A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203863A (en) * 2014-04-16 2015-11-16 ソニー株式会社 Image pickup element and imaging device
CN105593712A (en) * 2013-12-26 2016-05-18 旭硝子株式会社 Optical filter
JP2016162946A (en) * 2015-03-04 2016-09-05 Jsr株式会社 Solid state image sensor
WO2017022708A1 (en) * 2015-08-06 2017-02-09 株式会社Adeka Thermally reactive composition
JP2019086771A (en) * 2017-11-01 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Optical filter, and camera module, and electronic device comprising the same
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
WO2022181422A1 (en) * 2021-02-26 2022-09-01 Agc株式会社 Optical filter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6312241B2 (en) * 2014-03-19 2018-04-18 Hoya Candeo Optronics株式会社 Transparent substrate
CN111665583B (en) * 2015-05-12 2022-03-15 Agc株式会社 Near-infrared absorbing dye and absorbing layer
JP6642313B2 (en) * 2015-07-28 2020-02-05 Jsr株式会社 New cyanine compound, optical filter and device using optical filter
JP6619627B2 (en) * 2015-11-20 2019-12-11 株式会社Adeka Coloring composition
WO2017094672A1 (en) * 2015-11-30 2017-06-08 Jsr株式会社 Optical filter, ambient light sensor and sensor module
US11269121B2 (en) 2016-01-21 2022-03-08 3M Innovative Properties Company Optical camouflage filters
JP2019507899A (en) * 2016-01-21 2019-03-22 スリーエム イノベイティブ プロパティズ カンパニー Optical camouflage filter
JP6777146B2 (en) * 2016-06-08 2020-10-28 Jsr株式会社 Optical filter and optical sensor device
WO2018088561A1 (en) * 2016-11-14 2018-05-17 日本板硝子株式会社 Light-absorbing composition, and optical filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009142A (en) * 2006-06-29 2008-01-17 Dainippon Printing Co Ltd Composite filter
JP2012032454A (en) * 2010-07-28 2012-02-16 Fujifilm Corp Infrared reflection film

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049419A (en) * 1998-01-13 2000-04-11 3M Innovative Properties Co Multilayer infrared reflecting optical body
JP4412867B2 (en) * 2000-07-06 2010-02-10 富士フイルム株式会社 Optical filter
US6929864B2 (en) * 2002-08-17 2005-08-16 3M Innovative Properties Company Extensible, visible light-transmissive and infrared-reflective film and methods of making and using the film
JP2004133174A (en) * 2002-10-10 2004-04-30 Mitsubishi Chemicals Corp Optical filter
JP2004354735A (en) 2003-05-29 2004-12-16 Daishinku Corp Light ray cut filter
JP4979384B2 (en) * 2004-09-28 2012-07-18 株式会社Adeka Cyanine compound, optical filter and optical recording material
JP2006106570A (en) * 2004-10-08 2006-04-20 Adl:Kk Light absorbing filter
JP2008051985A (en) * 2006-08-24 2008-03-06 Nidec Copal Corp Near infrared ray absorbing filter
JP4752792B2 (en) * 2007-02-28 2011-08-17 ブラザー工業株式会社 Image recording device
JP2008250022A (en) * 2007-03-30 2008-10-16 Adeka Corp Optical filter
JP5489669B2 (en) * 2008-11-28 2014-05-14 Jsr株式会社 Near-infrared cut filter and device using near-infrared cut filter
EP2371904B1 (en) * 2008-12-25 2015-11-11 Adeka Corporation Near-infrared-ray absorbing material containing cyanine compound, and cyanine compound
JP2011213969A (en) * 2009-04-14 2011-10-27 Nippon Shokubai Co Ltd Near infrared rays-absorbing adhesive composition
US8699651B2 (en) * 2009-04-15 2014-04-15 Ge-Hitachi Nuclear Energy Americas Llc Method and system for simultaneous irradiation and elution capsule
JP5454111B2 (en) 2009-12-07 2014-03-26 旭硝子株式会社 Near-infrared cut filter, imaging device / display device
JP5810604B2 (en) 2010-05-26 2015-11-11 Jsr株式会社 Near-infrared cut filter and device using near-infrared cut filter
JP5936299B2 (en) * 2010-11-08 2016-06-22 Jsr株式会社 Near-infrared cut filter, solid-state image pickup device including the same, and solid-state image pickup apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009142A (en) * 2006-06-29 2008-01-17 Dainippon Printing Co Ltd Composite filter
JP2012032454A (en) * 2010-07-28 2012-02-16 Fujifilm Corp Infrared reflection film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593712A (en) * 2013-12-26 2016-05-18 旭硝子株式会社 Optical filter
JP2015203863A (en) * 2014-04-16 2015-11-16 ソニー株式会社 Image pickup element and imaging device
US10317593B2 (en) 2014-04-16 2019-06-11 Sony Corporation Image device and imaging apparatus
JP2016162946A (en) * 2015-03-04 2016-09-05 Jsr株式会社 Solid state image sensor
WO2017022708A1 (en) * 2015-08-06 2017-02-09 株式会社Adeka Thermally reactive composition
JPWO2017022708A1 (en) * 2015-08-06 2018-05-24 株式会社Adeka Thermally reactive composition
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
JP2019086771A (en) * 2017-11-01 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Optical filter, and camera module, and electronic device comprising the same
JP7158243B2 (en) 2017-11-01 2022-10-21 三星電子株式会社 Optical filter, camera module and electronic device including the same
US11719867B2 (en) 2017-11-01 2023-08-08 Samsung Electronics Co., Ltd. Optical filter, and camera module and electronic device comprising the same
WO2022181422A1 (en) * 2021-02-26 2022-09-01 Agc株式会社 Optical filter

Also Published As

Publication number Publication date
TW201346350A (en) 2013-11-16
TWI634352B (en) 2018-09-01
JPWO2013161492A1 (en) 2015-12-24
KR20150003712A (en) 2015-01-09
CN103930806A (en) 2014-07-16
CN103930806B (en) 2016-11-23
JP6305331B2 (en) 2018-04-04
KR101987926B1 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6305331B2 (en) Wavelength cut filter
JP2014126642A (en) Wavelength cut filter
JP5535664B2 (en) Color correction agent, squarylium compound and optical filter
JP6020746B2 (en) Optical filter
CN106062592B (en) Near infrared ray cut-off filter and photographic device
CN105122095B (en) Infrared ray masking wave filter, solid-state imager, camera device and display device
KR101832114B1 (en) Optical Filters and Imaging Devices
JP2016090781A (en) Wavelength cut filter
KR101676384B1 (en) Near-infrared-ray absorbing material containing cyanine compound, and cyanine compound
CN103608705A (en) Optical filter, solid-state imaging element, imaging device lens and imaging device
CN111936896B (en) Optical filter and information acquisition device
CN106023822A (en) Oled display device and production method thereof
JP2019168611A (en) Optical filter
JP2008250022A (en) Optical filter
WO2019189072A1 (en) Optical filter and use thereof
JP6908522B2 (en) Thermoreactive composition
CN108419438B (en) Coloring composition
JP2007256717A (en) Optical filter
WO2019151348A1 (en) Optical filter and imaging device
US20230258853A1 (en) Optical filter
TWI444435B (en) Anthocyanin compounds and filters using the compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512430

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147012499

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781891

Country of ref document: EP

Kind code of ref document: A1